1 /*! \file */ 2 /* 3 * kmp.h -- KPTS runtime header file. 4 */ 5 6 //===----------------------------------------------------------------------===// 7 // 8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 9 // See https://llvm.org/LICENSE.txt for license information. 10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef KMP_H 15 #define KMP_H 16 17 #include "kmp_config.h" 18 19 /* #define BUILD_PARALLEL_ORDERED 1 */ 20 21 /* This fix replaces gettimeofday with clock_gettime for better scalability on 22 the Altix. Requires user code to be linked with -lrt. */ 23 //#define FIX_SGI_CLOCK 24 25 /* Defines for OpenMP 3.0 tasking and auto scheduling */ 26 27 #ifndef KMP_STATIC_STEAL_ENABLED 28 #define KMP_STATIC_STEAL_ENABLED 1 29 #endif 30 31 #define TASK_CURRENT_NOT_QUEUED 0 32 #define TASK_CURRENT_QUEUED 1 33 34 #ifdef BUILD_TIED_TASK_STACK 35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty 36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK 37 // Number of entries in each task stack array 38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS) 39 // Mask for determining index into stack block 40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1) 41 #endif // BUILD_TIED_TASK_STACK 42 43 #define TASK_NOT_PUSHED 1 44 #define TASK_SUCCESSFULLY_PUSHED 0 45 #define TASK_TIED 1 46 #define TASK_UNTIED 0 47 #define TASK_EXPLICIT 1 48 #define TASK_IMPLICIT 0 49 #define TASK_PROXY 1 50 #define TASK_FULL 0 51 #define TASK_DETACHABLE 1 52 #define TASK_UNDETACHABLE 0 53 54 #define KMP_CANCEL_THREADS 55 #define KMP_THREAD_ATTR 56 57 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being 58 // built on Android 59 #if defined(__ANDROID__) 60 #undef KMP_CANCEL_THREADS 61 #endif 62 63 #include <signal.h> 64 #include <stdarg.h> 65 #include <stddef.h> 66 #include <stdio.h> 67 #include <stdlib.h> 68 #include <string.h> 69 #include <limits> 70 #include <type_traits> 71 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad 72 Microsoft library. Some macros provided below to replace these functions */ 73 #ifndef __ABSOFT_WIN 74 #include <sys/types.h> 75 #endif 76 #include <limits.h> 77 #include <time.h> 78 79 #include <errno.h> 80 81 #include "kmp_os.h" 82 83 #include "kmp_safe_c_api.h" 84 85 #if KMP_STATS_ENABLED 86 class kmp_stats_list; 87 #endif 88 89 #if KMP_USE_HIER_SCHED 90 // Only include hierarchical scheduling if affinity is supported 91 #undef KMP_USE_HIER_SCHED 92 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED 93 #endif 94 95 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED 96 #include "hwloc.h" 97 #ifndef HWLOC_OBJ_NUMANODE 98 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE 99 #endif 100 #ifndef HWLOC_OBJ_PACKAGE 101 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET 102 #endif 103 #if HWLOC_API_VERSION >= 0x00020000 104 // hwloc 2.0 changed type of depth of object from unsigned to int 105 typedef int kmp_hwloc_depth_t; 106 #else 107 typedef unsigned int kmp_hwloc_depth_t; 108 #endif 109 #endif 110 111 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 112 #include <xmmintrin.h> 113 #endif 114 115 #include "kmp_debug.h" 116 #include "kmp_lock.h" 117 #include "kmp_version.h" 118 #if USE_DEBUGGER 119 #include "kmp_debugger.h" 120 #endif 121 #include "kmp_i18n.h" 122 123 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS) 124 125 #include "kmp_wrapper_malloc.h" 126 #if KMP_OS_UNIX 127 #include <unistd.h> 128 #if !defined NSIG && defined _NSIG 129 #define NSIG _NSIG 130 #endif 131 #endif 132 133 #if KMP_OS_LINUX 134 #pragma weak clock_gettime 135 #endif 136 137 #if OMPT_SUPPORT 138 #include "ompt-internal.h" 139 #endif 140 141 #if OMPD_SUPPORT 142 #include "ompd-specific.h" 143 #endif 144 145 #ifndef UNLIKELY 146 #define UNLIKELY(x) (x) 147 #endif 148 149 // Affinity format function 150 #include "kmp_str.h" 151 152 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64. 153 // 3 - fast allocation using sync, non-sync free lists of any size, non-self 154 // free lists of limited size. 155 #ifndef USE_FAST_MEMORY 156 #define USE_FAST_MEMORY 3 157 #endif 158 159 #ifndef KMP_NESTED_HOT_TEAMS 160 #define KMP_NESTED_HOT_TEAMS 0 161 #define USE_NESTED_HOT_ARG(x) 162 #else 163 #if KMP_NESTED_HOT_TEAMS 164 #define USE_NESTED_HOT_ARG(x) , x 165 #else 166 #define USE_NESTED_HOT_ARG(x) 167 #endif 168 #endif 169 170 // Assume using BGET compare_exchange instruction instead of lock by default. 171 #ifndef USE_CMP_XCHG_FOR_BGET 172 #define USE_CMP_XCHG_FOR_BGET 1 173 #endif 174 175 // Test to see if queuing lock is better than bootstrap lock for bget 176 // #ifndef USE_QUEUING_LOCK_FOR_BGET 177 // #define USE_QUEUING_LOCK_FOR_BGET 178 // #endif 179 180 #define KMP_NSEC_PER_SEC 1000000000L 181 #define KMP_USEC_PER_SEC 1000000L 182 183 /*! 184 @ingroup BASIC_TYPES 185 @{ 186 */ 187 188 /*! 189 Values for bit flags used in the ident_t to describe the fields. 190 */ 191 enum { 192 /*! Use trampoline for internal microtasks */ 193 KMP_IDENT_IMB = 0x01, 194 /*! Use c-style ident structure */ 195 KMP_IDENT_KMPC = 0x02, 196 /* 0x04 is no longer used */ 197 /*! Entry point generated by auto-parallelization */ 198 KMP_IDENT_AUTOPAR = 0x08, 199 /*! Compiler generates atomic reduction option for kmpc_reduce* */ 200 KMP_IDENT_ATOMIC_REDUCE = 0x10, 201 /*! To mark a 'barrier' directive in user code */ 202 KMP_IDENT_BARRIER_EXPL = 0x20, 203 /*! To Mark implicit barriers. */ 204 KMP_IDENT_BARRIER_IMPL = 0x0040, 205 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0, 206 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040, 207 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0, 208 209 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140, 210 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0, 211 212 /*! To mark a static loop in OMPT callbacks */ 213 KMP_IDENT_WORK_LOOP = 0x200, 214 /*! To mark a sections directive in OMPT callbacks */ 215 KMP_IDENT_WORK_SECTIONS = 0x400, 216 /*! To mark a distribute construct in OMPT callbacks */ 217 KMP_IDENT_WORK_DISTRIBUTE = 0x800, 218 /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and 219 not currently used. If one day we need more bits, then we can use 220 an invalid combination of hints to mean that another, larger field 221 should be used in a different flag. */ 222 KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000, 223 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000, 224 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000, 225 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000, 226 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000, 227 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000 228 }; 229 230 /*! 231 * The ident structure that describes a source location. 232 */ 233 typedef struct ident { 234 kmp_int32 reserved_1; /**< might be used in Fortran; see above */ 235 kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC 236 identifies this union member */ 237 kmp_int32 reserved_2; /**< not really used in Fortran any more; see above */ 238 #if USE_ITT_BUILD 239 /* but currently used for storing region-specific ITT */ 240 /* contextual information. */ 241 #endif /* USE_ITT_BUILD */ 242 kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++ */ 243 char const *psource; /**< String describing the source location. 244 The string is composed of semi-colon separated fields 245 which describe the source file, the function and a pair 246 of line numbers that delimit the construct. */ 247 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0) 248 kmp_int32 get_openmp_version() { 249 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF); 250 } 251 } ident_t; 252 /*! 253 @} 254 */ 255 256 // Some forward declarations. 257 typedef union kmp_team kmp_team_t; 258 typedef struct kmp_taskdata kmp_taskdata_t; 259 typedef union kmp_task_team kmp_task_team_t; 260 typedef union kmp_team kmp_team_p; 261 typedef union kmp_info kmp_info_p; 262 typedef union kmp_root kmp_root_p; 263 264 template <bool C = false, bool S = true> class kmp_flag_32; 265 template <bool C = false, bool S = true> class kmp_flag_64; 266 class kmp_flag_oncore; 267 268 #ifdef __cplusplus 269 extern "C" { 270 #endif 271 272 /* ------------------------------------------------------------------------ */ 273 274 /* Pack two 32-bit signed integers into a 64-bit signed integer */ 275 /* ToDo: Fix word ordering for big-endian machines. */ 276 #define KMP_PACK_64(HIGH_32, LOW_32) \ 277 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32))) 278 279 // Generic string manipulation macros. Assume that _x is of type char * 280 #define SKIP_WS(_x) \ 281 { \ 282 while (*(_x) == ' ' || *(_x) == '\t') \ 283 (_x)++; \ 284 } 285 #define SKIP_DIGITS(_x) \ 286 { \ 287 while (*(_x) >= '0' && *(_x) <= '9') \ 288 (_x)++; \ 289 } 290 #define SKIP_TOKEN(_x) \ 291 { \ 292 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \ 293 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \ 294 (_x)++; \ 295 } 296 #define SKIP_TO(_x, _c) \ 297 { \ 298 while (*(_x) != '\0' && *(_x) != (_c)) \ 299 (_x)++; \ 300 } 301 302 /* ------------------------------------------------------------------------ */ 303 304 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y)) 305 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 306 307 /* ------------------------------------------------------------------------ */ 308 /* Enumeration types */ 309 310 enum kmp_state_timer { 311 ts_stop, 312 ts_start, 313 ts_pause, 314 315 ts_last_state 316 }; 317 318 enum dynamic_mode { 319 dynamic_default, 320 #ifdef USE_LOAD_BALANCE 321 dynamic_load_balance, 322 #endif /* USE_LOAD_BALANCE */ 323 dynamic_random, 324 dynamic_thread_limit, 325 dynamic_max 326 }; 327 328 /* external schedule constants, duplicate enum omp_sched in omp.h in order to 329 * not include it here */ 330 #ifndef KMP_SCHED_TYPE_DEFINED 331 #define KMP_SCHED_TYPE_DEFINED 332 typedef enum kmp_sched { 333 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check 334 // Note: need to adjust __kmp_sch_map global array in case enum is changed 335 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33) 336 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35) 337 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36) 338 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38) 339 kmp_sched_upper_std = 5, // upper bound for standard schedules 340 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules 341 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39) 342 #if KMP_STATIC_STEAL_ENABLED 343 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44) 344 #endif 345 kmp_sched_upper, 346 kmp_sched_default = kmp_sched_static, // default scheduling 347 kmp_sched_monotonic = 0x80000000 348 } kmp_sched_t; 349 #endif 350 351 /*! 352 @ingroup WORK_SHARING 353 * Describes the loop schedule to be used for a parallel for loop. 354 */ 355 enum sched_type : kmp_int32 { 356 kmp_sch_lower = 32, /**< lower bound for unordered values */ 357 kmp_sch_static_chunked = 33, 358 kmp_sch_static = 34, /**< static unspecialized */ 359 kmp_sch_dynamic_chunked = 35, 360 kmp_sch_guided_chunked = 36, /**< guided unspecialized */ 361 kmp_sch_runtime = 37, 362 kmp_sch_auto = 38, /**< auto */ 363 kmp_sch_trapezoidal = 39, 364 365 /* accessible only through KMP_SCHEDULE environment variable */ 366 kmp_sch_static_greedy = 40, 367 kmp_sch_static_balanced = 41, 368 /* accessible only through KMP_SCHEDULE environment variable */ 369 kmp_sch_guided_iterative_chunked = 42, 370 kmp_sch_guided_analytical_chunked = 43, 371 /* accessible only through KMP_SCHEDULE environment variable */ 372 kmp_sch_static_steal = 44, 373 374 /* static with chunk adjustment (e.g., simd) */ 375 kmp_sch_static_balanced_chunked = 45, 376 kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */ 377 kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */ 378 379 /* accessible only through KMP_SCHEDULE environment variable */ 380 kmp_sch_upper, /**< upper bound for unordered values */ 381 382 kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */ 383 kmp_ord_static_chunked = 65, 384 kmp_ord_static = 66, /**< ordered static unspecialized */ 385 kmp_ord_dynamic_chunked = 67, 386 kmp_ord_guided_chunked = 68, 387 kmp_ord_runtime = 69, 388 kmp_ord_auto = 70, /**< ordered auto */ 389 kmp_ord_trapezoidal = 71, 390 kmp_ord_upper, /**< upper bound for ordered values */ 391 392 /* Schedules for Distribute construct */ 393 kmp_distribute_static_chunked = 91, /**< distribute static chunked */ 394 kmp_distribute_static = 92, /**< distribute static unspecialized */ 395 396 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a 397 single iteration/chunk, even if the loop is serialized. For the schedule 398 types listed above, the entire iteration vector is returned if the loop is 399 serialized. This doesn't work for gcc/gcomp sections. */ 400 kmp_nm_lower = 160, /**< lower bound for nomerge values */ 401 402 kmp_nm_static_chunked = 403 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower), 404 kmp_nm_static = 162, /**< static unspecialized */ 405 kmp_nm_dynamic_chunked = 163, 406 kmp_nm_guided_chunked = 164, /**< guided unspecialized */ 407 kmp_nm_runtime = 165, 408 kmp_nm_auto = 166, /**< auto */ 409 kmp_nm_trapezoidal = 167, 410 411 /* accessible only through KMP_SCHEDULE environment variable */ 412 kmp_nm_static_greedy = 168, 413 kmp_nm_static_balanced = 169, 414 /* accessible only through KMP_SCHEDULE environment variable */ 415 kmp_nm_guided_iterative_chunked = 170, 416 kmp_nm_guided_analytical_chunked = 171, 417 kmp_nm_static_steal = 418 172, /* accessible only through OMP_SCHEDULE environment variable */ 419 420 kmp_nm_ord_static_chunked = 193, 421 kmp_nm_ord_static = 194, /**< ordered static unspecialized */ 422 kmp_nm_ord_dynamic_chunked = 195, 423 kmp_nm_ord_guided_chunked = 196, 424 kmp_nm_ord_runtime = 197, 425 kmp_nm_ord_auto = 198, /**< auto */ 426 kmp_nm_ord_trapezoidal = 199, 427 kmp_nm_upper, /**< upper bound for nomerge values */ 428 429 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since 430 we need to distinguish the three possible cases (no modifier, monotonic 431 modifier, nonmonotonic modifier), we need separate bits for each modifier. 432 The absence of monotonic does not imply nonmonotonic, especially since 4.5 433 says that the behaviour of the "no modifier" case is implementation defined 434 in 4.5, but will become "nonmonotonic" in 5.0. 435 436 Since we're passing a full 32 bit value, we can use a couple of high bits 437 for these flags; out of paranoia we avoid the sign bit. 438 439 These modifiers can be or-ed into non-static schedules by the compiler to 440 pass the additional information. They will be stripped early in the 441 processing in __kmp_dispatch_init when setting up schedules, so most of the 442 code won't ever see schedules with these bits set. */ 443 kmp_sch_modifier_monotonic = 444 (1 << 29), /**< Set if the monotonic schedule modifier was present */ 445 kmp_sch_modifier_nonmonotonic = 446 (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */ 447 448 #define SCHEDULE_WITHOUT_MODIFIERS(s) \ 449 (enum sched_type)( \ 450 (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) 451 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0) 452 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0) 453 #define SCHEDULE_HAS_NO_MODIFIERS(s) \ 454 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0) 455 #define SCHEDULE_GET_MODIFIERS(s) \ 456 ((enum sched_type)( \ 457 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))) 458 #define SCHEDULE_SET_MODIFIERS(s, m) \ 459 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m)) 460 #define SCHEDULE_NONMONOTONIC 0 461 #define SCHEDULE_MONOTONIC 1 462 463 kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */ 464 }; 465 466 // Apply modifiers on internal kind to standard kind 467 static inline void 468 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind, 469 enum sched_type internal_kind) { 470 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) { 471 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic); 472 } 473 } 474 475 // Apply modifiers on standard kind to internal kind 476 static inline void 477 __kmp_sched_apply_mods_intkind(kmp_sched_t kind, 478 enum sched_type *internal_kind) { 479 if ((int)kind & (int)kmp_sched_monotonic) { 480 *internal_kind = (enum sched_type)((int)*internal_kind | 481 (int)kmp_sch_modifier_monotonic); 482 } 483 } 484 485 // Get standard schedule without modifiers 486 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) { 487 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic)); 488 } 489 490 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */ 491 typedef union kmp_r_sched { 492 struct { 493 enum sched_type r_sched_type; 494 int chunk; 495 }; 496 kmp_int64 sched; 497 } kmp_r_sched_t; 498 499 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our 500 // internal schedule types 501 502 enum library_type { 503 library_none, 504 library_serial, 505 library_turnaround, 506 library_throughput 507 }; 508 509 #if KMP_OS_LINUX 510 enum clock_function_type { 511 clock_function_gettimeofday, 512 clock_function_clock_gettime 513 }; 514 #endif /* KMP_OS_LINUX */ 515 516 #if KMP_MIC_SUPPORTED 517 enum mic_type { non_mic, mic1, mic2, mic3, dummy }; 518 #endif 519 520 /* -- fast reduction stuff ------------------------------------------------ */ 521 522 #undef KMP_FAST_REDUCTION_BARRIER 523 #define KMP_FAST_REDUCTION_BARRIER 1 524 525 #undef KMP_FAST_REDUCTION_CORE_DUO 526 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 527 #define KMP_FAST_REDUCTION_CORE_DUO 1 528 #endif 529 530 enum _reduction_method { 531 reduction_method_not_defined = 0, 532 critical_reduce_block = (1 << 8), 533 atomic_reduce_block = (2 << 8), 534 tree_reduce_block = (3 << 8), 535 empty_reduce_block = (4 << 8) 536 }; 537 538 // Description of the packed_reduction_method variable: 539 // The packed_reduction_method variable consists of two enum types variables 540 // that are packed together into 0-th byte and 1-st byte: 541 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of 542 // barrier that will be used in fast reduction: bs_plain_barrier or 543 // bs_reduction_barrier 544 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will 545 // be used in fast reduction; 546 // Reduction method is of 'enum _reduction_method' type and it's defined the way 547 // so that the bits of 0-th byte are empty, so no need to execute a shift 548 // instruction while packing/unpacking 549 550 #if KMP_FAST_REDUCTION_BARRIER 551 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \ 552 ((reduction_method) | (barrier_type)) 553 554 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ 555 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00))) 556 557 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \ 558 ((enum barrier_type)((packed_reduction_method) & (0x000000FF))) 559 #else 560 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \ 561 (reduction_method) 562 563 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ 564 (packed_reduction_method) 565 566 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier) 567 #endif 568 569 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \ 570 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \ 571 (which_reduction_block)) 572 573 #if KMP_FAST_REDUCTION_BARRIER 574 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \ 575 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier)) 576 577 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \ 578 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier)) 579 #endif 580 581 typedef int PACKED_REDUCTION_METHOD_T; 582 583 /* -- end of fast reduction stuff ----------------------------------------- */ 584 585 #if KMP_OS_WINDOWS 586 #define USE_CBLKDATA 587 #if KMP_MSVC_COMPAT 588 #pragma warning(push) 589 #pragma warning(disable : 271 310) 590 #endif 591 #include <windows.h> 592 #if KMP_MSVC_COMPAT 593 #pragma warning(pop) 594 #endif 595 #endif 596 597 #if KMP_OS_UNIX 598 #include <dlfcn.h> 599 #include <pthread.h> 600 #endif 601 602 enum kmp_hw_t : int { 603 KMP_HW_UNKNOWN = -1, 604 KMP_HW_SOCKET = 0, 605 KMP_HW_PROC_GROUP, 606 KMP_HW_NUMA, 607 KMP_HW_DIE, 608 KMP_HW_LLC, 609 KMP_HW_L3, 610 KMP_HW_TILE, 611 KMP_HW_MODULE, 612 KMP_HW_L2, 613 KMP_HW_L1, 614 KMP_HW_CORE, 615 KMP_HW_THREAD, 616 KMP_HW_LAST 617 }; 618 619 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \ 620 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST) 621 #define KMP_ASSERT_VALID_HW_TYPE(type) \ 622 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST) 623 624 #define KMP_FOREACH_HW_TYPE(type) \ 625 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \ 626 type = (kmp_hw_t)((int)type + 1)) 627 628 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false); 629 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false); 630 631 /* Only Linux* OS and Windows* OS support thread affinity. */ 632 #if KMP_AFFINITY_SUPPORTED 633 634 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later). 635 #if KMP_OS_WINDOWS 636 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT 637 typedef struct GROUP_AFFINITY { 638 KAFFINITY Mask; 639 WORD Group; 640 WORD Reserved[3]; 641 } GROUP_AFFINITY; 642 #endif /* _MSC_VER < 1600 */ 643 #if KMP_GROUP_AFFINITY 644 extern int __kmp_num_proc_groups; 645 #else 646 static const int __kmp_num_proc_groups = 1; 647 #endif /* KMP_GROUP_AFFINITY */ 648 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD); 649 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount; 650 651 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void); 652 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount; 653 654 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *); 655 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity; 656 657 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *, 658 GROUP_AFFINITY *); 659 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity; 660 #endif /* KMP_OS_WINDOWS */ 661 662 #if KMP_USE_HWLOC 663 extern hwloc_topology_t __kmp_hwloc_topology; 664 extern int __kmp_hwloc_error; 665 #endif 666 667 extern size_t __kmp_affin_mask_size; 668 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0) 669 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0) 670 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size) 671 #define KMP_CPU_SET_ITERATE(i, mask) \ 672 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i)) 673 #define KMP_CPU_SET(i, mask) (mask)->set(i) 674 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i) 675 #define KMP_CPU_CLR(i, mask) (mask)->clear(i) 676 #define KMP_CPU_ZERO(mask) (mask)->zero() 677 #define KMP_CPU_COPY(dest, src) (dest)->copy(src) 678 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src) 679 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not() 680 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src) 681 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask()) 682 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr) 683 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr) 684 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr) 685 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr) 686 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr) 687 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i) 688 #define KMP_CPU_ALLOC_ARRAY(arr, n) \ 689 (arr = __kmp_affinity_dispatch->allocate_mask_array(n)) 690 #define KMP_CPU_FREE_ARRAY(arr, n) \ 691 __kmp_affinity_dispatch->deallocate_mask_array(arr) 692 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n) 693 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n) 694 #define __kmp_get_system_affinity(mask, abort_bool) \ 695 (mask)->get_system_affinity(abort_bool) 696 #define __kmp_set_system_affinity(mask, abort_bool) \ 697 (mask)->set_system_affinity(abort_bool) 698 #define __kmp_get_proc_group(mask) (mask)->get_proc_group() 699 700 class KMPAffinity { 701 public: 702 class Mask { 703 public: 704 void *operator new(size_t n); 705 void operator delete(void *p); 706 void *operator new[](size_t n); 707 void operator delete[](void *p); 708 virtual ~Mask() {} 709 // Set bit i to 1 710 virtual void set(int i) {} 711 // Return bit i 712 virtual bool is_set(int i) const { return false; } 713 // Set bit i to 0 714 virtual void clear(int i) {} 715 // Zero out entire mask 716 virtual void zero() {} 717 // Copy src into this mask 718 virtual void copy(const Mask *src) {} 719 // this &= rhs 720 virtual void bitwise_and(const Mask *rhs) {} 721 // this |= rhs 722 virtual void bitwise_or(const Mask *rhs) {} 723 // this = ~this 724 virtual void bitwise_not() {} 725 // API for iterating over an affinity mask 726 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i)) 727 virtual int begin() const { return 0; } 728 virtual int end() const { return 0; } 729 virtual int next(int previous) const { return 0; } 730 #if KMP_OS_WINDOWS 731 virtual int set_process_affinity(bool abort_on_error) const { return -1; } 732 #endif 733 // Set the system's affinity to this affinity mask's value 734 virtual int set_system_affinity(bool abort_on_error) const { return -1; } 735 // Set this affinity mask to the current system affinity 736 virtual int get_system_affinity(bool abort_on_error) { return -1; } 737 // Only 1 DWORD in the mask should have any procs set. 738 // Return the appropriate index, or -1 for an invalid mask. 739 virtual int get_proc_group() const { return -1; } 740 }; 741 void *operator new(size_t n); 742 void operator delete(void *p); 743 // Need virtual destructor 744 virtual ~KMPAffinity() = default; 745 // Determine if affinity is capable 746 virtual void determine_capable(const char *env_var) {} 747 // Bind the current thread to os proc 748 virtual void bind_thread(int proc) {} 749 // Factory functions to allocate/deallocate a mask 750 virtual Mask *allocate_mask() { return nullptr; } 751 virtual void deallocate_mask(Mask *m) {} 752 virtual Mask *allocate_mask_array(int num) { return nullptr; } 753 virtual void deallocate_mask_array(Mask *m) {} 754 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; } 755 static void pick_api(); 756 static void destroy_api(); 757 enum api_type { 758 NATIVE_OS 759 #if KMP_USE_HWLOC 760 , 761 HWLOC 762 #endif 763 }; 764 virtual api_type get_api_type() const { 765 KMP_ASSERT(0); 766 return NATIVE_OS; 767 } 768 769 private: 770 static bool picked_api; 771 }; 772 773 typedef KMPAffinity::Mask kmp_affin_mask_t; 774 extern KMPAffinity *__kmp_affinity_dispatch; 775 776 // Declare local char buffers with this size for printing debug and info 777 // messages, using __kmp_affinity_print_mask(). 778 #define KMP_AFFIN_MASK_PRINT_LEN 1024 779 780 enum affinity_type { 781 affinity_none = 0, 782 affinity_physical, 783 affinity_logical, 784 affinity_compact, 785 affinity_scatter, 786 affinity_explicit, 787 affinity_balanced, 788 affinity_disabled, // not used outsize the env var parser 789 affinity_default 790 }; 791 792 enum affinity_top_method { 793 affinity_top_method_all = 0, // try all (supported) methods, in order 794 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 795 affinity_top_method_apicid, 796 affinity_top_method_x2apicid, 797 affinity_top_method_x2apicid_1f, 798 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 799 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too 800 #if KMP_GROUP_AFFINITY 801 affinity_top_method_group, 802 #endif /* KMP_GROUP_AFFINITY */ 803 affinity_top_method_flat, 804 #if KMP_USE_HWLOC 805 affinity_top_method_hwloc, 806 #endif 807 affinity_top_method_default 808 }; 809 810 #define affinity_respect_mask_default (-1) 811 812 extern enum affinity_type __kmp_affinity_type; /* Affinity type */ 813 extern kmp_hw_t __kmp_affinity_gran; /* Affinity granularity */ 814 extern int __kmp_affinity_gran_levels; /* corresponding int value */ 815 extern int __kmp_affinity_dups; /* Affinity duplicate masks */ 816 extern enum affinity_top_method __kmp_affinity_top_method; 817 extern int __kmp_affinity_compact; /* Affinity 'compact' value */ 818 extern int __kmp_affinity_offset; /* Affinity offset value */ 819 extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */ 820 extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */ 821 extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask? 822 extern char *__kmp_affinity_proclist; /* proc ID list */ 823 extern kmp_affin_mask_t *__kmp_affinity_masks; 824 extern unsigned __kmp_affinity_num_masks; 825 extern void __kmp_affinity_bind_thread(int which); 826 827 extern kmp_affin_mask_t *__kmp_affin_fullMask; 828 extern char *__kmp_cpuinfo_file; 829 830 #endif /* KMP_AFFINITY_SUPPORTED */ 831 832 // This needs to be kept in sync with the values in omp.h !!! 833 typedef enum kmp_proc_bind_t { 834 proc_bind_false = 0, 835 proc_bind_true, 836 proc_bind_primary, 837 proc_bind_close, 838 proc_bind_spread, 839 proc_bind_intel, // use KMP_AFFINITY interface 840 proc_bind_default 841 } kmp_proc_bind_t; 842 843 typedef struct kmp_nested_proc_bind_t { 844 kmp_proc_bind_t *bind_types; 845 int size; 846 int used; 847 } kmp_nested_proc_bind_t; 848 849 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind; 850 851 extern int __kmp_display_affinity; 852 extern char *__kmp_affinity_format; 853 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512; 854 #if OMPT_SUPPORT 855 extern int __kmp_tool; 856 extern char *__kmp_tool_libraries; 857 #endif // OMPT_SUPPORT 858 859 #if KMP_AFFINITY_SUPPORTED 860 #define KMP_PLACE_ALL (-1) 861 #define KMP_PLACE_UNDEFINED (-2) 862 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES? 863 #define KMP_AFFINITY_NON_PROC_BIND \ 864 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \ 865 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \ 866 (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced)) 867 #endif /* KMP_AFFINITY_SUPPORTED */ 868 869 extern int __kmp_affinity_num_places; 870 871 typedef enum kmp_cancel_kind_t { 872 cancel_noreq = 0, 873 cancel_parallel = 1, 874 cancel_loop = 2, 875 cancel_sections = 3, 876 cancel_taskgroup = 4 877 } kmp_cancel_kind_t; 878 879 // KMP_HW_SUBSET support: 880 typedef struct kmp_hws_item { 881 int num; 882 int offset; 883 } kmp_hws_item_t; 884 885 extern kmp_hws_item_t __kmp_hws_socket; 886 extern kmp_hws_item_t __kmp_hws_die; 887 extern kmp_hws_item_t __kmp_hws_node; 888 extern kmp_hws_item_t __kmp_hws_tile; 889 extern kmp_hws_item_t __kmp_hws_core; 890 extern kmp_hws_item_t __kmp_hws_proc; 891 extern int __kmp_hws_requested; 892 extern int __kmp_hws_abs_flag; // absolute or per-item number requested 893 894 /* ------------------------------------------------------------------------ */ 895 896 #define KMP_PAD(type, sz) \ 897 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1)) 898 899 // We need to avoid using -1 as a GTID as +1 is added to the gtid 900 // when storing it in a lock, and the value 0 is reserved. 901 #define KMP_GTID_DNE (-2) /* Does not exist */ 902 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */ 903 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */ 904 #define KMP_GTID_UNKNOWN (-5) /* Is not known */ 905 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */ 906 907 /* OpenMP 5.0 Memory Management support */ 908 909 #ifndef __OMP_H 910 // Duplicate type definitions from omp.h 911 typedef uintptr_t omp_uintptr_t; 912 913 typedef enum { 914 omp_atk_sync_hint = 1, 915 omp_atk_alignment = 2, 916 omp_atk_access = 3, 917 omp_atk_pool_size = 4, 918 omp_atk_fallback = 5, 919 omp_atk_fb_data = 6, 920 omp_atk_pinned = 7, 921 omp_atk_partition = 8 922 } omp_alloctrait_key_t; 923 924 typedef enum { 925 omp_atv_false = 0, 926 omp_atv_true = 1, 927 omp_atv_contended = 3, 928 omp_atv_uncontended = 4, 929 omp_atv_serialized = 5, 930 omp_atv_sequential = omp_atv_serialized, // (deprecated) 931 omp_atv_private = 6, 932 omp_atv_all = 7, 933 omp_atv_thread = 8, 934 omp_atv_pteam = 9, 935 omp_atv_cgroup = 10, 936 omp_atv_default_mem_fb = 11, 937 omp_atv_null_fb = 12, 938 omp_atv_abort_fb = 13, 939 omp_atv_allocator_fb = 14, 940 omp_atv_environment = 15, 941 omp_atv_nearest = 16, 942 omp_atv_blocked = 17, 943 omp_atv_interleaved = 18 944 } omp_alloctrait_value_t; 945 #define omp_atv_default ((omp_uintptr_t)-1) 946 947 typedef void *omp_memspace_handle_t; 948 extern omp_memspace_handle_t const omp_default_mem_space; 949 extern omp_memspace_handle_t const omp_large_cap_mem_space; 950 extern omp_memspace_handle_t const omp_const_mem_space; 951 extern omp_memspace_handle_t const omp_high_bw_mem_space; 952 extern omp_memspace_handle_t const omp_low_lat_mem_space; 953 // Preview of target memory support 954 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space; 955 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space; 956 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space; 957 958 typedef struct { 959 omp_alloctrait_key_t key; 960 omp_uintptr_t value; 961 } omp_alloctrait_t; 962 963 typedef void *omp_allocator_handle_t; 964 extern omp_allocator_handle_t const omp_null_allocator; 965 extern omp_allocator_handle_t const omp_default_mem_alloc; 966 extern omp_allocator_handle_t const omp_large_cap_mem_alloc; 967 extern omp_allocator_handle_t const omp_const_mem_alloc; 968 extern omp_allocator_handle_t const omp_high_bw_mem_alloc; 969 extern omp_allocator_handle_t const omp_low_lat_mem_alloc; 970 extern omp_allocator_handle_t const omp_cgroup_mem_alloc; 971 extern omp_allocator_handle_t const omp_pteam_mem_alloc; 972 extern omp_allocator_handle_t const omp_thread_mem_alloc; 973 // Preview of target memory support 974 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc; 975 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc; 976 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc; 977 extern omp_allocator_handle_t const kmp_max_mem_alloc; 978 extern omp_allocator_handle_t __kmp_def_allocator; 979 980 // end of duplicate type definitions from omp.h 981 #endif 982 983 extern int __kmp_memkind_available; 984 985 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder 986 987 typedef struct kmp_allocator_t { 988 omp_memspace_handle_t memspace; 989 void **memkind; // pointer to memkind 990 int alignment; 991 omp_alloctrait_value_t fb; 992 kmp_allocator_t *fb_data; 993 kmp_uint64 pool_size; 994 kmp_uint64 pool_used; 995 } kmp_allocator_t; 996 997 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid, 998 omp_memspace_handle_t, 999 int ntraits, 1000 omp_alloctrait_t traits[]); 1001 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al); 1002 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al); 1003 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid); 1004 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al); 1005 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz, 1006 omp_allocator_handle_t al); 1007 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz, 1008 omp_allocator_handle_t al, 1009 omp_allocator_handle_t free_al); 1010 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al); 1011 1012 extern void __kmp_init_memkind(); 1013 extern void __kmp_fini_memkind(); 1014 extern void __kmp_init_target_mem(); 1015 1016 /* ------------------------------------------------------------------------ */ 1017 1018 #define KMP_UINT64_MAX \ 1019 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1))) 1020 1021 #define KMP_MIN_NTH 1 1022 1023 #ifndef KMP_MAX_NTH 1024 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX 1025 #define KMP_MAX_NTH PTHREAD_THREADS_MAX 1026 #else 1027 #define KMP_MAX_NTH INT_MAX 1028 #endif 1029 #endif /* KMP_MAX_NTH */ 1030 1031 #ifdef PTHREAD_STACK_MIN 1032 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN 1033 #else 1034 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024)) 1035 #endif 1036 1037 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1))) 1038 1039 #if KMP_ARCH_X86 1040 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024)) 1041 #elif KMP_ARCH_X86_64 1042 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024)) 1043 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024)) 1044 #else 1045 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024)) 1046 #endif 1047 1048 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024)) 1049 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024)) 1050 #define KMP_MAX_MALLOC_POOL_INCR \ 1051 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1))) 1052 1053 #define KMP_MIN_STKOFFSET (0) 1054 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE 1055 #if KMP_OS_DARWIN 1056 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET 1057 #else 1058 #define KMP_DEFAULT_STKOFFSET CACHE_LINE 1059 #endif 1060 1061 #define KMP_MIN_STKPADDING (0) 1062 #define KMP_MAX_STKPADDING (2 * 1024 * 1024) 1063 1064 #define KMP_BLOCKTIME_MULTIPLIER \ 1065 (1000) /* number of blocktime units per second */ 1066 #define KMP_MIN_BLOCKTIME (0) 1067 #define KMP_MAX_BLOCKTIME \ 1068 (INT_MAX) /* Must be this for "infinite" setting the work */ 1069 #define KMP_DEFAULT_BLOCKTIME (200) /* __kmp_blocktime is in milliseconds */ 1070 1071 #if KMP_USE_MONITOR 1072 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024)) 1073 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second 1074 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec 1075 1076 /* Calculate new number of monitor wakeups for a specific block time based on 1077 previous monitor_wakeups. Only allow increasing number of wakeups */ 1078 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ 1079 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \ 1080 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \ 1081 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \ 1082 ? (monitor_wakeups) \ 1083 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime)) 1084 1085 /* Calculate number of intervals for a specific block time based on 1086 monitor_wakeups */ 1087 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ 1088 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \ 1089 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups))) 1090 #else 1091 #define KMP_BLOCKTIME(team, tid) \ 1092 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime) 1093 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1094 // HW TSC is used to reduce overhead (clock tick instead of nanosecond). 1095 extern kmp_uint64 __kmp_ticks_per_msec; 1096 #if KMP_COMPILER_ICC 1097 #define KMP_NOW() ((kmp_uint64)_rdtsc()) 1098 #else 1099 #define KMP_NOW() __kmp_hardware_timestamp() 1100 #endif 1101 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec) 1102 #define KMP_BLOCKTIME_INTERVAL(team, tid) \ 1103 (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec) 1104 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW()) 1105 #else 1106 // System time is retrieved sporadically while blocking. 1107 extern kmp_uint64 __kmp_now_nsec(); 1108 #define KMP_NOW() __kmp_now_nsec() 1109 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC) 1110 #define KMP_BLOCKTIME_INTERVAL(team, tid) \ 1111 (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC) 1112 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW()) 1113 #endif 1114 #endif // KMP_USE_MONITOR 1115 1116 #define KMP_MIN_STATSCOLS 40 1117 #define KMP_MAX_STATSCOLS 4096 1118 #define KMP_DEFAULT_STATSCOLS 80 1119 1120 #define KMP_MIN_INTERVAL 0 1121 #define KMP_MAX_INTERVAL (INT_MAX - 1) 1122 #define KMP_DEFAULT_INTERVAL 0 1123 1124 #define KMP_MIN_CHUNK 1 1125 #define KMP_MAX_CHUNK (INT_MAX - 1) 1126 #define KMP_DEFAULT_CHUNK 1 1127 1128 #define KMP_MIN_DISP_NUM_BUFF 1 1129 #define KMP_DFLT_DISP_NUM_BUFF 7 1130 #define KMP_MAX_DISP_NUM_BUFF 4096 1131 1132 #define KMP_MAX_ORDERED 8 1133 1134 #define KMP_MAX_FIELDS 32 1135 1136 #define KMP_MAX_BRANCH_BITS 31 1137 1138 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX 1139 1140 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX 1141 1142 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX 1143 1144 /* Minimum number of threads before switch to TLS gtid (experimentally 1145 determined) */ 1146 /* josh TODO: what about OS X* tuning? */ 1147 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1148 #define KMP_TLS_GTID_MIN 5 1149 #else 1150 #define KMP_TLS_GTID_MIN INT_MAX 1151 #endif 1152 1153 #define KMP_MASTER_TID(tid) (0 == (tid)) 1154 #define KMP_WORKER_TID(tid) (0 != (tid)) 1155 1156 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid))) 1157 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid))) 1158 #define KMP_INITIAL_GTID(gtid) (0 == (gtid)) 1159 1160 #ifndef TRUE 1161 #define FALSE 0 1162 #define TRUE (!FALSE) 1163 #endif 1164 1165 /* NOTE: all of the following constants must be even */ 1166 1167 #if KMP_OS_WINDOWS 1168 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */ 1169 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */ 1170 #elif KMP_OS_LINUX 1171 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1172 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1173 #elif KMP_OS_DARWIN 1174 /* TODO: tune for KMP_OS_DARWIN */ 1175 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1176 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1177 #elif KMP_OS_DRAGONFLY 1178 /* TODO: tune for KMP_OS_DRAGONFLY */ 1179 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1180 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1181 #elif KMP_OS_FREEBSD 1182 /* TODO: tune for KMP_OS_FREEBSD */ 1183 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1184 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1185 #elif KMP_OS_NETBSD 1186 /* TODO: tune for KMP_OS_NETBSD */ 1187 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1188 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1189 #elif KMP_OS_HURD 1190 /* TODO: tune for KMP_OS_HURD */ 1191 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1192 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1193 #elif KMP_OS_OPENBSD 1194 /* TODO: tune for KMP_OS_OPENBSD */ 1195 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1196 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1197 #endif 1198 1199 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1200 typedef struct kmp_cpuid { 1201 kmp_uint32 eax; 1202 kmp_uint32 ebx; 1203 kmp_uint32 ecx; 1204 kmp_uint32 edx; 1205 } kmp_cpuid_t; 1206 1207 typedef struct kmp_cpuinfo { 1208 int initialized; // If 0, other fields are not initialized. 1209 int signature; // CPUID(1).EAX 1210 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family) 1211 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended 1212 // Model << 4 ) + Model) 1213 int stepping; // CPUID(1).EAX[3:0] ( Stepping ) 1214 int sse2; // 0 if SSE2 instructions are not supported, 1 otherwise. 1215 int rtm; // 0 if RTM instructions are not supported, 1 otherwise. 1216 int apic_id; 1217 int physical_id; 1218 int logical_id; 1219 kmp_uint64 frequency; // Nominal CPU frequency in Hz. 1220 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004) 1221 } kmp_cpuinfo_t; 1222 1223 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p); 1224 1225 #if KMP_OS_UNIX 1226 // subleaf is only needed for cache and topology discovery and can be set to 1227 // zero in most cases 1228 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) { 1229 __asm__ __volatile__("cpuid" 1230 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx) 1231 : "a"(leaf), "c"(subleaf)); 1232 } 1233 // Load p into FPU control word 1234 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) { 1235 __asm__ __volatile__("fldcw %0" : : "m"(*p)); 1236 } 1237 // Store FPU control word into p 1238 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) { 1239 __asm__ __volatile__("fstcw %0" : "=m"(*p)); 1240 } 1241 static inline void __kmp_clear_x87_fpu_status_word() { 1242 #if KMP_MIC 1243 // 32-bit protected mode x87 FPU state 1244 struct x87_fpu_state { 1245 unsigned cw; 1246 unsigned sw; 1247 unsigned tw; 1248 unsigned fip; 1249 unsigned fips; 1250 unsigned fdp; 1251 unsigned fds; 1252 }; 1253 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0}; 1254 __asm__ __volatile__("fstenv %0\n\t" // store FP env 1255 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW 1256 "fldenv %0\n\t" // load FP env back 1257 : "+m"(fpu_state), "+m"(fpu_state.sw)); 1258 #else 1259 __asm__ __volatile__("fnclex"); 1260 #endif // KMP_MIC 1261 } 1262 #if __SSE__ 1263 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); } 1264 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); } 1265 #else 1266 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {} 1267 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; } 1268 #endif 1269 #else 1270 // Windows still has these as external functions in assembly file 1271 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p); 1272 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p); 1273 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p); 1274 extern void __kmp_clear_x87_fpu_status_word(); 1275 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); } 1276 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); } 1277 #endif // KMP_OS_UNIX 1278 1279 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */ 1280 1281 #if KMP_ARCH_X86 1282 extern void __kmp_x86_pause(void); 1283 #elif KMP_MIC 1284 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed 1285 // regression after removal of extra PAUSE from spin loops. Changing 1286 // the delay from 100 to 300 showed even better performance than double PAUSE 1287 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC. 1288 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); } 1289 #else 1290 static inline void __kmp_x86_pause(void) { _mm_pause(); } 1291 #endif 1292 #define KMP_CPU_PAUSE() __kmp_x86_pause() 1293 #elif KMP_ARCH_PPC64 1294 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1") 1295 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2") 1296 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory") 1297 #define KMP_CPU_PAUSE() \ 1298 do { \ 1299 KMP_PPC64_PRI_LOW(); \ 1300 KMP_PPC64_PRI_MED(); \ 1301 KMP_PPC64_PRI_LOC_MB(); \ 1302 } while (0) 1303 #else 1304 #define KMP_CPU_PAUSE() /* nothing to do */ 1305 #endif 1306 1307 #define KMP_INIT_YIELD(count) \ 1308 { (count) = __kmp_yield_init; } 1309 1310 #define KMP_OVERSUBSCRIBED \ 1311 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) 1312 1313 #define KMP_TRY_YIELD \ 1314 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED))) 1315 1316 #define KMP_TRY_YIELD_OVERSUB \ 1317 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED)) 1318 1319 #define KMP_YIELD(cond) \ 1320 { \ 1321 KMP_CPU_PAUSE(); \ 1322 if ((cond) && (KMP_TRY_YIELD)) \ 1323 __kmp_yield(); \ 1324 } 1325 1326 #define KMP_YIELD_OVERSUB() \ 1327 { \ 1328 KMP_CPU_PAUSE(); \ 1329 if ((KMP_TRY_YIELD_OVERSUB)) \ 1330 __kmp_yield(); \ 1331 } 1332 1333 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround, 1334 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd. 1335 #define KMP_YIELD_SPIN(count) \ 1336 { \ 1337 KMP_CPU_PAUSE(); \ 1338 if (KMP_TRY_YIELD) { \ 1339 (count) -= 2; \ 1340 if (!(count)) { \ 1341 __kmp_yield(); \ 1342 (count) = __kmp_yield_next; \ 1343 } \ 1344 } \ 1345 } 1346 1347 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count) \ 1348 { \ 1349 KMP_CPU_PAUSE(); \ 1350 if ((KMP_TRY_YIELD_OVERSUB)) \ 1351 __kmp_yield(); \ 1352 else if (__kmp_use_yield == 1) { \ 1353 (count) -= 2; \ 1354 if (!(count)) { \ 1355 __kmp_yield(); \ 1356 (count) = __kmp_yield_next; \ 1357 } \ 1358 } \ 1359 } 1360 1361 // User-level Monitor/Mwait 1362 #if KMP_HAVE_UMWAIT 1363 // We always try for UMWAIT first 1364 #if KMP_HAVE_WAITPKG_INTRINSICS 1365 #if KMP_HAVE_IMMINTRIN_H 1366 #include <immintrin.h> 1367 #elif KMP_HAVE_INTRIN_H 1368 #include <intrin.h> 1369 #endif 1370 #endif // KMP_HAVE_WAITPKG_INTRINSICS 1371 KMP_ATTRIBUTE_TARGET_WAITPKG 1372 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) { 1373 #if !KMP_HAVE_WAITPKG_INTRINSICS 1374 uint32_t timeHi = uint32_t(counter >> 32); 1375 uint32_t timeLo = uint32_t(counter & 0xffffffff); 1376 char flag; 1377 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n" 1378 "setb %0" 1379 : "=r"(flag) 1380 : "a"(timeLo), "d"(timeHi), "c"(hint) 1381 :); 1382 return flag; 1383 #else 1384 return _tpause(hint, counter); 1385 #endif 1386 } 1387 KMP_ATTRIBUTE_TARGET_WAITPKG 1388 static inline void __kmp_umonitor(void *cacheline) { 1389 #if !KMP_HAVE_WAITPKG_INTRINSICS 1390 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 " 1391 : 1392 : "a"(cacheline) 1393 :); 1394 #else 1395 _umonitor(cacheline); 1396 #endif 1397 } 1398 KMP_ATTRIBUTE_TARGET_WAITPKG 1399 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) { 1400 #if !KMP_HAVE_WAITPKG_INTRINSICS 1401 uint32_t timeHi = uint32_t(counter >> 32); 1402 uint32_t timeLo = uint32_t(counter & 0xffffffff); 1403 char flag; 1404 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n" 1405 "setb %0" 1406 : "=r"(flag) 1407 : "a"(timeLo), "d"(timeHi), "c"(hint) 1408 :); 1409 return flag; 1410 #else 1411 return _umwait(hint, counter); 1412 #endif 1413 } 1414 #elif KMP_HAVE_MWAIT 1415 #if KMP_OS_UNIX 1416 #include <pmmintrin.h> 1417 #else 1418 #include <intrin.h> 1419 #endif 1420 #if KMP_OS_UNIX 1421 __attribute__((target("sse3"))) 1422 #endif 1423 static inline void 1424 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) { 1425 _mm_monitor(cacheline, extensions, hints); 1426 } 1427 #if KMP_OS_UNIX 1428 __attribute__((target("sse3"))) 1429 #endif 1430 static inline void 1431 __kmp_mm_mwait(unsigned extensions, unsigned hints) { 1432 _mm_mwait(extensions, hints); 1433 } 1434 #endif // KMP_HAVE_UMWAIT 1435 1436 /* ------------------------------------------------------------------------ */ 1437 /* Support datatypes for the orphaned construct nesting checks. */ 1438 /* ------------------------------------------------------------------------ */ 1439 1440 enum cons_type { 1441 ct_none, 1442 ct_parallel, 1443 ct_pdo, 1444 ct_pdo_ordered, 1445 ct_psections, 1446 ct_psingle, 1447 ct_critical, 1448 ct_ordered_in_parallel, 1449 ct_ordered_in_pdo, 1450 ct_master, 1451 ct_reduce, 1452 ct_barrier, 1453 ct_masked 1454 }; 1455 1456 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered) 1457 1458 struct cons_data { 1459 ident_t const *ident; 1460 enum cons_type type; 1461 int prev; 1462 kmp_user_lock_p 1463 name; /* address exclusively for critical section name comparison */ 1464 }; 1465 1466 struct cons_header { 1467 int p_top, w_top, s_top; 1468 int stack_size, stack_top; 1469 struct cons_data *stack_data; 1470 }; 1471 1472 struct kmp_region_info { 1473 char *text; 1474 int offset[KMP_MAX_FIELDS]; 1475 int length[KMP_MAX_FIELDS]; 1476 }; 1477 1478 /* ---------------------------------------------------------------------- */ 1479 /* ---------------------------------------------------------------------- */ 1480 1481 #if KMP_OS_WINDOWS 1482 typedef HANDLE kmp_thread_t; 1483 typedef DWORD kmp_key_t; 1484 #endif /* KMP_OS_WINDOWS */ 1485 1486 #if KMP_OS_UNIX 1487 typedef pthread_t kmp_thread_t; 1488 typedef pthread_key_t kmp_key_t; 1489 #endif 1490 1491 extern kmp_key_t __kmp_gtid_threadprivate_key; 1492 1493 typedef struct kmp_sys_info { 1494 long maxrss; /* the maximum resident set size utilized (in kilobytes) */ 1495 long minflt; /* the number of page faults serviced without any I/O */ 1496 long majflt; /* the number of page faults serviced that required I/O */ 1497 long nswap; /* the number of times a process was "swapped" out of memory */ 1498 long inblock; /* the number of times the file system had to perform input */ 1499 long oublock; /* the number of times the file system had to perform output */ 1500 long nvcsw; /* the number of times a context switch was voluntarily */ 1501 long nivcsw; /* the number of times a context switch was forced */ 1502 } kmp_sys_info_t; 1503 1504 #if USE_ITT_BUILD 1505 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only 1506 // required type here. Later we will check the type meets requirements. 1507 typedef int kmp_itt_mark_t; 1508 #define KMP_ITT_DEBUG 0 1509 #endif /* USE_ITT_BUILD */ 1510 1511 typedef kmp_int32 kmp_critical_name[8]; 1512 1513 /*! 1514 @ingroup PARALLEL 1515 The type for a microtask which gets passed to @ref __kmpc_fork_call(). 1516 The arguments to the outlined function are 1517 @param global_tid the global thread identity of the thread executing the 1518 function. 1519 @param bound_tid the local identity of the thread executing the function 1520 @param ... pointers to shared variables accessed by the function. 1521 */ 1522 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...); 1523 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth, 1524 ...); 1525 1526 /*! 1527 @ingroup THREADPRIVATE 1528 @{ 1529 */ 1530 /* --------------------------------------------------------------------------- 1531 */ 1532 /* Threadprivate initialization/finalization function declarations */ 1533 1534 /* for non-array objects: __kmpc_threadprivate_register() */ 1535 1536 /*! 1537 Pointer to the constructor function. 1538 The first argument is the <tt>this</tt> pointer 1539 */ 1540 typedef void *(*kmpc_ctor)(void *); 1541 1542 /*! 1543 Pointer to the destructor function. 1544 The first argument is the <tt>this</tt> pointer 1545 */ 1546 typedef void (*kmpc_dtor)( 1547 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel 1548 compiler */ 1549 /*! 1550 Pointer to an alternate constructor. 1551 The first argument is the <tt>this</tt> pointer. 1552 */ 1553 typedef void *(*kmpc_cctor)(void *, void *); 1554 1555 /* for array objects: __kmpc_threadprivate_register_vec() */ 1556 /* First arg: "this" pointer */ 1557 /* Last arg: number of array elements */ 1558 /*! 1559 Array constructor. 1560 First argument is the <tt>this</tt> pointer 1561 Second argument the number of array elements. 1562 */ 1563 typedef void *(*kmpc_ctor_vec)(void *, size_t); 1564 /*! 1565 Pointer to the array destructor function. 1566 The first argument is the <tt>this</tt> pointer 1567 Second argument the number of array elements. 1568 */ 1569 typedef void (*kmpc_dtor_vec)(void *, size_t); 1570 /*! 1571 Array constructor. 1572 First argument is the <tt>this</tt> pointer 1573 Third argument the number of array elements. 1574 */ 1575 typedef void *(*kmpc_cctor_vec)(void *, void *, 1576 size_t); /* function unused by compiler */ 1577 1578 /*! 1579 @} 1580 */ 1581 1582 /* keeps tracked of threadprivate cache allocations for cleanup later */ 1583 typedef struct kmp_cached_addr { 1584 void **addr; /* address of allocated cache */ 1585 void ***compiler_cache; /* pointer to compiler's cache */ 1586 void *data; /* pointer to global data */ 1587 struct kmp_cached_addr *next; /* pointer to next cached address */ 1588 } kmp_cached_addr_t; 1589 1590 struct private_data { 1591 struct private_data *next; /* The next descriptor in the list */ 1592 void *data; /* The data buffer for this descriptor */ 1593 int more; /* The repeat count for this descriptor */ 1594 size_t size; /* The data size for this descriptor */ 1595 }; 1596 1597 struct private_common { 1598 struct private_common *next; 1599 struct private_common *link; 1600 void *gbl_addr; 1601 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */ 1602 size_t cmn_size; 1603 }; 1604 1605 struct shared_common { 1606 struct shared_common *next; 1607 struct private_data *pod_init; 1608 void *obj_init; 1609 void *gbl_addr; 1610 union { 1611 kmpc_ctor ctor; 1612 kmpc_ctor_vec ctorv; 1613 } ct; 1614 union { 1615 kmpc_cctor cctor; 1616 kmpc_cctor_vec cctorv; 1617 } cct; 1618 union { 1619 kmpc_dtor dtor; 1620 kmpc_dtor_vec dtorv; 1621 } dt; 1622 size_t vec_len; 1623 int is_vec; 1624 size_t cmn_size; 1625 }; 1626 1627 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */ 1628 #define KMP_HASH_TABLE_SIZE \ 1629 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */ 1630 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */ 1631 #define KMP_HASH(x) \ 1632 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1)) 1633 1634 struct common_table { 1635 struct private_common *data[KMP_HASH_TABLE_SIZE]; 1636 }; 1637 1638 struct shared_table { 1639 struct shared_common *data[KMP_HASH_TABLE_SIZE]; 1640 }; 1641 1642 /* ------------------------------------------------------------------------ */ 1643 1644 #if KMP_USE_HIER_SCHED 1645 // Shared barrier data that exists inside a single unit of the scheduling 1646 // hierarchy 1647 typedef struct kmp_hier_private_bdata_t { 1648 kmp_int32 num_active; 1649 kmp_uint64 index; 1650 kmp_uint64 wait_val[2]; 1651 } kmp_hier_private_bdata_t; 1652 #endif 1653 1654 typedef struct kmp_sched_flags { 1655 unsigned ordered : 1; 1656 unsigned nomerge : 1; 1657 unsigned contains_last : 1; 1658 #if KMP_USE_HIER_SCHED 1659 unsigned use_hier : 1; 1660 unsigned unused : 28; 1661 #else 1662 unsigned unused : 29; 1663 #endif 1664 } kmp_sched_flags_t; 1665 1666 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4); 1667 1668 #if KMP_STATIC_STEAL_ENABLED 1669 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { 1670 kmp_int32 count; 1671 kmp_int32 ub; 1672 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ 1673 kmp_int32 lb; 1674 kmp_int32 st; 1675 kmp_int32 tc; 1676 kmp_lock_t *steal_lock; // lock used for chunk stealing 1677 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on) 1678 // a) parm3 is properly aligned and 1679 // b) all parm1-4 are on the same cache line. 1680 // Because of parm1-4 are used together, performance seems to be better 1681 // if they are on the same cache line (not measured though). 1682 1683 struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template 1684 kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should 1685 kmp_int32 parm2; // make no real change at least while padding is off. 1686 kmp_int32 parm3; 1687 kmp_int32 parm4; 1688 }; 1689 1690 kmp_uint32 ordered_lower; 1691 kmp_uint32 ordered_upper; 1692 #if KMP_OS_WINDOWS 1693 kmp_int32 last_upper; 1694 #endif /* KMP_OS_WINDOWS */ 1695 } dispatch_private_info32_t; 1696 1697 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { 1698 kmp_int64 count; // current chunk number for static & static-steal scheduling 1699 kmp_int64 ub; /* upper-bound */ 1700 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ 1701 kmp_int64 lb; /* lower-bound */ 1702 kmp_int64 st; /* stride */ 1703 kmp_int64 tc; /* trip count (number of iterations) */ 1704 kmp_lock_t *steal_lock; // lock used for chunk stealing 1705 /* parm[1-4] are used in different ways by different scheduling algorithms */ 1706 1707 // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on ) 1708 // a) parm3 is properly aligned and 1709 // b) all parm1-4 are in the same cache line. 1710 // Because of parm1-4 are used together, performance seems to be better 1711 // if they are in the same line (not measured though). 1712 1713 struct KMP_ALIGN(32) { 1714 kmp_int64 parm1; 1715 kmp_int64 parm2; 1716 kmp_int64 parm3; 1717 kmp_int64 parm4; 1718 }; 1719 1720 kmp_uint64 ordered_lower; 1721 kmp_uint64 ordered_upper; 1722 #if KMP_OS_WINDOWS 1723 kmp_int64 last_upper; 1724 #endif /* KMP_OS_WINDOWS */ 1725 } dispatch_private_info64_t; 1726 #else /* KMP_STATIC_STEAL_ENABLED */ 1727 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { 1728 kmp_int32 lb; 1729 kmp_int32 ub; 1730 kmp_int32 st; 1731 kmp_int32 tc; 1732 1733 kmp_int32 parm1; 1734 kmp_int32 parm2; 1735 kmp_int32 parm3; 1736 kmp_int32 parm4; 1737 1738 kmp_int32 count; 1739 1740 kmp_uint32 ordered_lower; 1741 kmp_uint32 ordered_upper; 1742 #if KMP_OS_WINDOWS 1743 kmp_int32 last_upper; 1744 #endif /* KMP_OS_WINDOWS */ 1745 } dispatch_private_info32_t; 1746 1747 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { 1748 kmp_int64 lb; /* lower-bound */ 1749 kmp_int64 ub; /* upper-bound */ 1750 kmp_int64 st; /* stride */ 1751 kmp_int64 tc; /* trip count (number of iterations) */ 1752 1753 /* parm[1-4] are used in different ways by different scheduling algorithms */ 1754 kmp_int64 parm1; 1755 kmp_int64 parm2; 1756 kmp_int64 parm3; 1757 kmp_int64 parm4; 1758 1759 kmp_int64 count; /* current chunk number for static scheduling */ 1760 1761 kmp_uint64 ordered_lower; 1762 kmp_uint64 ordered_upper; 1763 #if KMP_OS_WINDOWS 1764 kmp_int64 last_upper; 1765 #endif /* KMP_OS_WINDOWS */ 1766 } dispatch_private_info64_t; 1767 #endif /* KMP_STATIC_STEAL_ENABLED */ 1768 1769 typedef struct KMP_ALIGN_CACHE dispatch_private_info { 1770 union private_info { 1771 dispatch_private_info32_t p32; 1772 dispatch_private_info64_t p64; 1773 } u; 1774 enum sched_type schedule; /* scheduling algorithm */ 1775 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */ 1776 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer 1777 kmp_int32 ordered_bumped; 1778 // Stack of buffers for nest of serial regions 1779 struct dispatch_private_info *next; 1780 kmp_int32 type_size; /* the size of types in private_info */ 1781 #if KMP_USE_HIER_SCHED 1782 kmp_int32 hier_id; 1783 void *parent; /* hierarchical scheduling parent pointer */ 1784 #endif 1785 enum cons_type pushed_ws; 1786 } dispatch_private_info_t; 1787 1788 typedef struct dispatch_shared_info32 { 1789 /* chunk index under dynamic, number of idle threads under static-steal; 1790 iteration index otherwise */ 1791 volatile kmp_uint32 iteration; 1792 volatile kmp_int32 num_done; 1793 volatile kmp_uint32 ordered_iteration; 1794 // Dummy to retain the structure size after making ordered_iteration scalar 1795 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1]; 1796 } dispatch_shared_info32_t; 1797 1798 typedef struct dispatch_shared_info64 { 1799 /* chunk index under dynamic, number of idle threads under static-steal; 1800 iteration index otherwise */ 1801 volatile kmp_uint64 iteration; 1802 volatile kmp_int64 num_done; 1803 volatile kmp_uint64 ordered_iteration; 1804 // Dummy to retain the structure size after making ordered_iteration scalar 1805 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3]; 1806 } dispatch_shared_info64_t; 1807 1808 typedef struct dispatch_shared_info { 1809 union shared_info { 1810 dispatch_shared_info32_t s32; 1811 dispatch_shared_info64_t s64; 1812 } u; 1813 volatile kmp_uint32 buffer_index; 1814 volatile kmp_int32 doacross_buf_idx; // teamwise index 1815 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1) 1816 kmp_int32 doacross_num_done; // count finished threads 1817 #if KMP_USE_HIER_SCHED 1818 void *hier; 1819 #endif 1820 #if KMP_USE_HWLOC 1821 // When linking with libhwloc, the ORDERED EPCC test slows down on big 1822 // machines (> 48 cores). Performance analysis showed that a cache thrash 1823 // was occurring and this padding helps alleviate the problem. 1824 char padding[64]; 1825 #endif 1826 } dispatch_shared_info_t; 1827 1828 typedef struct kmp_disp { 1829 /* Vector for ORDERED SECTION */ 1830 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *); 1831 /* Vector for END ORDERED SECTION */ 1832 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *); 1833 1834 dispatch_shared_info_t *th_dispatch_sh_current; 1835 dispatch_private_info_t *th_dispatch_pr_current; 1836 1837 dispatch_private_info_t *th_disp_buffer; 1838 kmp_uint32 th_disp_index; 1839 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index 1840 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags 1841 kmp_int64 *th_doacross_info; // info on loop bounds 1842 #if KMP_USE_INTERNODE_ALIGNMENT 1843 char more_padding[INTERNODE_CACHE_LINE]; 1844 #endif 1845 } kmp_disp_t; 1846 1847 /* ------------------------------------------------------------------------ */ 1848 /* Barrier stuff */ 1849 1850 /* constants for barrier state update */ 1851 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */ 1852 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */ 1853 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state 1854 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */ 1855 1856 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT) 1857 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT) 1858 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT) 1859 1860 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT) 1861 #error "Barrier sleep bit must be smaller than barrier bump bit" 1862 #endif 1863 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT) 1864 #error "Barrier unused bit must be smaller than barrier bump bit" 1865 #endif 1866 1867 // Constants for release barrier wait state: currently, hierarchical only 1868 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep 1869 #define KMP_BARRIER_OWN_FLAG \ 1870 1 // Normal state; worker waiting on own b_go flag in release 1871 #define KMP_BARRIER_PARENT_FLAG \ 1872 2 // Special state; worker waiting on parent's b_go flag in release 1873 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \ 1874 3 // Special state; tells worker to shift from parent to own b_go 1875 #define KMP_BARRIER_SWITCHING \ 1876 4 // Special state; worker resets appropriate flag on wake-up 1877 1878 #define KMP_NOT_SAFE_TO_REAP \ 1879 0 // Thread th_reap_state: not safe to reap (tasking) 1880 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking) 1881 1882 enum barrier_type { 1883 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction 1884 barriers if enabled) */ 1885 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */ 1886 #if KMP_FAST_REDUCTION_BARRIER 1887 bs_reduction_barrier, /* 2, All barriers that are used in reduction */ 1888 #endif // KMP_FAST_REDUCTION_BARRIER 1889 bs_last_barrier /* Just a placeholder to mark the end */ 1890 }; 1891 1892 // to work with reduction barriers just like with plain barriers 1893 #if !KMP_FAST_REDUCTION_BARRIER 1894 #define bs_reduction_barrier bs_plain_barrier 1895 #endif // KMP_FAST_REDUCTION_BARRIER 1896 1897 typedef enum kmp_bar_pat { /* Barrier communication patterns */ 1898 bp_linear_bar = 1899 0, /* Single level (degenerate) tree */ 1900 bp_tree_bar = 1901 1, /* Balanced tree with branching factor 2^n */ 1902 bp_hyper_bar = 2, /* Hypercube-embedded tree with min 1903 branching factor 2^n */ 1904 bp_hierarchical_bar = 3, /* Machine hierarchy tree */ 1905 bp_last_bar /* Placeholder to mark the end */ 1906 } kmp_bar_pat_e; 1907 1908 #define KMP_BARRIER_ICV_PUSH 1 1909 1910 /* Record for holding the values of the internal controls stack records */ 1911 typedef struct kmp_internal_control { 1912 int serial_nesting_level; /* corresponds to the value of the 1913 th_team_serialized field */ 1914 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per 1915 thread) */ 1916 kmp_int8 1917 bt_set; /* internal control for whether blocktime is explicitly set */ 1918 int blocktime; /* internal control for blocktime */ 1919 #if KMP_USE_MONITOR 1920 int bt_intervals; /* internal control for blocktime intervals */ 1921 #endif 1922 int nproc; /* internal control for #threads for next parallel region (per 1923 thread) */ 1924 int thread_limit; /* internal control for thread-limit-var */ 1925 int max_active_levels; /* internal control for max_active_levels */ 1926 kmp_r_sched_t 1927 sched; /* internal control for runtime schedule {sched,chunk} pair */ 1928 kmp_proc_bind_t proc_bind; /* internal control for affinity */ 1929 kmp_int32 default_device; /* internal control for default device */ 1930 struct kmp_internal_control *next; 1931 } kmp_internal_control_t; 1932 1933 static inline void copy_icvs(kmp_internal_control_t *dst, 1934 kmp_internal_control_t *src) { 1935 *dst = *src; 1936 } 1937 1938 /* Thread barrier needs volatile barrier fields */ 1939 typedef struct KMP_ALIGN_CACHE kmp_bstate { 1940 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all 1941 // uses of it). It is not explicitly aligned below, because we *don't* want 1942 // it to be padded -- instead, we fit b_go into the same cache line with 1943 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier. 1944 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread 1945 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with 1946 // same NGO store 1947 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical) 1948 KMP_ALIGN_CACHE volatile kmp_uint64 1949 b_arrived; // STATE => task reached synch point. 1950 kmp_uint32 *skip_per_level; 1951 kmp_uint32 my_level; 1952 kmp_int32 parent_tid; 1953 kmp_int32 old_tid; 1954 kmp_uint32 depth; 1955 struct kmp_bstate *parent_bar; 1956 kmp_team_t *team; 1957 kmp_uint64 leaf_state; 1958 kmp_uint32 nproc; 1959 kmp_uint8 base_leaf_kids; 1960 kmp_uint8 leaf_kids; 1961 kmp_uint8 offset; 1962 kmp_uint8 wait_flag; 1963 kmp_uint8 use_oncore_barrier; 1964 #if USE_DEBUGGER 1965 // The following field is intended for the debugger solely. Only the worker 1966 // thread itself accesses this field: the worker increases it by 1 when it 1967 // arrives to a barrier. 1968 KMP_ALIGN_CACHE kmp_uint b_worker_arrived; 1969 #endif /* USE_DEBUGGER */ 1970 } kmp_bstate_t; 1971 1972 union KMP_ALIGN_CACHE kmp_barrier_union { 1973 double b_align; /* use worst case alignment */ 1974 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)]; 1975 kmp_bstate_t bb; 1976 }; 1977 1978 typedef union kmp_barrier_union kmp_balign_t; 1979 1980 /* Team barrier needs only non-volatile arrived counter */ 1981 union KMP_ALIGN_CACHE kmp_barrier_team_union { 1982 double b_align; /* use worst case alignment */ 1983 char b_pad[CACHE_LINE]; 1984 struct { 1985 kmp_uint64 b_arrived; /* STATE => task reached synch point. */ 1986 #if USE_DEBUGGER 1987 // The following two fields are indended for the debugger solely. Only 1988 // primary thread of the team accesses these fields: the first one is 1989 // increased by 1 when the primary thread arrives to a barrier, the second 1990 // one is increased by one when all the threads arrived. 1991 kmp_uint b_master_arrived; 1992 kmp_uint b_team_arrived; 1993 #endif 1994 }; 1995 }; 1996 1997 typedef union kmp_barrier_team_union kmp_balign_team_t; 1998 1999 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal 2000 threads when a condition changes. This is to workaround an NPTL bug where 2001 padding was added to pthread_cond_t which caused the initialization routine 2002 to write outside of the structure if compiled on pre-NPTL threads. */ 2003 #if KMP_OS_WINDOWS 2004 typedef struct kmp_win32_mutex { 2005 /* The Lock */ 2006 CRITICAL_SECTION cs; 2007 } kmp_win32_mutex_t; 2008 2009 typedef struct kmp_win32_cond { 2010 /* Count of the number of waiters. */ 2011 int waiters_count_; 2012 2013 /* Serialize access to <waiters_count_> */ 2014 kmp_win32_mutex_t waiters_count_lock_; 2015 2016 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */ 2017 int release_count_; 2018 2019 /* Keeps track of the current "generation" so that we don't allow */ 2020 /* one thread to steal all the "releases" from the broadcast. */ 2021 int wait_generation_count_; 2022 2023 /* A manual-reset event that's used to block and release waiting threads. */ 2024 HANDLE event_; 2025 } kmp_win32_cond_t; 2026 #endif 2027 2028 #if KMP_OS_UNIX 2029 2030 union KMP_ALIGN_CACHE kmp_cond_union { 2031 double c_align; 2032 char c_pad[CACHE_LINE]; 2033 pthread_cond_t c_cond; 2034 }; 2035 2036 typedef union kmp_cond_union kmp_cond_align_t; 2037 2038 union KMP_ALIGN_CACHE kmp_mutex_union { 2039 double m_align; 2040 char m_pad[CACHE_LINE]; 2041 pthread_mutex_t m_mutex; 2042 }; 2043 2044 typedef union kmp_mutex_union kmp_mutex_align_t; 2045 2046 #endif /* KMP_OS_UNIX */ 2047 2048 typedef struct kmp_desc_base { 2049 void *ds_stackbase; 2050 size_t ds_stacksize; 2051 int ds_stackgrow; 2052 kmp_thread_t ds_thread; 2053 volatile int ds_tid; 2054 int ds_gtid; 2055 #if KMP_OS_WINDOWS 2056 volatile int ds_alive; 2057 DWORD ds_thread_id; 2058 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes. 2059 However, debugger support (libomp_db) cannot work with handles, because they 2060 uncomparable. For example, debugger requests info about thread with handle h. 2061 h is valid within debugger process, and meaningless within debugee process. 2062 Even if h is duped by call to DuplicateHandle(), so the result h' is valid 2063 within debugee process, but it is a *new* handle which does *not* equal to 2064 any other handle in debugee... The only way to compare handles is convert 2065 them to system-wide ids. GetThreadId() function is available only in 2066 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available 2067 on all Windows* OS flavours (including Windows* 95). Thus, we have to get 2068 thread id by call to GetCurrentThreadId() from within the thread and save it 2069 to let libomp_db identify threads. */ 2070 #endif /* KMP_OS_WINDOWS */ 2071 } kmp_desc_base_t; 2072 2073 typedef union KMP_ALIGN_CACHE kmp_desc { 2074 double ds_align; /* use worst case alignment */ 2075 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)]; 2076 kmp_desc_base_t ds; 2077 } kmp_desc_t; 2078 2079 typedef struct kmp_local { 2080 volatile int this_construct; /* count of single's encountered by thread */ 2081 void *reduce_data; 2082 #if KMP_USE_BGET 2083 void *bget_data; 2084 void *bget_list; 2085 #if !USE_CMP_XCHG_FOR_BGET 2086 #ifdef USE_QUEUING_LOCK_FOR_BGET 2087 kmp_lock_t bget_lock; /* Lock for accessing bget free list */ 2088 #else 2089 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be 2090 // bootstrap lock so we can use it at library 2091 // shutdown. 2092 #endif /* USE_LOCK_FOR_BGET */ 2093 #endif /* ! USE_CMP_XCHG_FOR_BGET */ 2094 #endif /* KMP_USE_BGET */ 2095 2096 PACKED_REDUCTION_METHOD_T 2097 packed_reduction_method; /* stored by __kmpc_reduce*(), used by 2098 __kmpc_end_reduce*() */ 2099 2100 } kmp_local_t; 2101 2102 #define KMP_CHECK_UPDATE(a, b) \ 2103 if ((a) != (b)) \ 2104 (a) = (b) 2105 #define KMP_CHECK_UPDATE_SYNC(a, b) \ 2106 if ((a) != (b)) \ 2107 TCW_SYNC_PTR((a), (b)) 2108 2109 #define get__blocktime(xteam, xtid) \ 2110 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) 2111 #define get__bt_set(xteam, xtid) \ 2112 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) 2113 #if KMP_USE_MONITOR 2114 #define get__bt_intervals(xteam, xtid) \ 2115 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) 2116 #endif 2117 2118 #define get__dynamic_2(xteam, xtid) \ 2119 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic) 2120 #define get__nproc_2(xteam, xtid) \ 2121 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc) 2122 #define get__sched_2(xteam, xtid) \ 2123 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched) 2124 2125 #define set__blocktime_team(xteam, xtid, xval) \ 2126 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \ 2127 (xval)) 2128 2129 #if KMP_USE_MONITOR 2130 #define set__bt_intervals_team(xteam, xtid, xval) \ 2131 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \ 2132 (xval)) 2133 #endif 2134 2135 #define set__bt_set_team(xteam, xtid, xval) \ 2136 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval)) 2137 2138 #define set__dynamic(xthread, xval) \ 2139 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval)) 2140 #define get__dynamic(xthread) \ 2141 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE)) 2142 2143 #define set__nproc(xthread, xval) \ 2144 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval)) 2145 2146 #define set__thread_limit(xthread, xval) \ 2147 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval)) 2148 2149 #define set__max_active_levels(xthread, xval) \ 2150 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval)) 2151 2152 #define get__max_active_levels(xthread) \ 2153 ((xthread)->th.th_current_task->td_icvs.max_active_levels) 2154 2155 #define set__sched(xthread, xval) \ 2156 (((xthread)->th.th_current_task->td_icvs.sched) = (xval)) 2157 2158 #define set__proc_bind(xthread, xval) \ 2159 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval)) 2160 #define get__proc_bind(xthread) \ 2161 ((xthread)->th.th_current_task->td_icvs.proc_bind) 2162 2163 // OpenMP tasking data structures 2164 2165 typedef enum kmp_tasking_mode { 2166 tskm_immediate_exec = 0, 2167 tskm_extra_barrier = 1, 2168 tskm_task_teams = 2, 2169 tskm_max = 2 2170 } kmp_tasking_mode_t; 2171 2172 extern kmp_tasking_mode_t 2173 __kmp_tasking_mode; /* determines how/when to execute tasks */ 2174 extern int __kmp_task_stealing_constraint; 2175 extern int __kmp_enable_task_throttling; 2176 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if 2177 // specified, defaults to 0 otherwise 2178 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise 2179 extern kmp_int32 __kmp_max_task_priority; 2180 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise 2181 extern kmp_uint64 __kmp_taskloop_min_tasks; 2182 2183 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with 2184 taskdata first */ 2185 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1) 2186 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1) 2187 2188 // The tt_found_tasks flag is a signal to all threads in the team that tasks 2189 // were spawned and queued since the previous barrier release. 2190 #define KMP_TASKING_ENABLED(task_team) \ 2191 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks)) 2192 /*! 2193 @ingroup BASIC_TYPES 2194 @{ 2195 */ 2196 2197 /*! 2198 */ 2199 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *); 2200 2201 typedef union kmp_cmplrdata { 2202 kmp_int32 priority; /**< priority specified by user for the task */ 2203 kmp_routine_entry_t 2204 destructors; /* pointer to function to invoke deconstructors of 2205 firstprivate C++ objects */ 2206 /* future data */ 2207 } kmp_cmplrdata_t; 2208 2209 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */ 2210 /*! 2211 */ 2212 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */ 2213 void *shareds; /**< pointer to block of pointers to shared vars */ 2214 kmp_routine_entry_t 2215 routine; /**< pointer to routine to call for executing task */ 2216 kmp_int32 part_id; /**< part id for the task */ 2217 kmp_cmplrdata_t 2218 data1; /* Two known optional additions: destructors and priority */ 2219 kmp_cmplrdata_t data2; /* Process destructors first, priority second */ 2220 /* future data */ 2221 /* private vars */ 2222 } kmp_task_t; 2223 2224 /*! 2225 @} 2226 */ 2227 2228 typedef struct kmp_taskgroup { 2229 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks 2230 std::atomic<kmp_int32> 2231 cancel_request; // request for cancellation of this taskgroup 2232 struct kmp_taskgroup *parent; // parent taskgroup 2233 // Block of data to perform task reduction 2234 void *reduce_data; // reduction related info 2235 kmp_int32 reduce_num_data; // number of data items to reduce 2236 uintptr_t *gomp_data; // gomp reduction data 2237 } kmp_taskgroup_t; 2238 2239 // forward declarations 2240 typedef union kmp_depnode kmp_depnode_t; 2241 typedef struct kmp_depnode_list kmp_depnode_list_t; 2242 typedef struct kmp_dephash_entry kmp_dephash_entry_t; 2243 2244 #define KMP_DEP_IN 0x1 2245 #define KMP_DEP_OUT 0x2 2246 #define KMP_DEP_INOUT 0x3 2247 #define KMP_DEP_MTX 0x4 2248 #define KMP_DEP_SET 0x8 2249 // Compiler sends us this info: 2250 typedef struct kmp_depend_info { 2251 kmp_intptr_t base_addr; 2252 size_t len; 2253 union { 2254 kmp_uint8 flag; 2255 struct { 2256 unsigned in : 1; 2257 unsigned out : 1; 2258 unsigned mtx : 1; 2259 unsigned set : 1; 2260 } flags; 2261 }; 2262 } kmp_depend_info_t; 2263 2264 // Internal structures to work with task dependencies: 2265 struct kmp_depnode_list { 2266 kmp_depnode_t *node; 2267 kmp_depnode_list_t *next; 2268 }; 2269 2270 // Max number of mutexinoutset dependencies per node 2271 #define MAX_MTX_DEPS 4 2272 2273 typedef struct kmp_base_depnode { 2274 kmp_depnode_list_t *successors; /* used under lock */ 2275 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */ 2276 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */ 2277 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */ 2278 kmp_lock_t lock; /* guards shared fields: task, successors */ 2279 #if KMP_SUPPORT_GRAPH_OUTPUT 2280 kmp_uint32 id; 2281 #endif 2282 std::atomic<kmp_int32> npredecessors; 2283 std::atomic<kmp_int32> nrefs; 2284 } kmp_base_depnode_t; 2285 2286 union KMP_ALIGN_CACHE kmp_depnode { 2287 double dn_align; /* use worst case alignment */ 2288 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)]; 2289 kmp_base_depnode_t dn; 2290 }; 2291 2292 struct kmp_dephash_entry { 2293 kmp_intptr_t addr; 2294 kmp_depnode_t *last_out; 2295 kmp_depnode_list_t *last_set; 2296 kmp_depnode_list_t *prev_set; 2297 kmp_uint8 last_flag; 2298 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */ 2299 kmp_dephash_entry_t *next_in_bucket; 2300 }; 2301 2302 typedef struct kmp_dephash { 2303 kmp_dephash_entry_t **buckets; 2304 size_t size; 2305 size_t generation; 2306 kmp_uint32 nelements; 2307 kmp_uint32 nconflicts; 2308 } kmp_dephash_t; 2309 2310 typedef struct kmp_task_affinity_info { 2311 kmp_intptr_t base_addr; 2312 size_t len; 2313 struct { 2314 bool flag1 : 1; 2315 bool flag2 : 1; 2316 kmp_int32 reserved : 30; 2317 } flags; 2318 } kmp_task_affinity_info_t; 2319 2320 typedef enum kmp_event_type_t { 2321 KMP_EVENT_UNINITIALIZED = 0, 2322 KMP_EVENT_ALLOW_COMPLETION = 1 2323 } kmp_event_type_t; 2324 2325 typedef struct { 2326 kmp_event_type_t type; 2327 kmp_tas_lock_t lock; 2328 union { 2329 kmp_task_t *task; 2330 } ed; 2331 } kmp_event_t; 2332 2333 #ifdef BUILD_TIED_TASK_STACK 2334 2335 /* Tied Task stack definitions */ 2336 typedef struct kmp_stack_block { 2337 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE]; 2338 struct kmp_stack_block *sb_next; 2339 struct kmp_stack_block *sb_prev; 2340 } kmp_stack_block_t; 2341 2342 typedef struct kmp_task_stack { 2343 kmp_stack_block_t ts_first_block; // first block of stack entries 2344 kmp_taskdata_t **ts_top; // pointer to the top of stack 2345 kmp_int32 ts_entries; // number of entries on the stack 2346 } kmp_task_stack_t; 2347 2348 #endif // BUILD_TIED_TASK_STACK 2349 2350 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */ 2351 /* Compiler flags */ /* Total compiler flags must be 16 bits */ 2352 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */ 2353 unsigned final : 1; /* task is final(1) so execute immediately */ 2354 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0 2355 code path */ 2356 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to 2357 invoke destructors from the runtime */ 2358 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the 2359 context of the RTL) */ 2360 unsigned priority_specified : 1; /* set if the compiler provides priority 2361 setting for the task */ 2362 unsigned detachable : 1; /* 1 == can detach */ 2363 unsigned hidden_helper : 1; /* 1 == hidden helper task */ 2364 unsigned reserved : 8; /* reserved for compiler use */ 2365 2366 /* Library flags */ /* Total library flags must be 16 bits */ 2367 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */ 2368 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0) 2369 unsigned tasking_ser : 1; // all tasks in team are either executed immediately 2370 // (1) or may be deferred (0) 2371 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel 2372 // (0) [>= 2 threads] 2373 /* If either team_serial or tasking_ser is set, task team may be NULL */ 2374 /* Task State Flags: */ 2375 unsigned started : 1; /* 1==started, 0==not started */ 2376 unsigned executing : 1; /* 1==executing, 0==not executing */ 2377 unsigned complete : 1; /* 1==complete, 0==not complete */ 2378 unsigned freed : 1; /* 1==freed, 0==allocated */ 2379 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */ 2380 unsigned reserved31 : 7; /* reserved for library use */ 2381 2382 } kmp_tasking_flags_t; 2383 2384 struct kmp_taskdata { /* aligned during dynamic allocation */ 2385 kmp_int32 td_task_id; /* id, assigned by debugger */ 2386 kmp_tasking_flags_t td_flags; /* task flags */ 2387 kmp_team_t *td_team; /* team for this task */ 2388 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */ 2389 /* Currently not used except for perhaps IDB */ 2390 kmp_taskdata_t *td_parent; /* parent task */ 2391 kmp_int32 td_level; /* task nesting level */ 2392 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter 2393 ident_t *td_ident; /* task identifier */ 2394 // Taskwait data. 2395 ident_t *td_taskwait_ident; 2396 kmp_uint32 td_taskwait_counter; 2397 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */ 2398 KMP_ALIGN_CACHE kmp_internal_control_t 2399 td_icvs; /* Internal control variables for the task */ 2400 KMP_ALIGN_CACHE std::atomic<kmp_int32> 2401 td_allocated_child_tasks; /* Child tasks (+ current task) not yet 2402 deallocated */ 2403 std::atomic<kmp_int32> 2404 td_incomplete_child_tasks; /* Child tasks not yet complete */ 2405 kmp_taskgroup_t 2406 *td_taskgroup; // Each task keeps pointer to its current taskgroup 2407 kmp_dephash_t 2408 *td_dephash; // Dependencies for children tasks are tracked from here 2409 kmp_depnode_t 2410 *td_depnode; // Pointer to graph node if this task has dependencies 2411 kmp_task_team_t *td_task_team; 2412 // The global thread id of the encountering thread. We need it because when a 2413 // regular task depends on a hidden helper task, and the hidden helper task 2414 // is finished on a hidden helper thread, it will call __kmp_release_deps to 2415 // release all dependences. If now the task is a regular task, we need to pass 2416 // the encountering gtid such that the task will be picked up and executed by 2417 // its encountering team instead of hidden helper team. 2418 kmp_int32 encountering_gtid; 2419 size_t td_size_alloc; // Size of task structure, including shareds etc. 2420 #if defined(KMP_GOMP_COMPAT) 2421 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop 2422 kmp_int32 td_size_loop_bounds; 2423 #endif 2424 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint 2425 #if defined(KMP_GOMP_COMPAT) 2426 // GOMP sends in a copy function for copy constructors 2427 void (*td_copy_func)(void *, void *); 2428 #endif 2429 kmp_event_t td_allow_completion_event; 2430 #if OMPT_SUPPORT 2431 ompt_task_info_t ompt_task_info; 2432 #endif 2433 }; // struct kmp_taskdata 2434 2435 // Make sure padding above worked 2436 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0); 2437 2438 // Data for task team but per thread 2439 typedef struct kmp_base_thread_data { 2440 kmp_info_p *td_thr; // Pointer back to thread info 2441 // Used only in __kmp_execute_tasks_template, maybe not avail until task is 2442 // queued? 2443 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque 2444 kmp_taskdata_t * 2445 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated 2446 kmp_int32 td_deque_size; // Size of deck 2447 kmp_uint32 td_deque_head; // Head of deque (will wrap) 2448 kmp_uint32 td_deque_tail; // Tail of deque (will wrap) 2449 kmp_int32 td_deque_ntasks; // Number of tasks in deque 2450 // GEH: shouldn't this be volatile since used in while-spin? 2451 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal 2452 #ifdef BUILD_TIED_TASK_STACK 2453 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task 2454 // scheduling constraint 2455 #endif // BUILD_TIED_TASK_STACK 2456 } kmp_base_thread_data_t; 2457 2458 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE 2459 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS) 2460 2461 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size) 2462 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1) 2463 2464 typedef union KMP_ALIGN_CACHE kmp_thread_data { 2465 kmp_base_thread_data_t td; 2466 double td_align; /* use worst case alignment */ 2467 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)]; 2468 } kmp_thread_data_t; 2469 2470 // Data for task teams which are used when tasking is enabled for the team 2471 typedef struct kmp_base_task_team { 2472 kmp_bootstrap_lock_t 2473 tt_threads_lock; /* Lock used to allocate per-thread part of task team */ 2474 /* must be bootstrap lock since used at library shutdown*/ 2475 kmp_task_team_t *tt_next; /* For linking the task team free list */ 2476 kmp_thread_data_t 2477 *tt_threads_data; /* Array of per-thread structures for task team */ 2478 /* Data survives task team deallocation */ 2479 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while 2480 executing this team? */ 2481 /* TRUE means tt_threads_data is set up and initialized */ 2482 kmp_int32 tt_nproc; /* #threads in team */ 2483 kmp_int32 tt_max_threads; // # entries allocated for threads_data array 2484 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier 2485 kmp_int32 tt_untied_task_encountered; 2486 // There is hidden helper thread encountered in this task team so that we must 2487 // wait when waiting on task team 2488 kmp_int32 tt_hidden_helper_task_encountered; 2489 2490 KMP_ALIGN_CACHE 2491 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */ 2492 2493 KMP_ALIGN_CACHE 2494 volatile kmp_uint32 2495 tt_active; /* is the team still actively executing tasks */ 2496 } kmp_base_task_team_t; 2497 2498 union KMP_ALIGN_CACHE kmp_task_team { 2499 kmp_base_task_team_t tt; 2500 double tt_align; /* use worst case alignment */ 2501 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)]; 2502 }; 2503 2504 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5) 2505 // Free lists keep same-size free memory slots for fast memory allocation 2506 // routines 2507 typedef struct kmp_free_list { 2508 void *th_free_list_self; // Self-allocated tasks free list 2509 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other 2510 // threads 2511 void *th_free_list_other; // Non-self free list (to be returned to owner's 2512 // sync list) 2513 } kmp_free_list_t; 2514 #endif 2515 #if KMP_NESTED_HOT_TEAMS 2516 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams 2517 // are not put in teams pool, and they don't put threads in threads pool. 2518 typedef struct kmp_hot_team_ptr { 2519 kmp_team_p *hot_team; // pointer to hot_team of given nesting level 2520 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team 2521 } kmp_hot_team_ptr_t; 2522 #endif 2523 typedef struct kmp_teams_size { 2524 kmp_int32 nteams; // number of teams in a league 2525 kmp_int32 nth; // number of threads in each team of the league 2526 } kmp_teams_size_t; 2527 2528 // This struct stores a thread that acts as a "root" for a contention 2529 // group. Contention groups are rooted at kmp_root threads, but also at 2530 // each primary thread of each team created in the teams construct. 2531 // This struct therefore also stores a thread_limit associated with 2532 // that contention group, and a counter to track the number of threads 2533 // active in that contention group. Each thread has a list of these: CG 2534 // root threads have an entry in their list in which cg_root refers to 2535 // the thread itself, whereas other workers in the CG will have a 2536 // single entry where cg_root is same as the entry containing their CG 2537 // root. When a thread encounters a teams construct, it will add a new 2538 // entry to the front of its list, because it now roots a new CG. 2539 typedef struct kmp_cg_root { 2540 kmp_info_p *cg_root; // "root" thread for a contention group 2541 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or 2542 // thread_limit clause for teams primary threads 2543 kmp_int32 cg_thread_limit; 2544 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root 2545 struct kmp_cg_root *up; // pointer to higher level CG root in list 2546 } kmp_cg_root_t; 2547 2548 // OpenMP thread data structures 2549 2550 typedef struct KMP_ALIGN_CACHE kmp_base_info { 2551 /* Start with the readonly data which is cache aligned and padded. This is 2552 written before the thread starts working by the primary thread. Uber 2553 masters may update themselves later. Usage does not consider serialized 2554 regions. */ 2555 kmp_desc_t th_info; 2556 kmp_team_p *th_team; /* team we belong to */ 2557 kmp_root_p *th_root; /* pointer to root of task hierarchy */ 2558 kmp_info_p *th_next_pool; /* next available thread in the pool */ 2559 kmp_disp_t *th_dispatch; /* thread's dispatch data */ 2560 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */ 2561 2562 /* The following are cached from the team info structure */ 2563 /* TODO use these in more places as determined to be needed via profiling */ 2564 int th_team_nproc; /* number of threads in a team */ 2565 kmp_info_p *th_team_master; /* the team's primary thread */ 2566 int th_team_serialized; /* team is serialized */ 2567 microtask_t th_teams_microtask; /* save entry address for teams construct */ 2568 int th_teams_level; /* save initial level of teams construct */ 2569 /* it is 0 on device but may be any on host */ 2570 2571 /* The blocktime info is copied from the team struct to the thread struct */ 2572 /* at the start of a barrier, and the values stored in the team are used */ 2573 /* at points in the code where the team struct is no longer guaranteed */ 2574 /* to exist (from the POV of worker threads). */ 2575 #if KMP_USE_MONITOR 2576 int th_team_bt_intervals; 2577 int th_team_bt_set; 2578 #else 2579 kmp_uint64 th_team_bt_intervals; 2580 #endif 2581 2582 #if KMP_AFFINITY_SUPPORTED 2583 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */ 2584 #endif 2585 omp_allocator_handle_t th_def_allocator; /* default allocator */ 2586 /* The data set by the primary thread at reinit, then R/W by the worker */ 2587 KMP_ALIGN_CACHE int 2588 th_set_nproc; /* if > 0, then only use this request for the next fork */ 2589 #if KMP_NESTED_HOT_TEAMS 2590 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */ 2591 #endif 2592 kmp_proc_bind_t 2593 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */ 2594 kmp_teams_size_t 2595 th_teams_size; /* number of teams/threads in teams construct */ 2596 #if KMP_AFFINITY_SUPPORTED 2597 int th_current_place; /* place currently bound to */ 2598 int th_new_place; /* place to bind to in par reg */ 2599 int th_first_place; /* first place in partition */ 2600 int th_last_place; /* last place in partition */ 2601 #endif 2602 int th_prev_level; /* previous level for affinity format */ 2603 int th_prev_num_threads; /* previous num_threads for affinity format */ 2604 #if USE_ITT_BUILD 2605 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */ 2606 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */ 2607 kmp_uint64 th_frame_time; /* frame timestamp */ 2608 #endif /* USE_ITT_BUILD */ 2609 kmp_local_t th_local; 2610 struct private_common *th_pri_head; 2611 2612 /* Now the data only used by the worker (after initial allocation) */ 2613 /* TODO the first serial team should actually be stored in the info_t 2614 structure. this will help reduce initial allocation overhead */ 2615 KMP_ALIGN_CACHE kmp_team_p 2616 *th_serial_team; /*serialized team held in reserve*/ 2617 2618 #if OMPT_SUPPORT 2619 ompt_thread_info_t ompt_thread_info; 2620 #endif 2621 2622 /* The following are also read by the primary thread during reinit */ 2623 struct common_table *th_pri_common; 2624 2625 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */ 2626 /* while awaiting queuing lock acquire */ 2627 2628 volatile void *th_sleep_loc; // this points at a kmp_flag<T> 2629 2630 ident_t *th_ident; 2631 unsigned th_x; // Random number generator data 2632 unsigned th_a; // Random number generator data 2633 2634 /* Tasking-related data for the thread */ 2635 kmp_task_team_t *th_task_team; // Task team struct 2636 kmp_taskdata_t *th_current_task; // Innermost Task being executed 2637 kmp_uint8 th_task_state; // alternating 0/1 for task team identification 2638 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state 2639 // at nested levels 2640 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack 2641 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack 2642 kmp_uint32 th_reap_state; // Non-zero indicates thread is not 2643 // tasking, thus safe to reap 2644 2645 /* More stuff for keeping track of active/sleeping threads (this part is 2646 written by the worker thread) */ 2647 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool 2648 int th_active; // ! sleeping; 32 bits for TCR/TCW 2649 struct cons_header *th_cons; // used for consistency check 2650 #if KMP_USE_HIER_SCHED 2651 // used for hierarchical scheduling 2652 kmp_hier_private_bdata_t *th_hier_bar_data; 2653 #endif 2654 2655 /* Add the syncronizing data which is cache aligned and padded. */ 2656 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier]; 2657 2658 KMP_ALIGN_CACHE volatile kmp_int32 2659 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */ 2660 2661 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5) 2662 #define NUM_LISTS 4 2663 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory 2664 // allocation routines 2665 #endif 2666 2667 #if KMP_OS_WINDOWS 2668 kmp_win32_cond_t th_suspend_cv; 2669 kmp_win32_mutex_t th_suspend_mx; 2670 std::atomic<int> th_suspend_init; 2671 #endif 2672 #if KMP_OS_UNIX 2673 kmp_cond_align_t th_suspend_cv; 2674 kmp_mutex_align_t th_suspend_mx; 2675 std::atomic<int> th_suspend_init_count; 2676 #endif 2677 2678 #if USE_ITT_BUILD 2679 kmp_itt_mark_t th_itt_mark_single; 2680 // alignment ??? 2681 #endif /* USE_ITT_BUILD */ 2682 #if KMP_STATS_ENABLED 2683 kmp_stats_list *th_stats; 2684 #endif 2685 #if KMP_OS_UNIX 2686 std::atomic<bool> th_blocking; 2687 #endif 2688 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread 2689 } kmp_base_info_t; 2690 2691 typedef union KMP_ALIGN_CACHE kmp_info { 2692 double th_align; /* use worst case alignment */ 2693 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)]; 2694 kmp_base_info_t th; 2695 } kmp_info_t; 2696 2697 // OpenMP thread team data structures 2698 2699 typedef struct kmp_base_data { 2700 volatile kmp_uint32 t_value; 2701 } kmp_base_data_t; 2702 2703 typedef union KMP_ALIGN_CACHE kmp_sleep_team { 2704 double dt_align; /* use worst case alignment */ 2705 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2706 kmp_base_data_t dt; 2707 } kmp_sleep_team_t; 2708 2709 typedef union KMP_ALIGN_CACHE kmp_ordered_team { 2710 double dt_align; /* use worst case alignment */ 2711 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2712 kmp_base_data_t dt; 2713 } kmp_ordered_team_t; 2714 2715 typedef int (*launch_t)(int gtid); 2716 2717 /* Minimum number of ARGV entries to malloc if necessary */ 2718 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100 2719 2720 // Set up how many argv pointers will fit in cache lines containing 2721 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a 2722 // larger value for more space between the primary write/worker read section and 2723 // read/write by all section seems to buy more performance on EPCC PARALLEL. 2724 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2725 #define KMP_INLINE_ARGV_BYTES \ 2726 (4 * CACHE_LINE - \ 2727 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \ 2728 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \ 2729 CACHE_LINE)) 2730 #else 2731 #define KMP_INLINE_ARGV_BYTES \ 2732 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE)) 2733 #endif 2734 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP) 2735 2736 typedef struct KMP_ALIGN_CACHE kmp_base_team { 2737 // Synchronization Data 2738 // --------------------------------------------------------------------------- 2739 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered; 2740 kmp_balign_team_t t_bar[bs_last_barrier]; 2741 std::atomic<int> t_construct; // count of single directive encountered by team 2742 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron 2743 2744 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups 2745 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier 2746 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions 2747 2748 // Primary thread only 2749 // --------------------------------------------------------------------------- 2750 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team 2751 int t_master_this_cons; // "this_construct" single counter of primary thread 2752 // in parent team 2753 ident_t *t_ident; // if volatile, have to change too much other crud to 2754 // volatile too 2755 kmp_team_p *t_parent; // parent team 2756 kmp_team_p *t_next_pool; // next free team in the team pool 2757 kmp_disp_t *t_dispatch; // thread's dispatch data 2758 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2 2759 kmp_proc_bind_t t_proc_bind; // bind type for par region 2760 #if USE_ITT_BUILD 2761 kmp_uint64 t_region_time; // region begin timestamp 2762 #endif /* USE_ITT_BUILD */ 2763 2764 // Primary thread write, workers read 2765 // -------------------------------------------------------------------------- 2766 KMP_ALIGN_CACHE void **t_argv; 2767 int t_argc; 2768 int t_nproc; // number of threads in team 2769 microtask_t t_pkfn; 2770 launch_t t_invoke; // procedure to launch the microtask 2771 2772 #if OMPT_SUPPORT 2773 ompt_team_info_t ompt_team_info; 2774 ompt_lw_taskteam_t *ompt_serialized_team_info; 2775 #endif 2776 2777 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2778 kmp_int8 t_fp_control_saved; 2779 kmp_int8 t_pad2b; 2780 kmp_int16 t_x87_fpu_control_word; // FP control regs 2781 kmp_uint32 t_mxcsr; 2782 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2783 2784 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES]; 2785 2786 KMP_ALIGN_CACHE kmp_info_t **t_threads; 2787 kmp_taskdata_t 2788 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task 2789 int t_level; // nested parallel level 2790 2791 KMP_ALIGN_CACHE int t_max_argc; 2792 int t_max_nproc; // max threads this team can handle (dynamically expandable) 2793 int t_serialized; // levels deep of serialized teams 2794 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system 2795 int t_id; // team's id, assigned by debugger. 2796 int t_active_level; // nested active parallel level 2797 kmp_r_sched_t t_sched; // run-time schedule for the team 2798 #if KMP_AFFINITY_SUPPORTED 2799 int t_first_place; // first & last place in parent thread's partition. 2800 int t_last_place; // Restore these values to primary thread after par region. 2801 #endif // KMP_AFFINITY_SUPPORTED 2802 int t_display_affinity; 2803 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via 2804 // omp_set_num_threads() call 2805 omp_allocator_handle_t t_def_allocator; /* default allocator */ 2806 2807 // Read/write by workers as well 2808 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 2809 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf 2810 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra 2811 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when 2812 // CACHE_LINE=64. TODO: investigate more and get rid if this padding. 2813 char dummy_padding[1024]; 2814 #endif 2815 // Internal control stack for additional nested teams. 2816 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top; 2817 // for SERIALIZED teams nested 2 or more levels deep 2818 // typed flag to store request state of cancellation 2819 std::atomic<kmp_int32> t_cancel_request; 2820 int t_master_active; // save on fork, restore on join 2821 void *t_copypriv_data; // team specific pointer to copyprivate data array 2822 #if KMP_OS_WINDOWS 2823 std::atomic<kmp_uint32> t_copyin_counter; 2824 #endif 2825 #if USE_ITT_BUILD 2826 void *t_stack_id; // team specific stack stitching id (for ittnotify) 2827 #endif /* USE_ITT_BUILD */ 2828 } kmp_base_team_t; 2829 2830 union KMP_ALIGN_CACHE kmp_team { 2831 kmp_base_team_t t; 2832 double t_align; /* use worst case alignment */ 2833 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)]; 2834 }; 2835 2836 typedef union KMP_ALIGN_CACHE kmp_time_global { 2837 double dt_align; /* use worst case alignment */ 2838 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2839 kmp_base_data_t dt; 2840 } kmp_time_global_t; 2841 2842 typedef struct kmp_base_global { 2843 /* cache-aligned */ 2844 kmp_time_global_t g_time; 2845 2846 /* non cache-aligned */ 2847 volatile int g_abort; 2848 volatile int g_done; 2849 2850 int g_dynamic; 2851 enum dynamic_mode g_dynamic_mode; 2852 } kmp_base_global_t; 2853 2854 typedef union KMP_ALIGN_CACHE kmp_global { 2855 kmp_base_global_t g; 2856 double g_align; /* use worst case alignment */ 2857 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)]; 2858 } kmp_global_t; 2859 2860 typedef struct kmp_base_root { 2861 // TODO: GEH - combine r_active with r_in_parallel then r_active == 2862 // (r_in_parallel>= 0) 2863 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce 2864 // the synch overhead or keeping r_active 2865 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */ 2866 // keeps a count of active parallel regions per root 2867 std::atomic<int> r_in_parallel; 2868 // GEH: This is misnamed, should be r_active_levels 2869 kmp_team_t *r_root_team; 2870 kmp_team_t *r_hot_team; 2871 kmp_info_t *r_uber_thread; 2872 kmp_lock_t r_begin_lock; 2873 volatile int r_begin; 2874 int r_blocktime; /* blocktime for this root and descendants */ 2875 #if KMP_AFFINITY_SUPPORTED 2876 int r_affinity_assigned; 2877 #endif // KMP_AFFINITY_SUPPORTED 2878 } kmp_base_root_t; 2879 2880 typedef union KMP_ALIGN_CACHE kmp_root { 2881 kmp_base_root_t r; 2882 double r_align; /* use worst case alignment */ 2883 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)]; 2884 } kmp_root_t; 2885 2886 struct fortran_inx_info { 2887 kmp_int32 data; 2888 }; 2889 2890 /* ------------------------------------------------------------------------ */ 2891 2892 extern int __kmp_settings; 2893 extern int __kmp_duplicate_library_ok; 2894 #if USE_ITT_BUILD 2895 extern int __kmp_forkjoin_frames; 2896 extern int __kmp_forkjoin_frames_mode; 2897 #endif 2898 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method; 2899 extern int __kmp_determ_red; 2900 2901 #ifdef KMP_DEBUG 2902 extern int kmp_a_debug; 2903 extern int kmp_b_debug; 2904 extern int kmp_c_debug; 2905 extern int kmp_d_debug; 2906 extern int kmp_e_debug; 2907 extern int kmp_f_debug; 2908 #endif /* KMP_DEBUG */ 2909 2910 /* For debug information logging using rotating buffer */ 2911 #define KMP_DEBUG_BUF_LINES_INIT 512 2912 #define KMP_DEBUG_BUF_LINES_MIN 1 2913 2914 #define KMP_DEBUG_BUF_CHARS_INIT 128 2915 #define KMP_DEBUG_BUF_CHARS_MIN 2 2916 2917 extern int 2918 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */ 2919 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */ 2920 extern int 2921 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */ 2922 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer 2923 entry pointer */ 2924 2925 extern char *__kmp_debug_buffer; /* Debug buffer itself */ 2926 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines 2927 printed in buffer so far */ 2928 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase 2929 recommended in warnings */ 2930 /* end rotating debug buffer */ 2931 2932 #ifdef KMP_DEBUG 2933 extern int __kmp_par_range; /* +1 => only go par for constructs in range */ 2934 2935 #define KMP_PAR_RANGE_ROUTINE_LEN 1024 2936 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN]; 2937 #define KMP_PAR_RANGE_FILENAME_LEN 1024 2938 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN]; 2939 extern int __kmp_par_range_lb; 2940 extern int __kmp_par_range_ub; 2941 #endif 2942 2943 /* For printing out dynamic storage map for threads and teams */ 2944 extern int 2945 __kmp_storage_map; /* True means print storage map for threads and teams */ 2946 extern int __kmp_storage_map_verbose; /* True means storage map includes 2947 placement info */ 2948 extern int __kmp_storage_map_verbose_specified; 2949 2950 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2951 extern kmp_cpuinfo_t __kmp_cpuinfo; 2952 #endif 2953 2954 extern volatile int __kmp_init_serial; 2955 extern volatile int __kmp_init_gtid; 2956 extern volatile int __kmp_init_common; 2957 extern volatile int __kmp_init_middle; 2958 extern volatile int __kmp_init_parallel; 2959 #if KMP_USE_MONITOR 2960 extern volatile int __kmp_init_monitor; 2961 #endif 2962 extern volatile int __kmp_init_user_locks; 2963 extern volatile int __kmp_init_hidden_helper_threads; 2964 extern int __kmp_init_counter; 2965 extern int __kmp_root_counter; 2966 extern int __kmp_version; 2967 2968 /* list of address of allocated caches for commons */ 2969 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list; 2970 2971 /* Barrier algorithm types and options */ 2972 extern kmp_uint32 __kmp_barrier_gather_bb_dflt; 2973 extern kmp_uint32 __kmp_barrier_release_bb_dflt; 2974 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt; 2975 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt; 2976 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier]; 2977 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier]; 2978 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier]; 2979 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier]; 2980 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier]; 2981 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier]; 2982 extern char const *__kmp_barrier_type_name[bs_last_barrier]; 2983 extern char const *__kmp_barrier_pattern_name[bp_last_bar]; 2984 2985 /* Global Locks */ 2986 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */ 2987 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */ 2988 extern kmp_bootstrap_lock_t __kmp_task_team_lock; 2989 extern kmp_bootstrap_lock_t 2990 __kmp_exit_lock; /* exit() is not always thread-safe */ 2991 #if KMP_USE_MONITOR 2992 extern kmp_bootstrap_lock_t 2993 __kmp_monitor_lock; /* control monitor thread creation */ 2994 #endif 2995 extern kmp_bootstrap_lock_t 2996 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and 2997 __kmp_threads expansion to co-exist */ 2998 2999 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */ 3000 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */ 3001 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */ 3002 3003 extern enum library_type __kmp_library; 3004 3005 extern enum sched_type __kmp_sched; /* default runtime scheduling */ 3006 extern enum sched_type __kmp_static; /* default static scheduling method */ 3007 extern enum sched_type __kmp_guided; /* default guided scheduling method */ 3008 extern enum sched_type __kmp_auto; /* default auto scheduling method */ 3009 extern int __kmp_chunk; /* default runtime chunk size */ 3010 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */ 3011 3012 extern size_t __kmp_stksize; /* stack size per thread */ 3013 #if KMP_USE_MONITOR 3014 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */ 3015 #endif 3016 extern size_t __kmp_stkoffset; /* stack offset per thread */ 3017 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */ 3018 3019 extern size_t 3020 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */ 3021 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */ 3022 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */ 3023 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */ 3024 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified? 3025 extern int __kmp_generate_warnings; /* should we issue warnings? */ 3026 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */ 3027 3028 #ifdef DEBUG_SUSPEND 3029 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */ 3030 #endif 3031 3032 extern kmp_int32 __kmp_use_yield; 3033 extern kmp_int32 __kmp_use_yield_exp_set; 3034 extern kmp_uint32 __kmp_yield_init; 3035 extern kmp_uint32 __kmp_yield_next; 3036 3037 /* ------------------------------------------------------------------------- */ 3038 extern int __kmp_allThreadsSpecified; 3039 3040 extern size_t __kmp_align_alloc; 3041 /* following data protected by initialization routines */ 3042 extern int __kmp_xproc; /* number of processors in the system */ 3043 extern int __kmp_avail_proc; /* number of processors available to the process */ 3044 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */ 3045 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */ 3046 // maximum total number of concurrently-existing threads on device 3047 extern int __kmp_max_nth; 3048 // maximum total number of concurrently-existing threads in a contention group 3049 extern int __kmp_cg_max_nth; 3050 extern int __kmp_teams_max_nth; // max threads used in a teams construct 3051 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and 3052 __kmp_root */ 3053 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel 3054 region a la OMP_NUM_THREADS */ 3055 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial 3056 initialization */ 3057 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is 3058 used (fixed) */ 3059 extern int __kmp_tp_cached; /* whether threadprivate cache has been created 3060 (__kmpc_threadprivate_cached()) */ 3061 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before 3062 blocking (env setting) */ 3063 #if KMP_USE_MONITOR 3064 extern int 3065 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */ 3066 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before 3067 blocking */ 3068 #endif 3069 #ifdef KMP_ADJUST_BLOCKTIME 3070 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */ 3071 #endif /* KMP_ADJUST_BLOCKTIME */ 3072 #ifdef KMP_DFLT_NTH_CORES 3073 extern int __kmp_ncores; /* Total number of cores for threads placement */ 3074 #endif 3075 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */ 3076 extern int __kmp_abort_delay; 3077 3078 extern int __kmp_need_register_atfork_specified; 3079 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork 3080 to install fork handler */ 3081 extern int __kmp_gtid_mode; /* Method of getting gtid, values: 3082 0 - not set, will be set at runtime 3083 1 - using stack search 3084 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS 3085 X*) or TlsGetValue(Windows* OS)) 3086 3 - static TLS (__declspec(thread) __kmp_gtid), 3087 Linux* OS .so only. */ 3088 extern int 3089 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */ 3090 #ifdef KMP_TDATA_GTID 3091 extern KMP_THREAD_LOCAL int __kmp_gtid; 3092 #endif 3093 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */ 3094 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread 3095 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 3096 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork 3097 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg 3098 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */ 3099 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 3100 3101 // max_active_levels for nested parallelism enabled by default via 3102 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND 3103 extern int __kmp_dflt_max_active_levels; 3104 // Indicates whether value of __kmp_dflt_max_active_levels was already 3105 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false 3106 extern bool __kmp_dflt_max_active_levels_set; 3107 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in 3108 concurrent execution per team */ 3109 #if KMP_NESTED_HOT_TEAMS 3110 extern int __kmp_hot_teams_mode; 3111 extern int __kmp_hot_teams_max_level; 3112 #endif 3113 3114 #if KMP_OS_LINUX 3115 extern enum clock_function_type __kmp_clock_function; 3116 extern int __kmp_clock_function_param; 3117 #endif /* KMP_OS_LINUX */ 3118 3119 #if KMP_MIC_SUPPORTED 3120 extern enum mic_type __kmp_mic_type; 3121 #endif 3122 3123 #ifdef USE_LOAD_BALANCE 3124 extern double __kmp_load_balance_interval; // load balance algorithm interval 3125 #endif /* USE_LOAD_BALANCE */ 3126 3127 // OpenMP 3.1 - Nested num threads array 3128 typedef struct kmp_nested_nthreads_t { 3129 int *nth; 3130 int size; 3131 int used; 3132 } kmp_nested_nthreads_t; 3133 3134 extern kmp_nested_nthreads_t __kmp_nested_nth; 3135 3136 #if KMP_USE_ADAPTIVE_LOCKS 3137 3138 // Parameters for the speculative lock backoff system. 3139 struct kmp_adaptive_backoff_params_t { 3140 // Number of soft retries before it counts as a hard retry. 3141 kmp_uint32 max_soft_retries; 3142 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to 3143 // the right 3144 kmp_uint32 max_badness; 3145 }; 3146 3147 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params; 3148 3149 #if KMP_DEBUG_ADAPTIVE_LOCKS 3150 extern const char *__kmp_speculative_statsfile; 3151 #endif 3152 3153 #endif // KMP_USE_ADAPTIVE_LOCKS 3154 3155 extern int __kmp_display_env; /* TRUE or FALSE */ 3156 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */ 3157 extern int __kmp_omp_cancellation; /* TRUE or FALSE */ 3158 extern int __kmp_nteams; 3159 extern int __kmp_teams_thread_limit; 3160 3161 /* ------------------------------------------------------------------------- */ 3162 3163 /* the following are protected by the fork/join lock */ 3164 /* write: lock read: anytime */ 3165 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */ 3166 /* read/write: lock */ 3167 extern volatile kmp_team_t *__kmp_team_pool; 3168 extern volatile kmp_info_t *__kmp_thread_pool; 3169 extern kmp_info_t *__kmp_thread_pool_insert_pt; 3170 3171 // total num threads reachable from some root thread including all root threads 3172 extern volatile int __kmp_nth; 3173 /* total number of threads reachable from some root thread including all root 3174 threads, and those in the thread pool */ 3175 extern volatile int __kmp_all_nth; 3176 extern std::atomic<int> __kmp_thread_pool_active_nth; 3177 3178 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */ 3179 /* end data protected by fork/join lock */ 3180 /* ------------------------------------------------------------------------- */ 3181 3182 #define __kmp_get_gtid() __kmp_get_global_thread_id() 3183 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg() 3184 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid())) 3185 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team) 3186 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid())) 3187 3188 // AT: Which way is correct? 3189 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc; 3190 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc; 3191 #define __kmp_get_team_num_threads(gtid) \ 3192 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc) 3193 3194 static inline bool KMP_UBER_GTID(int gtid) { 3195 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN); 3196 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity); 3197 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] && 3198 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread); 3199 } 3200 3201 static inline int __kmp_tid_from_gtid(int gtid) { 3202 KMP_DEBUG_ASSERT(gtid >= 0); 3203 return __kmp_threads[gtid]->th.th_info.ds.ds_tid; 3204 } 3205 3206 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) { 3207 KMP_DEBUG_ASSERT(tid >= 0 && team); 3208 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid; 3209 } 3210 3211 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) { 3212 KMP_DEBUG_ASSERT(thr); 3213 return thr->th.th_info.ds.ds_gtid; 3214 } 3215 3216 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) { 3217 KMP_DEBUG_ASSERT(gtid >= 0); 3218 return __kmp_threads[gtid]; 3219 } 3220 3221 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) { 3222 KMP_DEBUG_ASSERT(gtid >= 0); 3223 return __kmp_threads[gtid]->th.th_team; 3224 } 3225 3226 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) { 3227 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity)) 3228 KMP_FATAL(ThreadIdentInvalid); 3229 } 3230 3231 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 3232 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT 3233 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled 3234 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled 3235 extern int __kmp_mwait_hints; // Hints to pass in to mwait 3236 #endif 3237 3238 /* ------------------------------------------------------------------------- */ 3239 3240 extern kmp_global_t __kmp_global; /* global status */ 3241 3242 extern kmp_info_t __kmp_monitor; 3243 // For Debugging Support Library 3244 extern std::atomic<kmp_int32> __kmp_team_counter; 3245 // For Debugging Support Library 3246 extern std::atomic<kmp_int32> __kmp_task_counter; 3247 3248 #if USE_DEBUGGER 3249 #define _KMP_GEN_ID(counter) \ 3250 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0) 3251 #else 3252 #define _KMP_GEN_ID(counter) (~0) 3253 #endif /* USE_DEBUGGER */ 3254 3255 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter) 3256 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter) 3257 3258 /* ------------------------------------------------------------------------ */ 3259 3260 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, 3261 size_t size, char const *format, ...); 3262 3263 extern void __kmp_serial_initialize(void); 3264 extern void __kmp_middle_initialize(void); 3265 extern void __kmp_parallel_initialize(void); 3266 3267 extern void __kmp_internal_begin(void); 3268 extern void __kmp_internal_end_library(int gtid); 3269 extern void __kmp_internal_end_thread(int gtid); 3270 extern void __kmp_internal_end_atexit(void); 3271 extern void __kmp_internal_end_dtor(void); 3272 extern void __kmp_internal_end_dest(void *); 3273 3274 extern int __kmp_register_root(int initial_thread); 3275 extern void __kmp_unregister_root(int gtid); 3276 extern void __kmp_unregister_library(void); // called by __kmp_internal_end() 3277 3278 extern int __kmp_ignore_mppbeg(void); 3279 extern int __kmp_ignore_mppend(void); 3280 3281 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws); 3282 extern void __kmp_exit_single(int gtid); 3283 3284 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref); 3285 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref); 3286 3287 #ifdef USE_LOAD_BALANCE 3288 extern int __kmp_get_load_balance(int); 3289 #endif 3290 3291 extern int __kmp_get_global_thread_id(void); 3292 extern int __kmp_get_global_thread_id_reg(void); 3293 extern void __kmp_exit_thread(int exit_status); 3294 extern void __kmp_abort(char const *format, ...); 3295 extern void __kmp_abort_thread(void); 3296 KMP_NORETURN extern void __kmp_abort_process(void); 3297 extern void __kmp_warn(char const *format, ...); 3298 3299 extern void __kmp_set_num_threads(int new_nth, int gtid); 3300 3301 // Returns current thread (pointer to kmp_info_t). Current thread *must* be 3302 // registered. 3303 static inline kmp_info_t *__kmp_entry_thread() { 3304 int gtid = __kmp_entry_gtid(); 3305 3306 return __kmp_threads[gtid]; 3307 } 3308 3309 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels); 3310 extern int __kmp_get_max_active_levels(int gtid); 3311 extern int __kmp_get_ancestor_thread_num(int gtid, int level); 3312 extern int __kmp_get_team_size(int gtid, int level); 3313 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk); 3314 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk); 3315 3316 extern unsigned short __kmp_get_random(kmp_info_t *thread); 3317 extern void __kmp_init_random(kmp_info_t *thread); 3318 3319 extern kmp_r_sched_t __kmp_get_schedule_global(void); 3320 extern void __kmp_adjust_num_threads(int new_nproc); 3321 extern void __kmp_check_stksize(size_t *val); 3322 3323 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL); 3324 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL); 3325 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL); 3326 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR) 3327 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR) 3328 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR) 3329 3330 #if USE_FAST_MEMORY 3331 extern void *___kmp_fast_allocate(kmp_info_t *this_thr, 3332 size_t size KMP_SRC_LOC_DECL); 3333 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL); 3334 extern void __kmp_free_fast_memory(kmp_info_t *this_thr); 3335 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr); 3336 #define __kmp_fast_allocate(this_thr, size) \ 3337 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR) 3338 #define __kmp_fast_free(this_thr, ptr) \ 3339 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR) 3340 #endif 3341 3342 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL); 3343 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem, 3344 size_t elsize KMP_SRC_LOC_DECL); 3345 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr, 3346 size_t size KMP_SRC_LOC_DECL); 3347 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL); 3348 #define __kmp_thread_malloc(th, size) \ 3349 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR) 3350 #define __kmp_thread_calloc(th, nelem, elsize) \ 3351 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR) 3352 #define __kmp_thread_realloc(th, ptr, size) \ 3353 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR) 3354 #define __kmp_thread_free(th, ptr) \ 3355 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR) 3356 3357 #define KMP_INTERNAL_MALLOC(sz) malloc(sz) 3358 #define KMP_INTERNAL_FREE(p) free(p) 3359 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz)) 3360 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz)) 3361 3362 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads); 3363 3364 extern void __kmp_push_proc_bind(ident_t *loc, int gtid, 3365 kmp_proc_bind_t proc_bind); 3366 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams, 3367 int num_threads); 3368 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb, 3369 int num_teams_ub, int num_threads); 3370 3371 extern void __kmp_yield(); 3372 3373 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 3374 enum sched_type schedule, kmp_int32 lb, 3375 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk); 3376 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 3377 enum sched_type schedule, kmp_uint32 lb, 3378 kmp_uint32 ub, kmp_int32 st, 3379 kmp_int32 chunk); 3380 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 3381 enum sched_type schedule, kmp_int64 lb, 3382 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk); 3383 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 3384 enum sched_type schedule, kmp_uint64 lb, 3385 kmp_uint64 ub, kmp_int64 st, 3386 kmp_int64 chunk); 3387 3388 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, 3389 kmp_int32 *p_last, kmp_int32 *p_lb, 3390 kmp_int32 *p_ub, kmp_int32 *p_st); 3391 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, 3392 kmp_int32 *p_last, kmp_uint32 *p_lb, 3393 kmp_uint32 *p_ub, kmp_int32 *p_st); 3394 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, 3395 kmp_int32 *p_last, kmp_int64 *p_lb, 3396 kmp_int64 *p_ub, kmp_int64 *p_st); 3397 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, 3398 kmp_int32 *p_last, kmp_uint64 *p_lb, 3399 kmp_uint64 *p_ub, kmp_int64 *p_st); 3400 3401 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid); 3402 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid); 3403 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid); 3404 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid); 3405 3406 #ifdef KMP_GOMP_COMPAT 3407 3408 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 3409 enum sched_type schedule, kmp_int32 lb, 3410 kmp_int32 ub, kmp_int32 st, 3411 kmp_int32 chunk, int push_ws); 3412 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 3413 enum sched_type schedule, kmp_uint32 lb, 3414 kmp_uint32 ub, kmp_int32 st, 3415 kmp_int32 chunk, int push_ws); 3416 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 3417 enum sched_type schedule, kmp_int64 lb, 3418 kmp_int64 ub, kmp_int64 st, 3419 kmp_int64 chunk, int push_ws); 3420 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 3421 enum sched_type schedule, kmp_uint64 lb, 3422 kmp_uint64 ub, kmp_int64 st, 3423 kmp_int64 chunk, int push_ws); 3424 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid); 3425 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid); 3426 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid); 3427 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid); 3428 3429 #endif /* KMP_GOMP_COMPAT */ 3430 3431 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker); 3432 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker); 3433 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker); 3434 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker); 3435 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker); 3436 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker, 3437 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32), 3438 void *obj); 3439 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker, 3440 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj); 3441 3442 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag, 3443 int final_spin 3444 #if USE_ITT_BUILD 3445 , 3446 void *itt_sync_obj 3447 #endif 3448 ); 3449 extern void __kmp_release_64(kmp_flag_64<> *flag); 3450 3451 extern void __kmp_infinite_loop(void); 3452 3453 extern void __kmp_cleanup(void); 3454 3455 #if KMP_HANDLE_SIGNALS 3456 extern int __kmp_handle_signals; 3457 extern void __kmp_install_signals(int parallel_init); 3458 extern void __kmp_remove_signals(void); 3459 #endif 3460 3461 extern void __kmp_clear_system_time(void); 3462 extern void __kmp_read_system_time(double *delta); 3463 3464 extern void __kmp_check_stack_overlap(kmp_info_t *thr); 3465 3466 extern void __kmp_expand_host_name(char *buffer, size_t size); 3467 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern); 3468 3469 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && KMP_ARCH_AARCH64) 3470 extern void 3471 __kmp_initialize_system_tick(void); /* Initialize timer tick value */ 3472 #endif 3473 3474 extern void 3475 __kmp_runtime_initialize(void); /* machine specific initialization */ 3476 extern void __kmp_runtime_destroy(void); 3477 3478 #if KMP_AFFINITY_SUPPORTED 3479 extern char *__kmp_affinity_print_mask(char *buf, int buf_len, 3480 kmp_affin_mask_t *mask); 3481 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 3482 kmp_affin_mask_t *mask); 3483 extern void __kmp_affinity_initialize(void); 3484 extern void __kmp_affinity_uninitialize(void); 3485 extern void __kmp_affinity_set_init_mask( 3486 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */ 3487 extern void __kmp_affinity_set_place(int gtid); 3488 extern void __kmp_affinity_determine_capable(const char *env_var); 3489 extern int __kmp_aux_set_affinity(void **mask); 3490 extern int __kmp_aux_get_affinity(void **mask); 3491 extern int __kmp_aux_get_affinity_max_proc(); 3492 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask); 3493 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask); 3494 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask); 3495 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size); 3496 #if KMP_OS_LINUX || KMP_OS_FREEBSD 3497 extern int kmp_set_thread_affinity_mask_initial(void); 3498 #endif 3499 static inline void __kmp_assign_root_init_mask() { 3500 int gtid = __kmp_entry_gtid(); 3501 kmp_root_t *r = __kmp_threads[gtid]->th.th_root; 3502 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) { 3503 __kmp_affinity_set_init_mask(gtid, TRUE); 3504 r->r.r_affinity_assigned = TRUE; 3505 } 3506 } 3507 #else /* KMP_AFFINITY_SUPPORTED */ 3508 #define __kmp_assign_root_init_mask() /* Nothing */ 3509 #endif /* KMP_AFFINITY_SUPPORTED */ 3510 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the 3511 // format string is for affinity, so platforms that do not support 3512 // affinity can still use the other fields, e.g., %n for num_threads 3513 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format, 3514 kmp_str_buf_t *buffer); 3515 extern void __kmp_aux_display_affinity(int gtid, const char *format); 3516 3517 extern void __kmp_cleanup_hierarchy(); 3518 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar); 3519 3520 #if KMP_USE_FUTEX 3521 3522 extern int __kmp_futex_determine_capable(void); 3523 3524 #endif // KMP_USE_FUTEX 3525 3526 extern void __kmp_gtid_set_specific(int gtid); 3527 extern int __kmp_gtid_get_specific(void); 3528 3529 extern double __kmp_read_cpu_time(void); 3530 3531 extern int __kmp_read_system_info(struct kmp_sys_info *info); 3532 3533 #if KMP_USE_MONITOR 3534 extern void __kmp_create_monitor(kmp_info_t *th); 3535 #endif 3536 3537 extern void *__kmp_launch_thread(kmp_info_t *thr); 3538 3539 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size); 3540 3541 #if KMP_OS_WINDOWS 3542 extern int __kmp_still_running(kmp_info_t *th); 3543 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val); 3544 extern void __kmp_free_handle(kmp_thread_t tHandle); 3545 #endif 3546 3547 #if KMP_USE_MONITOR 3548 extern void __kmp_reap_monitor(kmp_info_t *th); 3549 #endif 3550 extern void __kmp_reap_worker(kmp_info_t *th); 3551 extern void __kmp_terminate_thread(int gtid); 3552 3553 extern int __kmp_try_suspend_mx(kmp_info_t *th); 3554 extern void __kmp_lock_suspend_mx(kmp_info_t *th); 3555 extern void __kmp_unlock_suspend_mx(kmp_info_t *th); 3556 3557 extern void __kmp_elapsed(double *); 3558 extern void __kmp_elapsed_tick(double *); 3559 3560 extern void __kmp_enable(int old_state); 3561 extern void __kmp_disable(int *old_state); 3562 3563 extern void __kmp_thread_sleep(int millis); 3564 3565 extern void __kmp_common_initialize(void); 3566 extern void __kmp_common_destroy(void); 3567 extern void __kmp_common_destroy_gtid(int gtid); 3568 3569 #if KMP_OS_UNIX 3570 extern void __kmp_register_atfork(void); 3571 #endif 3572 extern void __kmp_suspend_initialize(void); 3573 extern void __kmp_suspend_initialize_thread(kmp_info_t *th); 3574 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th); 3575 3576 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 3577 int tid); 3578 extern kmp_team_t * 3579 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 3580 #if OMPT_SUPPORT 3581 ompt_data_t ompt_parallel_data, 3582 #endif 3583 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs, 3584 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr)); 3585 extern void __kmp_free_thread(kmp_info_t *); 3586 extern void __kmp_free_team(kmp_root_t *, 3587 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *)); 3588 extern kmp_team_t *__kmp_reap_team(kmp_team_t *); 3589 3590 /* ------------------------------------------------------------------------ */ 3591 3592 extern void __kmp_initialize_bget(kmp_info_t *th); 3593 extern void __kmp_finalize_bget(kmp_info_t *th); 3594 3595 KMP_EXPORT void *kmpc_malloc(size_t size); 3596 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment); 3597 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize); 3598 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size); 3599 KMP_EXPORT void kmpc_free(void *ptr); 3600 3601 /* declarations for internal use */ 3602 3603 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split, 3604 size_t reduce_size, void *reduce_data, 3605 void (*reduce)(void *, void *)); 3606 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid); 3607 extern int __kmp_barrier_gomp_cancel(int gtid); 3608 3609 /*! 3610 * Tell the fork call which compiler generated the fork call, and therefore how 3611 * to deal with the call. 3612 */ 3613 enum fork_context_e { 3614 fork_context_gnu, /**< Called from GNU generated code, so must not invoke the 3615 microtask internally. */ 3616 fork_context_intel, /**< Called from Intel generated code. */ 3617 fork_context_last 3618 }; 3619 extern int __kmp_fork_call(ident_t *loc, int gtid, 3620 enum fork_context_e fork_context, kmp_int32 argc, 3621 microtask_t microtask, launch_t invoker, 3622 kmp_va_list ap); 3623 3624 extern void __kmp_join_call(ident_t *loc, int gtid 3625 #if OMPT_SUPPORT 3626 , 3627 enum fork_context_e fork_context 3628 #endif 3629 , 3630 int exit_teams = 0); 3631 3632 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid); 3633 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team); 3634 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team); 3635 extern int __kmp_invoke_task_func(int gtid); 3636 extern void __kmp_run_before_invoked_task(int gtid, int tid, 3637 kmp_info_t *this_thr, 3638 kmp_team_t *team); 3639 extern void __kmp_run_after_invoked_task(int gtid, int tid, 3640 kmp_info_t *this_thr, 3641 kmp_team_t *team); 3642 3643 // should never have been exported 3644 KMP_EXPORT int __kmpc_invoke_task_func(int gtid); 3645 extern int __kmp_invoke_teams_master(int gtid); 3646 extern void __kmp_teams_master(int gtid); 3647 extern int __kmp_aux_get_team_num(); 3648 extern int __kmp_aux_get_num_teams(); 3649 extern void __kmp_save_internal_controls(kmp_info_t *thread); 3650 extern void __kmp_user_set_library(enum library_type arg); 3651 extern void __kmp_aux_set_library(enum library_type arg); 3652 extern void __kmp_aux_set_stacksize(size_t arg); 3653 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid); 3654 extern void __kmp_aux_set_defaults(char const *str, size_t len); 3655 3656 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */ 3657 void kmpc_set_blocktime(int arg); 3658 void ompc_set_nested(int flag); 3659 void ompc_set_dynamic(int flag); 3660 void ompc_set_num_threads(int arg); 3661 3662 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, 3663 kmp_team_t *team, int tid); 3664 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr); 3665 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 3666 kmp_tasking_flags_t *flags, 3667 size_t sizeof_kmp_task_t, 3668 size_t sizeof_shareds, 3669 kmp_routine_entry_t task_entry); 3670 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 3671 kmp_team_t *team, int tid, 3672 int set_curr_task); 3673 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr); 3674 extern void __kmp_free_implicit_task(kmp_info_t *this_thr); 3675 3676 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, 3677 int gtid, 3678 kmp_task_t *task); 3679 extern void __kmp_fulfill_event(kmp_event_t *event); 3680 3681 extern void __kmp_free_task_team(kmp_info_t *thread, 3682 kmp_task_team_t *task_team); 3683 extern void __kmp_reap_task_teams(void); 3684 extern void __kmp_wait_to_unref_task_teams(void); 3685 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, 3686 int always); 3687 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team); 3688 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team 3689 #if USE_ITT_BUILD 3690 , 3691 void *itt_sync_obj 3692 #endif /* USE_ITT_BUILD */ 3693 , 3694 int wait = 1); 3695 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, 3696 int gtid); 3697 3698 extern int __kmp_is_address_mapped(void *addr); 3699 extern kmp_uint64 __kmp_hardware_timestamp(void); 3700 3701 #if KMP_OS_UNIX 3702 extern int __kmp_read_from_file(char const *path, char const *format, ...); 3703 #endif 3704 3705 /* ------------------------------------------------------------------------ */ 3706 // 3707 // Assembly routines that have no compiler intrinsic replacement 3708 // 3709 3710 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc, 3711 void *argv[] 3712 #if OMPT_SUPPORT 3713 , 3714 void **exit_frame_ptr 3715 #endif 3716 ); 3717 3718 /* ------------------------------------------------------------------------ */ 3719 3720 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags); 3721 KMP_EXPORT void __kmpc_end(ident_t *); 3722 3723 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, 3724 kmpc_ctor_vec ctor, 3725 kmpc_cctor_vec cctor, 3726 kmpc_dtor_vec dtor, 3727 size_t vector_length); 3728 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, 3729 kmpc_ctor ctor, kmpc_cctor cctor, 3730 kmpc_dtor dtor); 3731 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid, 3732 void *data, size_t size); 3733 3734 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *); 3735 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *); 3736 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *); 3737 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *); 3738 3739 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *); 3740 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, 3741 kmpc_micro microtask, ...); 3742 3743 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid); 3744 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid); 3745 3746 KMP_EXPORT void __kmpc_flush(ident_t *); 3747 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid); 3748 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid); 3749 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid); 3750 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, 3751 kmp_int32 filter); 3752 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid); 3753 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid); 3754 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid); 3755 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, 3756 kmp_critical_name *); 3757 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, 3758 kmp_critical_name *); 3759 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, 3760 kmp_critical_name *, uint32_t hint); 3761 3762 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid); 3763 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid); 3764 3765 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, 3766 kmp_int32 global_tid); 3767 3768 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid); 3769 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid); 3770 3771 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid, 3772 kmp_int32 schedtype, kmp_int32 *plastiter, 3773 kmp_int *plower, kmp_int *pupper, 3774 kmp_int *pstride, kmp_int incr, 3775 kmp_int chunk); 3776 3777 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); 3778 3779 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, 3780 size_t cpy_size, void *cpy_data, 3781 void (*cpy_func)(void *, void *), 3782 kmp_int32 didit); 3783 3784 extern void KMPC_SET_NUM_THREADS(int arg); 3785 extern void KMPC_SET_DYNAMIC(int flag); 3786 extern void KMPC_SET_NESTED(int flag); 3787 3788 /* OMP 3.0 tasking interface routines */ 3789 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 3790 kmp_task_t *new_task); 3791 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 3792 kmp_int32 flags, 3793 size_t sizeof_kmp_task_t, 3794 size_t sizeof_shareds, 3795 kmp_routine_entry_t task_entry); 3796 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc( 3797 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, 3798 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id); 3799 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 3800 kmp_task_t *task); 3801 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 3802 kmp_task_t *task); 3803 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 3804 kmp_task_t *new_task); 3805 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid); 3806 3807 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, 3808 int end_part); 3809 3810 #if TASK_UNUSED 3811 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task); 3812 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 3813 kmp_task_t *task); 3814 #endif // TASK_UNUSED 3815 3816 /* ------------------------------------------------------------------------ */ 3817 3818 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid); 3819 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid); 3820 3821 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps( 3822 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, 3823 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, 3824 kmp_depend_info_t *noalias_dep_list); 3825 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, 3826 kmp_int32 ndeps, 3827 kmp_depend_info_t *dep_list, 3828 kmp_int32 ndeps_noalias, 3829 kmp_depend_info_t *noalias_dep_list); 3830 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 3831 bool serialize_immediate); 3832 3833 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid, 3834 kmp_int32 cncl_kind); 3835 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid, 3836 kmp_int32 cncl_kind); 3837 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid); 3838 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind); 3839 3840 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask); 3841 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask); 3842 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task, 3843 kmp_int32 if_val, kmp_uint64 *lb, 3844 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup, 3845 kmp_int32 sched, kmp_uint64 grainsize, 3846 void *task_dup); 3847 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid, 3848 kmp_task_t *task, kmp_int32 if_val, 3849 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 3850 kmp_int32 nogroup, kmp_int32 sched, 3851 kmp_uint64 grainsize, kmp_int32 modifier, 3852 void *task_dup); 3853 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data); 3854 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data); 3855 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d); 3856 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, 3857 int is_ws, int num, 3858 void *data); 3859 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, 3860 int num, void *data); 3861 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, 3862 int is_ws); 3863 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity( 3864 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, 3865 kmp_task_affinity_info_t *affin_list); 3866 KMP_EXPORT void __kmp_set_num_teams(int num_teams); 3867 KMP_EXPORT int __kmp_get_max_teams(void); 3868 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit); 3869 KMP_EXPORT int __kmp_get_teams_thread_limit(void); 3870 3871 /* Lock interface routines (fast versions with gtid passed in) */ 3872 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid, 3873 void **user_lock); 3874 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid, 3875 void **user_lock); 3876 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid, 3877 void **user_lock); 3878 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid, 3879 void **user_lock); 3880 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock); 3881 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid, 3882 void **user_lock); 3883 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid, 3884 void **user_lock); 3885 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid, 3886 void **user_lock); 3887 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock); 3888 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid, 3889 void **user_lock); 3890 3891 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid, 3892 void **user_lock, uintptr_t hint); 3893 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid, 3894 void **user_lock, 3895 uintptr_t hint); 3896 3897 /* Interface to fast scalable reduce methods routines */ 3898 3899 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait( 3900 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 3901 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 3902 kmp_critical_name *lck); 3903 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, 3904 kmp_critical_name *lck); 3905 KMP_EXPORT kmp_int32 __kmpc_reduce( 3906 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 3907 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 3908 kmp_critical_name *lck); 3909 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, 3910 kmp_critical_name *lck); 3911 3912 /* Internal fast reduction routines */ 3913 3914 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method( 3915 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 3916 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 3917 kmp_critical_name *lck); 3918 3919 // this function is for testing set/get/determine reduce method 3920 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void); 3921 3922 KMP_EXPORT kmp_uint64 __kmpc_get_taskid(); 3923 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid(); 3924 3925 // C++ port 3926 // missing 'extern "C"' declarations 3927 3928 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc); 3929 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid); 3930 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, 3931 kmp_int32 num_threads); 3932 3933 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, 3934 int proc_bind); 3935 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, 3936 kmp_int32 num_teams, 3937 kmp_int32 num_threads); 3938 /* Function for OpenMP 5.1 num_teams clause */ 3939 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, 3940 kmp_int32 num_teams_lb, 3941 kmp_int32 num_teams_ub, 3942 kmp_int32 num_threads); 3943 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, 3944 kmpc_micro microtask, ...); 3945 struct kmp_dim { // loop bounds info casted to kmp_int64 3946 kmp_int64 lo; // lower 3947 kmp_int64 up; // upper 3948 kmp_int64 st; // stride 3949 }; 3950 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, 3951 kmp_int32 num_dims, 3952 const struct kmp_dim *dims); 3953 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, 3954 const kmp_int64 *vec); 3955 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, 3956 const kmp_int64 *vec); 3957 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); 3958 3959 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, 3960 void *data, size_t size, 3961 void ***cache); 3962 3963 // Symbols for MS mutual detection. 3964 extern int _You_must_link_with_exactly_one_OpenMP_library; 3965 extern int _You_must_link_with_Intel_OpenMP_library; 3966 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4) 3967 extern int _You_must_link_with_Microsoft_OpenMP_library; 3968 #endif 3969 3970 // The routines below are not exported. 3971 // Consider making them 'static' in corresponding source files. 3972 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr, 3973 void *data_addr, size_t pc_size); 3974 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr, 3975 void *data_addr, 3976 size_t pc_size); 3977 void __kmp_threadprivate_resize_cache(int newCapacity); 3978 void __kmp_cleanup_threadprivate_caches(); 3979 3980 // ompc_, kmpc_ entries moved from omp.h. 3981 #if KMP_OS_WINDOWS 3982 #define KMPC_CONVENTION __cdecl 3983 #else 3984 #define KMPC_CONVENTION 3985 #endif 3986 3987 #ifndef __OMP_H 3988 typedef enum omp_sched_t { 3989 omp_sched_static = 1, 3990 omp_sched_dynamic = 2, 3991 omp_sched_guided = 3, 3992 omp_sched_auto = 4 3993 } omp_sched_t; 3994 typedef void *kmp_affinity_mask_t; 3995 #endif 3996 3997 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int); 3998 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int); 3999 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int); 4000 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int); 4001 KMP_EXPORT int KMPC_CONVENTION 4002 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *); 4003 KMP_EXPORT int KMPC_CONVENTION 4004 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *); 4005 KMP_EXPORT int KMPC_CONVENTION 4006 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *); 4007 4008 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int); 4009 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t); 4010 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int); 4011 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *); 4012 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int); 4013 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format); 4014 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size); 4015 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format); 4016 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size, 4017 char const *format); 4018 4019 enum kmp_target_offload_kind { 4020 tgt_disabled = 0, 4021 tgt_default = 1, 4022 tgt_mandatory = 2 4023 }; 4024 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t; 4025 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise 4026 extern kmp_target_offload_kind_t __kmp_target_offload; 4027 extern int __kmpc_get_target_offload(); 4028 4029 // Constants used in libomptarget 4030 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device. 4031 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices". 4032 4033 // OMP Pause Resource 4034 4035 // The following enum is used both to set the status in __kmp_pause_status, and 4036 // as the internal equivalent of the externally-visible omp_pause_resource_t. 4037 typedef enum kmp_pause_status_t { 4038 kmp_not_paused = 0, // status is not paused, or, requesting resume 4039 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause 4040 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause 4041 } kmp_pause_status_t; 4042 4043 // This stores the pause state of the runtime 4044 extern kmp_pause_status_t __kmp_pause_status; 4045 extern int __kmpc_pause_resource(kmp_pause_status_t level); 4046 extern int __kmp_pause_resource(kmp_pause_status_t level); 4047 // Soft resume sets __kmp_pause_status, and wakes up all threads. 4048 extern void __kmp_resume_if_soft_paused(); 4049 // Hard resume simply resets the status to not paused. Library will appear to 4050 // be uninitialized after hard pause. Let OMP constructs trigger required 4051 // initializations. 4052 static inline void __kmp_resume_if_hard_paused() { 4053 if (__kmp_pause_status == kmp_hard_paused) { 4054 __kmp_pause_status = kmp_not_paused; 4055 } 4056 } 4057 4058 extern void __kmp_omp_display_env(int verbose); 4059 4060 // 1: it is initializing hidden helper team 4061 extern volatile int __kmp_init_hidden_helper; 4062 // 1: the hidden helper team is done 4063 extern volatile int __kmp_hidden_helper_team_done; 4064 // 1: enable hidden helper task 4065 extern kmp_int32 __kmp_enable_hidden_helper; 4066 // Main thread of hidden helper team 4067 extern kmp_info_t *__kmp_hidden_helper_main_thread; 4068 // Descriptors for the hidden helper threads 4069 extern kmp_info_t **__kmp_hidden_helper_threads; 4070 // Number of hidden helper threads 4071 extern kmp_int32 __kmp_hidden_helper_threads_num; 4072 // Number of hidden helper tasks that have not been executed yet 4073 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks; 4074 4075 extern void __kmp_hidden_helper_initialize(); 4076 extern void __kmp_hidden_helper_threads_initz_routine(); 4077 extern void __kmp_do_initialize_hidden_helper_threads(); 4078 extern void __kmp_hidden_helper_threads_initz_wait(); 4079 extern void __kmp_hidden_helper_initz_release(); 4080 extern void __kmp_hidden_helper_threads_deinitz_wait(); 4081 extern void __kmp_hidden_helper_threads_deinitz_release(); 4082 extern void __kmp_hidden_helper_main_thread_wait(); 4083 extern void __kmp_hidden_helper_worker_thread_wait(); 4084 extern void __kmp_hidden_helper_worker_thread_signal(); 4085 extern void __kmp_hidden_helper_main_thread_release(); 4086 4087 // Check whether a given thread is a hidden helper thread 4088 #define KMP_HIDDEN_HELPER_THREAD(gtid) \ 4089 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num) 4090 4091 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \ 4092 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num) 4093 4094 #define KMP_HIDDEN_HELPER_TEAM(team) \ 4095 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread) 4096 4097 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a 4098 // main thread, is skipped. 4099 #define KMP_GTID_TO_SHADOW_GTID(gtid) \ 4100 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2) 4101 4102 // Return the adjusted gtid value by subtracting from gtid the number 4103 // of hidden helper threads. This adjusted value is the gtid the thread would 4104 // have received if there were no hidden helper threads. 4105 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) { 4106 int adjusted_gtid = gtid; 4107 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 && 4108 gtid - __kmp_hidden_helper_threads_num >= 0) { 4109 adjusted_gtid -= __kmp_hidden_helper_threads_num; 4110 } 4111 return adjusted_gtid; 4112 } 4113 4114 // Support for error directive 4115 typedef enum kmp_severity_t { 4116 severity_warning = 1, 4117 severity_fatal = 2 4118 } kmp_severity_t; 4119 extern void __kmpc_error(ident_t *loc, int severity, const char *message); 4120 4121 #ifdef __cplusplus 4122 } 4123 #endif 4124 4125 template <bool C, bool S> 4126 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag); 4127 template <bool C, bool S> 4128 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag); 4129 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag); 4130 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 4131 template <bool C, bool S> 4132 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag); 4133 template <bool C, bool S> 4134 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag); 4135 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag); 4136 #endif 4137 template <bool C, bool S> 4138 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag); 4139 template <bool C, bool S> 4140 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag); 4141 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag); 4142 4143 template <bool C, bool S> 4144 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid, 4145 kmp_flag_32<C, S> *flag, int final_spin, 4146 int *thread_finished, 4147 #if USE_ITT_BUILD 4148 void *itt_sync_obj, 4149 #endif /* USE_ITT_BUILD */ 4150 kmp_int32 is_constrained); 4151 template <bool C, bool S> 4152 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid, 4153 kmp_flag_64<C, S> *flag, int final_spin, 4154 int *thread_finished, 4155 #if USE_ITT_BUILD 4156 void *itt_sync_obj, 4157 #endif /* USE_ITT_BUILD */ 4158 kmp_int32 is_constrained); 4159 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid, 4160 kmp_flag_oncore *flag, int final_spin, 4161 int *thread_finished, 4162 #if USE_ITT_BUILD 4163 void *itt_sync_obj, 4164 #endif /* USE_ITT_BUILD */ 4165 kmp_int32 is_constrained); 4166 4167 extern int __kmp_nesting_mode; 4168 extern int __kmp_nesting_mode_nlevels; 4169 extern int *__kmp_nesting_nth_level; 4170 extern void __kmp_init_nesting_mode(); 4171 extern void __kmp_set_nesting_mode_threads(); 4172 4173 /// This class safely opens and closes a C-style FILE* object using RAII 4174 /// semantics. There are also methods which allow using stdout or stderr as 4175 /// the underlying FILE* object. With the implicit conversion operator to 4176 /// FILE*, an object with this type can be used in any function which takes 4177 /// a FILE* object e.g., fprintf(). 4178 /// No close method is needed at use sites. 4179 class kmp_safe_raii_file_t { 4180 FILE *f; 4181 4182 void close() { 4183 if (f && f != stdout && f != stderr) { 4184 fclose(f); 4185 f = nullptr; 4186 } 4187 } 4188 4189 public: 4190 kmp_safe_raii_file_t() : f(nullptr) {} 4191 kmp_safe_raii_file_t(const char *filename, const char *mode, 4192 const char *env_var = nullptr) 4193 : f(nullptr) { 4194 open(filename, mode, env_var); 4195 } 4196 ~kmp_safe_raii_file_t() { close(); } 4197 4198 /// Open filename using mode. This is automatically closed in the destructor. 4199 /// The env_var parameter indicates the environment variable the filename 4200 /// came from if != nullptr. 4201 void open(const char *filename, const char *mode, 4202 const char *env_var = nullptr) { 4203 KMP_ASSERT(!f); 4204 f = fopen(filename, mode); 4205 if (!f) { 4206 int code = errno; 4207 if (env_var) { 4208 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4209 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null); 4210 } else { 4211 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4212 __kmp_msg_null); 4213 } 4214 } 4215 } 4216 /// Set the FILE* object to stdout and output there 4217 /// No open call should happen before this call. 4218 void set_stdout() { 4219 KMP_ASSERT(!f); 4220 f = stdout; 4221 } 4222 /// Set the FILE* object to stderr and output there 4223 /// No open call should happen before this call. 4224 void set_stderr() { 4225 KMP_ASSERT(!f); 4226 f = stderr; 4227 } 4228 operator bool() { return bool(f); } 4229 operator FILE *() { return f; } 4230 }; 4231 4232 template <typename SourceType, typename TargetType, 4233 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)), 4234 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)), 4235 bool isSourceSigned = std::is_signed<SourceType>::value, 4236 bool isTargetSigned = std::is_signed<TargetType>::value> 4237 struct kmp_convert {}; 4238 4239 // Both types are signed; Source smaller 4240 template <typename SourceType, typename TargetType> 4241 struct kmp_convert<SourceType, TargetType, true, false, true, true> { 4242 static TargetType to(SourceType src) { return (TargetType)src; } 4243 }; 4244 // Source equal 4245 template <typename SourceType, typename TargetType> 4246 struct kmp_convert<SourceType, TargetType, false, true, true, true> { 4247 static TargetType to(SourceType src) { return src; } 4248 }; 4249 // Source bigger 4250 template <typename SourceType, typename TargetType> 4251 struct kmp_convert<SourceType, TargetType, false, false, true, true> { 4252 static TargetType to(SourceType src) { 4253 KMP_ASSERT(src <= static_cast<SourceType>( 4254 (std::numeric_limits<TargetType>::max)())); 4255 KMP_ASSERT(src >= static_cast<SourceType>( 4256 (std::numeric_limits<TargetType>::min)())); 4257 return (TargetType)src; 4258 } 4259 }; 4260 4261 // Source signed, Target unsigned 4262 // Source smaller 4263 template <typename SourceType, typename TargetType> 4264 struct kmp_convert<SourceType, TargetType, true, false, true, false> { 4265 static TargetType to(SourceType src) { 4266 KMP_ASSERT(src >= 0); 4267 return (TargetType)src; 4268 } 4269 }; 4270 // Source equal 4271 template <typename SourceType, typename TargetType> 4272 struct kmp_convert<SourceType, TargetType, false, true, true, false> { 4273 static TargetType to(SourceType src) { 4274 KMP_ASSERT(src >= 0); 4275 return (TargetType)src; 4276 } 4277 }; 4278 // Source bigger 4279 template <typename SourceType, typename TargetType> 4280 struct kmp_convert<SourceType, TargetType, false, false, true, false> { 4281 static TargetType to(SourceType src) { 4282 KMP_ASSERT(src >= 0); 4283 KMP_ASSERT(src <= static_cast<SourceType>( 4284 (std::numeric_limits<TargetType>::max)())); 4285 return (TargetType)src; 4286 } 4287 }; 4288 4289 // Source unsigned, Target signed 4290 // Source smaller 4291 template <typename SourceType, typename TargetType> 4292 struct kmp_convert<SourceType, TargetType, true, false, false, true> { 4293 static TargetType to(SourceType src) { return (TargetType)src; } 4294 }; 4295 // Source equal 4296 template <typename SourceType, typename TargetType> 4297 struct kmp_convert<SourceType, TargetType, false, true, false, true> { 4298 static TargetType to(SourceType src) { 4299 KMP_ASSERT(src <= static_cast<SourceType>( 4300 (std::numeric_limits<TargetType>::max)())); 4301 return (TargetType)src; 4302 } 4303 }; 4304 // Source bigger 4305 template <typename SourceType, typename TargetType> 4306 struct kmp_convert<SourceType, TargetType, false, false, false, true> { 4307 static TargetType to(SourceType src) { 4308 KMP_ASSERT(src <= static_cast<SourceType>( 4309 (std::numeric_limits<TargetType>::max)())); 4310 return (TargetType)src; 4311 } 4312 }; 4313 4314 // Source unsigned, Target unsigned 4315 // Source smaller 4316 template <typename SourceType, typename TargetType> 4317 struct kmp_convert<SourceType, TargetType, true, false, false, false> { 4318 static TargetType to(SourceType src) { return (TargetType)src; } 4319 }; 4320 // Source equal 4321 template <typename SourceType, typename TargetType> 4322 struct kmp_convert<SourceType, TargetType, false, true, false, false> { 4323 static TargetType to(SourceType src) { return src; } 4324 }; 4325 // Source bigger 4326 template <typename SourceType, typename TargetType> 4327 struct kmp_convert<SourceType, TargetType, false, false, false, false> { 4328 static TargetType to(SourceType src) { 4329 KMP_ASSERT(src <= static_cast<SourceType>( 4330 (std::numeric_limits<TargetType>::max)())); 4331 return (TargetType)src; 4332 } 4333 }; 4334 4335 template <typename T1, typename T2> 4336 static inline void __kmp_type_convert(T1 src, T2 *dest) { 4337 *dest = kmp_convert<T1, T2>::to(src); 4338 } 4339 4340 #endif /* KMP_H */ 4341