1 /*! \file */ 2 /* 3 * kmp.h -- KPTS runtime header file. 4 */ 5 6 //===----------------------------------------------------------------------===// 7 // 8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 9 // See https://llvm.org/LICENSE.txt for license information. 10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef KMP_H 15 #define KMP_H 16 17 #include "kmp_config.h" 18 19 /* #define BUILD_PARALLEL_ORDERED 1 */ 20 21 /* This fix replaces gettimeofday with clock_gettime for better scalability on 22 the Altix. Requires user code to be linked with -lrt. */ 23 //#define FIX_SGI_CLOCK 24 25 /* Defines for OpenMP 3.0 tasking and auto scheduling */ 26 27 #ifndef KMP_STATIC_STEAL_ENABLED 28 #define KMP_STATIC_STEAL_ENABLED 1 29 #endif 30 31 #define TASK_CURRENT_NOT_QUEUED 0 32 #define TASK_CURRENT_QUEUED 1 33 34 #ifdef BUILD_TIED_TASK_STACK 35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty 36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK 37 // Number of entries in each task stack array 38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS) 39 // Mask for determining index into stack block 40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1) 41 #endif // BUILD_TIED_TASK_STACK 42 43 #define TASK_NOT_PUSHED 1 44 #define TASK_SUCCESSFULLY_PUSHED 0 45 #define TASK_TIED 1 46 #define TASK_UNTIED 0 47 #define TASK_EXPLICIT 1 48 #define TASK_IMPLICIT 0 49 #define TASK_PROXY 1 50 #define TASK_FULL 0 51 #define TASK_DETACHABLE 1 52 #define TASK_UNDETACHABLE 0 53 54 #define KMP_CANCEL_THREADS 55 #define KMP_THREAD_ATTR 56 57 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being 58 // built on Android 59 #if defined(__ANDROID__) 60 #undef KMP_CANCEL_THREADS 61 #endif 62 63 #include <signal.h> 64 #include <stdarg.h> 65 #include <stddef.h> 66 #include <stdio.h> 67 #include <stdlib.h> 68 #include <string.h> 69 #include <limits> 70 #include <type_traits> 71 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad 72 Microsoft library. Some macros provided below to replace these functions */ 73 #ifndef __ABSOFT_WIN 74 #include <sys/types.h> 75 #endif 76 #include <limits.h> 77 #include <time.h> 78 79 #include <errno.h> 80 81 #include "kmp_os.h" 82 83 #include "kmp_safe_c_api.h" 84 85 #if KMP_STATS_ENABLED 86 class kmp_stats_list; 87 #endif 88 89 #if KMP_USE_HIER_SCHED 90 // Only include hierarchical scheduling if affinity is supported 91 #undef KMP_USE_HIER_SCHED 92 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED 93 #endif 94 95 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED 96 #include "hwloc.h" 97 #ifndef HWLOC_OBJ_NUMANODE 98 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE 99 #endif 100 #ifndef HWLOC_OBJ_PACKAGE 101 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET 102 #endif 103 #endif 104 105 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 106 #include <xmmintrin.h> 107 #endif 108 109 // The below has to be defined before including "kmp_barrier.h". 110 #define KMP_INTERNAL_MALLOC(sz) malloc(sz) 111 #define KMP_INTERNAL_FREE(p) free(p) 112 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz)) 113 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz)) 114 115 #include "kmp_debug.h" 116 #include "kmp_lock.h" 117 #include "kmp_version.h" 118 #include "kmp_barrier.h" 119 #if USE_DEBUGGER 120 #include "kmp_debugger.h" 121 #endif 122 #include "kmp_i18n.h" 123 124 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS) 125 126 #include "kmp_wrapper_malloc.h" 127 #if KMP_OS_UNIX 128 #include <unistd.h> 129 #if !defined NSIG && defined _NSIG 130 #define NSIG _NSIG 131 #endif 132 #endif 133 134 #if KMP_OS_LINUX 135 #pragma weak clock_gettime 136 #endif 137 138 #if OMPT_SUPPORT 139 #include "ompt-internal.h" 140 #endif 141 142 #if OMPD_SUPPORT 143 #include "ompd-specific.h" 144 #endif 145 146 #ifndef UNLIKELY 147 #define UNLIKELY(x) (x) 148 #endif 149 150 // Affinity format function 151 #include "kmp_str.h" 152 153 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64. 154 // 3 - fast allocation using sync, non-sync free lists of any size, non-self 155 // free lists of limited size. 156 #ifndef USE_FAST_MEMORY 157 #define USE_FAST_MEMORY 3 158 #endif 159 160 #ifndef KMP_NESTED_HOT_TEAMS 161 #define KMP_NESTED_HOT_TEAMS 0 162 #define USE_NESTED_HOT_ARG(x) 163 #else 164 #if KMP_NESTED_HOT_TEAMS 165 #define USE_NESTED_HOT_ARG(x) , x 166 #else 167 #define USE_NESTED_HOT_ARG(x) 168 #endif 169 #endif 170 171 // Assume using BGET compare_exchange instruction instead of lock by default. 172 #ifndef USE_CMP_XCHG_FOR_BGET 173 #define USE_CMP_XCHG_FOR_BGET 1 174 #endif 175 176 // Test to see if queuing lock is better than bootstrap lock for bget 177 // #ifndef USE_QUEUING_LOCK_FOR_BGET 178 // #define USE_QUEUING_LOCK_FOR_BGET 179 // #endif 180 181 #define KMP_NSEC_PER_SEC 1000000000L 182 #define KMP_USEC_PER_SEC 1000000L 183 184 /*! 185 @ingroup BASIC_TYPES 186 @{ 187 */ 188 189 /*! 190 Values for bit flags used in the ident_t to describe the fields. 191 */ 192 enum { 193 /*! Use trampoline for internal microtasks */ 194 KMP_IDENT_IMB = 0x01, 195 /*! Use c-style ident structure */ 196 KMP_IDENT_KMPC = 0x02, 197 /* 0x04 is no longer used */ 198 /*! Entry point generated by auto-parallelization */ 199 KMP_IDENT_AUTOPAR = 0x08, 200 /*! Compiler generates atomic reduction option for kmpc_reduce* */ 201 KMP_IDENT_ATOMIC_REDUCE = 0x10, 202 /*! To mark a 'barrier' directive in user code */ 203 KMP_IDENT_BARRIER_EXPL = 0x20, 204 /*! To Mark implicit barriers. */ 205 KMP_IDENT_BARRIER_IMPL = 0x0040, 206 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0, 207 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040, 208 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0, 209 210 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140, 211 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0, 212 213 /*! To mark a static loop in OMPT callbacks */ 214 KMP_IDENT_WORK_LOOP = 0x200, 215 /*! To mark a sections directive in OMPT callbacks */ 216 KMP_IDENT_WORK_SECTIONS = 0x400, 217 /*! To mark a distribute construct in OMPT callbacks */ 218 KMP_IDENT_WORK_DISTRIBUTE = 0x800, 219 /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and 220 not currently used. If one day we need more bits, then we can use 221 an invalid combination of hints to mean that another, larger field 222 should be used in a different flag. */ 223 KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000, 224 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000, 225 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000, 226 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000, 227 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000, 228 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000 229 }; 230 231 /*! 232 * The ident structure that describes a source location. 233 */ 234 typedef struct ident { 235 kmp_int32 reserved_1; /**< might be used in Fortran; see above */ 236 kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC 237 identifies this union member */ 238 kmp_int32 reserved_2; /**< not really used in Fortran any more; see above */ 239 #if USE_ITT_BUILD 240 /* but currently used for storing region-specific ITT */ 241 /* contextual information. */ 242 #endif /* USE_ITT_BUILD */ 243 kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++ */ 244 char const *psource; /**< String describing the source location. 245 The string is composed of semi-colon separated fields 246 which describe the source file, the function and a pair 247 of line numbers that delimit the construct. */ 248 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0) 249 kmp_int32 get_openmp_version() { 250 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF); 251 } 252 } ident_t; 253 /*! 254 @} 255 */ 256 257 // Some forward declarations. 258 typedef union kmp_team kmp_team_t; 259 typedef struct kmp_taskdata kmp_taskdata_t; 260 typedef union kmp_task_team kmp_task_team_t; 261 typedef union kmp_team kmp_team_p; 262 typedef union kmp_info kmp_info_p; 263 typedef union kmp_root kmp_root_p; 264 265 template <bool C = false, bool S = true> class kmp_flag_32; 266 template <bool C = false, bool S = true> class kmp_flag_64; 267 template <bool C = false, bool S = true> class kmp_atomic_flag_64; 268 class kmp_flag_oncore; 269 270 #ifdef __cplusplus 271 extern "C" { 272 #endif 273 274 /* ------------------------------------------------------------------------ */ 275 276 /* Pack two 32-bit signed integers into a 64-bit signed integer */ 277 /* ToDo: Fix word ordering for big-endian machines. */ 278 #define KMP_PACK_64(HIGH_32, LOW_32) \ 279 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32))) 280 281 // Generic string manipulation macros. Assume that _x is of type char * 282 #define SKIP_WS(_x) \ 283 { \ 284 while (*(_x) == ' ' || *(_x) == '\t') \ 285 (_x)++; \ 286 } 287 #define SKIP_DIGITS(_x) \ 288 { \ 289 while (*(_x) >= '0' && *(_x) <= '9') \ 290 (_x)++; \ 291 } 292 #define SKIP_TOKEN(_x) \ 293 { \ 294 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \ 295 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \ 296 (_x)++; \ 297 } 298 #define SKIP_TO(_x, _c) \ 299 { \ 300 while (*(_x) != '\0' && *(_x) != (_c)) \ 301 (_x)++; \ 302 } 303 304 /* ------------------------------------------------------------------------ */ 305 306 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y)) 307 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 308 309 /* ------------------------------------------------------------------------ */ 310 /* Enumeration types */ 311 312 enum kmp_state_timer { 313 ts_stop, 314 ts_start, 315 ts_pause, 316 317 ts_last_state 318 }; 319 320 enum dynamic_mode { 321 dynamic_default, 322 #ifdef USE_LOAD_BALANCE 323 dynamic_load_balance, 324 #endif /* USE_LOAD_BALANCE */ 325 dynamic_random, 326 dynamic_thread_limit, 327 dynamic_max 328 }; 329 330 /* external schedule constants, duplicate enum omp_sched in omp.h in order to 331 * not include it here */ 332 #ifndef KMP_SCHED_TYPE_DEFINED 333 #define KMP_SCHED_TYPE_DEFINED 334 typedef enum kmp_sched { 335 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check 336 // Note: need to adjust __kmp_sch_map global array in case enum is changed 337 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33) 338 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35) 339 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36) 340 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38) 341 kmp_sched_upper_std = 5, // upper bound for standard schedules 342 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules 343 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39) 344 #if KMP_STATIC_STEAL_ENABLED 345 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44) 346 #endif 347 kmp_sched_upper, 348 kmp_sched_default = kmp_sched_static, // default scheduling 349 kmp_sched_monotonic = 0x80000000 350 } kmp_sched_t; 351 #endif 352 353 /*! 354 @ingroup WORK_SHARING 355 * Describes the loop schedule to be used for a parallel for loop. 356 */ 357 enum sched_type : kmp_int32 { 358 kmp_sch_lower = 32, /**< lower bound for unordered values */ 359 kmp_sch_static_chunked = 33, 360 kmp_sch_static = 34, /**< static unspecialized */ 361 kmp_sch_dynamic_chunked = 35, 362 kmp_sch_guided_chunked = 36, /**< guided unspecialized */ 363 kmp_sch_runtime = 37, 364 kmp_sch_auto = 38, /**< auto */ 365 kmp_sch_trapezoidal = 39, 366 367 /* accessible only through KMP_SCHEDULE environment variable */ 368 kmp_sch_static_greedy = 40, 369 kmp_sch_static_balanced = 41, 370 /* accessible only through KMP_SCHEDULE environment variable */ 371 kmp_sch_guided_iterative_chunked = 42, 372 kmp_sch_guided_analytical_chunked = 43, 373 /* accessible only through KMP_SCHEDULE environment variable */ 374 kmp_sch_static_steal = 44, 375 376 /* static with chunk adjustment (e.g., simd) */ 377 kmp_sch_static_balanced_chunked = 45, 378 kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */ 379 kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */ 380 381 /* accessible only through KMP_SCHEDULE environment variable */ 382 kmp_sch_upper, /**< upper bound for unordered values */ 383 384 kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */ 385 kmp_ord_static_chunked = 65, 386 kmp_ord_static = 66, /**< ordered static unspecialized */ 387 kmp_ord_dynamic_chunked = 67, 388 kmp_ord_guided_chunked = 68, 389 kmp_ord_runtime = 69, 390 kmp_ord_auto = 70, /**< ordered auto */ 391 kmp_ord_trapezoidal = 71, 392 kmp_ord_upper, /**< upper bound for ordered values */ 393 394 /* Schedules for Distribute construct */ 395 kmp_distribute_static_chunked = 91, /**< distribute static chunked */ 396 kmp_distribute_static = 92, /**< distribute static unspecialized */ 397 398 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a 399 single iteration/chunk, even if the loop is serialized. For the schedule 400 types listed above, the entire iteration vector is returned if the loop is 401 serialized. This doesn't work for gcc/gcomp sections. */ 402 kmp_nm_lower = 160, /**< lower bound for nomerge values */ 403 404 kmp_nm_static_chunked = 405 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower), 406 kmp_nm_static = 162, /**< static unspecialized */ 407 kmp_nm_dynamic_chunked = 163, 408 kmp_nm_guided_chunked = 164, /**< guided unspecialized */ 409 kmp_nm_runtime = 165, 410 kmp_nm_auto = 166, /**< auto */ 411 kmp_nm_trapezoidal = 167, 412 413 /* accessible only through KMP_SCHEDULE environment variable */ 414 kmp_nm_static_greedy = 168, 415 kmp_nm_static_balanced = 169, 416 /* accessible only through KMP_SCHEDULE environment variable */ 417 kmp_nm_guided_iterative_chunked = 170, 418 kmp_nm_guided_analytical_chunked = 171, 419 kmp_nm_static_steal = 420 172, /* accessible only through OMP_SCHEDULE environment variable */ 421 422 kmp_nm_ord_static_chunked = 193, 423 kmp_nm_ord_static = 194, /**< ordered static unspecialized */ 424 kmp_nm_ord_dynamic_chunked = 195, 425 kmp_nm_ord_guided_chunked = 196, 426 kmp_nm_ord_runtime = 197, 427 kmp_nm_ord_auto = 198, /**< auto */ 428 kmp_nm_ord_trapezoidal = 199, 429 kmp_nm_upper, /**< upper bound for nomerge values */ 430 431 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since 432 we need to distinguish the three possible cases (no modifier, monotonic 433 modifier, nonmonotonic modifier), we need separate bits for each modifier. 434 The absence of monotonic does not imply nonmonotonic, especially since 4.5 435 says that the behaviour of the "no modifier" case is implementation defined 436 in 4.5, but will become "nonmonotonic" in 5.0. 437 438 Since we're passing a full 32 bit value, we can use a couple of high bits 439 for these flags; out of paranoia we avoid the sign bit. 440 441 These modifiers can be or-ed into non-static schedules by the compiler to 442 pass the additional information. They will be stripped early in the 443 processing in __kmp_dispatch_init when setting up schedules, so most of the 444 code won't ever see schedules with these bits set. */ 445 kmp_sch_modifier_monotonic = 446 (1 << 29), /**< Set if the monotonic schedule modifier was present */ 447 kmp_sch_modifier_nonmonotonic = 448 (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */ 449 450 #define SCHEDULE_WITHOUT_MODIFIERS(s) \ 451 (enum sched_type)( \ 452 (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) 453 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0) 454 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0) 455 #define SCHEDULE_HAS_NO_MODIFIERS(s) \ 456 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0) 457 #define SCHEDULE_GET_MODIFIERS(s) \ 458 ((enum sched_type)( \ 459 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))) 460 #define SCHEDULE_SET_MODIFIERS(s, m) \ 461 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m)) 462 #define SCHEDULE_NONMONOTONIC 0 463 #define SCHEDULE_MONOTONIC 1 464 465 kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */ 466 }; 467 468 // Apply modifiers on internal kind to standard kind 469 static inline void 470 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind, 471 enum sched_type internal_kind) { 472 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) { 473 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic); 474 } 475 } 476 477 // Apply modifiers on standard kind to internal kind 478 static inline void 479 __kmp_sched_apply_mods_intkind(kmp_sched_t kind, 480 enum sched_type *internal_kind) { 481 if ((int)kind & (int)kmp_sched_monotonic) { 482 *internal_kind = (enum sched_type)((int)*internal_kind | 483 (int)kmp_sch_modifier_monotonic); 484 } 485 } 486 487 // Get standard schedule without modifiers 488 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) { 489 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic)); 490 } 491 492 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */ 493 typedef union kmp_r_sched { 494 struct { 495 enum sched_type r_sched_type; 496 int chunk; 497 }; 498 kmp_int64 sched; 499 } kmp_r_sched_t; 500 501 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our 502 // internal schedule types 503 504 enum library_type { 505 library_none, 506 library_serial, 507 library_turnaround, 508 library_throughput 509 }; 510 511 #if KMP_OS_LINUX 512 enum clock_function_type { 513 clock_function_gettimeofday, 514 clock_function_clock_gettime 515 }; 516 #endif /* KMP_OS_LINUX */ 517 518 #if KMP_MIC_SUPPORTED 519 enum mic_type { non_mic, mic1, mic2, mic3, dummy }; 520 #endif 521 522 /* -- fast reduction stuff ------------------------------------------------ */ 523 524 #undef KMP_FAST_REDUCTION_BARRIER 525 #define KMP_FAST_REDUCTION_BARRIER 1 526 527 #undef KMP_FAST_REDUCTION_CORE_DUO 528 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 529 #define KMP_FAST_REDUCTION_CORE_DUO 1 530 #endif 531 532 enum _reduction_method { 533 reduction_method_not_defined = 0, 534 critical_reduce_block = (1 << 8), 535 atomic_reduce_block = (2 << 8), 536 tree_reduce_block = (3 << 8), 537 empty_reduce_block = (4 << 8) 538 }; 539 540 // Description of the packed_reduction_method variable: 541 // The packed_reduction_method variable consists of two enum types variables 542 // that are packed together into 0-th byte and 1-st byte: 543 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of 544 // barrier that will be used in fast reduction: bs_plain_barrier or 545 // bs_reduction_barrier 546 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will 547 // be used in fast reduction; 548 // Reduction method is of 'enum _reduction_method' type and it's defined the way 549 // so that the bits of 0-th byte are empty, so no need to execute a shift 550 // instruction while packing/unpacking 551 552 #if KMP_FAST_REDUCTION_BARRIER 553 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \ 554 ((reduction_method) | (barrier_type)) 555 556 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ 557 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00))) 558 559 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \ 560 ((enum barrier_type)((packed_reduction_method) & (0x000000FF))) 561 #else 562 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \ 563 (reduction_method) 564 565 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ 566 (packed_reduction_method) 567 568 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier) 569 #endif 570 571 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \ 572 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \ 573 (which_reduction_block)) 574 575 #if KMP_FAST_REDUCTION_BARRIER 576 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \ 577 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier)) 578 579 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \ 580 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier)) 581 #endif 582 583 typedef int PACKED_REDUCTION_METHOD_T; 584 585 /* -- end of fast reduction stuff ----------------------------------------- */ 586 587 #if KMP_OS_WINDOWS 588 #define USE_CBLKDATA 589 #if KMP_MSVC_COMPAT 590 #pragma warning(push) 591 #pragma warning(disable : 271 310) 592 #endif 593 #include <windows.h> 594 #if KMP_MSVC_COMPAT 595 #pragma warning(pop) 596 #endif 597 #endif 598 599 #if KMP_OS_UNIX 600 #include <dlfcn.h> 601 #include <pthread.h> 602 #endif 603 604 enum kmp_hw_t : int { 605 KMP_HW_UNKNOWN = -1, 606 KMP_HW_SOCKET = 0, 607 KMP_HW_PROC_GROUP, 608 KMP_HW_NUMA, 609 KMP_HW_DIE, 610 KMP_HW_LLC, 611 KMP_HW_L3, 612 KMP_HW_TILE, 613 KMP_HW_MODULE, 614 KMP_HW_L2, 615 KMP_HW_L1, 616 KMP_HW_CORE, 617 KMP_HW_THREAD, 618 KMP_HW_LAST 619 }; 620 621 typedef enum kmp_hw_core_type_t { 622 KMP_HW_CORE_TYPE_UNKNOWN = 0x0, 623 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 624 KMP_HW_CORE_TYPE_ATOM = 0x20, 625 KMP_HW_CORE_TYPE_CORE = 0x40, 626 KMP_HW_MAX_NUM_CORE_TYPES = 3, 627 #else 628 KMP_HW_MAX_NUM_CORE_TYPES = 1, 629 #endif 630 } kmp_hw_core_type_t; 631 632 #define KMP_HW_MAX_NUM_CORE_EFFS 8 633 634 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \ 635 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST) 636 #define KMP_ASSERT_VALID_HW_TYPE(type) \ 637 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST) 638 639 #define KMP_FOREACH_HW_TYPE(type) \ 640 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \ 641 type = (kmp_hw_t)((int)type + 1)) 642 643 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false); 644 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false); 645 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type); 646 647 /* Only Linux* OS and Windows* OS support thread affinity. */ 648 #if KMP_AFFINITY_SUPPORTED 649 650 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later). 651 #if KMP_OS_WINDOWS 652 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT 653 typedef struct GROUP_AFFINITY { 654 KAFFINITY Mask; 655 WORD Group; 656 WORD Reserved[3]; 657 } GROUP_AFFINITY; 658 #endif /* _MSC_VER < 1600 */ 659 #if KMP_GROUP_AFFINITY 660 extern int __kmp_num_proc_groups; 661 #else 662 static const int __kmp_num_proc_groups = 1; 663 #endif /* KMP_GROUP_AFFINITY */ 664 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD); 665 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount; 666 667 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void); 668 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount; 669 670 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *); 671 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity; 672 673 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *, 674 GROUP_AFFINITY *); 675 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity; 676 #endif /* KMP_OS_WINDOWS */ 677 678 #if KMP_USE_HWLOC 679 extern hwloc_topology_t __kmp_hwloc_topology; 680 extern int __kmp_hwloc_error; 681 #endif 682 683 extern size_t __kmp_affin_mask_size; 684 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0) 685 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0) 686 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size) 687 #define KMP_CPU_SET_ITERATE(i, mask) \ 688 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i)) 689 #define KMP_CPU_SET(i, mask) (mask)->set(i) 690 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i) 691 #define KMP_CPU_CLR(i, mask) (mask)->clear(i) 692 #define KMP_CPU_ZERO(mask) (mask)->zero() 693 #define KMP_CPU_COPY(dest, src) (dest)->copy(src) 694 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src) 695 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not() 696 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src) 697 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask()) 698 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr) 699 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr) 700 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr) 701 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr) 702 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr) 703 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i) 704 #define KMP_CPU_ALLOC_ARRAY(arr, n) \ 705 (arr = __kmp_affinity_dispatch->allocate_mask_array(n)) 706 #define KMP_CPU_FREE_ARRAY(arr, n) \ 707 __kmp_affinity_dispatch->deallocate_mask_array(arr) 708 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n) 709 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n) 710 #define __kmp_get_system_affinity(mask, abort_bool) \ 711 (mask)->get_system_affinity(abort_bool) 712 #define __kmp_set_system_affinity(mask, abort_bool) \ 713 (mask)->set_system_affinity(abort_bool) 714 #define __kmp_get_proc_group(mask) (mask)->get_proc_group() 715 716 class KMPAffinity { 717 public: 718 class Mask { 719 public: 720 void *operator new(size_t n); 721 void operator delete(void *p); 722 void *operator new[](size_t n); 723 void operator delete[](void *p); 724 virtual ~Mask() {} 725 // Set bit i to 1 726 virtual void set(int i) {} 727 // Return bit i 728 virtual bool is_set(int i) const { return false; } 729 // Set bit i to 0 730 virtual void clear(int i) {} 731 // Zero out entire mask 732 virtual void zero() {} 733 // Copy src into this mask 734 virtual void copy(const Mask *src) {} 735 // this &= rhs 736 virtual void bitwise_and(const Mask *rhs) {} 737 // this |= rhs 738 virtual void bitwise_or(const Mask *rhs) {} 739 // this = ~this 740 virtual void bitwise_not() {} 741 // API for iterating over an affinity mask 742 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i)) 743 virtual int begin() const { return 0; } 744 virtual int end() const { return 0; } 745 virtual int next(int previous) const { return 0; } 746 #if KMP_OS_WINDOWS 747 virtual int set_process_affinity(bool abort_on_error) const { return -1; } 748 #endif 749 // Set the system's affinity to this affinity mask's value 750 virtual int set_system_affinity(bool abort_on_error) const { return -1; } 751 // Set this affinity mask to the current system affinity 752 virtual int get_system_affinity(bool abort_on_error) { return -1; } 753 // Only 1 DWORD in the mask should have any procs set. 754 // Return the appropriate index, or -1 for an invalid mask. 755 virtual int get_proc_group() const { return -1; } 756 }; 757 void *operator new(size_t n); 758 void operator delete(void *p); 759 // Need virtual destructor 760 virtual ~KMPAffinity() = default; 761 // Determine if affinity is capable 762 virtual void determine_capable(const char *env_var) {} 763 // Bind the current thread to os proc 764 virtual void bind_thread(int proc) {} 765 // Factory functions to allocate/deallocate a mask 766 virtual Mask *allocate_mask() { return nullptr; } 767 virtual void deallocate_mask(Mask *m) {} 768 virtual Mask *allocate_mask_array(int num) { return nullptr; } 769 virtual void deallocate_mask_array(Mask *m) {} 770 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; } 771 static void pick_api(); 772 static void destroy_api(); 773 enum api_type { 774 NATIVE_OS 775 #if KMP_USE_HWLOC 776 , 777 HWLOC 778 #endif 779 }; 780 virtual api_type get_api_type() const { 781 KMP_ASSERT(0); 782 return NATIVE_OS; 783 } 784 785 private: 786 static bool picked_api; 787 }; 788 789 typedef KMPAffinity::Mask kmp_affin_mask_t; 790 extern KMPAffinity *__kmp_affinity_dispatch; 791 792 // Declare local char buffers with this size for printing debug and info 793 // messages, using __kmp_affinity_print_mask(). 794 #define KMP_AFFIN_MASK_PRINT_LEN 1024 795 796 enum affinity_type { 797 affinity_none = 0, 798 affinity_physical, 799 affinity_logical, 800 affinity_compact, 801 affinity_scatter, 802 affinity_explicit, 803 affinity_balanced, 804 affinity_disabled, // not used outsize the env var parser 805 affinity_default 806 }; 807 808 enum affinity_top_method { 809 affinity_top_method_all = 0, // try all (supported) methods, in order 810 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 811 affinity_top_method_apicid, 812 affinity_top_method_x2apicid, 813 affinity_top_method_x2apicid_1f, 814 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 815 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too 816 #if KMP_GROUP_AFFINITY 817 affinity_top_method_group, 818 #endif /* KMP_GROUP_AFFINITY */ 819 affinity_top_method_flat, 820 #if KMP_USE_HWLOC 821 affinity_top_method_hwloc, 822 #endif 823 affinity_top_method_default 824 }; 825 826 #define affinity_respect_mask_default (-1) 827 828 extern enum affinity_type __kmp_affinity_type; /* Affinity type */ 829 extern kmp_hw_t __kmp_affinity_gran; /* Affinity granularity */ 830 extern int __kmp_affinity_gran_levels; /* corresponding int value */ 831 extern int __kmp_affinity_dups; /* Affinity duplicate masks */ 832 extern enum affinity_top_method __kmp_affinity_top_method; 833 extern int __kmp_affinity_compact; /* Affinity 'compact' value */ 834 extern int __kmp_affinity_offset; /* Affinity offset value */ 835 extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */ 836 extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */ 837 extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask? 838 extern char *__kmp_affinity_proclist; /* proc ID list */ 839 extern kmp_affin_mask_t *__kmp_affinity_masks; 840 extern unsigned __kmp_affinity_num_masks; 841 extern void __kmp_affinity_bind_thread(int which); 842 843 extern kmp_affin_mask_t *__kmp_affin_fullMask; 844 extern kmp_affin_mask_t *__kmp_affin_origMask; 845 extern char *__kmp_cpuinfo_file; 846 extern bool __kmp_affin_reset; 847 848 #endif /* KMP_AFFINITY_SUPPORTED */ 849 850 // This needs to be kept in sync with the values in omp.h !!! 851 typedef enum kmp_proc_bind_t { 852 proc_bind_false = 0, 853 proc_bind_true, 854 proc_bind_primary, 855 proc_bind_close, 856 proc_bind_spread, 857 proc_bind_intel, // use KMP_AFFINITY interface 858 proc_bind_default 859 } kmp_proc_bind_t; 860 861 typedef struct kmp_nested_proc_bind_t { 862 kmp_proc_bind_t *bind_types; 863 int size; 864 int used; 865 } kmp_nested_proc_bind_t; 866 867 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind; 868 extern kmp_proc_bind_t __kmp_teams_proc_bind; 869 870 extern int __kmp_display_affinity; 871 extern char *__kmp_affinity_format; 872 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512; 873 #if OMPT_SUPPORT 874 extern int __kmp_tool; 875 extern char *__kmp_tool_libraries; 876 #endif // OMPT_SUPPORT 877 878 #if KMP_AFFINITY_SUPPORTED 879 #define KMP_PLACE_ALL (-1) 880 #define KMP_PLACE_UNDEFINED (-2) 881 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES? 882 #define KMP_AFFINITY_NON_PROC_BIND \ 883 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \ 884 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \ 885 (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced)) 886 #endif /* KMP_AFFINITY_SUPPORTED */ 887 888 extern int __kmp_affinity_num_places; 889 890 typedef enum kmp_cancel_kind_t { 891 cancel_noreq = 0, 892 cancel_parallel = 1, 893 cancel_loop = 2, 894 cancel_sections = 3, 895 cancel_taskgroup = 4 896 } kmp_cancel_kind_t; 897 898 // KMP_HW_SUBSET support: 899 typedef struct kmp_hws_item { 900 int num; 901 int offset; 902 } kmp_hws_item_t; 903 904 extern kmp_hws_item_t __kmp_hws_socket; 905 extern kmp_hws_item_t __kmp_hws_die; 906 extern kmp_hws_item_t __kmp_hws_node; 907 extern kmp_hws_item_t __kmp_hws_tile; 908 extern kmp_hws_item_t __kmp_hws_core; 909 extern kmp_hws_item_t __kmp_hws_proc; 910 extern int __kmp_hws_requested; 911 extern int __kmp_hws_abs_flag; // absolute or per-item number requested 912 913 /* ------------------------------------------------------------------------ */ 914 915 #define KMP_PAD(type, sz) \ 916 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1)) 917 918 // We need to avoid using -1 as a GTID as +1 is added to the gtid 919 // when storing it in a lock, and the value 0 is reserved. 920 #define KMP_GTID_DNE (-2) /* Does not exist */ 921 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */ 922 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */ 923 #define KMP_GTID_UNKNOWN (-5) /* Is not known */ 924 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */ 925 926 /* OpenMP 5.0 Memory Management support */ 927 928 #ifndef __OMP_H 929 // Duplicate type definitions from omp.h 930 typedef uintptr_t omp_uintptr_t; 931 932 typedef enum { 933 omp_atk_sync_hint = 1, 934 omp_atk_alignment = 2, 935 omp_atk_access = 3, 936 omp_atk_pool_size = 4, 937 omp_atk_fallback = 5, 938 omp_atk_fb_data = 6, 939 omp_atk_pinned = 7, 940 omp_atk_partition = 8 941 } omp_alloctrait_key_t; 942 943 typedef enum { 944 omp_atv_false = 0, 945 omp_atv_true = 1, 946 omp_atv_contended = 3, 947 omp_atv_uncontended = 4, 948 omp_atv_serialized = 5, 949 omp_atv_sequential = omp_atv_serialized, // (deprecated) 950 omp_atv_private = 6, 951 omp_atv_all = 7, 952 omp_atv_thread = 8, 953 omp_atv_pteam = 9, 954 omp_atv_cgroup = 10, 955 omp_atv_default_mem_fb = 11, 956 omp_atv_null_fb = 12, 957 omp_atv_abort_fb = 13, 958 omp_atv_allocator_fb = 14, 959 omp_atv_environment = 15, 960 omp_atv_nearest = 16, 961 omp_atv_blocked = 17, 962 omp_atv_interleaved = 18 963 } omp_alloctrait_value_t; 964 #define omp_atv_default ((omp_uintptr_t)-1) 965 966 typedef void *omp_memspace_handle_t; 967 extern omp_memspace_handle_t const omp_default_mem_space; 968 extern omp_memspace_handle_t const omp_large_cap_mem_space; 969 extern omp_memspace_handle_t const omp_const_mem_space; 970 extern omp_memspace_handle_t const omp_high_bw_mem_space; 971 extern omp_memspace_handle_t const omp_low_lat_mem_space; 972 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space; 973 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space; 974 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space; 975 976 typedef struct { 977 omp_alloctrait_key_t key; 978 omp_uintptr_t value; 979 } omp_alloctrait_t; 980 981 typedef void *omp_allocator_handle_t; 982 extern omp_allocator_handle_t const omp_null_allocator; 983 extern omp_allocator_handle_t const omp_default_mem_alloc; 984 extern omp_allocator_handle_t const omp_large_cap_mem_alloc; 985 extern omp_allocator_handle_t const omp_const_mem_alloc; 986 extern omp_allocator_handle_t const omp_high_bw_mem_alloc; 987 extern omp_allocator_handle_t const omp_low_lat_mem_alloc; 988 extern omp_allocator_handle_t const omp_cgroup_mem_alloc; 989 extern omp_allocator_handle_t const omp_pteam_mem_alloc; 990 extern omp_allocator_handle_t const omp_thread_mem_alloc; 991 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc; 992 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc; 993 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc; 994 extern omp_allocator_handle_t const kmp_max_mem_alloc; 995 extern omp_allocator_handle_t __kmp_def_allocator; 996 997 // end of duplicate type definitions from omp.h 998 #endif 999 1000 extern int __kmp_memkind_available; 1001 1002 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder 1003 1004 typedef struct kmp_allocator_t { 1005 omp_memspace_handle_t memspace; 1006 void **memkind; // pointer to memkind 1007 size_t alignment; 1008 omp_alloctrait_value_t fb; 1009 kmp_allocator_t *fb_data; 1010 kmp_uint64 pool_size; 1011 kmp_uint64 pool_used; 1012 } kmp_allocator_t; 1013 1014 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid, 1015 omp_memspace_handle_t, 1016 int ntraits, 1017 omp_alloctrait_t traits[]); 1018 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al); 1019 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al); 1020 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid); 1021 // external interfaces, may be used by compiler 1022 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al); 1023 extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz, 1024 omp_allocator_handle_t al); 1025 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz, 1026 omp_allocator_handle_t al); 1027 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz, 1028 omp_allocator_handle_t al, 1029 omp_allocator_handle_t free_al); 1030 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al); 1031 // internal interfaces, contain real implementation 1032 extern void *__kmp_alloc(int gtid, size_t align, size_t sz, 1033 omp_allocator_handle_t al); 1034 extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz, 1035 omp_allocator_handle_t al); 1036 extern void *__kmp_realloc(int gtid, void *ptr, size_t sz, 1037 omp_allocator_handle_t al, 1038 omp_allocator_handle_t free_al); 1039 extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al); 1040 1041 extern void __kmp_init_memkind(); 1042 extern void __kmp_fini_memkind(); 1043 extern void __kmp_init_target_mem(); 1044 1045 /* ------------------------------------------------------------------------ */ 1046 1047 #define KMP_UINT64_MAX \ 1048 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1))) 1049 1050 #define KMP_MIN_NTH 1 1051 1052 #ifndef KMP_MAX_NTH 1053 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX 1054 #define KMP_MAX_NTH PTHREAD_THREADS_MAX 1055 #else 1056 #define KMP_MAX_NTH INT_MAX 1057 #endif 1058 #endif /* KMP_MAX_NTH */ 1059 1060 #ifdef PTHREAD_STACK_MIN 1061 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN 1062 #else 1063 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024)) 1064 #endif 1065 1066 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1))) 1067 1068 #if KMP_ARCH_X86 1069 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024)) 1070 #elif KMP_ARCH_X86_64 1071 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024)) 1072 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024)) 1073 #else 1074 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024)) 1075 #endif 1076 1077 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024)) 1078 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024)) 1079 #define KMP_MAX_MALLOC_POOL_INCR \ 1080 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1))) 1081 1082 #define KMP_MIN_STKOFFSET (0) 1083 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE 1084 #if KMP_OS_DARWIN 1085 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET 1086 #else 1087 #define KMP_DEFAULT_STKOFFSET CACHE_LINE 1088 #endif 1089 1090 #define KMP_MIN_STKPADDING (0) 1091 #define KMP_MAX_STKPADDING (2 * 1024 * 1024) 1092 1093 #define KMP_BLOCKTIME_MULTIPLIER \ 1094 (1000) /* number of blocktime units per second */ 1095 #define KMP_MIN_BLOCKTIME (0) 1096 #define KMP_MAX_BLOCKTIME \ 1097 (INT_MAX) /* Must be this for "infinite" setting the work */ 1098 1099 /* __kmp_blocktime is in milliseconds */ 1100 #define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200)) 1101 1102 #if KMP_USE_MONITOR 1103 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024)) 1104 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second 1105 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec 1106 1107 /* Calculate new number of monitor wakeups for a specific block time based on 1108 previous monitor_wakeups. Only allow increasing number of wakeups */ 1109 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ 1110 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \ 1111 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \ 1112 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \ 1113 ? (monitor_wakeups) \ 1114 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime)) 1115 1116 /* Calculate number of intervals for a specific block time based on 1117 monitor_wakeups */ 1118 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ 1119 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \ 1120 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups))) 1121 #else 1122 #define KMP_BLOCKTIME(team, tid) \ 1123 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime) 1124 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1125 // HW TSC is used to reduce overhead (clock tick instead of nanosecond). 1126 extern kmp_uint64 __kmp_ticks_per_msec; 1127 #if KMP_COMPILER_ICC || KMP_COMPILER_ICX 1128 #define KMP_NOW() ((kmp_uint64)_rdtsc()) 1129 #else 1130 #define KMP_NOW() __kmp_hardware_timestamp() 1131 #endif 1132 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec) 1133 #define KMP_BLOCKTIME_INTERVAL(team, tid) \ 1134 (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec) 1135 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW()) 1136 #else 1137 // System time is retrieved sporadically while blocking. 1138 extern kmp_uint64 __kmp_now_nsec(); 1139 #define KMP_NOW() __kmp_now_nsec() 1140 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC) 1141 #define KMP_BLOCKTIME_INTERVAL(team, tid) \ 1142 (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC) 1143 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW()) 1144 #endif 1145 #endif // KMP_USE_MONITOR 1146 1147 #define KMP_MIN_STATSCOLS 40 1148 #define KMP_MAX_STATSCOLS 4096 1149 #define KMP_DEFAULT_STATSCOLS 80 1150 1151 #define KMP_MIN_INTERVAL 0 1152 #define KMP_MAX_INTERVAL (INT_MAX - 1) 1153 #define KMP_DEFAULT_INTERVAL 0 1154 1155 #define KMP_MIN_CHUNK 1 1156 #define KMP_MAX_CHUNK (INT_MAX - 1) 1157 #define KMP_DEFAULT_CHUNK 1 1158 1159 #define KMP_MIN_DISP_NUM_BUFF 1 1160 #define KMP_DFLT_DISP_NUM_BUFF 7 1161 #define KMP_MAX_DISP_NUM_BUFF 4096 1162 1163 #define KMP_MAX_ORDERED 8 1164 1165 #define KMP_MAX_FIELDS 32 1166 1167 #define KMP_MAX_BRANCH_BITS 31 1168 1169 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX 1170 1171 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX 1172 1173 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX 1174 1175 /* Minimum number of threads before switch to TLS gtid (experimentally 1176 determined) */ 1177 /* josh TODO: what about OS X* tuning? */ 1178 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1179 #define KMP_TLS_GTID_MIN 5 1180 #else 1181 #define KMP_TLS_GTID_MIN INT_MAX 1182 #endif 1183 1184 #define KMP_MASTER_TID(tid) (0 == (tid)) 1185 #define KMP_WORKER_TID(tid) (0 != (tid)) 1186 1187 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid))) 1188 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid))) 1189 #define KMP_INITIAL_GTID(gtid) (0 == (gtid)) 1190 1191 #ifndef TRUE 1192 #define FALSE 0 1193 #define TRUE (!FALSE) 1194 #endif 1195 1196 /* NOTE: all of the following constants must be even */ 1197 1198 #if KMP_OS_WINDOWS 1199 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */ 1200 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */ 1201 #elif KMP_OS_LINUX 1202 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1203 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1204 #elif KMP_OS_DARWIN 1205 /* TODO: tune for KMP_OS_DARWIN */ 1206 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1207 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1208 #elif KMP_OS_DRAGONFLY 1209 /* TODO: tune for KMP_OS_DRAGONFLY */ 1210 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1211 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1212 #elif KMP_OS_FREEBSD 1213 /* TODO: tune for KMP_OS_FREEBSD */ 1214 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1215 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1216 #elif KMP_OS_NETBSD 1217 /* TODO: tune for KMP_OS_NETBSD */ 1218 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1219 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1220 #elif KMP_OS_HURD 1221 /* TODO: tune for KMP_OS_HURD */ 1222 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1223 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1224 #elif KMP_OS_OPENBSD 1225 /* TODO: tune for KMP_OS_OPENBSD */ 1226 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1227 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1228 #endif 1229 1230 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1231 typedef struct kmp_cpuid { 1232 kmp_uint32 eax; 1233 kmp_uint32 ebx; 1234 kmp_uint32 ecx; 1235 kmp_uint32 edx; 1236 } kmp_cpuid_t; 1237 1238 typedef struct kmp_cpuinfo_flags_t { 1239 unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise. 1240 unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise. 1241 unsigned hybrid : 1; 1242 unsigned reserved : 29; // Ensure size of 32 bits 1243 } kmp_cpuinfo_flags_t; 1244 1245 typedef struct kmp_cpuinfo { 1246 int initialized; // If 0, other fields are not initialized. 1247 int signature; // CPUID(1).EAX 1248 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family) 1249 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended 1250 // Model << 4 ) + Model) 1251 int stepping; // CPUID(1).EAX[3:0] ( Stepping ) 1252 kmp_cpuinfo_flags_t flags; 1253 int apic_id; 1254 int physical_id; 1255 int logical_id; 1256 kmp_uint64 frequency; // Nominal CPU frequency in Hz. 1257 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004) 1258 } kmp_cpuinfo_t; 1259 1260 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p); 1261 1262 #if KMP_OS_UNIX 1263 // subleaf is only needed for cache and topology discovery and can be set to 1264 // zero in most cases 1265 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) { 1266 __asm__ __volatile__("cpuid" 1267 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx) 1268 : "a"(leaf), "c"(subleaf)); 1269 } 1270 // Load p into FPU control word 1271 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) { 1272 __asm__ __volatile__("fldcw %0" : : "m"(*p)); 1273 } 1274 // Store FPU control word into p 1275 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) { 1276 __asm__ __volatile__("fstcw %0" : "=m"(*p)); 1277 } 1278 static inline void __kmp_clear_x87_fpu_status_word() { 1279 #if KMP_MIC 1280 // 32-bit protected mode x87 FPU state 1281 struct x87_fpu_state { 1282 unsigned cw; 1283 unsigned sw; 1284 unsigned tw; 1285 unsigned fip; 1286 unsigned fips; 1287 unsigned fdp; 1288 unsigned fds; 1289 }; 1290 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0}; 1291 __asm__ __volatile__("fstenv %0\n\t" // store FP env 1292 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW 1293 "fldenv %0\n\t" // load FP env back 1294 : "+m"(fpu_state), "+m"(fpu_state.sw)); 1295 #else 1296 __asm__ __volatile__("fnclex"); 1297 #endif // KMP_MIC 1298 } 1299 #if __SSE__ 1300 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); } 1301 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); } 1302 #else 1303 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {} 1304 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; } 1305 #endif 1306 #else 1307 // Windows still has these as external functions in assembly file 1308 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p); 1309 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p); 1310 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p); 1311 extern void __kmp_clear_x87_fpu_status_word(); 1312 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); } 1313 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); } 1314 #endif // KMP_OS_UNIX 1315 1316 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */ 1317 1318 // User-level Monitor/Mwait 1319 #if KMP_HAVE_UMWAIT 1320 // We always try for UMWAIT first 1321 #if KMP_HAVE_WAITPKG_INTRINSICS 1322 #if KMP_HAVE_IMMINTRIN_H 1323 #include <immintrin.h> 1324 #elif KMP_HAVE_INTRIN_H 1325 #include <intrin.h> 1326 #endif 1327 #endif // KMP_HAVE_WAITPKG_INTRINSICS 1328 1329 KMP_ATTRIBUTE_TARGET_WAITPKG 1330 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) { 1331 #if !KMP_HAVE_WAITPKG_INTRINSICS 1332 uint32_t timeHi = uint32_t(counter >> 32); 1333 uint32_t timeLo = uint32_t(counter & 0xffffffff); 1334 char flag; 1335 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n" 1336 "setb %0" 1337 // The "=q" restraint means any register accessible as rl 1338 // in 32-bit mode: a, b, c, and d; 1339 // in 64-bit mode: any integer register 1340 : "=q"(flag) 1341 : "a"(timeLo), "d"(timeHi), "c"(hint) 1342 :); 1343 return flag; 1344 #else 1345 return _tpause(hint, counter); 1346 #endif 1347 } 1348 KMP_ATTRIBUTE_TARGET_WAITPKG 1349 static inline void __kmp_umonitor(void *cacheline) { 1350 #if !KMP_HAVE_WAITPKG_INTRINSICS 1351 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 " 1352 : 1353 : "a"(cacheline) 1354 :); 1355 #else 1356 _umonitor(cacheline); 1357 #endif 1358 } 1359 KMP_ATTRIBUTE_TARGET_WAITPKG 1360 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) { 1361 #if !KMP_HAVE_WAITPKG_INTRINSICS 1362 uint32_t timeHi = uint32_t(counter >> 32); 1363 uint32_t timeLo = uint32_t(counter & 0xffffffff); 1364 char flag; 1365 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n" 1366 "setb %0" 1367 // The "=q" restraint means any register accessible as rl 1368 // in 32-bit mode: a, b, c, and d; 1369 // in 64-bit mode: any integer register 1370 : "=q"(flag) 1371 : "a"(timeLo), "d"(timeHi), "c"(hint) 1372 :); 1373 return flag; 1374 #else 1375 return _umwait(hint, counter); 1376 #endif 1377 } 1378 #elif KMP_HAVE_MWAIT 1379 #if KMP_OS_UNIX 1380 #include <pmmintrin.h> 1381 #else 1382 #include <intrin.h> 1383 #endif 1384 #if KMP_OS_UNIX 1385 __attribute__((target("sse3"))) 1386 #endif 1387 static inline void 1388 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) { 1389 _mm_monitor(cacheline, extensions, hints); 1390 } 1391 #if KMP_OS_UNIX 1392 __attribute__((target("sse3"))) 1393 #endif 1394 static inline void 1395 __kmp_mm_mwait(unsigned extensions, unsigned hints) { 1396 _mm_mwait(extensions, hints); 1397 } 1398 #endif // KMP_HAVE_UMWAIT 1399 1400 #if KMP_ARCH_X86 1401 extern void __kmp_x86_pause(void); 1402 #elif KMP_MIC 1403 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed 1404 // regression after removal of extra PAUSE from spin loops. Changing 1405 // the delay from 100 to 300 showed even better performance than double PAUSE 1406 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC. 1407 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); } 1408 #else 1409 static inline void __kmp_x86_pause(void) { _mm_pause(); } 1410 #endif 1411 #define KMP_CPU_PAUSE() __kmp_x86_pause() 1412 #elif KMP_ARCH_PPC64 1413 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1") 1414 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2") 1415 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory") 1416 #define KMP_CPU_PAUSE() \ 1417 do { \ 1418 KMP_PPC64_PRI_LOW(); \ 1419 KMP_PPC64_PRI_MED(); \ 1420 KMP_PPC64_PRI_LOC_MB(); \ 1421 } while (0) 1422 #else 1423 #define KMP_CPU_PAUSE() /* nothing to do */ 1424 #endif 1425 1426 #define KMP_INIT_YIELD(count) \ 1427 { (count) = __kmp_yield_init; } 1428 1429 #define KMP_INIT_BACKOFF(time) \ 1430 { (time) = __kmp_pause_init; } 1431 1432 #define KMP_OVERSUBSCRIBED \ 1433 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) 1434 1435 #define KMP_TRY_YIELD \ 1436 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED))) 1437 1438 #define KMP_TRY_YIELD_OVERSUB \ 1439 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED)) 1440 1441 #define KMP_YIELD(cond) \ 1442 { \ 1443 KMP_CPU_PAUSE(); \ 1444 if ((cond) && (KMP_TRY_YIELD)) \ 1445 __kmp_yield(); \ 1446 } 1447 1448 #define KMP_YIELD_OVERSUB() \ 1449 { \ 1450 KMP_CPU_PAUSE(); \ 1451 if ((KMP_TRY_YIELD_OVERSUB)) \ 1452 __kmp_yield(); \ 1453 } 1454 1455 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround, 1456 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd. 1457 #define KMP_YIELD_SPIN(count) \ 1458 { \ 1459 KMP_CPU_PAUSE(); \ 1460 if (KMP_TRY_YIELD) { \ 1461 (count) -= 2; \ 1462 if (!(count)) { \ 1463 __kmp_yield(); \ 1464 (count) = __kmp_yield_next; \ 1465 } \ 1466 } \ 1467 } 1468 1469 // If TPAUSE is available & enabled, use it. If oversubscribed, use the slower 1470 // (C0.2) state, which improves performance of other SMT threads on the same 1471 // core, otherwise, use the fast (C0.1) default state, or whatever the user has 1472 // requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't 1473 // available, fall back to the regular CPU pause and yield combination. 1474 #if KMP_HAVE_UMWAIT 1475 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \ 1476 { \ 1477 if (__kmp_tpause_enabled) { \ 1478 if (KMP_OVERSUBSCRIBED) { \ 1479 __kmp_tpause(0, (time)); \ 1480 } else { \ 1481 __kmp_tpause(__kmp_tpause_hint, (time)); \ 1482 } \ 1483 (time) *= 2; \ 1484 } else { \ 1485 KMP_CPU_PAUSE(); \ 1486 if ((KMP_TRY_YIELD_OVERSUB)) { \ 1487 __kmp_yield(); \ 1488 } else if (__kmp_use_yield == 1) { \ 1489 (count) -= 2; \ 1490 if (!(count)) { \ 1491 __kmp_yield(); \ 1492 (count) = __kmp_yield_next; \ 1493 } \ 1494 } \ 1495 } \ 1496 } 1497 #else 1498 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \ 1499 { \ 1500 KMP_CPU_PAUSE(); \ 1501 if ((KMP_TRY_YIELD_OVERSUB)) \ 1502 __kmp_yield(); \ 1503 else if (__kmp_use_yield == 1) { \ 1504 (count) -= 2; \ 1505 if (!(count)) { \ 1506 __kmp_yield(); \ 1507 (count) = __kmp_yield_next; \ 1508 } \ 1509 } \ 1510 } 1511 #endif // KMP_HAVE_UMWAIT 1512 1513 /* ------------------------------------------------------------------------ */ 1514 /* Support datatypes for the orphaned construct nesting checks. */ 1515 /* ------------------------------------------------------------------------ */ 1516 1517 /* When adding to this enum, add its corresponding string in cons_text_c[] 1518 * array in kmp_error.cpp */ 1519 enum cons_type { 1520 ct_none, 1521 ct_parallel, 1522 ct_pdo, 1523 ct_pdo_ordered, 1524 ct_psections, 1525 ct_psingle, 1526 ct_critical, 1527 ct_ordered_in_parallel, 1528 ct_ordered_in_pdo, 1529 ct_master, 1530 ct_reduce, 1531 ct_barrier, 1532 ct_masked 1533 }; 1534 1535 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered) 1536 1537 struct cons_data { 1538 ident_t const *ident; 1539 enum cons_type type; 1540 int prev; 1541 kmp_user_lock_p 1542 name; /* address exclusively for critical section name comparison */ 1543 }; 1544 1545 struct cons_header { 1546 int p_top, w_top, s_top; 1547 int stack_size, stack_top; 1548 struct cons_data *stack_data; 1549 }; 1550 1551 struct kmp_region_info { 1552 char *text; 1553 int offset[KMP_MAX_FIELDS]; 1554 int length[KMP_MAX_FIELDS]; 1555 }; 1556 1557 /* ---------------------------------------------------------------------- */ 1558 /* ---------------------------------------------------------------------- */ 1559 1560 #if KMP_OS_WINDOWS 1561 typedef HANDLE kmp_thread_t; 1562 typedef DWORD kmp_key_t; 1563 #endif /* KMP_OS_WINDOWS */ 1564 1565 #if KMP_OS_UNIX 1566 typedef pthread_t kmp_thread_t; 1567 typedef pthread_key_t kmp_key_t; 1568 #endif 1569 1570 extern kmp_key_t __kmp_gtid_threadprivate_key; 1571 1572 typedef struct kmp_sys_info { 1573 long maxrss; /* the maximum resident set size utilized (in kilobytes) */ 1574 long minflt; /* the number of page faults serviced without any I/O */ 1575 long majflt; /* the number of page faults serviced that required I/O */ 1576 long nswap; /* the number of times a process was "swapped" out of memory */ 1577 long inblock; /* the number of times the file system had to perform input */ 1578 long oublock; /* the number of times the file system had to perform output */ 1579 long nvcsw; /* the number of times a context switch was voluntarily */ 1580 long nivcsw; /* the number of times a context switch was forced */ 1581 } kmp_sys_info_t; 1582 1583 #if USE_ITT_BUILD 1584 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only 1585 // required type here. Later we will check the type meets requirements. 1586 typedef int kmp_itt_mark_t; 1587 #define KMP_ITT_DEBUG 0 1588 #endif /* USE_ITT_BUILD */ 1589 1590 typedef kmp_int32 kmp_critical_name[8]; 1591 1592 /*! 1593 @ingroup PARALLEL 1594 The type for a microtask which gets passed to @ref __kmpc_fork_call(). 1595 The arguments to the outlined function are 1596 @param global_tid the global thread identity of the thread executing the 1597 function. 1598 @param bound_tid the local identity of the thread executing the function 1599 @param ... pointers to shared variables accessed by the function. 1600 */ 1601 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...); 1602 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth, 1603 ...); 1604 1605 /*! 1606 @ingroup THREADPRIVATE 1607 @{ 1608 */ 1609 /* --------------------------------------------------------------------------- 1610 */ 1611 /* Threadprivate initialization/finalization function declarations */ 1612 1613 /* for non-array objects: __kmpc_threadprivate_register() */ 1614 1615 /*! 1616 Pointer to the constructor function. 1617 The first argument is the <tt>this</tt> pointer 1618 */ 1619 typedef void *(*kmpc_ctor)(void *); 1620 1621 /*! 1622 Pointer to the destructor function. 1623 The first argument is the <tt>this</tt> pointer 1624 */ 1625 typedef void (*kmpc_dtor)( 1626 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel 1627 compiler */ 1628 /*! 1629 Pointer to an alternate constructor. 1630 The first argument is the <tt>this</tt> pointer. 1631 */ 1632 typedef void *(*kmpc_cctor)(void *, void *); 1633 1634 /* for array objects: __kmpc_threadprivate_register_vec() */ 1635 /* First arg: "this" pointer */ 1636 /* Last arg: number of array elements */ 1637 /*! 1638 Array constructor. 1639 First argument is the <tt>this</tt> pointer 1640 Second argument the number of array elements. 1641 */ 1642 typedef void *(*kmpc_ctor_vec)(void *, size_t); 1643 /*! 1644 Pointer to the array destructor function. 1645 The first argument is the <tt>this</tt> pointer 1646 Second argument the number of array elements. 1647 */ 1648 typedef void (*kmpc_dtor_vec)(void *, size_t); 1649 /*! 1650 Array constructor. 1651 First argument is the <tt>this</tt> pointer 1652 Third argument the number of array elements. 1653 */ 1654 typedef void *(*kmpc_cctor_vec)(void *, void *, 1655 size_t); /* function unused by compiler */ 1656 1657 /*! 1658 @} 1659 */ 1660 1661 /* keeps tracked of threadprivate cache allocations for cleanup later */ 1662 typedef struct kmp_cached_addr { 1663 void **addr; /* address of allocated cache */ 1664 void ***compiler_cache; /* pointer to compiler's cache */ 1665 void *data; /* pointer to global data */ 1666 struct kmp_cached_addr *next; /* pointer to next cached address */ 1667 } kmp_cached_addr_t; 1668 1669 struct private_data { 1670 struct private_data *next; /* The next descriptor in the list */ 1671 void *data; /* The data buffer for this descriptor */ 1672 int more; /* The repeat count for this descriptor */ 1673 size_t size; /* The data size for this descriptor */ 1674 }; 1675 1676 struct private_common { 1677 struct private_common *next; 1678 struct private_common *link; 1679 void *gbl_addr; 1680 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */ 1681 size_t cmn_size; 1682 }; 1683 1684 struct shared_common { 1685 struct shared_common *next; 1686 struct private_data *pod_init; 1687 void *obj_init; 1688 void *gbl_addr; 1689 union { 1690 kmpc_ctor ctor; 1691 kmpc_ctor_vec ctorv; 1692 } ct; 1693 union { 1694 kmpc_cctor cctor; 1695 kmpc_cctor_vec cctorv; 1696 } cct; 1697 union { 1698 kmpc_dtor dtor; 1699 kmpc_dtor_vec dtorv; 1700 } dt; 1701 size_t vec_len; 1702 int is_vec; 1703 size_t cmn_size; 1704 }; 1705 1706 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */ 1707 #define KMP_HASH_TABLE_SIZE \ 1708 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */ 1709 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */ 1710 #define KMP_HASH(x) \ 1711 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1)) 1712 1713 struct common_table { 1714 struct private_common *data[KMP_HASH_TABLE_SIZE]; 1715 }; 1716 1717 struct shared_table { 1718 struct shared_common *data[KMP_HASH_TABLE_SIZE]; 1719 }; 1720 1721 /* ------------------------------------------------------------------------ */ 1722 1723 #if KMP_USE_HIER_SCHED 1724 // Shared barrier data that exists inside a single unit of the scheduling 1725 // hierarchy 1726 typedef struct kmp_hier_private_bdata_t { 1727 kmp_int32 num_active; 1728 kmp_uint64 index; 1729 kmp_uint64 wait_val[2]; 1730 } kmp_hier_private_bdata_t; 1731 #endif 1732 1733 typedef struct kmp_sched_flags { 1734 unsigned ordered : 1; 1735 unsigned nomerge : 1; 1736 unsigned contains_last : 1; 1737 #if KMP_USE_HIER_SCHED 1738 unsigned use_hier : 1; 1739 unsigned unused : 28; 1740 #else 1741 unsigned unused : 29; 1742 #endif 1743 } kmp_sched_flags_t; 1744 1745 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4); 1746 1747 #if KMP_STATIC_STEAL_ENABLED 1748 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { 1749 kmp_int32 count; 1750 kmp_int32 ub; 1751 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ 1752 kmp_int32 lb; 1753 kmp_int32 st; 1754 kmp_int32 tc; 1755 kmp_lock_t *steal_lock; // lock used for chunk stealing 1756 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on) 1757 // a) parm3 is properly aligned and 1758 // b) all parm1-4 are on the same cache line. 1759 // Because of parm1-4 are used together, performance seems to be better 1760 // if they are on the same cache line (not measured though). 1761 1762 struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template 1763 kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should 1764 kmp_int32 parm2; // make no real change at least while padding is off. 1765 kmp_int32 parm3; 1766 kmp_int32 parm4; 1767 }; 1768 1769 kmp_uint32 ordered_lower; 1770 kmp_uint32 ordered_upper; 1771 #if KMP_OS_WINDOWS 1772 kmp_int32 last_upper; 1773 #endif /* KMP_OS_WINDOWS */ 1774 } dispatch_private_info32_t; 1775 1776 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { 1777 kmp_int64 count; // current chunk number for static & static-steal scheduling 1778 kmp_int64 ub; /* upper-bound */ 1779 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ 1780 kmp_int64 lb; /* lower-bound */ 1781 kmp_int64 st; /* stride */ 1782 kmp_int64 tc; /* trip count (number of iterations) */ 1783 kmp_lock_t *steal_lock; // lock used for chunk stealing 1784 /* parm[1-4] are used in different ways by different scheduling algorithms */ 1785 1786 // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on ) 1787 // a) parm3 is properly aligned and 1788 // b) all parm1-4 are in the same cache line. 1789 // Because of parm1-4 are used together, performance seems to be better 1790 // if they are in the same line (not measured though). 1791 1792 struct KMP_ALIGN(32) { 1793 kmp_int64 parm1; 1794 kmp_int64 parm2; 1795 kmp_int64 parm3; 1796 kmp_int64 parm4; 1797 }; 1798 1799 kmp_uint64 ordered_lower; 1800 kmp_uint64 ordered_upper; 1801 #if KMP_OS_WINDOWS 1802 kmp_int64 last_upper; 1803 #endif /* KMP_OS_WINDOWS */ 1804 } dispatch_private_info64_t; 1805 #else /* KMP_STATIC_STEAL_ENABLED */ 1806 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { 1807 kmp_int32 lb; 1808 kmp_int32 ub; 1809 kmp_int32 st; 1810 kmp_int32 tc; 1811 1812 kmp_int32 parm1; 1813 kmp_int32 parm2; 1814 kmp_int32 parm3; 1815 kmp_int32 parm4; 1816 1817 kmp_int32 count; 1818 1819 kmp_uint32 ordered_lower; 1820 kmp_uint32 ordered_upper; 1821 #if KMP_OS_WINDOWS 1822 kmp_int32 last_upper; 1823 #endif /* KMP_OS_WINDOWS */ 1824 } dispatch_private_info32_t; 1825 1826 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { 1827 kmp_int64 lb; /* lower-bound */ 1828 kmp_int64 ub; /* upper-bound */ 1829 kmp_int64 st; /* stride */ 1830 kmp_int64 tc; /* trip count (number of iterations) */ 1831 1832 /* parm[1-4] are used in different ways by different scheduling algorithms */ 1833 kmp_int64 parm1; 1834 kmp_int64 parm2; 1835 kmp_int64 parm3; 1836 kmp_int64 parm4; 1837 1838 kmp_int64 count; /* current chunk number for static scheduling */ 1839 1840 kmp_uint64 ordered_lower; 1841 kmp_uint64 ordered_upper; 1842 #if KMP_OS_WINDOWS 1843 kmp_int64 last_upper; 1844 #endif /* KMP_OS_WINDOWS */ 1845 } dispatch_private_info64_t; 1846 #endif /* KMP_STATIC_STEAL_ENABLED */ 1847 1848 typedef struct KMP_ALIGN_CACHE dispatch_private_info { 1849 union private_info { 1850 dispatch_private_info32_t p32; 1851 dispatch_private_info64_t p64; 1852 } u; 1853 enum sched_type schedule; /* scheduling algorithm */ 1854 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */ 1855 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer 1856 kmp_int32 ordered_bumped; 1857 // Stack of buffers for nest of serial regions 1858 struct dispatch_private_info *next; 1859 kmp_int32 type_size; /* the size of types in private_info */ 1860 #if KMP_USE_HIER_SCHED 1861 kmp_int32 hier_id; 1862 void *parent; /* hierarchical scheduling parent pointer */ 1863 #endif 1864 enum cons_type pushed_ws; 1865 } dispatch_private_info_t; 1866 1867 typedef struct dispatch_shared_info32 { 1868 /* chunk index under dynamic, number of idle threads under static-steal; 1869 iteration index otherwise */ 1870 volatile kmp_uint32 iteration; 1871 volatile kmp_int32 num_done; 1872 volatile kmp_uint32 ordered_iteration; 1873 // Dummy to retain the structure size after making ordered_iteration scalar 1874 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1]; 1875 } dispatch_shared_info32_t; 1876 1877 typedef struct dispatch_shared_info64 { 1878 /* chunk index under dynamic, number of idle threads under static-steal; 1879 iteration index otherwise */ 1880 volatile kmp_uint64 iteration; 1881 volatile kmp_int64 num_done; 1882 volatile kmp_uint64 ordered_iteration; 1883 // Dummy to retain the structure size after making ordered_iteration scalar 1884 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3]; 1885 } dispatch_shared_info64_t; 1886 1887 typedef struct dispatch_shared_info { 1888 union shared_info { 1889 dispatch_shared_info32_t s32; 1890 dispatch_shared_info64_t s64; 1891 } u; 1892 volatile kmp_uint32 buffer_index; 1893 volatile kmp_int32 doacross_buf_idx; // teamwise index 1894 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1) 1895 kmp_int32 doacross_num_done; // count finished threads 1896 #if KMP_USE_HIER_SCHED 1897 void *hier; 1898 #endif 1899 #if KMP_USE_HWLOC 1900 // When linking with libhwloc, the ORDERED EPCC test slows down on big 1901 // machines (> 48 cores). Performance analysis showed that a cache thrash 1902 // was occurring and this padding helps alleviate the problem. 1903 char padding[64]; 1904 #endif 1905 } dispatch_shared_info_t; 1906 1907 typedef struct kmp_disp { 1908 /* Vector for ORDERED SECTION */ 1909 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *); 1910 /* Vector for END ORDERED SECTION */ 1911 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *); 1912 1913 dispatch_shared_info_t *th_dispatch_sh_current; 1914 dispatch_private_info_t *th_dispatch_pr_current; 1915 1916 dispatch_private_info_t *th_disp_buffer; 1917 kmp_uint32 th_disp_index; 1918 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index 1919 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags 1920 kmp_int64 *th_doacross_info; // info on loop bounds 1921 #if KMP_USE_INTERNODE_ALIGNMENT 1922 char more_padding[INTERNODE_CACHE_LINE]; 1923 #endif 1924 } kmp_disp_t; 1925 1926 /* ------------------------------------------------------------------------ */ 1927 /* Barrier stuff */ 1928 1929 /* constants for barrier state update */ 1930 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */ 1931 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */ 1932 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state 1933 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */ 1934 1935 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT) 1936 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT) 1937 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT) 1938 1939 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT) 1940 #error "Barrier sleep bit must be smaller than barrier bump bit" 1941 #endif 1942 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT) 1943 #error "Barrier unused bit must be smaller than barrier bump bit" 1944 #endif 1945 1946 // Constants for release barrier wait state: currently, hierarchical only 1947 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep 1948 #define KMP_BARRIER_OWN_FLAG \ 1949 1 // Normal state; worker waiting on own b_go flag in release 1950 #define KMP_BARRIER_PARENT_FLAG \ 1951 2 // Special state; worker waiting on parent's b_go flag in release 1952 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \ 1953 3 // Special state; tells worker to shift from parent to own b_go 1954 #define KMP_BARRIER_SWITCHING \ 1955 4 // Special state; worker resets appropriate flag on wake-up 1956 1957 #define KMP_NOT_SAFE_TO_REAP \ 1958 0 // Thread th_reap_state: not safe to reap (tasking) 1959 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking) 1960 1961 // The flag_type describes the storage used for the flag. 1962 enum flag_type { 1963 flag32, /**< atomic 32 bit flags */ 1964 flag64, /**< 64 bit flags */ 1965 atomic_flag64, /**< atomic 64 bit flags */ 1966 flag_oncore, /**< special 64-bit flag for on-core barrier (hierarchical) */ 1967 flag_unset 1968 }; 1969 1970 enum barrier_type { 1971 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction 1972 barriers if enabled) */ 1973 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */ 1974 #if KMP_FAST_REDUCTION_BARRIER 1975 bs_reduction_barrier, /* 2, All barriers that are used in reduction */ 1976 #endif // KMP_FAST_REDUCTION_BARRIER 1977 bs_last_barrier /* Just a placeholder to mark the end */ 1978 }; 1979 1980 // to work with reduction barriers just like with plain barriers 1981 #if !KMP_FAST_REDUCTION_BARRIER 1982 #define bs_reduction_barrier bs_plain_barrier 1983 #endif // KMP_FAST_REDUCTION_BARRIER 1984 1985 typedef enum kmp_bar_pat { /* Barrier communication patterns */ 1986 bp_linear_bar = 1987 0, /* Single level (degenerate) tree */ 1988 bp_tree_bar = 1989 1, /* Balanced tree with branching factor 2^n */ 1990 bp_hyper_bar = 2, /* Hypercube-embedded tree with min 1991 branching factor 2^n */ 1992 bp_hierarchical_bar = 3, /* Machine hierarchy tree */ 1993 bp_dist_bar = 4, /* Distributed barrier */ 1994 bp_last_bar /* Placeholder to mark the end */ 1995 } kmp_bar_pat_e; 1996 1997 #define KMP_BARRIER_ICV_PUSH 1 1998 1999 /* Record for holding the values of the internal controls stack records */ 2000 typedef struct kmp_internal_control { 2001 int serial_nesting_level; /* corresponds to the value of the 2002 th_team_serialized field */ 2003 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per 2004 thread) */ 2005 kmp_int8 2006 bt_set; /* internal control for whether blocktime is explicitly set */ 2007 int blocktime; /* internal control for blocktime */ 2008 #if KMP_USE_MONITOR 2009 int bt_intervals; /* internal control for blocktime intervals */ 2010 #endif 2011 int nproc; /* internal control for #threads for next parallel region (per 2012 thread) */ 2013 int thread_limit; /* internal control for thread-limit-var */ 2014 int max_active_levels; /* internal control for max_active_levels */ 2015 kmp_r_sched_t 2016 sched; /* internal control for runtime schedule {sched,chunk} pair */ 2017 kmp_proc_bind_t proc_bind; /* internal control for affinity */ 2018 kmp_int32 default_device; /* internal control for default device */ 2019 struct kmp_internal_control *next; 2020 } kmp_internal_control_t; 2021 2022 static inline void copy_icvs(kmp_internal_control_t *dst, 2023 kmp_internal_control_t *src) { 2024 *dst = *src; 2025 } 2026 2027 /* Thread barrier needs volatile barrier fields */ 2028 typedef struct KMP_ALIGN_CACHE kmp_bstate { 2029 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all 2030 // uses of it). It is not explicitly aligned below, because we *don't* want 2031 // it to be padded -- instead, we fit b_go into the same cache line with 2032 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier. 2033 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread 2034 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with 2035 // same NGO store 2036 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical) 2037 KMP_ALIGN_CACHE volatile kmp_uint64 2038 b_arrived; // STATE => task reached synch point. 2039 kmp_uint32 *skip_per_level; 2040 kmp_uint32 my_level; 2041 kmp_int32 parent_tid; 2042 kmp_int32 old_tid; 2043 kmp_uint32 depth; 2044 struct kmp_bstate *parent_bar; 2045 kmp_team_t *team; 2046 kmp_uint64 leaf_state; 2047 kmp_uint32 nproc; 2048 kmp_uint8 base_leaf_kids; 2049 kmp_uint8 leaf_kids; 2050 kmp_uint8 offset; 2051 kmp_uint8 wait_flag; 2052 kmp_uint8 use_oncore_barrier; 2053 #if USE_DEBUGGER 2054 // The following field is intended for the debugger solely. Only the worker 2055 // thread itself accesses this field: the worker increases it by 1 when it 2056 // arrives to a barrier. 2057 KMP_ALIGN_CACHE kmp_uint b_worker_arrived; 2058 #endif /* USE_DEBUGGER */ 2059 } kmp_bstate_t; 2060 2061 union KMP_ALIGN_CACHE kmp_barrier_union { 2062 double b_align; /* use worst case alignment */ 2063 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)]; 2064 kmp_bstate_t bb; 2065 }; 2066 2067 typedef union kmp_barrier_union kmp_balign_t; 2068 2069 /* Team barrier needs only non-volatile arrived counter */ 2070 union KMP_ALIGN_CACHE kmp_barrier_team_union { 2071 double b_align; /* use worst case alignment */ 2072 char b_pad[CACHE_LINE]; 2073 struct { 2074 kmp_uint64 b_arrived; /* STATE => task reached synch point. */ 2075 #if USE_DEBUGGER 2076 // The following two fields are indended for the debugger solely. Only 2077 // primary thread of the team accesses these fields: the first one is 2078 // increased by 1 when the primary thread arrives to a barrier, the second 2079 // one is increased by one when all the threads arrived. 2080 kmp_uint b_master_arrived; 2081 kmp_uint b_team_arrived; 2082 #endif 2083 }; 2084 }; 2085 2086 typedef union kmp_barrier_team_union kmp_balign_team_t; 2087 2088 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal 2089 threads when a condition changes. This is to workaround an NPTL bug where 2090 padding was added to pthread_cond_t which caused the initialization routine 2091 to write outside of the structure if compiled on pre-NPTL threads. */ 2092 #if KMP_OS_WINDOWS 2093 typedef struct kmp_win32_mutex { 2094 /* The Lock */ 2095 CRITICAL_SECTION cs; 2096 } kmp_win32_mutex_t; 2097 2098 typedef struct kmp_win32_cond { 2099 /* Count of the number of waiters. */ 2100 int waiters_count_; 2101 2102 /* Serialize access to <waiters_count_> */ 2103 kmp_win32_mutex_t waiters_count_lock_; 2104 2105 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */ 2106 int release_count_; 2107 2108 /* Keeps track of the current "generation" so that we don't allow */ 2109 /* one thread to steal all the "releases" from the broadcast. */ 2110 int wait_generation_count_; 2111 2112 /* A manual-reset event that's used to block and release waiting threads. */ 2113 HANDLE event_; 2114 } kmp_win32_cond_t; 2115 #endif 2116 2117 #if KMP_OS_UNIX 2118 2119 union KMP_ALIGN_CACHE kmp_cond_union { 2120 double c_align; 2121 char c_pad[CACHE_LINE]; 2122 pthread_cond_t c_cond; 2123 }; 2124 2125 typedef union kmp_cond_union kmp_cond_align_t; 2126 2127 union KMP_ALIGN_CACHE kmp_mutex_union { 2128 double m_align; 2129 char m_pad[CACHE_LINE]; 2130 pthread_mutex_t m_mutex; 2131 }; 2132 2133 typedef union kmp_mutex_union kmp_mutex_align_t; 2134 2135 #endif /* KMP_OS_UNIX */ 2136 2137 typedef struct kmp_desc_base { 2138 void *ds_stackbase; 2139 size_t ds_stacksize; 2140 int ds_stackgrow; 2141 kmp_thread_t ds_thread; 2142 volatile int ds_tid; 2143 int ds_gtid; 2144 #if KMP_OS_WINDOWS 2145 volatile int ds_alive; 2146 DWORD ds_thread_id; 2147 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes. 2148 However, debugger support (libomp_db) cannot work with handles, because they 2149 uncomparable. For example, debugger requests info about thread with handle h. 2150 h is valid within debugger process, and meaningless within debugee process. 2151 Even if h is duped by call to DuplicateHandle(), so the result h' is valid 2152 within debugee process, but it is a *new* handle which does *not* equal to 2153 any other handle in debugee... The only way to compare handles is convert 2154 them to system-wide ids. GetThreadId() function is available only in 2155 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available 2156 on all Windows* OS flavours (including Windows* 95). Thus, we have to get 2157 thread id by call to GetCurrentThreadId() from within the thread and save it 2158 to let libomp_db identify threads. */ 2159 #endif /* KMP_OS_WINDOWS */ 2160 } kmp_desc_base_t; 2161 2162 typedef union KMP_ALIGN_CACHE kmp_desc { 2163 double ds_align; /* use worst case alignment */ 2164 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)]; 2165 kmp_desc_base_t ds; 2166 } kmp_desc_t; 2167 2168 typedef struct kmp_local { 2169 volatile int this_construct; /* count of single's encountered by thread */ 2170 void *reduce_data; 2171 #if KMP_USE_BGET 2172 void *bget_data; 2173 void *bget_list; 2174 #if !USE_CMP_XCHG_FOR_BGET 2175 #ifdef USE_QUEUING_LOCK_FOR_BGET 2176 kmp_lock_t bget_lock; /* Lock for accessing bget free list */ 2177 #else 2178 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be 2179 // bootstrap lock so we can use it at library 2180 // shutdown. 2181 #endif /* USE_LOCK_FOR_BGET */ 2182 #endif /* ! USE_CMP_XCHG_FOR_BGET */ 2183 #endif /* KMP_USE_BGET */ 2184 2185 PACKED_REDUCTION_METHOD_T 2186 packed_reduction_method; /* stored by __kmpc_reduce*(), used by 2187 __kmpc_end_reduce*() */ 2188 2189 } kmp_local_t; 2190 2191 #define KMP_CHECK_UPDATE(a, b) \ 2192 if ((a) != (b)) \ 2193 (a) = (b) 2194 #define KMP_CHECK_UPDATE_SYNC(a, b) \ 2195 if ((a) != (b)) \ 2196 TCW_SYNC_PTR((a), (b)) 2197 2198 #define get__blocktime(xteam, xtid) \ 2199 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) 2200 #define get__bt_set(xteam, xtid) \ 2201 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) 2202 #if KMP_USE_MONITOR 2203 #define get__bt_intervals(xteam, xtid) \ 2204 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) 2205 #endif 2206 2207 #define get__dynamic_2(xteam, xtid) \ 2208 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic) 2209 #define get__nproc_2(xteam, xtid) \ 2210 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc) 2211 #define get__sched_2(xteam, xtid) \ 2212 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched) 2213 2214 #define set__blocktime_team(xteam, xtid, xval) \ 2215 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \ 2216 (xval)) 2217 2218 #if KMP_USE_MONITOR 2219 #define set__bt_intervals_team(xteam, xtid, xval) \ 2220 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \ 2221 (xval)) 2222 #endif 2223 2224 #define set__bt_set_team(xteam, xtid, xval) \ 2225 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval)) 2226 2227 #define set__dynamic(xthread, xval) \ 2228 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval)) 2229 #define get__dynamic(xthread) \ 2230 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE)) 2231 2232 #define set__nproc(xthread, xval) \ 2233 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval)) 2234 2235 #define set__thread_limit(xthread, xval) \ 2236 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval)) 2237 2238 #define set__max_active_levels(xthread, xval) \ 2239 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval)) 2240 2241 #define get__max_active_levels(xthread) \ 2242 ((xthread)->th.th_current_task->td_icvs.max_active_levels) 2243 2244 #define set__sched(xthread, xval) \ 2245 (((xthread)->th.th_current_task->td_icvs.sched) = (xval)) 2246 2247 #define set__proc_bind(xthread, xval) \ 2248 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval)) 2249 #define get__proc_bind(xthread) \ 2250 ((xthread)->th.th_current_task->td_icvs.proc_bind) 2251 2252 // OpenMP tasking data structures 2253 2254 typedef enum kmp_tasking_mode { 2255 tskm_immediate_exec = 0, 2256 tskm_extra_barrier = 1, 2257 tskm_task_teams = 2, 2258 tskm_max = 2 2259 } kmp_tasking_mode_t; 2260 2261 extern kmp_tasking_mode_t 2262 __kmp_tasking_mode; /* determines how/when to execute tasks */ 2263 extern int __kmp_task_stealing_constraint; 2264 extern int __kmp_enable_task_throttling; 2265 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if 2266 // specified, defaults to 0 otherwise 2267 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise 2268 extern kmp_int32 __kmp_max_task_priority; 2269 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise 2270 extern kmp_uint64 __kmp_taskloop_min_tasks; 2271 2272 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with 2273 taskdata first */ 2274 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1) 2275 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1) 2276 2277 // The tt_found_tasks flag is a signal to all threads in the team that tasks 2278 // were spawned and queued since the previous barrier release. 2279 #define KMP_TASKING_ENABLED(task_team) \ 2280 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks)) 2281 /*! 2282 @ingroup BASIC_TYPES 2283 @{ 2284 */ 2285 2286 /*! 2287 */ 2288 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *); 2289 2290 typedef union kmp_cmplrdata { 2291 kmp_int32 priority; /**< priority specified by user for the task */ 2292 kmp_routine_entry_t 2293 destructors; /* pointer to function to invoke deconstructors of 2294 firstprivate C++ objects */ 2295 /* future data */ 2296 } kmp_cmplrdata_t; 2297 2298 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */ 2299 /*! 2300 */ 2301 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */ 2302 void *shareds; /**< pointer to block of pointers to shared vars */ 2303 kmp_routine_entry_t 2304 routine; /**< pointer to routine to call for executing task */ 2305 kmp_int32 part_id; /**< part id for the task */ 2306 kmp_cmplrdata_t 2307 data1; /* Two known optional additions: destructors and priority */ 2308 kmp_cmplrdata_t data2; /* Process destructors first, priority second */ 2309 /* future data */ 2310 /* private vars */ 2311 } kmp_task_t; 2312 2313 /*! 2314 @} 2315 */ 2316 2317 typedef struct kmp_taskgroup { 2318 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks 2319 std::atomic<kmp_int32> 2320 cancel_request; // request for cancellation of this taskgroup 2321 struct kmp_taskgroup *parent; // parent taskgroup 2322 // Block of data to perform task reduction 2323 void *reduce_data; // reduction related info 2324 kmp_int32 reduce_num_data; // number of data items to reduce 2325 uintptr_t *gomp_data; // gomp reduction data 2326 } kmp_taskgroup_t; 2327 2328 // forward declarations 2329 typedef union kmp_depnode kmp_depnode_t; 2330 typedef struct kmp_depnode_list kmp_depnode_list_t; 2331 typedef struct kmp_dephash_entry kmp_dephash_entry_t; 2332 2333 // macros for checking dep flag as an integer 2334 #define KMP_DEP_IN 0x1 2335 #define KMP_DEP_OUT 0x2 2336 #define KMP_DEP_INOUT 0x3 2337 #define KMP_DEP_MTX 0x4 2338 #define KMP_DEP_SET 0x8 2339 #define KMP_DEP_ALL 0x80 2340 // Compiler sends us this info: 2341 typedef struct kmp_depend_info { 2342 kmp_intptr_t base_addr; 2343 size_t len; 2344 union { 2345 kmp_uint8 flag; // flag as an unsigned char 2346 struct { // flag as a set of 8 bits 2347 unsigned in : 1; 2348 unsigned out : 1; 2349 unsigned mtx : 1; 2350 unsigned set : 1; 2351 unsigned unused : 3; 2352 unsigned all : 1; 2353 } flags; 2354 }; 2355 } kmp_depend_info_t; 2356 2357 // Internal structures to work with task dependencies: 2358 struct kmp_depnode_list { 2359 kmp_depnode_t *node; 2360 kmp_depnode_list_t *next; 2361 }; 2362 2363 // Max number of mutexinoutset dependencies per node 2364 #define MAX_MTX_DEPS 4 2365 2366 typedef struct kmp_base_depnode { 2367 kmp_depnode_list_t *successors; /* used under lock */ 2368 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */ 2369 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */ 2370 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */ 2371 kmp_lock_t lock; /* guards shared fields: task, successors */ 2372 #if KMP_SUPPORT_GRAPH_OUTPUT 2373 kmp_uint32 id; 2374 #endif 2375 std::atomic<kmp_int32> npredecessors; 2376 std::atomic<kmp_int32> nrefs; 2377 } kmp_base_depnode_t; 2378 2379 union KMP_ALIGN_CACHE kmp_depnode { 2380 double dn_align; /* use worst case alignment */ 2381 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)]; 2382 kmp_base_depnode_t dn; 2383 }; 2384 2385 struct kmp_dephash_entry { 2386 kmp_intptr_t addr; 2387 kmp_depnode_t *last_out; 2388 kmp_depnode_list_t *last_set; 2389 kmp_depnode_list_t *prev_set; 2390 kmp_uint8 last_flag; 2391 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */ 2392 kmp_dephash_entry_t *next_in_bucket; 2393 }; 2394 2395 typedef struct kmp_dephash { 2396 kmp_dephash_entry_t **buckets; 2397 size_t size; 2398 kmp_depnode_t *last_all; 2399 size_t generation; 2400 kmp_uint32 nelements; 2401 kmp_uint32 nconflicts; 2402 } kmp_dephash_t; 2403 2404 typedef struct kmp_task_affinity_info { 2405 kmp_intptr_t base_addr; 2406 size_t len; 2407 struct { 2408 bool flag1 : 1; 2409 bool flag2 : 1; 2410 kmp_int32 reserved : 30; 2411 } flags; 2412 } kmp_task_affinity_info_t; 2413 2414 typedef enum kmp_event_type_t { 2415 KMP_EVENT_UNINITIALIZED = 0, 2416 KMP_EVENT_ALLOW_COMPLETION = 1 2417 } kmp_event_type_t; 2418 2419 typedef struct { 2420 kmp_event_type_t type; 2421 kmp_tas_lock_t lock; 2422 union { 2423 kmp_task_t *task; 2424 } ed; 2425 } kmp_event_t; 2426 2427 #ifdef BUILD_TIED_TASK_STACK 2428 2429 /* Tied Task stack definitions */ 2430 typedef struct kmp_stack_block { 2431 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE]; 2432 struct kmp_stack_block *sb_next; 2433 struct kmp_stack_block *sb_prev; 2434 } kmp_stack_block_t; 2435 2436 typedef struct kmp_task_stack { 2437 kmp_stack_block_t ts_first_block; // first block of stack entries 2438 kmp_taskdata_t **ts_top; // pointer to the top of stack 2439 kmp_int32 ts_entries; // number of entries on the stack 2440 } kmp_task_stack_t; 2441 2442 #endif // BUILD_TIED_TASK_STACK 2443 2444 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */ 2445 /* Compiler flags */ /* Total compiler flags must be 16 bits */ 2446 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */ 2447 unsigned final : 1; /* task is final(1) so execute immediately */ 2448 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0 2449 code path */ 2450 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to 2451 invoke destructors from the runtime */ 2452 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the 2453 context of the RTL) */ 2454 unsigned priority_specified : 1; /* set if the compiler provides priority 2455 setting for the task */ 2456 unsigned detachable : 1; /* 1 == can detach */ 2457 unsigned hidden_helper : 1; /* 1 == hidden helper task */ 2458 unsigned reserved : 8; /* reserved for compiler use */ 2459 2460 /* Library flags */ /* Total library flags must be 16 bits */ 2461 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */ 2462 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0) 2463 unsigned tasking_ser : 1; // all tasks in team are either executed immediately 2464 // (1) or may be deferred (0) 2465 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel 2466 // (0) [>= 2 threads] 2467 /* If either team_serial or tasking_ser is set, task team may be NULL */ 2468 /* Task State Flags: */ 2469 unsigned started : 1; /* 1==started, 0==not started */ 2470 unsigned executing : 1; /* 1==executing, 0==not executing */ 2471 unsigned complete : 1; /* 1==complete, 0==not complete */ 2472 unsigned freed : 1; /* 1==freed, 0==allocated */ 2473 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */ 2474 unsigned reserved31 : 7; /* reserved for library use */ 2475 2476 } kmp_tasking_flags_t; 2477 2478 struct kmp_taskdata { /* aligned during dynamic allocation */ 2479 kmp_int32 td_task_id; /* id, assigned by debugger */ 2480 kmp_tasking_flags_t td_flags; /* task flags */ 2481 kmp_team_t *td_team; /* team for this task */ 2482 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */ 2483 /* Currently not used except for perhaps IDB */ 2484 kmp_taskdata_t *td_parent; /* parent task */ 2485 kmp_int32 td_level; /* task nesting level */ 2486 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter 2487 ident_t *td_ident; /* task identifier */ 2488 // Taskwait data. 2489 ident_t *td_taskwait_ident; 2490 kmp_uint32 td_taskwait_counter; 2491 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */ 2492 KMP_ALIGN_CACHE kmp_internal_control_t 2493 td_icvs; /* Internal control variables for the task */ 2494 KMP_ALIGN_CACHE std::atomic<kmp_int32> 2495 td_allocated_child_tasks; /* Child tasks (+ current task) not yet 2496 deallocated */ 2497 std::atomic<kmp_int32> 2498 td_incomplete_child_tasks; /* Child tasks not yet complete */ 2499 kmp_taskgroup_t 2500 *td_taskgroup; // Each task keeps pointer to its current taskgroup 2501 kmp_dephash_t 2502 *td_dephash; // Dependencies for children tasks are tracked from here 2503 kmp_depnode_t 2504 *td_depnode; // Pointer to graph node if this task has dependencies 2505 kmp_task_team_t *td_task_team; 2506 size_t td_size_alloc; // Size of task structure, including shareds etc. 2507 #if defined(KMP_GOMP_COMPAT) 2508 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop 2509 kmp_int32 td_size_loop_bounds; 2510 #endif 2511 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint 2512 #if defined(KMP_GOMP_COMPAT) 2513 // GOMP sends in a copy function for copy constructors 2514 void (*td_copy_func)(void *, void *); 2515 #endif 2516 kmp_event_t td_allow_completion_event; 2517 #if OMPT_SUPPORT 2518 ompt_task_info_t ompt_task_info; 2519 #endif 2520 }; // struct kmp_taskdata 2521 2522 // Make sure padding above worked 2523 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0); 2524 2525 // Data for task team but per thread 2526 typedef struct kmp_base_thread_data { 2527 kmp_info_p *td_thr; // Pointer back to thread info 2528 // Used only in __kmp_execute_tasks_template, maybe not avail until task is 2529 // queued? 2530 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque 2531 kmp_taskdata_t * 2532 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated 2533 kmp_int32 td_deque_size; // Size of deck 2534 kmp_uint32 td_deque_head; // Head of deque (will wrap) 2535 kmp_uint32 td_deque_tail; // Tail of deque (will wrap) 2536 kmp_int32 td_deque_ntasks; // Number of tasks in deque 2537 // GEH: shouldn't this be volatile since used in while-spin? 2538 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal 2539 #ifdef BUILD_TIED_TASK_STACK 2540 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task 2541 // scheduling constraint 2542 #endif // BUILD_TIED_TASK_STACK 2543 } kmp_base_thread_data_t; 2544 2545 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE 2546 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS) 2547 2548 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size) 2549 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1) 2550 2551 typedef union KMP_ALIGN_CACHE kmp_thread_data { 2552 kmp_base_thread_data_t td; 2553 double td_align; /* use worst case alignment */ 2554 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)]; 2555 } kmp_thread_data_t; 2556 2557 typedef struct kmp_task_pri { 2558 kmp_thread_data_t td; 2559 kmp_int32 priority; 2560 kmp_task_pri *next; 2561 } kmp_task_pri_t; 2562 2563 // Data for task teams which are used when tasking is enabled for the team 2564 typedef struct kmp_base_task_team { 2565 kmp_bootstrap_lock_t 2566 tt_threads_lock; /* Lock used to allocate per-thread part of task team */ 2567 /* must be bootstrap lock since used at library shutdown*/ 2568 2569 // TODO: check performance vs kmp_tas_lock_t 2570 kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */ 2571 kmp_task_pri_t *tt_task_pri_list; 2572 2573 kmp_task_team_t *tt_next; /* For linking the task team free list */ 2574 kmp_thread_data_t 2575 *tt_threads_data; /* Array of per-thread structures for task team */ 2576 /* Data survives task team deallocation */ 2577 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while 2578 executing this team? */ 2579 /* TRUE means tt_threads_data is set up and initialized */ 2580 kmp_int32 tt_nproc; /* #threads in team */ 2581 kmp_int32 tt_max_threads; // # entries allocated for threads_data array 2582 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier 2583 kmp_int32 tt_untied_task_encountered; 2584 std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued 2585 // There is hidden helper thread encountered in this task team so that we must 2586 // wait when waiting on task team 2587 kmp_int32 tt_hidden_helper_task_encountered; 2588 2589 KMP_ALIGN_CACHE 2590 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */ 2591 2592 KMP_ALIGN_CACHE 2593 volatile kmp_uint32 2594 tt_active; /* is the team still actively executing tasks */ 2595 } kmp_base_task_team_t; 2596 2597 union KMP_ALIGN_CACHE kmp_task_team { 2598 kmp_base_task_team_t tt; 2599 double tt_align; /* use worst case alignment */ 2600 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)]; 2601 }; 2602 2603 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5) 2604 // Free lists keep same-size free memory slots for fast memory allocation 2605 // routines 2606 typedef struct kmp_free_list { 2607 void *th_free_list_self; // Self-allocated tasks free list 2608 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other 2609 // threads 2610 void *th_free_list_other; // Non-self free list (to be returned to owner's 2611 // sync list) 2612 } kmp_free_list_t; 2613 #endif 2614 #if KMP_NESTED_HOT_TEAMS 2615 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams 2616 // are not put in teams pool, and they don't put threads in threads pool. 2617 typedef struct kmp_hot_team_ptr { 2618 kmp_team_p *hot_team; // pointer to hot_team of given nesting level 2619 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team 2620 } kmp_hot_team_ptr_t; 2621 #endif 2622 typedef struct kmp_teams_size { 2623 kmp_int32 nteams; // number of teams in a league 2624 kmp_int32 nth; // number of threads in each team of the league 2625 } kmp_teams_size_t; 2626 2627 // This struct stores a thread that acts as a "root" for a contention 2628 // group. Contention groups are rooted at kmp_root threads, but also at 2629 // each primary thread of each team created in the teams construct. 2630 // This struct therefore also stores a thread_limit associated with 2631 // that contention group, and a counter to track the number of threads 2632 // active in that contention group. Each thread has a list of these: CG 2633 // root threads have an entry in their list in which cg_root refers to 2634 // the thread itself, whereas other workers in the CG will have a 2635 // single entry where cg_root is same as the entry containing their CG 2636 // root. When a thread encounters a teams construct, it will add a new 2637 // entry to the front of its list, because it now roots a new CG. 2638 typedef struct kmp_cg_root { 2639 kmp_info_p *cg_root; // "root" thread for a contention group 2640 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or 2641 // thread_limit clause for teams primary threads 2642 kmp_int32 cg_thread_limit; 2643 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root 2644 struct kmp_cg_root *up; // pointer to higher level CG root in list 2645 } kmp_cg_root_t; 2646 2647 // OpenMP thread data structures 2648 2649 typedef struct KMP_ALIGN_CACHE kmp_base_info { 2650 /* Start with the readonly data which is cache aligned and padded. This is 2651 written before the thread starts working by the primary thread. Uber 2652 masters may update themselves later. Usage does not consider serialized 2653 regions. */ 2654 kmp_desc_t th_info; 2655 kmp_team_p *th_team; /* team we belong to */ 2656 kmp_root_p *th_root; /* pointer to root of task hierarchy */ 2657 kmp_info_p *th_next_pool; /* next available thread in the pool */ 2658 kmp_disp_t *th_dispatch; /* thread's dispatch data */ 2659 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */ 2660 2661 /* The following are cached from the team info structure */ 2662 /* TODO use these in more places as determined to be needed via profiling */ 2663 int th_team_nproc; /* number of threads in a team */ 2664 kmp_info_p *th_team_master; /* the team's primary thread */ 2665 int th_team_serialized; /* team is serialized */ 2666 microtask_t th_teams_microtask; /* save entry address for teams construct */ 2667 int th_teams_level; /* save initial level of teams construct */ 2668 /* it is 0 on device but may be any on host */ 2669 2670 /* The blocktime info is copied from the team struct to the thread struct */ 2671 /* at the start of a barrier, and the values stored in the team are used */ 2672 /* at points in the code where the team struct is no longer guaranteed */ 2673 /* to exist (from the POV of worker threads). */ 2674 #if KMP_USE_MONITOR 2675 int th_team_bt_intervals; 2676 int th_team_bt_set; 2677 #else 2678 kmp_uint64 th_team_bt_intervals; 2679 #endif 2680 2681 #if KMP_AFFINITY_SUPPORTED 2682 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */ 2683 #endif 2684 omp_allocator_handle_t th_def_allocator; /* default allocator */ 2685 /* The data set by the primary thread at reinit, then R/W by the worker */ 2686 KMP_ALIGN_CACHE int 2687 th_set_nproc; /* if > 0, then only use this request for the next fork */ 2688 #if KMP_NESTED_HOT_TEAMS 2689 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */ 2690 #endif 2691 kmp_proc_bind_t 2692 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */ 2693 kmp_teams_size_t 2694 th_teams_size; /* number of teams/threads in teams construct */ 2695 #if KMP_AFFINITY_SUPPORTED 2696 int th_current_place; /* place currently bound to */ 2697 int th_new_place; /* place to bind to in par reg */ 2698 int th_first_place; /* first place in partition */ 2699 int th_last_place; /* last place in partition */ 2700 #endif 2701 int th_prev_level; /* previous level for affinity format */ 2702 int th_prev_num_threads; /* previous num_threads for affinity format */ 2703 #if USE_ITT_BUILD 2704 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */ 2705 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */ 2706 kmp_uint64 th_frame_time; /* frame timestamp */ 2707 #endif /* USE_ITT_BUILD */ 2708 kmp_local_t th_local; 2709 struct private_common *th_pri_head; 2710 2711 /* Now the data only used by the worker (after initial allocation) */ 2712 /* TODO the first serial team should actually be stored in the info_t 2713 structure. this will help reduce initial allocation overhead */ 2714 KMP_ALIGN_CACHE kmp_team_p 2715 *th_serial_team; /*serialized team held in reserve*/ 2716 2717 #if OMPT_SUPPORT 2718 ompt_thread_info_t ompt_thread_info; 2719 #endif 2720 2721 /* The following are also read by the primary thread during reinit */ 2722 struct common_table *th_pri_common; 2723 2724 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */ 2725 /* while awaiting queuing lock acquire */ 2726 2727 volatile void *th_sleep_loc; // this points at a kmp_flag<T> 2728 flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc 2729 2730 ident_t *th_ident; 2731 unsigned th_x; // Random number generator data 2732 unsigned th_a; // Random number generator data 2733 2734 /* Tasking-related data for the thread */ 2735 kmp_task_team_t *th_task_team; // Task team struct 2736 kmp_taskdata_t *th_current_task; // Innermost Task being executed 2737 kmp_uint8 th_task_state; // alternating 0/1 for task team identification 2738 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state 2739 // at nested levels 2740 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack 2741 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack 2742 kmp_uint32 th_reap_state; // Non-zero indicates thread is not 2743 // tasking, thus safe to reap 2744 2745 /* More stuff for keeping track of active/sleeping threads (this part is 2746 written by the worker thread) */ 2747 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool 2748 int th_active; // ! sleeping; 32 bits for TCR/TCW 2749 std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team 2750 // 0 = not used in team; 1 = used in team; 2751 // 2 = transitioning to not used in team; 3 = transitioning to used in team 2752 struct cons_header *th_cons; // used for consistency check 2753 #if KMP_USE_HIER_SCHED 2754 // used for hierarchical scheduling 2755 kmp_hier_private_bdata_t *th_hier_bar_data; 2756 #endif 2757 2758 /* Add the syncronizing data which is cache aligned and padded. */ 2759 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier]; 2760 2761 KMP_ALIGN_CACHE volatile kmp_int32 2762 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */ 2763 2764 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5) 2765 #define NUM_LISTS 4 2766 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory 2767 // allocation routines 2768 #endif 2769 2770 #if KMP_OS_WINDOWS 2771 kmp_win32_cond_t th_suspend_cv; 2772 kmp_win32_mutex_t th_suspend_mx; 2773 std::atomic<int> th_suspend_init; 2774 #endif 2775 #if KMP_OS_UNIX 2776 kmp_cond_align_t th_suspend_cv; 2777 kmp_mutex_align_t th_suspend_mx; 2778 std::atomic<int> th_suspend_init_count; 2779 #endif 2780 2781 #if USE_ITT_BUILD 2782 kmp_itt_mark_t th_itt_mark_single; 2783 // alignment ??? 2784 #endif /* USE_ITT_BUILD */ 2785 #if KMP_STATS_ENABLED 2786 kmp_stats_list *th_stats; 2787 #endif 2788 #if KMP_OS_UNIX 2789 std::atomic<bool> th_blocking; 2790 #endif 2791 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread 2792 } kmp_base_info_t; 2793 2794 typedef union KMP_ALIGN_CACHE kmp_info { 2795 double th_align; /* use worst case alignment */ 2796 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)]; 2797 kmp_base_info_t th; 2798 } kmp_info_t; 2799 2800 // OpenMP thread team data structures 2801 2802 typedef struct kmp_base_data { 2803 volatile kmp_uint32 t_value; 2804 } kmp_base_data_t; 2805 2806 typedef union KMP_ALIGN_CACHE kmp_sleep_team { 2807 double dt_align; /* use worst case alignment */ 2808 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2809 kmp_base_data_t dt; 2810 } kmp_sleep_team_t; 2811 2812 typedef union KMP_ALIGN_CACHE kmp_ordered_team { 2813 double dt_align; /* use worst case alignment */ 2814 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2815 kmp_base_data_t dt; 2816 } kmp_ordered_team_t; 2817 2818 typedef int (*launch_t)(int gtid); 2819 2820 /* Minimum number of ARGV entries to malloc if necessary */ 2821 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100 2822 2823 // Set up how many argv pointers will fit in cache lines containing 2824 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a 2825 // larger value for more space between the primary write/worker read section and 2826 // read/write by all section seems to buy more performance on EPCC PARALLEL. 2827 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2828 #define KMP_INLINE_ARGV_BYTES \ 2829 (4 * CACHE_LINE - \ 2830 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \ 2831 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \ 2832 CACHE_LINE)) 2833 #else 2834 #define KMP_INLINE_ARGV_BYTES \ 2835 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE)) 2836 #endif 2837 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP) 2838 2839 typedef struct KMP_ALIGN_CACHE kmp_base_team { 2840 // Synchronization Data 2841 // --------------------------------------------------------------------------- 2842 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered; 2843 kmp_balign_team_t t_bar[bs_last_barrier]; 2844 std::atomic<int> t_construct; // count of single directive encountered by team 2845 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron 2846 2847 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups 2848 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier 2849 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions 2850 2851 // Primary thread only 2852 // --------------------------------------------------------------------------- 2853 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team 2854 int t_master_this_cons; // "this_construct" single counter of primary thread 2855 // in parent team 2856 ident_t *t_ident; // if volatile, have to change too much other crud to 2857 // volatile too 2858 kmp_team_p *t_parent; // parent team 2859 kmp_team_p *t_next_pool; // next free team in the team pool 2860 kmp_disp_t *t_dispatch; // thread's dispatch data 2861 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2 2862 kmp_proc_bind_t t_proc_bind; // bind type for par region 2863 #if USE_ITT_BUILD 2864 kmp_uint64 t_region_time; // region begin timestamp 2865 #endif /* USE_ITT_BUILD */ 2866 2867 // Primary thread write, workers read 2868 // -------------------------------------------------------------------------- 2869 KMP_ALIGN_CACHE void **t_argv; 2870 int t_argc; 2871 int t_nproc; // number of threads in team 2872 microtask_t t_pkfn; 2873 launch_t t_invoke; // procedure to launch the microtask 2874 2875 #if OMPT_SUPPORT 2876 ompt_team_info_t ompt_team_info; 2877 ompt_lw_taskteam_t *ompt_serialized_team_info; 2878 #endif 2879 2880 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2881 kmp_int8 t_fp_control_saved; 2882 kmp_int8 t_pad2b; 2883 kmp_int16 t_x87_fpu_control_word; // FP control regs 2884 kmp_uint32 t_mxcsr; 2885 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2886 2887 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES]; 2888 2889 KMP_ALIGN_CACHE kmp_info_t **t_threads; 2890 kmp_taskdata_t 2891 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task 2892 int t_level; // nested parallel level 2893 2894 KMP_ALIGN_CACHE int t_max_argc; 2895 int t_max_nproc; // max threads this team can handle (dynamically expandable) 2896 int t_serialized; // levels deep of serialized teams 2897 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system 2898 int t_id; // team's id, assigned by debugger. 2899 int t_active_level; // nested active parallel level 2900 kmp_r_sched_t t_sched; // run-time schedule for the team 2901 #if KMP_AFFINITY_SUPPORTED 2902 int t_first_place; // first & last place in parent thread's partition. 2903 int t_last_place; // Restore these values to primary thread after par region. 2904 #endif // KMP_AFFINITY_SUPPORTED 2905 int t_display_affinity; 2906 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via 2907 // omp_set_num_threads() call 2908 omp_allocator_handle_t t_def_allocator; /* default allocator */ 2909 2910 // Read/write by workers as well 2911 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 2912 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf 2913 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra 2914 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when 2915 // CACHE_LINE=64. TODO: investigate more and get rid if this padding. 2916 char dummy_padding[1024]; 2917 #endif 2918 // Internal control stack for additional nested teams. 2919 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top; 2920 // for SERIALIZED teams nested 2 or more levels deep 2921 // typed flag to store request state of cancellation 2922 std::atomic<kmp_int32> t_cancel_request; 2923 int t_master_active; // save on fork, restore on join 2924 void *t_copypriv_data; // team specific pointer to copyprivate data array 2925 #if KMP_OS_WINDOWS 2926 std::atomic<kmp_uint32> t_copyin_counter; 2927 #endif 2928 #if USE_ITT_BUILD 2929 void *t_stack_id; // team specific stack stitching id (for ittnotify) 2930 #endif /* USE_ITT_BUILD */ 2931 distributedBarrier *b; // Distributed barrier data associated with team 2932 } kmp_base_team_t; 2933 2934 union KMP_ALIGN_CACHE kmp_team { 2935 kmp_base_team_t t; 2936 double t_align; /* use worst case alignment */ 2937 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)]; 2938 }; 2939 2940 typedef union KMP_ALIGN_CACHE kmp_time_global { 2941 double dt_align; /* use worst case alignment */ 2942 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2943 kmp_base_data_t dt; 2944 } kmp_time_global_t; 2945 2946 typedef struct kmp_base_global { 2947 /* cache-aligned */ 2948 kmp_time_global_t g_time; 2949 2950 /* non cache-aligned */ 2951 volatile int g_abort; 2952 volatile int g_done; 2953 2954 int g_dynamic; 2955 enum dynamic_mode g_dynamic_mode; 2956 } kmp_base_global_t; 2957 2958 typedef union KMP_ALIGN_CACHE kmp_global { 2959 kmp_base_global_t g; 2960 double g_align; /* use worst case alignment */ 2961 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)]; 2962 } kmp_global_t; 2963 2964 typedef struct kmp_base_root { 2965 // TODO: GEH - combine r_active with r_in_parallel then r_active == 2966 // (r_in_parallel>= 0) 2967 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce 2968 // the synch overhead or keeping r_active 2969 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */ 2970 // keeps a count of active parallel regions per root 2971 std::atomic<int> r_in_parallel; 2972 // GEH: This is misnamed, should be r_active_levels 2973 kmp_team_t *r_root_team; 2974 kmp_team_t *r_hot_team; 2975 kmp_info_t *r_uber_thread; 2976 kmp_lock_t r_begin_lock; 2977 volatile int r_begin; 2978 int r_blocktime; /* blocktime for this root and descendants */ 2979 #if KMP_AFFINITY_SUPPORTED 2980 int r_affinity_assigned; 2981 #endif // KMP_AFFINITY_SUPPORTED 2982 } kmp_base_root_t; 2983 2984 typedef union KMP_ALIGN_CACHE kmp_root { 2985 kmp_base_root_t r; 2986 double r_align; /* use worst case alignment */ 2987 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)]; 2988 } kmp_root_t; 2989 2990 struct fortran_inx_info { 2991 kmp_int32 data; 2992 }; 2993 2994 // This list type exists to hold old __kmp_threads arrays so that 2995 // old references to them may complete while reallocation takes place when 2996 // expanding the array. The items in this list are kept alive until library 2997 // shutdown. 2998 typedef struct kmp_old_threads_list_t { 2999 kmp_info_t **threads; 3000 struct kmp_old_threads_list_t *next; 3001 } kmp_old_threads_list_t; 3002 3003 /* ------------------------------------------------------------------------ */ 3004 3005 extern int __kmp_settings; 3006 extern int __kmp_duplicate_library_ok; 3007 #if USE_ITT_BUILD 3008 extern int __kmp_forkjoin_frames; 3009 extern int __kmp_forkjoin_frames_mode; 3010 #endif 3011 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method; 3012 extern int __kmp_determ_red; 3013 3014 #ifdef KMP_DEBUG 3015 extern int kmp_a_debug; 3016 extern int kmp_b_debug; 3017 extern int kmp_c_debug; 3018 extern int kmp_d_debug; 3019 extern int kmp_e_debug; 3020 extern int kmp_f_debug; 3021 #endif /* KMP_DEBUG */ 3022 3023 /* For debug information logging using rotating buffer */ 3024 #define KMP_DEBUG_BUF_LINES_INIT 512 3025 #define KMP_DEBUG_BUF_LINES_MIN 1 3026 3027 #define KMP_DEBUG_BUF_CHARS_INIT 128 3028 #define KMP_DEBUG_BUF_CHARS_MIN 2 3029 3030 extern int 3031 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */ 3032 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */ 3033 extern int 3034 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */ 3035 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer 3036 entry pointer */ 3037 3038 extern char *__kmp_debug_buffer; /* Debug buffer itself */ 3039 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines 3040 printed in buffer so far */ 3041 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase 3042 recommended in warnings */ 3043 /* end rotating debug buffer */ 3044 3045 #ifdef KMP_DEBUG 3046 extern int __kmp_par_range; /* +1 => only go par for constructs in range */ 3047 3048 #define KMP_PAR_RANGE_ROUTINE_LEN 1024 3049 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN]; 3050 #define KMP_PAR_RANGE_FILENAME_LEN 1024 3051 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN]; 3052 extern int __kmp_par_range_lb; 3053 extern int __kmp_par_range_ub; 3054 #endif 3055 3056 /* For printing out dynamic storage map for threads and teams */ 3057 extern int 3058 __kmp_storage_map; /* True means print storage map for threads and teams */ 3059 extern int __kmp_storage_map_verbose; /* True means storage map includes 3060 placement info */ 3061 extern int __kmp_storage_map_verbose_specified; 3062 3063 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 3064 extern kmp_cpuinfo_t __kmp_cpuinfo; 3065 static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; } 3066 #elif KMP_OS_DARWIN && KMP_ARCH_AARCH64 3067 static inline bool __kmp_is_hybrid_cpu() { return true; } 3068 #else 3069 static inline bool __kmp_is_hybrid_cpu() { return false; } 3070 #endif 3071 3072 extern volatile int __kmp_init_serial; 3073 extern volatile int __kmp_init_gtid; 3074 extern volatile int __kmp_init_common; 3075 extern volatile int __kmp_need_register_serial; 3076 extern volatile int __kmp_init_middle; 3077 extern volatile int __kmp_init_parallel; 3078 #if KMP_USE_MONITOR 3079 extern volatile int __kmp_init_monitor; 3080 #endif 3081 extern volatile int __kmp_init_user_locks; 3082 extern volatile int __kmp_init_hidden_helper_threads; 3083 extern int __kmp_init_counter; 3084 extern int __kmp_root_counter; 3085 extern int __kmp_version; 3086 3087 /* list of address of allocated caches for commons */ 3088 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list; 3089 3090 /* Barrier algorithm types and options */ 3091 extern kmp_uint32 __kmp_barrier_gather_bb_dflt; 3092 extern kmp_uint32 __kmp_barrier_release_bb_dflt; 3093 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt; 3094 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt; 3095 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier]; 3096 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier]; 3097 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier]; 3098 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier]; 3099 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier]; 3100 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier]; 3101 extern char const *__kmp_barrier_type_name[bs_last_barrier]; 3102 extern char const *__kmp_barrier_pattern_name[bp_last_bar]; 3103 3104 /* Global Locks */ 3105 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */ 3106 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */ 3107 extern kmp_bootstrap_lock_t __kmp_task_team_lock; 3108 extern kmp_bootstrap_lock_t 3109 __kmp_exit_lock; /* exit() is not always thread-safe */ 3110 #if KMP_USE_MONITOR 3111 extern kmp_bootstrap_lock_t 3112 __kmp_monitor_lock; /* control monitor thread creation */ 3113 #endif 3114 extern kmp_bootstrap_lock_t 3115 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and 3116 __kmp_threads expansion to co-exist */ 3117 3118 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */ 3119 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */ 3120 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */ 3121 3122 extern enum library_type __kmp_library; 3123 3124 extern enum sched_type __kmp_sched; /* default runtime scheduling */ 3125 extern enum sched_type __kmp_static; /* default static scheduling method */ 3126 extern enum sched_type __kmp_guided; /* default guided scheduling method */ 3127 extern enum sched_type __kmp_auto; /* default auto scheduling method */ 3128 extern int __kmp_chunk; /* default runtime chunk size */ 3129 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */ 3130 3131 extern size_t __kmp_stksize; /* stack size per thread */ 3132 #if KMP_USE_MONITOR 3133 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */ 3134 #endif 3135 extern size_t __kmp_stkoffset; /* stack offset per thread */ 3136 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */ 3137 3138 extern size_t 3139 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */ 3140 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */ 3141 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */ 3142 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */ 3143 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified? 3144 extern int __kmp_generate_warnings; /* should we issue warnings? */ 3145 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */ 3146 3147 #ifdef DEBUG_SUSPEND 3148 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */ 3149 #endif 3150 3151 extern kmp_int32 __kmp_use_yield; 3152 extern kmp_int32 __kmp_use_yield_exp_set; 3153 extern kmp_uint32 __kmp_yield_init; 3154 extern kmp_uint32 __kmp_yield_next; 3155 extern kmp_uint64 __kmp_pause_init; 3156 3157 /* ------------------------------------------------------------------------- */ 3158 extern int __kmp_allThreadsSpecified; 3159 3160 extern size_t __kmp_align_alloc; 3161 /* following data protected by initialization routines */ 3162 extern int __kmp_xproc; /* number of processors in the system */ 3163 extern int __kmp_avail_proc; /* number of processors available to the process */ 3164 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */ 3165 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */ 3166 // maximum total number of concurrently-existing threads on device 3167 extern int __kmp_max_nth; 3168 // maximum total number of concurrently-existing threads in a contention group 3169 extern int __kmp_cg_max_nth; 3170 extern int __kmp_teams_max_nth; // max threads used in a teams construct 3171 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and 3172 __kmp_root */ 3173 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel 3174 region a la OMP_NUM_THREADS */ 3175 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial 3176 initialization */ 3177 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is 3178 used (fixed) */ 3179 extern int __kmp_tp_cached; /* whether threadprivate cache has been created 3180 (__kmpc_threadprivate_cached()) */ 3181 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before 3182 blocking (env setting) */ 3183 extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */ 3184 #if KMP_USE_MONITOR 3185 extern int 3186 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */ 3187 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before 3188 blocking */ 3189 #endif 3190 #ifdef KMP_ADJUST_BLOCKTIME 3191 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */ 3192 #endif /* KMP_ADJUST_BLOCKTIME */ 3193 #ifdef KMP_DFLT_NTH_CORES 3194 extern int __kmp_ncores; /* Total number of cores for threads placement */ 3195 #endif 3196 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */ 3197 extern int __kmp_abort_delay; 3198 3199 extern int __kmp_need_register_atfork_specified; 3200 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork 3201 to install fork handler */ 3202 extern int __kmp_gtid_mode; /* Method of getting gtid, values: 3203 0 - not set, will be set at runtime 3204 1 - using stack search 3205 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS 3206 X*) or TlsGetValue(Windows* OS)) 3207 3 - static TLS (__declspec(thread) __kmp_gtid), 3208 Linux* OS .so only. */ 3209 extern int 3210 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */ 3211 #ifdef KMP_TDATA_GTID 3212 extern KMP_THREAD_LOCAL int __kmp_gtid; 3213 #endif 3214 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */ 3215 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread 3216 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 3217 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork 3218 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg 3219 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */ 3220 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 3221 3222 // max_active_levels for nested parallelism enabled by default via 3223 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND 3224 extern int __kmp_dflt_max_active_levels; 3225 // Indicates whether value of __kmp_dflt_max_active_levels was already 3226 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false 3227 extern bool __kmp_dflt_max_active_levels_set; 3228 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in 3229 concurrent execution per team */ 3230 #if KMP_NESTED_HOT_TEAMS 3231 extern int __kmp_hot_teams_mode; 3232 extern int __kmp_hot_teams_max_level; 3233 #endif 3234 3235 #if KMP_OS_LINUX 3236 extern enum clock_function_type __kmp_clock_function; 3237 extern int __kmp_clock_function_param; 3238 #endif /* KMP_OS_LINUX */ 3239 3240 #if KMP_MIC_SUPPORTED 3241 extern enum mic_type __kmp_mic_type; 3242 #endif 3243 3244 #ifdef USE_LOAD_BALANCE 3245 extern double __kmp_load_balance_interval; // load balance algorithm interval 3246 #endif /* USE_LOAD_BALANCE */ 3247 3248 // OpenMP 3.1 - Nested num threads array 3249 typedef struct kmp_nested_nthreads_t { 3250 int *nth; 3251 int size; 3252 int used; 3253 } kmp_nested_nthreads_t; 3254 3255 extern kmp_nested_nthreads_t __kmp_nested_nth; 3256 3257 #if KMP_USE_ADAPTIVE_LOCKS 3258 3259 // Parameters for the speculative lock backoff system. 3260 struct kmp_adaptive_backoff_params_t { 3261 // Number of soft retries before it counts as a hard retry. 3262 kmp_uint32 max_soft_retries; 3263 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to 3264 // the right 3265 kmp_uint32 max_badness; 3266 }; 3267 3268 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params; 3269 3270 #if KMP_DEBUG_ADAPTIVE_LOCKS 3271 extern const char *__kmp_speculative_statsfile; 3272 #endif 3273 3274 #endif // KMP_USE_ADAPTIVE_LOCKS 3275 3276 extern int __kmp_display_env; /* TRUE or FALSE */ 3277 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */ 3278 extern int __kmp_omp_cancellation; /* TRUE or FALSE */ 3279 extern int __kmp_nteams; 3280 extern int __kmp_teams_thread_limit; 3281 3282 /* ------------------------------------------------------------------------- */ 3283 3284 /* the following are protected by the fork/join lock */ 3285 /* write: lock read: anytime */ 3286 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */ 3287 /* Holds old arrays of __kmp_threads until library shutdown */ 3288 extern kmp_old_threads_list_t *__kmp_old_threads_list; 3289 /* read/write: lock */ 3290 extern volatile kmp_team_t *__kmp_team_pool; 3291 extern volatile kmp_info_t *__kmp_thread_pool; 3292 extern kmp_info_t *__kmp_thread_pool_insert_pt; 3293 3294 // total num threads reachable from some root thread including all root threads 3295 extern volatile int __kmp_nth; 3296 /* total number of threads reachable from some root thread including all root 3297 threads, and those in the thread pool */ 3298 extern volatile int __kmp_all_nth; 3299 extern std::atomic<int> __kmp_thread_pool_active_nth; 3300 3301 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */ 3302 /* end data protected by fork/join lock */ 3303 /* ------------------------------------------------------------------------- */ 3304 3305 #define __kmp_get_gtid() __kmp_get_global_thread_id() 3306 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg() 3307 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid())) 3308 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team) 3309 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid())) 3310 3311 // AT: Which way is correct? 3312 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc; 3313 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc; 3314 #define __kmp_get_team_num_threads(gtid) \ 3315 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc) 3316 3317 static inline bool KMP_UBER_GTID(int gtid) { 3318 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN); 3319 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity); 3320 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] && 3321 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread); 3322 } 3323 3324 static inline int __kmp_tid_from_gtid(int gtid) { 3325 KMP_DEBUG_ASSERT(gtid >= 0); 3326 return __kmp_threads[gtid]->th.th_info.ds.ds_tid; 3327 } 3328 3329 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) { 3330 KMP_DEBUG_ASSERT(tid >= 0 && team); 3331 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid; 3332 } 3333 3334 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) { 3335 KMP_DEBUG_ASSERT(thr); 3336 return thr->th.th_info.ds.ds_gtid; 3337 } 3338 3339 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) { 3340 KMP_DEBUG_ASSERT(gtid >= 0); 3341 return __kmp_threads[gtid]; 3342 } 3343 3344 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) { 3345 KMP_DEBUG_ASSERT(gtid >= 0); 3346 return __kmp_threads[gtid]->th.th_team; 3347 } 3348 3349 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) { 3350 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity)) 3351 KMP_FATAL(ThreadIdentInvalid); 3352 } 3353 3354 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 3355 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT 3356 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled 3357 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled 3358 extern int __kmp_mwait_hints; // Hints to pass in to mwait 3359 #endif 3360 3361 #if KMP_HAVE_UMWAIT 3362 extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists 3363 extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE 3364 extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE 3365 extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero) 3366 #endif 3367 3368 /* ------------------------------------------------------------------------- */ 3369 3370 extern kmp_global_t __kmp_global; /* global status */ 3371 3372 extern kmp_info_t __kmp_monitor; 3373 // For Debugging Support Library 3374 extern std::atomic<kmp_int32> __kmp_team_counter; 3375 // For Debugging Support Library 3376 extern std::atomic<kmp_int32> __kmp_task_counter; 3377 3378 #if USE_DEBUGGER 3379 #define _KMP_GEN_ID(counter) \ 3380 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0) 3381 #else 3382 #define _KMP_GEN_ID(counter) (~0) 3383 #endif /* USE_DEBUGGER */ 3384 3385 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter) 3386 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter) 3387 3388 /* ------------------------------------------------------------------------ */ 3389 3390 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, 3391 size_t size, char const *format, ...); 3392 3393 extern void __kmp_serial_initialize(void); 3394 extern void __kmp_middle_initialize(void); 3395 extern void __kmp_parallel_initialize(void); 3396 3397 extern void __kmp_internal_begin(void); 3398 extern void __kmp_internal_end_library(int gtid); 3399 extern void __kmp_internal_end_thread(int gtid); 3400 extern void __kmp_internal_end_atexit(void); 3401 extern void __kmp_internal_end_dtor(void); 3402 extern void __kmp_internal_end_dest(void *); 3403 3404 extern int __kmp_register_root(int initial_thread); 3405 extern void __kmp_unregister_root(int gtid); 3406 extern void __kmp_unregister_library(void); // called by __kmp_internal_end() 3407 3408 extern int __kmp_ignore_mppbeg(void); 3409 extern int __kmp_ignore_mppend(void); 3410 3411 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws); 3412 extern void __kmp_exit_single(int gtid); 3413 3414 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref); 3415 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref); 3416 3417 #ifdef USE_LOAD_BALANCE 3418 extern int __kmp_get_load_balance(int); 3419 #endif 3420 3421 extern int __kmp_get_global_thread_id(void); 3422 extern int __kmp_get_global_thread_id_reg(void); 3423 extern void __kmp_exit_thread(int exit_status); 3424 extern void __kmp_abort(char const *format, ...); 3425 extern void __kmp_abort_thread(void); 3426 KMP_NORETURN extern void __kmp_abort_process(void); 3427 extern void __kmp_warn(char const *format, ...); 3428 3429 extern void __kmp_set_num_threads(int new_nth, int gtid); 3430 3431 // Returns current thread (pointer to kmp_info_t). Current thread *must* be 3432 // registered. 3433 static inline kmp_info_t *__kmp_entry_thread() { 3434 int gtid = __kmp_entry_gtid(); 3435 3436 return __kmp_threads[gtid]; 3437 } 3438 3439 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels); 3440 extern int __kmp_get_max_active_levels(int gtid); 3441 extern int __kmp_get_ancestor_thread_num(int gtid, int level); 3442 extern int __kmp_get_team_size(int gtid, int level); 3443 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk); 3444 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk); 3445 3446 extern unsigned short __kmp_get_random(kmp_info_t *thread); 3447 extern void __kmp_init_random(kmp_info_t *thread); 3448 3449 extern kmp_r_sched_t __kmp_get_schedule_global(void); 3450 extern void __kmp_adjust_num_threads(int new_nproc); 3451 extern void __kmp_check_stksize(size_t *val); 3452 3453 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL); 3454 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL); 3455 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL); 3456 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR) 3457 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR) 3458 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR) 3459 3460 #if USE_FAST_MEMORY 3461 extern void *___kmp_fast_allocate(kmp_info_t *this_thr, 3462 size_t size KMP_SRC_LOC_DECL); 3463 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL); 3464 extern void __kmp_free_fast_memory(kmp_info_t *this_thr); 3465 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr); 3466 #define __kmp_fast_allocate(this_thr, size) \ 3467 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR) 3468 #define __kmp_fast_free(this_thr, ptr) \ 3469 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR) 3470 #endif 3471 3472 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL); 3473 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem, 3474 size_t elsize KMP_SRC_LOC_DECL); 3475 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr, 3476 size_t size KMP_SRC_LOC_DECL); 3477 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL); 3478 #define __kmp_thread_malloc(th, size) \ 3479 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR) 3480 #define __kmp_thread_calloc(th, nelem, elsize) \ 3481 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR) 3482 #define __kmp_thread_realloc(th, ptr, size) \ 3483 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR) 3484 #define __kmp_thread_free(th, ptr) \ 3485 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR) 3486 3487 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads); 3488 3489 extern void __kmp_push_proc_bind(ident_t *loc, int gtid, 3490 kmp_proc_bind_t proc_bind); 3491 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams, 3492 int num_threads); 3493 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb, 3494 int num_teams_ub, int num_threads); 3495 3496 extern void __kmp_yield(); 3497 3498 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 3499 enum sched_type schedule, kmp_int32 lb, 3500 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk); 3501 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 3502 enum sched_type schedule, kmp_uint32 lb, 3503 kmp_uint32 ub, kmp_int32 st, 3504 kmp_int32 chunk); 3505 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 3506 enum sched_type schedule, kmp_int64 lb, 3507 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk); 3508 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 3509 enum sched_type schedule, kmp_uint64 lb, 3510 kmp_uint64 ub, kmp_int64 st, 3511 kmp_int64 chunk); 3512 3513 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, 3514 kmp_int32 *p_last, kmp_int32 *p_lb, 3515 kmp_int32 *p_ub, kmp_int32 *p_st); 3516 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, 3517 kmp_int32 *p_last, kmp_uint32 *p_lb, 3518 kmp_uint32 *p_ub, kmp_int32 *p_st); 3519 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, 3520 kmp_int32 *p_last, kmp_int64 *p_lb, 3521 kmp_int64 *p_ub, kmp_int64 *p_st); 3522 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, 3523 kmp_int32 *p_last, kmp_uint64 *p_lb, 3524 kmp_uint64 *p_ub, kmp_int64 *p_st); 3525 3526 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid); 3527 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid); 3528 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid); 3529 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid); 3530 3531 #ifdef KMP_GOMP_COMPAT 3532 3533 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 3534 enum sched_type schedule, kmp_int32 lb, 3535 kmp_int32 ub, kmp_int32 st, 3536 kmp_int32 chunk, int push_ws); 3537 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 3538 enum sched_type schedule, kmp_uint32 lb, 3539 kmp_uint32 ub, kmp_int32 st, 3540 kmp_int32 chunk, int push_ws); 3541 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 3542 enum sched_type schedule, kmp_int64 lb, 3543 kmp_int64 ub, kmp_int64 st, 3544 kmp_int64 chunk, int push_ws); 3545 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 3546 enum sched_type schedule, kmp_uint64 lb, 3547 kmp_uint64 ub, kmp_int64 st, 3548 kmp_int64 chunk, int push_ws); 3549 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid); 3550 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid); 3551 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid); 3552 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid); 3553 3554 #endif /* KMP_GOMP_COMPAT */ 3555 3556 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker); 3557 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker); 3558 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker); 3559 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker); 3560 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker); 3561 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker, 3562 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32), 3563 void *obj); 3564 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker, 3565 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj); 3566 3567 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag, 3568 int final_spin 3569 #if USE_ITT_BUILD 3570 , 3571 void *itt_sync_obj 3572 #endif 3573 ); 3574 extern void __kmp_release_64(kmp_flag_64<> *flag); 3575 3576 extern void __kmp_infinite_loop(void); 3577 3578 extern void __kmp_cleanup(void); 3579 3580 #if KMP_HANDLE_SIGNALS 3581 extern int __kmp_handle_signals; 3582 extern void __kmp_install_signals(int parallel_init); 3583 extern void __kmp_remove_signals(void); 3584 #endif 3585 3586 extern void __kmp_clear_system_time(void); 3587 extern void __kmp_read_system_time(double *delta); 3588 3589 extern void __kmp_check_stack_overlap(kmp_info_t *thr); 3590 3591 extern void __kmp_expand_host_name(char *buffer, size_t size); 3592 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern); 3593 3594 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && KMP_ARCH_AARCH64) 3595 extern void 3596 __kmp_initialize_system_tick(void); /* Initialize timer tick value */ 3597 #endif 3598 3599 extern void 3600 __kmp_runtime_initialize(void); /* machine specific initialization */ 3601 extern void __kmp_runtime_destroy(void); 3602 3603 #if KMP_AFFINITY_SUPPORTED 3604 extern char *__kmp_affinity_print_mask(char *buf, int buf_len, 3605 kmp_affin_mask_t *mask); 3606 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 3607 kmp_affin_mask_t *mask); 3608 extern void __kmp_affinity_initialize(void); 3609 extern void __kmp_affinity_uninitialize(void); 3610 extern void __kmp_affinity_set_init_mask( 3611 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */ 3612 extern void __kmp_affinity_set_place(int gtid); 3613 extern void __kmp_affinity_determine_capable(const char *env_var); 3614 extern int __kmp_aux_set_affinity(void **mask); 3615 extern int __kmp_aux_get_affinity(void **mask); 3616 extern int __kmp_aux_get_affinity_max_proc(); 3617 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask); 3618 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask); 3619 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask); 3620 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size); 3621 #if KMP_OS_LINUX || KMP_OS_FREEBSD 3622 extern int kmp_set_thread_affinity_mask_initial(void); 3623 #endif 3624 static inline void __kmp_assign_root_init_mask() { 3625 int gtid = __kmp_entry_gtid(); 3626 kmp_root_t *r = __kmp_threads[gtid]->th.th_root; 3627 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) { 3628 __kmp_affinity_set_init_mask(gtid, TRUE); 3629 r->r.r_affinity_assigned = TRUE; 3630 } 3631 } 3632 static inline void __kmp_reset_root_init_mask(int gtid) { 3633 kmp_info_t *th = __kmp_threads[gtid]; 3634 kmp_root_t *r = th->th.th_root; 3635 if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) { 3636 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE); 3637 KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask); 3638 r->r.r_affinity_assigned = FALSE; 3639 } 3640 } 3641 #else /* KMP_AFFINITY_SUPPORTED */ 3642 #define __kmp_assign_root_init_mask() /* Nothing */ 3643 static inline void __kmp_reset_root_init_mask(int gtid) {} 3644 #endif /* KMP_AFFINITY_SUPPORTED */ 3645 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the 3646 // format string is for affinity, so platforms that do not support 3647 // affinity can still use the other fields, e.g., %n for num_threads 3648 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format, 3649 kmp_str_buf_t *buffer); 3650 extern void __kmp_aux_display_affinity(int gtid, const char *format); 3651 3652 extern void __kmp_cleanup_hierarchy(); 3653 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar); 3654 3655 #if KMP_USE_FUTEX 3656 3657 extern int __kmp_futex_determine_capable(void); 3658 3659 #endif // KMP_USE_FUTEX 3660 3661 extern void __kmp_gtid_set_specific(int gtid); 3662 extern int __kmp_gtid_get_specific(void); 3663 3664 extern double __kmp_read_cpu_time(void); 3665 3666 extern int __kmp_read_system_info(struct kmp_sys_info *info); 3667 3668 #if KMP_USE_MONITOR 3669 extern void __kmp_create_monitor(kmp_info_t *th); 3670 #endif 3671 3672 extern void *__kmp_launch_thread(kmp_info_t *thr); 3673 3674 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size); 3675 3676 #if KMP_OS_WINDOWS 3677 extern int __kmp_still_running(kmp_info_t *th); 3678 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val); 3679 extern void __kmp_free_handle(kmp_thread_t tHandle); 3680 #endif 3681 3682 #if KMP_USE_MONITOR 3683 extern void __kmp_reap_monitor(kmp_info_t *th); 3684 #endif 3685 extern void __kmp_reap_worker(kmp_info_t *th); 3686 extern void __kmp_terminate_thread(int gtid); 3687 3688 extern int __kmp_try_suspend_mx(kmp_info_t *th); 3689 extern void __kmp_lock_suspend_mx(kmp_info_t *th); 3690 extern void __kmp_unlock_suspend_mx(kmp_info_t *th); 3691 3692 extern void __kmp_elapsed(double *); 3693 extern void __kmp_elapsed_tick(double *); 3694 3695 extern void __kmp_enable(int old_state); 3696 extern void __kmp_disable(int *old_state); 3697 3698 extern void __kmp_thread_sleep(int millis); 3699 3700 extern void __kmp_common_initialize(void); 3701 extern void __kmp_common_destroy(void); 3702 extern void __kmp_common_destroy_gtid(int gtid); 3703 3704 #if KMP_OS_UNIX 3705 extern void __kmp_register_atfork(void); 3706 #endif 3707 extern void __kmp_suspend_initialize(void); 3708 extern void __kmp_suspend_initialize_thread(kmp_info_t *th); 3709 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th); 3710 3711 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 3712 int tid); 3713 extern kmp_team_t * 3714 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 3715 #if OMPT_SUPPORT 3716 ompt_data_t ompt_parallel_data, 3717 #endif 3718 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs, 3719 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr)); 3720 extern void __kmp_free_thread(kmp_info_t *); 3721 extern void __kmp_free_team(kmp_root_t *, 3722 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *)); 3723 extern kmp_team_t *__kmp_reap_team(kmp_team_t *); 3724 3725 /* ------------------------------------------------------------------------ */ 3726 3727 extern void __kmp_initialize_bget(kmp_info_t *th); 3728 extern void __kmp_finalize_bget(kmp_info_t *th); 3729 3730 KMP_EXPORT void *kmpc_malloc(size_t size); 3731 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment); 3732 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize); 3733 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size); 3734 KMP_EXPORT void kmpc_free(void *ptr); 3735 3736 /* declarations for internal use */ 3737 3738 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split, 3739 size_t reduce_size, void *reduce_data, 3740 void (*reduce)(void *, void *)); 3741 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid); 3742 extern int __kmp_barrier_gomp_cancel(int gtid); 3743 3744 /*! 3745 * Tell the fork call which compiler generated the fork call, and therefore how 3746 * to deal with the call. 3747 */ 3748 enum fork_context_e { 3749 fork_context_gnu, /**< Called from GNU generated code, so must not invoke the 3750 microtask internally. */ 3751 fork_context_intel, /**< Called from Intel generated code. */ 3752 fork_context_last 3753 }; 3754 extern int __kmp_fork_call(ident_t *loc, int gtid, 3755 enum fork_context_e fork_context, kmp_int32 argc, 3756 microtask_t microtask, launch_t invoker, 3757 kmp_va_list ap); 3758 3759 extern void __kmp_join_call(ident_t *loc, int gtid 3760 #if OMPT_SUPPORT 3761 , 3762 enum fork_context_e fork_context 3763 #endif 3764 , 3765 int exit_teams = 0); 3766 3767 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid); 3768 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team); 3769 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team); 3770 extern int __kmp_invoke_task_func(int gtid); 3771 extern void __kmp_run_before_invoked_task(int gtid, int tid, 3772 kmp_info_t *this_thr, 3773 kmp_team_t *team); 3774 extern void __kmp_run_after_invoked_task(int gtid, int tid, 3775 kmp_info_t *this_thr, 3776 kmp_team_t *team); 3777 3778 // should never have been exported 3779 KMP_EXPORT int __kmpc_invoke_task_func(int gtid); 3780 extern int __kmp_invoke_teams_master(int gtid); 3781 extern void __kmp_teams_master(int gtid); 3782 extern int __kmp_aux_get_team_num(); 3783 extern int __kmp_aux_get_num_teams(); 3784 extern void __kmp_save_internal_controls(kmp_info_t *thread); 3785 extern void __kmp_user_set_library(enum library_type arg); 3786 extern void __kmp_aux_set_library(enum library_type arg); 3787 extern void __kmp_aux_set_stacksize(size_t arg); 3788 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid); 3789 extern void __kmp_aux_set_defaults(char const *str, size_t len); 3790 3791 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */ 3792 void kmpc_set_blocktime(int arg); 3793 void ompc_set_nested(int flag); 3794 void ompc_set_dynamic(int flag); 3795 void ompc_set_num_threads(int arg); 3796 3797 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, 3798 kmp_team_t *team, int tid); 3799 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr); 3800 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 3801 kmp_tasking_flags_t *flags, 3802 size_t sizeof_kmp_task_t, 3803 size_t sizeof_shareds, 3804 kmp_routine_entry_t task_entry); 3805 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 3806 kmp_team_t *team, int tid, 3807 int set_curr_task); 3808 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr); 3809 extern void __kmp_free_implicit_task(kmp_info_t *this_thr); 3810 3811 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, 3812 int gtid, 3813 kmp_task_t *task); 3814 extern void __kmp_fulfill_event(kmp_event_t *event); 3815 3816 extern void __kmp_free_task_team(kmp_info_t *thread, 3817 kmp_task_team_t *task_team); 3818 extern void __kmp_reap_task_teams(void); 3819 extern void __kmp_wait_to_unref_task_teams(void); 3820 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, 3821 int always); 3822 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team); 3823 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team 3824 #if USE_ITT_BUILD 3825 , 3826 void *itt_sync_obj 3827 #endif /* USE_ITT_BUILD */ 3828 , 3829 int wait = 1); 3830 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, 3831 int gtid); 3832 3833 extern int __kmp_is_address_mapped(void *addr); 3834 extern kmp_uint64 __kmp_hardware_timestamp(void); 3835 3836 #if KMP_OS_UNIX 3837 extern int __kmp_read_from_file(char const *path, char const *format, ...); 3838 #endif 3839 3840 /* ------------------------------------------------------------------------ */ 3841 // 3842 // Assembly routines that have no compiler intrinsic replacement 3843 // 3844 3845 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc, 3846 void *argv[] 3847 #if OMPT_SUPPORT 3848 , 3849 void **exit_frame_ptr 3850 #endif 3851 ); 3852 3853 /* ------------------------------------------------------------------------ */ 3854 3855 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags); 3856 KMP_EXPORT void __kmpc_end(ident_t *); 3857 3858 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, 3859 kmpc_ctor_vec ctor, 3860 kmpc_cctor_vec cctor, 3861 kmpc_dtor_vec dtor, 3862 size_t vector_length); 3863 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, 3864 kmpc_ctor ctor, kmpc_cctor cctor, 3865 kmpc_dtor dtor); 3866 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid, 3867 void *data, size_t size); 3868 3869 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *); 3870 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *); 3871 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *); 3872 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *); 3873 3874 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *); 3875 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, 3876 kmpc_micro microtask, ...); 3877 3878 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid); 3879 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid); 3880 3881 KMP_EXPORT void __kmpc_flush(ident_t *); 3882 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid); 3883 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid); 3884 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid); 3885 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, 3886 kmp_int32 filter); 3887 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid); 3888 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid); 3889 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid); 3890 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, 3891 kmp_critical_name *); 3892 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, 3893 kmp_critical_name *); 3894 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, 3895 kmp_critical_name *, uint32_t hint); 3896 3897 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid); 3898 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid); 3899 3900 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, 3901 kmp_int32 global_tid); 3902 3903 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid); 3904 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid); 3905 3906 KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid); 3907 KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid, 3908 kmp_int32 numberOfSections); 3909 KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid); 3910 3911 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid, 3912 kmp_int32 schedtype, kmp_int32 *plastiter, 3913 kmp_int *plower, kmp_int *pupper, 3914 kmp_int *pstride, kmp_int incr, 3915 kmp_int chunk); 3916 3917 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); 3918 3919 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, 3920 size_t cpy_size, void *cpy_data, 3921 void (*cpy_func)(void *, void *), 3922 kmp_int32 didit); 3923 3924 KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid, 3925 void *cpy_data); 3926 3927 extern void KMPC_SET_NUM_THREADS(int arg); 3928 extern void KMPC_SET_DYNAMIC(int flag); 3929 extern void KMPC_SET_NESTED(int flag); 3930 3931 /* OMP 3.0 tasking interface routines */ 3932 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 3933 kmp_task_t *new_task); 3934 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 3935 kmp_int32 flags, 3936 size_t sizeof_kmp_task_t, 3937 size_t sizeof_shareds, 3938 kmp_routine_entry_t task_entry); 3939 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc( 3940 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, 3941 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id); 3942 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 3943 kmp_task_t *task); 3944 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 3945 kmp_task_t *task); 3946 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 3947 kmp_task_t *new_task); 3948 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid); 3949 3950 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, 3951 int end_part); 3952 3953 #if TASK_UNUSED 3954 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task); 3955 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 3956 kmp_task_t *task); 3957 #endif // TASK_UNUSED 3958 3959 /* ------------------------------------------------------------------------ */ 3960 3961 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid); 3962 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid); 3963 3964 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps( 3965 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, 3966 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, 3967 kmp_depend_info_t *noalias_dep_list); 3968 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, 3969 kmp_int32 ndeps, 3970 kmp_depend_info_t *dep_list, 3971 kmp_int32 ndeps_noalias, 3972 kmp_depend_info_t *noalias_dep_list); 3973 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 3974 bool serialize_immediate); 3975 3976 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid, 3977 kmp_int32 cncl_kind); 3978 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid, 3979 kmp_int32 cncl_kind); 3980 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid); 3981 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind); 3982 3983 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask); 3984 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask); 3985 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task, 3986 kmp_int32 if_val, kmp_uint64 *lb, 3987 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup, 3988 kmp_int32 sched, kmp_uint64 grainsize, 3989 void *task_dup); 3990 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid, 3991 kmp_task_t *task, kmp_int32 if_val, 3992 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 3993 kmp_int32 nogroup, kmp_int32 sched, 3994 kmp_uint64 grainsize, kmp_int32 modifier, 3995 void *task_dup); 3996 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data); 3997 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data); 3998 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d); 3999 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, 4000 int is_ws, int num, 4001 void *data); 4002 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, 4003 int num, void *data); 4004 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, 4005 int is_ws); 4006 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity( 4007 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, 4008 kmp_task_affinity_info_t *affin_list); 4009 KMP_EXPORT void __kmp_set_num_teams(int num_teams); 4010 KMP_EXPORT int __kmp_get_max_teams(void); 4011 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit); 4012 KMP_EXPORT int __kmp_get_teams_thread_limit(void); 4013 4014 /* Lock interface routines (fast versions with gtid passed in) */ 4015 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid, 4016 void **user_lock); 4017 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid, 4018 void **user_lock); 4019 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid, 4020 void **user_lock); 4021 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid, 4022 void **user_lock); 4023 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock); 4024 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid, 4025 void **user_lock); 4026 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid, 4027 void **user_lock); 4028 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid, 4029 void **user_lock); 4030 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock); 4031 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid, 4032 void **user_lock); 4033 4034 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid, 4035 void **user_lock, uintptr_t hint); 4036 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid, 4037 void **user_lock, 4038 uintptr_t hint); 4039 4040 /* Interface to fast scalable reduce methods routines */ 4041 4042 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait( 4043 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 4044 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 4045 kmp_critical_name *lck); 4046 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, 4047 kmp_critical_name *lck); 4048 KMP_EXPORT kmp_int32 __kmpc_reduce( 4049 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 4050 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 4051 kmp_critical_name *lck); 4052 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, 4053 kmp_critical_name *lck); 4054 4055 /* Internal fast reduction routines */ 4056 4057 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method( 4058 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 4059 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 4060 kmp_critical_name *lck); 4061 4062 // this function is for testing set/get/determine reduce method 4063 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void); 4064 4065 KMP_EXPORT kmp_uint64 __kmpc_get_taskid(); 4066 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid(); 4067 4068 // C++ port 4069 // missing 'extern "C"' declarations 4070 4071 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc); 4072 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid); 4073 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, 4074 kmp_int32 num_threads); 4075 4076 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, 4077 int proc_bind); 4078 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, 4079 kmp_int32 num_teams, 4080 kmp_int32 num_threads); 4081 /* Function for OpenMP 5.1 num_teams clause */ 4082 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, 4083 kmp_int32 num_teams_lb, 4084 kmp_int32 num_teams_ub, 4085 kmp_int32 num_threads); 4086 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, 4087 kmpc_micro microtask, ...); 4088 struct kmp_dim { // loop bounds info casted to kmp_int64 4089 kmp_int64 lo; // lower 4090 kmp_int64 up; // upper 4091 kmp_int64 st; // stride 4092 }; 4093 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, 4094 kmp_int32 num_dims, 4095 const struct kmp_dim *dims); 4096 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, 4097 const kmp_int64 *vec); 4098 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, 4099 const kmp_int64 *vec); 4100 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); 4101 4102 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, 4103 void *data, size_t size, 4104 void ***cache); 4105 4106 // Symbols for MS mutual detection. 4107 extern int _You_must_link_with_exactly_one_OpenMP_library; 4108 extern int _You_must_link_with_Intel_OpenMP_library; 4109 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4) 4110 extern int _You_must_link_with_Microsoft_OpenMP_library; 4111 #endif 4112 4113 // The routines below are not exported. 4114 // Consider making them 'static' in corresponding source files. 4115 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr, 4116 void *data_addr, size_t pc_size); 4117 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr, 4118 void *data_addr, 4119 size_t pc_size); 4120 void __kmp_threadprivate_resize_cache(int newCapacity); 4121 void __kmp_cleanup_threadprivate_caches(); 4122 4123 // ompc_, kmpc_ entries moved from omp.h. 4124 #if KMP_OS_WINDOWS 4125 #define KMPC_CONVENTION __cdecl 4126 #else 4127 #define KMPC_CONVENTION 4128 #endif 4129 4130 #ifndef __OMP_H 4131 typedef enum omp_sched_t { 4132 omp_sched_static = 1, 4133 omp_sched_dynamic = 2, 4134 omp_sched_guided = 3, 4135 omp_sched_auto = 4 4136 } omp_sched_t; 4137 typedef void *kmp_affinity_mask_t; 4138 #endif 4139 4140 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int); 4141 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int); 4142 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int); 4143 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int); 4144 KMP_EXPORT int KMPC_CONVENTION 4145 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *); 4146 KMP_EXPORT int KMPC_CONVENTION 4147 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *); 4148 KMP_EXPORT int KMPC_CONVENTION 4149 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *); 4150 4151 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int); 4152 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t); 4153 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int); 4154 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *); 4155 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int); 4156 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format); 4157 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size); 4158 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format); 4159 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size, 4160 char const *format); 4161 4162 enum kmp_target_offload_kind { 4163 tgt_disabled = 0, 4164 tgt_default = 1, 4165 tgt_mandatory = 2 4166 }; 4167 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t; 4168 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise 4169 extern kmp_target_offload_kind_t __kmp_target_offload; 4170 extern int __kmpc_get_target_offload(); 4171 4172 // Constants used in libomptarget 4173 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device. 4174 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices". 4175 4176 // OMP Pause Resource 4177 4178 // The following enum is used both to set the status in __kmp_pause_status, and 4179 // as the internal equivalent of the externally-visible omp_pause_resource_t. 4180 typedef enum kmp_pause_status_t { 4181 kmp_not_paused = 0, // status is not paused, or, requesting resume 4182 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause 4183 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause 4184 } kmp_pause_status_t; 4185 4186 // This stores the pause state of the runtime 4187 extern kmp_pause_status_t __kmp_pause_status; 4188 extern int __kmpc_pause_resource(kmp_pause_status_t level); 4189 extern int __kmp_pause_resource(kmp_pause_status_t level); 4190 // Soft resume sets __kmp_pause_status, and wakes up all threads. 4191 extern void __kmp_resume_if_soft_paused(); 4192 // Hard resume simply resets the status to not paused. Library will appear to 4193 // be uninitialized after hard pause. Let OMP constructs trigger required 4194 // initializations. 4195 static inline void __kmp_resume_if_hard_paused() { 4196 if (__kmp_pause_status == kmp_hard_paused) { 4197 __kmp_pause_status = kmp_not_paused; 4198 } 4199 } 4200 4201 extern void __kmp_omp_display_env(int verbose); 4202 4203 // 1: it is initializing hidden helper team 4204 extern volatile int __kmp_init_hidden_helper; 4205 // 1: the hidden helper team is done 4206 extern volatile int __kmp_hidden_helper_team_done; 4207 // 1: enable hidden helper task 4208 extern kmp_int32 __kmp_enable_hidden_helper; 4209 // Main thread of hidden helper team 4210 extern kmp_info_t *__kmp_hidden_helper_main_thread; 4211 // Descriptors for the hidden helper threads 4212 extern kmp_info_t **__kmp_hidden_helper_threads; 4213 // Number of hidden helper threads 4214 extern kmp_int32 __kmp_hidden_helper_threads_num; 4215 // Number of hidden helper tasks that have not been executed yet 4216 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks; 4217 4218 extern void __kmp_hidden_helper_initialize(); 4219 extern void __kmp_hidden_helper_threads_initz_routine(); 4220 extern void __kmp_do_initialize_hidden_helper_threads(); 4221 extern void __kmp_hidden_helper_threads_initz_wait(); 4222 extern void __kmp_hidden_helper_initz_release(); 4223 extern void __kmp_hidden_helper_threads_deinitz_wait(); 4224 extern void __kmp_hidden_helper_threads_deinitz_release(); 4225 extern void __kmp_hidden_helper_main_thread_wait(); 4226 extern void __kmp_hidden_helper_worker_thread_wait(); 4227 extern void __kmp_hidden_helper_worker_thread_signal(); 4228 extern void __kmp_hidden_helper_main_thread_release(); 4229 4230 // Check whether a given thread is a hidden helper thread 4231 #define KMP_HIDDEN_HELPER_THREAD(gtid) \ 4232 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num) 4233 4234 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \ 4235 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num) 4236 4237 #define KMP_HIDDEN_HELPER_TEAM(team) \ 4238 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread) 4239 4240 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a 4241 // main thread, is skipped. 4242 #define KMP_GTID_TO_SHADOW_GTID(gtid) \ 4243 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2) 4244 4245 // Return the adjusted gtid value by subtracting from gtid the number 4246 // of hidden helper threads. This adjusted value is the gtid the thread would 4247 // have received if there were no hidden helper threads. 4248 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) { 4249 int adjusted_gtid = gtid; 4250 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 && 4251 gtid - __kmp_hidden_helper_threads_num >= 0) { 4252 adjusted_gtid -= __kmp_hidden_helper_threads_num; 4253 } 4254 return adjusted_gtid; 4255 } 4256 4257 // Support for error directive 4258 typedef enum kmp_severity_t { 4259 severity_warning = 1, 4260 severity_fatal = 2 4261 } kmp_severity_t; 4262 extern void __kmpc_error(ident_t *loc, int severity, const char *message); 4263 4264 // Support for scope directive 4265 KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved); 4266 KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved); 4267 4268 #ifdef __cplusplus 4269 } 4270 #endif 4271 4272 template <bool C, bool S> 4273 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag); 4274 template <bool C, bool S> 4275 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag); 4276 template <bool C, bool S> 4277 extern void __kmp_atomic_suspend_64(int th_gtid, 4278 kmp_atomic_flag_64<C, S> *flag); 4279 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag); 4280 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 4281 template <bool C, bool S> 4282 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag); 4283 template <bool C, bool S> 4284 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag); 4285 template <bool C, bool S> 4286 extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag); 4287 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag); 4288 #endif 4289 template <bool C, bool S> 4290 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag); 4291 template <bool C, bool S> 4292 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag); 4293 template <bool C, bool S> 4294 extern void __kmp_atomic_resume_64(int target_gtid, 4295 kmp_atomic_flag_64<C, S> *flag); 4296 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag); 4297 4298 template <bool C, bool S> 4299 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid, 4300 kmp_flag_32<C, S> *flag, int final_spin, 4301 int *thread_finished, 4302 #if USE_ITT_BUILD 4303 void *itt_sync_obj, 4304 #endif /* USE_ITT_BUILD */ 4305 kmp_int32 is_constrained); 4306 template <bool C, bool S> 4307 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid, 4308 kmp_flag_64<C, S> *flag, int final_spin, 4309 int *thread_finished, 4310 #if USE_ITT_BUILD 4311 void *itt_sync_obj, 4312 #endif /* USE_ITT_BUILD */ 4313 kmp_int32 is_constrained); 4314 template <bool C, bool S> 4315 int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid, 4316 kmp_atomic_flag_64<C, S> *flag, 4317 int final_spin, int *thread_finished, 4318 #if USE_ITT_BUILD 4319 void *itt_sync_obj, 4320 #endif /* USE_ITT_BUILD */ 4321 kmp_int32 is_constrained); 4322 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid, 4323 kmp_flag_oncore *flag, int final_spin, 4324 int *thread_finished, 4325 #if USE_ITT_BUILD 4326 void *itt_sync_obj, 4327 #endif /* USE_ITT_BUILD */ 4328 kmp_int32 is_constrained); 4329 4330 extern int __kmp_nesting_mode; 4331 extern int __kmp_nesting_mode_nlevels; 4332 extern int *__kmp_nesting_nth_level; 4333 extern void __kmp_init_nesting_mode(); 4334 extern void __kmp_set_nesting_mode_threads(); 4335 4336 /// This class safely opens and closes a C-style FILE* object using RAII 4337 /// semantics. There are also methods which allow using stdout or stderr as 4338 /// the underlying FILE* object. With the implicit conversion operator to 4339 /// FILE*, an object with this type can be used in any function which takes 4340 /// a FILE* object e.g., fprintf(). 4341 /// No close method is needed at use sites. 4342 class kmp_safe_raii_file_t { 4343 FILE *f; 4344 4345 void close() { 4346 if (f && f != stdout && f != stderr) { 4347 fclose(f); 4348 f = nullptr; 4349 } 4350 } 4351 4352 public: 4353 kmp_safe_raii_file_t() : f(nullptr) {} 4354 kmp_safe_raii_file_t(const char *filename, const char *mode, 4355 const char *env_var = nullptr) 4356 : f(nullptr) { 4357 open(filename, mode, env_var); 4358 } 4359 ~kmp_safe_raii_file_t() { close(); } 4360 4361 /// Open filename using mode. This is automatically closed in the destructor. 4362 /// The env_var parameter indicates the environment variable the filename 4363 /// came from if != nullptr. 4364 void open(const char *filename, const char *mode, 4365 const char *env_var = nullptr) { 4366 KMP_ASSERT(!f); 4367 f = fopen(filename, mode); 4368 if (!f) { 4369 int code = errno; 4370 if (env_var) { 4371 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4372 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null); 4373 } else { 4374 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4375 __kmp_msg_null); 4376 } 4377 } 4378 } 4379 /// Instead of erroring out, return non-zero when 4380 /// unsuccessful fopen() for any reason 4381 int try_open(const char *filename, const char *mode) { 4382 KMP_ASSERT(!f); 4383 f = fopen(filename, mode); 4384 if (!f) 4385 return errno; 4386 return 0; 4387 } 4388 /// Set the FILE* object to stdout and output there 4389 /// No open call should happen before this call. 4390 void set_stdout() { 4391 KMP_ASSERT(!f); 4392 f = stdout; 4393 } 4394 /// Set the FILE* object to stderr and output there 4395 /// No open call should happen before this call. 4396 void set_stderr() { 4397 KMP_ASSERT(!f); 4398 f = stderr; 4399 } 4400 operator bool() { return bool(f); } 4401 operator FILE *() { return f; } 4402 }; 4403 4404 template <typename SourceType, typename TargetType, 4405 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)), 4406 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)), 4407 bool isSourceSigned = std::is_signed<SourceType>::value, 4408 bool isTargetSigned = std::is_signed<TargetType>::value> 4409 struct kmp_convert {}; 4410 4411 // Both types are signed; Source smaller 4412 template <typename SourceType, typename TargetType> 4413 struct kmp_convert<SourceType, TargetType, true, false, true, true> { 4414 static TargetType to(SourceType src) { return (TargetType)src; } 4415 }; 4416 // Source equal 4417 template <typename SourceType, typename TargetType> 4418 struct kmp_convert<SourceType, TargetType, false, true, true, true> { 4419 static TargetType to(SourceType src) { return src; } 4420 }; 4421 // Source bigger 4422 template <typename SourceType, typename TargetType> 4423 struct kmp_convert<SourceType, TargetType, false, false, true, true> { 4424 static TargetType to(SourceType src) { 4425 KMP_ASSERT(src <= static_cast<SourceType>( 4426 (std::numeric_limits<TargetType>::max)())); 4427 KMP_ASSERT(src >= static_cast<SourceType>( 4428 (std::numeric_limits<TargetType>::min)())); 4429 return (TargetType)src; 4430 } 4431 }; 4432 4433 // Source signed, Target unsigned 4434 // Source smaller 4435 template <typename SourceType, typename TargetType> 4436 struct kmp_convert<SourceType, TargetType, true, false, true, false> { 4437 static TargetType to(SourceType src) { 4438 KMP_ASSERT(src >= 0); 4439 return (TargetType)src; 4440 } 4441 }; 4442 // Source equal 4443 template <typename SourceType, typename TargetType> 4444 struct kmp_convert<SourceType, TargetType, false, true, true, false> { 4445 static TargetType to(SourceType src) { 4446 KMP_ASSERT(src >= 0); 4447 return (TargetType)src; 4448 } 4449 }; 4450 // Source bigger 4451 template <typename SourceType, typename TargetType> 4452 struct kmp_convert<SourceType, TargetType, false, false, true, false> { 4453 static TargetType to(SourceType src) { 4454 KMP_ASSERT(src >= 0); 4455 KMP_ASSERT(src <= static_cast<SourceType>( 4456 (std::numeric_limits<TargetType>::max)())); 4457 return (TargetType)src; 4458 } 4459 }; 4460 4461 // Source unsigned, Target signed 4462 // Source smaller 4463 template <typename SourceType, typename TargetType> 4464 struct kmp_convert<SourceType, TargetType, true, false, false, true> { 4465 static TargetType to(SourceType src) { return (TargetType)src; } 4466 }; 4467 // Source equal 4468 template <typename SourceType, typename TargetType> 4469 struct kmp_convert<SourceType, TargetType, false, true, false, true> { 4470 static TargetType to(SourceType src) { 4471 KMP_ASSERT(src <= static_cast<SourceType>( 4472 (std::numeric_limits<TargetType>::max)())); 4473 return (TargetType)src; 4474 } 4475 }; 4476 // Source bigger 4477 template <typename SourceType, typename TargetType> 4478 struct kmp_convert<SourceType, TargetType, false, false, false, true> { 4479 static TargetType to(SourceType src) { 4480 KMP_ASSERT(src <= static_cast<SourceType>( 4481 (std::numeric_limits<TargetType>::max)())); 4482 return (TargetType)src; 4483 } 4484 }; 4485 4486 // Source unsigned, Target unsigned 4487 // Source smaller 4488 template <typename SourceType, typename TargetType> 4489 struct kmp_convert<SourceType, TargetType, true, false, false, false> { 4490 static TargetType to(SourceType src) { return (TargetType)src; } 4491 }; 4492 // Source equal 4493 template <typename SourceType, typename TargetType> 4494 struct kmp_convert<SourceType, TargetType, false, true, false, false> { 4495 static TargetType to(SourceType src) { return src; } 4496 }; 4497 // Source bigger 4498 template <typename SourceType, typename TargetType> 4499 struct kmp_convert<SourceType, TargetType, false, false, false, false> { 4500 static TargetType to(SourceType src) { 4501 KMP_ASSERT(src <= static_cast<SourceType>( 4502 (std::numeric_limits<TargetType>::max)())); 4503 return (TargetType)src; 4504 } 4505 }; 4506 4507 template <typename T1, typename T2> 4508 static inline void __kmp_type_convert(T1 src, T2 *dest) { 4509 *dest = kmp_convert<T1, T2>::to(src); 4510 } 4511 4512 #endif /* KMP_H */ 4513