1 /*! \file */ 2 /* 3 * kmp.h -- KPTS runtime header file. 4 */ 5 6 //===----------------------------------------------------------------------===// 7 // 8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 9 // See https://llvm.org/LICENSE.txt for license information. 10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef KMP_H 15 #define KMP_H 16 17 #include "kmp_config.h" 18 19 /* #define BUILD_PARALLEL_ORDERED 1 */ 20 21 /* This fix replaces gettimeofday with clock_gettime for better scalability on 22 the Altix. Requires user code to be linked with -lrt. */ 23 //#define FIX_SGI_CLOCK 24 25 /* Defines for OpenMP 3.0 tasking and auto scheduling */ 26 27 #ifndef KMP_STATIC_STEAL_ENABLED 28 #define KMP_STATIC_STEAL_ENABLED 1 29 #endif 30 31 #define TASK_CURRENT_NOT_QUEUED 0 32 #define TASK_CURRENT_QUEUED 1 33 34 #ifdef BUILD_TIED_TASK_STACK 35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty 36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK 37 // Number of entries in each task stack array 38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS) 39 // Mask for determining index into stack block 40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1) 41 #endif // BUILD_TIED_TASK_STACK 42 43 #define TASK_NOT_PUSHED 1 44 #define TASK_SUCCESSFULLY_PUSHED 0 45 #define TASK_TIED 1 46 #define TASK_UNTIED 0 47 #define TASK_EXPLICIT 1 48 #define TASK_IMPLICIT 0 49 #define TASK_PROXY 1 50 #define TASK_FULL 0 51 #define TASK_DETACHABLE 1 52 #define TASK_UNDETACHABLE 0 53 54 #define KMP_CANCEL_THREADS 55 #define KMP_THREAD_ATTR 56 57 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being 58 // built on Android 59 #if defined(__ANDROID__) 60 #undef KMP_CANCEL_THREADS 61 #endif 62 63 #include <signal.h> 64 #include <stdarg.h> 65 #include <stddef.h> 66 #include <stdio.h> 67 #include <stdlib.h> 68 #include <string.h> 69 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad 70 Microsoft library. Some macros provided below to replace these functions */ 71 #ifndef __ABSOFT_WIN 72 #include <sys/types.h> 73 #endif 74 #include <limits.h> 75 #include <time.h> 76 77 #include <errno.h> 78 79 #include "kmp_os.h" 80 81 #include "kmp_safe_c_api.h" 82 83 #if KMP_STATS_ENABLED 84 class kmp_stats_list; 85 #endif 86 87 #if KMP_USE_HIER_SCHED 88 // Only include hierarchical scheduling if affinity is supported 89 #undef KMP_USE_HIER_SCHED 90 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED 91 #endif 92 93 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED 94 #include "hwloc.h" 95 #ifndef HWLOC_OBJ_NUMANODE 96 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE 97 #endif 98 #ifndef HWLOC_OBJ_PACKAGE 99 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET 100 #endif 101 #if HWLOC_API_VERSION >= 0x00020000 102 // hwloc 2.0 changed type of depth of object from unsigned to int 103 typedef int kmp_hwloc_depth_t; 104 #else 105 typedef unsigned int kmp_hwloc_depth_t; 106 #endif 107 #endif 108 109 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 110 #include <xmmintrin.h> 111 #endif 112 113 #include "kmp_debug.h" 114 #include "kmp_lock.h" 115 #include "kmp_version.h" 116 #if USE_DEBUGGER 117 #include "kmp_debugger.h" 118 #endif 119 #include "kmp_i18n.h" 120 121 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS) 122 123 #include "kmp_wrapper_malloc.h" 124 #if KMP_OS_UNIX 125 #include <unistd.h> 126 #if !defined NSIG && defined _NSIG 127 #define NSIG _NSIG 128 #endif 129 #endif 130 131 #if KMP_OS_LINUX 132 #pragma weak clock_gettime 133 #endif 134 135 #if OMPT_SUPPORT 136 #include "ompt-internal.h" 137 #endif 138 139 // Affinity format function 140 #include "kmp_str.h" 141 142 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64. 143 // 3 - fast allocation using sync, non-sync free lists of any size, non-self 144 // free lists of limited size. 145 #ifndef USE_FAST_MEMORY 146 #define USE_FAST_MEMORY 3 147 #endif 148 149 #ifndef KMP_NESTED_HOT_TEAMS 150 #define KMP_NESTED_HOT_TEAMS 0 151 #define USE_NESTED_HOT_ARG(x) 152 #else 153 #if KMP_NESTED_HOT_TEAMS 154 #define USE_NESTED_HOT_ARG(x) , x 155 #else 156 #define USE_NESTED_HOT_ARG(x) 157 #endif 158 #endif 159 160 // Assume using BGET compare_exchange instruction instead of lock by default. 161 #ifndef USE_CMP_XCHG_FOR_BGET 162 #define USE_CMP_XCHG_FOR_BGET 1 163 #endif 164 165 // Test to see if queuing lock is better than bootstrap lock for bget 166 // #ifndef USE_QUEUING_LOCK_FOR_BGET 167 // #define USE_QUEUING_LOCK_FOR_BGET 168 // #endif 169 170 #define KMP_NSEC_PER_SEC 1000000000L 171 #define KMP_USEC_PER_SEC 1000000L 172 173 /*! 174 @ingroup BASIC_TYPES 175 @{ 176 */ 177 178 /*! 179 Values for bit flags used in the ident_t to describe the fields. 180 */ 181 enum { 182 /*! Use trampoline for internal microtasks */ 183 KMP_IDENT_IMB = 0x01, 184 /*! Use c-style ident structure */ 185 KMP_IDENT_KMPC = 0x02, 186 /* 0x04 is no longer used */ 187 /*! Entry point generated by auto-parallelization */ 188 KMP_IDENT_AUTOPAR = 0x08, 189 /*! Compiler generates atomic reduction option for kmpc_reduce* */ 190 KMP_IDENT_ATOMIC_REDUCE = 0x10, 191 /*! To mark a 'barrier' directive in user code */ 192 KMP_IDENT_BARRIER_EXPL = 0x20, 193 /*! To Mark implicit barriers. */ 194 KMP_IDENT_BARRIER_IMPL = 0x0040, 195 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0, 196 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040, 197 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0, 198 199 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140, 200 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0, 201 202 /*! To mark a static loop in OMPT callbacks */ 203 KMP_IDENT_WORK_LOOP = 0x200, 204 /*! To mark a sections directive in OMPT callbacks */ 205 KMP_IDENT_WORK_SECTIONS = 0x400, 206 /*! To mark a distribute construct in OMPT callbacks */ 207 KMP_IDENT_WORK_DISTRIBUTE = 0x800, 208 /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and 209 not currently used. If one day we need more bits, then we can use 210 an invalid combination of hints to mean that another, larger field 211 should be used in a different flag. */ 212 KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000, 213 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000, 214 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000, 215 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000, 216 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000, 217 }; 218 219 /*! 220 * The ident structure that describes a source location. 221 */ 222 typedef struct ident { 223 kmp_int32 reserved_1; /**< might be used in Fortran; see above */ 224 kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC 225 identifies this union member */ 226 kmp_int32 reserved_2; /**< not really used in Fortran any more; see above */ 227 #if USE_ITT_BUILD 228 /* but currently used for storing region-specific ITT */ 229 /* contextual information. */ 230 #endif /* USE_ITT_BUILD */ 231 kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++ */ 232 char const *psource; /**< String describing the source location. 233 The string is composed of semi-colon separated fields 234 which describe the source file, the function and a pair 235 of line numbers that delimit the construct. */ 236 } ident_t; 237 /*! 238 @} 239 */ 240 241 // Some forward declarations. 242 typedef union kmp_team kmp_team_t; 243 typedef struct kmp_taskdata kmp_taskdata_t; 244 typedef union kmp_task_team kmp_task_team_t; 245 typedef union kmp_team kmp_team_p; 246 typedef union kmp_info kmp_info_p; 247 typedef union kmp_root kmp_root_p; 248 249 #ifdef __cplusplus 250 extern "C" { 251 #endif 252 253 /* ------------------------------------------------------------------------ */ 254 255 /* Pack two 32-bit signed integers into a 64-bit signed integer */ 256 /* ToDo: Fix word ordering for big-endian machines. */ 257 #define KMP_PACK_64(HIGH_32, LOW_32) \ 258 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32))) 259 260 // Generic string manipulation macros. Assume that _x is of type char * 261 #define SKIP_WS(_x) \ 262 { \ 263 while (*(_x) == ' ' || *(_x) == '\t') \ 264 (_x)++; \ 265 } 266 #define SKIP_DIGITS(_x) \ 267 { \ 268 while (*(_x) >= '0' && *(_x) <= '9') \ 269 (_x)++; \ 270 } 271 #define SKIP_TOKEN(_x) \ 272 { \ 273 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \ 274 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \ 275 (_x)++; \ 276 } 277 #define SKIP_TO(_x, _c) \ 278 { \ 279 while (*(_x) != '\0' && *(_x) != (_c)) \ 280 (_x)++; \ 281 } 282 283 /* ------------------------------------------------------------------------ */ 284 285 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y)) 286 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 287 288 /* ------------------------------------------------------------------------ */ 289 /* Enumeration types */ 290 291 enum kmp_state_timer { 292 ts_stop, 293 ts_start, 294 ts_pause, 295 296 ts_last_state 297 }; 298 299 enum dynamic_mode { 300 dynamic_default, 301 #ifdef USE_LOAD_BALANCE 302 dynamic_load_balance, 303 #endif /* USE_LOAD_BALANCE */ 304 dynamic_random, 305 dynamic_thread_limit, 306 dynamic_max 307 }; 308 309 /* external schedule constants, duplicate enum omp_sched in omp.h in order to 310 * not include it here */ 311 #ifndef KMP_SCHED_TYPE_DEFINED 312 #define KMP_SCHED_TYPE_DEFINED 313 typedef enum kmp_sched { 314 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check 315 // Note: need to adjust __kmp_sch_map global array in case enum is changed 316 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33) 317 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35) 318 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36) 319 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38) 320 kmp_sched_upper_std = 5, // upper bound for standard schedules 321 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules 322 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39) 323 #if KMP_STATIC_STEAL_ENABLED 324 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44) 325 #endif 326 kmp_sched_upper, 327 kmp_sched_default = kmp_sched_static, // default scheduling 328 kmp_sched_monotonic = 0x80000000 329 } kmp_sched_t; 330 #endif 331 332 /*! 333 @ingroup WORK_SHARING 334 * Describes the loop schedule to be used for a parallel for loop. 335 */ 336 enum sched_type : kmp_int32 { 337 kmp_sch_lower = 32, /**< lower bound for unordered values */ 338 kmp_sch_static_chunked = 33, 339 kmp_sch_static = 34, /**< static unspecialized */ 340 kmp_sch_dynamic_chunked = 35, 341 kmp_sch_guided_chunked = 36, /**< guided unspecialized */ 342 kmp_sch_runtime = 37, 343 kmp_sch_auto = 38, /**< auto */ 344 kmp_sch_trapezoidal = 39, 345 346 /* accessible only through KMP_SCHEDULE environment variable */ 347 kmp_sch_static_greedy = 40, 348 kmp_sch_static_balanced = 41, 349 /* accessible only through KMP_SCHEDULE environment variable */ 350 kmp_sch_guided_iterative_chunked = 42, 351 kmp_sch_guided_analytical_chunked = 43, 352 /* accessible only through KMP_SCHEDULE environment variable */ 353 kmp_sch_static_steal = 44, 354 355 /* static with chunk adjustment (e.g., simd) */ 356 kmp_sch_static_balanced_chunked = 45, 357 kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */ 358 kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */ 359 360 /* accessible only through KMP_SCHEDULE environment variable */ 361 kmp_sch_upper, /**< upper bound for unordered values */ 362 363 kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */ 364 kmp_ord_static_chunked = 65, 365 kmp_ord_static = 66, /**< ordered static unspecialized */ 366 kmp_ord_dynamic_chunked = 67, 367 kmp_ord_guided_chunked = 68, 368 kmp_ord_runtime = 69, 369 kmp_ord_auto = 70, /**< ordered auto */ 370 kmp_ord_trapezoidal = 71, 371 kmp_ord_upper, /**< upper bound for ordered values */ 372 373 /* Schedules for Distribute construct */ 374 kmp_distribute_static_chunked = 91, /**< distribute static chunked */ 375 kmp_distribute_static = 92, /**< distribute static unspecialized */ 376 377 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a 378 single iteration/chunk, even if the loop is serialized. For the schedule 379 types listed above, the entire iteration vector is returned if the loop is 380 serialized. This doesn't work for gcc/gcomp sections. */ 381 kmp_nm_lower = 160, /**< lower bound for nomerge values */ 382 383 kmp_nm_static_chunked = 384 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower), 385 kmp_nm_static = 162, /**< static unspecialized */ 386 kmp_nm_dynamic_chunked = 163, 387 kmp_nm_guided_chunked = 164, /**< guided unspecialized */ 388 kmp_nm_runtime = 165, 389 kmp_nm_auto = 166, /**< auto */ 390 kmp_nm_trapezoidal = 167, 391 392 /* accessible only through KMP_SCHEDULE environment variable */ 393 kmp_nm_static_greedy = 168, 394 kmp_nm_static_balanced = 169, 395 /* accessible only through KMP_SCHEDULE environment variable */ 396 kmp_nm_guided_iterative_chunked = 170, 397 kmp_nm_guided_analytical_chunked = 171, 398 kmp_nm_static_steal = 399 172, /* accessible only through OMP_SCHEDULE environment variable */ 400 401 kmp_nm_ord_static_chunked = 193, 402 kmp_nm_ord_static = 194, /**< ordered static unspecialized */ 403 kmp_nm_ord_dynamic_chunked = 195, 404 kmp_nm_ord_guided_chunked = 196, 405 kmp_nm_ord_runtime = 197, 406 kmp_nm_ord_auto = 198, /**< auto */ 407 kmp_nm_ord_trapezoidal = 199, 408 kmp_nm_upper, /**< upper bound for nomerge values */ 409 410 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since 411 we need to distinguish the three possible cases (no modifier, monotonic 412 modifier, nonmonotonic modifier), we need separate bits for each modifier. 413 The absence of monotonic does not imply nonmonotonic, especially since 4.5 414 says that the behaviour of the "no modifier" case is implementation defined 415 in 4.5, but will become "nonmonotonic" in 5.0. 416 417 Since we're passing a full 32 bit value, we can use a couple of high bits 418 for these flags; out of paranoia we avoid the sign bit. 419 420 These modifiers can be or-ed into non-static schedules by the compiler to 421 pass the additional information. They will be stripped early in the 422 processing in __kmp_dispatch_init when setting up schedules, so most of the 423 code won't ever see schedules with these bits set. */ 424 kmp_sch_modifier_monotonic = 425 (1 << 29), /**< Set if the monotonic schedule modifier was present */ 426 kmp_sch_modifier_nonmonotonic = 427 (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */ 428 429 #define SCHEDULE_WITHOUT_MODIFIERS(s) \ 430 (enum sched_type)( \ 431 (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) 432 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0) 433 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0) 434 #define SCHEDULE_HAS_NO_MODIFIERS(s) \ 435 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0) 436 #define SCHEDULE_GET_MODIFIERS(s) \ 437 ((enum sched_type)( \ 438 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))) 439 #define SCHEDULE_SET_MODIFIERS(s, m) \ 440 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m)) 441 #define SCHEDULE_NONMONOTONIC 0 442 #define SCHEDULE_MONOTONIC 1 443 444 kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */ 445 }; 446 447 // Apply modifiers on internal kind to standard kind 448 static inline void 449 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind, 450 enum sched_type internal_kind) { 451 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) { 452 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic); 453 } 454 } 455 456 // Apply modifiers on standard kind to internal kind 457 static inline void 458 __kmp_sched_apply_mods_intkind(kmp_sched_t kind, 459 enum sched_type *internal_kind) { 460 if ((int)kind & (int)kmp_sched_monotonic) { 461 *internal_kind = (enum sched_type)((int)*internal_kind | 462 (int)kmp_sch_modifier_monotonic); 463 } 464 } 465 466 // Get standard schedule without modifiers 467 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) { 468 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic)); 469 } 470 471 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */ 472 typedef union kmp_r_sched { 473 struct { 474 enum sched_type r_sched_type; 475 int chunk; 476 }; 477 kmp_int64 sched; 478 } kmp_r_sched_t; 479 480 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our 481 // internal schedule types 482 483 enum library_type { 484 library_none, 485 library_serial, 486 library_turnaround, 487 library_throughput 488 }; 489 490 #if KMP_OS_LINUX 491 enum clock_function_type { 492 clock_function_gettimeofday, 493 clock_function_clock_gettime 494 }; 495 #endif /* KMP_OS_LINUX */ 496 497 #if KMP_MIC_SUPPORTED 498 enum mic_type { non_mic, mic1, mic2, mic3, dummy }; 499 #endif 500 501 /* -- fast reduction stuff ------------------------------------------------ */ 502 503 #undef KMP_FAST_REDUCTION_BARRIER 504 #define KMP_FAST_REDUCTION_BARRIER 1 505 506 #undef KMP_FAST_REDUCTION_CORE_DUO 507 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 508 #define KMP_FAST_REDUCTION_CORE_DUO 1 509 #endif 510 511 enum _reduction_method { 512 reduction_method_not_defined = 0, 513 critical_reduce_block = (1 << 8), 514 atomic_reduce_block = (2 << 8), 515 tree_reduce_block = (3 << 8), 516 empty_reduce_block = (4 << 8) 517 }; 518 519 // Description of the packed_reduction_method variable: 520 // The packed_reduction_method variable consists of two enum types variables 521 // that are packed together into 0-th byte and 1-st byte: 522 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of 523 // barrier that will be used in fast reduction: bs_plain_barrier or 524 // bs_reduction_barrier 525 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will 526 // be used in fast reduction; 527 // Reduction method is of 'enum _reduction_method' type and it's defined the way 528 // so that the bits of 0-th byte are empty, so no need to execute a shift 529 // instruction while packing/unpacking 530 531 #if KMP_FAST_REDUCTION_BARRIER 532 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \ 533 ((reduction_method) | (barrier_type)) 534 535 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ 536 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00))) 537 538 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \ 539 ((enum barrier_type)((packed_reduction_method) & (0x000000FF))) 540 #else 541 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \ 542 (reduction_method) 543 544 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ 545 (packed_reduction_method) 546 547 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier) 548 #endif 549 550 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \ 551 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \ 552 (which_reduction_block)) 553 554 #if KMP_FAST_REDUCTION_BARRIER 555 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \ 556 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier)) 557 558 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \ 559 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier)) 560 #endif 561 562 typedef int PACKED_REDUCTION_METHOD_T; 563 564 /* -- end of fast reduction stuff ----------------------------------------- */ 565 566 #if KMP_OS_WINDOWS 567 #define USE_CBLKDATA 568 #if KMP_MSVC_COMPAT 569 #pragma warning(push) 570 #pragma warning(disable : 271 310) 571 #endif 572 #include <windows.h> 573 #if KMP_MSVC_COMPAT 574 #pragma warning(pop) 575 #endif 576 #endif 577 578 #if KMP_OS_UNIX 579 #include <dlfcn.h> 580 #include <pthread.h> 581 #endif 582 583 /* Only Linux* OS and Windows* OS support thread affinity. */ 584 #if KMP_AFFINITY_SUPPORTED 585 586 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later). 587 #if KMP_OS_WINDOWS 588 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT 589 typedef struct GROUP_AFFINITY { 590 KAFFINITY Mask; 591 WORD Group; 592 WORD Reserved[3]; 593 } GROUP_AFFINITY; 594 #endif /* _MSC_VER < 1600 */ 595 #if KMP_GROUP_AFFINITY 596 extern int __kmp_num_proc_groups; 597 #else 598 static const int __kmp_num_proc_groups = 1; 599 #endif /* KMP_GROUP_AFFINITY */ 600 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD); 601 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount; 602 603 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void); 604 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount; 605 606 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *); 607 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity; 608 609 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *, 610 GROUP_AFFINITY *); 611 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity; 612 #endif /* KMP_OS_WINDOWS */ 613 614 #if KMP_USE_HWLOC 615 extern hwloc_topology_t __kmp_hwloc_topology; 616 extern int __kmp_hwloc_error; 617 extern int __kmp_numa_detected; 618 extern int __kmp_tile_depth; 619 #endif 620 621 extern size_t __kmp_affin_mask_size; 622 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0) 623 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0) 624 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size) 625 #define KMP_CPU_SET_ITERATE(i, mask) \ 626 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i)) 627 #define KMP_CPU_SET(i, mask) (mask)->set(i) 628 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i) 629 #define KMP_CPU_CLR(i, mask) (mask)->clear(i) 630 #define KMP_CPU_ZERO(mask) (mask)->zero() 631 #define KMP_CPU_COPY(dest, src) (dest)->copy(src) 632 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src) 633 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not() 634 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src) 635 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask()) 636 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr) 637 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr) 638 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr) 639 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr) 640 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr) 641 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i) 642 #define KMP_CPU_ALLOC_ARRAY(arr, n) \ 643 (arr = __kmp_affinity_dispatch->allocate_mask_array(n)) 644 #define KMP_CPU_FREE_ARRAY(arr, n) \ 645 __kmp_affinity_dispatch->deallocate_mask_array(arr) 646 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n) 647 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n) 648 #define __kmp_get_system_affinity(mask, abort_bool) \ 649 (mask)->get_system_affinity(abort_bool) 650 #define __kmp_set_system_affinity(mask, abort_bool) \ 651 (mask)->set_system_affinity(abort_bool) 652 #define __kmp_get_proc_group(mask) (mask)->get_proc_group() 653 654 class KMPAffinity { 655 public: 656 class Mask { 657 public: 658 void *operator new(size_t n); 659 void operator delete(void *p); 660 void *operator new[](size_t n); 661 void operator delete[](void *p); 662 virtual ~Mask() {} 663 // Set bit i to 1 664 virtual void set(int i) {} 665 // Return bit i 666 virtual bool is_set(int i) const { return false; } 667 // Set bit i to 0 668 virtual void clear(int i) {} 669 // Zero out entire mask 670 virtual void zero() {} 671 // Copy src into this mask 672 virtual void copy(const Mask *src) {} 673 // this &= rhs 674 virtual void bitwise_and(const Mask *rhs) {} 675 // this |= rhs 676 virtual void bitwise_or(const Mask *rhs) {} 677 // this = ~this 678 virtual void bitwise_not() {} 679 // API for iterating over an affinity mask 680 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i)) 681 virtual int begin() const { return 0; } 682 virtual int end() const { return 0; } 683 virtual int next(int previous) const { return 0; } 684 // Set the system's affinity to this affinity mask's value 685 virtual int set_system_affinity(bool abort_on_error) const { return -1; } 686 // Set this affinity mask to the current system affinity 687 virtual int get_system_affinity(bool abort_on_error) { return -1; } 688 // Only 1 DWORD in the mask should have any procs set. 689 // Return the appropriate index, or -1 for an invalid mask. 690 virtual int get_proc_group() const { return -1; } 691 }; 692 void *operator new(size_t n); 693 void operator delete(void *p); 694 // Need virtual destructor 695 virtual ~KMPAffinity() = default; 696 // Determine if affinity is capable 697 virtual void determine_capable(const char *env_var) {} 698 // Bind the current thread to os proc 699 virtual void bind_thread(int proc) {} 700 // Factory functions to allocate/deallocate a mask 701 virtual Mask *allocate_mask() { return nullptr; } 702 virtual void deallocate_mask(Mask *m) {} 703 virtual Mask *allocate_mask_array(int num) { return nullptr; } 704 virtual void deallocate_mask_array(Mask *m) {} 705 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; } 706 static void pick_api(); 707 static void destroy_api(); 708 enum api_type { 709 NATIVE_OS 710 #if KMP_USE_HWLOC 711 , 712 HWLOC 713 #endif 714 }; 715 virtual api_type get_api_type() const { 716 KMP_ASSERT(0); 717 return NATIVE_OS; 718 } 719 720 private: 721 static bool picked_api; 722 }; 723 724 typedef KMPAffinity::Mask kmp_affin_mask_t; 725 extern KMPAffinity *__kmp_affinity_dispatch; 726 727 // Declare local char buffers with this size for printing debug and info 728 // messages, using __kmp_affinity_print_mask(). 729 #define KMP_AFFIN_MASK_PRINT_LEN 1024 730 731 enum affinity_type { 732 affinity_none = 0, 733 affinity_physical, 734 affinity_logical, 735 affinity_compact, 736 affinity_scatter, 737 affinity_explicit, 738 affinity_balanced, 739 affinity_disabled, // not used outsize the env var parser 740 affinity_default 741 }; 742 743 enum affinity_gran { 744 affinity_gran_fine = 0, 745 affinity_gran_thread, 746 affinity_gran_core, 747 affinity_gran_tile, 748 affinity_gran_numa, 749 affinity_gran_package, 750 affinity_gran_node, 751 #if KMP_GROUP_AFFINITY 752 // The "group" granularity isn't necesssarily coarser than all of the 753 // other levels, but we put it last in the enum. 754 affinity_gran_group, 755 #endif /* KMP_GROUP_AFFINITY */ 756 affinity_gran_default 757 }; 758 759 enum affinity_top_method { 760 affinity_top_method_all = 0, // try all (supported) methods, in order 761 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 762 affinity_top_method_apicid, 763 affinity_top_method_x2apicid, 764 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 765 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too 766 #if KMP_GROUP_AFFINITY 767 affinity_top_method_group, 768 #endif /* KMP_GROUP_AFFINITY */ 769 affinity_top_method_flat, 770 #if KMP_USE_HWLOC 771 affinity_top_method_hwloc, 772 #endif 773 affinity_top_method_default 774 }; 775 776 #define affinity_respect_mask_default (-1) 777 778 extern enum affinity_type __kmp_affinity_type; /* Affinity type */ 779 extern enum affinity_gran __kmp_affinity_gran; /* Affinity granularity */ 780 extern int __kmp_affinity_gran_levels; /* corresponding int value */ 781 extern int __kmp_affinity_dups; /* Affinity duplicate masks */ 782 extern enum affinity_top_method __kmp_affinity_top_method; 783 extern int __kmp_affinity_compact; /* Affinity 'compact' value */ 784 extern int __kmp_affinity_offset; /* Affinity offset value */ 785 extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */ 786 extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */ 787 extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask? 788 extern char *__kmp_affinity_proclist; /* proc ID list */ 789 extern kmp_affin_mask_t *__kmp_affinity_masks; 790 extern unsigned __kmp_affinity_num_masks; 791 extern void __kmp_affinity_bind_thread(int which); 792 793 extern kmp_affin_mask_t *__kmp_affin_fullMask; 794 extern char *__kmp_cpuinfo_file; 795 796 #endif /* KMP_AFFINITY_SUPPORTED */ 797 798 // This needs to be kept in sync with the values in omp.h !!! 799 typedef enum kmp_proc_bind_t { 800 proc_bind_false = 0, 801 proc_bind_true, 802 proc_bind_master, 803 proc_bind_close, 804 proc_bind_spread, 805 proc_bind_intel, // use KMP_AFFINITY interface 806 proc_bind_default 807 } kmp_proc_bind_t; 808 809 typedef struct kmp_nested_proc_bind_t { 810 kmp_proc_bind_t *bind_types; 811 int size; 812 int used; 813 } kmp_nested_proc_bind_t; 814 815 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind; 816 817 extern int __kmp_display_affinity; 818 extern char *__kmp_affinity_format; 819 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512; 820 821 #if KMP_AFFINITY_SUPPORTED 822 #define KMP_PLACE_ALL (-1) 823 #define KMP_PLACE_UNDEFINED (-2) 824 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES? 825 #define KMP_AFFINITY_NON_PROC_BIND \ 826 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \ 827 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \ 828 (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced)) 829 #endif /* KMP_AFFINITY_SUPPORTED */ 830 831 extern int __kmp_affinity_num_places; 832 833 typedef enum kmp_cancel_kind_t { 834 cancel_noreq = 0, 835 cancel_parallel = 1, 836 cancel_loop = 2, 837 cancel_sections = 3, 838 cancel_taskgroup = 4 839 } kmp_cancel_kind_t; 840 841 // KMP_HW_SUBSET support: 842 typedef struct kmp_hws_item { 843 int num; 844 int offset; 845 } kmp_hws_item_t; 846 847 extern kmp_hws_item_t __kmp_hws_socket; 848 extern kmp_hws_item_t __kmp_hws_node; 849 extern kmp_hws_item_t __kmp_hws_tile; 850 extern kmp_hws_item_t __kmp_hws_core; 851 extern kmp_hws_item_t __kmp_hws_proc; 852 extern int __kmp_hws_requested; 853 extern int __kmp_hws_abs_flag; // absolute or per-item number requested 854 855 /* ------------------------------------------------------------------------ */ 856 857 #define KMP_PAD(type, sz) \ 858 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1)) 859 860 // We need to avoid using -1 as a GTID as +1 is added to the gtid 861 // when storing it in a lock, and the value 0 is reserved. 862 #define KMP_GTID_DNE (-2) /* Does not exist */ 863 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */ 864 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */ 865 #define KMP_GTID_UNKNOWN (-5) /* Is not known */ 866 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */ 867 868 /* OpenMP 5.0 Memory Management support */ 869 870 #ifndef __OMP_H 871 // Duplicate type definitions from omp.h 872 typedef uintptr_t omp_uintptr_t; 873 874 typedef enum { 875 omp_atk_threadmodel = 1, 876 omp_atk_alignment = 2, 877 omp_atk_access = 3, 878 omp_atk_pool_size = 4, 879 omp_atk_fallback = 5, 880 omp_atk_fb_data = 6, 881 omp_atk_pinned = 7, 882 omp_atk_partition = 8 883 } omp_alloctrait_key_t; 884 885 typedef enum { 886 omp_atv_false = 0, 887 omp_atv_true = 1, 888 omp_atv_default = 2, 889 omp_atv_contended = 3, 890 omp_atv_uncontended = 4, 891 omp_atv_sequential = 5, 892 omp_atv_private = 6, 893 omp_atv_all = 7, 894 omp_atv_thread = 8, 895 omp_atv_pteam = 9, 896 omp_atv_cgroup = 10, 897 omp_atv_default_mem_fb = 11, 898 omp_atv_null_fb = 12, 899 omp_atv_abort_fb = 13, 900 omp_atv_allocator_fb = 14, 901 omp_atv_environment = 15, 902 omp_atv_nearest = 16, 903 omp_atv_blocked = 17, 904 omp_atv_interleaved = 18 905 } omp_alloctrait_value_t; 906 907 typedef void *omp_memspace_handle_t; 908 extern omp_memspace_handle_t const omp_default_mem_space; 909 extern omp_memspace_handle_t const omp_large_cap_mem_space; 910 extern omp_memspace_handle_t const omp_const_mem_space; 911 extern omp_memspace_handle_t const omp_high_bw_mem_space; 912 extern omp_memspace_handle_t const omp_low_lat_mem_space; 913 914 typedef struct { 915 omp_alloctrait_key_t key; 916 omp_uintptr_t value; 917 } omp_alloctrait_t; 918 919 typedef void *omp_allocator_handle_t; 920 extern omp_allocator_handle_t const omp_null_allocator; 921 extern omp_allocator_handle_t const omp_default_mem_alloc; 922 extern omp_allocator_handle_t const omp_large_cap_mem_alloc; 923 extern omp_allocator_handle_t const omp_const_mem_alloc; 924 extern omp_allocator_handle_t const omp_high_bw_mem_alloc; 925 extern omp_allocator_handle_t const omp_low_lat_mem_alloc; 926 extern omp_allocator_handle_t const omp_cgroup_mem_alloc; 927 extern omp_allocator_handle_t const omp_pteam_mem_alloc; 928 extern omp_allocator_handle_t const omp_thread_mem_alloc; 929 extern omp_allocator_handle_t const kmp_max_mem_alloc; 930 extern omp_allocator_handle_t __kmp_def_allocator; 931 932 // end of duplicate type definitions from omp.h 933 #endif 934 935 extern int __kmp_memkind_available; 936 937 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder 938 939 typedef struct kmp_allocator_t { 940 omp_memspace_handle_t memspace; 941 void **memkind; // pointer to memkind 942 int alignment; 943 omp_alloctrait_value_t fb; 944 kmp_allocator_t *fb_data; 945 kmp_uint64 pool_size; 946 kmp_uint64 pool_used; 947 } kmp_allocator_t; 948 949 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid, 950 omp_memspace_handle_t, 951 int ntraits, 952 omp_alloctrait_t traits[]); 953 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al); 954 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al); 955 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid); 956 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al); 957 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al); 958 959 extern void __kmp_init_memkind(); 960 extern void __kmp_fini_memkind(); 961 962 /* ------------------------------------------------------------------------ */ 963 964 #define KMP_UINT64_MAX \ 965 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1))) 966 967 #define KMP_MIN_NTH 1 968 969 #ifndef KMP_MAX_NTH 970 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX 971 #define KMP_MAX_NTH PTHREAD_THREADS_MAX 972 #else 973 #define KMP_MAX_NTH INT_MAX 974 #endif 975 #endif /* KMP_MAX_NTH */ 976 977 #ifdef PTHREAD_STACK_MIN 978 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN 979 #else 980 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024)) 981 #endif 982 983 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1))) 984 985 #if KMP_ARCH_X86 986 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024)) 987 #elif KMP_ARCH_X86_64 988 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024)) 989 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024)) 990 #else 991 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024)) 992 #endif 993 994 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024)) 995 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024)) 996 #define KMP_MAX_MALLOC_POOL_INCR \ 997 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1))) 998 999 #define KMP_MIN_STKOFFSET (0) 1000 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE 1001 #if KMP_OS_DARWIN 1002 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET 1003 #else 1004 #define KMP_DEFAULT_STKOFFSET CACHE_LINE 1005 #endif 1006 1007 #define KMP_MIN_STKPADDING (0) 1008 #define KMP_MAX_STKPADDING (2 * 1024 * 1024) 1009 1010 #define KMP_BLOCKTIME_MULTIPLIER \ 1011 (1000) /* number of blocktime units per second */ 1012 #define KMP_MIN_BLOCKTIME (0) 1013 #define KMP_MAX_BLOCKTIME \ 1014 (INT_MAX) /* Must be this for "infinite" setting the work */ 1015 #define KMP_DEFAULT_BLOCKTIME (200) /* __kmp_blocktime is in milliseconds */ 1016 1017 #if KMP_USE_MONITOR 1018 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024)) 1019 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second 1020 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec 1021 1022 /* Calculate new number of monitor wakeups for a specific block time based on 1023 previous monitor_wakeups. Only allow increasing number of wakeups */ 1024 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ 1025 (((blocktime) == KMP_MAX_BLOCKTIME) \ 1026 ? (monitor_wakeups) \ 1027 : ((blocktime) == KMP_MIN_BLOCKTIME) \ 1028 ? KMP_MAX_MONITOR_WAKEUPS \ 1029 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \ 1030 ? (monitor_wakeups) \ 1031 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime)) 1032 1033 /* Calculate number of intervals for a specific block time based on 1034 monitor_wakeups */ 1035 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ 1036 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \ 1037 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups))) 1038 #else 1039 #define KMP_BLOCKTIME(team, tid) \ 1040 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime) 1041 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1042 // HW TSC is used to reduce overhead (clock tick instead of nanosecond). 1043 extern kmp_uint64 __kmp_ticks_per_msec; 1044 #if KMP_COMPILER_ICC 1045 #define KMP_NOW() ((kmp_uint64)_rdtsc()) 1046 #else 1047 #define KMP_NOW() __kmp_hardware_timestamp() 1048 #endif 1049 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec) 1050 #define KMP_BLOCKTIME_INTERVAL(team, tid) \ 1051 (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec) 1052 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW()) 1053 #else 1054 // System time is retrieved sporadically while blocking. 1055 extern kmp_uint64 __kmp_now_nsec(); 1056 #define KMP_NOW() __kmp_now_nsec() 1057 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC) 1058 #define KMP_BLOCKTIME_INTERVAL(team, tid) \ 1059 (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC) 1060 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW()) 1061 #endif 1062 #endif // KMP_USE_MONITOR 1063 1064 #define KMP_MIN_STATSCOLS 40 1065 #define KMP_MAX_STATSCOLS 4096 1066 #define KMP_DEFAULT_STATSCOLS 80 1067 1068 #define KMP_MIN_INTERVAL 0 1069 #define KMP_MAX_INTERVAL (INT_MAX - 1) 1070 #define KMP_DEFAULT_INTERVAL 0 1071 1072 #define KMP_MIN_CHUNK 1 1073 #define KMP_MAX_CHUNK (INT_MAX - 1) 1074 #define KMP_DEFAULT_CHUNK 1 1075 1076 #define KMP_DFLT_DISP_NUM_BUFF 7 1077 #define KMP_MAX_ORDERED 8 1078 1079 #define KMP_MAX_FIELDS 32 1080 1081 #define KMP_MAX_BRANCH_BITS 31 1082 1083 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX 1084 1085 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX 1086 1087 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX 1088 1089 /* Minimum number of threads before switch to TLS gtid (experimentally 1090 determined) */ 1091 /* josh TODO: what about OS X* tuning? */ 1092 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1093 #define KMP_TLS_GTID_MIN 5 1094 #else 1095 #define KMP_TLS_GTID_MIN INT_MAX 1096 #endif 1097 1098 #define KMP_MASTER_TID(tid) ((tid) == 0) 1099 #define KMP_WORKER_TID(tid) ((tid) != 0) 1100 1101 #define KMP_MASTER_GTID(gtid) (__kmp_tid_from_gtid((gtid)) == 0) 1102 #define KMP_WORKER_GTID(gtid) (__kmp_tid_from_gtid((gtid)) != 0) 1103 #define KMP_INITIAL_GTID(gtid) ((gtid) == 0) 1104 1105 #ifndef TRUE 1106 #define FALSE 0 1107 #define TRUE (!FALSE) 1108 #endif 1109 1110 /* NOTE: all of the following constants must be even */ 1111 1112 #if KMP_OS_WINDOWS 1113 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */ 1114 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */ 1115 #elif KMP_OS_CNK 1116 #define KMP_INIT_WAIT 16U /* initial number of spin-tests */ 1117 #define KMP_NEXT_WAIT 8U /* susequent number of spin-tests */ 1118 #elif KMP_OS_LINUX 1119 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1120 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1121 #elif KMP_OS_DARWIN 1122 /* TODO: tune for KMP_OS_DARWIN */ 1123 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1124 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1125 #elif KMP_OS_DRAGONFLY 1126 /* TODO: tune for KMP_OS_DRAGONFLY */ 1127 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1128 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1129 #elif KMP_OS_FREEBSD 1130 /* TODO: tune for KMP_OS_FREEBSD */ 1131 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1132 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1133 #elif KMP_OS_NETBSD 1134 /* TODO: tune for KMP_OS_NETBSD */ 1135 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1136 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1137 #elif KMP_OS_HURD 1138 /* TODO: tune for KMP_OS_HURD */ 1139 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1140 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1141 #elif KMP_OS_OPENBSD 1142 /* TODO: tune for KMP_OS_OPENBSD */ 1143 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1144 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1145 #endif 1146 1147 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1148 typedef struct kmp_cpuid { 1149 kmp_uint32 eax; 1150 kmp_uint32 ebx; 1151 kmp_uint32 ecx; 1152 kmp_uint32 edx; 1153 } kmp_cpuid_t; 1154 1155 typedef struct kmp_cpuinfo { 1156 int initialized; // If 0, other fields are not initialized. 1157 int signature; // CPUID(1).EAX 1158 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family) 1159 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended 1160 // Model << 4 ) + Model) 1161 int stepping; // CPUID(1).EAX[3:0] ( Stepping ) 1162 int sse2; // 0 if SSE2 instructions are not supported, 1 otherwise. 1163 int rtm; // 0 if RTM instructions are not supported, 1 otherwise. 1164 int cpu_stackoffset; 1165 int apic_id; 1166 int physical_id; 1167 int logical_id; 1168 kmp_uint64 frequency; // Nominal CPU frequency in Hz. 1169 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004) 1170 } kmp_cpuinfo_t; 1171 1172 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p); 1173 1174 #if KMP_OS_UNIX 1175 // subleaf is only needed for cache and topology discovery and can be set to 1176 // zero in most cases 1177 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) { 1178 __asm__ __volatile__("cpuid" 1179 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx) 1180 : "a"(leaf), "c"(subleaf)); 1181 } 1182 // Load p into FPU control word 1183 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) { 1184 __asm__ __volatile__("fldcw %0" : : "m"(*p)); 1185 } 1186 // Store FPU control word into p 1187 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) { 1188 __asm__ __volatile__("fstcw %0" : "=m"(*p)); 1189 } 1190 static inline void __kmp_clear_x87_fpu_status_word() { 1191 #if KMP_MIC 1192 // 32-bit protected mode x87 FPU state 1193 struct x87_fpu_state { 1194 unsigned cw; 1195 unsigned sw; 1196 unsigned tw; 1197 unsigned fip; 1198 unsigned fips; 1199 unsigned fdp; 1200 unsigned fds; 1201 }; 1202 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0}; 1203 __asm__ __volatile__("fstenv %0\n\t" // store FP env 1204 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW 1205 "fldenv %0\n\t" // load FP env back 1206 : "+m"(fpu_state), "+m"(fpu_state.sw)); 1207 #else 1208 __asm__ __volatile__("fnclex"); 1209 #endif // KMP_MIC 1210 } 1211 #if __SSE__ 1212 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); } 1213 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); } 1214 #else 1215 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {} 1216 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; } 1217 #endif 1218 #else 1219 // Windows still has these as external functions in assembly file 1220 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p); 1221 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p); 1222 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p); 1223 extern void __kmp_clear_x87_fpu_status_word(); 1224 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); } 1225 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); } 1226 #endif // KMP_OS_UNIX 1227 1228 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */ 1229 1230 #if KMP_ARCH_X86 1231 extern void __kmp_x86_pause(void); 1232 #elif KMP_MIC 1233 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed 1234 // regression after removal of extra PAUSE from spin loops. Changing 1235 // the delay from 100 to 300 showed even better performance than double PAUSE 1236 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC. 1237 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); } 1238 #else 1239 static inline void __kmp_x86_pause(void) { _mm_pause(); } 1240 #endif 1241 #define KMP_CPU_PAUSE() __kmp_x86_pause() 1242 #elif KMP_ARCH_PPC64 1243 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1") 1244 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2") 1245 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory") 1246 #define KMP_CPU_PAUSE() \ 1247 do { \ 1248 KMP_PPC64_PRI_LOW(); \ 1249 KMP_PPC64_PRI_MED(); \ 1250 KMP_PPC64_PRI_LOC_MB(); \ 1251 } while (0) 1252 #else 1253 #define KMP_CPU_PAUSE() /* nothing to do */ 1254 #endif 1255 1256 #define KMP_INIT_YIELD(count) \ 1257 { (count) = __kmp_yield_init; } 1258 1259 #define KMP_OVERSUBSCRIBED \ 1260 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) 1261 1262 #define KMP_TRY_YIELD \ 1263 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED))) 1264 1265 #define KMP_TRY_YIELD_OVERSUB \ 1266 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED)) 1267 1268 #define KMP_YIELD(cond) \ 1269 { \ 1270 KMP_CPU_PAUSE(); \ 1271 if ((cond) && (KMP_TRY_YIELD)) \ 1272 __kmp_yield(); \ 1273 } 1274 1275 #define KMP_YIELD_OVERSUB() \ 1276 { \ 1277 KMP_CPU_PAUSE(); \ 1278 if ((KMP_TRY_YIELD_OVERSUB)) \ 1279 __kmp_yield(); \ 1280 } 1281 1282 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround, 1283 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd. 1284 #define KMP_YIELD_SPIN(count) \ 1285 { \ 1286 KMP_CPU_PAUSE(); \ 1287 if (KMP_TRY_YIELD) { \ 1288 (count) -= 2; \ 1289 if (!(count)) { \ 1290 __kmp_yield(); \ 1291 (count) = __kmp_yield_next; \ 1292 } \ 1293 } \ 1294 } 1295 1296 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count) \ 1297 { \ 1298 KMP_CPU_PAUSE(); \ 1299 if ((KMP_TRY_YIELD_OVERSUB)) \ 1300 __kmp_yield(); \ 1301 else if (__kmp_use_yield == 1) { \ 1302 (count) -= 2; \ 1303 if (!(count)) { \ 1304 __kmp_yield(); \ 1305 (count) = __kmp_yield_next; \ 1306 } \ 1307 } \ 1308 } 1309 1310 /* ------------------------------------------------------------------------ */ 1311 /* Support datatypes for the orphaned construct nesting checks. */ 1312 /* ------------------------------------------------------------------------ */ 1313 1314 enum cons_type { 1315 ct_none, 1316 ct_parallel, 1317 ct_pdo, 1318 ct_pdo_ordered, 1319 ct_psections, 1320 ct_psingle, 1321 ct_critical, 1322 ct_ordered_in_parallel, 1323 ct_ordered_in_pdo, 1324 ct_master, 1325 ct_reduce, 1326 ct_barrier 1327 }; 1328 1329 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered) 1330 1331 struct cons_data { 1332 ident_t const *ident; 1333 enum cons_type type; 1334 int prev; 1335 kmp_user_lock_p 1336 name; /* address exclusively for critical section name comparison */ 1337 }; 1338 1339 struct cons_header { 1340 int p_top, w_top, s_top; 1341 int stack_size, stack_top; 1342 struct cons_data *stack_data; 1343 }; 1344 1345 struct kmp_region_info { 1346 char *text; 1347 int offset[KMP_MAX_FIELDS]; 1348 int length[KMP_MAX_FIELDS]; 1349 }; 1350 1351 /* ---------------------------------------------------------------------- */ 1352 /* ---------------------------------------------------------------------- */ 1353 1354 #if KMP_OS_WINDOWS 1355 typedef HANDLE kmp_thread_t; 1356 typedef DWORD kmp_key_t; 1357 #endif /* KMP_OS_WINDOWS */ 1358 1359 #if KMP_OS_UNIX 1360 typedef pthread_t kmp_thread_t; 1361 typedef pthread_key_t kmp_key_t; 1362 #endif 1363 1364 extern kmp_key_t __kmp_gtid_threadprivate_key; 1365 1366 typedef struct kmp_sys_info { 1367 long maxrss; /* the maximum resident set size utilized (in kilobytes) */ 1368 long minflt; /* the number of page faults serviced without any I/O */ 1369 long majflt; /* the number of page faults serviced that required I/O */ 1370 long nswap; /* the number of times a process was "swapped" out of memory */ 1371 long inblock; /* the number of times the file system had to perform input */ 1372 long oublock; /* the number of times the file system had to perform output */ 1373 long nvcsw; /* the number of times a context switch was voluntarily */ 1374 long nivcsw; /* the number of times a context switch was forced */ 1375 } kmp_sys_info_t; 1376 1377 #if USE_ITT_BUILD 1378 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only 1379 // required type here. Later we will check the type meets requirements. 1380 typedef int kmp_itt_mark_t; 1381 #define KMP_ITT_DEBUG 0 1382 #endif /* USE_ITT_BUILD */ 1383 1384 typedef kmp_int32 kmp_critical_name[8]; 1385 1386 /*! 1387 @ingroup PARALLEL 1388 The type for a microtask which gets passed to @ref __kmpc_fork_call(). 1389 The arguments to the outlined function are 1390 @param global_tid the global thread identity of the thread executing the 1391 function. 1392 @param bound_tid the local identity of the thread executing the function 1393 @param ... pointers to shared variables accessed by the function. 1394 */ 1395 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...); 1396 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth, 1397 ...); 1398 1399 /*! 1400 @ingroup THREADPRIVATE 1401 @{ 1402 */ 1403 /* --------------------------------------------------------------------------- 1404 */ 1405 /* Threadprivate initialization/finalization function declarations */ 1406 1407 /* for non-array objects: __kmpc_threadprivate_register() */ 1408 1409 /*! 1410 Pointer to the constructor function. 1411 The first argument is the <tt>this</tt> pointer 1412 */ 1413 typedef void *(*kmpc_ctor)(void *); 1414 1415 /*! 1416 Pointer to the destructor function. 1417 The first argument is the <tt>this</tt> pointer 1418 */ 1419 typedef void (*kmpc_dtor)( 1420 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel 1421 compiler */ 1422 /*! 1423 Pointer to an alternate constructor. 1424 The first argument is the <tt>this</tt> pointer. 1425 */ 1426 typedef void *(*kmpc_cctor)(void *, void *); 1427 1428 /* for array objects: __kmpc_threadprivate_register_vec() */ 1429 /* First arg: "this" pointer */ 1430 /* Last arg: number of array elements */ 1431 /*! 1432 Array constructor. 1433 First argument is the <tt>this</tt> pointer 1434 Second argument the number of array elements. 1435 */ 1436 typedef void *(*kmpc_ctor_vec)(void *, size_t); 1437 /*! 1438 Pointer to the array destructor function. 1439 The first argument is the <tt>this</tt> pointer 1440 Second argument the number of array elements. 1441 */ 1442 typedef void (*kmpc_dtor_vec)(void *, size_t); 1443 /*! 1444 Array constructor. 1445 First argument is the <tt>this</tt> pointer 1446 Third argument the number of array elements. 1447 */ 1448 typedef void *(*kmpc_cctor_vec)(void *, void *, 1449 size_t); /* function unused by compiler */ 1450 1451 /*! 1452 @} 1453 */ 1454 1455 /* keeps tracked of threadprivate cache allocations for cleanup later */ 1456 typedef struct kmp_cached_addr { 1457 void **addr; /* address of allocated cache */ 1458 void ***compiler_cache; /* pointer to compiler's cache */ 1459 void *data; /* pointer to global data */ 1460 struct kmp_cached_addr *next; /* pointer to next cached address */ 1461 } kmp_cached_addr_t; 1462 1463 struct private_data { 1464 struct private_data *next; /* The next descriptor in the list */ 1465 void *data; /* The data buffer for this descriptor */ 1466 int more; /* The repeat count for this descriptor */ 1467 size_t size; /* The data size for this descriptor */ 1468 }; 1469 1470 struct private_common { 1471 struct private_common *next; 1472 struct private_common *link; 1473 void *gbl_addr; 1474 void *par_addr; /* par_addr == gbl_addr for MASTER thread */ 1475 size_t cmn_size; 1476 }; 1477 1478 struct shared_common { 1479 struct shared_common *next; 1480 struct private_data *pod_init; 1481 void *obj_init; 1482 void *gbl_addr; 1483 union { 1484 kmpc_ctor ctor; 1485 kmpc_ctor_vec ctorv; 1486 } ct; 1487 union { 1488 kmpc_cctor cctor; 1489 kmpc_cctor_vec cctorv; 1490 } cct; 1491 union { 1492 kmpc_dtor dtor; 1493 kmpc_dtor_vec dtorv; 1494 } dt; 1495 size_t vec_len; 1496 int is_vec; 1497 size_t cmn_size; 1498 }; 1499 1500 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */ 1501 #define KMP_HASH_TABLE_SIZE \ 1502 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */ 1503 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */ 1504 #define KMP_HASH(x) \ 1505 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1)) 1506 1507 struct common_table { 1508 struct private_common *data[KMP_HASH_TABLE_SIZE]; 1509 }; 1510 1511 struct shared_table { 1512 struct shared_common *data[KMP_HASH_TABLE_SIZE]; 1513 }; 1514 1515 /* ------------------------------------------------------------------------ */ 1516 1517 #if KMP_USE_HIER_SCHED 1518 // Shared barrier data that exists inside a single unit of the scheduling 1519 // hierarchy 1520 typedef struct kmp_hier_private_bdata_t { 1521 kmp_int32 num_active; 1522 kmp_uint64 index; 1523 kmp_uint64 wait_val[2]; 1524 } kmp_hier_private_bdata_t; 1525 #endif 1526 1527 typedef struct kmp_sched_flags { 1528 unsigned ordered : 1; 1529 unsigned nomerge : 1; 1530 unsigned contains_last : 1; 1531 #if KMP_USE_HIER_SCHED 1532 unsigned use_hier : 1; 1533 unsigned unused : 28; 1534 #else 1535 unsigned unused : 29; 1536 #endif 1537 } kmp_sched_flags_t; 1538 1539 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4); 1540 1541 #if KMP_STATIC_STEAL_ENABLED 1542 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { 1543 kmp_int32 count; 1544 kmp_int32 ub; 1545 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ 1546 kmp_int32 lb; 1547 kmp_int32 st; 1548 kmp_int32 tc; 1549 kmp_int32 static_steal_counter; /* for static_steal only; maybe better to put 1550 after ub */ 1551 kmp_lock_t *th_steal_lock; // lock used for chunk stealing 1552 // KMP_ALIGN( 16 ) ensures ( if the KMP_ALIGN macro is turned on ) 1553 // a) parm3 is properly aligned and 1554 // b) all parm1-4 are in the same cache line. 1555 // Because of parm1-4 are used together, performance seems to be better 1556 // if they are in the same line (not measured though). 1557 1558 struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template 1559 kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should 1560 kmp_int32 parm2; // make no real change at least while padding is off. 1561 kmp_int32 parm3; 1562 kmp_int32 parm4; 1563 }; 1564 1565 kmp_uint32 ordered_lower; 1566 kmp_uint32 ordered_upper; 1567 #if KMP_OS_WINDOWS 1568 // This var can be placed in the hole between 'tc' and 'parm1', instead of 1569 // 'static_steal_counter'. It would be nice to measure execution times. 1570 // Conditional if/endif can be removed at all. 1571 kmp_int32 last_upper; 1572 #endif /* KMP_OS_WINDOWS */ 1573 } dispatch_private_info32_t; 1574 1575 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { 1576 kmp_int64 count; // current chunk number for static & static-steal scheduling 1577 kmp_int64 ub; /* upper-bound */ 1578 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ 1579 kmp_int64 lb; /* lower-bound */ 1580 kmp_int64 st; /* stride */ 1581 kmp_int64 tc; /* trip count (number of iterations) */ 1582 kmp_int64 static_steal_counter; /* for static_steal only; maybe better to put 1583 after ub */ 1584 kmp_lock_t *th_steal_lock; // lock used for chunk stealing 1585 /* parm[1-4] are used in different ways by different scheduling algorithms */ 1586 1587 // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on ) 1588 // a) parm3 is properly aligned and 1589 // b) all parm1-4 are in the same cache line. 1590 // Because of parm1-4 are used together, performance seems to be better 1591 // if they are in the same line (not measured though). 1592 1593 struct KMP_ALIGN(32) { 1594 kmp_int64 parm1; 1595 kmp_int64 parm2; 1596 kmp_int64 parm3; 1597 kmp_int64 parm4; 1598 }; 1599 1600 kmp_uint64 ordered_lower; 1601 kmp_uint64 ordered_upper; 1602 #if KMP_OS_WINDOWS 1603 // This var can be placed in the hole between 'tc' and 'parm1', instead of 1604 // 'static_steal_counter'. It would be nice to measure execution times. 1605 // Conditional if/endif can be removed at all. 1606 kmp_int64 last_upper; 1607 #endif /* KMP_OS_WINDOWS */ 1608 } dispatch_private_info64_t; 1609 #else /* KMP_STATIC_STEAL_ENABLED */ 1610 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { 1611 kmp_int32 lb; 1612 kmp_int32 ub; 1613 kmp_int32 st; 1614 kmp_int32 tc; 1615 1616 kmp_int32 parm1; 1617 kmp_int32 parm2; 1618 kmp_int32 parm3; 1619 kmp_int32 parm4; 1620 1621 kmp_int32 count; 1622 1623 kmp_uint32 ordered_lower; 1624 kmp_uint32 ordered_upper; 1625 #if KMP_OS_WINDOWS 1626 kmp_int32 last_upper; 1627 #endif /* KMP_OS_WINDOWS */ 1628 } dispatch_private_info32_t; 1629 1630 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { 1631 kmp_int64 lb; /* lower-bound */ 1632 kmp_int64 ub; /* upper-bound */ 1633 kmp_int64 st; /* stride */ 1634 kmp_int64 tc; /* trip count (number of iterations) */ 1635 1636 /* parm[1-4] are used in different ways by different scheduling algorithms */ 1637 kmp_int64 parm1; 1638 kmp_int64 parm2; 1639 kmp_int64 parm3; 1640 kmp_int64 parm4; 1641 1642 kmp_int64 count; /* current chunk number for static scheduling */ 1643 1644 kmp_uint64 ordered_lower; 1645 kmp_uint64 ordered_upper; 1646 #if KMP_OS_WINDOWS 1647 kmp_int64 last_upper; 1648 #endif /* KMP_OS_WINDOWS */ 1649 } dispatch_private_info64_t; 1650 #endif /* KMP_STATIC_STEAL_ENABLED */ 1651 1652 typedef struct KMP_ALIGN_CACHE dispatch_private_info { 1653 union private_info { 1654 dispatch_private_info32_t p32; 1655 dispatch_private_info64_t p64; 1656 } u; 1657 enum sched_type schedule; /* scheduling algorithm */ 1658 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */ 1659 kmp_int32 ordered_bumped; 1660 // To retain the structure size after making ordered_iteration scalar 1661 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 3]; 1662 // Stack of buffers for nest of serial regions 1663 struct dispatch_private_info *next; 1664 kmp_int32 type_size; /* the size of types in private_info */ 1665 #if KMP_USE_HIER_SCHED 1666 kmp_int32 hier_id; 1667 void *parent; /* hierarchical scheduling parent pointer */ 1668 #endif 1669 enum cons_type pushed_ws; 1670 } dispatch_private_info_t; 1671 1672 typedef struct dispatch_shared_info32 { 1673 /* chunk index under dynamic, number of idle threads under static-steal; 1674 iteration index otherwise */ 1675 volatile kmp_uint32 iteration; 1676 volatile kmp_uint32 num_done; 1677 volatile kmp_uint32 ordered_iteration; 1678 // Dummy to retain the structure size after making ordered_iteration scalar 1679 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1]; 1680 } dispatch_shared_info32_t; 1681 1682 typedef struct dispatch_shared_info64 { 1683 /* chunk index under dynamic, number of idle threads under static-steal; 1684 iteration index otherwise */ 1685 volatile kmp_uint64 iteration; 1686 volatile kmp_uint64 num_done; 1687 volatile kmp_uint64 ordered_iteration; 1688 // Dummy to retain the structure size after making ordered_iteration scalar 1689 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3]; 1690 } dispatch_shared_info64_t; 1691 1692 typedef struct dispatch_shared_info { 1693 union shared_info { 1694 dispatch_shared_info32_t s32; 1695 dispatch_shared_info64_t s64; 1696 } u; 1697 volatile kmp_uint32 buffer_index; 1698 volatile kmp_int32 doacross_buf_idx; // teamwise index 1699 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1) 1700 kmp_int32 doacross_num_done; // count finished threads 1701 #if KMP_USE_HIER_SCHED 1702 void *hier; 1703 #endif 1704 #if KMP_USE_HWLOC 1705 // When linking with libhwloc, the ORDERED EPCC test slows down on big 1706 // machines (> 48 cores). Performance analysis showed that a cache thrash 1707 // was occurring and this padding helps alleviate the problem. 1708 char padding[64]; 1709 #endif 1710 } dispatch_shared_info_t; 1711 1712 typedef struct kmp_disp { 1713 /* Vector for ORDERED SECTION */ 1714 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *); 1715 /* Vector for END ORDERED SECTION */ 1716 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *); 1717 1718 dispatch_shared_info_t *th_dispatch_sh_current; 1719 dispatch_private_info_t *th_dispatch_pr_current; 1720 1721 dispatch_private_info_t *th_disp_buffer; 1722 kmp_int32 th_disp_index; 1723 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index 1724 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags 1725 kmp_int64 *th_doacross_info; // info on loop bounds 1726 #if KMP_USE_INTERNODE_ALIGNMENT 1727 char more_padding[INTERNODE_CACHE_LINE]; 1728 #endif 1729 } kmp_disp_t; 1730 1731 /* ------------------------------------------------------------------------ */ 1732 /* Barrier stuff */ 1733 1734 /* constants for barrier state update */ 1735 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */ 1736 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */ 1737 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state 1738 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */ 1739 1740 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT) 1741 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT) 1742 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT) 1743 1744 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT) 1745 #error "Barrier sleep bit must be smaller than barrier bump bit" 1746 #endif 1747 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT) 1748 #error "Barrier unused bit must be smaller than barrier bump bit" 1749 #endif 1750 1751 // Constants for release barrier wait state: currently, hierarchical only 1752 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep 1753 #define KMP_BARRIER_OWN_FLAG \ 1754 1 // Normal state; worker waiting on own b_go flag in release 1755 #define KMP_BARRIER_PARENT_FLAG \ 1756 2 // Special state; worker waiting on parent's b_go flag in release 1757 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \ 1758 3 // Special state; tells worker to shift from parent to own b_go 1759 #define KMP_BARRIER_SWITCHING \ 1760 4 // Special state; worker resets appropriate flag on wake-up 1761 1762 #define KMP_NOT_SAFE_TO_REAP \ 1763 0 // Thread th_reap_state: not safe to reap (tasking) 1764 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking) 1765 1766 enum barrier_type { 1767 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction 1768 barriers if enabled) */ 1769 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */ 1770 #if KMP_FAST_REDUCTION_BARRIER 1771 bs_reduction_barrier, /* 2, All barriers that are used in reduction */ 1772 #endif // KMP_FAST_REDUCTION_BARRIER 1773 bs_last_barrier /* Just a placeholder to mark the end */ 1774 }; 1775 1776 // to work with reduction barriers just like with plain barriers 1777 #if !KMP_FAST_REDUCTION_BARRIER 1778 #define bs_reduction_barrier bs_plain_barrier 1779 #endif // KMP_FAST_REDUCTION_BARRIER 1780 1781 typedef enum kmp_bar_pat { /* Barrier communication patterns */ 1782 bp_linear_bar = 1783 0, /* Single level (degenerate) tree */ 1784 bp_tree_bar = 1785 1, /* Balanced tree with branching factor 2^n */ 1786 bp_hyper_bar = 1787 2, /* Hypercube-embedded tree with min branching 1788 factor 2^n */ 1789 bp_hierarchical_bar = 3, /* Machine hierarchy tree */ 1790 bp_last_bar /* Placeholder to mark the end */ 1791 } kmp_bar_pat_e; 1792 1793 #define KMP_BARRIER_ICV_PUSH 1 1794 1795 /* Record for holding the values of the internal controls stack records */ 1796 typedef struct kmp_internal_control { 1797 int serial_nesting_level; /* corresponds to the value of the 1798 th_team_serialized field */ 1799 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per 1800 thread) */ 1801 kmp_int8 1802 bt_set; /* internal control for whether blocktime is explicitly set */ 1803 int blocktime; /* internal control for blocktime */ 1804 #if KMP_USE_MONITOR 1805 int bt_intervals; /* internal control for blocktime intervals */ 1806 #endif 1807 int nproc; /* internal control for #threads for next parallel region (per 1808 thread) */ 1809 int thread_limit; /* internal control for thread-limit-var */ 1810 int max_active_levels; /* internal control for max_active_levels */ 1811 kmp_r_sched_t 1812 sched; /* internal control for runtime schedule {sched,chunk} pair */ 1813 kmp_proc_bind_t proc_bind; /* internal control for affinity */ 1814 kmp_int32 default_device; /* internal control for default device */ 1815 struct kmp_internal_control *next; 1816 } kmp_internal_control_t; 1817 1818 static inline void copy_icvs(kmp_internal_control_t *dst, 1819 kmp_internal_control_t *src) { 1820 *dst = *src; 1821 } 1822 1823 /* Thread barrier needs volatile barrier fields */ 1824 typedef struct KMP_ALIGN_CACHE kmp_bstate { 1825 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all 1826 // uses of it). It is not explicitly aligned below, because we *don't* want 1827 // it to be padded -- instead, we fit b_go into the same cache line with 1828 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier. 1829 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread 1830 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with 1831 // same NGO store 1832 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical) 1833 KMP_ALIGN_CACHE volatile kmp_uint64 1834 b_arrived; // STATE => task reached synch point. 1835 kmp_uint32 *skip_per_level; 1836 kmp_uint32 my_level; 1837 kmp_int32 parent_tid; 1838 kmp_int32 old_tid; 1839 kmp_uint32 depth; 1840 struct kmp_bstate *parent_bar; 1841 kmp_team_t *team; 1842 kmp_uint64 leaf_state; 1843 kmp_uint32 nproc; 1844 kmp_uint8 base_leaf_kids; 1845 kmp_uint8 leaf_kids; 1846 kmp_uint8 offset; 1847 kmp_uint8 wait_flag; 1848 kmp_uint8 use_oncore_barrier; 1849 #if USE_DEBUGGER 1850 // The following field is intended for the debugger solely. Only the worker 1851 // thread itself accesses this field: the worker increases it by 1 when it 1852 // arrives to a barrier. 1853 KMP_ALIGN_CACHE kmp_uint b_worker_arrived; 1854 #endif /* USE_DEBUGGER */ 1855 } kmp_bstate_t; 1856 1857 union KMP_ALIGN_CACHE kmp_barrier_union { 1858 double b_align; /* use worst case alignment */ 1859 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)]; 1860 kmp_bstate_t bb; 1861 }; 1862 1863 typedef union kmp_barrier_union kmp_balign_t; 1864 1865 /* Team barrier needs only non-volatile arrived counter */ 1866 union KMP_ALIGN_CACHE kmp_barrier_team_union { 1867 double b_align; /* use worst case alignment */ 1868 char b_pad[CACHE_LINE]; 1869 struct { 1870 kmp_uint64 b_arrived; /* STATE => task reached synch point. */ 1871 #if USE_DEBUGGER 1872 // The following two fields are indended for the debugger solely. Only 1873 // master of the team accesses these fields: the first one is increased by 1874 // 1 when master arrives to a barrier, the second one is increased by one 1875 // when all the threads arrived. 1876 kmp_uint b_master_arrived; 1877 kmp_uint b_team_arrived; 1878 #endif 1879 }; 1880 }; 1881 1882 typedef union kmp_barrier_team_union kmp_balign_team_t; 1883 1884 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal 1885 threads when a condition changes. This is to workaround an NPTL bug where 1886 padding was added to pthread_cond_t which caused the initialization routine 1887 to write outside of the structure if compiled on pre-NPTL threads. */ 1888 #if KMP_OS_WINDOWS 1889 typedef struct kmp_win32_mutex { 1890 /* The Lock */ 1891 CRITICAL_SECTION cs; 1892 } kmp_win32_mutex_t; 1893 1894 typedef struct kmp_win32_cond { 1895 /* Count of the number of waiters. */ 1896 int waiters_count_; 1897 1898 /* Serialize access to <waiters_count_> */ 1899 kmp_win32_mutex_t waiters_count_lock_; 1900 1901 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */ 1902 int release_count_; 1903 1904 /* Keeps track of the current "generation" so that we don't allow */ 1905 /* one thread to steal all the "releases" from the broadcast. */ 1906 int wait_generation_count_; 1907 1908 /* A manual-reset event that's used to block and release waiting threads. */ 1909 HANDLE event_; 1910 } kmp_win32_cond_t; 1911 #endif 1912 1913 #if KMP_OS_UNIX 1914 1915 union KMP_ALIGN_CACHE kmp_cond_union { 1916 double c_align; 1917 char c_pad[CACHE_LINE]; 1918 pthread_cond_t c_cond; 1919 }; 1920 1921 typedef union kmp_cond_union kmp_cond_align_t; 1922 1923 union KMP_ALIGN_CACHE kmp_mutex_union { 1924 double m_align; 1925 char m_pad[CACHE_LINE]; 1926 pthread_mutex_t m_mutex; 1927 }; 1928 1929 typedef union kmp_mutex_union kmp_mutex_align_t; 1930 1931 #endif /* KMP_OS_UNIX */ 1932 1933 typedef struct kmp_desc_base { 1934 void *ds_stackbase; 1935 size_t ds_stacksize; 1936 int ds_stackgrow; 1937 kmp_thread_t ds_thread; 1938 volatile int ds_tid; 1939 int ds_gtid; 1940 #if KMP_OS_WINDOWS 1941 volatile int ds_alive; 1942 DWORD ds_thread_id; 1943 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes. 1944 However, debugger support (libomp_db) cannot work with handles, because they 1945 uncomparable. For example, debugger requests info about thread with handle h. 1946 h is valid within debugger process, and meaningless within debugee process. 1947 Even if h is duped by call to DuplicateHandle(), so the result h' is valid 1948 within debugee process, but it is a *new* handle which does *not* equal to 1949 any other handle in debugee... The only way to compare handles is convert 1950 them to system-wide ids. GetThreadId() function is available only in 1951 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available 1952 on all Windows* OS flavours (including Windows* 95). Thus, we have to get 1953 thread id by call to GetCurrentThreadId() from within the thread and save it 1954 to let libomp_db identify threads. */ 1955 #endif /* KMP_OS_WINDOWS */ 1956 } kmp_desc_base_t; 1957 1958 typedef union KMP_ALIGN_CACHE kmp_desc { 1959 double ds_align; /* use worst case alignment */ 1960 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)]; 1961 kmp_desc_base_t ds; 1962 } kmp_desc_t; 1963 1964 typedef struct kmp_local { 1965 volatile int this_construct; /* count of single's encountered by thread */ 1966 void *reduce_data; 1967 #if KMP_USE_BGET 1968 void *bget_data; 1969 void *bget_list; 1970 #if !USE_CMP_XCHG_FOR_BGET 1971 #ifdef USE_QUEUING_LOCK_FOR_BGET 1972 kmp_lock_t bget_lock; /* Lock for accessing bget free list */ 1973 #else 1974 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be 1975 // bootstrap lock so we can use it at library 1976 // shutdown. 1977 #endif /* USE_LOCK_FOR_BGET */ 1978 #endif /* ! USE_CMP_XCHG_FOR_BGET */ 1979 #endif /* KMP_USE_BGET */ 1980 1981 PACKED_REDUCTION_METHOD_T 1982 packed_reduction_method; /* stored by __kmpc_reduce*(), used by 1983 __kmpc_end_reduce*() */ 1984 1985 } kmp_local_t; 1986 1987 #define KMP_CHECK_UPDATE(a, b) \ 1988 if ((a) != (b)) \ 1989 (a) = (b) 1990 #define KMP_CHECK_UPDATE_SYNC(a, b) \ 1991 if ((a) != (b)) \ 1992 TCW_SYNC_PTR((a), (b)) 1993 1994 #define get__blocktime(xteam, xtid) \ 1995 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) 1996 #define get__bt_set(xteam, xtid) \ 1997 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) 1998 #if KMP_USE_MONITOR 1999 #define get__bt_intervals(xteam, xtid) \ 2000 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) 2001 #endif 2002 2003 #define get__dynamic_2(xteam, xtid) \ 2004 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic) 2005 #define get__nproc_2(xteam, xtid) \ 2006 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc) 2007 #define get__sched_2(xteam, xtid) \ 2008 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched) 2009 2010 #define set__blocktime_team(xteam, xtid, xval) \ 2011 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \ 2012 (xval)) 2013 2014 #if KMP_USE_MONITOR 2015 #define set__bt_intervals_team(xteam, xtid, xval) \ 2016 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \ 2017 (xval)) 2018 #endif 2019 2020 #define set__bt_set_team(xteam, xtid, xval) \ 2021 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval)) 2022 2023 #define set__dynamic(xthread, xval) \ 2024 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval)) 2025 #define get__dynamic(xthread) \ 2026 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE)) 2027 2028 #define set__nproc(xthread, xval) \ 2029 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval)) 2030 2031 #define set__thread_limit(xthread, xval) \ 2032 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval)) 2033 2034 #define set__max_active_levels(xthread, xval) \ 2035 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval)) 2036 2037 #define get__max_active_levels(xthread) \ 2038 ((xthread)->th.th_current_task->td_icvs.max_active_levels) 2039 2040 #define set__sched(xthread, xval) \ 2041 (((xthread)->th.th_current_task->td_icvs.sched) = (xval)) 2042 2043 #define set__proc_bind(xthread, xval) \ 2044 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval)) 2045 #define get__proc_bind(xthread) \ 2046 ((xthread)->th.th_current_task->td_icvs.proc_bind) 2047 2048 // OpenMP tasking data structures 2049 2050 typedef enum kmp_tasking_mode { 2051 tskm_immediate_exec = 0, 2052 tskm_extra_barrier = 1, 2053 tskm_task_teams = 2, 2054 tskm_max = 2 2055 } kmp_tasking_mode_t; 2056 2057 extern kmp_tasking_mode_t 2058 __kmp_tasking_mode; /* determines how/when to execute tasks */ 2059 extern int __kmp_task_stealing_constraint; 2060 extern int __kmp_enable_task_throttling; 2061 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if 2062 // specified, defaults to 0 otherwise 2063 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise 2064 extern kmp_int32 __kmp_max_task_priority; 2065 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise 2066 extern kmp_uint64 __kmp_taskloop_min_tasks; 2067 2068 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with 2069 taskdata first */ 2070 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1) 2071 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1) 2072 2073 // The tt_found_tasks flag is a signal to all threads in the team that tasks 2074 // were spawned and queued since the previous barrier release. 2075 #define KMP_TASKING_ENABLED(task_team) \ 2076 (TCR_SYNC_4((task_team)->tt.tt_found_tasks) == TRUE) 2077 /*! 2078 @ingroup BASIC_TYPES 2079 @{ 2080 */ 2081 2082 /*! 2083 */ 2084 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *); 2085 2086 typedef union kmp_cmplrdata { 2087 kmp_int32 priority; /**< priority specified by user for the task */ 2088 kmp_routine_entry_t 2089 destructors; /* pointer to function to invoke deconstructors of 2090 firstprivate C++ objects */ 2091 /* future data */ 2092 } kmp_cmplrdata_t; 2093 2094 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */ 2095 /*! 2096 */ 2097 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */ 2098 void *shareds; /**< pointer to block of pointers to shared vars */ 2099 kmp_routine_entry_t 2100 routine; /**< pointer to routine to call for executing task */ 2101 kmp_int32 part_id; /**< part id for the task */ 2102 kmp_cmplrdata_t 2103 data1; /* Two known optional additions: destructors and priority */ 2104 kmp_cmplrdata_t data2; /* Process destructors first, priority second */ 2105 /* future data */ 2106 /* private vars */ 2107 } kmp_task_t; 2108 2109 /*! 2110 @} 2111 */ 2112 2113 typedef struct kmp_taskgroup { 2114 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks 2115 std::atomic<kmp_int32> 2116 cancel_request; // request for cancellation of this taskgroup 2117 struct kmp_taskgroup *parent; // parent taskgroup 2118 // Block of data to perform task reduction 2119 void *reduce_data; // reduction related info 2120 kmp_int32 reduce_num_data; // number of data items to reduce 2121 } kmp_taskgroup_t; 2122 2123 // forward declarations 2124 typedef union kmp_depnode kmp_depnode_t; 2125 typedef struct kmp_depnode_list kmp_depnode_list_t; 2126 typedef struct kmp_dephash_entry kmp_dephash_entry_t; 2127 2128 // Compiler sends us this info: 2129 typedef struct kmp_depend_info { 2130 kmp_intptr_t base_addr; 2131 size_t len; 2132 struct { 2133 bool in : 1; 2134 bool out : 1; 2135 bool mtx : 1; 2136 } flags; 2137 } kmp_depend_info_t; 2138 2139 // Internal structures to work with task dependencies: 2140 struct kmp_depnode_list { 2141 kmp_depnode_t *node; 2142 kmp_depnode_list_t *next; 2143 }; 2144 2145 // Max number of mutexinoutset dependencies per node 2146 #define MAX_MTX_DEPS 4 2147 2148 typedef struct kmp_base_depnode { 2149 kmp_depnode_list_t *successors; /* used under lock */ 2150 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */ 2151 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */ 2152 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */ 2153 kmp_lock_t lock; /* guards shared fields: task, successors */ 2154 #if KMP_SUPPORT_GRAPH_OUTPUT 2155 kmp_uint32 id; 2156 #endif 2157 std::atomic<kmp_int32> npredecessors; 2158 std::atomic<kmp_int32> nrefs; 2159 } kmp_base_depnode_t; 2160 2161 union KMP_ALIGN_CACHE kmp_depnode { 2162 double dn_align; /* use worst case alignment */ 2163 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)]; 2164 kmp_base_depnode_t dn; 2165 }; 2166 2167 struct kmp_dephash_entry { 2168 kmp_intptr_t addr; 2169 kmp_depnode_t *last_out; 2170 kmp_depnode_list_t *last_ins; 2171 kmp_depnode_list_t *last_mtxs; 2172 kmp_int32 last_flag; 2173 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */ 2174 kmp_dephash_entry_t *next_in_bucket; 2175 }; 2176 2177 typedef struct kmp_dephash { 2178 kmp_dephash_entry_t **buckets; 2179 size_t size; 2180 size_t generation; 2181 kmp_uint32 nelements; 2182 kmp_uint32 nconflicts; 2183 } kmp_dephash_t; 2184 2185 typedef struct kmp_task_affinity_info { 2186 kmp_intptr_t base_addr; 2187 size_t len; 2188 struct { 2189 bool flag1 : 1; 2190 bool flag2 : 1; 2191 kmp_int32 reserved : 30; 2192 } flags; 2193 } kmp_task_affinity_info_t; 2194 2195 typedef enum kmp_event_type_t { 2196 KMP_EVENT_UNINITIALIZED = 0, 2197 KMP_EVENT_ALLOW_COMPLETION = 1 2198 } kmp_event_type_t; 2199 2200 typedef struct { 2201 kmp_event_type_t type; 2202 kmp_tas_lock_t lock; 2203 union { 2204 kmp_task_t *task; 2205 } ed; 2206 } kmp_event_t; 2207 2208 #ifdef BUILD_TIED_TASK_STACK 2209 2210 /* Tied Task stack definitions */ 2211 typedef struct kmp_stack_block { 2212 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE]; 2213 struct kmp_stack_block *sb_next; 2214 struct kmp_stack_block *sb_prev; 2215 } kmp_stack_block_t; 2216 2217 typedef struct kmp_task_stack { 2218 kmp_stack_block_t ts_first_block; // first block of stack entries 2219 kmp_taskdata_t **ts_top; // pointer to the top of stack 2220 kmp_int32 ts_entries; // number of entries on the stack 2221 } kmp_task_stack_t; 2222 2223 #endif // BUILD_TIED_TASK_STACK 2224 2225 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */ 2226 /* Compiler flags */ /* Total compiler flags must be 16 bits */ 2227 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */ 2228 unsigned final : 1; /* task is final(1) so execute immediately */ 2229 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0 2230 code path */ 2231 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to 2232 invoke destructors from the runtime */ 2233 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the 2234 context of the RTL) */ 2235 unsigned priority_specified : 1; /* set if the compiler provides priority 2236 setting for the task */ 2237 unsigned detachable : 1; /* 1 == can detach */ 2238 unsigned reserved : 9; /* reserved for compiler use */ 2239 2240 /* Library flags */ /* Total library flags must be 16 bits */ 2241 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */ 2242 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0) 2243 unsigned tasking_ser : 1; // all tasks in team are either executed immediately 2244 // (1) or may be deferred (0) 2245 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel 2246 // (0) [>= 2 threads] 2247 /* If either team_serial or tasking_ser is set, task team may be NULL */ 2248 /* Task State Flags: */ 2249 unsigned started : 1; /* 1==started, 0==not started */ 2250 unsigned executing : 1; /* 1==executing, 0==not executing */ 2251 unsigned complete : 1; /* 1==complete, 0==not complete */ 2252 unsigned freed : 1; /* 1==freed, 0==allocated */ 2253 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */ 2254 unsigned reserved31 : 7; /* reserved for library use */ 2255 2256 } kmp_tasking_flags_t; 2257 2258 struct kmp_taskdata { /* aligned during dynamic allocation */ 2259 kmp_int32 td_task_id; /* id, assigned by debugger */ 2260 kmp_tasking_flags_t td_flags; /* task flags */ 2261 kmp_team_t *td_team; /* team for this task */ 2262 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */ 2263 /* Currently not used except for perhaps IDB */ 2264 kmp_taskdata_t *td_parent; /* parent task */ 2265 kmp_int32 td_level; /* task nesting level */ 2266 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter 2267 ident_t *td_ident; /* task identifier */ 2268 // Taskwait data. 2269 ident_t *td_taskwait_ident; 2270 kmp_uint32 td_taskwait_counter; 2271 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */ 2272 KMP_ALIGN_CACHE kmp_internal_control_t 2273 td_icvs; /* Internal control variables for the task */ 2274 KMP_ALIGN_CACHE std::atomic<kmp_int32> 2275 td_allocated_child_tasks; /* Child tasks (+ current task) not yet 2276 deallocated */ 2277 std::atomic<kmp_int32> 2278 td_incomplete_child_tasks; /* Child tasks not yet complete */ 2279 kmp_taskgroup_t 2280 *td_taskgroup; // Each task keeps pointer to its current taskgroup 2281 kmp_dephash_t 2282 *td_dephash; // Dependencies for children tasks are tracked from here 2283 kmp_depnode_t 2284 *td_depnode; // Pointer to graph node if this task has dependencies 2285 kmp_task_team_t *td_task_team; 2286 kmp_int32 td_size_alloc; // The size of task structure, including shareds etc. 2287 #if defined(KMP_GOMP_COMPAT) 2288 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop 2289 kmp_int32 td_size_loop_bounds; 2290 #endif 2291 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint 2292 #if defined(KMP_GOMP_COMPAT) 2293 // GOMP sends in a copy function for copy constructors 2294 void (*td_copy_func)(void *, void *); 2295 #endif 2296 kmp_event_t td_allow_completion_event; 2297 #if OMPT_SUPPORT 2298 ompt_task_info_t ompt_task_info; 2299 #endif 2300 }; // struct kmp_taskdata 2301 2302 // Make sure padding above worked 2303 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0); 2304 2305 // Data for task team but per thread 2306 typedef struct kmp_base_thread_data { 2307 kmp_info_p *td_thr; // Pointer back to thread info 2308 // Used only in __kmp_execute_tasks_template, maybe not avail until task is 2309 // queued? 2310 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque 2311 kmp_taskdata_t * 2312 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated 2313 kmp_int32 td_deque_size; // Size of deck 2314 kmp_uint32 td_deque_head; // Head of deque (will wrap) 2315 kmp_uint32 td_deque_tail; // Tail of deque (will wrap) 2316 kmp_int32 td_deque_ntasks; // Number of tasks in deque 2317 // GEH: shouldn't this be volatile since used in while-spin? 2318 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal 2319 #ifdef BUILD_TIED_TASK_STACK 2320 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task 2321 // scheduling constraint 2322 #endif // BUILD_TIED_TASK_STACK 2323 } kmp_base_thread_data_t; 2324 2325 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE 2326 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS) 2327 2328 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size) 2329 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1) 2330 2331 typedef union KMP_ALIGN_CACHE kmp_thread_data { 2332 kmp_base_thread_data_t td; 2333 double td_align; /* use worst case alignment */ 2334 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)]; 2335 } kmp_thread_data_t; 2336 2337 // Data for task teams which are used when tasking is enabled for the team 2338 typedef struct kmp_base_task_team { 2339 kmp_bootstrap_lock_t 2340 tt_threads_lock; /* Lock used to allocate per-thread part of task team */ 2341 /* must be bootstrap lock since used at library shutdown*/ 2342 kmp_task_team_t *tt_next; /* For linking the task team free list */ 2343 kmp_thread_data_t 2344 *tt_threads_data; /* Array of per-thread structures for task team */ 2345 /* Data survives task team deallocation */ 2346 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while 2347 executing this team? */ 2348 /* TRUE means tt_threads_data is set up and initialized */ 2349 kmp_int32 tt_nproc; /* #threads in team */ 2350 kmp_int32 tt_max_threads; // # entries allocated for threads_data array 2351 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier 2352 kmp_int32 tt_untied_task_encountered; 2353 2354 KMP_ALIGN_CACHE 2355 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */ 2356 2357 KMP_ALIGN_CACHE 2358 volatile kmp_uint32 2359 tt_active; /* is the team still actively executing tasks */ 2360 } kmp_base_task_team_t; 2361 2362 union KMP_ALIGN_CACHE kmp_task_team { 2363 kmp_base_task_team_t tt; 2364 double tt_align; /* use worst case alignment */ 2365 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)]; 2366 }; 2367 2368 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5) 2369 // Free lists keep same-size free memory slots for fast memory allocation 2370 // routines 2371 typedef struct kmp_free_list { 2372 void *th_free_list_self; // Self-allocated tasks free list 2373 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other 2374 // threads 2375 void *th_free_list_other; // Non-self free list (to be returned to owner's 2376 // sync list) 2377 } kmp_free_list_t; 2378 #endif 2379 #if KMP_NESTED_HOT_TEAMS 2380 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams 2381 // are not put in teams pool, and they don't put threads in threads pool. 2382 typedef struct kmp_hot_team_ptr { 2383 kmp_team_p *hot_team; // pointer to hot_team of given nesting level 2384 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team 2385 } kmp_hot_team_ptr_t; 2386 #endif 2387 typedef struct kmp_teams_size { 2388 kmp_int32 nteams; // number of teams in a league 2389 kmp_int32 nth; // number of threads in each team of the league 2390 } kmp_teams_size_t; 2391 2392 // This struct stores a thread that acts as a "root" for a contention 2393 // group. Contention groups are rooted at kmp_root threads, but also at 2394 // each master thread of each team created in the teams construct. 2395 // This struct therefore also stores a thread_limit associated with 2396 // that contention group, and a counter to track the number of threads 2397 // active in that contention group. Each thread has a list of these: CG 2398 // root threads have an entry in their list in which cg_root refers to 2399 // the thread itself, whereas other workers in the CG will have a 2400 // single entry where cg_root is same as the entry containing their CG 2401 // root. When a thread encounters a teams construct, it will add a new 2402 // entry to the front of its list, because it now roots a new CG. 2403 typedef struct kmp_cg_root { 2404 kmp_info_p *cg_root; // "root" thread for a contention group 2405 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or 2406 // thread_limit clause for teams masters 2407 kmp_int32 cg_thread_limit; 2408 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root 2409 struct kmp_cg_root *up; // pointer to higher level CG root in list 2410 } kmp_cg_root_t; 2411 2412 // OpenMP thread data structures 2413 2414 typedef struct KMP_ALIGN_CACHE kmp_base_info { 2415 /* Start with the readonly data which is cache aligned and padded. This is 2416 written before the thread starts working by the master. Uber masters may 2417 update themselves later. Usage does not consider serialized regions. */ 2418 kmp_desc_t th_info; 2419 kmp_team_p *th_team; /* team we belong to */ 2420 kmp_root_p *th_root; /* pointer to root of task hierarchy */ 2421 kmp_info_p *th_next_pool; /* next available thread in the pool */ 2422 kmp_disp_t *th_dispatch; /* thread's dispatch data */ 2423 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */ 2424 2425 /* The following are cached from the team info structure */ 2426 /* TODO use these in more places as determined to be needed via profiling */ 2427 int th_team_nproc; /* number of threads in a team */ 2428 kmp_info_p *th_team_master; /* the team's master thread */ 2429 int th_team_serialized; /* team is serialized */ 2430 microtask_t th_teams_microtask; /* save entry address for teams construct */ 2431 int th_teams_level; /* save initial level of teams construct */ 2432 /* it is 0 on device but may be any on host */ 2433 2434 /* The blocktime info is copied from the team struct to the thread struct */ 2435 /* at the start of a barrier, and the values stored in the team are used */ 2436 /* at points in the code where the team struct is no longer guaranteed */ 2437 /* to exist (from the POV of worker threads). */ 2438 #if KMP_USE_MONITOR 2439 int th_team_bt_intervals; 2440 int th_team_bt_set; 2441 #else 2442 kmp_uint64 th_team_bt_intervals; 2443 #endif 2444 2445 #if KMP_AFFINITY_SUPPORTED 2446 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */ 2447 #endif 2448 omp_allocator_handle_t th_def_allocator; /* default allocator */ 2449 /* The data set by the master at reinit, then R/W by the worker */ 2450 KMP_ALIGN_CACHE int 2451 th_set_nproc; /* if > 0, then only use this request for the next fork */ 2452 #if KMP_NESTED_HOT_TEAMS 2453 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */ 2454 #endif 2455 kmp_proc_bind_t 2456 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */ 2457 kmp_teams_size_t 2458 th_teams_size; /* number of teams/threads in teams construct */ 2459 #if KMP_AFFINITY_SUPPORTED 2460 int th_current_place; /* place currently bound to */ 2461 int th_new_place; /* place to bind to in par reg */ 2462 int th_first_place; /* first place in partition */ 2463 int th_last_place; /* last place in partition */ 2464 #endif 2465 int th_prev_level; /* previous level for affinity format */ 2466 int th_prev_num_threads; /* previous num_threads for affinity format */ 2467 #if USE_ITT_BUILD 2468 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */ 2469 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */ 2470 kmp_uint64 th_frame_time; /* frame timestamp */ 2471 #endif /* USE_ITT_BUILD */ 2472 kmp_local_t th_local; 2473 struct private_common *th_pri_head; 2474 2475 /* Now the data only used by the worker (after initial allocation) */ 2476 /* TODO the first serial team should actually be stored in the info_t 2477 structure. this will help reduce initial allocation overhead */ 2478 KMP_ALIGN_CACHE kmp_team_p 2479 *th_serial_team; /*serialized team held in reserve*/ 2480 2481 #if OMPT_SUPPORT 2482 ompt_thread_info_t ompt_thread_info; 2483 #endif 2484 2485 /* The following are also read by the master during reinit */ 2486 struct common_table *th_pri_common; 2487 2488 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */ 2489 /* while awaiting queuing lock acquire */ 2490 2491 volatile void *th_sleep_loc; // this points at a kmp_flag<T> 2492 2493 ident_t *th_ident; 2494 unsigned th_x; // Random number generator data 2495 unsigned th_a; // Random number generator data 2496 2497 /* Tasking-related data for the thread */ 2498 kmp_task_team_t *th_task_team; // Task team struct 2499 kmp_taskdata_t *th_current_task; // Innermost Task being executed 2500 kmp_uint8 th_task_state; // alternating 0/1 for task team identification 2501 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state 2502 // at nested levels 2503 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack 2504 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack 2505 kmp_uint32 th_reap_state; // Non-zero indicates thread is not 2506 // tasking, thus safe to reap 2507 2508 /* More stuff for keeping track of active/sleeping threads (this part is 2509 written by the worker thread) */ 2510 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool 2511 int th_active; // ! sleeping; 32 bits for TCR/TCW 2512 struct cons_header *th_cons; // used for consistency check 2513 #if KMP_USE_HIER_SCHED 2514 // used for hierarchical scheduling 2515 kmp_hier_private_bdata_t *th_hier_bar_data; 2516 #endif 2517 2518 /* Add the syncronizing data which is cache aligned and padded. */ 2519 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier]; 2520 2521 KMP_ALIGN_CACHE volatile kmp_int32 2522 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */ 2523 2524 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5) 2525 #define NUM_LISTS 4 2526 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory 2527 // allocation routines 2528 #endif 2529 2530 #if KMP_OS_WINDOWS 2531 kmp_win32_cond_t th_suspend_cv; 2532 kmp_win32_mutex_t th_suspend_mx; 2533 std::atomic<int> th_suspend_init; 2534 #endif 2535 #if KMP_OS_UNIX 2536 kmp_cond_align_t th_suspend_cv; 2537 kmp_mutex_align_t th_suspend_mx; 2538 std::atomic<int> th_suspend_init_count; 2539 #endif 2540 2541 #if USE_ITT_BUILD 2542 kmp_itt_mark_t th_itt_mark_single; 2543 // alignment ??? 2544 #endif /* USE_ITT_BUILD */ 2545 #if KMP_STATS_ENABLED 2546 kmp_stats_list *th_stats; 2547 #endif 2548 #if KMP_OS_UNIX 2549 std::atomic<bool> th_blocking; 2550 #endif 2551 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread 2552 } kmp_base_info_t; 2553 2554 typedef union KMP_ALIGN_CACHE kmp_info { 2555 double th_align; /* use worst case alignment */ 2556 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)]; 2557 kmp_base_info_t th; 2558 } kmp_info_t; 2559 2560 // OpenMP thread team data structures 2561 2562 typedef struct kmp_base_data { volatile kmp_uint32 t_value; } kmp_base_data_t; 2563 2564 typedef union KMP_ALIGN_CACHE kmp_sleep_team { 2565 double dt_align; /* use worst case alignment */ 2566 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2567 kmp_base_data_t dt; 2568 } kmp_sleep_team_t; 2569 2570 typedef union KMP_ALIGN_CACHE kmp_ordered_team { 2571 double dt_align; /* use worst case alignment */ 2572 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2573 kmp_base_data_t dt; 2574 } kmp_ordered_team_t; 2575 2576 typedef int (*launch_t)(int gtid); 2577 2578 /* Minimum number of ARGV entries to malloc if necessary */ 2579 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100 2580 2581 // Set up how many argv pointers will fit in cache lines containing 2582 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a 2583 // larger value for more space between the master write/worker read section and 2584 // read/write by all section seems to buy more performance on EPCC PARALLEL. 2585 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2586 #define KMP_INLINE_ARGV_BYTES \ 2587 (4 * CACHE_LINE - \ 2588 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \ 2589 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \ 2590 CACHE_LINE)) 2591 #else 2592 #define KMP_INLINE_ARGV_BYTES \ 2593 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE)) 2594 #endif 2595 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP) 2596 2597 typedef struct KMP_ALIGN_CACHE kmp_base_team { 2598 // Synchronization Data 2599 // --------------------------------------------------------------------------- 2600 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered; 2601 kmp_balign_team_t t_bar[bs_last_barrier]; 2602 std::atomic<int> t_construct; // count of single directive encountered by team 2603 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron 2604 2605 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups 2606 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier 2607 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions 2608 2609 // Master only 2610 // --------------------------------------------------------------------------- 2611 KMP_ALIGN_CACHE int t_master_tid; // tid of master in parent team 2612 int t_master_this_cons; // "this_construct" single counter of master in parent 2613 // team 2614 ident_t *t_ident; // if volatile, have to change too much other crud to 2615 // volatile too 2616 kmp_team_p *t_parent; // parent team 2617 kmp_team_p *t_next_pool; // next free team in the team pool 2618 kmp_disp_t *t_dispatch; // thread's dispatch data 2619 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2 2620 kmp_proc_bind_t t_proc_bind; // bind type for par region 2621 #if USE_ITT_BUILD 2622 kmp_uint64 t_region_time; // region begin timestamp 2623 #endif /* USE_ITT_BUILD */ 2624 2625 // Master write, workers read 2626 // -------------------------------------------------------------------------- 2627 KMP_ALIGN_CACHE void **t_argv; 2628 int t_argc; 2629 int t_nproc; // number of threads in team 2630 microtask_t t_pkfn; 2631 launch_t t_invoke; // procedure to launch the microtask 2632 2633 #if OMPT_SUPPORT 2634 ompt_team_info_t ompt_team_info; 2635 ompt_lw_taskteam_t *ompt_serialized_team_info; 2636 #endif 2637 2638 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2639 kmp_int8 t_fp_control_saved; 2640 kmp_int8 t_pad2b; 2641 kmp_int16 t_x87_fpu_control_word; // FP control regs 2642 kmp_uint32 t_mxcsr; 2643 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2644 2645 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES]; 2646 2647 KMP_ALIGN_CACHE kmp_info_t **t_threads; 2648 kmp_taskdata_t 2649 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task 2650 int t_level; // nested parallel level 2651 2652 KMP_ALIGN_CACHE int t_max_argc; 2653 int t_max_nproc; // max threads this team can handle (dynamically expandable) 2654 int t_serialized; // levels deep of serialized teams 2655 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system 2656 int t_id; // team's id, assigned by debugger. 2657 int t_active_level; // nested active parallel level 2658 kmp_r_sched_t t_sched; // run-time schedule for the team 2659 #if KMP_AFFINITY_SUPPORTED 2660 int t_first_place; // first & last place in parent thread's partition. 2661 int t_last_place; // Restore these values to master after par region. 2662 #endif // KMP_AFFINITY_SUPPORTED 2663 int t_display_affinity; 2664 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via 2665 // omp_set_num_threads() call 2666 omp_allocator_handle_t t_def_allocator; /* default allocator */ 2667 2668 // Read/write by workers as well 2669 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 2670 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf 2671 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra 2672 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when 2673 // CACHE_LINE=64. TODO: investigate more and get rid if this padding. 2674 char dummy_padding[1024]; 2675 #endif 2676 // Internal control stack for additional nested teams. 2677 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top; 2678 // for SERIALIZED teams nested 2 or more levels deep 2679 // typed flag to store request state of cancellation 2680 std::atomic<kmp_int32> t_cancel_request; 2681 int t_master_active; // save on fork, restore on join 2682 void *t_copypriv_data; // team specific pointer to copyprivate data array 2683 #if KMP_OS_WINDOWS 2684 std::atomic<kmp_uint32> t_copyin_counter; 2685 #endif 2686 #if USE_ITT_BUILD 2687 void *t_stack_id; // team specific stack stitching id (for ittnotify) 2688 #endif /* USE_ITT_BUILD */ 2689 } kmp_base_team_t; 2690 2691 union KMP_ALIGN_CACHE kmp_team { 2692 kmp_base_team_t t; 2693 double t_align; /* use worst case alignment */ 2694 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)]; 2695 }; 2696 2697 typedef union KMP_ALIGN_CACHE kmp_time_global { 2698 double dt_align; /* use worst case alignment */ 2699 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2700 kmp_base_data_t dt; 2701 } kmp_time_global_t; 2702 2703 typedef struct kmp_base_global { 2704 /* cache-aligned */ 2705 kmp_time_global_t g_time; 2706 2707 /* non cache-aligned */ 2708 volatile int g_abort; 2709 volatile int g_done; 2710 2711 int g_dynamic; 2712 enum dynamic_mode g_dynamic_mode; 2713 } kmp_base_global_t; 2714 2715 typedef union KMP_ALIGN_CACHE kmp_global { 2716 kmp_base_global_t g; 2717 double g_align; /* use worst case alignment */ 2718 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)]; 2719 } kmp_global_t; 2720 2721 typedef struct kmp_base_root { 2722 // TODO: GEH - combine r_active with r_in_parallel then r_active == 2723 // (r_in_parallel>= 0) 2724 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce 2725 // the synch overhead or keeping r_active 2726 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */ 2727 // keeps a count of active parallel regions per root 2728 std::atomic<int> r_in_parallel; 2729 // GEH: This is misnamed, should be r_active_levels 2730 kmp_team_t *r_root_team; 2731 kmp_team_t *r_hot_team; 2732 kmp_info_t *r_uber_thread; 2733 kmp_lock_t r_begin_lock; 2734 volatile int r_begin; 2735 int r_blocktime; /* blocktime for this root and descendants */ 2736 } kmp_base_root_t; 2737 2738 typedef union KMP_ALIGN_CACHE kmp_root { 2739 kmp_base_root_t r; 2740 double r_align; /* use worst case alignment */ 2741 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)]; 2742 } kmp_root_t; 2743 2744 struct fortran_inx_info { 2745 kmp_int32 data; 2746 }; 2747 2748 /* ------------------------------------------------------------------------ */ 2749 2750 extern int __kmp_settings; 2751 extern int __kmp_duplicate_library_ok; 2752 #if USE_ITT_BUILD 2753 extern int __kmp_forkjoin_frames; 2754 extern int __kmp_forkjoin_frames_mode; 2755 #endif 2756 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method; 2757 extern int __kmp_determ_red; 2758 2759 #ifdef KMP_DEBUG 2760 extern int kmp_a_debug; 2761 extern int kmp_b_debug; 2762 extern int kmp_c_debug; 2763 extern int kmp_d_debug; 2764 extern int kmp_e_debug; 2765 extern int kmp_f_debug; 2766 #endif /* KMP_DEBUG */ 2767 2768 /* For debug information logging using rotating buffer */ 2769 #define KMP_DEBUG_BUF_LINES_INIT 512 2770 #define KMP_DEBUG_BUF_LINES_MIN 1 2771 2772 #define KMP_DEBUG_BUF_CHARS_INIT 128 2773 #define KMP_DEBUG_BUF_CHARS_MIN 2 2774 2775 extern int 2776 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */ 2777 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */ 2778 extern int 2779 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */ 2780 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer 2781 entry pointer */ 2782 2783 extern char *__kmp_debug_buffer; /* Debug buffer itself */ 2784 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines 2785 printed in buffer so far */ 2786 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase 2787 recommended in warnings */ 2788 /* end rotating debug buffer */ 2789 2790 #ifdef KMP_DEBUG 2791 extern int __kmp_par_range; /* +1 => only go par for constructs in range */ 2792 2793 #define KMP_PAR_RANGE_ROUTINE_LEN 1024 2794 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN]; 2795 #define KMP_PAR_RANGE_FILENAME_LEN 1024 2796 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN]; 2797 extern int __kmp_par_range_lb; 2798 extern int __kmp_par_range_ub; 2799 #endif 2800 2801 /* For printing out dynamic storage map for threads and teams */ 2802 extern int 2803 __kmp_storage_map; /* True means print storage map for threads and teams */ 2804 extern int __kmp_storage_map_verbose; /* True means storage map includes 2805 placement info */ 2806 extern int __kmp_storage_map_verbose_specified; 2807 2808 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2809 extern kmp_cpuinfo_t __kmp_cpuinfo; 2810 #endif 2811 2812 extern volatile int __kmp_init_serial; 2813 extern volatile int __kmp_init_gtid; 2814 extern volatile int __kmp_init_common; 2815 extern volatile int __kmp_init_middle; 2816 extern volatile int __kmp_init_parallel; 2817 #if KMP_USE_MONITOR 2818 extern volatile int __kmp_init_monitor; 2819 #endif 2820 extern volatile int __kmp_init_user_locks; 2821 extern int __kmp_init_counter; 2822 extern int __kmp_root_counter; 2823 extern int __kmp_version; 2824 2825 /* list of address of allocated caches for commons */ 2826 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list; 2827 2828 /* Barrier algorithm types and options */ 2829 extern kmp_uint32 __kmp_barrier_gather_bb_dflt; 2830 extern kmp_uint32 __kmp_barrier_release_bb_dflt; 2831 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt; 2832 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt; 2833 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier]; 2834 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier]; 2835 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier]; 2836 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier]; 2837 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier]; 2838 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier]; 2839 extern char const *__kmp_barrier_type_name[bs_last_barrier]; 2840 extern char const *__kmp_barrier_pattern_name[bp_last_bar]; 2841 2842 /* Global Locks */ 2843 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */ 2844 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */ 2845 extern kmp_bootstrap_lock_t __kmp_task_team_lock; 2846 extern kmp_bootstrap_lock_t 2847 __kmp_exit_lock; /* exit() is not always thread-safe */ 2848 #if KMP_USE_MONITOR 2849 extern kmp_bootstrap_lock_t 2850 __kmp_monitor_lock; /* control monitor thread creation */ 2851 #endif 2852 extern kmp_bootstrap_lock_t 2853 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and 2854 __kmp_threads expansion to co-exist */ 2855 2856 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */ 2857 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */ 2858 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */ 2859 2860 extern enum library_type __kmp_library; 2861 2862 extern enum sched_type __kmp_sched; /* default runtime scheduling */ 2863 extern enum sched_type __kmp_static; /* default static scheduling method */ 2864 extern enum sched_type __kmp_guided; /* default guided scheduling method */ 2865 extern enum sched_type __kmp_auto; /* default auto scheduling method */ 2866 extern int __kmp_chunk; /* default runtime chunk size */ 2867 2868 extern size_t __kmp_stksize; /* stack size per thread */ 2869 #if KMP_USE_MONITOR 2870 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */ 2871 #endif 2872 extern size_t __kmp_stkoffset; /* stack offset per thread */ 2873 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */ 2874 2875 extern size_t 2876 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */ 2877 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */ 2878 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */ 2879 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */ 2880 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified? 2881 extern int __kmp_generate_warnings; /* should we issue warnings? */ 2882 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */ 2883 2884 #ifdef DEBUG_SUSPEND 2885 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */ 2886 #endif 2887 2888 extern kmp_int32 __kmp_use_yield; 2889 extern kmp_int32 __kmp_use_yield_exp_set; 2890 extern kmp_uint32 __kmp_yield_init; 2891 extern kmp_uint32 __kmp_yield_next; 2892 2893 /* ------------------------------------------------------------------------- */ 2894 extern int __kmp_allThreadsSpecified; 2895 2896 extern size_t __kmp_align_alloc; 2897 /* following data protected by initialization routines */ 2898 extern int __kmp_xproc; /* number of processors in the system */ 2899 extern int __kmp_avail_proc; /* number of processors available to the process */ 2900 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */ 2901 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */ 2902 // maximum total number of concurrently-existing threads on device 2903 extern int __kmp_max_nth; 2904 // maximum total number of concurrently-existing threads in a contention group 2905 extern int __kmp_cg_max_nth; 2906 extern int __kmp_teams_max_nth; // max threads used in a teams construct 2907 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and 2908 __kmp_root */ 2909 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel 2910 region a la OMP_NUM_THREADS */ 2911 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial 2912 initialization */ 2913 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is 2914 used (fixed) */ 2915 extern int __kmp_tp_cached; /* whether threadprivate cache has been created 2916 (__kmpc_threadprivate_cached()) */ 2917 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before 2918 blocking (env setting) */ 2919 #if KMP_USE_MONITOR 2920 extern int 2921 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */ 2922 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before 2923 blocking */ 2924 #endif 2925 #ifdef KMP_ADJUST_BLOCKTIME 2926 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */ 2927 #endif /* KMP_ADJUST_BLOCKTIME */ 2928 #ifdef KMP_DFLT_NTH_CORES 2929 extern int __kmp_ncores; /* Total number of cores for threads placement */ 2930 #endif 2931 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */ 2932 extern int __kmp_abort_delay; 2933 2934 extern int __kmp_need_register_atfork_specified; 2935 extern int 2936 __kmp_need_register_atfork; /* At initialization, call pthread_atfork to 2937 install fork handler */ 2938 extern int __kmp_gtid_mode; /* Method of getting gtid, values: 2939 0 - not set, will be set at runtime 2940 1 - using stack search 2941 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS 2942 X*) or TlsGetValue(Windows* OS)) 2943 3 - static TLS (__declspec(thread) __kmp_gtid), 2944 Linux* OS .so only. */ 2945 extern int 2946 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */ 2947 #ifdef KMP_TDATA_GTID 2948 extern KMP_THREAD_LOCAL int __kmp_gtid; 2949 #endif 2950 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */ 2951 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread 2952 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2953 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork 2954 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg 2955 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */ 2956 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2957 2958 // max_active_levels for nested parallelism enabled by default via 2959 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND 2960 extern int __kmp_dflt_max_active_levels; 2961 // Indicates whether value of __kmp_dflt_max_active_levels was already 2962 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false 2963 extern bool __kmp_dflt_max_active_levels_set; 2964 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in 2965 concurrent execution per team */ 2966 #if KMP_NESTED_HOT_TEAMS 2967 extern int __kmp_hot_teams_mode; 2968 extern int __kmp_hot_teams_max_level; 2969 #endif 2970 2971 #if KMP_OS_LINUX 2972 extern enum clock_function_type __kmp_clock_function; 2973 extern int __kmp_clock_function_param; 2974 #endif /* KMP_OS_LINUX */ 2975 2976 #if KMP_MIC_SUPPORTED 2977 extern enum mic_type __kmp_mic_type; 2978 #endif 2979 2980 #ifdef USE_LOAD_BALANCE 2981 extern double __kmp_load_balance_interval; // load balance algorithm interval 2982 #endif /* USE_LOAD_BALANCE */ 2983 2984 // OpenMP 3.1 - Nested num threads array 2985 typedef struct kmp_nested_nthreads_t { 2986 int *nth; 2987 int size; 2988 int used; 2989 } kmp_nested_nthreads_t; 2990 2991 extern kmp_nested_nthreads_t __kmp_nested_nth; 2992 2993 #if KMP_USE_ADAPTIVE_LOCKS 2994 2995 // Parameters for the speculative lock backoff system. 2996 struct kmp_adaptive_backoff_params_t { 2997 // Number of soft retries before it counts as a hard retry. 2998 kmp_uint32 max_soft_retries; 2999 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to 3000 // the right 3001 kmp_uint32 max_badness; 3002 }; 3003 3004 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params; 3005 3006 #if KMP_DEBUG_ADAPTIVE_LOCKS 3007 extern const char *__kmp_speculative_statsfile; 3008 #endif 3009 3010 #endif // KMP_USE_ADAPTIVE_LOCKS 3011 3012 extern int __kmp_display_env; /* TRUE or FALSE */ 3013 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */ 3014 extern int __kmp_omp_cancellation; /* TRUE or FALSE */ 3015 3016 /* ------------------------------------------------------------------------- */ 3017 3018 /* the following are protected by the fork/join lock */ 3019 /* write: lock read: anytime */ 3020 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */ 3021 /* read/write: lock */ 3022 extern volatile kmp_team_t *__kmp_team_pool; 3023 extern volatile kmp_info_t *__kmp_thread_pool; 3024 extern kmp_info_t *__kmp_thread_pool_insert_pt; 3025 3026 // total num threads reachable from some root thread including all root threads 3027 extern volatile int __kmp_nth; 3028 /* total number of threads reachable from some root thread including all root 3029 threads, and those in the thread pool */ 3030 extern volatile int __kmp_all_nth; 3031 extern std::atomic<int> __kmp_thread_pool_active_nth; 3032 3033 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */ 3034 /* end data protected by fork/join lock */ 3035 /* ------------------------------------------------------------------------- */ 3036 3037 #define __kmp_get_gtid() __kmp_get_global_thread_id() 3038 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg() 3039 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid())) 3040 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team) 3041 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid())) 3042 3043 // AT: Which way is correct? 3044 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc; 3045 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc; 3046 #define __kmp_get_team_num_threads(gtid) \ 3047 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc) 3048 3049 static inline bool KMP_UBER_GTID(int gtid) { 3050 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN); 3051 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity); 3052 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] && 3053 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread); 3054 } 3055 3056 static inline int __kmp_tid_from_gtid(int gtid) { 3057 KMP_DEBUG_ASSERT(gtid >= 0); 3058 return __kmp_threads[gtid]->th.th_info.ds.ds_tid; 3059 } 3060 3061 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) { 3062 KMP_DEBUG_ASSERT(tid >= 0 && team); 3063 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid; 3064 } 3065 3066 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) { 3067 KMP_DEBUG_ASSERT(thr); 3068 return thr->th.th_info.ds.ds_gtid; 3069 } 3070 3071 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) { 3072 KMP_DEBUG_ASSERT(gtid >= 0); 3073 return __kmp_threads[gtid]; 3074 } 3075 3076 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) { 3077 KMP_DEBUG_ASSERT(gtid >= 0); 3078 return __kmp_threads[gtid]->th.th_team; 3079 } 3080 3081 /* ------------------------------------------------------------------------- */ 3082 3083 extern kmp_global_t __kmp_global; /* global status */ 3084 3085 extern kmp_info_t __kmp_monitor; 3086 // For Debugging Support Library 3087 extern std::atomic<kmp_int32> __kmp_team_counter; 3088 // For Debugging Support Library 3089 extern std::atomic<kmp_int32> __kmp_task_counter; 3090 3091 #if USE_DEBUGGER 3092 #define _KMP_GEN_ID(counter) \ 3093 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0) 3094 #else 3095 #define _KMP_GEN_ID(counter) (~0) 3096 #endif /* USE_DEBUGGER */ 3097 3098 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter) 3099 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter) 3100 3101 /* ------------------------------------------------------------------------ */ 3102 3103 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, 3104 size_t size, char const *format, ...); 3105 3106 extern void __kmp_serial_initialize(void); 3107 extern void __kmp_middle_initialize(void); 3108 extern void __kmp_parallel_initialize(void); 3109 3110 extern void __kmp_internal_begin(void); 3111 extern void __kmp_internal_end_library(int gtid); 3112 extern void __kmp_internal_end_thread(int gtid); 3113 extern void __kmp_internal_end_atexit(void); 3114 extern void __kmp_internal_end_dtor(void); 3115 extern void __kmp_internal_end_dest(void *); 3116 3117 extern int __kmp_register_root(int initial_thread); 3118 extern void __kmp_unregister_root(int gtid); 3119 3120 extern int __kmp_ignore_mppbeg(void); 3121 extern int __kmp_ignore_mppend(void); 3122 3123 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws); 3124 extern void __kmp_exit_single(int gtid); 3125 3126 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref); 3127 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref); 3128 3129 #ifdef USE_LOAD_BALANCE 3130 extern int __kmp_get_load_balance(int); 3131 #endif 3132 3133 extern int __kmp_get_global_thread_id(void); 3134 extern int __kmp_get_global_thread_id_reg(void); 3135 extern void __kmp_exit_thread(int exit_status); 3136 extern void __kmp_abort(char const *format, ...); 3137 extern void __kmp_abort_thread(void); 3138 KMP_NORETURN extern void __kmp_abort_process(void); 3139 extern void __kmp_warn(char const *format, ...); 3140 3141 extern void __kmp_set_num_threads(int new_nth, int gtid); 3142 3143 // Returns current thread (pointer to kmp_info_t). Current thread *must* be 3144 // registered. 3145 static inline kmp_info_t *__kmp_entry_thread() { 3146 int gtid = __kmp_entry_gtid(); 3147 3148 return __kmp_threads[gtid]; 3149 } 3150 3151 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels); 3152 extern int __kmp_get_max_active_levels(int gtid); 3153 extern int __kmp_get_ancestor_thread_num(int gtid, int level); 3154 extern int __kmp_get_team_size(int gtid, int level); 3155 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk); 3156 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk); 3157 3158 extern unsigned short __kmp_get_random(kmp_info_t *thread); 3159 extern void __kmp_init_random(kmp_info_t *thread); 3160 3161 extern kmp_r_sched_t __kmp_get_schedule_global(void); 3162 extern void __kmp_adjust_num_threads(int new_nproc); 3163 extern void __kmp_check_stksize(size_t *val); 3164 3165 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL); 3166 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL); 3167 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL); 3168 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR) 3169 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR) 3170 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR) 3171 3172 #if USE_FAST_MEMORY 3173 extern void *___kmp_fast_allocate(kmp_info_t *this_thr, 3174 size_t size KMP_SRC_LOC_DECL); 3175 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL); 3176 extern void __kmp_free_fast_memory(kmp_info_t *this_thr); 3177 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr); 3178 #define __kmp_fast_allocate(this_thr, size) \ 3179 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR) 3180 #define __kmp_fast_free(this_thr, ptr) \ 3181 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR) 3182 #endif 3183 3184 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL); 3185 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem, 3186 size_t elsize KMP_SRC_LOC_DECL); 3187 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr, 3188 size_t size KMP_SRC_LOC_DECL); 3189 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL); 3190 #define __kmp_thread_malloc(th, size) \ 3191 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR) 3192 #define __kmp_thread_calloc(th, nelem, elsize) \ 3193 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR) 3194 #define __kmp_thread_realloc(th, ptr, size) \ 3195 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR) 3196 #define __kmp_thread_free(th, ptr) \ 3197 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR) 3198 3199 #define KMP_INTERNAL_MALLOC(sz) malloc(sz) 3200 #define KMP_INTERNAL_FREE(p) free(p) 3201 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz)) 3202 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz)) 3203 3204 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads); 3205 3206 extern void __kmp_push_proc_bind(ident_t *loc, int gtid, 3207 kmp_proc_bind_t proc_bind); 3208 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams, 3209 int num_threads); 3210 3211 extern void __kmp_yield(); 3212 3213 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 3214 enum sched_type schedule, kmp_int32 lb, 3215 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk); 3216 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 3217 enum sched_type schedule, kmp_uint32 lb, 3218 kmp_uint32 ub, kmp_int32 st, 3219 kmp_int32 chunk); 3220 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 3221 enum sched_type schedule, kmp_int64 lb, 3222 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk); 3223 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 3224 enum sched_type schedule, kmp_uint64 lb, 3225 kmp_uint64 ub, kmp_int64 st, 3226 kmp_int64 chunk); 3227 3228 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, 3229 kmp_int32 *p_last, kmp_int32 *p_lb, 3230 kmp_int32 *p_ub, kmp_int32 *p_st); 3231 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, 3232 kmp_int32 *p_last, kmp_uint32 *p_lb, 3233 kmp_uint32 *p_ub, kmp_int32 *p_st); 3234 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, 3235 kmp_int32 *p_last, kmp_int64 *p_lb, 3236 kmp_int64 *p_ub, kmp_int64 *p_st); 3237 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, 3238 kmp_int32 *p_last, kmp_uint64 *p_lb, 3239 kmp_uint64 *p_ub, kmp_int64 *p_st); 3240 3241 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid); 3242 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid); 3243 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid); 3244 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid); 3245 3246 #ifdef KMP_GOMP_COMPAT 3247 3248 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 3249 enum sched_type schedule, kmp_int32 lb, 3250 kmp_int32 ub, kmp_int32 st, 3251 kmp_int32 chunk, int push_ws); 3252 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 3253 enum sched_type schedule, kmp_uint32 lb, 3254 kmp_uint32 ub, kmp_int32 st, 3255 kmp_int32 chunk, int push_ws); 3256 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 3257 enum sched_type schedule, kmp_int64 lb, 3258 kmp_int64 ub, kmp_int64 st, 3259 kmp_int64 chunk, int push_ws); 3260 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 3261 enum sched_type schedule, kmp_uint64 lb, 3262 kmp_uint64 ub, kmp_int64 st, 3263 kmp_int64 chunk, int push_ws); 3264 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid); 3265 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid); 3266 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid); 3267 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid); 3268 3269 #endif /* KMP_GOMP_COMPAT */ 3270 3271 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker); 3272 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker); 3273 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker); 3274 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker); 3275 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker); 3276 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker, 3277 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32), 3278 void *obj); 3279 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker, 3280 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj); 3281 3282 class kmp_flag_32; 3283 class kmp_flag_64; 3284 class kmp_flag_oncore; 3285 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64 *flag, 3286 int final_spin 3287 #if USE_ITT_BUILD 3288 , 3289 void *itt_sync_obj 3290 #endif 3291 ); 3292 extern void __kmp_release_64(kmp_flag_64 *flag); 3293 3294 extern void __kmp_infinite_loop(void); 3295 3296 extern void __kmp_cleanup(void); 3297 3298 #if KMP_HANDLE_SIGNALS 3299 extern int __kmp_handle_signals; 3300 extern void __kmp_install_signals(int parallel_init); 3301 extern void __kmp_remove_signals(void); 3302 #endif 3303 3304 extern void __kmp_clear_system_time(void); 3305 extern void __kmp_read_system_time(double *delta); 3306 3307 extern void __kmp_check_stack_overlap(kmp_info_t *thr); 3308 3309 extern void __kmp_expand_host_name(char *buffer, size_t size); 3310 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern); 3311 3312 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 3313 extern void 3314 __kmp_initialize_system_tick(void); /* Initialize timer tick value */ 3315 #endif 3316 3317 extern void 3318 __kmp_runtime_initialize(void); /* machine specific initialization */ 3319 extern void __kmp_runtime_destroy(void); 3320 3321 #if KMP_AFFINITY_SUPPORTED 3322 extern char *__kmp_affinity_print_mask(char *buf, int buf_len, 3323 kmp_affin_mask_t *mask); 3324 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 3325 kmp_affin_mask_t *mask); 3326 extern void __kmp_affinity_initialize(void); 3327 extern void __kmp_affinity_uninitialize(void); 3328 extern void __kmp_affinity_set_init_mask( 3329 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */ 3330 extern void __kmp_affinity_set_place(int gtid); 3331 extern void __kmp_affinity_determine_capable(const char *env_var); 3332 extern int __kmp_aux_set_affinity(void **mask); 3333 extern int __kmp_aux_get_affinity(void **mask); 3334 extern int __kmp_aux_get_affinity_max_proc(); 3335 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask); 3336 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask); 3337 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask); 3338 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size); 3339 #if KMP_OS_LINUX || KMP_OS_FREEBSD 3340 extern int kmp_set_thread_affinity_mask_initial(void); 3341 #endif 3342 #endif /* KMP_AFFINITY_SUPPORTED */ 3343 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the 3344 // format string is for affinity, so platforms that do not support 3345 // affinity can still use the other fields, e.g., %n for num_threads 3346 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format, 3347 kmp_str_buf_t *buffer); 3348 extern void __kmp_aux_display_affinity(int gtid, const char *format); 3349 3350 extern void __kmp_cleanup_hierarchy(); 3351 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar); 3352 3353 #if KMP_USE_FUTEX 3354 3355 extern int __kmp_futex_determine_capable(void); 3356 3357 #endif // KMP_USE_FUTEX 3358 3359 extern void __kmp_gtid_set_specific(int gtid); 3360 extern int __kmp_gtid_get_specific(void); 3361 3362 extern double __kmp_read_cpu_time(void); 3363 3364 extern int __kmp_read_system_info(struct kmp_sys_info *info); 3365 3366 #if KMP_USE_MONITOR 3367 extern void __kmp_create_monitor(kmp_info_t *th); 3368 #endif 3369 3370 extern void *__kmp_launch_thread(kmp_info_t *thr); 3371 3372 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size); 3373 3374 #if KMP_OS_WINDOWS 3375 extern int __kmp_still_running(kmp_info_t *th); 3376 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val); 3377 extern void __kmp_free_handle(kmp_thread_t tHandle); 3378 #endif 3379 3380 #if KMP_USE_MONITOR 3381 extern void __kmp_reap_monitor(kmp_info_t *th); 3382 #endif 3383 extern void __kmp_reap_worker(kmp_info_t *th); 3384 extern void __kmp_terminate_thread(int gtid); 3385 3386 extern int __kmp_try_suspend_mx(kmp_info_t *th); 3387 extern void __kmp_lock_suspend_mx(kmp_info_t *th); 3388 extern void __kmp_unlock_suspend_mx(kmp_info_t *th); 3389 3390 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag); 3391 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag); 3392 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag); 3393 extern void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag); 3394 extern void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag); 3395 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag); 3396 3397 extern void __kmp_elapsed(double *); 3398 extern void __kmp_elapsed_tick(double *); 3399 3400 extern void __kmp_enable(int old_state); 3401 extern void __kmp_disable(int *old_state); 3402 3403 extern void __kmp_thread_sleep(int millis); 3404 3405 extern void __kmp_common_initialize(void); 3406 extern void __kmp_common_destroy(void); 3407 extern void __kmp_common_destroy_gtid(int gtid); 3408 3409 #if KMP_OS_UNIX 3410 extern void __kmp_register_atfork(void); 3411 #endif 3412 extern void __kmp_suspend_initialize(void); 3413 extern void __kmp_suspend_initialize_thread(kmp_info_t *th); 3414 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th); 3415 3416 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 3417 int tid); 3418 extern kmp_team_t * 3419 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 3420 #if OMPT_SUPPORT 3421 ompt_data_t ompt_parallel_data, 3422 #endif 3423 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs, 3424 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr)); 3425 extern void __kmp_free_thread(kmp_info_t *); 3426 extern void __kmp_free_team(kmp_root_t *, 3427 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *)); 3428 extern kmp_team_t *__kmp_reap_team(kmp_team_t *); 3429 3430 /* ------------------------------------------------------------------------ */ 3431 3432 extern void __kmp_initialize_bget(kmp_info_t *th); 3433 extern void __kmp_finalize_bget(kmp_info_t *th); 3434 3435 KMP_EXPORT void *kmpc_malloc(size_t size); 3436 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment); 3437 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize); 3438 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size); 3439 KMP_EXPORT void kmpc_free(void *ptr); 3440 3441 /* declarations for internal use */ 3442 3443 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split, 3444 size_t reduce_size, void *reduce_data, 3445 void (*reduce)(void *, void *)); 3446 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid); 3447 extern int __kmp_barrier_gomp_cancel(int gtid); 3448 3449 /*! 3450 * Tell the fork call which compiler generated the fork call, and therefore how 3451 * to deal with the call. 3452 */ 3453 enum fork_context_e { 3454 fork_context_gnu, /**< Called from GNU generated code, so must not invoke the 3455 microtask internally. */ 3456 fork_context_intel, /**< Called from Intel generated code. */ 3457 fork_context_last 3458 }; 3459 extern int __kmp_fork_call(ident_t *loc, int gtid, 3460 enum fork_context_e fork_context, kmp_int32 argc, 3461 microtask_t microtask, launch_t invoker, 3462 kmp_va_list ap); 3463 3464 extern void __kmp_join_call(ident_t *loc, int gtid 3465 #if OMPT_SUPPORT 3466 , 3467 enum fork_context_e fork_context 3468 #endif 3469 , 3470 int exit_teams = 0); 3471 3472 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid); 3473 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team); 3474 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team); 3475 extern int __kmp_invoke_task_func(int gtid); 3476 extern void __kmp_run_before_invoked_task(int gtid, int tid, 3477 kmp_info_t *this_thr, 3478 kmp_team_t *team); 3479 extern void __kmp_run_after_invoked_task(int gtid, int tid, 3480 kmp_info_t *this_thr, 3481 kmp_team_t *team); 3482 3483 // should never have been exported 3484 KMP_EXPORT int __kmpc_invoke_task_func(int gtid); 3485 extern int __kmp_invoke_teams_master(int gtid); 3486 extern void __kmp_teams_master(int gtid); 3487 extern int __kmp_aux_get_team_num(); 3488 extern int __kmp_aux_get_num_teams(); 3489 extern void __kmp_save_internal_controls(kmp_info_t *thread); 3490 extern void __kmp_user_set_library(enum library_type arg); 3491 extern void __kmp_aux_set_library(enum library_type arg); 3492 extern void __kmp_aux_set_stacksize(size_t arg); 3493 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid); 3494 extern void __kmp_aux_set_defaults(char const *str, int len); 3495 3496 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */ 3497 void kmpc_set_blocktime(int arg); 3498 void ompc_set_nested(int flag); 3499 void ompc_set_dynamic(int flag); 3500 void ompc_set_num_threads(int arg); 3501 3502 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, 3503 kmp_team_t *team, int tid); 3504 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr); 3505 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 3506 kmp_tasking_flags_t *flags, 3507 size_t sizeof_kmp_task_t, 3508 size_t sizeof_shareds, 3509 kmp_routine_entry_t task_entry); 3510 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 3511 kmp_team_t *team, int tid, 3512 int set_curr_task); 3513 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr); 3514 extern void __kmp_free_implicit_task(kmp_info_t *this_thr); 3515 3516 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, 3517 int gtid, 3518 kmp_task_t *task); 3519 extern void __kmp_fulfill_event(kmp_event_t *event); 3520 3521 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid, 3522 kmp_flag_32 *flag, int final_spin, 3523 int *thread_finished, 3524 #if USE_ITT_BUILD 3525 void *itt_sync_obj, 3526 #endif /* USE_ITT_BUILD */ 3527 kmp_int32 is_constrained); 3528 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid, 3529 kmp_flag_64 *flag, int final_spin, 3530 int *thread_finished, 3531 #if USE_ITT_BUILD 3532 void *itt_sync_obj, 3533 #endif /* USE_ITT_BUILD */ 3534 kmp_int32 is_constrained); 3535 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid, 3536 kmp_flag_oncore *flag, int final_spin, 3537 int *thread_finished, 3538 #if USE_ITT_BUILD 3539 void *itt_sync_obj, 3540 #endif /* USE_ITT_BUILD */ 3541 kmp_int32 is_constrained); 3542 3543 extern void __kmp_free_task_team(kmp_info_t *thread, 3544 kmp_task_team_t *task_team); 3545 extern void __kmp_reap_task_teams(void); 3546 extern void __kmp_wait_to_unref_task_teams(void); 3547 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, 3548 int always); 3549 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team); 3550 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team 3551 #if USE_ITT_BUILD 3552 , 3553 void *itt_sync_obj 3554 #endif /* USE_ITT_BUILD */ 3555 , 3556 int wait = 1); 3557 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, 3558 int gtid); 3559 3560 extern int __kmp_is_address_mapped(void *addr); 3561 extern kmp_uint64 __kmp_hardware_timestamp(void); 3562 3563 #if KMP_OS_UNIX 3564 extern int __kmp_read_from_file(char const *path, char const *format, ...); 3565 #endif 3566 3567 /* ------------------------------------------------------------------------ */ 3568 // 3569 // Assembly routines that have no compiler intrinsic replacement 3570 // 3571 3572 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc, 3573 void *argv[] 3574 #if OMPT_SUPPORT 3575 , 3576 void **exit_frame_ptr 3577 #endif 3578 ); 3579 3580 /* ------------------------------------------------------------------------ */ 3581 3582 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags); 3583 KMP_EXPORT void __kmpc_end(ident_t *); 3584 3585 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, 3586 kmpc_ctor_vec ctor, 3587 kmpc_cctor_vec cctor, 3588 kmpc_dtor_vec dtor, 3589 size_t vector_length); 3590 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, 3591 kmpc_ctor ctor, kmpc_cctor cctor, 3592 kmpc_dtor dtor); 3593 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid, 3594 void *data, size_t size); 3595 3596 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *); 3597 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *); 3598 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *); 3599 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *); 3600 3601 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *); 3602 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, 3603 kmpc_micro microtask, ...); 3604 3605 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid); 3606 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid); 3607 3608 KMP_EXPORT void __kmpc_flush(ident_t *); 3609 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid); 3610 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid); 3611 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid); 3612 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid); 3613 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid); 3614 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, 3615 kmp_critical_name *); 3616 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, 3617 kmp_critical_name *); 3618 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, 3619 kmp_critical_name *, uint32_t hint); 3620 3621 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid); 3622 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid); 3623 3624 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, 3625 kmp_int32 global_tid); 3626 3627 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid); 3628 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid); 3629 3630 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid, 3631 kmp_int32 schedtype, kmp_int32 *plastiter, 3632 kmp_int *plower, kmp_int *pupper, 3633 kmp_int *pstride, kmp_int incr, 3634 kmp_int chunk); 3635 3636 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); 3637 3638 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, 3639 size_t cpy_size, void *cpy_data, 3640 void (*cpy_func)(void *, void *), 3641 kmp_int32 didit); 3642 3643 extern void KMPC_SET_NUM_THREADS(int arg); 3644 extern void KMPC_SET_DYNAMIC(int flag); 3645 extern void KMPC_SET_NESTED(int flag); 3646 3647 /* OMP 3.0 tasking interface routines */ 3648 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 3649 kmp_task_t *new_task); 3650 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 3651 kmp_int32 flags, 3652 size_t sizeof_kmp_task_t, 3653 size_t sizeof_shareds, 3654 kmp_routine_entry_t task_entry); 3655 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 3656 kmp_int32 flags, 3657 size_t sizeof_kmp_task_t, 3658 size_t sizeof_shareds, 3659 kmp_routine_entry_t task_entry, 3660 kmp_int64 device_id); 3661 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 3662 kmp_task_t *task); 3663 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 3664 kmp_task_t *task); 3665 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 3666 kmp_task_t *new_task); 3667 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid); 3668 3669 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, 3670 int end_part); 3671 3672 #if TASK_UNUSED 3673 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task); 3674 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 3675 kmp_task_t *task); 3676 #endif // TASK_UNUSED 3677 3678 /* ------------------------------------------------------------------------ */ 3679 3680 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid); 3681 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid); 3682 3683 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps( 3684 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, 3685 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, 3686 kmp_depend_info_t *noalias_dep_list); 3687 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, 3688 kmp_int32 ndeps, 3689 kmp_depend_info_t *dep_list, 3690 kmp_int32 ndeps_noalias, 3691 kmp_depend_info_t *noalias_dep_list); 3692 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 3693 bool serialize_immediate); 3694 3695 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid, 3696 kmp_int32 cncl_kind); 3697 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid, 3698 kmp_int32 cncl_kind); 3699 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid); 3700 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind); 3701 3702 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask); 3703 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask); 3704 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task, 3705 kmp_int32 if_val, kmp_uint64 *lb, 3706 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup, 3707 kmp_int32 sched, kmp_uint64 grainsize, 3708 void *task_dup); 3709 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data); 3710 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data); 3711 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d); 3712 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, 3713 int is_ws, int num, 3714 void *data); 3715 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, 3716 int num, void *data); 3717 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, 3718 int is_ws); 3719 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity( 3720 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, 3721 kmp_task_affinity_info_t *affin_list); 3722 3723 /* Lock interface routines (fast versions with gtid passed in) */ 3724 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid, 3725 void **user_lock); 3726 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid, 3727 void **user_lock); 3728 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid, 3729 void **user_lock); 3730 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid, 3731 void **user_lock); 3732 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock); 3733 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid, 3734 void **user_lock); 3735 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid, 3736 void **user_lock); 3737 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid, 3738 void **user_lock); 3739 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock); 3740 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid, 3741 void **user_lock); 3742 3743 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid, 3744 void **user_lock, uintptr_t hint); 3745 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid, 3746 void **user_lock, 3747 uintptr_t hint); 3748 3749 /* Interface to fast scalable reduce methods routines */ 3750 3751 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait( 3752 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 3753 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 3754 kmp_critical_name *lck); 3755 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, 3756 kmp_critical_name *lck); 3757 KMP_EXPORT kmp_int32 __kmpc_reduce( 3758 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 3759 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 3760 kmp_critical_name *lck); 3761 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, 3762 kmp_critical_name *lck); 3763 3764 /* Internal fast reduction routines */ 3765 3766 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method( 3767 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 3768 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 3769 kmp_critical_name *lck); 3770 3771 // this function is for testing set/get/determine reduce method 3772 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void); 3773 3774 KMP_EXPORT kmp_uint64 __kmpc_get_taskid(); 3775 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid(); 3776 3777 // C++ port 3778 // missing 'extern "C"' declarations 3779 3780 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc); 3781 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid); 3782 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, 3783 kmp_int32 num_threads); 3784 3785 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, 3786 int proc_bind); 3787 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, 3788 kmp_int32 num_teams, 3789 kmp_int32 num_threads); 3790 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, 3791 kmpc_micro microtask, ...); 3792 struct kmp_dim { // loop bounds info casted to kmp_int64 3793 kmp_int64 lo; // lower 3794 kmp_int64 up; // upper 3795 kmp_int64 st; // stride 3796 }; 3797 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, 3798 kmp_int32 num_dims, 3799 const struct kmp_dim *dims); 3800 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, 3801 const kmp_int64 *vec); 3802 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, 3803 const kmp_int64 *vec); 3804 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); 3805 3806 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, 3807 void *data, size_t size, 3808 void ***cache); 3809 3810 // Symbols for MS mutual detection. 3811 extern int _You_must_link_with_exactly_one_OpenMP_library; 3812 extern int _You_must_link_with_Intel_OpenMP_library; 3813 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4) 3814 extern int _You_must_link_with_Microsoft_OpenMP_library; 3815 #endif 3816 3817 // The routines below are not exported. 3818 // Consider making them 'static' in corresponding source files. 3819 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr, 3820 void *data_addr, size_t pc_size); 3821 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr, 3822 void *data_addr, 3823 size_t pc_size); 3824 void __kmp_threadprivate_resize_cache(int newCapacity); 3825 void __kmp_cleanup_threadprivate_caches(); 3826 3827 // ompc_, kmpc_ entries moved from omp.h. 3828 #if KMP_OS_WINDOWS 3829 #define KMPC_CONVENTION __cdecl 3830 #else 3831 #define KMPC_CONVENTION 3832 #endif 3833 3834 #ifndef __OMP_H 3835 typedef enum omp_sched_t { 3836 omp_sched_static = 1, 3837 omp_sched_dynamic = 2, 3838 omp_sched_guided = 3, 3839 omp_sched_auto = 4 3840 } omp_sched_t; 3841 typedef void *kmp_affinity_mask_t; 3842 #endif 3843 3844 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int); 3845 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int); 3846 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int); 3847 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int); 3848 KMP_EXPORT int KMPC_CONVENTION 3849 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *); 3850 KMP_EXPORT int KMPC_CONVENTION 3851 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *); 3852 KMP_EXPORT int KMPC_CONVENTION 3853 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *); 3854 3855 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int); 3856 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t); 3857 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int); 3858 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *); 3859 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int); 3860 3861 enum kmp_target_offload_kind { 3862 tgt_disabled = 0, 3863 tgt_default = 1, 3864 tgt_mandatory = 2 3865 }; 3866 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t; 3867 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise 3868 extern kmp_target_offload_kind_t __kmp_target_offload; 3869 extern int __kmpc_get_target_offload(); 3870 3871 // Constants used in libomptarget 3872 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device. 3873 #define KMP_HOST_DEVICE -10 // This is what it is in libomptarget, go figure. 3874 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices". 3875 3876 // OMP Pause Resource 3877 3878 // The following enum is used both to set the status in __kmp_pause_status, and 3879 // as the internal equivalent of the externally-visible omp_pause_resource_t. 3880 typedef enum kmp_pause_status_t { 3881 kmp_not_paused = 0, // status is not paused, or, requesting resume 3882 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause 3883 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause 3884 } kmp_pause_status_t; 3885 3886 // This stores the pause state of the runtime 3887 extern kmp_pause_status_t __kmp_pause_status; 3888 extern int __kmpc_pause_resource(kmp_pause_status_t level); 3889 extern int __kmp_pause_resource(kmp_pause_status_t level); 3890 // Soft resume sets __kmp_pause_status, and wakes up all threads. 3891 extern void __kmp_resume_if_soft_paused(); 3892 // Hard resume simply resets the status to not paused. Library will appear to 3893 // be uninitialized after hard pause. Let OMP constructs trigger required 3894 // initializations. 3895 static inline void __kmp_resume_if_hard_paused() { 3896 if (__kmp_pause_status == kmp_hard_paused) { 3897 __kmp_pause_status = kmp_not_paused; 3898 } 3899 } 3900 3901 extern void __kmp_omp_display_env(int verbose); 3902 3903 #ifdef __cplusplus 3904 } 3905 #endif 3906 3907 #endif /* KMP_H */ 3908