1 /*! \file */ 2 /* 3 * kmp.h -- KPTS runtime header file. 4 */ 5 6 //===----------------------------------------------------------------------===// 7 // 8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 9 // See https://llvm.org/LICENSE.txt for license information. 10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef KMP_H 15 #define KMP_H 16 17 #include "kmp_config.h" 18 19 /* #define BUILD_PARALLEL_ORDERED 1 */ 20 21 /* This fix replaces gettimeofday with clock_gettime for better scalability on 22 the Altix. Requires user code to be linked with -lrt. */ 23 //#define FIX_SGI_CLOCK 24 25 /* Defines for OpenMP 3.0 tasking and auto scheduling */ 26 27 #ifndef KMP_STATIC_STEAL_ENABLED 28 #define KMP_STATIC_STEAL_ENABLED 1 29 #endif 30 31 #define TASK_CURRENT_NOT_QUEUED 0 32 #define TASK_CURRENT_QUEUED 1 33 34 #ifdef BUILD_TIED_TASK_STACK 35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty 36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK 37 // Number of entries in each task stack array 38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS) 39 // Mask for determining index into stack block 40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1) 41 #endif // BUILD_TIED_TASK_STACK 42 43 #define TASK_NOT_PUSHED 1 44 #define TASK_SUCCESSFULLY_PUSHED 0 45 #define TASK_TIED 1 46 #define TASK_UNTIED 0 47 #define TASK_EXPLICIT 1 48 #define TASK_IMPLICIT 0 49 #define TASK_PROXY 1 50 #define TASK_FULL 0 51 #define TASK_DETACHABLE 1 52 #define TASK_UNDETACHABLE 0 53 54 #define KMP_CANCEL_THREADS 55 #define KMP_THREAD_ATTR 56 57 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being 58 // built on Android 59 #if defined(__ANDROID__) 60 #undef KMP_CANCEL_THREADS 61 #endif 62 63 #include <signal.h> 64 #include <stdarg.h> 65 #include <stddef.h> 66 #include <stdio.h> 67 #include <stdlib.h> 68 #include <string.h> 69 #include <limits> 70 #include <type_traits> 71 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad 72 Microsoft library. Some macros provided below to replace these functions */ 73 #ifndef __ABSOFT_WIN 74 #include <sys/types.h> 75 #endif 76 #include <limits.h> 77 #include <time.h> 78 79 #include <errno.h> 80 81 #include "kmp_os.h" 82 83 #include "kmp_safe_c_api.h" 84 85 #if KMP_STATS_ENABLED 86 class kmp_stats_list; 87 #endif 88 89 #if KMP_USE_HIER_SCHED 90 // Only include hierarchical scheduling if affinity is supported 91 #undef KMP_USE_HIER_SCHED 92 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED 93 #endif 94 95 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED 96 #include "hwloc.h" 97 #ifndef HWLOC_OBJ_NUMANODE 98 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE 99 #endif 100 #ifndef HWLOC_OBJ_PACKAGE 101 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET 102 #endif 103 #if HWLOC_API_VERSION >= 0x00020000 104 // hwloc 2.0 changed type of depth of object from unsigned to int 105 typedef int kmp_hwloc_depth_t; 106 #else 107 typedef unsigned int kmp_hwloc_depth_t; 108 #endif 109 #endif 110 111 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 112 #include <xmmintrin.h> 113 #endif 114 115 #include "kmp_debug.h" 116 #include "kmp_lock.h" 117 #include "kmp_version.h" 118 #include "kmp_barrier.h" 119 #if USE_DEBUGGER 120 #include "kmp_debugger.h" 121 #endif 122 #include "kmp_i18n.h" 123 124 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS) 125 126 #include "kmp_wrapper_malloc.h" 127 #if KMP_OS_UNIX 128 #include <unistd.h> 129 #if !defined NSIG && defined _NSIG 130 #define NSIG _NSIG 131 #endif 132 #endif 133 134 #if KMP_OS_LINUX 135 #pragma weak clock_gettime 136 #endif 137 138 #if OMPT_SUPPORT 139 #include "ompt-internal.h" 140 #endif 141 142 #if OMPD_SUPPORT 143 #include "ompd-specific.h" 144 #endif 145 146 #ifndef UNLIKELY 147 #define UNLIKELY(x) (x) 148 #endif 149 150 // Affinity format function 151 #include "kmp_str.h" 152 153 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64. 154 // 3 - fast allocation using sync, non-sync free lists of any size, non-self 155 // free lists of limited size. 156 #ifndef USE_FAST_MEMORY 157 #define USE_FAST_MEMORY 3 158 #endif 159 160 #ifndef KMP_NESTED_HOT_TEAMS 161 #define KMP_NESTED_HOT_TEAMS 0 162 #define USE_NESTED_HOT_ARG(x) 163 #else 164 #if KMP_NESTED_HOT_TEAMS 165 #define USE_NESTED_HOT_ARG(x) , x 166 #else 167 #define USE_NESTED_HOT_ARG(x) 168 #endif 169 #endif 170 171 // Assume using BGET compare_exchange instruction instead of lock by default. 172 #ifndef USE_CMP_XCHG_FOR_BGET 173 #define USE_CMP_XCHG_FOR_BGET 1 174 #endif 175 176 // Test to see if queuing lock is better than bootstrap lock for bget 177 // #ifndef USE_QUEUING_LOCK_FOR_BGET 178 // #define USE_QUEUING_LOCK_FOR_BGET 179 // #endif 180 181 #define KMP_NSEC_PER_SEC 1000000000L 182 #define KMP_USEC_PER_SEC 1000000L 183 184 /*! 185 @ingroup BASIC_TYPES 186 @{ 187 */ 188 189 /*! 190 Values for bit flags used in the ident_t to describe the fields. 191 */ 192 enum { 193 /*! Use trampoline for internal microtasks */ 194 KMP_IDENT_IMB = 0x01, 195 /*! Use c-style ident structure */ 196 KMP_IDENT_KMPC = 0x02, 197 /* 0x04 is no longer used */ 198 /*! Entry point generated by auto-parallelization */ 199 KMP_IDENT_AUTOPAR = 0x08, 200 /*! Compiler generates atomic reduction option for kmpc_reduce* */ 201 KMP_IDENT_ATOMIC_REDUCE = 0x10, 202 /*! To mark a 'barrier' directive in user code */ 203 KMP_IDENT_BARRIER_EXPL = 0x20, 204 /*! To Mark implicit barriers. */ 205 KMP_IDENT_BARRIER_IMPL = 0x0040, 206 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0, 207 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040, 208 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0, 209 210 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140, 211 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0, 212 213 /*! To mark a static loop in OMPT callbacks */ 214 KMP_IDENT_WORK_LOOP = 0x200, 215 /*! To mark a sections directive in OMPT callbacks */ 216 KMP_IDENT_WORK_SECTIONS = 0x400, 217 /*! To mark a distribute construct in OMPT callbacks */ 218 KMP_IDENT_WORK_DISTRIBUTE = 0x800, 219 /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and 220 not currently used. If one day we need more bits, then we can use 221 an invalid combination of hints to mean that another, larger field 222 should be used in a different flag. */ 223 KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000, 224 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000, 225 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000, 226 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000, 227 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000, 228 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000 229 }; 230 231 /*! 232 * The ident structure that describes a source location. 233 */ 234 typedef struct ident { 235 kmp_int32 reserved_1; /**< might be used in Fortran; see above */ 236 kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC 237 identifies this union member */ 238 kmp_int32 reserved_2; /**< not really used in Fortran any more; see above */ 239 #if USE_ITT_BUILD 240 /* but currently used for storing region-specific ITT */ 241 /* contextual information. */ 242 #endif /* USE_ITT_BUILD */ 243 kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++ */ 244 char const *psource; /**< String describing the source location. 245 The string is composed of semi-colon separated fields 246 which describe the source file, the function and a pair 247 of line numbers that delimit the construct. */ 248 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0) 249 kmp_int32 get_openmp_version() { 250 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF); 251 } 252 } ident_t; 253 /*! 254 @} 255 */ 256 257 // Some forward declarations. 258 typedef union kmp_team kmp_team_t; 259 typedef struct kmp_taskdata kmp_taskdata_t; 260 typedef union kmp_task_team kmp_task_team_t; 261 typedef union kmp_team kmp_team_p; 262 typedef union kmp_info kmp_info_p; 263 typedef union kmp_root kmp_root_p; 264 265 template <bool C = false, bool S = true> class kmp_flag_32; 266 template <bool C = false, bool S = true> class kmp_flag_64; 267 template <bool C = false, bool S = true> class kmp_atomic_flag_64; 268 class kmp_flag_oncore; 269 270 #ifdef __cplusplus 271 extern "C" { 272 #endif 273 274 /* ------------------------------------------------------------------------ */ 275 276 /* Pack two 32-bit signed integers into a 64-bit signed integer */ 277 /* ToDo: Fix word ordering for big-endian machines. */ 278 #define KMP_PACK_64(HIGH_32, LOW_32) \ 279 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32))) 280 281 // Generic string manipulation macros. Assume that _x is of type char * 282 #define SKIP_WS(_x) \ 283 { \ 284 while (*(_x) == ' ' || *(_x) == '\t') \ 285 (_x)++; \ 286 } 287 #define SKIP_DIGITS(_x) \ 288 { \ 289 while (*(_x) >= '0' && *(_x) <= '9') \ 290 (_x)++; \ 291 } 292 #define SKIP_TOKEN(_x) \ 293 { \ 294 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \ 295 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \ 296 (_x)++; \ 297 } 298 #define SKIP_TO(_x, _c) \ 299 { \ 300 while (*(_x) != '\0' && *(_x) != (_c)) \ 301 (_x)++; \ 302 } 303 304 /* ------------------------------------------------------------------------ */ 305 306 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y)) 307 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 308 309 /* ------------------------------------------------------------------------ */ 310 /* Enumeration types */ 311 312 enum kmp_state_timer { 313 ts_stop, 314 ts_start, 315 ts_pause, 316 317 ts_last_state 318 }; 319 320 enum dynamic_mode { 321 dynamic_default, 322 #ifdef USE_LOAD_BALANCE 323 dynamic_load_balance, 324 #endif /* USE_LOAD_BALANCE */ 325 dynamic_random, 326 dynamic_thread_limit, 327 dynamic_max 328 }; 329 330 /* external schedule constants, duplicate enum omp_sched in omp.h in order to 331 * not include it here */ 332 #ifndef KMP_SCHED_TYPE_DEFINED 333 #define KMP_SCHED_TYPE_DEFINED 334 typedef enum kmp_sched { 335 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check 336 // Note: need to adjust __kmp_sch_map global array in case enum is changed 337 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33) 338 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35) 339 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36) 340 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38) 341 kmp_sched_upper_std = 5, // upper bound for standard schedules 342 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules 343 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39) 344 #if KMP_STATIC_STEAL_ENABLED 345 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44) 346 #endif 347 kmp_sched_upper, 348 kmp_sched_default = kmp_sched_static, // default scheduling 349 kmp_sched_monotonic = 0x80000000 350 } kmp_sched_t; 351 #endif 352 353 /*! 354 @ingroup WORK_SHARING 355 * Describes the loop schedule to be used for a parallel for loop. 356 */ 357 enum sched_type : kmp_int32 { 358 kmp_sch_lower = 32, /**< lower bound for unordered values */ 359 kmp_sch_static_chunked = 33, 360 kmp_sch_static = 34, /**< static unspecialized */ 361 kmp_sch_dynamic_chunked = 35, 362 kmp_sch_guided_chunked = 36, /**< guided unspecialized */ 363 kmp_sch_runtime = 37, 364 kmp_sch_auto = 38, /**< auto */ 365 kmp_sch_trapezoidal = 39, 366 367 /* accessible only through KMP_SCHEDULE environment variable */ 368 kmp_sch_static_greedy = 40, 369 kmp_sch_static_balanced = 41, 370 /* accessible only through KMP_SCHEDULE environment variable */ 371 kmp_sch_guided_iterative_chunked = 42, 372 kmp_sch_guided_analytical_chunked = 43, 373 /* accessible only through KMP_SCHEDULE environment variable */ 374 kmp_sch_static_steal = 44, 375 376 /* static with chunk adjustment (e.g., simd) */ 377 kmp_sch_static_balanced_chunked = 45, 378 kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */ 379 kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */ 380 381 /* accessible only through KMP_SCHEDULE environment variable */ 382 kmp_sch_upper, /**< upper bound for unordered values */ 383 384 kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */ 385 kmp_ord_static_chunked = 65, 386 kmp_ord_static = 66, /**< ordered static unspecialized */ 387 kmp_ord_dynamic_chunked = 67, 388 kmp_ord_guided_chunked = 68, 389 kmp_ord_runtime = 69, 390 kmp_ord_auto = 70, /**< ordered auto */ 391 kmp_ord_trapezoidal = 71, 392 kmp_ord_upper, /**< upper bound for ordered values */ 393 394 /* Schedules for Distribute construct */ 395 kmp_distribute_static_chunked = 91, /**< distribute static chunked */ 396 kmp_distribute_static = 92, /**< distribute static unspecialized */ 397 398 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a 399 single iteration/chunk, even if the loop is serialized. For the schedule 400 types listed above, the entire iteration vector is returned if the loop is 401 serialized. This doesn't work for gcc/gcomp sections. */ 402 kmp_nm_lower = 160, /**< lower bound for nomerge values */ 403 404 kmp_nm_static_chunked = 405 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower), 406 kmp_nm_static = 162, /**< static unspecialized */ 407 kmp_nm_dynamic_chunked = 163, 408 kmp_nm_guided_chunked = 164, /**< guided unspecialized */ 409 kmp_nm_runtime = 165, 410 kmp_nm_auto = 166, /**< auto */ 411 kmp_nm_trapezoidal = 167, 412 413 /* accessible only through KMP_SCHEDULE environment variable */ 414 kmp_nm_static_greedy = 168, 415 kmp_nm_static_balanced = 169, 416 /* accessible only through KMP_SCHEDULE environment variable */ 417 kmp_nm_guided_iterative_chunked = 170, 418 kmp_nm_guided_analytical_chunked = 171, 419 kmp_nm_static_steal = 420 172, /* accessible only through OMP_SCHEDULE environment variable */ 421 422 kmp_nm_ord_static_chunked = 193, 423 kmp_nm_ord_static = 194, /**< ordered static unspecialized */ 424 kmp_nm_ord_dynamic_chunked = 195, 425 kmp_nm_ord_guided_chunked = 196, 426 kmp_nm_ord_runtime = 197, 427 kmp_nm_ord_auto = 198, /**< auto */ 428 kmp_nm_ord_trapezoidal = 199, 429 kmp_nm_upper, /**< upper bound for nomerge values */ 430 431 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since 432 we need to distinguish the three possible cases (no modifier, monotonic 433 modifier, nonmonotonic modifier), we need separate bits for each modifier. 434 The absence of monotonic does not imply nonmonotonic, especially since 4.5 435 says that the behaviour of the "no modifier" case is implementation defined 436 in 4.5, but will become "nonmonotonic" in 5.0. 437 438 Since we're passing a full 32 bit value, we can use a couple of high bits 439 for these flags; out of paranoia we avoid the sign bit. 440 441 These modifiers can be or-ed into non-static schedules by the compiler to 442 pass the additional information. They will be stripped early in the 443 processing in __kmp_dispatch_init when setting up schedules, so most of the 444 code won't ever see schedules with these bits set. */ 445 kmp_sch_modifier_monotonic = 446 (1 << 29), /**< Set if the monotonic schedule modifier was present */ 447 kmp_sch_modifier_nonmonotonic = 448 (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */ 449 450 #define SCHEDULE_WITHOUT_MODIFIERS(s) \ 451 (enum sched_type)( \ 452 (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) 453 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0) 454 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0) 455 #define SCHEDULE_HAS_NO_MODIFIERS(s) \ 456 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0) 457 #define SCHEDULE_GET_MODIFIERS(s) \ 458 ((enum sched_type)( \ 459 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))) 460 #define SCHEDULE_SET_MODIFIERS(s, m) \ 461 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m)) 462 #define SCHEDULE_NONMONOTONIC 0 463 #define SCHEDULE_MONOTONIC 1 464 465 kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */ 466 }; 467 468 // Apply modifiers on internal kind to standard kind 469 static inline void 470 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind, 471 enum sched_type internal_kind) { 472 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) { 473 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic); 474 } 475 } 476 477 // Apply modifiers on standard kind to internal kind 478 static inline void 479 __kmp_sched_apply_mods_intkind(kmp_sched_t kind, 480 enum sched_type *internal_kind) { 481 if ((int)kind & (int)kmp_sched_monotonic) { 482 *internal_kind = (enum sched_type)((int)*internal_kind | 483 (int)kmp_sch_modifier_monotonic); 484 } 485 } 486 487 // Get standard schedule without modifiers 488 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) { 489 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic)); 490 } 491 492 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */ 493 typedef union kmp_r_sched { 494 struct { 495 enum sched_type r_sched_type; 496 int chunk; 497 }; 498 kmp_int64 sched; 499 } kmp_r_sched_t; 500 501 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our 502 // internal schedule types 503 504 enum library_type { 505 library_none, 506 library_serial, 507 library_turnaround, 508 library_throughput 509 }; 510 511 #if KMP_OS_LINUX 512 enum clock_function_type { 513 clock_function_gettimeofday, 514 clock_function_clock_gettime 515 }; 516 #endif /* KMP_OS_LINUX */ 517 518 #if KMP_MIC_SUPPORTED 519 enum mic_type { non_mic, mic1, mic2, mic3, dummy }; 520 #endif 521 522 /* -- fast reduction stuff ------------------------------------------------ */ 523 524 #undef KMP_FAST_REDUCTION_BARRIER 525 #define KMP_FAST_REDUCTION_BARRIER 1 526 527 #undef KMP_FAST_REDUCTION_CORE_DUO 528 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 529 #define KMP_FAST_REDUCTION_CORE_DUO 1 530 #endif 531 532 enum _reduction_method { 533 reduction_method_not_defined = 0, 534 critical_reduce_block = (1 << 8), 535 atomic_reduce_block = (2 << 8), 536 tree_reduce_block = (3 << 8), 537 empty_reduce_block = (4 << 8) 538 }; 539 540 // Description of the packed_reduction_method variable: 541 // The packed_reduction_method variable consists of two enum types variables 542 // that are packed together into 0-th byte and 1-st byte: 543 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of 544 // barrier that will be used in fast reduction: bs_plain_barrier or 545 // bs_reduction_barrier 546 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will 547 // be used in fast reduction; 548 // Reduction method is of 'enum _reduction_method' type and it's defined the way 549 // so that the bits of 0-th byte are empty, so no need to execute a shift 550 // instruction while packing/unpacking 551 552 #if KMP_FAST_REDUCTION_BARRIER 553 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \ 554 ((reduction_method) | (barrier_type)) 555 556 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ 557 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00))) 558 559 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \ 560 ((enum barrier_type)((packed_reduction_method) & (0x000000FF))) 561 #else 562 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \ 563 (reduction_method) 564 565 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ 566 (packed_reduction_method) 567 568 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier) 569 #endif 570 571 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \ 572 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \ 573 (which_reduction_block)) 574 575 #if KMP_FAST_REDUCTION_BARRIER 576 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \ 577 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier)) 578 579 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \ 580 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier)) 581 #endif 582 583 typedef int PACKED_REDUCTION_METHOD_T; 584 585 /* -- end of fast reduction stuff ----------------------------------------- */ 586 587 #if KMP_OS_WINDOWS 588 #define USE_CBLKDATA 589 #if KMP_MSVC_COMPAT 590 #pragma warning(push) 591 #pragma warning(disable : 271 310) 592 #endif 593 #include <windows.h> 594 #if KMP_MSVC_COMPAT 595 #pragma warning(pop) 596 #endif 597 #endif 598 599 #if KMP_OS_UNIX 600 #include <dlfcn.h> 601 #include <pthread.h> 602 #endif 603 604 enum kmp_hw_t : int { 605 KMP_HW_UNKNOWN = -1, 606 KMP_HW_SOCKET = 0, 607 KMP_HW_PROC_GROUP, 608 KMP_HW_NUMA, 609 KMP_HW_DIE, 610 KMP_HW_LLC, 611 KMP_HW_L3, 612 KMP_HW_TILE, 613 KMP_HW_MODULE, 614 KMP_HW_L2, 615 KMP_HW_L1, 616 KMP_HW_CORE, 617 KMP_HW_THREAD, 618 KMP_HW_LAST 619 }; 620 621 typedef enum kmp_hw_core_type_t { 622 KMP_HW_CORE_TYPE_UNKNOWN = 0x0, 623 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 624 KMP_HW_CORE_TYPE_ATOM = 0x20, 625 KMP_HW_CORE_TYPE_CORE = 0x40, 626 KMP_HW_MAX_NUM_CORE_TYPES = 3, 627 #else 628 KMP_HW_MAX_NUM_CORE_TYPES = 1, 629 #endif 630 } kmp_hw_core_type_t; 631 632 #define KMP_HW_MAX_NUM_CORE_EFFS 8 633 634 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \ 635 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST) 636 #define KMP_ASSERT_VALID_HW_TYPE(type) \ 637 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST) 638 639 #define KMP_FOREACH_HW_TYPE(type) \ 640 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \ 641 type = (kmp_hw_t)((int)type + 1)) 642 643 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false); 644 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false); 645 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type); 646 647 /* Only Linux* OS and Windows* OS support thread affinity. */ 648 #if KMP_AFFINITY_SUPPORTED 649 650 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later). 651 #if KMP_OS_WINDOWS 652 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT 653 typedef struct GROUP_AFFINITY { 654 KAFFINITY Mask; 655 WORD Group; 656 WORD Reserved[3]; 657 } GROUP_AFFINITY; 658 #endif /* _MSC_VER < 1600 */ 659 #if KMP_GROUP_AFFINITY 660 extern int __kmp_num_proc_groups; 661 #else 662 static const int __kmp_num_proc_groups = 1; 663 #endif /* KMP_GROUP_AFFINITY */ 664 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD); 665 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount; 666 667 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void); 668 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount; 669 670 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *); 671 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity; 672 673 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *, 674 GROUP_AFFINITY *); 675 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity; 676 #endif /* KMP_OS_WINDOWS */ 677 678 #if KMP_USE_HWLOC 679 extern hwloc_topology_t __kmp_hwloc_topology; 680 extern int __kmp_hwloc_error; 681 #endif 682 683 extern size_t __kmp_affin_mask_size; 684 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0) 685 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0) 686 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size) 687 #define KMP_CPU_SET_ITERATE(i, mask) \ 688 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i)) 689 #define KMP_CPU_SET(i, mask) (mask)->set(i) 690 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i) 691 #define KMP_CPU_CLR(i, mask) (mask)->clear(i) 692 #define KMP_CPU_ZERO(mask) (mask)->zero() 693 #define KMP_CPU_COPY(dest, src) (dest)->copy(src) 694 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src) 695 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not() 696 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src) 697 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask()) 698 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr) 699 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr) 700 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr) 701 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr) 702 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr) 703 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i) 704 #define KMP_CPU_ALLOC_ARRAY(arr, n) \ 705 (arr = __kmp_affinity_dispatch->allocate_mask_array(n)) 706 #define KMP_CPU_FREE_ARRAY(arr, n) \ 707 __kmp_affinity_dispatch->deallocate_mask_array(arr) 708 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n) 709 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n) 710 #define __kmp_get_system_affinity(mask, abort_bool) \ 711 (mask)->get_system_affinity(abort_bool) 712 #define __kmp_set_system_affinity(mask, abort_bool) \ 713 (mask)->set_system_affinity(abort_bool) 714 #define __kmp_get_proc_group(mask) (mask)->get_proc_group() 715 716 class KMPAffinity { 717 public: 718 class Mask { 719 public: 720 void *operator new(size_t n); 721 void operator delete(void *p); 722 void *operator new[](size_t n); 723 void operator delete[](void *p); 724 virtual ~Mask() {} 725 // Set bit i to 1 726 virtual void set(int i) {} 727 // Return bit i 728 virtual bool is_set(int i) const { return false; } 729 // Set bit i to 0 730 virtual void clear(int i) {} 731 // Zero out entire mask 732 virtual void zero() {} 733 // Copy src into this mask 734 virtual void copy(const Mask *src) {} 735 // this &= rhs 736 virtual void bitwise_and(const Mask *rhs) {} 737 // this |= rhs 738 virtual void bitwise_or(const Mask *rhs) {} 739 // this = ~this 740 virtual void bitwise_not() {} 741 // API for iterating over an affinity mask 742 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i)) 743 virtual int begin() const { return 0; } 744 virtual int end() const { return 0; } 745 virtual int next(int previous) const { return 0; } 746 #if KMP_OS_WINDOWS 747 virtual int set_process_affinity(bool abort_on_error) const { return -1; } 748 #endif 749 // Set the system's affinity to this affinity mask's value 750 virtual int set_system_affinity(bool abort_on_error) const { return -1; } 751 // Set this affinity mask to the current system affinity 752 virtual int get_system_affinity(bool abort_on_error) { return -1; } 753 // Only 1 DWORD in the mask should have any procs set. 754 // Return the appropriate index, or -1 for an invalid mask. 755 virtual int get_proc_group() const { return -1; } 756 }; 757 void *operator new(size_t n); 758 void operator delete(void *p); 759 // Need virtual destructor 760 virtual ~KMPAffinity() = default; 761 // Determine if affinity is capable 762 virtual void determine_capable(const char *env_var) {} 763 // Bind the current thread to os proc 764 virtual void bind_thread(int proc) {} 765 // Factory functions to allocate/deallocate a mask 766 virtual Mask *allocate_mask() { return nullptr; } 767 virtual void deallocate_mask(Mask *m) {} 768 virtual Mask *allocate_mask_array(int num) { return nullptr; } 769 virtual void deallocate_mask_array(Mask *m) {} 770 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; } 771 static void pick_api(); 772 static void destroy_api(); 773 enum api_type { 774 NATIVE_OS 775 #if KMP_USE_HWLOC 776 , 777 HWLOC 778 #endif 779 }; 780 virtual api_type get_api_type() const { 781 KMP_ASSERT(0); 782 return NATIVE_OS; 783 } 784 785 private: 786 static bool picked_api; 787 }; 788 789 typedef KMPAffinity::Mask kmp_affin_mask_t; 790 extern KMPAffinity *__kmp_affinity_dispatch; 791 792 // Declare local char buffers with this size for printing debug and info 793 // messages, using __kmp_affinity_print_mask(). 794 #define KMP_AFFIN_MASK_PRINT_LEN 1024 795 796 enum affinity_type { 797 affinity_none = 0, 798 affinity_physical, 799 affinity_logical, 800 affinity_compact, 801 affinity_scatter, 802 affinity_explicit, 803 affinity_balanced, 804 affinity_disabled, // not used outsize the env var parser 805 affinity_default 806 }; 807 808 enum affinity_top_method { 809 affinity_top_method_all = 0, // try all (supported) methods, in order 810 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 811 affinity_top_method_apicid, 812 affinity_top_method_x2apicid, 813 affinity_top_method_x2apicid_1f, 814 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 815 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too 816 #if KMP_GROUP_AFFINITY 817 affinity_top_method_group, 818 #endif /* KMP_GROUP_AFFINITY */ 819 affinity_top_method_flat, 820 #if KMP_USE_HWLOC 821 affinity_top_method_hwloc, 822 #endif 823 affinity_top_method_default 824 }; 825 826 #define affinity_respect_mask_default (-1) 827 828 extern enum affinity_type __kmp_affinity_type; /* Affinity type */ 829 extern kmp_hw_t __kmp_affinity_gran; /* Affinity granularity */ 830 extern int __kmp_affinity_gran_levels; /* corresponding int value */ 831 extern int __kmp_affinity_dups; /* Affinity duplicate masks */ 832 extern enum affinity_top_method __kmp_affinity_top_method; 833 extern int __kmp_affinity_compact; /* Affinity 'compact' value */ 834 extern int __kmp_affinity_offset; /* Affinity offset value */ 835 extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */ 836 extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */ 837 extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask? 838 extern char *__kmp_affinity_proclist; /* proc ID list */ 839 extern kmp_affin_mask_t *__kmp_affinity_masks; 840 extern unsigned __kmp_affinity_num_masks; 841 extern void __kmp_affinity_bind_thread(int which); 842 843 extern kmp_affin_mask_t *__kmp_affin_fullMask; 844 extern char *__kmp_cpuinfo_file; 845 846 #endif /* KMP_AFFINITY_SUPPORTED */ 847 848 // This needs to be kept in sync with the values in omp.h !!! 849 typedef enum kmp_proc_bind_t { 850 proc_bind_false = 0, 851 proc_bind_true, 852 proc_bind_primary, 853 proc_bind_close, 854 proc_bind_spread, 855 proc_bind_intel, // use KMP_AFFINITY interface 856 proc_bind_default 857 } kmp_proc_bind_t; 858 859 typedef struct kmp_nested_proc_bind_t { 860 kmp_proc_bind_t *bind_types; 861 int size; 862 int used; 863 } kmp_nested_proc_bind_t; 864 865 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind; 866 extern kmp_proc_bind_t __kmp_teams_proc_bind; 867 868 extern int __kmp_display_affinity; 869 extern char *__kmp_affinity_format; 870 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512; 871 #if OMPT_SUPPORT 872 extern int __kmp_tool; 873 extern char *__kmp_tool_libraries; 874 #endif // OMPT_SUPPORT 875 876 #if KMP_AFFINITY_SUPPORTED 877 #define KMP_PLACE_ALL (-1) 878 #define KMP_PLACE_UNDEFINED (-2) 879 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES? 880 #define KMP_AFFINITY_NON_PROC_BIND \ 881 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \ 882 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \ 883 (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced)) 884 #endif /* KMP_AFFINITY_SUPPORTED */ 885 886 extern int __kmp_affinity_num_places; 887 888 typedef enum kmp_cancel_kind_t { 889 cancel_noreq = 0, 890 cancel_parallel = 1, 891 cancel_loop = 2, 892 cancel_sections = 3, 893 cancel_taskgroup = 4 894 } kmp_cancel_kind_t; 895 896 // KMP_HW_SUBSET support: 897 typedef struct kmp_hws_item { 898 int num; 899 int offset; 900 } kmp_hws_item_t; 901 902 extern kmp_hws_item_t __kmp_hws_socket; 903 extern kmp_hws_item_t __kmp_hws_die; 904 extern kmp_hws_item_t __kmp_hws_node; 905 extern kmp_hws_item_t __kmp_hws_tile; 906 extern kmp_hws_item_t __kmp_hws_core; 907 extern kmp_hws_item_t __kmp_hws_proc; 908 extern int __kmp_hws_requested; 909 extern int __kmp_hws_abs_flag; // absolute or per-item number requested 910 911 /* ------------------------------------------------------------------------ */ 912 913 #define KMP_PAD(type, sz) \ 914 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1)) 915 916 // We need to avoid using -1 as a GTID as +1 is added to the gtid 917 // when storing it in a lock, and the value 0 is reserved. 918 #define KMP_GTID_DNE (-2) /* Does not exist */ 919 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */ 920 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */ 921 #define KMP_GTID_UNKNOWN (-5) /* Is not known */ 922 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */ 923 924 /* OpenMP 5.0 Memory Management support */ 925 926 #ifndef __OMP_H 927 // Duplicate type definitions from omp.h 928 typedef uintptr_t omp_uintptr_t; 929 930 typedef enum { 931 omp_atk_sync_hint = 1, 932 omp_atk_alignment = 2, 933 omp_atk_access = 3, 934 omp_atk_pool_size = 4, 935 omp_atk_fallback = 5, 936 omp_atk_fb_data = 6, 937 omp_atk_pinned = 7, 938 omp_atk_partition = 8 939 } omp_alloctrait_key_t; 940 941 typedef enum { 942 omp_atv_false = 0, 943 omp_atv_true = 1, 944 omp_atv_contended = 3, 945 omp_atv_uncontended = 4, 946 omp_atv_serialized = 5, 947 omp_atv_sequential = omp_atv_serialized, // (deprecated) 948 omp_atv_private = 6, 949 omp_atv_all = 7, 950 omp_atv_thread = 8, 951 omp_atv_pteam = 9, 952 omp_atv_cgroup = 10, 953 omp_atv_default_mem_fb = 11, 954 omp_atv_null_fb = 12, 955 omp_atv_abort_fb = 13, 956 omp_atv_allocator_fb = 14, 957 omp_atv_environment = 15, 958 omp_atv_nearest = 16, 959 omp_atv_blocked = 17, 960 omp_atv_interleaved = 18 961 } omp_alloctrait_value_t; 962 #define omp_atv_default ((omp_uintptr_t)-1) 963 964 typedef void *omp_memspace_handle_t; 965 extern omp_memspace_handle_t const omp_default_mem_space; 966 extern omp_memspace_handle_t const omp_large_cap_mem_space; 967 extern omp_memspace_handle_t const omp_const_mem_space; 968 extern omp_memspace_handle_t const omp_high_bw_mem_space; 969 extern omp_memspace_handle_t const omp_low_lat_mem_space; 970 // Preview of target memory support 971 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space; 972 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space; 973 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space; 974 975 typedef struct { 976 omp_alloctrait_key_t key; 977 omp_uintptr_t value; 978 } omp_alloctrait_t; 979 980 typedef void *omp_allocator_handle_t; 981 extern omp_allocator_handle_t const omp_null_allocator; 982 extern omp_allocator_handle_t const omp_default_mem_alloc; 983 extern omp_allocator_handle_t const omp_large_cap_mem_alloc; 984 extern omp_allocator_handle_t const omp_const_mem_alloc; 985 extern omp_allocator_handle_t const omp_high_bw_mem_alloc; 986 extern omp_allocator_handle_t const omp_low_lat_mem_alloc; 987 extern omp_allocator_handle_t const omp_cgroup_mem_alloc; 988 extern omp_allocator_handle_t const omp_pteam_mem_alloc; 989 extern omp_allocator_handle_t const omp_thread_mem_alloc; 990 // Preview of target memory support 991 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc; 992 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc; 993 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc; 994 extern omp_allocator_handle_t const kmp_max_mem_alloc; 995 extern omp_allocator_handle_t __kmp_def_allocator; 996 997 // end of duplicate type definitions from omp.h 998 #endif 999 1000 extern int __kmp_memkind_available; 1001 1002 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder 1003 1004 typedef struct kmp_allocator_t { 1005 omp_memspace_handle_t memspace; 1006 void **memkind; // pointer to memkind 1007 size_t alignment; 1008 omp_alloctrait_value_t fb; 1009 kmp_allocator_t *fb_data; 1010 kmp_uint64 pool_size; 1011 kmp_uint64 pool_used; 1012 } kmp_allocator_t; 1013 1014 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid, 1015 omp_memspace_handle_t, 1016 int ntraits, 1017 omp_alloctrait_t traits[]); 1018 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al); 1019 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al); 1020 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid); 1021 // external interfaces, may be used by compiler 1022 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al); 1023 extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz, 1024 omp_allocator_handle_t al); 1025 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz, 1026 omp_allocator_handle_t al); 1027 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz, 1028 omp_allocator_handle_t al, 1029 omp_allocator_handle_t free_al); 1030 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al); 1031 // internal interfaces, contain real implementation 1032 extern void *__kmp_alloc(int gtid, size_t align, size_t sz, 1033 omp_allocator_handle_t al); 1034 extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz, 1035 omp_allocator_handle_t al); 1036 extern void *__kmp_realloc(int gtid, void *ptr, size_t sz, 1037 omp_allocator_handle_t al, 1038 omp_allocator_handle_t free_al); 1039 extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al); 1040 1041 extern void __kmp_init_memkind(); 1042 extern void __kmp_fini_memkind(); 1043 extern void __kmp_init_target_mem(); 1044 1045 /* ------------------------------------------------------------------------ */ 1046 1047 #define KMP_UINT64_MAX \ 1048 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1))) 1049 1050 #define KMP_MIN_NTH 1 1051 1052 #ifndef KMP_MAX_NTH 1053 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX 1054 #define KMP_MAX_NTH PTHREAD_THREADS_MAX 1055 #else 1056 #define KMP_MAX_NTH INT_MAX 1057 #endif 1058 #endif /* KMP_MAX_NTH */ 1059 1060 #ifdef PTHREAD_STACK_MIN 1061 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN 1062 #else 1063 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024)) 1064 #endif 1065 1066 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1))) 1067 1068 #if KMP_ARCH_X86 1069 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024)) 1070 #elif KMP_ARCH_X86_64 1071 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024)) 1072 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024)) 1073 #else 1074 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024)) 1075 #endif 1076 1077 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024)) 1078 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024)) 1079 #define KMP_MAX_MALLOC_POOL_INCR \ 1080 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1))) 1081 1082 #define KMP_MIN_STKOFFSET (0) 1083 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE 1084 #if KMP_OS_DARWIN 1085 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET 1086 #else 1087 #define KMP_DEFAULT_STKOFFSET CACHE_LINE 1088 #endif 1089 1090 #define KMP_MIN_STKPADDING (0) 1091 #define KMP_MAX_STKPADDING (2 * 1024 * 1024) 1092 1093 #define KMP_BLOCKTIME_MULTIPLIER \ 1094 (1000) /* number of blocktime units per second */ 1095 #define KMP_MIN_BLOCKTIME (0) 1096 #define KMP_MAX_BLOCKTIME \ 1097 (INT_MAX) /* Must be this for "infinite" setting the work */ 1098 1099 /* __kmp_blocktime is in milliseconds */ 1100 #define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200)) 1101 1102 #if KMP_USE_MONITOR 1103 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024)) 1104 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second 1105 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec 1106 1107 /* Calculate new number of monitor wakeups for a specific block time based on 1108 previous monitor_wakeups. Only allow increasing number of wakeups */ 1109 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ 1110 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \ 1111 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \ 1112 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \ 1113 ? (monitor_wakeups) \ 1114 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime)) 1115 1116 /* Calculate number of intervals for a specific block time based on 1117 monitor_wakeups */ 1118 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ 1119 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \ 1120 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups))) 1121 #else 1122 #define KMP_BLOCKTIME(team, tid) \ 1123 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime) 1124 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1125 // HW TSC is used to reduce overhead (clock tick instead of nanosecond). 1126 extern kmp_uint64 __kmp_ticks_per_msec; 1127 #if KMP_COMPILER_ICC 1128 #define KMP_NOW() ((kmp_uint64)_rdtsc()) 1129 #else 1130 #define KMP_NOW() __kmp_hardware_timestamp() 1131 #endif 1132 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec) 1133 #define KMP_BLOCKTIME_INTERVAL(team, tid) \ 1134 (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec) 1135 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW()) 1136 #else 1137 // System time is retrieved sporadically while blocking. 1138 extern kmp_uint64 __kmp_now_nsec(); 1139 #define KMP_NOW() __kmp_now_nsec() 1140 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC) 1141 #define KMP_BLOCKTIME_INTERVAL(team, tid) \ 1142 (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC) 1143 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW()) 1144 #endif 1145 #endif // KMP_USE_MONITOR 1146 1147 #define KMP_MIN_STATSCOLS 40 1148 #define KMP_MAX_STATSCOLS 4096 1149 #define KMP_DEFAULT_STATSCOLS 80 1150 1151 #define KMP_MIN_INTERVAL 0 1152 #define KMP_MAX_INTERVAL (INT_MAX - 1) 1153 #define KMP_DEFAULT_INTERVAL 0 1154 1155 #define KMP_MIN_CHUNK 1 1156 #define KMP_MAX_CHUNK (INT_MAX - 1) 1157 #define KMP_DEFAULT_CHUNK 1 1158 1159 #define KMP_MIN_DISP_NUM_BUFF 1 1160 #define KMP_DFLT_DISP_NUM_BUFF 7 1161 #define KMP_MAX_DISP_NUM_BUFF 4096 1162 1163 #define KMP_MAX_ORDERED 8 1164 1165 #define KMP_MAX_FIELDS 32 1166 1167 #define KMP_MAX_BRANCH_BITS 31 1168 1169 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX 1170 1171 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX 1172 1173 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX 1174 1175 /* Minimum number of threads before switch to TLS gtid (experimentally 1176 determined) */ 1177 /* josh TODO: what about OS X* tuning? */ 1178 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1179 #define KMP_TLS_GTID_MIN 5 1180 #else 1181 #define KMP_TLS_GTID_MIN INT_MAX 1182 #endif 1183 1184 #define KMP_MASTER_TID(tid) (0 == (tid)) 1185 #define KMP_WORKER_TID(tid) (0 != (tid)) 1186 1187 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid))) 1188 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid))) 1189 #define KMP_INITIAL_GTID(gtid) (0 == (gtid)) 1190 1191 #ifndef TRUE 1192 #define FALSE 0 1193 #define TRUE (!FALSE) 1194 #endif 1195 1196 /* NOTE: all of the following constants must be even */ 1197 1198 #if KMP_OS_WINDOWS 1199 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */ 1200 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */ 1201 #elif KMP_OS_LINUX 1202 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1203 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1204 #elif KMP_OS_DARWIN 1205 /* TODO: tune for KMP_OS_DARWIN */ 1206 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1207 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1208 #elif KMP_OS_DRAGONFLY 1209 /* TODO: tune for KMP_OS_DRAGONFLY */ 1210 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1211 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1212 #elif KMP_OS_FREEBSD 1213 /* TODO: tune for KMP_OS_FREEBSD */ 1214 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1215 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1216 #elif KMP_OS_NETBSD 1217 /* TODO: tune for KMP_OS_NETBSD */ 1218 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1219 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1220 #elif KMP_OS_HURD 1221 /* TODO: tune for KMP_OS_HURD */ 1222 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1223 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1224 #elif KMP_OS_OPENBSD 1225 /* TODO: tune for KMP_OS_OPENBSD */ 1226 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1227 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1228 #endif 1229 1230 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1231 typedef struct kmp_cpuid { 1232 kmp_uint32 eax; 1233 kmp_uint32 ebx; 1234 kmp_uint32 ecx; 1235 kmp_uint32 edx; 1236 } kmp_cpuid_t; 1237 1238 typedef struct kmp_cpuinfo_flags_t { 1239 unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise. 1240 unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise. 1241 unsigned hybrid : 1; 1242 unsigned reserved : 29; // Ensure size of 32 bits 1243 } kmp_cpuinfo_flags_t; 1244 1245 typedef struct kmp_cpuinfo { 1246 int initialized; // If 0, other fields are not initialized. 1247 int signature; // CPUID(1).EAX 1248 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family) 1249 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended 1250 // Model << 4 ) + Model) 1251 int stepping; // CPUID(1).EAX[3:0] ( Stepping ) 1252 kmp_cpuinfo_flags_t flags; 1253 int apic_id; 1254 int physical_id; 1255 int logical_id; 1256 kmp_uint64 frequency; // Nominal CPU frequency in Hz. 1257 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004) 1258 } kmp_cpuinfo_t; 1259 1260 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p); 1261 1262 #if KMP_OS_UNIX 1263 // subleaf is only needed for cache and topology discovery and can be set to 1264 // zero in most cases 1265 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) { 1266 __asm__ __volatile__("cpuid" 1267 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx) 1268 : "a"(leaf), "c"(subleaf)); 1269 } 1270 // Load p into FPU control word 1271 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) { 1272 __asm__ __volatile__("fldcw %0" : : "m"(*p)); 1273 } 1274 // Store FPU control word into p 1275 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) { 1276 __asm__ __volatile__("fstcw %0" : "=m"(*p)); 1277 } 1278 static inline void __kmp_clear_x87_fpu_status_word() { 1279 #if KMP_MIC 1280 // 32-bit protected mode x87 FPU state 1281 struct x87_fpu_state { 1282 unsigned cw; 1283 unsigned sw; 1284 unsigned tw; 1285 unsigned fip; 1286 unsigned fips; 1287 unsigned fdp; 1288 unsigned fds; 1289 }; 1290 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0}; 1291 __asm__ __volatile__("fstenv %0\n\t" // store FP env 1292 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW 1293 "fldenv %0\n\t" // load FP env back 1294 : "+m"(fpu_state), "+m"(fpu_state.sw)); 1295 #else 1296 __asm__ __volatile__("fnclex"); 1297 #endif // KMP_MIC 1298 } 1299 #if __SSE__ 1300 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); } 1301 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); } 1302 #else 1303 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {} 1304 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; } 1305 #endif 1306 #else 1307 // Windows still has these as external functions in assembly file 1308 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p); 1309 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p); 1310 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p); 1311 extern void __kmp_clear_x87_fpu_status_word(); 1312 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); } 1313 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); } 1314 #endif // KMP_OS_UNIX 1315 1316 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */ 1317 1318 // User-level Monitor/Mwait 1319 #if KMP_HAVE_UMWAIT 1320 // We always try for UMWAIT first 1321 #if KMP_HAVE_WAITPKG_INTRINSICS 1322 #if KMP_HAVE_IMMINTRIN_H 1323 #include <immintrin.h> 1324 #elif KMP_HAVE_INTRIN_H 1325 #include <intrin.h> 1326 #endif 1327 #endif // KMP_HAVE_WAITPKG_INTRINSICS 1328 1329 KMP_ATTRIBUTE_TARGET_WAITPKG 1330 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) { 1331 #if !KMP_HAVE_WAITPKG_INTRINSICS 1332 uint32_t timeHi = uint32_t(counter >> 32); 1333 uint32_t timeLo = uint32_t(counter & 0xffffffff); 1334 char flag; 1335 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n" 1336 "setb %0" 1337 : "=r"(flag) 1338 : "a"(timeLo), "d"(timeHi), "c"(hint) 1339 :); 1340 return flag; 1341 #else 1342 return _tpause(hint, counter); 1343 #endif 1344 } 1345 KMP_ATTRIBUTE_TARGET_WAITPKG 1346 static inline void __kmp_umonitor(void *cacheline) { 1347 #if !KMP_HAVE_WAITPKG_INTRINSICS 1348 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 " 1349 : 1350 : "a"(cacheline) 1351 :); 1352 #else 1353 _umonitor(cacheline); 1354 #endif 1355 } 1356 KMP_ATTRIBUTE_TARGET_WAITPKG 1357 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) { 1358 #if !KMP_HAVE_WAITPKG_INTRINSICS 1359 uint32_t timeHi = uint32_t(counter >> 32); 1360 uint32_t timeLo = uint32_t(counter & 0xffffffff); 1361 char flag; 1362 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n" 1363 "setb %0" 1364 : "=r"(flag) 1365 : "a"(timeLo), "d"(timeHi), "c"(hint) 1366 :); 1367 return flag; 1368 #else 1369 return _umwait(hint, counter); 1370 #endif 1371 } 1372 #elif KMP_HAVE_MWAIT 1373 #if KMP_OS_UNIX 1374 #include <pmmintrin.h> 1375 #else 1376 #include <intrin.h> 1377 #endif 1378 #if KMP_OS_UNIX 1379 __attribute__((target("sse3"))) 1380 #endif 1381 static inline void 1382 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) { 1383 _mm_monitor(cacheline, extensions, hints); 1384 } 1385 #if KMP_OS_UNIX 1386 __attribute__((target("sse3"))) 1387 #endif 1388 static inline void 1389 __kmp_mm_mwait(unsigned extensions, unsigned hints) { 1390 _mm_mwait(extensions, hints); 1391 } 1392 #endif // KMP_HAVE_UMWAIT 1393 1394 #if KMP_ARCH_X86 1395 extern void __kmp_x86_pause(void); 1396 #elif KMP_MIC 1397 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed 1398 // regression after removal of extra PAUSE from spin loops. Changing 1399 // the delay from 100 to 300 showed even better performance than double PAUSE 1400 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC. 1401 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); } 1402 #else 1403 static inline void __kmp_x86_pause(void) { _mm_pause(); } 1404 #endif 1405 #define KMP_CPU_PAUSE() __kmp_x86_pause() 1406 #elif KMP_ARCH_PPC64 1407 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1") 1408 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2") 1409 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory") 1410 #define KMP_CPU_PAUSE() \ 1411 do { \ 1412 KMP_PPC64_PRI_LOW(); \ 1413 KMP_PPC64_PRI_MED(); \ 1414 KMP_PPC64_PRI_LOC_MB(); \ 1415 } while (0) 1416 #else 1417 #define KMP_CPU_PAUSE() /* nothing to do */ 1418 #endif 1419 1420 #define KMP_INIT_YIELD(count) \ 1421 { (count) = __kmp_yield_init; } 1422 1423 #define KMP_INIT_BACKOFF(time) \ 1424 { (time) = __kmp_pause_init; } 1425 1426 #define KMP_OVERSUBSCRIBED \ 1427 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) 1428 1429 #define KMP_TRY_YIELD \ 1430 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED))) 1431 1432 #define KMP_TRY_YIELD_OVERSUB \ 1433 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED)) 1434 1435 #define KMP_YIELD(cond) \ 1436 { \ 1437 KMP_CPU_PAUSE(); \ 1438 if ((cond) && (KMP_TRY_YIELD)) \ 1439 __kmp_yield(); \ 1440 } 1441 1442 #define KMP_YIELD_OVERSUB() \ 1443 { \ 1444 KMP_CPU_PAUSE(); \ 1445 if ((KMP_TRY_YIELD_OVERSUB)) \ 1446 __kmp_yield(); \ 1447 } 1448 1449 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround, 1450 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd. 1451 #define KMP_YIELD_SPIN(count) \ 1452 { \ 1453 KMP_CPU_PAUSE(); \ 1454 if (KMP_TRY_YIELD) { \ 1455 (count) -= 2; \ 1456 if (!(count)) { \ 1457 __kmp_yield(); \ 1458 (count) = __kmp_yield_next; \ 1459 } \ 1460 } \ 1461 } 1462 1463 // If TPAUSE is available & enabled, use it. If oversubscribed, use the slower 1464 // (C0.2) state, which improves performance of other SMT threads on the same 1465 // core, otherwise, use the fast (C0.1) default state, or whatever the user has 1466 // requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't 1467 // available, fall back to the regular CPU pause and yield combination. 1468 #if KMP_HAVE_UMWAIT 1469 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \ 1470 { \ 1471 if (__kmp_tpause_enabled) { \ 1472 if (KMP_OVERSUBSCRIBED) { \ 1473 __kmp_tpause(0, (time)); \ 1474 } else { \ 1475 __kmp_tpause(__kmp_tpause_hint, (time)); \ 1476 } \ 1477 (time) *= 2; \ 1478 } else { \ 1479 KMP_CPU_PAUSE(); \ 1480 if ((KMP_TRY_YIELD_OVERSUB)) { \ 1481 __kmp_yield(); \ 1482 } else if (__kmp_use_yield == 1) { \ 1483 (count) -= 2; \ 1484 if (!(count)) { \ 1485 __kmp_yield(); \ 1486 (count) = __kmp_yield_next; \ 1487 } \ 1488 } \ 1489 } \ 1490 } 1491 #else 1492 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \ 1493 { \ 1494 KMP_CPU_PAUSE(); \ 1495 if ((KMP_TRY_YIELD_OVERSUB)) \ 1496 __kmp_yield(); \ 1497 else if (__kmp_use_yield == 1) { \ 1498 (count) -= 2; \ 1499 if (!(count)) { \ 1500 __kmp_yield(); \ 1501 (count) = __kmp_yield_next; \ 1502 } \ 1503 } \ 1504 } 1505 #endif // KMP_HAVE_UMWAIT 1506 1507 /* ------------------------------------------------------------------------ */ 1508 /* Support datatypes for the orphaned construct nesting checks. */ 1509 /* ------------------------------------------------------------------------ */ 1510 1511 /* When adding to this enum, add its corresponding string in cons_text_c[] 1512 * array in kmp_error.cpp */ 1513 enum cons_type { 1514 ct_none, 1515 ct_parallel, 1516 ct_pdo, 1517 ct_pdo_ordered, 1518 ct_psections, 1519 ct_psingle, 1520 ct_critical, 1521 ct_ordered_in_parallel, 1522 ct_ordered_in_pdo, 1523 ct_master, 1524 ct_reduce, 1525 ct_barrier, 1526 ct_masked 1527 }; 1528 1529 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered) 1530 1531 struct cons_data { 1532 ident_t const *ident; 1533 enum cons_type type; 1534 int prev; 1535 kmp_user_lock_p 1536 name; /* address exclusively for critical section name comparison */ 1537 }; 1538 1539 struct cons_header { 1540 int p_top, w_top, s_top; 1541 int stack_size, stack_top; 1542 struct cons_data *stack_data; 1543 }; 1544 1545 struct kmp_region_info { 1546 char *text; 1547 int offset[KMP_MAX_FIELDS]; 1548 int length[KMP_MAX_FIELDS]; 1549 }; 1550 1551 /* ---------------------------------------------------------------------- */ 1552 /* ---------------------------------------------------------------------- */ 1553 1554 #if KMP_OS_WINDOWS 1555 typedef HANDLE kmp_thread_t; 1556 typedef DWORD kmp_key_t; 1557 #endif /* KMP_OS_WINDOWS */ 1558 1559 #if KMP_OS_UNIX 1560 typedef pthread_t kmp_thread_t; 1561 typedef pthread_key_t kmp_key_t; 1562 #endif 1563 1564 extern kmp_key_t __kmp_gtid_threadprivate_key; 1565 1566 typedef struct kmp_sys_info { 1567 long maxrss; /* the maximum resident set size utilized (in kilobytes) */ 1568 long minflt; /* the number of page faults serviced without any I/O */ 1569 long majflt; /* the number of page faults serviced that required I/O */ 1570 long nswap; /* the number of times a process was "swapped" out of memory */ 1571 long inblock; /* the number of times the file system had to perform input */ 1572 long oublock; /* the number of times the file system had to perform output */ 1573 long nvcsw; /* the number of times a context switch was voluntarily */ 1574 long nivcsw; /* the number of times a context switch was forced */ 1575 } kmp_sys_info_t; 1576 1577 #if USE_ITT_BUILD 1578 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only 1579 // required type here. Later we will check the type meets requirements. 1580 typedef int kmp_itt_mark_t; 1581 #define KMP_ITT_DEBUG 0 1582 #endif /* USE_ITT_BUILD */ 1583 1584 typedef kmp_int32 kmp_critical_name[8]; 1585 1586 /*! 1587 @ingroup PARALLEL 1588 The type for a microtask which gets passed to @ref __kmpc_fork_call(). 1589 The arguments to the outlined function are 1590 @param global_tid the global thread identity of the thread executing the 1591 function. 1592 @param bound_tid the local identity of the thread executing the function 1593 @param ... pointers to shared variables accessed by the function. 1594 */ 1595 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...); 1596 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth, 1597 ...); 1598 1599 /*! 1600 @ingroup THREADPRIVATE 1601 @{ 1602 */ 1603 /* --------------------------------------------------------------------------- 1604 */ 1605 /* Threadprivate initialization/finalization function declarations */ 1606 1607 /* for non-array objects: __kmpc_threadprivate_register() */ 1608 1609 /*! 1610 Pointer to the constructor function. 1611 The first argument is the <tt>this</tt> pointer 1612 */ 1613 typedef void *(*kmpc_ctor)(void *); 1614 1615 /*! 1616 Pointer to the destructor function. 1617 The first argument is the <tt>this</tt> pointer 1618 */ 1619 typedef void (*kmpc_dtor)( 1620 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel 1621 compiler */ 1622 /*! 1623 Pointer to an alternate constructor. 1624 The first argument is the <tt>this</tt> pointer. 1625 */ 1626 typedef void *(*kmpc_cctor)(void *, void *); 1627 1628 /* for array objects: __kmpc_threadprivate_register_vec() */ 1629 /* First arg: "this" pointer */ 1630 /* Last arg: number of array elements */ 1631 /*! 1632 Array constructor. 1633 First argument is the <tt>this</tt> pointer 1634 Second argument the number of array elements. 1635 */ 1636 typedef void *(*kmpc_ctor_vec)(void *, size_t); 1637 /*! 1638 Pointer to the array destructor function. 1639 The first argument is the <tt>this</tt> pointer 1640 Second argument the number of array elements. 1641 */ 1642 typedef void (*kmpc_dtor_vec)(void *, size_t); 1643 /*! 1644 Array constructor. 1645 First argument is the <tt>this</tt> pointer 1646 Third argument the number of array elements. 1647 */ 1648 typedef void *(*kmpc_cctor_vec)(void *, void *, 1649 size_t); /* function unused by compiler */ 1650 1651 /*! 1652 @} 1653 */ 1654 1655 /* keeps tracked of threadprivate cache allocations for cleanup later */ 1656 typedef struct kmp_cached_addr { 1657 void **addr; /* address of allocated cache */ 1658 void ***compiler_cache; /* pointer to compiler's cache */ 1659 void *data; /* pointer to global data */ 1660 struct kmp_cached_addr *next; /* pointer to next cached address */ 1661 } kmp_cached_addr_t; 1662 1663 struct private_data { 1664 struct private_data *next; /* The next descriptor in the list */ 1665 void *data; /* The data buffer for this descriptor */ 1666 int more; /* The repeat count for this descriptor */ 1667 size_t size; /* The data size for this descriptor */ 1668 }; 1669 1670 struct private_common { 1671 struct private_common *next; 1672 struct private_common *link; 1673 void *gbl_addr; 1674 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */ 1675 size_t cmn_size; 1676 }; 1677 1678 struct shared_common { 1679 struct shared_common *next; 1680 struct private_data *pod_init; 1681 void *obj_init; 1682 void *gbl_addr; 1683 union { 1684 kmpc_ctor ctor; 1685 kmpc_ctor_vec ctorv; 1686 } ct; 1687 union { 1688 kmpc_cctor cctor; 1689 kmpc_cctor_vec cctorv; 1690 } cct; 1691 union { 1692 kmpc_dtor dtor; 1693 kmpc_dtor_vec dtorv; 1694 } dt; 1695 size_t vec_len; 1696 int is_vec; 1697 size_t cmn_size; 1698 }; 1699 1700 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */ 1701 #define KMP_HASH_TABLE_SIZE \ 1702 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */ 1703 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */ 1704 #define KMP_HASH(x) \ 1705 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1)) 1706 1707 struct common_table { 1708 struct private_common *data[KMP_HASH_TABLE_SIZE]; 1709 }; 1710 1711 struct shared_table { 1712 struct shared_common *data[KMP_HASH_TABLE_SIZE]; 1713 }; 1714 1715 /* ------------------------------------------------------------------------ */ 1716 1717 #if KMP_USE_HIER_SCHED 1718 // Shared barrier data that exists inside a single unit of the scheduling 1719 // hierarchy 1720 typedef struct kmp_hier_private_bdata_t { 1721 kmp_int32 num_active; 1722 kmp_uint64 index; 1723 kmp_uint64 wait_val[2]; 1724 } kmp_hier_private_bdata_t; 1725 #endif 1726 1727 typedef struct kmp_sched_flags { 1728 unsigned ordered : 1; 1729 unsigned nomerge : 1; 1730 unsigned contains_last : 1; 1731 #if KMP_USE_HIER_SCHED 1732 unsigned use_hier : 1; 1733 unsigned unused : 28; 1734 #else 1735 unsigned unused : 29; 1736 #endif 1737 } kmp_sched_flags_t; 1738 1739 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4); 1740 1741 #if KMP_STATIC_STEAL_ENABLED 1742 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { 1743 kmp_int32 count; 1744 kmp_int32 ub; 1745 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ 1746 kmp_int32 lb; 1747 kmp_int32 st; 1748 kmp_int32 tc; 1749 kmp_lock_t *steal_lock; // lock used for chunk stealing 1750 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on) 1751 // a) parm3 is properly aligned and 1752 // b) all parm1-4 are on the same cache line. 1753 // Because of parm1-4 are used together, performance seems to be better 1754 // if they are on the same cache line (not measured though). 1755 1756 struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template 1757 kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should 1758 kmp_int32 parm2; // make no real change at least while padding is off. 1759 kmp_int32 parm3; 1760 kmp_int32 parm4; 1761 }; 1762 1763 kmp_uint32 ordered_lower; 1764 kmp_uint32 ordered_upper; 1765 #if KMP_OS_WINDOWS 1766 kmp_int32 last_upper; 1767 #endif /* KMP_OS_WINDOWS */ 1768 } dispatch_private_info32_t; 1769 1770 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { 1771 kmp_int64 count; // current chunk number for static & static-steal scheduling 1772 kmp_int64 ub; /* upper-bound */ 1773 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ 1774 kmp_int64 lb; /* lower-bound */ 1775 kmp_int64 st; /* stride */ 1776 kmp_int64 tc; /* trip count (number of iterations) */ 1777 kmp_lock_t *steal_lock; // lock used for chunk stealing 1778 /* parm[1-4] are used in different ways by different scheduling algorithms */ 1779 1780 // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on ) 1781 // a) parm3 is properly aligned and 1782 // b) all parm1-4 are in the same cache line. 1783 // Because of parm1-4 are used together, performance seems to be better 1784 // if they are in the same line (not measured though). 1785 1786 struct KMP_ALIGN(32) { 1787 kmp_int64 parm1; 1788 kmp_int64 parm2; 1789 kmp_int64 parm3; 1790 kmp_int64 parm4; 1791 }; 1792 1793 kmp_uint64 ordered_lower; 1794 kmp_uint64 ordered_upper; 1795 #if KMP_OS_WINDOWS 1796 kmp_int64 last_upper; 1797 #endif /* KMP_OS_WINDOWS */ 1798 } dispatch_private_info64_t; 1799 #else /* KMP_STATIC_STEAL_ENABLED */ 1800 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { 1801 kmp_int32 lb; 1802 kmp_int32 ub; 1803 kmp_int32 st; 1804 kmp_int32 tc; 1805 1806 kmp_int32 parm1; 1807 kmp_int32 parm2; 1808 kmp_int32 parm3; 1809 kmp_int32 parm4; 1810 1811 kmp_int32 count; 1812 1813 kmp_uint32 ordered_lower; 1814 kmp_uint32 ordered_upper; 1815 #if KMP_OS_WINDOWS 1816 kmp_int32 last_upper; 1817 #endif /* KMP_OS_WINDOWS */ 1818 } dispatch_private_info32_t; 1819 1820 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { 1821 kmp_int64 lb; /* lower-bound */ 1822 kmp_int64 ub; /* upper-bound */ 1823 kmp_int64 st; /* stride */ 1824 kmp_int64 tc; /* trip count (number of iterations) */ 1825 1826 /* parm[1-4] are used in different ways by different scheduling algorithms */ 1827 kmp_int64 parm1; 1828 kmp_int64 parm2; 1829 kmp_int64 parm3; 1830 kmp_int64 parm4; 1831 1832 kmp_int64 count; /* current chunk number for static scheduling */ 1833 1834 kmp_uint64 ordered_lower; 1835 kmp_uint64 ordered_upper; 1836 #if KMP_OS_WINDOWS 1837 kmp_int64 last_upper; 1838 #endif /* KMP_OS_WINDOWS */ 1839 } dispatch_private_info64_t; 1840 #endif /* KMP_STATIC_STEAL_ENABLED */ 1841 1842 typedef struct KMP_ALIGN_CACHE dispatch_private_info { 1843 union private_info { 1844 dispatch_private_info32_t p32; 1845 dispatch_private_info64_t p64; 1846 } u; 1847 enum sched_type schedule; /* scheduling algorithm */ 1848 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */ 1849 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer 1850 kmp_int32 ordered_bumped; 1851 // Stack of buffers for nest of serial regions 1852 struct dispatch_private_info *next; 1853 kmp_int32 type_size; /* the size of types in private_info */ 1854 #if KMP_USE_HIER_SCHED 1855 kmp_int32 hier_id; 1856 void *parent; /* hierarchical scheduling parent pointer */ 1857 #endif 1858 enum cons_type pushed_ws; 1859 } dispatch_private_info_t; 1860 1861 typedef struct dispatch_shared_info32 { 1862 /* chunk index under dynamic, number of idle threads under static-steal; 1863 iteration index otherwise */ 1864 volatile kmp_uint32 iteration; 1865 volatile kmp_int32 num_done; 1866 volatile kmp_uint32 ordered_iteration; 1867 // Dummy to retain the structure size after making ordered_iteration scalar 1868 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1]; 1869 } dispatch_shared_info32_t; 1870 1871 typedef struct dispatch_shared_info64 { 1872 /* chunk index under dynamic, number of idle threads under static-steal; 1873 iteration index otherwise */ 1874 volatile kmp_uint64 iteration; 1875 volatile kmp_int64 num_done; 1876 volatile kmp_uint64 ordered_iteration; 1877 // Dummy to retain the structure size after making ordered_iteration scalar 1878 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3]; 1879 } dispatch_shared_info64_t; 1880 1881 typedef struct dispatch_shared_info { 1882 union shared_info { 1883 dispatch_shared_info32_t s32; 1884 dispatch_shared_info64_t s64; 1885 } u; 1886 volatile kmp_uint32 buffer_index; 1887 volatile kmp_int32 doacross_buf_idx; // teamwise index 1888 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1) 1889 kmp_int32 doacross_num_done; // count finished threads 1890 #if KMP_USE_HIER_SCHED 1891 void *hier; 1892 #endif 1893 #if KMP_USE_HWLOC 1894 // When linking with libhwloc, the ORDERED EPCC test slows down on big 1895 // machines (> 48 cores). Performance analysis showed that a cache thrash 1896 // was occurring and this padding helps alleviate the problem. 1897 char padding[64]; 1898 #endif 1899 } dispatch_shared_info_t; 1900 1901 typedef struct kmp_disp { 1902 /* Vector for ORDERED SECTION */ 1903 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *); 1904 /* Vector for END ORDERED SECTION */ 1905 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *); 1906 1907 dispatch_shared_info_t *th_dispatch_sh_current; 1908 dispatch_private_info_t *th_dispatch_pr_current; 1909 1910 dispatch_private_info_t *th_disp_buffer; 1911 kmp_uint32 th_disp_index; 1912 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index 1913 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags 1914 kmp_int64 *th_doacross_info; // info on loop bounds 1915 #if KMP_USE_INTERNODE_ALIGNMENT 1916 char more_padding[INTERNODE_CACHE_LINE]; 1917 #endif 1918 } kmp_disp_t; 1919 1920 /* ------------------------------------------------------------------------ */ 1921 /* Barrier stuff */ 1922 1923 /* constants for barrier state update */ 1924 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */ 1925 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */ 1926 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state 1927 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */ 1928 1929 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT) 1930 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT) 1931 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT) 1932 1933 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT) 1934 #error "Barrier sleep bit must be smaller than barrier bump bit" 1935 #endif 1936 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT) 1937 #error "Barrier unused bit must be smaller than barrier bump bit" 1938 #endif 1939 1940 // Constants for release barrier wait state: currently, hierarchical only 1941 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep 1942 #define KMP_BARRIER_OWN_FLAG \ 1943 1 // Normal state; worker waiting on own b_go flag in release 1944 #define KMP_BARRIER_PARENT_FLAG \ 1945 2 // Special state; worker waiting on parent's b_go flag in release 1946 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \ 1947 3 // Special state; tells worker to shift from parent to own b_go 1948 #define KMP_BARRIER_SWITCHING \ 1949 4 // Special state; worker resets appropriate flag on wake-up 1950 1951 #define KMP_NOT_SAFE_TO_REAP \ 1952 0 // Thread th_reap_state: not safe to reap (tasking) 1953 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking) 1954 1955 // The flag_type describes the storage used for the flag. 1956 enum flag_type { 1957 flag32, /**< atomic 32 bit flags */ 1958 flag64, /**< 64 bit flags */ 1959 atomic_flag64, /**< atomic 64 bit flags */ 1960 flag_oncore, /**< special 64-bit flag for on-core barrier (hierarchical) */ 1961 flag_unset 1962 }; 1963 1964 enum barrier_type { 1965 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction 1966 barriers if enabled) */ 1967 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */ 1968 #if KMP_FAST_REDUCTION_BARRIER 1969 bs_reduction_barrier, /* 2, All barriers that are used in reduction */ 1970 #endif // KMP_FAST_REDUCTION_BARRIER 1971 bs_last_barrier /* Just a placeholder to mark the end */ 1972 }; 1973 1974 // to work with reduction barriers just like with plain barriers 1975 #if !KMP_FAST_REDUCTION_BARRIER 1976 #define bs_reduction_barrier bs_plain_barrier 1977 #endif // KMP_FAST_REDUCTION_BARRIER 1978 1979 typedef enum kmp_bar_pat { /* Barrier communication patterns */ 1980 bp_linear_bar = 1981 0, /* Single level (degenerate) tree */ 1982 bp_tree_bar = 1983 1, /* Balanced tree with branching factor 2^n */ 1984 bp_hyper_bar = 2, /* Hypercube-embedded tree with min 1985 branching factor 2^n */ 1986 bp_hierarchical_bar = 3, /* Machine hierarchy tree */ 1987 bp_dist_bar = 4, /* Distributed barrier */ 1988 bp_last_bar /* Placeholder to mark the end */ 1989 } kmp_bar_pat_e; 1990 1991 #define KMP_BARRIER_ICV_PUSH 1 1992 1993 /* Record for holding the values of the internal controls stack records */ 1994 typedef struct kmp_internal_control { 1995 int serial_nesting_level; /* corresponds to the value of the 1996 th_team_serialized field */ 1997 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per 1998 thread) */ 1999 kmp_int8 2000 bt_set; /* internal control for whether blocktime is explicitly set */ 2001 int blocktime; /* internal control for blocktime */ 2002 #if KMP_USE_MONITOR 2003 int bt_intervals; /* internal control for blocktime intervals */ 2004 #endif 2005 int nproc; /* internal control for #threads for next parallel region (per 2006 thread) */ 2007 int thread_limit; /* internal control for thread-limit-var */ 2008 int max_active_levels; /* internal control for max_active_levels */ 2009 kmp_r_sched_t 2010 sched; /* internal control for runtime schedule {sched,chunk} pair */ 2011 kmp_proc_bind_t proc_bind; /* internal control for affinity */ 2012 kmp_int32 default_device; /* internal control for default device */ 2013 struct kmp_internal_control *next; 2014 } kmp_internal_control_t; 2015 2016 static inline void copy_icvs(kmp_internal_control_t *dst, 2017 kmp_internal_control_t *src) { 2018 *dst = *src; 2019 } 2020 2021 /* Thread barrier needs volatile barrier fields */ 2022 typedef struct KMP_ALIGN_CACHE kmp_bstate { 2023 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all 2024 // uses of it). It is not explicitly aligned below, because we *don't* want 2025 // it to be padded -- instead, we fit b_go into the same cache line with 2026 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier. 2027 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread 2028 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with 2029 // same NGO store 2030 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical) 2031 KMP_ALIGN_CACHE volatile kmp_uint64 2032 b_arrived; // STATE => task reached synch point. 2033 kmp_uint32 *skip_per_level; 2034 kmp_uint32 my_level; 2035 kmp_int32 parent_tid; 2036 kmp_int32 old_tid; 2037 kmp_uint32 depth; 2038 struct kmp_bstate *parent_bar; 2039 kmp_team_t *team; 2040 kmp_uint64 leaf_state; 2041 kmp_uint32 nproc; 2042 kmp_uint8 base_leaf_kids; 2043 kmp_uint8 leaf_kids; 2044 kmp_uint8 offset; 2045 kmp_uint8 wait_flag; 2046 kmp_uint8 use_oncore_barrier; 2047 #if USE_DEBUGGER 2048 // The following field is intended for the debugger solely. Only the worker 2049 // thread itself accesses this field: the worker increases it by 1 when it 2050 // arrives to a barrier. 2051 KMP_ALIGN_CACHE kmp_uint b_worker_arrived; 2052 #endif /* USE_DEBUGGER */ 2053 } kmp_bstate_t; 2054 2055 union KMP_ALIGN_CACHE kmp_barrier_union { 2056 double b_align; /* use worst case alignment */ 2057 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)]; 2058 kmp_bstate_t bb; 2059 }; 2060 2061 typedef union kmp_barrier_union kmp_balign_t; 2062 2063 /* Team barrier needs only non-volatile arrived counter */ 2064 union KMP_ALIGN_CACHE kmp_barrier_team_union { 2065 double b_align; /* use worst case alignment */ 2066 char b_pad[CACHE_LINE]; 2067 struct { 2068 kmp_uint64 b_arrived; /* STATE => task reached synch point. */ 2069 #if USE_DEBUGGER 2070 // The following two fields are indended for the debugger solely. Only 2071 // primary thread of the team accesses these fields: the first one is 2072 // increased by 1 when the primary thread arrives to a barrier, the second 2073 // one is increased by one when all the threads arrived. 2074 kmp_uint b_master_arrived; 2075 kmp_uint b_team_arrived; 2076 #endif 2077 }; 2078 }; 2079 2080 typedef union kmp_barrier_team_union kmp_balign_team_t; 2081 2082 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal 2083 threads when a condition changes. This is to workaround an NPTL bug where 2084 padding was added to pthread_cond_t which caused the initialization routine 2085 to write outside of the structure if compiled on pre-NPTL threads. */ 2086 #if KMP_OS_WINDOWS 2087 typedef struct kmp_win32_mutex { 2088 /* The Lock */ 2089 CRITICAL_SECTION cs; 2090 } kmp_win32_mutex_t; 2091 2092 typedef struct kmp_win32_cond { 2093 /* Count of the number of waiters. */ 2094 int waiters_count_; 2095 2096 /* Serialize access to <waiters_count_> */ 2097 kmp_win32_mutex_t waiters_count_lock_; 2098 2099 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */ 2100 int release_count_; 2101 2102 /* Keeps track of the current "generation" so that we don't allow */ 2103 /* one thread to steal all the "releases" from the broadcast. */ 2104 int wait_generation_count_; 2105 2106 /* A manual-reset event that's used to block and release waiting threads. */ 2107 HANDLE event_; 2108 } kmp_win32_cond_t; 2109 #endif 2110 2111 #if KMP_OS_UNIX 2112 2113 union KMP_ALIGN_CACHE kmp_cond_union { 2114 double c_align; 2115 char c_pad[CACHE_LINE]; 2116 pthread_cond_t c_cond; 2117 }; 2118 2119 typedef union kmp_cond_union kmp_cond_align_t; 2120 2121 union KMP_ALIGN_CACHE kmp_mutex_union { 2122 double m_align; 2123 char m_pad[CACHE_LINE]; 2124 pthread_mutex_t m_mutex; 2125 }; 2126 2127 typedef union kmp_mutex_union kmp_mutex_align_t; 2128 2129 #endif /* KMP_OS_UNIX */ 2130 2131 typedef struct kmp_desc_base { 2132 void *ds_stackbase; 2133 size_t ds_stacksize; 2134 int ds_stackgrow; 2135 kmp_thread_t ds_thread; 2136 volatile int ds_tid; 2137 int ds_gtid; 2138 #if KMP_OS_WINDOWS 2139 volatile int ds_alive; 2140 DWORD ds_thread_id; 2141 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes. 2142 However, debugger support (libomp_db) cannot work with handles, because they 2143 uncomparable. For example, debugger requests info about thread with handle h. 2144 h is valid within debugger process, and meaningless within debugee process. 2145 Even if h is duped by call to DuplicateHandle(), so the result h' is valid 2146 within debugee process, but it is a *new* handle which does *not* equal to 2147 any other handle in debugee... The only way to compare handles is convert 2148 them to system-wide ids. GetThreadId() function is available only in 2149 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available 2150 on all Windows* OS flavours (including Windows* 95). Thus, we have to get 2151 thread id by call to GetCurrentThreadId() from within the thread and save it 2152 to let libomp_db identify threads. */ 2153 #endif /* KMP_OS_WINDOWS */ 2154 } kmp_desc_base_t; 2155 2156 typedef union KMP_ALIGN_CACHE kmp_desc { 2157 double ds_align; /* use worst case alignment */ 2158 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)]; 2159 kmp_desc_base_t ds; 2160 } kmp_desc_t; 2161 2162 typedef struct kmp_local { 2163 volatile int this_construct; /* count of single's encountered by thread */ 2164 void *reduce_data; 2165 #if KMP_USE_BGET 2166 void *bget_data; 2167 void *bget_list; 2168 #if !USE_CMP_XCHG_FOR_BGET 2169 #ifdef USE_QUEUING_LOCK_FOR_BGET 2170 kmp_lock_t bget_lock; /* Lock for accessing bget free list */ 2171 #else 2172 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be 2173 // bootstrap lock so we can use it at library 2174 // shutdown. 2175 #endif /* USE_LOCK_FOR_BGET */ 2176 #endif /* ! USE_CMP_XCHG_FOR_BGET */ 2177 #endif /* KMP_USE_BGET */ 2178 2179 PACKED_REDUCTION_METHOD_T 2180 packed_reduction_method; /* stored by __kmpc_reduce*(), used by 2181 __kmpc_end_reduce*() */ 2182 2183 } kmp_local_t; 2184 2185 #define KMP_CHECK_UPDATE(a, b) \ 2186 if ((a) != (b)) \ 2187 (a) = (b) 2188 #define KMP_CHECK_UPDATE_SYNC(a, b) \ 2189 if ((a) != (b)) \ 2190 TCW_SYNC_PTR((a), (b)) 2191 2192 #define get__blocktime(xteam, xtid) \ 2193 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) 2194 #define get__bt_set(xteam, xtid) \ 2195 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) 2196 #if KMP_USE_MONITOR 2197 #define get__bt_intervals(xteam, xtid) \ 2198 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) 2199 #endif 2200 2201 #define get__dynamic_2(xteam, xtid) \ 2202 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic) 2203 #define get__nproc_2(xteam, xtid) \ 2204 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc) 2205 #define get__sched_2(xteam, xtid) \ 2206 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched) 2207 2208 #define set__blocktime_team(xteam, xtid, xval) \ 2209 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \ 2210 (xval)) 2211 2212 #if KMP_USE_MONITOR 2213 #define set__bt_intervals_team(xteam, xtid, xval) \ 2214 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \ 2215 (xval)) 2216 #endif 2217 2218 #define set__bt_set_team(xteam, xtid, xval) \ 2219 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval)) 2220 2221 #define set__dynamic(xthread, xval) \ 2222 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval)) 2223 #define get__dynamic(xthread) \ 2224 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE)) 2225 2226 #define set__nproc(xthread, xval) \ 2227 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval)) 2228 2229 #define set__thread_limit(xthread, xval) \ 2230 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval)) 2231 2232 #define set__max_active_levels(xthread, xval) \ 2233 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval)) 2234 2235 #define get__max_active_levels(xthread) \ 2236 ((xthread)->th.th_current_task->td_icvs.max_active_levels) 2237 2238 #define set__sched(xthread, xval) \ 2239 (((xthread)->th.th_current_task->td_icvs.sched) = (xval)) 2240 2241 #define set__proc_bind(xthread, xval) \ 2242 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval)) 2243 #define get__proc_bind(xthread) \ 2244 ((xthread)->th.th_current_task->td_icvs.proc_bind) 2245 2246 // OpenMP tasking data structures 2247 2248 typedef enum kmp_tasking_mode { 2249 tskm_immediate_exec = 0, 2250 tskm_extra_barrier = 1, 2251 tskm_task_teams = 2, 2252 tskm_max = 2 2253 } kmp_tasking_mode_t; 2254 2255 extern kmp_tasking_mode_t 2256 __kmp_tasking_mode; /* determines how/when to execute tasks */ 2257 extern int __kmp_task_stealing_constraint; 2258 extern int __kmp_enable_task_throttling; 2259 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if 2260 // specified, defaults to 0 otherwise 2261 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise 2262 extern kmp_int32 __kmp_max_task_priority; 2263 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise 2264 extern kmp_uint64 __kmp_taskloop_min_tasks; 2265 2266 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with 2267 taskdata first */ 2268 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1) 2269 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1) 2270 2271 // The tt_found_tasks flag is a signal to all threads in the team that tasks 2272 // were spawned and queued since the previous barrier release. 2273 #define KMP_TASKING_ENABLED(task_team) \ 2274 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks)) 2275 /*! 2276 @ingroup BASIC_TYPES 2277 @{ 2278 */ 2279 2280 /*! 2281 */ 2282 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *); 2283 2284 typedef union kmp_cmplrdata { 2285 kmp_int32 priority; /**< priority specified by user for the task */ 2286 kmp_routine_entry_t 2287 destructors; /* pointer to function to invoke deconstructors of 2288 firstprivate C++ objects */ 2289 /* future data */ 2290 } kmp_cmplrdata_t; 2291 2292 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */ 2293 /*! 2294 */ 2295 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */ 2296 void *shareds; /**< pointer to block of pointers to shared vars */ 2297 kmp_routine_entry_t 2298 routine; /**< pointer to routine to call for executing task */ 2299 kmp_int32 part_id; /**< part id for the task */ 2300 kmp_cmplrdata_t 2301 data1; /* Two known optional additions: destructors and priority */ 2302 kmp_cmplrdata_t data2; /* Process destructors first, priority second */ 2303 /* future data */ 2304 /* private vars */ 2305 } kmp_task_t; 2306 2307 /*! 2308 @} 2309 */ 2310 2311 typedef struct kmp_taskgroup { 2312 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks 2313 std::atomic<kmp_int32> 2314 cancel_request; // request for cancellation of this taskgroup 2315 struct kmp_taskgroup *parent; // parent taskgroup 2316 // Block of data to perform task reduction 2317 void *reduce_data; // reduction related info 2318 kmp_int32 reduce_num_data; // number of data items to reduce 2319 uintptr_t *gomp_data; // gomp reduction data 2320 } kmp_taskgroup_t; 2321 2322 // forward declarations 2323 typedef union kmp_depnode kmp_depnode_t; 2324 typedef struct kmp_depnode_list kmp_depnode_list_t; 2325 typedef struct kmp_dephash_entry kmp_dephash_entry_t; 2326 2327 // macros for checking dep flag as an integer 2328 #define KMP_DEP_IN 0x1 2329 #define KMP_DEP_OUT 0x2 2330 #define KMP_DEP_INOUT 0x3 2331 #define KMP_DEP_MTX 0x4 2332 #define KMP_DEP_SET 0x8 2333 #define KMP_DEP_ALL 0x80 2334 // Compiler sends us this info: 2335 typedef struct kmp_depend_info { 2336 kmp_intptr_t base_addr; 2337 size_t len; 2338 union { 2339 kmp_uint8 flag; // flag as an unsigned char 2340 struct { // flag as a set of 8 bits 2341 unsigned in : 1; 2342 unsigned out : 1; 2343 unsigned mtx : 1; 2344 unsigned set : 1; 2345 unsigned unused : 3; 2346 unsigned all : 1; 2347 } flags; 2348 }; 2349 } kmp_depend_info_t; 2350 2351 // Internal structures to work with task dependencies: 2352 struct kmp_depnode_list { 2353 kmp_depnode_t *node; 2354 kmp_depnode_list_t *next; 2355 }; 2356 2357 // Max number of mutexinoutset dependencies per node 2358 #define MAX_MTX_DEPS 4 2359 2360 typedef struct kmp_base_depnode { 2361 kmp_depnode_list_t *successors; /* used under lock */ 2362 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */ 2363 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */ 2364 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */ 2365 kmp_lock_t lock; /* guards shared fields: task, successors */ 2366 #if KMP_SUPPORT_GRAPH_OUTPUT 2367 kmp_uint32 id; 2368 #endif 2369 std::atomic<kmp_int32> npredecessors; 2370 std::atomic<kmp_int32> nrefs; 2371 } kmp_base_depnode_t; 2372 2373 union KMP_ALIGN_CACHE kmp_depnode { 2374 double dn_align; /* use worst case alignment */ 2375 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)]; 2376 kmp_base_depnode_t dn; 2377 }; 2378 2379 struct kmp_dephash_entry { 2380 kmp_intptr_t addr; 2381 kmp_depnode_t *last_out; 2382 kmp_depnode_list_t *last_set; 2383 kmp_depnode_list_t *prev_set; 2384 kmp_uint8 last_flag; 2385 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */ 2386 kmp_dephash_entry_t *next_in_bucket; 2387 }; 2388 2389 typedef struct kmp_dephash { 2390 kmp_dephash_entry_t **buckets; 2391 size_t size; 2392 kmp_depnode_t *last_all; 2393 size_t generation; 2394 kmp_uint32 nelements; 2395 kmp_uint32 nconflicts; 2396 } kmp_dephash_t; 2397 2398 typedef struct kmp_task_affinity_info { 2399 kmp_intptr_t base_addr; 2400 size_t len; 2401 struct { 2402 bool flag1 : 1; 2403 bool flag2 : 1; 2404 kmp_int32 reserved : 30; 2405 } flags; 2406 } kmp_task_affinity_info_t; 2407 2408 typedef enum kmp_event_type_t { 2409 KMP_EVENT_UNINITIALIZED = 0, 2410 KMP_EVENT_ALLOW_COMPLETION = 1 2411 } kmp_event_type_t; 2412 2413 typedef struct { 2414 kmp_event_type_t type; 2415 kmp_tas_lock_t lock; 2416 union { 2417 kmp_task_t *task; 2418 } ed; 2419 } kmp_event_t; 2420 2421 #ifdef BUILD_TIED_TASK_STACK 2422 2423 /* Tied Task stack definitions */ 2424 typedef struct kmp_stack_block { 2425 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE]; 2426 struct kmp_stack_block *sb_next; 2427 struct kmp_stack_block *sb_prev; 2428 } kmp_stack_block_t; 2429 2430 typedef struct kmp_task_stack { 2431 kmp_stack_block_t ts_first_block; // first block of stack entries 2432 kmp_taskdata_t **ts_top; // pointer to the top of stack 2433 kmp_int32 ts_entries; // number of entries on the stack 2434 } kmp_task_stack_t; 2435 2436 #endif // BUILD_TIED_TASK_STACK 2437 2438 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */ 2439 /* Compiler flags */ /* Total compiler flags must be 16 bits */ 2440 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */ 2441 unsigned final : 1; /* task is final(1) so execute immediately */ 2442 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0 2443 code path */ 2444 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to 2445 invoke destructors from the runtime */ 2446 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the 2447 context of the RTL) */ 2448 unsigned priority_specified : 1; /* set if the compiler provides priority 2449 setting for the task */ 2450 unsigned detachable : 1; /* 1 == can detach */ 2451 unsigned hidden_helper : 1; /* 1 == hidden helper task */ 2452 unsigned reserved : 8; /* reserved for compiler use */ 2453 2454 /* Library flags */ /* Total library flags must be 16 bits */ 2455 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */ 2456 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0) 2457 unsigned tasking_ser : 1; // all tasks in team are either executed immediately 2458 // (1) or may be deferred (0) 2459 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel 2460 // (0) [>= 2 threads] 2461 /* If either team_serial or tasking_ser is set, task team may be NULL */ 2462 /* Task State Flags: */ 2463 unsigned started : 1; /* 1==started, 0==not started */ 2464 unsigned executing : 1; /* 1==executing, 0==not executing */ 2465 unsigned complete : 1; /* 1==complete, 0==not complete */ 2466 unsigned freed : 1; /* 1==freed, 0==allocated */ 2467 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */ 2468 unsigned reserved31 : 7; /* reserved for library use */ 2469 2470 } kmp_tasking_flags_t; 2471 2472 struct kmp_taskdata { /* aligned during dynamic allocation */ 2473 kmp_int32 td_task_id; /* id, assigned by debugger */ 2474 kmp_tasking_flags_t td_flags; /* task flags */ 2475 kmp_team_t *td_team; /* team for this task */ 2476 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */ 2477 /* Currently not used except for perhaps IDB */ 2478 kmp_taskdata_t *td_parent; /* parent task */ 2479 kmp_int32 td_level; /* task nesting level */ 2480 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter 2481 ident_t *td_ident; /* task identifier */ 2482 // Taskwait data. 2483 ident_t *td_taskwait_ident; 2484 kmp_uint32 td_taskwait_counter; 2485 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */ 2486 KMP_ALIGN_CACHE kmp_internal_control_t 2487 td_icvs; /* Internal control variables for the task */ 2488 KMP_ALIGN_CACHE std::atomic<kmp_int32> 2489 td_allocated_child_tasks; /* Child tasks (+ current task) not yet 2490 deallocated */ 2491 std::atomic<kmp_int32> 2492 td_incomplete_child_tasks; /* Child tasks not yet complete */ 2493 kmp_taskgroup_t 2494 *td_taskgroup; // Each task keeps pointer to its current taskgroup 2495 kmp_dephash_t 2496 *td_dephash; // Dependencies for children tasks are tracked from here 2497 kmp_depnode_t 2498 *td_depnode; // Pointer to graph node if this task has dependencies 2499 kmp_task_team_t *td_task_team; 2500 size_t td_size_alloc; // Size of task structure, including shareds etc. 2501 #if defined(KMP_GOMP_COMPAT) 2502 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop 2503 kmp_int32 td_size_loop_bounds; 2504 #endif 2505 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint 2506 #if defined(KMP_GOMP_COMPAT) 2507 // GOMP sends in a copy function for copy constructors 2508 void (*td_copy_func)(void *, void *); 2509 #endif 2510 kmp_event_t td_allow_completion_event; 2511 #if OMPT_SUPPORT 2512 ompt_task_info_t ompt_task_info; 2513 #endif 2514 }; // struct kmp_taskdata 2515 2516 // Make sure padding above worked 2517 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0); 2518 2519 // Data for task team but per thread 2520 typedef struct kmp_base_thread_data { 2521 kmp_info_p *td_thr; // Pointer back to thread info 2522 // Used only in __kmp_execute_tasks_template, maybe not avail until task is 2523 // queued? 2524 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque 2525 kmp_taskdata_t * 2526 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated 2527 kmp_int32 td_deque_size; // Size of deck 2528 kmp_uint32 td_deque_head; // Head of deque (will wrap) 2529 kmp_uint32 td_deque_tail; // Tail of deque (will wrap) 2530 kmp_int32 td_deque_ntasks; // Number of tasks in deque 2531 // GEH: shouldn't this be volatile since used in while-spin? 2532 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal 2533 #ifdef BUILD_TIED_TASK_STACK 2534 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task 2535 // scheduling constraint 2536 #endif // BUILD_TIED_TASK_STACK 2537 } kmp_base_thread_data_t; 2538 2539 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE 2540 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS) 2541 2542 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size) 2543 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1) 2544 2545 typedef union KMP_ALIGN_CACHE kmp_thread_data { 2546 kmp_base_thread_data_t td; 2547 double td_align; /* use worst case alignment */ 2548 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)]; 2549 } kmp_thread_data_t; 2550 2551 // Data for task teams which are used when tasking is enabled for the team 2552 typedef struct kmp_base_task_team { 2553 kmp_bootstrap_lock_t 2554 tt_threads_lock; /* Lock used to allocate per-thread part of task team */ 2555 /* must be bootstrap lock since used at library shutdown*/ 2556 kmp_task_team_t *tt_next; /* For linking the task team free list */ 2557 kmp_thread_data_t 2558 *tt_threads_data; /* Array of per-thread structures for task team */ 2559 /* Data survives task team deallocation */ 2560 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while 2561 executing this team? */ 2562 /* TRUE means tt_threads_data is set up and initialized */ 2563 kmp_int32 tt_nproc; /* #threads in team */ 2564 kmp_int32 tt_max_threads; // # entries allocated for threads_data array 2565 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier 2566 kmp_int32 tt_untied_task_encountered; 2567 // There is hidden helper thread encountered in this task team so that we must 2568 // wait when waiting on task team 2569 kmp_int32 tt_hidden_helper_task_encountered; 2570 2571 KMP_ALIGN_CACHE 2572 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */ 2573 2574 KMP_ALIGN_CACHE 2575 volatile kmp_uint32 2576 tt_active; /* is the team still actively executing tasks */ 2577 } kmp_base_task_team_t; 2578 2579 union KMP_ALIGN_CACHE kmp_task_team { 2580 kmp_base_task_team_t tt; 2581 double tt_align; /* use worst case alignment */ 2582 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)]; 2583 }; 2584 2585 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5) 2586 // Free lists keep same-size free memory slots for fast memory allocation 2587 // routines 2588 typedef struct kmp_free_list { 2589 void *th_free_list_self; // Self-allocated tasks free list 2590 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other 2591 // threads 2592 void *th_free_list_other; // Non-self free list (to be returned to owner's 2593 // sync list) 2594 } kmp_free_list_t; 2595 #endif 2596 #if KMP_NESTED_HOT_TEAMS 2597 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams 2598 // are not put in teams pool, and they don't put threads in threads pool. 2599 typedef struct kmp_hot_team_ptr { 2600 kmp_team_p *hot_team; // pointer to hot_team of given nesting level 2601 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team 2602 } kmp_hot_team_ptr_t; 2603 #endif 2604 typedef struct kmp_teams_size { 2605 kmp_int32 nteams; // number of teams in a league 2606 kmp_int32 nth; // number of threads in each team of the league 2607 } kmp_teams_size_t; 2608 2609 // This struct stores a thread that acts as a "root" for a contention 2610 // group. Contention groups are rooted at kmp_root threads, but also at 2611 // each primary thread of each team created in the teams construct. 2612 // This struct therefore also stores a thread_limit associated with 2613 // that contention group, and a counter to track the number of threads 2614 // active in that contention group. Each thread has a list of these: CG 2615 // root threads have an entry in their list in which cg_root refers to 2616 // the thread itself, whereas other workers in the CG will have a 2617 // single entry where cg_root is same as the entry containing their CG 2618 // root. When a thread encounters a teams construct, it will add a new 2619 // entry to the front of its list, because it now roots a new CG. 2620 typedef struct kmp_cg_root { 2621 kmp_info_p *cg_root; // "root" thread for a contention group 2622 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or 2623 // thread_limit clause for teams primary threads 2624 kmp_int32 cg_thread_limit; 2625 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root 2626 struct kmp_cg_root *up; // pointer to higher level CG root in list 2627 } kmp_cg_root_t; 2628 2629 // OpenMP thread data structures 2630 2631 typedef struct KMP_ALIGN_CACHE kmp_base_info { 2632 /* Start with the readonly data which is cache aligned and padded. This is 2633 written before the thread starts working by the primary thread. Uber 2634 masters may update themselves later. Usage does not consider serialized 2635 regions. */ 2636 kmp_desc_t th_info; 2637 kmp_team_p *th_team; /* team we belong to */ 2638 kmp_root_p *th_root; /* pointer to root of task hierarchy */ 2639 kmp_info_p *th_next_pool; /* next available thread in the pool */ 2640 kmp_disp_t *th_dispatch; /* thread's dispatch data */ 2641 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */ 2642 2643 /* The following are cached from the team info structure */ 2644 /* TODO use these in more places as determined to be needed via profiling */ 2645 int th_team_nproc; /* number of threads in a team */ 2646 kmp_info_p *th_team_master; /* the team's primary thread */ 2647 int th_team_serialized; /* team is serialized */ 2648 microtask_t th_teams_microtask; /* save entry address for teams construct */ 2649 int th_teams_level; /* save initial level of teams construct */ 2650 /* it is 0 on device but may be any on host */ 2651 2652 /* The blocktime info is copied from the team struct to the thread struct */ 2653 /* at the start of a barrier, and the values stored in the team are used */ 2654 /* at points in the code where the team struct is no longer guaranteed */ 2655 /* to exist (from the POV of worker threads). */ 2656 #if KMP_USE_MONITOR 2657 int th_team_bt_intervals; 2658 int th_team_bt_set; 2659 #else 2660 kmp_uint64 th_team_bt_intervals; 2661 #endif 2662 2663 #if KMP_AFFINITY_SUPPORTED 2664 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */ 2665 #endif 2666 omp_allocator_handle_t th_def_allocator; /* default allocator */ 2667 /* The data set by the primary thread at reinit, then R/W by the worker */ 2668 KMP_ALIGN_CACHE int 2669 th_set_nproc; /* if > 0, then only use this request for the next fork */ 2670 #if KMP_NESTED_HOT_TEAMS 2671 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */ 2672 #endif 2673 kmp_proc_bind_t 2674 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */ 2675 kmp_teams_size_t 2676 th_teams_size; /* number of teams/threads in teams construct */ 2677 #if KMP_AFFINITY_SUPPORTED 2678 int th_current_place; /* place currently bound to */ 2679 int th_new_place; /* place to bind to in par reg */ 2680 int th_first_place; /* first place in partition */ 2681 int th_last_place; /* last place in partition */ 2682 #endif 2683 int th_prev_level; /* previous level for affinity format */ 2684 int th_prev_num_threads; /* previous num_threads for affinity format */ 2685 #if USE_ITT_BUILD 2686 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */ 2687 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */ 2688 kmp_uint64 th_frame_time; /* frame timestamp */ 2689 #endif /* USE_ITT_BUILD */ 2690 kmp_local_t th_local; 2691 struct private_common *th_pri_head; 2692 2693 /* Now the data only used by the worker (after initial allocation) */ 2694 /* TODO the first serial team should actually be stored in the info_t 2695 structure. this will help reduce initial allocation overhead */ 2696 KMP_ALIGN_CACHE kmp_team_p 2697 *th_serial_team; /*serialized team held in reserve*/ 2698 2699 #if OMPT_SUPPORT 2700 ompt_thread_info_t ompt_thread_info; 2701 #endif 2702 2703 /* The following are also read by the primary thread during reinit */ 2704 struct common_table *th_pri_common; 2705 2706 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */ 2707 /* while awaiting queuing lock acquire */ 2708 2709 volatile void *th_sleep_loc; // this points at a kmp_flag<T> 2710 flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc 2711 2712 ident_t *th_ident; 2713 unsigned th_x; // Random number generator data 2714 unsigned th_a; // Random number generator data 2715 2716 /* Tasking-related data for the thread */ 2717 kmp_task_team_t *th_task_team; // Task team struct 2718 kmp_taskdata_t *th_current_task; // Innermost Task being executed 2719 kmp_uint8 th_task_state; // alternating 0/1 for task team identification 2720 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state 2721 // at nested levels 2722 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack 2723 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack 2724 kmp_uint32 th_reap_state; // Non-zero indicates thread is not 2725 // tasking, thus safe to reap 2726 2727 /* More stuff for keeping track of active/sleeping threads (this part is 2728 written by the worker thread) */ 2729 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool 2730 int th_active; // ! sleeping; 32 bits for TCR/TCW 2731 std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team 2732 // 0 = not used in team; 1 = used in team; 2733 // 2 = transitioning to not used in team; 3 = transitioning to used in team 2734 struct cons_header *th_cons; // used for consistency check 2735 #if KMP_USE_HIER_SCHED 2736 // used for hierarchical scheduling 2737 kmp_hier_private_bdata_t *th_hier_bar_data; 2738 #endif 2739 2740 /* Add the syncronizing data which is cache aligned and padded. */ 2741 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier]; 2742 2743 KMP_ALIGN_CACHE volatile kmp_int32 2744 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */ 2745 2746 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5) 2747 #define NUM_LISTS 4 2748 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory 2749 // allocation routines 2750 #endif 2751 2752 #if KMP_OS_WINDOWS 2753 kmp_win32_cond_t th_suspend_cv; 2754 kmp_win32_mutex_t th_suspend_mx; 2755 std::atomic<int> th_suspend_init; 2756 #endif 2757 #if KMP_OS_UNIX 2758 kmp_cond_align_t th_suspend_cv; 2759 kmp_mutex_align_t th_suspend_mx; 2760 std::atomic<int> th_suspend_init_count; 2761 #endif 2762 2763 #if USE_ITT_BUILD 2764 kmp_itt_mark_t th_itt_mark_single; 2765 // alignment ??? 2766 #endif /* USE_ITT_BUILD */ 2767 #if KMP_STATS_ENABLED 2768 kmp_stats_list *th_stats; 2769 #endif 2770 #if KMP_OS_UNIX 2771 std::atomic<bool> th_blocking; 2772 #endif 2773 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread 2774 } kmp_base_info_t; 2775 2776 typedef union KMP_ALIGN_CACHE kmp_info { 2777 double th_align; /* use worst case alignment */ 2778 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)]; 2779 kmp_base_info_t th; 2780 } kmp_info_t; 2781 2782 // OpenMP thread team data structures 2783 2784 typedef struct kmp_base_data { 2785 volatile kmp_uint32 t_value; 2786 } kmp_base_data_t; 2787 2788 typedef union KMP_ALIGN_CACHE kmp_sleep_team { 2789 double dt_align; /* use worst case alignment */ 2790 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2791 kmp_base_data_t dt; 2792 } kmp_sleep_team_t; 2793 2794 typedef union KMP_ALIGN_CACHE kmp_ordered_team { 2795 double dt_align; /* use worst case alignment */ 2796 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2797 kmp_base_data_t dt; 2798 } kmp_ordered_team_t; 2799 2800 typedef int (*launch_t)(int gtid); 2801 2802 /* Minimum number of ARGV entries to malloc if necessary */ 2803 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100 2804 2805 // Set up how many argv pointers will fit in cache lines containing 2806 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a 2807 // larger value for more space between the primary write/worker read section and 2808 // read/write by all section seems to buy more performance on EPCC PARALLEL. 2809 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2810 #define KMP_INLINE_ARGV_BYTES \ 2811 (4 * CACHE_LINE - \ 2812 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \ 2813 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \ 2814 CACHE_LINE)) 2815 #else 2816 #define KMP_INLINE_ARGV_BYTES \ 2817 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE)) 2818 #endif 2819 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP) 2820 2821 typedef struct KMP_ALIGN_CACHE kmp_base_team { 2822 // Synchronization Data 2823 // --------------------------------------------------------------------------- 2824 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered; 2825 kmp_balign_team_t t_bar[bs_last_barrier]; 2826 std::atomic<int> t_construct; // count of single directive encountered by team 2827 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron 2828 2829 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups 2830 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier 2831 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions 2832 2833 // Primary thread only 2834 // --------------------------------------------------------------------------- 2835 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team 2836 int t_master_this_cons; // "this_construct" single counter of primary thread 2837 // in parent team 2838 ident_t *t_ident; // if volatile, have to change too much other crud to 2839 // volatile too 2840 kmp_team_p *t_parent; // parent team 2841 kmp_team_p *t_next_pool; // next free team in the team pool 2842 kmp_disp_t *t_dispatch; // thread's dispatch data 2843 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2 2844 kmp_proc_bind_t t_proc_bind; // bind type for par region 2845 #if USE_ITT_BUILD 2846 kmp_uint64 t_region_time; // region begin timestamp 2847 #endif /* USE_ITT_BUILD */ 2848 2849 // Primary thread write, workers read 2850 // -------------------------------------------------------------------------- 2851 KMP_ALIGN_CACHE void **t_argv; 2852 int t_argc; 2853 int t_nproc; // number of threads in team 2854 microtask_t t_pkfn; 2855 launch_t t_invoke; // procedure to launch the microtask 2856 2857 #if OMPT_SUPPORT 2858 ompt_team_info_t ompt_team_info; 2859 ompt_lw_taskteam_t *ompt_serialized_team_info; 2860 #endif 2861 2862 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2863 kmp_int8 t_fp_control_saved; 2864 kmp_int8 t_pad2b; 2865 kmp_int16 t_x87_fpu_control_word; // FP control regs 2866 kmp_uint32 t_mxcsr; 2867 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2868 2869 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES]; 2870 2871 KMP_ALIGN_CACHE kmp_info_t **t_threads; 2872 kmp_taskdata_t 2873 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task 2874 int t_level; // nested parallel level 2875 2876 KMP_ALIGN_CACHE int t_max_argc; 2877 int t_max_nproc; // max threads this team can handle (dynamically expandable) 2878 int t_serialized; // levels deep of serialized teams 2879 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system 2880 int t_id; // team's id, assigned by debugger. 2881 int t_active_level; // nested active parallel level 2882 kmp_r_sched_t t_sched; // run-time schedule for the team 2883 #if KMP_AFFINITY_SUPPORTED 2884 int t_first_place; // first & last place in parent thread's partition. 2885 int t_last_place; // Restore these values to primary thread after par region. 2886 #endif // KMP_AFFINITY_SUPPORTED 2887 int t_display_affinity; 2888 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via 2889 // omp_set_num_threads() call 2890 omp_allocator_handle_t t_def_allocator; /* default allocator */ 2891 2892 // Read/write by workers as well 2893 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 2894 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf 2895 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra 2896 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when 2897 // CACHE_LINE=64. TODO: investigate more and get rid if this padding. 2898 char dummy_padding[1024]; 2899 #endif 2900 // Internal control stack for additional nested teams. 2901 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top; 2902 // for SERIALIZED teams nested 2 or more levels deep 2903 // typed flag to store request state of cancellation 2904 std::atomic<kmp_int32> t_cancel_request; 2905 int t_master_active; // save on fork, restore on join 2906 void *t_copypriv_data; // team specific pointer to copyprivate data array 2907 #if KMP_OS_WINDOWS 2908 std::atomic<kmp_uint32> t_copyin_counter; 2909 #endif 2910 #if USE_ITT_BUILD 2911 void *t_stack_id; // team specific stack stitching id (for ittnotify) 2912 #endif /* USE_ITT_BUILD */ 2913 distributedBarrier *b; // Distributed barrier data associated with team 2914 } kmp_base_team_t; 2915 2916 union KMP_ALIGN_CACHE kmp_team { 2917 kmp_base_team_t t; 2918 double t_align; /* use worst case alignment */ 2919 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)]; 2920 }; 2921 2922 typedef union KMP_ALIGN_CACHE kmp_time_global { 2923 double dt_align; /* use worst case alignment */ 2924 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2925 kmp_base_data_t dt; 2926 } kmp_time_global_t; 2927 2928 typedef struct kmp_base_global { 2929 /* cache-aligned */ 2930 kmp_time_global_t g_time; 2931 2932 /* non cache-aligned */ 2933 volatile int g_abort; 2934 volatile int g_done; 2935 2936 int g_dynamic; 2937 enum dynamic_mode g_dynamic_mode; 2938 } kmp_base_global_t; 2939 2940 typedef union KMP_ALIGN_CACHE kmp_global { 2941 kmp_base_global_t g; 2942 double g_align; /* use worst case alignment */ 2943 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)]; 2944 } kmp_global_t; 2945 2946 typedef struct kmp_base_root { 2947 // TODO: GEH - combine r_active with r_in_parallel then r_active == 2948 // (r_in_parallel>= 0) 2949 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce 2950 // the synch overhead or keeping r_active 2951 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */ 2952 // keeps a count of active parallel regions per root 2953 std::atomic<int> r_in_parallel; 2954 // GEH: This is misnamed, should be r_active_levels 2955 kmp_team_t *r_root_team; 2956 kmp_team_t *r_hot_team; 2957 kmp_info_t *r_uber_thread; 2958 kmp_lock_t r_begin_lock; 2959 volatile int r_begin; 2960 int r_blocktime; /* blocktime for this root and descendants */ 2961 #if KMP_AFFINITY_SUPPORTED 2962 int r_affinity_assigned; 2963 #endif // KMP_AFFINITY_SUPPORTED 2964 } kmp_base_root_t; 2965 2966 typedef union KMP_ALIGN_CACHE kmp_root { 2967 kmp_base_root_t r; 2968 double r_align; /* use worst case alignment */ 2969 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)]; 2970 } kmp_root_t; 2971 2972 struct fortran_inx_info { 2973 kmp_int32 data; 2974 }; 2975 2976 /* ------------------------------------------------------------------------ */ 2977 2978 extern int __kmp_settings; 2979 extern int __kmp_duplicate_library_ok; 2980 #if USE_ITT_BUILD 2981 extern int __kmp_forkjoin_frames; 2982 extern int __kmp_forkjoin_frames_mode; 2983 #endif 2984 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method; 2985 extern int __kmp_determ_red; 2986 2987 #ifdef KMP_DEBUG 2988 extern int kmp_a_debug; 2989 extern int kmp_b_debug; 2990 extern int kmp_c_debug; 2991 extern int kmp_d_debug; 2992 extern int kmp_e_debug; 2993 extern int kmp_f_debug; 2994 #endif /* KMP_DEBUG */ 2995 2996 /* For debug information logging using rotating buffer */ 2997 #define KMP_DEBUG_BUF_LINES_INIT 512 2998 #define KMP_DEBUG_BUF_LINES_MIN 1 2999 3000 #define KMP_DEBUG_BUF_CHARS_INIT 128 3001 #define KMP_DEBUG_BUF_CHARS_MIN 2 3002 3003 extern int 3004 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */ 3005 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */ 3006 extern int 3007 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */ 3008 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer 3009 entry pointer */ 3010 3011 extern char *__kmp_debug_buffer; /* Debug buffer itself */ 3012 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines 3013 printed in buffer so far */ 3014 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase 3015 recommended in warnings */ 3016 /* end rotating debug buffer */ 3017 3018 #ifdef KMP_DEBUG 3019 extern int __kmp_par_range; /* +1 => only go par for constructs in range */ 3020 3021 #define KMP_PAR_RANGE_ROUTINE_LEN 1024 3022 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN]; 3023 #define KMP_PAR_RANGE_FILENAME_LEN 1024 3024 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN]; 3025 extern int __kmp_par_range_lb; 3026 extern int __kmp_par_range_ub; 3027 #endif 3028 3029 /* For printing out dynamic storage map for threads and teams */ 3030 extern int 3031 __kmp_storage_map; /* True means print storage map for threads and teams */ 3032 extern int __kmp_storage_map_verbose; /* True means storage map includes 3033 placement info */ 3034 extern int __kmp_storage_map_verbose_specified; 3035 3036 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 3037 extern kmp_cpuinfo_t __kmp_cpuinfo; 3038 static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; } 3039 #else 3040 static inline bool __kmp_is_hybrid_cpu() { return false; } 3041 #endif 3042 3043 extern volatile int __kmp_init_serial; 3044 extern volatile int __kmp_init_gtid; 3045 extern volatile int __kmp_init_common; 3046 extern volatile int __kmp_init_middle; 3047 extern volatile int __kmp_init_parallel; 3048 #if KMP_USE_MONITOR 3049 extern volatile int __kmp_init_monitor; 3050 #endif 3051 extern volatile int __kmp_init_user_locks; 3052 extern volatile int __kmp_init_hidden_helper_threads; 3053 extern int __kmp_init_counter; 3054 extern int __kmp_root_counter; 3055 extern int __kmp_version; 3056 3057 /* list of address of allocated caches for commons */ 3058 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list; 3059 3060 /* Barrier algorithm types and options */ 3061 extern kmp_uint32 __kmp_barrier_gather_bb_dflt; 3062 extern kmp_uint32 __kmp_barrier_release_bb_dflt; 3063 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt; 3064 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt; 3065 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier]; 3066 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier]; 3067 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier]; 3068 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier]; 3069 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier]; 3070 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier]; 3071 extern char const *__kmp_barrier_type_name[bs_last_barrier]; 3072 extern char const *__kmp_barrier_pattern_name[bp_last_bar]; 3073 3074 /* Global Locks */ 3075 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */ 3076 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */ 3077 extern kmp_bootstrap_lock_t __kmp_task_team_lock; 3078 extern kmp_bootstrap_lock_t 3079 __kmp_exit_lock; /* exit() is not always thread-safe */ 3080 #if KMP_USE_MONITOR 3081 extern kmp_bootstrap_lock_t 3082 __kmp_monitor_lock; /* control monitor thread creation */ 3083 #endif 3084 extern kmp_bootstrap_lock_t 3085 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and 3086 __kmp_threads expansion to co-exist */ 3087 3088 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */ 3089 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */ 3090 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */ 3091 3092 extern enum library_type __kmp_library; 3093 3094 extern enum sched_type __kmp_sched; /* default runtime scheduling */ 3095 extern enum sched_type __kmp_static; /* default static scheduling method */ 3096 extern enum sched_type __kmp_guided; /* default guided scheduling method */ 3097 extern enum sched_type __kmp_auto; /* default auto scheduling method */ 3098 extern int __kmp_chunk; /* default runtime chunk size */ 3099 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */ 3100 3101 extern size_t __kmp_stksize; /* stack size per thread */ 3102 #if KMP_USE_MONITOR 3103 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */ 3104 #endif 3105 extern size_t __kmp_stkoffset; /* stack offset per thread */ 3106 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */ 3107 3108 extern size_t 3109 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */ 3110 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */ 3111 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */ 3112 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */ 3113 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified? 3114 extern int __kmp_generate_warnings; /* should we issue warnings? */ 3115 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */ 3116 3117 #ifdef DEBUG_SUSPEND 3118 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */ 3119 #endif 3120 3121 extern kmp_int32 __kmp_use_yield; 3122 extern kmp_int32 __kmp_use_yield_exp_set; 3123 extern kmp_uint32 __kmp_yield_init; 3124 extern kmp_uint32 __kmp_yield_next; 3125 extern kmp_uint64 __kmp_pause_init; 3126 3127 /* ------------------------------------------------------------------------- */ 3128 extern int __kmp_allThreadsSpecified; 3129 3130 extern size_t __kmp_align_alloc; 3131 /* following data protected by initialization routines */ 3132 extern int __kmp_xproc; /* number of processors in the system */ 3133 extern int __kmp_avail_proc; /* number of processors available to the process */ 3134 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */ 3135 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */ 3136 // maximum total number of concurrently-existing threads on device 3137 extern int __kmp_max_nth; 3138 // maximum total number of concurrently-existing threads in a contention group 3139 extern int __kmp_cg_max_nth; 3140 extern int __kmp_teams_max_nth; // max threads used in a teams construct 3141 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and 3142 __kmp_root */ 3143 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel 3144 region a la OMP_NUM_THREADS */ 3145 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial 3146 initialization */ 3147 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is 3148 used (fixed) */ 3149 extern int __kmp_tp_cached; /* whether threadprivate cache has been created 3150 (__kmpc_threadprivate_cached()) */ 3151 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before 3152 blocking (env setting) */ 3153 #if KMP_USE_MONITOR 3154 extern int 3155 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */ 3156 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before 3157 blocking */ 3158 #endif 3159 #ifdef KMP_ADJUST_BLOCKTIME 3160 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */ 3161 #endif /* KMP_ADJUST_BLOCKTIME */ 3162 #ifdef KMP_DFLT_NTH_CORES 3163 extern int __kmp_ncores; /* Total number of cores for threads placement */ 3164 #endif 3165 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */ 3166 extern int __kmp_abort_delay; 3167 3168 extern int __kmp_need_register_atfork_specified; 3169 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork 3170 to install fork handler */ 3171 extern int __kmp_gtid_mode; /* Method of getting gtid, values: 3172 0 - not set, will be set at runtime 3173 1 - using stack search 3174 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS 3175 X*) or TlsGetValue(Windows* OS)) 3176 3 - static TLS (__declspec(thread) __kmp_gtid), 3177 Linux* OS .so only. */ 3178 extern int 3179 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */ 3180 #ifdef KMP_TDATA_GTID 3181 extern KMP_THREAD_LOCAL int __kmp_gtid; 3182 #endif 3183 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */ 3184 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread 3185 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 3186 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork 3187 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg 3188 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */ 3189 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 3190 3191 // max_active_levels for nested parallelism enabled by default via 3192 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND 3193 extern int __kmp_dflt_max_active_levels; 3194 // Indicates whether value of __kmp_dflt_max_active_levels was already 3195 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false 3196 extern bool __kmp_dflt_max_active_levels_set; 3197 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in 3198 concurrent execution per team */ 3199 #if KMP_NESTED_HOT_TEAMS 3200 extern int __kmp_hot_teams_mode; 3201 extern int __kmp_hot_teams_max_level; 3202 #endif 3203 3204 #if KMP_OS_LINUX 3205 extern enum clock_function_type __kmp_clock_function; 3206 extern int __kmp_clock_function_param; 3207 #endif /* KMP_OS_LINUX */ 3208 3209 #if KMP_MIC_SUPPORTED 3210 extern enum mic_type __kmp_mic_type; 3211 #endif 3212 3213 #ifdef USE_LOAD_BALANCE 3214 extern double __kmp_load_balance_interval; // load balance algorithm interval 3215 #endif /* USE_LOAD_BALANCE */ 3216 3217 // OpenMP 3.1 - Nested num threads array 3218 typedef struct kmp_nested_nthreads_t { 3219 int *nth; 3220 int size; 3221 int used; 3222 } kmp_nested_nthreads_t; 3223 3224 extern kmp_nested_nthreads_t __kmp_nested_nth; 3225 3226 #if KMP_USE_ADAPTIVE_LOCKS 3227 3228 // Parameters for the speculative lock backoff system. 3229 struct kmp_adaptive_backoff_params_t { 3230 // Number of soft retries before it counts as a hard retry. 3231 kmp_uint32 max_soft_retries; 3232 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to 3233 // the right 3234 kmp_uint32 max_badness; 3235 }; 3236 3237 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params; 3238 3239 #if KMP_DEBUG_ADAPTIVE_LOCKS 3240 extern const char *__kmp_speculative_statsfile; 3241 #endif 3242 3243 #endif // KMP_USE_ADAPTIVE_LOCKS 3244 3245 extern int __kmp_display_env; /* TRUE or FALSE */ 3246 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */ 3247 extern int __kmp_omp_cancellation; /* TRUE or FALSE */ 3248 extern int __kmp_nteams; 3249 extern int __kmp_teams_thread_limit; 3250 3251 /* ------------------------------------------------------------------------- */ 3252 3253 /* the following are protected by the fork/join lock */ 3254 /* write: lock read: anytime */ 3255 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */ 3256 /* read/write: lock */ 3257 extern volatile kmp_team_t *__kmp_team_pool; 3258 extern volatile kmp_info_t *__kmp_thread_pool; 3259 extern kmp_info_t *__kmp_thread_pool_insert_pt; 3260 3261 // total num threads reachable from some root thread including all root threads 3262 extern volatile int __kmp_nth; 3263 /* total number of threads reachable from some root thread including all root 3264 threads, and those in the thread pool */ 3265 extern volatile int __kmp_all_nth; 3266 extern std::atomic<int> __kmp_thread_pool_active_nth; 3267 3268 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */ 3269 /* end data protected by fork/join lock */ 3270 /* ------------------------------------------------------------------------- */ 3271 3272 #define __kmp_get_gtid() __kmp_get_global_thread_id() 3273 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg() 3274 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid())) 3275 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team) 3276 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid())) 3277 3278 // AT: Which way is correct? 3279 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc; 3280 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc; 3281 #define __kmp_get_team_num_threads(gtid) \ 3282 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc) 3283 3284 static inline bool KMP_UBER_GTID(int gtid) { 3285 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN); 3286 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity); 3287 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] && 3288 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread); 3289 } 3290 3291 static inline int __kmp_tid_from_gtid(int gtid) { 3292 KMP_DEBUG_ASSERT(gtid >= 0); 3293 return __kmp_threads[gtid]->th.th_info.ds.ds_tid; 3294 } 3295 3296 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) { 3297 KMP_DEBUG_ASSERT(tid >= 0 && team); 3298 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid; 3299 } 3300 3301 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) { 3302 KMP_DEBUG_ASSERT(thr); 3303 return thr->th.th_info.ds.ds_gtid; 3304 } 3305 3306 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) { 3307 KMP_DEBUG_ASSERT(gtid >= 0); 3308 return __kmp_threads[gtid]; 3309 } 3310 3311 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) { 3312 KMP_DEBUG_ASSERT(gtid >= 0); 3313 return __kmp_threads[gtid]->th.th_team; 3314 } 3315 3316 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) { 3317 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity)) 3318 KMP_FATAL(ThreadIdentInvalid); 3319 } 3320 3321 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 3322 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT 3323 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled 3324 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled 3325 extern int __kmp_mwait_hints; // Hints to pass in to mwait 3326 #endif 3327 3328 #if KMP_HAVE_UMWAIT 3329 extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists 3330 extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE 3331 extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE 3332 extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero) 3333 #endif 3334 3335 /* ------------------------------------------------------------------------- */ 3336 3337 extern kmp_global_t __kmp_global; /* global status */ 3338 3339 extern kmp_info_t __kmp_monitor; 3340 // For Debugging Support Library 3341 extern std::atomic<kmp_int32> __kmp_team_counter; 3342 // For Debugging Support Library 3343 extern std::atomic<kmp_int32> __kmp_task_counter; 3344 3345 #if USE_DEBUGGER 3346 #define _KMP_GEN_ID(counter) \ 3347 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0) 3348 #else 3349 #define _KMP_GEN_ID(counter) (~0) 3350 #endif /* USE_DEBUGGER */ 3351 3352 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter) 3353 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter) 3354 3355 /* ------------------------------------------------------------------------ */ 3356 3357 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, 3358 size_t size, char const *format, ...); 3359 3360 extern void __kmp_serial_initialize(void); 3361 extern void __kmp_middle_initialize(void); 3362 extern void __kmp_parallel_initialize(void); 3363 3364 extern void __kmp_internal_begin(void); 3365 extern void __kmp_internal_end_library(int gtid); 3366 extern void __kmp_internal_end_thread(int gtid); 3367 extern void __kmp_internal_end_atexit(void); 3368 extern void __kmp_internal_end_dtor(void); 3369 extern void __kmp_internal_end_dest(void *); 3370 3371 extern int __kmp_register_root(int initial_thread); 3372 extern void __kmp_unregister_root(int gtid); 3373 extern void __kmp_unregister_library(void); // called by __kmp_internal_end() 3374 3375 extern int __kmp_ignore_mppbeg(void); 3376 extern int __kmp_ignore_mppend(void); 3377 3378 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws); 3379 extern void __kmp_exit_single(int gtid); 3380 3381 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref); 3382 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref); 3383 3384 #ifdef USE_LOAD_BALANCE 3385 extern int __kmp_get_load_balance(int); 3386 #endif 3387 3388 extern int __kmp_get_global_thread_id(void); 3389 extern int __kmp_get_global_thread_id_reg(void); 3390 extern void __kmp_exit_thread(int exit_status); 3391 extern void __kmp_abort(char const *format, ...); 3392 extern void __kmp_abort_thread(void); 3393 KMP_NORETURN extern void __kmp_abort_process(void); 3394 extern void __kmp_warn(char const *format, ...); 3395 3396 extern void __kmp_set_num_threads(int new_nth, int gtid); 3397 3398 // Returns current thread (pointer to kmp_info_t). Current thread *must* be 3399 // registered. 3400 static inline kmp_info_t *__kmp_entry_thread() { 3401 int gtid = __kmp_entry_gtid(); 3402 3403 return __kmp_threads[gtid]; 3404 } 3405 3406 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels); 3407 extern int __kmp_get_max_active_levels(int gtid); 3408 extern int __kmp_get_ancestor_thread_num(int gtid, int level); 3409 extern int __kmp_get_team_size(int gtid, int level); 3410 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk); 3411 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk); 3412 3413 extern unsigned short __kmp_get_random(kmp_info_t *thread); 3414 extern void __kmp_init_random(kmp_info_t *thread); 3415 3416 extern kmp_r_sched_t __kmp_get_schedule_global(void); 3417 extern void __kmp_adjust_num_threads(int new_nproc); 3418 extern void __kmp_check_stksize(size_t *val); 3419 3420 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL); 3421 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL); 3422 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL); 3423 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR) 3424 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR) 3425 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR) 3426 3427 #if USE_FAST_MEMORY 3428 extern void *___kmp_fast_allocate(kmp_info_t *this_thr, 3429 size_t size KMP_SRC_LOC_DECL); 3430 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL); 3431 extern void __kmp_free_fast_memory(kmp_info_t *this_thr); 3432 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr); 3433 #define __kmp_fast_allocate(this_thr, size) \ 3434 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR) 3435 #define __kmp_fast_free(this_thr, ptr) \ 3436 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR) 3437 #endif 3438 3439 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL); 3440 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem, 3441 size_t elsize KMP_SRC_LOC_DECL); 3442 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr, 3443 size_t size KMP_SRC_LOC_DECL); 3444 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL); 3445 #define __kmp_thread_malloc(th, size) \ 3446 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR) 3447 #define __kmp_thread_calloc(th, nelem, elsize) \ 3448 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR) 3449 #define __kmp_thread_realloc(th, ptr, size) \ 3450 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR) 3451 #define __kmp_thread_free(th, ptr) \ 3452 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR) 3453 3454 #define KMP_INTERNAL_MALLOC(sz) malloc(sz) 3455 #define KMP_INTERNAL_FREE(p) free(p) 3456 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz)) 3457 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz)) 3458 3459 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads); 3460 3461 extern void __kmp_push_proc_bind(ident_t *loc, int gtid, 3462 kmp_proc_bind_t proc_bind); 3463 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams, 3464 int num_threads); 3465 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb, 3466 int num_teams_ub, int num_threads); 3467 3468 extern void __kmp_yield(); 3469 3470 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 3471 enum sched_type schedule, kmp_int32 lb, 3472 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk); 3473 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 3474 enum sched_type schedule, kmp_uint32 lb, 3475 kmp_uint32 ub, kmp_int32 st, 3476 kmp_int32 chunk); 3477 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 3478 enum sched_type schedule, kmp_int64 lb, 3479 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk); 3480 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 3481 enum sched_type schedule, kmp_uint64 lb, 3482 kmp_uint64 ub, kmp_int64 st, 3483 kmp_int64 chunk); 3484 3485 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, 3486 kmp_int32 *p_last, kmp_int32 *p_lb, 3487 kmp_int32 *p_ub, kmp_int32 *p_st); 3488 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, 3489 kmp_int32 *p_last, kmp_uint32 *p_lb, 3490 kmp_uint32 *p_ub, kmp_int32 *p_st); 3491 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, 3492 kmp_int32 *p_last, kmp_int64 *p_lb, 3493 kmp_int64 *p_ub, kmp_int64 *p_st); 3494 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, 3495 kmp_int32 *p_last, kmp_uint64 *p_lb, 3496 kmp_uint64 *p_ub, kmp_int64 *p_st); 3497 3498 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid); 3499 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid); 3500 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid); 3501 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid); 3502 3503 #ifdef KMP_GOMP_COMPAT 3504 3505 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 3506 enum sched_type schedule, kmp_int32 lb, 3507 kmp_int32 ub, kmp_int32 st, 3508 kmp_int32 chunk, int push_ws); 3509 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 3510 enum sched_type schedule, kmp_uint32 lb, 3511 kmp_uint32 ub, kmp_int32 st, 3512 kmp_int32 chunk, int push_ws); 3513 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 3514 enum sched_type schedule, kmp_int64 lb, 3515 kmp_int64 ub, kmp_int64 st, 3516 kmp_int64 chunk, int push_ws); 3517 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 3518 enum sched_type schedule, kmp_uint64 lb, 3519 kmp_uint64 ub, kmp_int64 st, 3520 kmp_int64 chunk, int push_ws); 3521 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid); 3522 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid); 3523 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid); 3524 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid); 3525 3526 #endif /* KMP_GOMP_COMPAT */ 3527 3528 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker); 3529 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker); 3530 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker); 3531 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker); 3532 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker); 3533 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker, 3534 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32), 3535 void *obj); 3536 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker, 3537 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj); 3538 3539 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag, 3540 int final_spin 3541 #if USE_ITT_BUILD 3542 , 3543 void *itt_sync_obj 3544 #endif 3545 ); 3546 extern void __kmp_release_64(kmp_flag_64<> *flag); 3547 3548 extern void __kmp_infinite_loop(void); 3549 3550 extern void __kmp_cleanup(void); 3551 3552 #if KMP_HANDLE_SIGNALS 3553 extern int __kmp_handle_signals; 3554 extern void __kmp_install_signals(int parallel_init); 3555 extern void __kmp_remove_signals(void); 3556 #endif 3557 3558 extern void __kmp_clear_system_time(void); 3559 extern void __kmp_read_system_time(double *delta); 3560 3561 extern void __kmp_check_stack_overlap(kmp_info_t *thr); 3562 3563 extern void __kmp_expand_host_name(char *buffer, size_t size); 3564 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern); 3565 3566 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && KMP_ARCH_AARCH64) 3567 extern void 3568 __kmp_initialize_system_tick(void); /* Initialize timer tick value */ 3569 #endif 3570 3571 extern void 3572 __kmp_runtime_initialize(void); /* machine specific initialization */ 3573 extern void __kmp_runtime_destroy(void); 3574 3575 #if KMP_AFFINITY_SUPPORTED 3576 extern char *__kmp_affinity_print_mask(char *buf, int buf_len, 3577 kmp_affin_mask_t *mask); 3578 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 3579 kmp_affin_mask_t *mask); 3580 extern void __kmp_affinity_initialize(void); 3581 extern void __kmp_affinity_uninitialize(void); 3582 extern void __kmp_affinity_set_init_mask( 3583 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */ 3584 extern void __kmp_affinity_set_place(int gtid); 3585 extern void __kmp_affinity_determine_capable(const char *env_var); 3586 extern int __kmp_aux_set_affinity(void **mask); 3587 extern int __kmp_aux_get_affinity(void **mask); 3588 extern int __kmp_aux_get_affinity_max_proc(); 3589 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask); 3590 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask); 3591 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask); 3592 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size); 3593 #if KMP_OS_LINUX || KMP_OS_FREEBSD 3594 extern int kmp_set_thread_affinity_mask_initial(void); 3595 #endif 3596 static inline void __kmp_assign_root_init_mask() { 3597 int gtid = __kmp_entry_gtid(); 3598 kmp_root_t *r = __kmp_threads[gtid]->th.th_root; 3599 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) { 3600 __kmp_affinity_set_init_mask(gtid, TRUE); 3601 r->r.r_affinity_assigned = TRUE; 3602 } 3603 } 3604 #else /* KMP_AFFINITY_SUPPORTED */ 3605 #define __kmp_assign_root_init_mask() /* Nothing */ 3606 #endif /* KMP_AFFINITY_SUPPORTED */ 3607 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the 3608 // format string is for affinity, so platforms that do not support 3609 // affinity can still use the other fields, e.g., %n for num_threads 3610 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format, 3611 kmp_str_buf_t *buffer); 3612 extern void __kmp_aux_display_affinity(int gtid, const char *format); 3613 3614 extern void __kmp_cleanup_hierarchy(); 3615 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar); 3616 3617 #if KMP_USE_FUTEX 3618 3619 extern int __kmp_futex_determine_capable(void); 3620 3621 #endif // KMP_USE_FUTEX 3622 3623 extern void __kmp_gtid_set_specific(int gtid); 3624 extern int __kmp_gtid_get_specific(void); 3625 3626 extern double __kmp_read_cpu_time(void); 3627 3628 extern int __kmp_read_system_info(struct kmp_sys_info *info); 3629 3630 #if KMP_USE_MONITOR 3631 extern void __kmp_create_monitor(kmp_info_t *th); 3632 #endif 3633 3634 extern void *__kmp_launch_thread(kmp_info_t *thr); 3635 3636 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size); 3637 3638 #if KMP_OS_WINDOWS 3639 extern int __kmp_still_running(kmp_info_t *th); 3640 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val); 3641 extern void __kmp_free_handle(kmp_thread_t tHandle); 3642 #endif 3643 3644 #if KMP_USE_MONITOR 3645 extern void __kmp_reap_monitor(kmp_info_t *th); 3646 #endif 3647 extern void __kmp_reap_worker(kmp_info_t *th); 3648 extern void __kmp_terminate_thread(int gtid); 3649 3650 extern int __kmp_try_suspend_mx(kmp_info_t *th); 3651 extern void __kmp_lock_suspend_mx(kmp_info_t *th); 3652 extern void __kmp_unlock_suspend_mx(kmp_info_t *th); 3653 3654 extern void __kmp_elapsed(double *); 3655 extern void __kmp_elapsed_tick(double *); 3656 3657 extern void __kmp_enable(int old_state); 3658 extern void __kmp_disable(int *old_state); 3659 3660 extern void __kmp_thread_sleep(int millis); 3661 3662 extern void __kmp_common_initialize(void); 3663 extern void __kmp_common_destroy(void); 3664 extern void __kmp_common_destroy_gtid(int gtid); 3665 3666 #if KMP_OS_UNIX 3667 extern void __kmp_register_atfork(void); 3668 #endif 3669 extern void __kmp_suspend_initialize(void); 3670 extern void __kmp_suspend_initialize_thread(kmp_info_t *th); 3671 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th); 3672 3673 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 3674 int tid); 3675 extern kmp_team_t * 3676 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 3677 #if OMPT_SUPPORT 3678 ompt_data_t ompt_parallel_data, 3679 #endif 3680 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs, 3681 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr)); 3682 extern void __kmp_free_thread(kmp_info_t *); 3683 extern void __kmp_free_team(kmp_root_t *, 3684 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *)); 3685 extern kmp_team_t *__kmp_reap_team(kmp_team_t *); 3686 3687 /* ------------------------------------------------------------------------ */ 3688 3689 extern void __kmp_initialize_bget(kmp_info_t *th); 3690 extern void __kmp_finalize_bget(kmp_info_t *th); 3691 3692 KMP_EXPORT void *kmpc_malloc(size_t size); 3693 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment); 3694 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize); 3695 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size); 3696 KMP_EXPORT void kmpc_free(void *ptr); 3697 3698 /* declarations for internal use */ 3699 3700 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split, 3701 size_t reduce_size, void *reduce_data, 3702 void (*reduce)(void *, void *)); 3703 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid); 3704 extern int __kmp_barrier_gomp_cancel(int gtid); 3705 3706 /*! 3707 * Tell the fork call which compiler generated the fork call, and therefore how 3708 * to deal with the call. 3709 */ 3710 enum fork_context_e { 3711 fork_context_gnu, /**< Called from GNU generated code, so must not invoke the 3712 microtask internally. */ 3713 fork_context_intel, /**< Called from Intel generated code. */ 3714 fork_context_last 3715 }; 3716 extern int __kmp_fork_call(ident_t *loc, int gtid, 3717 enum fork_context_e fork_context, kmp_int32 argc, 3718 microtask_t microtask, launch_t invoker, 3719 kmp_va_list ap); 3720 3721 extern void __kmp_join_call(ident_t *loc, int gtid 3722 #if OMPT_SUPPORT 3723 , 3724 enum fork_context_e fork_context 3725 #endif 3726 , 3727 int exit_teams = 0); 3728 3729 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid); 3730 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team); 3731 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team); 3732 extern int __kmp_invoke_task_func(int gtid); 3733 extern void __kmp_run_before_invoked_task(int gtid, int tid, 3734 kmp_info_t *this_thr, 3735 kmp_team_t *team); 3736 extern void __kmp_run_after_invoked_task(int gtid, int tid, 3737 kmp_info_t *this_thr, 3738 kmp_team_t *team); 3739 3740 // should never have been exported 3741 KMP_EXPORT int __kmpc_invoke_task_func(int gtid); 3742 extern int __kmp_invoke_teams_master(int gtid); 3743 extern void __kmp_teams_master(int gtid); 3744 extern int __kmp_aux_get_team_num(); 3745 extern int __kmp_aux_get_num_teams(); 3746 extern void __kmp_save_internal_controls(kmp_info_t *thread); 3747 extern void __kmp_user_set_library(enum library_type arg); 3748 extern void __kmp_aux_set_library(enum library_type arg); 3749 extern void __kmp_aux_set_stacksize(size_t arg); 3750 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid); 3751 extern void __kmp_aux_set_defaults(char const *str, size_t len); 3752 3753 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */ 3754 void kmpc_set_blocktime(int arg); 3755 void ompc_set_nested(int flag); 3756 void ompc_set_dynamic(int flag); 3757 void ompc_set_num_threads(int arg); 3758 3759 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, 3760 kmp_team_t *team, int tid); 3761 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr); 3762 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 3763 kmp_tasking_flags_t *flags, 3764 size_t sizeof_kmp_task_t, 3765 size_t sizeof_shareds, 3766 kmp_routine_entry_t task_entry); 3767 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 3768 kmp_team_t *team, int tid, 3769 int set_curr_task); 3770 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr); 3771 extern void __kmp_free_implicit_task(kmp_info_t *this_thr); 3772 3773 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, 3774 int gtid, 3775 kmp_task_t *task); 3776 extern void __kmp_fulfill_event(kmp_event_t *event); 3777 3778 extern void __kmp_free_task_team(kmp_info_t *thread, 3779 kmp_task_team_t *task_team); 3780 extern void __kmp_reap_task_teams(void); 3781 extern void __kmp_wait_to_unref_task_teams(void); 3782 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, 3783 int always); 3784 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team); 3785 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team 3786 #if USE_ITT_BUILD 3787 , 3788 void *itt_sync_obj 3789 #endif /* USE_ITT_BUILD */ 3790 , 3791 int wait = 1); 3792 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, 3793 int gtid); 3794 3795 extern int __kmp_is_address_mapped(void *addr); 3796 extern kmp_uint64 __kmp_hardware_timestamp(void); 3797 3798 #if KMP_OS_UNIX 3799 extern int __kmp_read_from_file(char const *path, char const *format, ...); 3800 #endif 3801 3802 /* ------------------------------------------------------------------------ */ 3803 // 3804 // Assembly routines that have no compiler intrinsic replacement 3805 // 3806 3807 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc, 3808 void *argv[] 3809 #if OMPT_SUPPORT 3810 , 3811 void **exit_frame_ptr 3812 #endif 3813 ); 3814 3815 /* ------------------------------------------------------------------------ */ 3816 3817 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags); 3818 KMP_EXPORT void __kmpc_end(ident_t *); 3819 3820 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, 3821 kmpc_ctor_vec ctor, 3822 kmpc_cctor_vec cctor, 3823 kmpc_dtor_vec dtor, 3824 size_t vector_length); 3825 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, 3826 kmpc_ctor ctor, kmpc_cctor cctor, 3827 kmpc_dtor dtor); 3828 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid, 3829 void *data, size_t size); 3830 3831 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *); 3832 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *); 3833 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *); 3834 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *); 3835 3836 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *); 3837 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, 3838 kmpc_micro microtask, ...); 3839 3840 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid); 3841 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid); 3842 3843 KMP_EXPORT void __kmpc_flush(ident_t *); 3844 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid); 3845 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid); 3846 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid); 3847 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, 3848 kmp_int32 filter); 3849 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid); 3850 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid); 3851 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid); 3852 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, 3853 kmp_critical_name *); 3854 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, 3855 kmp_critical_name *); 3856 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, 3857 kmp_critical_name *, uint32_t hint); 3858 3859 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid); 3860 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid); 3861 3862 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, 3863 kmp_int32 global_tid); 3864 3865 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid); 3866 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid); 3867 3868 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid, 3869 kmp_int32 schedtype, kmp_int32 *plastiter, 3870 kmp_int *plower, kmp_int *pupper, 3871 kmp_int *pstride, kmp_int incr, 3872 kmp_int chunk); 3873 3874 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); 3875 3876 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, 3877 size_t cpy_size, void *cpy_data, 3878 void (*cpy_func)(void *, void *), 3879 kmp_int32 didit); 3880 3881 extern void KMPC_SET_NUM_THREADS(int arg); 3882 extern void KMPC_SET_DYNAMIC(int flag); 3883 extern void KMPC_SET_NESTED(int flag); 3884 3885 /* OMP 3.0 tasking interface routines */ 3886 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 3887 kmp_task_t *new_task); 3888 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 3889 kmp_int32 flags, 3890 size_t sizeof_kmp_task_t, 3891 size_t sizeof_shareds, 3892 kmp_routine_entry_t task_entry); 3893 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc( 3894 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, 3895 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id); 3896 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 3897 kmp_task_t *task); 3898 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 3899 kmp_task_t *task); 3900 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 3901 kmp_task_t *new_task); 3902 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid); 3903 3904 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, 3905 int end_part); 3906 3907 #if TASK_UNUSED 3908 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task); 3909 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 3910 kmp_task_t *task); 3911 #endif // TASK_UNUSED 3912 3913 /* ------------------------------------------------------------------------ */ 3914 3915 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid); 3916 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid); 3917 3918 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps( 3919 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, 3920 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, 3921 kmp_depend_info_t *noalias_dep_list); 3922 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, 3923 kmp_int32 ndeps, 3924 kmp_depend_info_t *dep_list, 3925 kmp_int32 ndeps_noalias, 3926 kmp_depend_info_t *noalias_dep_list); 3927 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 3928 bool serialize_immediate); 3929 3930 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid, 3931 kmp_int32 cncl_kind); 3932 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid, 3933 kmp_int32 cncl_kind); 3934 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid); 3935 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind); 3936 3937 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask); 3938 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask); 3939 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task, 3940 kmp_int32 if_val, kmp_uint64 *lb, 3941 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup, 3942 kmp_int32 sched, kmp_uint64 grainsize, 3943 void *task_dup); 3944 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid, 3945 kmp_task_t *task, kmp_int32 if_val, 3946 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 3947 kmp_int32 nogroup, kmp_int32 sched, 3948 kmp_uint64 grainsize, kmp_int32 modifier, 3949 void *task_dup); 3950 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data); 3951 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data); 3952 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d); 3953 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, 3954 int is_ws, int num, 3955 void *data); 3956 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, 3957 int num, void *data); 3958 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, 3959 int is_ws); 3960 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity( 3961 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, 3962 kmp_task_affinity_info_t *affin_list); 3963 KMP_EXPORT void __kmp_set_num_teams(int num_teams); 3964 KMP_EXPORT int __kmp_get_max_teams(void); 3965 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit); 3966 KMP_EXPORT int __kmp_get_teams_thread_limit(void); 3967 3968 /* Lock interface routines (fast versions with gtid passed in) */ 3969 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid, 3970 void **user_lock); 3971 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid, 3972 void **user_lock); 3973 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid, 3974 void **user_lock); 3975 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid, 3976 void **user_lock); 3977 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock); 3978 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid, 3979 void **user_lock); 3980 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid, 3981 void **user_lock); 3982 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid, 3983 void **user_lock); 3984 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock); 3985 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid, 3986 void **user_lock); 3987 3988 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid, 3989 void **user_lock, uintptr_t hint); 3990 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid, 3991 void **user_lock, 3992 uintptr_t hint); 3993 3994 /* Interface to fast scalable reduce methods routines */ 3995 3996 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait( 3997 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 3998 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 3999 kmp_critical_name *lck); 4000 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, 4001 kmp_critical_name *lck); 4002 KMP_EXPORT kmp_int32 __kmpc_reduce( 4003 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 4004 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 4005 kmp_critical_name *lck); 4006 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, 4007 kmp_critical_name *lck); 4008 4009 /* Internal fast reduction routines */ 4010 4011 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method( 4012 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 4013 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 4014 kmp_critical_name *lck); 4015 4016 // this function is for testing set/get/determine reduce method 4017 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void); 4018 4019 KMP_EXPORT kmp_uint64 __kmpc_get_taskid(); 4020 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid(); 4021 4022 // C++ port 4023 // missing 'extern "C"' declarations 4024 4025 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc); 4026 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid); 4027 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, 4028 kmp_int32 num_threads); 4029 4030 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, 4031 int proc_bind); 4032 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, 4033 kmp_int32 num_teams, 4034 kmp_int32 num_threads); 4035 /* Function for OpenMP 5.1 num_teams clause */ 4036 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, 4037 kmp_int32 num_teams_lb, 4038 kmp_int32 num_teams_ub, 4039 kmp_int32 num_threads); 4040 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, 4041 kmpc_micro microtask, ...); 4042 struct kmp_dim { // loop bounds info casted to kmp_int64 4043 kmp_int64 lo; // lower 4044 kmp_int64 up; // upper 4045 kmp_int64 st; // stride 4046 }; 4047 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, 4048 kmp_int32 num_dims, 4049 const struct kmp_dim *dims); 4050 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, 4051 const kmp_int64 *vec); 4052 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, 4053 const kmp_int64 *vec); 4054 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); 4055 4056 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, 4057 void *data, size_t size, 4058 void ***cache); 4059 4060 // Symbols for MS mutual detection. 4061 extern int _You_must_link_with_exactly_one_OpenMP_library; 4062 extern int _You_must_link_with_Intel_OpenMP_library; 4063 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4) 4064 extern int _You_must_link_with_Microsoft_OpenMP_library; 4065 #endif 4066 4067 // The routines below are not exported. 4068 // Consider making them 'static' in corresponding source files. 4069 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr, 4070 void *data_addr, size_t pc_size); 4071 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr, 4072 void *data_addr, 4073 size_t pc_size); 4074 void __kmp_threadprivate_resize_cache(int newCapacity); 4075 void __kmp_cleanup_threadprivate_caches(); 4076 4077 // ompc_, kmpc_ entries moved from omp.h. 4078 #if KMP_OS_WINDOWS 4079 #define KMPC_CONVENTION __cdecl 4080 #else 4081 #define KMPC_CONVENTION 4082 #endif 4083 4084 #ifndef __OMP_H 4085 typedef enum omp_sched_t { 4086 omp_sched_static = 1, 4087 omp_sched_dynamic = 2, 4088 omp_sched_guided = 3, 4089 omp_sched_auto = 4 4090 } omp_sched_t; 4091 typedef void *kmp_affinity_mask_t; 4092 #endif 4093 4094 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int); 4095 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int); 4096 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int); 4097 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int); 4098 KMP_EXPORT int KMPC_CONVENTION 4099 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *); 4100 KMP_EXPORT int KMPC_CONVENTION 4101 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *); 4102 KMP_EXPORT int KMPC_CONVENTION 4103 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *); 4104 4105 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int); 4106 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t); 4107 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int); 4108 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *); 4109 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int); 4110 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format); 4111 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size); 4112 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format); 4113 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size, 4114 char const *format); 4115 4116 enum kmp_target_offload_kind { 4117 tgt_disabled = 0, 4118 tgt_default = 1, 4119 tgt_mandatory = 2 4120 }; 4121 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t; 4122 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise 4123 extern kmp_target_offload_kind_t __kmp_target_offload; 4124 extern int __kmpc_get_target_offload(); 4125 4126 // Constants used in libomptarget 4127 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device. 4128 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices". 4129 4130 // OMP Pause Resource 4131 4132 // The following enum is used both to set the status in __kmp_pause_status, and 4133 // as the internal equivalent of the externally-visible omp_pause_resource_t. 4134 typedef enum kmp_pause_status_t { 4135 kmp_not_paused = 0, // status is not paused, or, requesting resume 4136 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause 4137 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause 4138 } kmp_pause_status_t; 4139 4140 // This stores the pause state of the runtime 4141 extern kmp_pause_status_t __kmp_pause_status; 4142 extern int __kmpc_pause_resource(kmp_pause_status_t level); 4143 extern int __kmp_pause_resource(kmp_pause_status_t level); 4144 // Soft resume sets __kmp_pause_status, and wakes up all threads. 4145 extern void __kmp_resume_if_soft_paused(); 4146 // Hard resume simply resets the status to not paused. Library will appear to 4147 // be uninitialized after hard pause. Let OMP constructs trigger required 4148 // initializations. 4149 static inline void __kmp_resume_if_hard_paused() { 4150 if (__kmp_pause_status == kmp_hard_paused) { 4151 __kmp_pause_status = kmp_not_paused; 4152 } 4153 } 4154 4155 extern void __kmp_omp_display_env(int verbose); 4156 4157 // 1: it is initializing hidden helper team 4158 extern volatile int __kmp_init_hidden_helper; 4159 // 1: the hidden helper team is done 4160 extern volatile int __kmp_hidden_helper_team_done; 4161 // 1: enable hidden helper task 4162 extern kmp_int32 __kmp_enable_hidden_helper; 4163 // Main thread of hidden helper team 4164 extern kmp_info_t *__kmp_hidden_helper_main_thread; 4165 // Descriptors for the hidden helper threads 4166 extern kmp_info_t **__kmp_hidden_helper_threads; 4167 // Number of hidden helper threads 4168 extern kmp_int32 __kmp_hidden_helper_threads_num; 4169 // Number of hidden helper tasks that have not been executed yet 4170 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks; 4171 4172 extern void __kmp_hidden_helper_initialize(); 4173 extern void __kmp_hidden_helper_threads_initz_routine(); 4174 extern void __kmp_do_initialize_hidden_helper_threads(); 4175 extern void __kmp_hidden_helper_threads_initz_wait(); 4176 extern void __kmp_hidden_helper_initz_release(); 4177 extern void __kmp_hidden_helper_threads_deinitz_wait(); 4178 extern void __kmp_hidden_helper_threads_deinitz_release(); 4179 extern void __kmp_hidden_helper_main_thread_wait(); 4180 extern void __kmp_hidden_helper_worker_thread_wait(); 4181 extern void __kmp_hidden_helper_worker_thread_signal(); 4182 extern void __kmp_hidden_helper_main_thread_release(); 4183 4184 // Check whether a given thread is a hidden helper thread 4185 #define KMP_HIDDEN_HELPER_THREAD(gtid) \ 4186 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num) 4187 4188 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \ 4189 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num) 4190 4191 #define KMP_HIDDEN_HELPER_TEAM(team) \ 4192 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread) 4193 4194 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a 4195 // main thread, is skipped. 4196 #define KMP_GTID_TO_SHADOW_GTID(gtid) \ 4197 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2) 4198 4199 // Return the adjusted gtid value by subtracting from gtid the number 4200 // of hidden helper threads. This adjusted value is the gtid the thread would 4201 // have received if there were no hidden helper threads. 4202 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) { 4203 int adjusted_gtid = gtid; 4204 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 && 4205 gtid - __kmp_hidden_helper_threads_num >= 0) { 4206 adjusted_gtid -= __kmp_hidden_helper_threads_num; 4207 } 4208 return adjusted_gtid; 4209 } 4210 4211 // Support for error directive 4212 typedef enum kmp_severity_t { 4213 severity_warning = 1, 4214 severity_fatal = 2 4215 } kmp_severity_t; 4216 extern void __kmpc_error(ident_t *loc, int severity, const char *message); 4217 4218 // Support for scope directive 4219 KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved); 4220 KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved); 4221 4222 #ifdef __cplusplus 4223 } 4224 #endif 4225 4226 template <bool C, bool S> 4227 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag); 4228 template <bool C, bool S> 4229 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag); 4230 template <bool C, bool S> 4231 extern void __kmp_atomic_suspend_64(int th_gtid, 4232 kmp_atomic_flag_64<C, S> *flag); 4233 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag); 4234 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 4235 template <bool C, bool S> 4236 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag); 4237 template <bool C, bool S> 4238 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag); 4239 template <bool C, bool S> 4240 extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag); 4241 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag); 4242 #endif 4243 template <bool C, bool S> 4244 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag); 4245 template <bool C, bool S> 4246 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag); 4247 template <bool C, bool S> 4248 extern void __kmp_atomic_resume_64(int target_gtid, 4249 kmp_atomic_flag_64<C, S> *flag); 4250 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag); 4251 4252 template <bool C, bool S> 4253 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid, 4254 kmp_flag_32<C, S> *flag, int final_spin, 4255 int *thread_finished, 4256 #if USE_ITT_BUILD 4257 void *itt_sync_obj, 4258 #endif /* USE_ITT_BUILD */ 4259 kmp_int32 is_constrained); 4260 template <bool C, bool S> 4261 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid, 4262 kmp_flag_64<C, S> *flag, int final_spin, 4263 int *thread_finished, 4264 #if USE_ITT_BUILD 4265 void *itt_sync_obj, 4266 #endif /* USE_ITT_BUILD */ 4267 kmp_int32 is_constrained); 4268 template <bool C, bool S> 4269 int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid, 4270 kmp_atomic_flag_64<C, S> *flag, 4271 int final_spin, int *thread_finished, 4272 #if USE_ITT_BUILD 4273 void *itt_sync_obj, 4274 #endif /* USE_ITT_BUILD */ 4275 kmp_int32 is_constrained); 4276 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid, 4277 kmp_flag_oncore *flag, int final_spin, 4278 int *thread_finished, 4279 #if USE_ITT_BUILD 4280 void *itt_sync_obj, 4281 #endif /* USE_ITT_BUILD */ 4282 kmp_int32 is_constrained); 4283 4284 extern int __kmp_nesting_mode; 4285 extern int __kmp_nesting_mode_nlevels; 4286 extern int *__kmp_nesting_nth_level; 4287 extern void __kmp_init_nesting_mode(); 4288 extern void __kmp_set_nesting_mode_threads(); 4289 4290 /// This class safely opens and closes a C-style FILE* object using RAII 4291 /// semantics. There are also methods which allow using stdout or stderr as 4292 /// the underlying FILE* object. With the implicit conversion operator to 4293 /// FILE*, an object with this type can be used in any function which takes 4294 /// a FILE* object e.g., fprintf(). 4295 /// No close method is needed at use sites. 4296 class kmp_safe_raii_file_t { 4297 FILE *f; 4298 4299 void close() { 4300 if (f && f != stdout && f != stderr) { 4301 fclose(f); 4302 f = nullptr; 4303 } 4304 } 4305 4306 public: 4307 kmp_safe_raii_file_t() : f(nullptr) {} 4308 kmp_safe_raii_file_t(const char *filename, const char *mode, 4309 const char *env_var = nullptr) 4310 : f(nullptr) { 4311 open(filename, mode, env_var); 4312 } 4313 ~kmp_safe_raii_file_t() { close(); } 4314 4315 /// Open filename using mode. This is automatically closed in the destructor. 4316 /// The env_var parameter indicates the environment variable the filename 4317 /// came from if != nullptr. 4318 void open(const char *filename, const char *mode, 4319 const char *env_var = nullptr) { 4320 KMP_ASSERT(!f); 4321 f = fopen(filename, mode); 4322 if (!f) { 4323 int code = errno; 4324 if (env_var) { 4325 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4326 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null); 4327 } else { 4328 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4329 __kmp_msg_null); 4330 } 4331 } 4332 } 4333 /// Instead of erroring out, return non-zero when 4334 /// unsuccessful fopen() for any reason 4335 int try_open(const char *filename, const char *mode) { 4336 KMP_ASSERT(!f); 4337 f = fopen(filename, mode); 4338 if (!f) 4339 return errno; 4340 return 0; 4341 } 4342 /// Set the FILE* object to stdout and output there 4343 /// No open call should happen before this call. 4344 void set_stdout() { 4345 KMP_ASSERT(!f); 4346 f = stdout; 4347 } 4348 /// Set the FILE* object to stderr and output there 4349 /// No open call should happen before this call. 4350 void set_stderr() { 4351 KMP_ASSERT(!f); 4352 f = stderr; 4353 } 4354 operator bool() { return bool(f); } 4355 operator FILE *() { return f; } 4356 }; 4357 4358 template <typename SourceType, typename TargetType, 4359 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)), 4360 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)), 4361 bool isSourceSigned = std::is_signed<SourceType>::value, 4362 bool isTargetSigned = std::is_signed<TargetType>::value> 4363 struct kmp_convert {}; 4364 4365 // Both types are signed; Source smaller 4366 template <typename SourceType, typename TargetType> 4367 struct kmp_convert<SourceType, TargetType, true, false, true, true> { 4368 static TargetType to(SourceType src) { return (TargetType)src; } 4369 }; 4370 // Source equal 4371 template <typename SourceType, typename TargetType> 4372 struct kmp_convert<SourceType, TargetType, false, true, true, true> { 4373 static TargetType to(SourceType src) { return src; } 4374 }; 4375 // Source bigger 4376 template <typename SourceType, typename TargetType> 4377 struct kmp_convert<SourceType, TargetType, false, false, true, true> { 4378 static TargetType to(SourceType src) { 4379 KMP_ASSERT(src <= static_cast<SourceType>( 4380 (std::numeric_limits<TargetType>::max)())); 4381 KMP_ASSERT(src >= static_cast<SourceType>( 4382 (std::numeric_limits<TargetType>::min)())); 4383 return (TargetType)src; 4384 } 4385 }; 4386 4387 // Source signed, Target unsigned 4388 // Source smaller 4389 template <typename SourceType, typename TargetType> 4390 struct kmp_convert<SourceType, TargetType, true, false, true, false> { 4391 static TargetType to(SourceType src) { 4392 KMP_ASSERT(src >= 0); 4393 return (TargetType)src; 4394 } 4395 }; 4396 // Source equal 4397 template <typename SourceType, typename TargetType> 4398 struct kmp_convert<SourceType, TargetType, false, true, true, false> { 4399 static TargetType to(SourceType src) { 4400 KMP_ASSERT(src >= 0); 4401 return (TargetType)src; 4402 } 4403 }; 4404 // Source bigger 4405 template <typename SourceType, typename TargetType> 4406 struct kmp_convert<SourceType, TargetType, false, false, true, false> { 4407 static TargetType to(SourceType src) { 4408 KMP_ASSERT(src >= 0); 4409 KMP_ASSERT(src <= static_cast<SourceType>( 4410 (std::numeric_limits<TargetType>::max)())); 4411 return (TargetType)src; 4412 } 4413 }; 4414 4415 // Source unsigned, Target signed 4416 // Source smaller 4417 template <typename SourceType, typename TargetType> 4418 struct kmp_convert<SourceType, TargetType, true, false, false, true> { 4419 static TargetType to(SourceType src) { return (TargetType)src; } 4420 }; 4421 // Source equal 4422 template <typename SourceType, typename TargetType> 4423 struct kmp_convert<SourceType, TargetType, false, true, false, true> { 4424 static TargetType to(SourceType src) { 4425 KMP_ASSERT(src <= static_cast<SourceType>( 4426 (std::numeric_limits<TargetType>::max)())); 4427 return (TargetType)src; 4428 } 4429 }; 4430 // Source bigger 4431 template <typename SourceType, typename TargetType> 4432 struct kmp_convert<SourceType, TargetType, false, false, false, true> { 4433 static TargetType to(SourceType src) { 4434 KMP_ASSERT(src <= static_cast<SourceType>( 4435 (std::numeric_limits<TargetType>::max)())); 4436 return (TargetType)src; 4437 } 4438 }; 4439 4440 // Source unsigned, Target unsigned 4441 // Source smaller 4442 template <typename SourceType, typename TargetType> 4443 struct kmp_convert<SourceType, TargetType, true, false, false, false> { 4444 static TargetType to(SourceType src) { return (TargetType)src; } 4445 }; 4446 // Source equal 4447 template <typename SourceType, typename TargetType> 4448 struct kmp_convert<SourceType, TargetType, false, true, false, false> { 4449 static TargetType to(SourceType src) { return src; } 4450 }; 4451 // Source bigger 4452 template <typename SourceType, typename TargetType> 4453 struct kmp_convert<SourceType, TargetType, false, false, false, false> { 4454 static TargetType to(SourceType src) { 4455 KMP_ASSERT(src <= static_cast<SourceType>( 4456 (std::numeric_limits<TargetType>::max)())); 4457 return (TargetType)src; 4458 } 4459 }; 4460 4461 template <typename T1, typename T2> 4462 static inline void __kmp_type_convert(T1 src, T2 *dest) { 4463 *dest = kmp_convert<T1, T2>::to(src); 4464 } 4465 4466 #endif /* KMP_H */ 4467