1 /*! \file */ 2 /* 3 * kmp.h -- KPTS runtime header file. 4 */ 5 6 //===----------------------------------------------------------------------===// 7 // 8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 9 // See https://llvm.org/LICENSE.txt for license information. 10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef KMP_H 15 #define KMP_H 16 17 #include "kmp_config.h" 18 19 /* #define BUILD_PARALLEL_ORDERED 1 */ 20 21 /* This fix replaces gettimeofday with clock_gettime for better scalability on 22 the Altix. Requires user code to be linked with -lrt. */ 23 //#define FIX_SGI_CLOCK 24 25 /* Defines for OpenMP 3.0 tasking and auto scheduling */ 26 27 #ifndef KMP_STATIC_STEAL_ENABLED 28 #define KMP_STATIC_STEAL_ENABLED 1 29 #endif 30 31 #define TASK_CURRENT_NOT_QUEUED 0 32 #define TASK_CURRENT_QUEUED 1 33 34 #ifdef BUILD_TIED_TASK_STACK 35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty 36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK 37 // Number of entries in each task stack array 38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS) 39 // Mask for determining index into stack block 40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1) 41 #endif // BUILD_TIED_TASK_STACK 42 43 #define TASK_NOT_PUSHED 1 44 #define TASK_SUCCESSFULLY_PUSHED 0 45 #define TASK_TIED 1 46 #define TASK_UNTIED 0 47 #define TASK_EXPLICIT 1 48 #define TASK_IMPLICIT 0 49 #define TASK_PROXY 1 50 #define TASK_FULL 0 51 #define TASK_DETACHABLE 1 52 #define TASK_UNDETACHABLE 0 53 54 #define KMP_CANCEL_THREADS 55 #define KMP_THREAD_ATTR 56 57 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being 58 // built on Android 59 #if defined(__ANDROID__) 60 #undef KMP_CANCEL_THREADS 61 #endif 62 63 #include <signal.h> 64 #include <stdarg.h> 65 #include <stddef.h> 66 #include <stdio.h> 67 #include <stdlib.h> 68 #include <string.h> 69 #include <limits> 70 #include <type_traits> 71 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad 72 Microsoft library. Some macros provided below to replace these functions */ 73 #ifndef __ABSOFT_WIN 74 #include <sys/types.h> 75 #endif 76 #include <limits.h> 77 #include <time.h> 78 79 #include <errno.h> 80 81 #include "kmp_os.h" 82 83 #include "kmp_safe_c_api.h" 84 85 #if KMP_STATS_ENABLED 86 class kmp_stats_list; 87 #endif 88 89 #if KMP_USE_HIER_SCHED 90 // Only include hierarchical scheduling if affinity is supported 91 #undef KMP_USE_HIER_SCHED 92 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED 93 #endif 94 95 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED 96 #include "hwloc.h" 97 #ifndef HWLOC_OBJ_NUMANODE 98 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE 99 #endif 100 #ifndef HWLOC_OBJ_PACKAGE 101 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET 102 #endif 103 #endif 104 105 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 106 #include <xmmintrin.h> 107 #endif 108 109 // The below has to be defined before including "kmp_barrier.h". 110 #define KMP_INTERNAL_MALLOC(sz) malloc(sz) 111 #define KMP_INTERNAL_FREE(p) free(p) 112 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz)) 113 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz)) 114 115 #include "kmp_debug.h" 116 #include "kmp_lock.h" 117 #include "kmp_version.h" 118 #include "kmp_barrier.h" 119 #if USE_DEBUGGER 120 #include "kmp_debugger.h" 121 #endif 122 #include "kmp_i18n.h" 123 124 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS) 125 126 #include "kmp_wrapper_malloc.h" 127 #if KMP_OS_UNIX 128 #include <unistd.h> 129 #if !defined NSIG && defined _NSIG 130 #define NSIG _NSIG 131 #endif 132 #endif 133 134 #if KMP_OS_LINUX 135 #pragma weak clock_gettime 136 #endif 137 138 #if OMPT_SUPPORT 139 #include "ompt-internal.h" 140 #endif 141 142 #if OMPD_SUPPORT 143 #include "ompd-specific.h" 144 #endif 145 146 #ifndef UNLIKELY 147 #define UNLIKELY(x) (x) 148 #endif 149 150 // Affinity format function 151 #include "kmp_str.h" 152 153 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64. 154 // 3 - fast allocation using sync, non-sync free lists of any size, non-self 155 // free lists of limited size. 156 #ifndef USE_FAST_MEMORY 157 #define USE_FAST_MEMORY 3 158 #endif 159 160 #ifndef KMP_NESTED_HOT_TEAMS 161 #define KMP_NESTED_HOT_TEAMS 0 162 #define USE_NESTED_HOT_ARG(x) 163 #else 164 #if KMP_NESTED_HOT_TEAMS 165 #define USE_NESTED_HOT_ARG(x) , x 166 #else 167 #define USE_NESTED_HOT_ARG(x) 168 #endif 169 #endif 170 171 // Assume using BGET compare_exchange instruction instead of lock by default. 172 #ifndef USE_CMP_XCHG_FOR_BGET 173 #define USE_CMP_XCHG_FOR_BGET 1 174 #endif 175 176 // Test to see if queuing lock is better than bootstrap lock for bget 177 // #ifndef USE_QUEUING_LOCK_FOR_BGET 178 // #define USE_QUEUING_LOCK_FOR_BGET 179 // #endif 180 181 #define KMP_NSEC_PER_SEC 1000000000L 182 #define KMP_USEC_PER_SEC 1000000L 183 184 /*! 185 @ingroup BASIC_TYPES 186 @{ 187 */ 188 189 /*! 190 Values for bit flags used in the ident_t to describe the fields. 191 */ 192 enum { 193 /*! Use trampoline for internal microtasks */ 194 KMP_IDENT_IMB = 0x01, 195 /*! Use c-style ident structure */ 196 KMP_IDENT_KMPC = 0x02, 197 /* 0x04 is no longer used */ 198 /*! Entry point generated by auto-parallelization */ 199 KMP_IDENT_AUTOPAR = 0x08, 200 /*! Compiler generates atomic reduction option for kmpc_reduce* */ 201 KMP_IDENT_ATOMIC_REDUCE = 0x10, 202 /*! To mark a 'barrier' directive in user code */ 203 KMP_IDENT_BARRIER_EXPL = 0x20, 204 /*! To Mark implicit barriers. */ 205 KMP_IDENT_BARRIER_IMPL = 0x0040, 206 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0, 207 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040, 208 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0, 209 210 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140, 211 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0, 212 213 /*! To mark a static loop in OMPT callbacks */ 214 KMP_IDENT_WORK_LOOP = 0x200, 215 /*! To mark a sections directive in OMPT callbacks */ 216 KMP_IDENT_WORK_SECTIONS = 0x400, 217 /*! To mark a distribute construct in OMPT callbacks */ 218 KMP_IDENT_WORK_DISTRIBUTE = 0x800, 219 /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and 220 not currently used. If one day we need more bits, then we can use 221 an invalid combination of hints to mean that another, larger field 222 should be used in a different flag. */ 223 KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000, 224 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000, 225 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000, 226 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000, 227 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000, 228 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000 229 }; 230 231 /*! 232 * The ident structure that describes a source location. 233 */ 234 typedef struct ident { 235 kmp_int32 reserved_1; /**< might be used in Fortran; see above */ 236 kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC 237 identifies this union member */ 238 kmp_int32 reserved_2; /**< not really used in Fortran any more; see above */ 239 #if USE_ITT_BUILD 240 /* but currently used for storing region-specific ITT */ 241 /* contextual information. */ 242 #endif /* USE_ITT_BUILD */ 243 kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++ */ 244 char const *psource; /**< String describing the source location. 245 The string is composed of semi-colon separated fields 246 which describe the source file, the function and a pair 247 of line numbers that delimit the construct. */ 248 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0) 249 kmp_int32 get_openmp_version() { 250 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF); 251 } 252 } ident_t; 253 /*! 254 @} 255 */ 256 257 // Some forward declarations. 258 typedef union kmp_team kmp_team_t; 259 typedef struct kmp_taskdata kmp_taskdata_t; 260 typedef union kmp_task_team kmp_task_team_t; 261 typedef union kmp_team kmp_team_p; 262 typedef union kmp_info kmp_info_p; 263 typedef union kmp_root kmp_root_p; 264 265 template <bool C = false, bool S = true> class kmp_flag_32; 266 template <bool C = false, bool S = true> class kmp_flag_64; 267 template <bool C = false, bool S = true> class kmp_atomic_flag_64; 268 class kmp_flag_oncore; 269 270 #ifdef __cplusplus 271 extern "C" { 272 #endif 273 274 /* ------------------------------------------------------------------------ */ 275 276 /* Pack two 32-bit signed integers into a 64-bit signed integer */ 277 /* ToDo: Fix word ordering for big-endian machines. */ 278 #define KMP_PACK_64(HIGH_32, LOW_32) \ 279 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32))) 280 281 // Generic string manipulation macros. Assume that _x is of type char * 282 #define SKIP_WS(_x) \ 283 { \ 284 while (*(_x) == ' ' || *(_x) == '\t') \ 285 (_x)++; \ 286 } 287 #define SKIP_DIGITS(_x) \ 288 { \ 289 while (*(_x) >= '0' && *(_x) <= '9') \ 290 (_x)++; \ 291 } 292 #define SKIP_TOKEN(_x) \ 293 { \ 294 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \ 295 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \ 296 (_x)++; \ 297 } 298 #define SKIP_TO(_x, _c) \ 299 { \ 300 while (*(_x) != '\0' && *(_x) != (_c)) \ 301 (_x)++; \ 302 } 303 304 /* ------------------------------------------------------------------------ */ 305 306 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y)) 307 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 308 309 /* ------------------------------------------------------------------------ */ 310 /* Enumeration types */ 311 312 enum kmp_state_timer { 313 ts_stop, 314 ts_start, 315 ts_pause, 316 317 ts_last_state 318 }; 319 320 enum dynamic_mode { 321 dynamic_default, 322 #ifdef USE_LOAD_BALANCE 323 dynamic_load_balance, 324 #endif /* USE_LOAD_BALANCE */ 325 dynamic_random, 326 dynamic_thread_limit, 327 dynamic_max 328 }; 329 330 /* external schedule constants, duplicate enum omp_sched in omp.h in order to 331 * not include it here */ 332 #ifndef KMP_SCHED_TYPE_DEFINED 333 #define KMP_SCHED_TYPE_DEFINED 334 typedef enum kmp_sched { 335 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check 336 // Note: need to adjust __kmp_sch_map global array in case enum is changed 337 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33) 338 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35) 339 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36) 340 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38) 341 kmp_sched_upper_std = 5, // upper bound for standard schedules 342 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules 343 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39) 344 #if KMP_STATIC_STEAL_ENABLED 345 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44) 346 #endif 347 kmp_sched_upper, 348 kmp_sched_default = kmp_sched_static, // default scheduling 349 kmp_sched_monotonic = 0x80000000 350 } kmp_sched_t; 351 #endif 352 353 /*! 354 @ingroup WORK_SHARING 355 * Describes the loop schedule to be used for a parallel for loop. 356 */ 357 enum sched_type : kmp_int32 { 358 kmp_sch_lower = 32, /**< lower bound for unordered values */ 359 kmp_sch_static_chunked = 33, 360 kmp_sch_static = 34, /**< static unspecialized */ 361 kmp_sch_dynamic_chunked = 35, 362 kmp_sch_guided_chunked = 36, /**< guided unspecialized */ 363 kmp_sch_runtime = 37, 364 kmp_sch_auto = 38, /**< auto */ 365 kmp_sch_trapezoidal = 39, 366 367 /* accessible only through KMP_SCHEDULE environment variable */ 368 kmp_sch_static_greedy = 40, 369 kmp_sch_static_balanced = 41, 370 /* accessible only through KMP_SCHEDULE environment variable */ 371 kmp_sch_guided_iterative_chunked = 42, 372 kmp_sch_guided_analytical_chunked = 43, 373 /* accessible only through KMP_SCHEDULE environment variable */ 374 kmp_sch_static_steal = 44, 375 376 /* static with chunk adjustment (e.g., simd) */ 377 kmp_sch_static_balanced_chunked = 45, 378 kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */ 379 kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */ 380 381 /* accessible only through KMP_SCHEDULE environment variable */ 382 kmp_sch_upper, /**< upper bound for unordered values */ 383 384 kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */ 385 kmp_ord_static_chunked = 65, 386 kmp_ord_static = 66, /**< ordered static unspecialized */ 387 kmp_ord_dynamic_chunked = 67, 388 kmp_ord_guided_chunked = 68, 389 kmp_ord_runtime = 69, 390 kmp_ord_auto = 70, /**< ordered auto */ 391 kmp_ord_trapezoidal = 71, 392 kmp_ord_upper, /**< upper bound for ordered values */ 393 394 /* Schedules for Distribute construct */ 395 kmp_distribute_static_chunked = 91, /**< distribute static chunked */ 396 kmp_distribute_static = 92, /**< distribute static unspecialized */ 397 398 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a 399 single iteration/chunk, even if the loop is serialized. For the schedule 400 types listed above, the entire iteration vector is returned if the loop is 401 serialized. This doesn't work for gcc/gcomp sections. */ 402 kmp_nm_lower = 160, /**< lower bound for nomerge values */ 403 404 kmp_nm_static_chunked = 405 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower), 406 kmp_nm_static = 162, /**< static unspecialized */ 407 kmp_nm_dynamic_chunked = 163, 408 kmp_nm_guided_chunked = 164, /**< guided unspecialized */ 409 kmp_nm_runtime = 165, 410 kmp_nm_auto = 166, /**< auto */ 411 kmp_nm_trapezoidal = 167, 412 413 /* accessible only through KMP_SCHEDULE environment variable */ 414 kmp_nm_static_greedy = 168, 415 kmp_nm_static_balanced = 169, 416 /* accessible only through KMP_SCHEDULE environment variable */ 417 kmp_nm_guided_iterative_chunked = 170, 418 kmp_nm_guided_analytical_chunked = 171, 419 kmp_nm_static_steal = 420 172, /* accessible only through OMP_SCHEDULE environment variable */ 421 422 kmp_nm_ord_static_chunked = 193, 423 kmp_nm_ord_static = 194, /**< ordered static unspecialized */ 424 kmp_nm_ord_dynamic_chunked = 195, 425 kmp_nm_ord_guided_chunked = 196, 426 kmp_nm_ord_runtime = 197, 427 kmp_nm_ord_auto = 198, /**< auto */ 428 kmp_nm_ord_trapezoidal = 199, 429 kmp_nm_upper, /**< upper bound for nomerge values */ 430 431 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since 432 we need to distinguish the three possible cases (no modifier, monotonic 433 modifier, nonmonotonic modifier), we need separate bits for each modifier. 434 The absence of monotonic does not imply nonmonotonic, especially since 4.5 435 says that the behaviour of the "no modifier" case is implementation defined 436 in 4.5, but will become "nonmonotonic" in 5.0. 437 438 Since we're passing a full 32 bit value, we can use a couple of high bits 439 for these flags; out of paranoia we avoid the sign bit. 440 441 These modifiers can be or-ed into non-static schedules by the compiler to 442 pass the additional information. They will be stripped early in the 443 processing in __kmp_dispatch_init when setting up schedules, so most of the 444 code won't ever see schedules with these bits set. */ 445 kmp_sch_modifier_monotonic = 446 (1 << 29), /**< Set if the monotonic schedule modifier was present */ 447 kmp_sch_modifier_nonmonotonic = 448 (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */ 449 450 #define SCHEDULE_WITHOUT_MODIFIERS(s) \ 451 (enum sched_type)( \ 452 (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) 453 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0) 454 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0) 455 #define SCHEDULE_HAS_NO_MODIFIERS(s) \ 456 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0) 457 #define SCHEDULE_GET_MODIFIERS(s) \ 458 ((enum sched_type)( \ 459 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))) 460 #define SCHEDULE_SET_MODIFIERS(s, m) \ 461 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m)) 462 #define SCHEDULE_NONMONOTONIC 0 463 #define SCHEDULE_MONOTONIC 1 464 465 kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */ 466 }; 467 468 // Apply modifiers on internal kind to standard kind 469 static inline void 470 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind, 471 enum sched_type internal_kind) { 472 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) { 473 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic); 474 } 475 } 476 477 // Apply modifiers on standard kind to internal kind 478 static inline void 479 __kmp_sched_apply_mods_intkind(kmp_sched_t kind, 480 enum sched_type *internal_kind) { 481 if ((int)kind & (int)kmp_sched_monotonic) { 482 *internal_kind = (enum sched_type)((int)*internal_kind | 483 (int)kmp_sch_modifier_monotonic); 484 } 485 } 486 487 // Get standard schedule without modifiers 488 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) { 489 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic)); 490 } 491 492 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */ 493 typedef union kmp_r_sched { 494 struct { 495 enum sched_type r_sched_type; 496 int chunk; 497 }; 498 kmp_int64 sched; 499 } kmp_r_sched_t; 500 501 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our 502 // internal schedule types 503 504 enum library_type { 505 library_none, 506 library_serial, 507 library_turnaround, 508 library_throughput 509 }; 510 511 #if KMP_OS_LINUX 512 enum clock_function_type { 513 clock_function_gettimeofday, 514 clock_function_clock_gettime 515 }; 516 #endif /* KMP_OS_LINUX */ 517 518 #if KMP_MIC_SUPPORTED 519 enum mic_type { non_mic, mic1, mic2, mic3, dummy }; 520 #endif 521 522 /* -- fast reduction stuff ------------------------------------------------ */ 523 524 #undef KMP_FAST_REDUCTION_BARRIER 525 #define KMP_FAST_REDUCTION_BARRIER 1 526 527 #undef KMP_FAST_REDUCTION_CORE_DUO 528 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 529 #define KMP_FAST_REDUCTION_CORE_DUO 1 530 #endif 531 532 enum _reduction_method { 533 reduction_method_not_defined = 0, 534 critical_reduce_block = (1 << 8), 535 atomic_reduce_block = (2 << 8), 536 tree_reduce_block = (3 << 8), 537 empty_reduce_block = (4 << 8) 538 }; 539 540 // Description of the packed_reduction_method variable: 541 // The packed_reduction_method variable consists of two enum types variables 542 // that are packed together into 0-th byte and 1-st byte: 543 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of 544 // barrier that will be used in fast reduction: bs_plain_barrier or 545 // bs_reduction_barrier 546 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will 547 // be used in fast reduction; 548 // Reduction method is of 'enum _reduction_method' type and it's defined the way 549 // so that the bits of 0-th byte are empty, so no need to execute a shift 550 // instruction while packing/unpacking 551 552 #if KMP_FAST_REDUCTION_BARRIER 553 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \ 554 ((reduction_method) | (barrier_type)) 555 556 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ 557 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00))) 558 559 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \ 560 ((enum barrier_type)((packed_reduction_method) & (0x000000FF))) 561 #else 562 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \ 563 (reduction_method) 564 565 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ 566 (packed_reduction_method) 567 568 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier) 569 #endif 570 571 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \ 572 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \ 573 (which_reduction_block)) 574 575 #if KMP_FAST_REDUCTION_BARRIER 576 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \ 577 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier)) 578 579 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \ 580 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier)) 581 #endif 582 583 typedef int PACKED_REDUCTION_METHOD_T; 584 585 /* -- end of fast reduction stuff ----------------------------------------- */ 586 587 #if KMP_OS_WINDOWS 588 #define USE_CBLKDATA 589 #if KMP_MSVC_COMPAT 590 #pragma warning(push) 591 #pragma warning(disable : 271 310) 592 #endif 593 #include <windows.h> 594 #if KMP_MSVC_COMPAT 595 #pragma warning(pop) 596 #endif 597 #endif 598 599 #if KMP_OS_UNIX 600 #include <dlfcn.h> 601 #include <pthread.h> 602 #endif 603 604 enum kmp_hw_t : int { 605 KMP_HW_UNKNOWN = -1, 606 KMP_HW_SOCKET = 0, 607 KMP_HW_PROC_GROUP, 608 KMP_HW_NUMA, 609 KMP_HW_DIE, 610 KMP_HW_LLC, 611 KMP_HW_L3, 612 KMP_HW_TILE, 613 KMP_HW_MODULE, 614 KMP_HW_L2, 615 KMP_HW_L1, 616 KMP_HW_CORE, 617 KMP_HW_THREAD, 618 KMP_HW_LAST 619 }; 620 621 typedef enum kmp_hw_core_type_t { 622 KMP_HW_CORE_TYPE_UNKNOWN = 0x0, 623 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 624 KMP_HW_CORE_TYPE_ATOM = 0x20, 625 KMP_HW_CORE_TYPE_CORE = 0x40, 626 KMP_HW_MAX_NUM_CORE_TYPES = 3, 627 #else 628 KMP_HW_MAX_NUM_CORE_TYPES = 1, 629 #endif 630 } kmp_hw_core_type_t; 631 632 #define KMP_HW_MAX_NUM_CORE_EFFS 8 633 634 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \ 635 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST) 636 #define KMP_ASSERT_VALID_HW_TYPE(type) \ 637 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST) 638 639 #define KMP_FOREACH_HW_TYPE(type) \ 640 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \ 641 type = (kmp_hw_t)((int)type + 1)) 642 643 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false); 644 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false); 645 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type); 646 647 /* Only Linux* OS and Windows* OS support thread affinity. */ 648 #if KMP_AFFINITY_SUPPORTED 649 650 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later). 651 #if KMP_OS_WINDOWS 652 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT 653 typedef struct GROUP_AFFINITY { 654 KAFFINITY Mask; 655 WORD Group; 656 WORD Reserved[3]; 657 } GROUP_AFFINITY; 658 #endif /* _MSC_VER < 1600 */ 659 #if KMP_GROUP_AFFINITY 660 extern int __kmp_num_proc_groups; 661 #else 662 static const int __kmp_num_proc_groups = 1; 663 #endif /* KMP_GROUP_AFFINITY */ 664 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD); 665 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount; 666 667 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void); 668 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount; 669 670 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *); 671 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity; 672 673 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *, 674 GROUP_AFFINITY *); 675 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity; 676 #endif /* KMP_OS_WINDOWS */ 677 678 #if KMP_USE_HWLOC 679 extern hwloc_topology_t __kmp_hwloc_topology; 680 extern int __kmp_hwloc_error; 681 #endif 682 683 extern size_t __kmp_affin_mask_size; 684 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0) 685 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0) 686 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size) 687 #define KMP_CPU_SET_ITERATE(i, mask) \ 688 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i)) 689 #define KMP_CPU_SET(i, mask) (mask)->set(i) 690 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i) 691 #define KMP_CPU_CLR(i, mask) (mask)->clear(i) 692 #define KMP_CPU_ZERO(mask) (mask)->zero() 693 #define KMP_CPU_COPY(dest, src) (dest)->copy(src) 694 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src) 695 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not() 696 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src) 697 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask()) 698 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr) 699 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr) 700 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr) 701 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr) 702 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr) 703 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i) 704 #define KMP_CPU_ALLOC_ARRAY(arr, n) \ 705 (arr = __kmp_affinity_dispatch->allocate_mask_array(n)) 706 #define KMP_CPU_FREE_ARRAY(arr, n) \ 707 __kmp_affinity_dispatch->deallocate_mask_array(arr) 708 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n) 709 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n) 710 #define __kmp_get_system_affinity(mask, abort_bool) \ 711 (mask)->get_system_affinity(abort_bool) 712 #define __kmp_set_system_affinity(mask, abort_bool) \ 713 (mask)->set_system_affinity(abort_bool) 714 #define __kmp_get_proc_group(mask) (mask)->get_proc_group() 715 716 class KMPAffinity { 717 public: 718 class Mask { 719 public: 720 void *operator new(size_t n); 721 void operator delete(void *p); 722 void *operator new[](size_t n); 723 void operator delete[](void *p); 724 virtual ~Mask() {} 725 // Set bit i to 1 726 virtual void set(int i) {} 727 // Return bit i 728 virtual bool is_set(int i) const { return false; } 729 // Set bit i to 0 730 virtual void clear(int i) {} 731 // Zero out entire mask 732 virtual void zero() {} 733 // Copy src into this mask 734 virtual void copy(const Mask *src) {} 735 // this &= rhs 736 virtual void bitwise_and(const Mask *rhs) {} 737 // this |= rhs 738 virtual void bitwise_or(const Mask *rhs) {} 739 // this = ~this 740 virtual void bitwise_not() {} 741 // API for iterating over an affinity mask 742 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i)) 743 virtual int begin() const { return 0; } 744 virtual int end() const { return 0; } 745 virtual int next(int previous) const { return 0; } 746 #if KMP_OS_WINDOWS 747 virtual int set_process_affinity(bool abort_on_error) const { return -1; } 748 #endif 749 // Set the system's affinity to this affinity mask's value 750 virtual int set_system_affinity(bool abort_on_error) const { return -1; } 751 // Set this affinity mask to the current system affinity 752 virtual int get_system_affinity(bool abort_on_error) { return -1; } 753 // Only 1 DWORD in the mask should have any procs set. 754 // Return the appropriate index, or -1 for an invalid mask. 755 virtual int get_proc_group() const { return -1; } 756 int get_max_cpu() const { 757 int cpu; 758 int max_cpu = -1; 759 KMP_CPU_SET_ITERATE(cpu, this) { 760 if (cpu > max_cpu) 761 max_cpu = cpu; 762 } 763 return max_cpu; 764 } 765 }; 766 void *operator new(size_t n); 767 void operator delete(void *p); 768 // Need virtual destructor 769 virtual ~KMPAffinity() = default; 770 // Determine if affinity is capable 771 virtual void determine_capable(const char *env_var) {} 772 // Bind the current thread to os proc 773 virtual void bind_thread(int proc) {} 774 // Factory functions to allocate/deallocate a mask 775 virtual Mask *allocate_mask() { return nullptr; } 776 virtual void deallocate_mask(Mask *m) {} 777 virtual Mask *allocate_mask_array(int num) { return nullptr; } 778 virtual void deallocate_mask_array(Mask *m) {} 779 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; } 780 static void pick_api(); 781 static void destroy_api(); 782 enum api_type { 783 NATIVE_OS 784 #if KMP_USE_HWLOC 785 , 786 HWLOC 787 #endif 788 }; 789 virtual api_type get_api_type() const { 790 KMP_ASSERT(0); 791 return NATIVE_OS; 792 } 793 794 private: 795 static bool picked_api; 796 }; 797 798 typedef KMPAffinity::Mask kmp_affin_mask_t; 799 extern KMPAffinity *__kmp_affinity_dispatch; 800 801 // Declare local char buffers with this size for printing debug and info 802 // messages, using __kmp_affinity_print_mask(). 803 #define KMP_AFFIN_MASK_PRINT_LEN 1024 804 805 enum affinity_type { 806 affinity_none = 0, 807 affinity_physical, 808 affinity_logical, 809 affinity_compact, 810 affinity_scatter, 811 affinity_explicit, 812 affinity_balanced, 813 affinity_disabled, // not used outsize the env var parser 814 affinity_default 815 }; 816 817 enum affinity_top_method { 818 affinity_top_method_all = 0, // try all (supported) methods, in order 819 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 820 affinity_top_method_apicid, 821 affinity_top_method_x2apicid, 822 affinity_top_method_x2apicid_1f, 823 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 824 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too 825 #if KMP_GROUP_AFFINITY 826 affinity_top_method_group, 827 #endif /* KMP_GROUP_AFFINITY */ 828 affinity_top_method_flat, 829 #if KMP_USE_HWLOC 830 affinity_top_method_hwloc, 831 #endif 832 affinity_top_method_default 833 }; 834 835 #define affinity_respect_mask_default (2) 836 837 typedef struct kmp_affinity_flags_t { 838 unsigned dups : 1; 839 unsigned verbose : 1; 840 unsigned warnings : 1; 841 unsigned respect : 2; 842 unsigned reset : 1; 843 unsigned initialized : 1; 844 unsigned reserved : 25; 845 } kmp_affinity_flags_t; 846 KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4); 847 848 typedef struct kmp_affinity_ids_t { 849 int ids[KMP_HW_LAST]; 850 int operator[](size_t idx) const { return ids[idx]; } 851 int &operator[](size_t idx) { return ids[idx]; } 852 kmp_affinity_ids_t &operator=(const kmp_affinity_ids_t &rhs) { 853 for (int i = 0; i < KMP_HW_LAST; ++i) 854 ids[i] = rhs[i]; 855 return *this; 856 } 857 } kmp_affinity_ids_t; 858 859 typedef struct kmp_affinity_attrs_t { 860 int core_type : 8; 861 int core_eff : 8; 862 unsigned valid : 1; 863 unsigned reserved : 15; 864 } kmp_affinity_attrs_t; 865 #define KMP_AFFINITY_ATTRS_UNKNOWN \ 866 { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 } 867 868 typedef struct kmp_affinity_t { 869 char *proclist; 870 enum affinity_type type; 871 kmp_hw_t gran; 872 int gran_levels; 873 int compact; 874 int offset; 875 kmp_affinity_flags_t flags; 876 unsigned num_masks; 877 kmp_affin_mask_t *masks; 878 kmp_affinity_ids_t *ids; 879 kmp_affinity_attrs_t *attrs; 880 unsigned num_os_id_masks; 881 kmp_affin_mask_t *os_id_masks; 882 const char *env_var; 883 } kmp_affinity_t; 884 885 #define KMP_AFFINITY_INIT(env) \ 886 { \ 887 nullptr, affinity_default, KMP_HW_UNKNOWN, -1, 0, 0, \ 888 {TRUE, FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE}, 0, \ 889 nullptr, nullptr, nullptr, 0, nullptr, env \ 890 } 891 892 extern enum affinity_top_method __kmp_affinity_top_method; 893 extern kmp_affinity_t __kmp_affinity; 894 extern kmp_affinity_t __kmp_hh_affinity; 895 extern kmp_affinity_t *__kmp_affinities[2]; 896 897 extern void __kmp_affinity_bind_thread(int which); 898 899 extern kmp_affin_mask_t *__kmp_affin_fullMask; 900 extern kmp_affin_mask_t *__kmp_affin_origMask; 901 extern char *__kmp_cpuinfo_file; 902 903 #endif /* KMP_AFFINITY_SUPPORTED */ 904 905 // This needs to be kept in sync with the values in omp.h !!! 906 typedef enum kmp_proc_bind_t { 907 proc_bind_false = 0, 908 proc_bind_true, 909 proc_bind_primary, 910 proc_bind_close, 911 proc_bind_spread, 912 proc_bind_intel, // use KMP_AFFINITY interface 913 proc_bind_default 914 } kmp_proc_bind_t; 915 916 typedef struct kmp_nested_proc_bind_t { 917 kmp_proc_bind_t *bind_types; 918 int size; 919 int used; 920 } kmp_nested_proc_bind_t; 921 922 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind; 923 extern kmp_proc_bind_t __kmp_teams_proc_bind; 924 925 extern int __kmp_display_affinity; 926 extern char *__kmp_affinity_format; 927 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512; 928 #if OMPT_SUPPORT 929 extern int __kmp_tool; 930 extern char *__kmp_tool_libraries; 931 #endif // OMPT_SUPPORT 932 933 #if KMP_AFFINITY_SUPPORTED 934 #define KMP_PLACE_ALL (-1) 935 #define KMP_PLACE_UNDEFINED (-2) 936 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES? 937 #define KMP_AFFINITY_NON_PROC_BIND \ 938 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \ 939 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \ 940 (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced)) 941 #endif /* KMP_AFFINITY_SUPPORTED */ 942 943 extern int __kmp_affinity_num_places; 944 945 typedef enum kmp_cancel_kind_t { 946 cancel_noreq = 0, 947 cancel_parallel = 1, 948 cancel_loop = 2, 949 cancel_sections = 3, 950 cancel_taskgroup = 4 951 } kmp_cancel_kind_t; 952 953 // KMP_HW_SUBSET support: 954 typedef struct kmp_hws_item { 955 int num; 956 int offset; 957 } kmp_hws_item_t; 958 959 extern kmp_hws_item_t __kmp_hws_socket; 960 extern kmp_hws_item_t __kmp_hws_die; 961 extern kmp_hws_item_t __kmp_hws_node; 962 extern kmp_hws_item_t __kmp_hws_tile; 963 extern kmp_hws_item_t __kmp_hws_core; 964 extern kmp_hws_item_t __kmp_hws_proc; 965 extern int __kmp_hws_requested; 966 extern int __kmp_hws_abs_flag; // absolute or per-item number requested 967 968 /* ------------------------------------------------------------------------ */ 969 970 #define KMP_PAD(type, sz) \ 971 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1)) 972 973 // We need to avoid using -1 as a GTID as +1 is added to the gtid 974 // when storing it in a lock, and the value 0 is reserved. 975 #define KMP_GTID_DNE (-2) /* Does not exist */ 976 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */ 977 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */ 978 #define KMP_GTID_UNKNOWN (-5) /* Is not known */ 979 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */ 980 981 /* OpenMP 5.0 Memory Management support */ 982 983 #ifndef __OMP_H 984 // Duplicate type definitions from omp.h 985 typedef uintptr_t omp_uintptr_t; 986 987 typedef enum { 988 omp_atk_sync_hint = 1, 989 omp_atk_alignment = 2, 990 omp_atk_access = 3, 991 omp_atk_pool_size = 4, 992 omp_atk_fallback = 5, 993 omp_atk_fb_data = 6, 994 omp_atk_pinned = 7, 995 omp_atk_partition = 8 996 } omp_alloctrait_key_t; 997 998 typedef enum { 999 omp_atv_false = 0, 1000 omp_atv_true = 1, 1001 omp_atv_contended = 3, 1002 omp_atv_uncontended = 4, 1003 omp_atv_serialized = 5, 1004 omp_atv_sequential = omp_atv_serialized, // (deprecated) 1005 omp_atv_private = 6, 1006 omp_atv_all = 7, 1007 omp_atv_thread = 8, 1008 omp_atv_pteam = 9, 1009 omp_atv_cgroup = 10, 1010 omp_atv_default_mem_fb = 11, 1011 omp_atv_null_fb = 12, 1012 omp_atv_abort_fb = 13, 1013 omp_atv_allocator_fb = 14, 1014 omp_atv_environment = 15, 1015 omp_atv_nearest = 16, 1016 omp_atv_blocked = 17, 1017 omp_atv_interleaved = 18 1018 } omp_alloctrait_value_t; 1019 #define omp_atv_default ((omp_uintptr_t)-1) 1020 1021 typedef void *omp_memspace_handle_t; 1022 extern omp_memspace_handle_t const omp_default_mem_space; 1023 extern omp_memspace_handle_t const omp_large_cap_mem_space; 1024 extern omp_memspace_handle_t const omp_const_mem_space; 1025 extern omp_memspace_handle_t const omp_high_bw_mem_space; 1026 extern omp_memspace_handle_t const omp_low_lat_mem_space; 1027 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space; 1028 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space; 1029 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space; 1030 1031 typedef struct { 1032 omp_alloctrait_key_t key; 1033 omp_uintptr_t value; 1034 } omp_alloctrait_t; 1035 1036 typedef void *omp_allocator_handle_t; 1037 extern omp_allocator_handle_t const omp_null_allocator; 1038 extern omp_allocator_handle_t const omp_default_mem_alloc; 1039 extern omp_allocator_handle_t const omp_large_cap_mem_alloc; 1040 extern omp_allocator_handle_t const omp_const_mem_alloc; 1041 extern omp_allocator_handle_t const omp_high_bw_mem_alloc; 1042 extern omp_allocator_handle_t const omp_low_lat_mem_alloc; 1043 extern omp_allocator_handle_t const omp_cgroup_mem_alloc; 1044 extern omp_allocator_handle_t const omp_pteam_mem_alloc; 1045 extern omp_allocator_handle_t const omp_thread_mem_alloc; 1046 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc; 1047 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc; 1048 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc; 1049 extern omp_allocator_handle_t const kmp_max_mem_alloc; 1050 extern omp_allocator_handle_t __kmp_def_allocator; 1051 1052 // end of duplicate type definitions from omp.h 1053 #endif 1054 1055 extern int __kmp_memkind_available; 1056 1057 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder 1058 1059 typedef struct kmp_allocator_t { 1060 omp_memspace_handle_t memspace; 1061 void **memkind; // pointer to memkind 1062 size_t alignment; 1063 omp_alloctrait_value_t fb; 1064 kmp_allocator_t *fb_data; 1065 kmp_uint64 pool_size; 1066 kmp_uint64 pool_used; 1067 bool pinned; 1068 } kmp_allocator_t; 1069 1070 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid, 1071 omp_memspace_handle_t, 1072 int ntraits, 1073 omp_alloctrait_t traits[]); 1074 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al); 1075 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al); 1076 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid); 1077 // external interfaces, may be used by compiler 1078 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al); 1079 extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz, 1080 omp_allocator_handle_t al); 1081 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz, 1082 omp_allocator_handle_t al); 1083 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz, 1084 omp_allocator_handle_t al, 1085 omp_allocator_handle_t free_al); 1086 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al); 1087 // internal interfaces, contain real implementation 1088 extern void *__kmp_alloc(int gtid, size_t align, size_t sz, 1089 omp_allocator_handle_t al); 1090 extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz, 1091 omp_allocator_handle_t al); 1092 extern void *__kmp_realloc(int gtid, void *ptr, size_t sz, 1093 omp_allocator_handle_t al, 1094 omp_allocator_handle_t free_al); 1095 extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al); 1096 1097 extern void __kmp_init_memkind(); 1098 extern void __kmp_fini_memkind(); 1099 extern void __kmp_init_target_mem(); 1100 1101 /* ------------------------------------------------------------------------ */ 1102 1103 #define KMP_UINT64_MAX \ 1104 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1))) 1105 1106 #define KMP_MIN_NTH 1 1107 1108 #ifndef KMP_MAX_NTH 1109 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX 1110 #define KMP_MAX_NTH PTHREAD_THREADS_MAX 1111 #else 1112 #define KMP_MAX_NTH INT_MAX 1113 #endif 1114 #endif /* KMP_MAX_NTH */ 1115 1116 #ifdef PTHREAD_STACK_MIN 1117 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN 1118 #else 1119 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024)) 1120 #endif 1121 1122 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1))) 1123 1124 #if KMP_ARCH_X86 1125 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024)) 1126 #elif KMP_ARCH_X86_64 1127 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024)) 1128 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024)) 1129 #else 1130 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024)) 1131 #endif 1132 1133 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024)) 1134 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024)) 1135 #define KMP_MAX_MALLOC_POOL_INCR \ 1136 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1))) 1137 1138 #define KMP_MIN_STKOFFSET (0) 1139 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE 1140 #if KMP_OS_DARWIN 1141 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET 1142 #else 1143 #define KMP_DEFAULT_STKOFFSET CACHE_LINE 1144 #endif 1145 1146 #define KMP_MIN_STKPADDING (0) 1147 #define KMP_MAX_STKPADDING (2 * 1024 * 1024) 1148 1149 #define KMP_BLOCKTIME_MULTIPLIER \ 1150 (1000) /* number of blocktime units per second */ 1151 #define KMP_MIN_BLOCKTIME (0) 1152 #define KMP_MAX_BLOCKTIME \ 1153 (INT_MAX) /* Must be this for "infinite" setting the work */ 1154 1155 /* __kmp_blocktime is in milliseconds */ 1156 #define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200)) 1157 1158 #if KMP_USE_MONITOR 1159 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024)) 1160 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second 1161 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec 1162 1163 /* Calculate new number of monitor wakeups for a specific block time based on 1164 previous monitor_wakeups. Only allow increasing number of wakeups */ 1165 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ 1166 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \ 1167 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \ 1168 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \ 1169 ? (monitor_wakeups) \ 1170 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime)) 1171 1172 /* Calculate number of intervals for a specific block time based on 1173 monitor_wakeups */ 1174 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ 1175 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \ 1176 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups))) 1177 #else 1178 #define KMP_BLOCKTIME(team, tid) \ 1179 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime) 1180 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1181 // HW TSC is used to reduce overhead (clock tick instead of nanosecond). 1182 extern kmp_uint64 __kmp_ticks_per_msec; 1183 #if KMP_COMPILER_ICC || KMP_COMPILER_ICX 1184 #define KMP_NOW() ((kmp_uint64)_rdtsc()) 1185 #else 1186 #define KMP_NOW() __kmp_hardware_timestamp() 1187 #endif 1188 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec) 1189 #define KMP_BLOCKTIME_INTERVAL(team, tid) \ 1190 (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec) 1191 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW()) 1192 #else 1193 // System time is retrieved sporadically while blocking. 1194 extern kmp_uint64 __kmp_now_nsec(); 1195 #define KMP_NOW() __kmp_now_nsec() 1196 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC) 1197 #define KMP_BLOCKTIME_INTERVAL(team, tid) \ 1198 (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC) 1199 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW()) 1200 #endif 1201 #endif // KMP_USE_MONITOR 1202 1203 #define KMP_MIN_STATSCOLS 40 1204 #define KMP_MAX_STATSCOLS 4096 1205 #define KMP_DEFAULT_STATSCOLS 80 1206 1207 #define KMP_MIN_INTERVAL 0 1208 #define KMP_MAX_INTERVAL (INT_MAX - 1) 1209 #define KMP_DEFAULT_INTERVAL 0 1210 1211 #define KMP_MIN_CHUNK 1 1212 #define KMP_MAX_CHUNK (INT_MAX - 1) 1213 #define KMP_DEFAULT_CHUNK 1 1214 1215 #define KMP_MIN_DISP_NUM_BUFF 1 1216 #define KMP_DFLT_DISP_NUM_BUFF 7 1217 #define KMP_MAX_DISP_NUM_BUFF 4096 1218 1219 #define KMP_MAX_ORDERED 8 1220 1221 #define KMP_MAX_FIELDS 32 1222 1223 #define KMP_MAX_BRANCH_BITS 31 1224 1225 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX 1226 1227 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX 1228 1229 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX 1230 1231 /* Minimum number of threads before switch to TLS gtid (experimentally 1232 determined) */ 1233 /* josh TODO: what about OS X* tuning? */ 1234 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1235 #define KMP_TLS_GTID_MIN 5 1236 #else 1237 #define KMP_TLS_GTID_MIN INT_MAX 1238 #endif 1239 1240 #define KMP_MASTER_TID(tid) (0 == (tid)) 1241 #define KMP_WORKER_TID(tid) (0 != (tid)) 1242 1243 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid))) 1244 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid))) 1245 #define KMP_INITIAL_GTID(gtid) (0 == (gtid)) 1246 1247 #ifndef TRUE 1248 #define FALSE 0 1249 #define TRUE (!FALSE) 1250 #endif 1251 1252 /* NOTE: all of the following constants must be even */ 1253 1254 #if KMP_OS_WINDOWS 1255 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */ 1256 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */ 1257 #elif KMP_OS_LINUX 1258 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1259 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1260 #elif KMP_OS_DARWIN 1261 /* TODO: tune for KMP_OS_DARWIN */ 1262 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1263 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1264 #elif KMP_OS_DRAGONFLY 1265 /* TODO: tune for KMP_OS_DRAGONFLY */ 1266 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1267 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1268 #elif KMP_OS_FREEBSD 1269 /* TODO: tune for KMP_OS_FREEBSD */ 1270 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1271 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1272 #elif KMP_OS_NETBSD 1273 /* TODO: tune for KMP_OS_NETBSD */ 1274 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1275 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1276 #elif KMP_OS_HURD 1277 /* TODO: tune for KMP_OS_HURD */ 1278 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1279 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1280 #elif KMP_OS_OPENBSD 1281 /* TODO: tune for KMP_OS_OPENBSD */ 1282 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1283 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1284 #endif 1285 1286 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1287 typedef struct kmp_cpuid { 1288 kmp_uint32 eax; 1289 kmp_uint32 ebx; 1290 kmp_uint32 ecx; 1291 kmp_uint32 edx; 1292 } kmp_cpuid_t; 1293 1294 typedef struct kmp_cpuinfo_flags_t { 1295 unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise. 1296 unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise. 1297 unsigned hybrid : 1; 1298 unsigned reserved : 29; // Ensure size of 32 bits 1299 } kmp_cpuinfo_flags_t; 1300 1301 typedef struct kmp_cpuinfo { 1302 int initialized; // If 0, other fields are not initialized. 1303 int signature; // CPUID(1).EAX 1304 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family) 1305 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended 1306 // Model << 4 ) + Model) 1307 int stepping; // CPUID(1).EAX[3:0] ( Stepping ) 1308 kmp_cpuinfo_flags_t flags; 1309 int apic_id; 1310 int physical_id; 1311 int logical_id; 1312 kmp_uint64 frequency; // Nominal CPU frequency in Hz. 1313 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004) 1314 } kmp_cpuinfo_t; 1315 1316 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p); 1317 1318 #if KMP_OS_UNIX 1319 // subleaf is only needed for cache and topology discovery and can be set to 1320 // zero in most cases 1321 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) { 1322 __asm__ __volatile__("cpuid" 1323 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx) 1324 : "a"(leaf), "c"(subleaf)); 1325 } 1326 // Load p into FPU control word 1327 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) { 1328 __asm__ __volatile__("fldcw %0" : : "m"(*p)); 1329 } 1330 // Store FPU control word into p 1331 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) { 1332 __asm__ __volatile__("fstcw %0" : "=m"(*p)); 1333 } 1334 static inline void __kmp_clear_x87_fpu_status_word() { 1335 #if KMP_MIC 1336 // 32-bit protected mode x87 FPU state 1337 struct x87_fpu_state { 1338 unsigned cw; 1339 unsigned sw; 1340 unsigned tw; 1341 unsigned fip; 1342 unsigned fips; 1343 unsigned fdp; 1344 unsigned fds; 1345 }; 1346 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0}; 1347 __asm__ __volatile__("fstenv %0\n\t" // store FP env 1348 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW 1349 "fldenv %0\n\t" // load FP env back 1350 : "+m"(fpu_state), "+m"(fpu_state.sw)); 1351 #else 1352 __asm__ __volatile__("fnclex"); 1353 #endif // KMP_MIC 1354 } 1355 #if __SSE__ 1356 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); } 1357 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); } 1358 #else 1359 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {} 1360 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; } 1361 #endif 1362 #else 1363 // Windows still has these as external functions in assembly file 1364 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p); 1365 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p); 1366 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p); 1367 extern void __kmp_clear_x87_fpu_status_word(); 1368 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); } 1369 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); } 1370 #endif // KMP_OS_UNIX 1371 1372 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */ 1373 1374 // User-level Monitor/Mwait 1375 #if KMP_HAVE_UMWAIT 1376 // We always try for UMWAIT first 1377 #if KMP_HAVE_WAITPKG_INTRINSICS 1378 #if KMP_HAVE_IMMINTRIN_H 1379 #include <immintrin.h> 1380 #elif KMP_HAVE_INTRIN_H 1381 #include <intrin.h> 1382 #endif 1383 #endif // KMP_HAVE_WAITPKG_INTRINSICS 1384 1385 KMP_ATTRIBUTE_TARGET_WAITPKG 1386 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) { 1387 #if !KMP_HAVE_WAITPKG_INTRINSICS 1388 uint32_t timeHi = uint32_t(counter >> 32); 1389 uint32_t timeLo = uint32_t(counter & 0xffffffff); 1390 char flag; 1391 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n" 1392 "setb %0" 1393 // The "=q" restraint means any register accessible as rl 1394 // in 32-bit mode: a, b, c, and d; 1395 // in 64-bit mode: any integer register 1396 : "=q"(flag) 1397 : "a"(timeLo), "d"(timeHi), "c"(hint) 1398 :); 1399 return flag; 1400 #else 1401 return _tpause(hint, counter); 1402 #endif 1403 } 1404 KMP_ATTRIBUTE_TARGET_WAITPKG 1405 static inline void __kmp_umonitor(void *cacheline) { 1406 #if !KMP_HAVE_WAITPKG_INTRINSICS 1407 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 " 1408 : 1409 : "a"(cacheline) 1410 :); 1411 #else 1412 _umonitor(cacheline); 1413 #endif 1414 } 1415 KMP_ATTRIBUTE_TARGET_WAITPKG 1416 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) { 1417 #if !KMP_HAVE_WAITPKG_INTRINSICS 1418 uint32_t timeHi = uint32_t(counter >> 32); 1419 uint32_t timeLo = uint32_t(counter & 0xffffffff); 1420 char flag; 1421 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n" 1422 "setb %0" 1423 // The "=q" restraint means any register accessible as rl 1424 // in 32-bit mode: a, b, c, and d; 1425 // in 64-bit mode: any integer register 1426 : "=q"(flag) 1427 : "a"(timeLo), "d"(timeHi), "c"(hint) 1428 :); 1429 return flag; 1430 #else 1431 return _umwait(hint, counter); 1432 #endif 1433 } 1434 #elif KMP_HAVE_MWAIT 1435 #if KMP_OS_UNIX 1436 #include <pmmintrin.h> 1437 #else 1438 #include <intrin.h> 1439 #endif 1440 #if KMP_OS_UNIX 1441 __attribute__((target("sse3"))) 1442 #endif 1443 static inline void 1444 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) { 1445 _mm_monitor(cacheline, extensions, hints); 1446 } 1447 #if KMP_OS_UNIX 1448 __attribute__((target("sse3"))) 1449 #endif 1450 static inline void 1451 __kmp_mm_mwait(unsigned extensions, unsigned hints) { 1452 _mm_mwait(extensions, hints); 1453 } 1454 #endif // KMP_HAVE_UMWAIT 1455 1456 #if KMP_ARCH_X86 1457 extern void __kmp_x86_pause(void); 1458 #elif KMP_MIC 1459 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed 1460 // regression after removal of extra PAUSE from spin loops. Changing 1461 // the delay from 100 to 300 showed even better performance than double PAUSE 1462 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC. 1463 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); } 1464 #else 1465 static inline void __kmp_x86_pause(void) { _mm_pause(); } 1466 #endif 1467 #define KMP_CPU_PAUSE() __kmp_x86_pause() 1468 #elif KMP_ARCH_PPC64 1469 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1") 1470 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2") 1471 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory") 1472 #define KMP_CPU_PAUSE() \ 1473 do { \ 1474 KMP_PPC64_PRI_LOW(); \ 1475 KMP_PPC64_PRI_MED(); \ 1476 KMP_PPC64_PRI_LOC_MB(); \ 1477 } while (0) 1478 #else 1479 #define KMP_CPU_PAUSE() /* nothing to do */ 1480 #endif 1481 1482 #define KMP_INIT_YIELD(count) \ 1483 { (count) = __kmp_yield_init; } 1484 1485 #define KMP_INIT_BACKOFF(time) \ 1486 { (time) = __kmp_pause_init; } 1487 1488 #define KMP_OVERSUBSCRIBED \ 1489 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) 1490 1491 #define KMP_TRY_YIELD \ 1492 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED))) 1493 1494 #define KMP_TRY_YIELD_OVERSUB \ 1495 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED)) 1496 1497 #define KMP_YIELD(cond) \ 1498 { \ 1499 KMP_CPU_PAUSE(); \ 1500 if ((cond) && (KMP_TRY_YIELD)) \ 1501 __kmp_yield(); \ 1502 } 1503 1504 #define KMP_YIELD_OVERSUB() \ 1505 { \ 1506 KMP_CPU_PAUSE(); \ 1507 if ((KMP_TRY_YIELD_OVERSUB)) \ 1508 __kmp_yield(); \ 1509 } 1510 1511 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround, 1512 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd. 1513 #define KMP_YIELD_SPIN(count) \ 1514 { \ 1515 KMP_CPU_PAUSE(); \ 1516 if (KMP_TRY_YIELD) { \ 1517 (count) -= 2; \ 1518 if (!(count)) { \ 1519 __kmp_yield(); \ 1520 (count) = __kmp_yield_next; \ 1521 } \ 1522 } \ 1523 } 1524 1525 // If TPAUSE is available & enabled, use it. If oversubscribed, use the slower 1526 // (C0.2) state, which improves performance of other SMT threads on the same 1527 // core, otherwise, use the fast (C0.1) default state, or whatever the user has 1528 // requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't 1529 // available, fall back to the regular CPU pause and yield combination. 1530 #if KMP_HAVE_UMWAIT 1531 #define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF) 1532 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \ 1533 { \ 1534 if (__kmp_tpause_enabled) { \ 1535 if (KMP_OVERSUBSCRIBED) { \ 1536 __kmp_tpause(0, (time)); \ 1537 } else { \ 1538 __kmp_tpause(__kmp_tpause_hint, (time)); \ 1539 } \ 1540 (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK; \ 1541 } else { \ 1542 KMP_CPU_PAUSE(); \ 1543 if ((KMP_TRY_YIELD_OVERSUB)) { \ 1544 __kmp_yield(); \ 1545 } else if (__kmp_use_yield == 1) { \ 1546 (count) -= 2; \ 1547 if (!(count)) { \ 1548 __kmp_yield(); \ 1549 (count) = __kmp_yield_next; \ 1550 } \ 1551 } \ 1552 } \ 1553 } 1554 #else 1555 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \ 1556 { \ 1557 KMP_CPU_PAUSE(); \ 1558 if ((KMP_TRY_YIELD_OVERSUB)) \ 1559 __kmp_yield(); \ 1560 else if (__kmp_use_yield == 1) { \ 1561 (count) -= 2; \ 1562 if (!(count)) { \ 1563 __kmp_yield(); \ 1564 (count) = __kmp_yield_next; \ 1565 } \ 1566 } \ 1567 } 1568 #endif // KMP_HAVE_UMWAIT 1569 1570 /* ------------------------------------------------------------------------ */ 1571 /* Support datatypes for the orphaned construct nesting checks. */ 1572 /* ------------------------------------------------------------------------ */ 1573 1574 /* When adding to this enum, add its corresponding string in cons_text_c[] 1575 * array in kmp_error.cpp */ 1576 enum cons_type { 1577 ct_none, 1578 ct_parallel, 1579 ct_pdo, 1580 ct_pdo_ordered, 1581 ct_psections, 1582 ct_psingle, 1583 ct_critical, 1584 ct_ordered_in_parallel, 1585 ct_ordered_in_pdo, 1586 ct_master, 1587 ct_reduce, 1588 ct_barrier, 1589 ct_masked 1590 }; 1591 1592 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered) 1593 1594 struct cons_data { 1595 ident_t const *ident; 1596 enum cons_type type; 1597 int prev; 1598 kmp_user_lock_p 1599 name; /* address exclusively for critical section name comparison */ 1600 }; 1601 1602 struct cons_header { 1603 int p_top, w_top, s_top; 1604 int stack_size, stack_top; 1605 struct cons_data *stack_data; 1606 }; 1607 1608 struct kmp_region_info { 1609 char *text; 1610 int offset[KMP_MAX_FIELDS]; 1611 int length[KMP_MAX_FIELDS]; 1612 }; 1613 1614 /* ---------------------------------------------------------------------- */ 1615 /* ---------------------------------------------------------------------- */ 1616 1617 #if KMP_OS_WINDOWS 1618 typedef HANDLE kmp_thread_t; 1619 typedef DWORD kmp_key_t; 1620 #endif /* KMP_OS_WINDOWS */ 1621 1622 #if KMP_OS_UNIX 1623 typedef pthread_t kmp_thread_t; 1624 typedef pthread_key_t kmp_key_t; 1625 #endif 1626 1627 extern kmp_key_t __kmp_gtid_threadprivate_key; 1628 1629 typedef struct kmp_sys_info { 1630 long maxrss; /* the maximum resident set size utilized (in kilobytes) */ 1631 long minflt; /* the number of page faults serviced without any I/O */ 1632 long majflt; /* the number of page faults serviced that required I/O */ 1633 long nswap; /* the number of times a process was "swapped" out of memory */ 1634 long inblock; /* the number of times the file system had to perform input */ 1635 long oublock; /* the number of times the file system had to perform output */ 1636 long nvcsw; /* the number of times a context switch was voluntarily */ 1637 long nivcsw; /* the number of times a context switch was forced */ 1638 } kmp_sys_info_t; 1639 1640 #if USE_ITT_BUILD 1641 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only 1642 // required type here. Later we will check the type meets requirements. 1643 typedef int kmp_itt_mark_t; 1644 #define KMP_ITT_DEBUG 0 1645 #endif /* USE_ITT_BUILD */ 1646 1647 typedef kmp_int32 kmp_critical_name[8]; 1648 1649 /*! 1650 @ingroup PARALLEL 1651 The type for a microtask which gets passed to @ref __kmpc_fork_call(). 1652 The arguments to the outlined function are 1653 @param global_tid the global thread identity of the thread executing the 1654 function. 1655 @param bound_tid the local identity of the thread executing the function 1656 @param ... pointers to shared variables accessed by the function. 1657 */ 1658 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...); 1659 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth, 1660 ...); 1661 1662 /*! 1663 @ingroup THREADPRIVATE 1664 @{ 1665 */ 1666 /* --------------------------------------------------------------------------- 1667 */ 1668 /* Threadprivate initialization/finalization function declarations */ 1669 1670 /* for non-array objects: __kmpc_threadprivate_register() */ 1671 1672 /*! 1673 Pointer to the constructor function. 1674 The first argument is the <tt>this</tt> pointer 1675 */ 1676 typedef void *(*kmpc_ctor)(void *); 1677 1678 /*! 1679 Pointer to the destructor function. 1680 The first argument is the <tt>this</tt> pointer 1681 */ 1682 typedef void (*kmpc_dtor)( 1683 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel 1684 compiler */ 1685 /*! 1686 Pointer to an alternate constructor. 1687 The first argument is the <tt>this</tt> pointer. 1688 */ 1689 typedef void *(*kmpc_cctor)(void *, void *); 1690 1691 /* for array objects: __kmpc_threadprivate_register_vec() */ 1692 /* First arg: "this" pointer */ 1693 /* Last arg: number of array elements */ 1694 /*! 1695 Array constructor. 1696 First argument is the <tt>this</tt> pointer 1697 Second argument the number of array elements. 1698 */ 1699 typedef void *(*kmpc_ctor_vec)(void *, size_t); 1700 /*! 1701 Pointer to the array destructor function. 1702 The first argument is the <tt>this</tt> pointer 1703 Second argument the number of array elements. 1704 */ 1705 typedef void (*kmpc_dtor_vec)(void *, size_t); 1706 /*! 1707 Array constructor. 1708 First argument is the <tt>this</tt> pointer 1709 Third argument the number of array elements. 1710 */ 1711 typedef void *(*kmpc_cctor_vec)(void *, void *, 1712 size_t); /* function unused by compiler */ 1713 1714 /*! 1715 @} 1716 */ 1717 1718 /* keeps tracked of threadprivate cache allocations for cleanup later */ 1719 typedef struct kmp_cached_addr { 1720 void **addr; /* address of allocated cache */ 1721 void ***compiler_cache; /* pointer to compiler's cache */ 1722 void *data; /* pointer to global data */ 1723 struct kmp_cached_addr *next; /* pointer to next cached address */ 1724 } kmp_cached_addr_t; 1725 1726 struct private_data { 1727 struct private_data *next; /* The next descriptor in the list */ 1728 void *data; /* The data buffer for this descriptor */ 1729 int more; /* The repeat count for this descriptor */ 1730 size_t size; /* The data size for this descriptor */ 1731 }; 1732 1733 struct private_common { 1734 struct private_common *next; 1735 struct private_common *link; 1736 void *gbl_addr; 1737 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */ 1738 size_t cmn_size; 1739 }; 1740 1741 struct shared_common { 1742 struct shared_common *next; 1743 struct private_data *pod_init; 1744 void *obj_init; 1745 void *gbl_addr; 1746 union { 1747 kmpc_ctor ctor; 1748 kmpc_ctor_vec ctorv; 1749 } ct; 1750 union { 1751 kmpc_cctor cctor; 1752 kmpc_cctor_vec cctorv; 1753 } cct; 1754 union { 1755 kmpc_dtor dtor; 1756 kmpc_dtor_vec dtorv; 1757 } dt; 1758 size_t vec_len; 1759 int is_vec; 1760 size_t cmn_size; 1761 }; 1762 1763 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */ 1764 #define KMP_HASH_TABLE_SIZE \ 1765 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */ 1766 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */ 1767 #define KMP_HASH(x) \ 1768 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1)) 1769 1770 struct common_table { 1771 struct private_common *data[KMP_HASH_TABLE_SIZE]; 1772 }; 1773 1774 struct shared_table { 1775 struct shared_common *data[KMP_HASH_TABLE_SIZE]; 1776 }; 1777 1778 /* ------------------------------------------------------------------------ */ 1779 1780 #if KMP_USE_HIER_SCHED 1781 // Shared barrier data that exists inside a single unit of the scheduling 1782 // hierarchy 1783 typedef struct kmp_hier_private_bdata_t { 1784 kmp_int32 num_active; 1785 kmp_uint64 index; 1786 kmp_uint64 wait_val[2]; 1787 } kmp_hier_private_bdata_t; 1788 #endif 1789 1790 typedef struct kmp_sched_flags { 1791 unsigned ordered : 1; 1792 unsigned nomerge : 1; 1793 unsigned contains_last : 1; 1794 #if KMP_USE_HIER_SCHED 1795 unsigned use_hier : 1; 1796 unsigned unused : 28; 1797 #else 1798 unsigned unused : 29; 1799 #endif 1800 } kmp_sched_flags_t; 1801 1802 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4); 1803 1804 #if KMP_STATIC_STEAL_ENABLED 1805 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { 1806 kmp_int32 count; 1807 kmp_int32 ub; 1808 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ 1809 kmp_int32 lb; 1810 kmp_int32 st; 1811 kmp_int32 tc; 1812 kmp_lock_t *steal_lock; // lock used for chunk stealing 1813 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on) 1814 // a) parm3 is properly aligned and 1815 // b) all parm1-4 are on the same cache line. 1816 // Because of parm1-4 are used together, performance seems to be better 1817 // if they are on the same cache line (not measured though). 1818 1819 struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template 1820 kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should 1821 kmp_int32 parm2; // make no real change at least while padding is off. 1822 kmp_int32 parm3; 1823 kmp_int32 parm4; 1824 }; 1825 1826 kmp_uint32 ordered_lower; 1827 kmp_uint32 ordered_upper; 1828 #if KMP_OS_WINDOWS 1829 kmp_int32 last_upper; 1830 #endif /* KMP_OS_WINDOWS */ 1831 } dispatch_private_info32_t; 1832 1833 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { 1834 kmp_int64 count; // current chunk number for static & static-steal scheduling 1835 kmp_int64 ub; /* upper-bound */ 1836 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ 1837 kmp_int64 lb; /* lower-bound */ 1838 kmp_int64 st; /* stride */ 1839 kmp_int64 tc; /* trip count (number of iterations) */ 1840 kmp_lock_t *steal_lock; // lock used for chunk stealing 1841 /* parm[1-4] are used in different ways by different scheduling algorithms */ 1842 1843 // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on ) 1844 // a) parm3 is properly aligned and 1845 // b) all parm1-4 are in the same cache line. 1846 // Because of parm1-4 are used together, performance seems to be better 1847 // if they are in the same line (not measured though). 1848 1849 struct KMP_ALIGN(32) { 1850 kmp_int64 parm1; 1851 kmp_int64 parm2; 1852 kmp_int64 parm3; 1853 kmp_int64 parm4; 1854 }; 1855 1856 kmp_uint64 ordered_lower; 1857 kmp_uint64 ordered_upper; 1858 #if KMP_OS_WINDOWS 1859 kmp_int64 last_upper; 1860 #endif /* KMP_OS_WINDOWS */ 1861 } dispatch_private_info64_t; 1862 #else /* KMP_STATIC_STEAL_ENABLED */ 1863 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { 1864 kmp_int32 lb; 1865 kmp_int32 ub; 1866 kmp_int32 st; 1867 kmp_int32 tc; 1868 1869 kmp_int32 parm1; 1870 kmp_int32 parm2; 1871 kmp_int32 parm3; 1872 kmp_int32 parm4; 1873 1874 kmp_int32 count; 1875 1876 kmp_uint32 ordered_lower; 1877 kmp_uint32 ordered_upper; 1878 #if KMP_OS_WINDOWS 1879 kmp_int32 last_upper; 1880 #endif /* KMP_OS_WINDOWS */ 1881 } dispatch_private_info32_t; 1882 1883 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { 1884 kmp_int64 lb; /* lower-bound */ 1885 kmp_int64 ub; /* upper-bound */ 1886 kmp_int64 st; /* stride */ 1887 kmp_int64 tc; /* trip count (number of iterations) */ 1888 1889 /* parm[1-4] are used in different ways by different scheduling algorithms */ 1890 kmp_int64 parm1; 1891 kmp_int64 parm2; 1892 kmp_int64 parm3; 1893 kmp_int64 parm4; 1894 1895 kmp_int64 count; /* current chunk number for static scheduling */ 1896 1897 kmp_uint64 ordered_lower; 1898 kmp_uint64 ordered_upper; 1899 #if KMP_OS_WINDOWS 1900 kmp_int64 last_upper; 1901 #endif /* KMP_OS_WINDOWS */ 1902 } dispatch_private_info64_t; 1903 #endif /* KMP_STATIC_STEAL_ENABLED */ 1904 1905 typedef struct KMP_ALIGN_CACHE dispatch_private_info { 1906 union private_info { 1907 dispatch_private_info32_t p32; 1908 dispatch_private_info64_t p64; 1909 } u; 1910 enum sched_type schedule; /* scheduling algorithm */ 1911 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */ 1912 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer 1913 kmp_int32 ordered_bumped; 1914 // Stack of buffers for nest of serial regions 1915 struct dispatch_private_info *next; 1916 kmp_int32 type_size; /* the size of types in private_info */ 1917 #if KMP_USE_HIER_SCHED 1918 kmp_int32 hier_id; 1919 void *parent; /* hierarchical scheduling parent pointer */ 1920 #endif 1921 enum cons_type pushed_ws; 1922 } dispatch_private_info_t; 1923 1924 typedef struct dispatch_shared_info32 { 1925 /* chunk index under dynamic, number of idle threads under static-steal; 1926 iteration index otherwise */ 1927 volatile kmp_uint32 iteration; 1928 volatile kmp_int32 num_done; 1929 volatile kmp_uint32 ordered_iteration; 1930 // Dummy to retain the structure size after making ordered_iteration scalar 1931 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1]; 1932 } dispatch_shared_info32_t; 1933 1934 typedef struct dispatch_shared_info64 { 1935 /* chunk index under dynamic, number of idle threads under static-steal; 1936 iteration index otherwise */ 1937 volatile kmp_uint64 iteration; 1938 volatile kmp_int64 num_done; 1939 volatile kmp_uint64 ordered_iteration; 1940 // Dummy to retain the structure size after making ordered_iteration scalar 1941 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3]; 1942 } dispatch_shared_info64_t; 1943 1944 typedef struct dispatch_shared_info { 1945 union shared_info { 1946 dispatch_shared_info32_t s32; 1947 dispatch_shared_info64_t s64; 1948 } u; 1949 volatile kmp_uint32 buffer_index; 1950 volatile kmp_int32 doacross_buf_idx; // teamwise index 1951 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1) 1952 kmp_int32 doacross_num_done; // count finished threads 1953 #if KMP_USE_HIER_SCHED 1954 void *hier; 1955 #endif 1956 #if KMP_USE_HWLOC 1957 // When linking with libhwloc, the ORDERED EPCC test slows down on big 1958 // machines (> 48 cores). Performance analysis showed that a cache thrash 1959 // was occurring and this padding helps alleviate the problem. 1960 char padding[64]; 1961 #endif 1962 } dispatch_shared_info_t; 1963 1964 typedef struct kmp_disp { 1965 /* Vector for ORDERED SECTION */ 1966 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *); 1967 /* Vector for END ORDERED SECTION */ 1968 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *); 1969 1970 dispatch_shared_info_t *th_dispatch_sh_current; 1971 dispatch_private_info_t *th_dispatch_pr_current; 1972 1973 dispatch_private_info_t *th_disp_buffer; 1974 kmp_uint32 th_disp_index; 1975 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index 1976 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags 1977 kmp_int64 *th_doacross_info; // info on loop bounds 1978 #if KMP_USE_INTERNODE_ALIGNMENT 1979 char more_padding[INTERNODE_CACHE_LINE]; 1980 #endif 1981 } kmp_disp_t; 1982 1983 /* ------------------------------------------------------------------------ */ 1984 /* Barrier stuff */ 1985 1986 /* constants for barrier state update */ 1987 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */ 1988 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */ 1989 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state 1990 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */ 1991 1992 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT) 1993 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT) 1994 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT) 1995 1996 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT) 1997 #error "Barrier sleep bit must be smaller than barrier bump bit" 1998 #endif 1999 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT) 2000 #error "Barrier unused bit must be smaller than barrier bump bit" 2001 #endif 2002 2003 // Constants for release barrier wait state: currently, hierarchical only 2004 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep 2005 #define KMP_BARRIER_OWN_FLAG \ 2006 1 // Normal state; worker waiting on own b_go flag in release 2007 #define KMP_BARRIER_PARENT_FLAG \ 2008 2 // Special state; worker waiting on parent's b_go flag in release 2009 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \ 2010 3 // Special state; tells worker to shift from parent to own b_go 2011 #define KMP_BARRIER_SWITCHING \ 2012 4 // Special state; worker resets appropriate flag on wake-up 2013 2014 #define KMP_NOT_SAFE_TO_REAP \ 2015 0 // Thread th_reap_state: not safe to reap (tasking) 2016 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking) 2017 2018 // The flag_type describes the storage used for the flag. 2019 enum flag_type { 2020 flag32, /**< atomic 32 bit flags */ 2021 flag64, /**< 64 bit flags */ 2022 atomic_flag64, /**< atomic 64 bit flags */ 2023 flag_oncore, /**< special 64-bit flag for on-core barrier (hierarchical) */ 2024 flag_unset 2025 }; 2026 2027 enum barrier_type { 2028 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction 2029 barriers if enabled) */ 2030 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */ 2031 #if KMP_FAST_REDUCTION_BARRIER 2032 bs_reduction_barrier, /* 2, All barriers that are used in reduction */ 2033 #endif // KMP_FAST_REDUCTION_BARRIER 2034 bs_last_barrier /* Just a placeholder to mark the end */ 2035 }; 2036 2037 // to work with reduction barriers just like with plain barriers 2038 #if !KMP_FAST_REDUCTION_BARRIER 2039 #define bs_reduction_barrier bs_plain_barrier 2040 #endif // KMP_FAST_REDUCTION_BARRIER 2041 2042 typedef enum kmp_bar_pat { /* Barrier communication patterns */ 2043 bp_linear_bar = 2044 0, /* Single level (degenerate) tree */ 2045 bp_tree_bar = 2046 1, /* Balanced tree with branching factor 2^n */ 2047 bp_hyper_bar = 2, /* Hypercube-embedded tree with min 2048 branching factor 2^n */ 2049 bp_hierarchical_bar = 3, /* Machine hierarchy tree */ 2050 bp_dist_bar = 4, /* Distributed barrier */ 2051 bp_last_bar /* Placeholder to mark the end */ 2052 } kmp_bar_pat_e; 2053 2054 #define KMP_BARRIER_ICV_PUSH 1 2055 2056 /* Record for holding the values of the internal controls stack records */ 2057 typedef struct kmp_internal_control { 2058 int serial_nesting_level; /* corresponds to the value of the 2059 th_team_serialized field */ 2060 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per 2061 thread) */ 2062 kmp_int8 2063 bt_set; /* internal control for whether blocktime is explicitly set */ 2064 int blocktime; /* internal control for blocktime */ 2065 #if KMP_USE_MONITOR 2066 int bt_intervals; /* internal control for blocktime intervals */ 2067 #endif 2068 int nproc; /* internal control for #threads for next parallel region (per 2069 thread) */ 2070 int thread_limit; /* internal control for thread-limit-var */ 2071 int max_active_levels; /* internal control for max_active_levels */ 2072 kmp_r_sched_t 2073 sched; /* internal control for runtime schedule {sched,chunk} pair */ 2074 kmp_proc_bind_t proc_bind; /* internal control for affinity */ 2075 kmp_int32 default_device; /* internal control for default device */ 2076 struct kmp_internal_control *next; 2077 } kmp_internal_control_t; 2078 2079 static inline void copy_icvs(kmp_internal_control_t *dst, 2080 kmp_internal_control_t *src) { 2081 *dst = *src; 2082 } 2083 2084 /* Thread barrier needs volatile barrier fields */ 2085 typedef struct KMP_ALIGN_CACHE kmp_bstate { 2086 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all 2087 // uses of it). It is not explicitly aligned below, because we *don't* want 2088 // it to be padded -- instead, we fit b_go into the same cache line with 2089 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier. 2090 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread 2091 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with 2092 // same NGO store 2093 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical) 2094 KMP_ALIGN_CACHE volatile kmp_uint64 2095 b_arrived; // STATE => task reached synch point. 2096 kmp_uint32 *skip_per_level; 2097 kmp_uint32 my_level; 2098 kmp_int32 parent_tid; 2099 kmp_int32 old_tid; 2100 kmp_uint32 depth; 2101 struct kmp_bstate *parent_bar; 2102 kmp_team_t *team; 2103 kmp_uint64 leaf_state; 2104 kmp_uint32 nproc; 2105 kmp_uint8 base_leaf_kids; 2106 kmp_uint8 leaf_kids; 2107 kmp_uint8 offset; 2108 kmp_uint8 wait_flag; 2109 kmp_uint8 use_oncore_barrier; 2110 #if USE_DEBUGGER 2111 // The following field is intended for the debugger solely. Only the worker 2112 // thread itself accesses this field: the worker increases it by 1 when it 2113 // arrives to a barrier. 2114 KMP_ALIGN_CACHE kmp_uint b_worker_arrived; 2115 #endif /* USE_DEBUGGER */ 2116 } kmp_bstate_t; 2117 2118 union KMP_ALIGN_CACHE kmp_barrier_union { 2119 double b_align; /* use worst case alignment */ 2120 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)]; 2121 kmp_bstate_t bb; 2122 }; 2123 2124 typedef union kmp_barrier_union kmp_balign_t; 2125 2126 /* Team barrier needs only non-volatile arrived counter */ 2127 union KMP_ALIGN_CACHE kmp_barrier_team_union { 2128 double b_align; /* use worst case alignment */ 2129 char b_pad[CACHE_LINE]; 2130 struct { 2131 kmp_uint64 b_arrived; /* STATE => task reached synch point. */ 2132 #if USE_DEBUGGER 2133 // The following two fields are indended for the debugger solely. Only 2134 // primary thread of the team accesses these fields: the first one is 2135 // increased by 1 when the primary thread arrives to a barrier, the second 2136 // one is increased by one when all the threads arrived. 2137 kmp_uint b_master_arrived; 2138 kmp_uint b_team_arrived; 2139 #endif 2140 }; 2141 }; 2142 2143 typedef union kmp_barrier_team_union kmp_balign_team_t; 2144 2145 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal 2146 threads when a condition changes. This is to workaround an NPTL bug where 2147 padding was added to pthread_cond_t which caused the initialization routine 2148 to write outside of the structure if compiled on pre-NPTL threads. */ 2149 #if KMP_OS_WINDOWS 2150 typedef struct kmp_win32_mutex { 2151 /* The Lock */ 2152 CRITICAL_SECTION cs; 2153 } kmp_win32_mutex_t; 2154 2155 typedef struct kmp_win32_cond { 2156 /* Count of the number of waiters. */ 2157 int waiters_count_; 2158 2159 /* Serialize access to <waiters_count_> */ 2160 kmp_win32_mutex_t waiters_count_lock_; 2161 2162 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */ 2163 int release_count_; 2164 2165 /* Keeps track of the current "generation" so that we don't allow */ 2166 /* one thread to steal all the "releases" from the broadcast. */ 2167 int wait_generation_count_; 2168 2169 /* A manual-reset event that's used to block and release waiting threads. */ 2170 HANDLE event_; 2171 } kmp_win32_cond_t; 2172 #endif 2173 2174 #if KMP_OS_UNIX 2175 2176 union KMP_ALIGN_CACHE kmp_cond_union { 2177 double c_align; 2178 char c_pad[CACHE_LINE]; 2179 pthread_cond_t c_cond; 2180 }; 2181 2182 typedef union kmp_cond_union kmp_cond_align_t; 2183 2184 union KMP_ALIGN_CACHE kmp_mutex_union { 2185 double m_align; 2186 char m_pad[CACHE_LINE]; 2187 pthread_mutex_t m_mutex; 2188 }; 2189 2190 typedef union kmp_mutex_union kmp_mutex_align_t; 2191 2192 #endif /* KMP_OS_UNIX */ 2193 2194 typedef struct kmp_desc_base { 2195 void *ds_stackbase; 2196 size_t ds_stacksize; 2197 int ds_stackgrow; 2198 kmp_thread_t ds_thread; 2199 volatile int ds_tid; 2200 int ds_gtid; 2201 #if KMP_OS_WINDOWS 2202 volatile int ds_alive; 2203 DWORD ds_thread_id; 2204 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes. 2205 However, debugger support (libomp_db) cannot work with handles, because they 2206 uncomparable. For example, debugger requests info about thread with handle h. 2207 h is valid within debugger process, and meaningless within debugee process. 2208 Even if h is duped by call to DuplicateHandle(), so the result h' is valid 2209 within debugee process, but it is a *new* handle which does *not* equal to 2210 any other handle in debugee... The only way to compare handles is convert 2211 them to system-wide ids. GetThreadId() function is available only in 2212 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available 2213 on all Windows* OS flavours (including Windows* 95). Thus, we have to get 2214 thread id by call to GetCurrentThreadId() from within the thread and save it 2215 to let libomp_db identify threads. */ 2216 #endif /* KMP_OS_WINDOWS */ 2217 } kmp_desc_base_t; 2218 2219 typedef union KMP_ALIGN_CACHE kmp_desc { 2220 double ds_align; /* use worst case alignment */ 2221 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)]; 2222 kmp_desc_base_t ds; 2223 } kmp_desc_t; 2224 2225 typedef struct kmp_local { 2226 volatile int this_construct; /* count of single's encountered by thread */ 2227 void *reduce_data; 2228 #if KMP_USE_BGET 2229 void *bget_data; 2230 void *bget_list; 2231 #if !USE_CMP_XCHG_FOR_BGET 2232 #ifdef USE_QUEUING_LOCK_FOR_BGET 2233 kmp_lock_t bget_lock; /* Lock for accessing bget free list */ 2234 #else 2235 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be 2236 // bootstrap lock so we can use it at library 2237 // shutdown. 2238 #endif /* USE_LOCK_FOR_BGET */ 2239 #endif /* ! USE_CMP_XCHG_FOR_BGET */ 2240 #endif /* KMP_USE_BGET */ 2241 2242 PACKED_REDUCTION_METHOD_T 2243 packed_reduction_method; /* stored by __kmpc_reduce*(), used by 2244 __kmpc_end_reduce*() */ 2245 2246 } kmp_local_t; 2247 2248 #define KMP_CHECK_UPDATE(a, b) \ 2249 if ((a) != (b)) \ 2250 (a) = (b) 2251 #define KMP_CHECK_UPDATE_SYNC(a, b) \ 2252 if ((a) != (b)) \ 2253 TCW_SYNC_PTR((a), (b)) 2254 2255 #define get__blocktime(xteam, xtid) \ 2256 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) 2257 #define get__bt_set(xteam, xtid) \ 2258 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) 2259 #if KMP_USE_MONITOR 2260 #define get__bt_intervals(xteam, xtid) \ 2261 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) 2262 #endif 2263 2264 #define get__dynamic_2(xteam, xtid) \ 2265 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic) 2266 #define get__nproc_2(xteam, xtid) \ 2267 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc) 2268 #define get__sched_2(xteam, xtid) \ 2269 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched) 2270 2271 #define set__blocktime_team(xteam, xtid, xval) \ 2272 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \ 2273 (xval)) 2274 2275 #if KMP_USE_MONITOR 2276 #define set__bt_intervals_team(xteam, xtid, xval) \ 2277 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \ 2278 (xval)) 2279 #endif 2280 2281 #define set__bt_set_team(xteam, xtid, xval) \ 2282 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval)) 2283 2284 #define set__dynamic(xthread, xval) \ 2285 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval)) 2286 #define get__dynamic(xthread) \ 2287 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE)) 2288 2289 #define set__nproc(xthread, xval) \ 2290 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval)) 2291 2292 #define set__thread_limit(xthread, xval) \ 2293 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval)) 2294 2295 #define set__max_active_levels(xthread, xval) \ 2296 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval)) 2297 2298 #define get__max_active_levels(xthread) \ 2299 ((xthread)->th.th_current_task->td_icvs.max_active_levels) 2300 2301 #define set__sched(xthread, xval) \ 2302 (((xthread)->th.th_current_task->td_icvs.sched) = (xval)) 2303 2304 #define set__proc_bind(xthread, xval) \ 2305 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval)) 2306 #define get__proc_bind(xthread) \ 2307 ((xthread)->th.th_current_task->td_icvs.proc_bind) 2308 2309 // OpenMP tasking data structures 2310 2311 typedef enum kmp_tasking_mode { 2312 tskm_immediate_exec = 0, 2313 tskm_extra_barrier = 1, 2314 tskm_task_teams = 2, 2315 tskm_max = 2 2316 } kmp_tasking_mode_t; 2317 2318 extern kmp_tasking_mode_t 2319 __kmp_tasking_mode; /* determines how/when to execute tasks */ 2320 extern int __kmp_task_stealing_constraint; 2321 extern int __kmp_enable_task_throttling; 2322 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if 2323 // specified, defaults to 0 otherwise 2324 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise 2325 extern kmp_int32 __kmp_max_task_priority; 2326 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise 2327 extern kmp_uint64 __kmp_taskloop_min_tasks; 2328 2329 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with 2330 taskdata first */ 2331 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1) 2332 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1) 2333 2334 // The tt_found_tasks flag is a signal to all threads in the team that tasks 2335 // were spawned and queued since the previous barrier release. 2336 #define KMP_TASKING_ENABLED(task_team) \ 2337 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks)) 2338 /*! 2339 @ingroup BASIC_TYPES 2340 @{ 2341 */ 2342 2343 /*! 2344 */ 2345 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *); 2346 2347 typedef union kmp_cmplrdata { 2348 kmp_int32 priority; /**< priority specified by user for the task */ 2349 kmp_routine_entry_t 2350 destructors; /* pointer to function to invoke deconstructors of 2351 firstprivate C++ objects */ 2352 /* future data */ 2353 } kmp_cmplrdata_t; 2354 2355 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */ 2356 /*! 2357 */ 2358 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */ 2359 void *shareds; /**< pointer to block of pointers to shared vars */ 2360 kmp_routine_entry_t 2361 routine; /**< pointer to routine to call for executing task */ 2362 kmp_int32 part_id; /**< part id for the task */ 2363 kmp_cmplrdata_t 2364 data1; /* Two known optional additions: destructors and priority */ 2365 kmp_cmplrdata_t data2; /* Process destructors first, priority second */ 2366 /* future data */ 2367 /* private vars */ 2368 } kmp_task_t; 2369 2370 /*! 2371 @} 2372 */ 2373 2374 typedef struct kmp_taskgroup { 2375 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks 2376 std::atomic<kmp_int32> 2377 cancel_request; // request for cancellation of this taskgroup 2378 struct kmp_taskgroup *parent; // parent taskgroup 2379 // Block of data to perform task reduction 2380 void *reduce_data; // reduction related info 2381 kmp_int32 reduce_num_data; // number of data items to reduce 2382 uintptr_t *gomp_data; // gomp reduction data 2383 } kmp_taskgroup_t; 2384 2385 // forward declarations 2386 typedef union kmp_depnode kmp_depnode_t; 2387 typedef struct kmp_depnode_list kmp_depnode_list_t; 2388 typedef struct kmp_dephash_entry kmp_dephash_entry_t; 2389 2390 // macros for checking dep flag as an integer 2391 #define KMP_DEP_IN 0x1 2392 #define KMP_DEP_OUT 0x2 2393 #define KMP_DEP_INOUT 0x3 2394 #define KMP_DEP_MTX 0x4 2395 #define KMP_DEP_SET 0x8 2396 #define KMP_DEP_ALL 0x80 2397 // Compiler sends us this info: 2398 typedef struct kmp_depend_info { 2399 kmp_intptr_t base_addr; 2400 size_t len; 2401 union { 2402 kmp_uint8 flag; // flag as an unsigned char 2403 struct { // flag as a set of 8 bits 2404 unsigned in : 1; 2405 unsigned out : 1; 2406 unsigned mtx : 1; 2407 unsigned set : 1; 2408 unsigned unused : 3; 2409 unsigned all : 1; 2410 } flags; 2411 }; 2412 } kmp_depend_info_t; 2413 2414 // Internal structures to work with task dependencies: 2415 struct kmp_depnode_list { 2416 kmp_depnode_t *node; 2417 kmp_depnode_list_t *next; 2418 }; 2419 2420 // Max number of mutexinoutset dependencies per node 2421 #define MAX_MTX_DEPS 4 2422 2423 typedef struct kmp_base_depnode { 2424 kmp_depnode_list_t *successors; /* used under lock */ 2425 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */ 2426 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */ 2427 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */ 2428 kmp_lock_t lock; /* guards shared fields: task, successors */ 2429 #if KMP_SUPPORT_GRAPH_OUTPUT 2430 kmp_uint32 id; 2431 #endif 2432 std::atomic<kmp_int32> npredecessors; 2433 std::atomic<kmp_int32> nrefs; 2434 } kmp_base_depnode_t; 2435 2436 union KMP_ALIGN_CACHE kmp_depnode { 2437 double dn_align; /* use worst case alignment */ 2438 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)]; 2439 kmp_base_depnode_t dn; 2440 }; 2441 2442 struct kmp_dephash_entry { 2443 kmp_intptr_t addr; 2444 kmp_depnode_t *last_out; 2445 kmp_depnode_list_t *last_set; 2446 kmp_depnode_list_t *prev_set; 2447 kmp_uint8 last_flag; 2448 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */ 2449 kmp_dephash_entry_t *next_in_bucket; 2450 }; 2451 2452 typedef struct kmp_dephash { 2453 kmp_dephash_entry_t **buckets; 2454 size_t size; 2455 kmp_depnode_t *last_all; 2456 size_t generation; 2457 kmp_uint32 nelements; 2458 kmp_uint32 nconflicts; 2459 } kmp_dephash_t; 2460 2461 typedef struct kmp_task_affinity_info { 2462 kmp_intptr_t base_addr; 2463 size_t len; 2464 struct { 2465 bool flag1 : 1; 2466 bool flag2 : 1; 2467 kmp_int32 reserved : 30; 2468 } flags; 2469 } kmp_task_affinity_info_t; 2470 2471 typedef enum kmp_event_type_t { 2472 KMP_EVENT_UNINITIALIZED = 0, 2473 KMP_EVENT_ALLOW_COMPLETION = 1 2474 } kmp_event_type_t; 2475 2476 typedef struct { 2477 kmp_event_type_t type; 2478 kmp_tas_lock_t lock; 2479 union { 2480 kmp_task_t *task; 2481 } ed; 2482 } kmp_event_t; 2483 2484 #ifdef BUILD_TIED_TASK_STACK 2485 2486 /* Tied Task stack definitions */ 2487 typedef struct kmp_stack_block { 2488 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE]; 2489 struct kmp_stack_block *sb_next; 2490 struct kmp_stack_block *sb_prev; 2491 } kmp_stack_block_t; 2492 2493 typedef struct kmp_task_stack { 2494 kmp_stack_block_t ts_first_block; // first block of stack entries 2495 kmp_taskdata_t **ts_top; // pointer to the top of stack 2496 kmp_int32 ts_entries; // number of entries on the stack 2497 } kmp_task_stack_t; 2498 2499 #endif // BUILD_TIED_TASK_STACK 2500 2501 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */ 2502 /* Compiler flags */ /* Total compiler flags must be 16 bits */ 2503 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */ 2504 unsigned final : 1; /* task is final(1) so execute immediately */ 2505 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0 2506 code path */ 2507 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to 2508 invoke destructors from the runtime */ 2509 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the 2510 context of the RTL) */ 2511 unsigned priority_specified : 1; /* set if the compiler provides priority 2512 setting for the task */ 2513 unsigned detachable : 1; /* 1 == can detach */ 2514 unsigned hidden_helper : 1; /* 1 == hidden helper task */ 2515 unsigned reserved : 8; /* reserved for compiler use */ 2516 2517 /* Library flags */ /* Total library flags must be 16 bits */ 2518 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */ 2519 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0) 2520 unsigned tasking_ser : 1; // all tasks in team are either executed immediately 2521 // (1) or may be deferred (0) 2522 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel 2523 // (0) [>= 2 threads] 2524 /* If either team_serial or tasking_ser is set, task team may be NULL */ 2525 /* Task State Flags: */ 2526 unsigned started : 1; /* 1==started, 0==not started */ 2527 unsigned executing : 1; /* 1==executing, 0==not executing */ 2528 unsigned complete : 1; /* 1==complete, 0==not complete */ 2529 unsigned freed : 1; /* 1==freed, 0==allocated */ 2530 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */ 2531 unsigned reserved31 : 7; /* reserved for library use */ 2532 2533 } kmp_tasking_flags_t; 2534 2535 typedef struct kmp_target_data { 2536 void *async_handle; // libomptarget async handle for task completion query 2537 } kmp_target_data_t; 2538 2539 struct kmp_taskdata { /* aligned during dynamic allocation */ 2540 kmp_int32 td_task_id; /* id, assigned by debugger */ 2541 kmp_tasking_flags_t td_flags; /* task flags */ 2542 kmp_team_t *td_team; /* team for this task */ 2543 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */ 2544 /* Currently not used except for perhaps IDB */ 2545 kmp_taskdata_t *td_parent; /* parent task */ 2546 kmp_int32 td_level; /* task nesting level */ 2547 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter 2548 ident_t *td_ident; /* task identifier */ 2549 // Taskwait data. 2550 ident_t *td_taskwait_ident; 2551 kmp_uint32 td_taskwait_counter; 2552 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */ 2553 KMP_ALIGN_CACHE kmp_internal_control_t 2554 td_icvs; /* Internal control variables for the task */ 2555 KMP_ALIGN_CACHE std::atomic<kmp_int32> 2556 td_allocated_child_tasks; /* Child tasks (+ current task) not yet 2557 deallocated */ 2558 std::atomic<kmp_int32> 2559 td_incomplete_child_tasks; /* Child tasks not yet complete */ 2560 kmp_taskgroup_t 2561 *td_taskgroup; // Each task keeps pointer to its current taskgroup 2562 kmp_dephash_t 2563 *td_dephash; // Dependencies for children tasks are tracked from here 2564 kmp_depnode_t 2565 *td_depnode; // Pointer to graph node if this task has dependencies 2566 kmp_task_team_t *td_task_team; 2567 size_t td_size_alloc; // Size of task structure, including shareds etc. 2568 #if defined(KMP_GOMP_COMPAT) 2569 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop 2570 kmp_int32 td_size_loop_bounds; 2571 #endif 2572 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint 2573 #if defined(KMP_GOMP_COMPAT) 2574 // GOMP sends in a copy function for copy constructors 2575 void (*td_copy_func)(void *, void *); 2576 #endif 2577 kmp_event_t td_allow_completion_event; 2578 #if OMPT_SUPPORT 2579 ompt_task_info_t ompt_task_info; 2580 #endif 2581 kmp_target_data_t td_target_data; 2582 }; // struct kmp_taskdata 2583 2584 // Make sure padding above worked 2585 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0); 2586 2587 // Data for task team but per thread 2588 typedef struct kmp_base_thread_data { 2589 kmp_info_p *td_thr; // Pointer back to thread info 2590 // Used only in __kmp_execute_tasks_template, maybe not avail until task is 2591 // queued? 2592 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque 2593 kmp_taskdata_t * 2594 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated 2595 kmp_int32 td_deque_size; // Size of deck 2596 kmp_uint32 td_deque_head; // Head of deque (will wrap) 2597 kmp_uint32 td_deque_tail; // Tail of deque (will wrap) 2598 kmp_int32 td_deque_ntasks; // Number of tasks in deque 2599 // GEH: shouldn't this be volatile since used in while-spin? 2600 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal 2601 #ifdef BUILD_TIED_TASK_STACK 2602 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task 2603 // scheduling constraint 2604 #endif // BUILD_TIED_TASK_STACK 2605 } kmp_base_thread_data_t; 2606 2607 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE 2608 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS) 2609 2610 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size) 2611 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1) 2612 2613 typedef union KMP_ALIGN_CACHE kmp_thread_data { 2614 kmp_base_thread_data_t td; 2615 double td_align; /* use worst case alignment */ 2616 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)]; 2617 } kmp_thread_data_t; 2618 2619 typedef struct kmp_task_pri { 2620 kmp_thread_data_t td; 2621 kmp_int32 priority; 2622 kmp_task_pri *next; 2623 } kmp_task_pri_t; 2624 2625 // Data for task teams which are used when tasking is enabled for the team 2626 typedef struct kmp_base_task_team { 2627 kmp_bootstrap_lock_t 2628 tt_threads_lock; /* Lock used to allocate per-thread part of task team */ 2629 /* must be bootstrap lock since used at library shutdown*/ 2630 2631 // TODO: check performance vs kmp_tas_lock_t 2632 kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */ 2633 kmp_task_pri_t *tt_task_pri_list; 2634 2635 kmp_task_team_t *tt_next; /* For linking the task team free list */ 2636 kmp_thread_data_t 2637 *tt_threads_data; /* Array of per-thread structures for task team */ 2638 /* Data survives task team deallocation */ 2639 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while 2640 executing this team? */ 2641 /* TRUE means tt_threads_data is set up and initialized */ 2642 kmp_int32 tt_nproc; /* #threads in team */ 2643 kmp_int32 tt_max_threads; // # entries allocated for threads_data array 2644 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier 2645 kmp_int32 tt_untied_task_encountered; 2646 std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued 2647 // There is hidden helper thread encountered in this task team so that we must 2648 // wait when waiting on task team 2649 kmp_int32 tt_hidden_helper_task_encountered; 2650 2651 KMP_ALIGN_CACHE 2652 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */ 2653 2654 KMP_ALIGN_CACHE 2655 volatile kmp_uint32 2656 tt_active; /* is the team still actively executing tasks */ 2657 } kmp_base_task_team_t; 2658 2659 union KMP_ALIGN_CACHE kmp_task_team { 2660 kmp_base_task_team_t tt; 2661 double tt_align; /* use worst case alignment */ 2662 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)]; 2663 }; 2664 2665 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5) 2666 // Free lists keep same-size free memory slots for fast memory allocation 2667 // routines 2668 typedef struct kmp_free_list { 2669 void *th_free_list_self; // Self-allocated tasks free list 2670 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other 2671 // threads 2672 void *th_free_list_other; // Non-self free list (to be returned to owner's 2673 // sync list) 2674 } kmp_free_list_t; 2675 #endif 2676 #if KMP_NESTED_HOT_TEAMS 2677 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams 2678 // are not put in teams pool, and they don't put threads in threads pool. 2679 typedef struct kmp_hot_team_ptr { 2680 kmp_team_p *hot_team; // pointer to hot_team of given nesting level 2681 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team 2682 } kmp_hot_team_ptr_t; 2683 #endif 2684 typedef struct kmp_teams_size { 2685 kmp_int32 nteams; // number of teams in a league 2686 kmp_int32 nth; // number of threads in each team of the league 2687 } kmp_teams_size_t; 2688 2689 // This struct stores a thread that acts as a "root" for a contention 2690 // group. Contention groups are rooted at kmp_root threads, but also at 2691 // each primary thread of each team created in the teams construct. 2692 // This struct therefore also stores a thread_limit associated with 2693 // that contention group, and a counter to track the number of threads 2694 // active in that contention group. Each thread has a list of these: CG 2695 // root threads have an entry in their list in which cg_root refers to 2696 // the thread itself, whereas other workers in the CG will have a 2697 // single entry where cg_root is same as the entry containing their CG 2698 // root. When a thread encounters a teams construct, it will add a new 2699 // entry to the front of its list, because it now roots a new CG. 2700 typedef struct kmp_cg_root { 2701 kmp_info_p *cg_root; // "root" thread for a contention group 2702 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or 2703 // thread_limit clause for teams primary threads 2704 kmp_int32 cg_thread_limit; 2705 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root 2706 struct kmp_cg_root *up; // pointer to higher level CG root in list 2707 } kmp_cg_root_t; 2708 2709 // OpenMP thread data structures 2710 2711 typedef struct KMP_ALIGN_CACHE kmp_base_info { 2712 /* Start with the readonly data which is cache aligned and padded. This is 2713 written before the thread starts working by the primary thread. Uber 2714 masters may update themselves later. Usage does not consider serialized 2715 regions. */ 2716 kmp_desc_t th_info; 2717 kmp_team_p *th_team; /* team we belong to */ 2718 kmp_root_p *th_root; /* pointer to root of task hierarchy */ 2719 kmp_info_p *th_next_pool; /* next available thread in the pool */ 2720 kmp_disp_t *th_dispatch; /* thread's dispatch data */ 2721 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */ 2722 2723 /* The following are cached from the team info structure */ 2724 /* TODO use these in more places as determined to be needed via profiling */ 2725 int th_team_nproc; /* number of threads in a team */ 2726 kmp_info_p *th_team_master; /* the team's primary thread */ 2727 int th_team_serialized; /* team is serialized */ 2728 microtask_t th_teams_microtask; /* save entry address for teams construct */ 2729 int th_teams_level; /* save initial level of teams construct */ 2730 /* it is 0 on device but may be any on host */ 2731 2732 /* The blocktime info is copied from the team struct to the thread struct */ 2733 /* at the start of a barrier, and the values stored in the team are used */ 2734 /* at points in the code where the team struct is no longer guaranteed */ 2735 /* to exist (from the POV of worker threads). */ 2736 #if KMP_USE_MONITOR 2737 int th_team_bt_intervals; 2738 int th_team_bt_set; 2739 #else 2740 kmp_uint64 th_team_bt_intervals; 2741 #endif 2742 2743 #if KMP_AFFINITY_SUPPORTED 2744 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */ 2745 kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */ 2746 kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */ 2747 #endif 2748 omp_allocator_handle_t th_def_allocator; /* default allocator */ 2749 /* The data set by the primary thread at reinit, then R/W by the worker */ 2750 KMP_ALIGN_CACHE int 2751 th_set_nproc; /* if > 0, then only use this request for the next fork */ 2752 #if KMP_NESTED_HOT_TEAMS 2753 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */ 2754 #endif 2755 kmp_proc_bind_t 2756 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */ 2757 kmp_teams_size_t 2758 th_teams_size; /* number of teams/threads in teams construct */ 2759 #if KMP_AFFINITY_SUPPORTED 2760 int th_current_place; /* place currently bound to */ 2761 int th_new_place; /* place to bind to in par reg */ 2762 int th_first_place; /* first place in partition */ 2763 int th_last_place; /* last place in partition */ 2764 #endif 2765 int th_prev_level; /* previous level for affinity format */ 2766 int th_prev_num_threads; /* previous num_threads for affinity format */ 2767 #if USE_ITT_BUILD 2768 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */ 2769 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */ 2770 kmp_uint64 th_frame_time; /* frame timestamp */ 2771 #endif /* USE_ITT_BUILD */ 2772 kmp_local_t th_local; 2773 struct private_common *th_pri_head; 2774 2775 /* Now the data only used by the worker (after initial allocation) */ 2776 /* TODO the first serial team should actually be stored in the info_t 2777 structure. this will help reduce initial allocation overhead */ 2778 KMP_ALIGN_CACHE kmp_team_p 2779 *th_serial_team; /*serialized team held in reserve*/ 2780 2781 #if OMPT_SUPPORT 2782 ompt_thread_info_t ompt_thread_info; 2783 #endif 2784 2785 /* The following are also read by the primary thread during reinit */ 2786 struct common_table *th_pri_common; 2787 2788 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */ 2789 /* while awaiting queuing lock acquire */ 2790 2791 volatile void *th_sleep_loc; // this points at a kmp_flag<T> 2792 flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc 2793 2794 ident_t *th_ident; 2795 unsigned th_x; // Random number generator data 2796 unsigned th_a; // Random number generator data 2797 2798 /* Tasking-related data for the thread */ 2799 kmp_task_team_t *th_task_team; // Task team struct 2800 kmp_taskdata_t *th_current_task; // Innermost Task being executed 2801 kmp_uint8 th_task_state; // alternating 0/1 for task team identification 2802 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state 2803 // at nested levels 2804 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack 2805 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack 2806 kmp_uint32 th_reap_state; // Non-zero indicates thread is not 2807 // tasking, thus safe to reap 2808 2809 /* More stuff for keeping track of active/sleeping threads (this part is 2810 written by the worker thread) */ 2811 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool 2812 int th_active; // ! sleeping; 32 bits for TCR/TCW 2813 std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team 2814 // 0 = not used in team; 1 = used in team; 2815 // 2 = transitioning to not used in team; 3 = transitioning to used in team 2816 struct cons_header *th_cons; // used for consistency check 2817 #if KMP_USE_HIER_SCHED 2818 // used for hierarchical scheduling 2819 kmp_hier_private_bdata_t *th_hier_bar_data; 2820 #endif 2821 2822 /* Add the syncronizing data which is cache aligned and padded. */ 2823 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier]; 2824 2825 KMP_ALIGN_CACHE volatile kmp_int32 2826 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */ 2827 2828 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5) 2829 #define NUM_LISTS 4 2830 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory 2831 // allocation routines 2832 #endif 2833 2834 #if KMP_OS_WINDOWS 2835 kmp_win32_cond_t th_suspend_cv; 2836 kmp_win32_mutex_t th_suspend_mx; 2837 std::atomic<int> th_suspend_init; 2838 #endif 2839 #if KMP_OS_UNIX 2840 kmp_cond_align_t th_suspend_cv; 2841 kmp_mutex_align_t th_suspend_mx; 2842 std::atomic<int> th_suspend_init_count; 2843 #endif 2844 2845 #if USE_ITT_BUILD 2846 kmp_itt_mark_t th_itt_mark_single; 2847 // alignment ??? 2848 #endif /* USE_ITT_BUILD */ 2849 #if KMP_STATS_ENABLED 2850 kmp_stats_list *th_stats; 2851 #endif 2852 #if KMP_OS_UNIX 2853 std::atomic<bool> th_blocking; 2854 #endif 2855 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread 2856 } kmp_base_info_t; 2857 2858 typedef union KMP_ALIGN_CACHE kmp_info { 2859 double th_align; /* use worst case alignment */ 2860 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)]; 2861 kmp_base_info_t th; 2862 } kmp_info_t; 2863 2864 // OpenMP thread team data structures 2865 2866 typedef struct kmp_base_data { 2867 volatile kmp_uint32 t_value; 2868 } kmp_base_data_t; 2869 2870 typedef union KMP_ALIGN_CACHE kmp_sleep_team { 2871 double dt_align; /* use worst case alignment */ 2872 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2873 kmp_base_data_t dt; 2874 } kmp_sleep_team_t; 2875 2876 typedef union KMP_ALIGN_CACHE kmp_ordered_team { 2877 double dt_align; /* use worst case alignment */ 2878 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 2879 kmp_base_data_t dt; 2880 } kmp_ordered_team_t; 2881 2882 typedef int (*launch_t)(int gtid); 2883 2884 /* Minimum number of ARGV entries to malloc if necessary */ 2885 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100 2886 2887 // Set up how many argv pointers will fit in cache lines containing 2888 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a 2889 // larger value for more space between the primary write/worker read section and 2890 // read/write by all section seems to buy more performance on EPCC PARALLEL. 2891 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2892 #define KMP_INLINE_ARGV_BYTES \ 2893 (4 * CACHE_LINE - \ 2894 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \ 2895 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \ 2896 CACHE_LINE)) 2897 #else 2898 #define KMP_INLINE_ARGV_BYTES \ 2899 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE)) 2900 #endif 2901 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP) 2902 2903 typedef struct KMP_ALIGN_CACHE kmp_base_team { 2904 // Synchronization Data 2905 // --------------------------------------------------------------------------- 2906 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered; 2907 kmp_balign_team_t t_bar[bs_last_barrier]; 2908 std::atomic<int> t_construct; // count of single directive encountered by team 2909 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron 2910 2911 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups 2912 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier 2913 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions 2914 2915 // Primary thread only 2916 // --------------------------------------------------------------------------- 2917 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team 2918 int t_master_this_cons; // "this_construct" single counter of primary thread 2919 // in parent team 2920 ident_t *t_ident; // if volatile, have to change too much other crud to 2921 // volatile too 2922 kmp_team_p *t_parent; // parent team 2923 kmp_team_p *t_next_pool; // next free team in the team pool 2924 kmp_disp_t *t_dispatch; // thread's dispatch data 2925 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2 2926 kmp_proc_bind_t t_proc_bind; // bind type for par region 2927 #if USE_ITT_BUILD 2928 kmp_uint64 t_region_time; // region begin timestamp 2929 #endif /* USE_ITT_BUILD */ 2930 2931 // Primary thread write, workers read 2932 // -------------------------------------------------------------------------- 2933 KMP_ALIGN_CACHE void **t_argv; 2934 int t_argc; 2935 int t_nproc; // number of threads in team 2936 microtask_t t_pkfn; 2937 launch_t t_invoke; // procedure to launch the microtask 2938 2939 #if OMPT_SUPPORT 2940 ompt_team_info_t ompt_team_info; 2941 ompt_lw_taskteam_t *ompt_serialized_team_info; 2942 #endif 2943 2944 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2945 kmp_int8 t_fp_control_saved; 2946 kmp_int8 t_pad2b; 2947 kmp_int16 t_x87_fpu_control_word; // FP control regs 2948 kmp_uint32 t_mxcsr; 2949 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2950 2951 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES]; 2952 2953 KMP_ALIGN_CACHE kmp_info_t **t_threads; 2954 kmp_taskdata_t 2955 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task 2956 int t_level; // nested parallel level 2957 2958 KMP_ALIGN_CACHE int t_max_argc; 2959 int t_max_nproc; // max threads this team can handle (dynamically expandable) 2960 int t_serialized; // levels deep of serialized teams 2961 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system 2962 int t_id; // team's id, assigned by debugger. 2963 int t_active_level; // nested active parallel level 2964 kmp_r_sched_t t_sched; // run-time schedule for the team 2965 #if KMP_AFFINITY_SUPPORTED 2966 int t_first_place; // first & last place in parent thread's partition. 2967 int t_last_place; // Restore these values to primary thread after par region. 2968 #endif // KMP_AFFINITY_SUPPORTED 2969 int t_display_affinity; 2970 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via 2971 // omp_set_num_threads() call 2972 omp_allocator_handle_t t_def_allocator; /* default allocator */ 2973 2974 // Read/write by workers as well 2975 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 2976 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf 2977 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra 2978 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when 2979 // CACHE_LINE=64. TODO: investigate more and get rid if this padding. 2980 char dummy_padding[1024]; 2981 #endif 2982 // Internal control stack for additional nested teams. 2983 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top; 2984 // for SERIALIZED teams nested 2 or more levels deep 2985 // typed flag to store request state of cancellation 2986 std::atomic<kmp_int32> t_cancel_request; 2987 int t_master_active; // save on fork, restore on join 2988 void *t_copypriv_data; // team specific pointer to copyprivate data array 2989 #if KMP_OS_WINDOWS 2990 std::atomic<kmp_uint32> t_copyin_counter; 2991 #endif 2992 #if USE_ITT_BUILD 2993 void *t_stack_id; // team specific stack stitching id (for ittnotify) 2994 #endif /* USE_ITT_BUILD */ 2995 distributedBarrier *b; // Distributed barrier data associated with team 2996 } kmp_base_team_t; 2997 2998 union KMP_ALIGN_CACHE kmp_team { 2999 kmp_base_team_t t; 3000 double t_align; /* use worst case alignment */ 3001 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)]; 3002 }; 3003 3004 typedef union KMP_ALIGN_CACHE kmp_time_global { 3005 double dt_align; /* use worst case alignment */ 3006 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 3007 kmp_base_data_t dt; 3008 } kmp_time_global_t; 3009 3010 typedef struct kmp_base_global { 3011 /* cache-aligned */ 3012 kmp_time_global_t g_time; 3013 3014 /* non cache-aligned */ 3015 volatile int g_abort; 3016 volatile int g_done; 3017 3018 int g_dynamic; 3019 enum dynamic_mode g_dynamic_mode; 3020 } kmp_base_global_t; 3021 3022 typedef union KMP_ALIGN_CACHE kmp_global { 3023 kmp_base_global_t g; 3024 double g_align; /* use worst case alignment */ 3025 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)]; 3026 } kmp_global_t; 3027 3028 typedef struct kmp_base_root { 3029 // TODO: GEH - combine r_active with r_in_parallel then r_active == 3030 // (r_in_parallel>= 0) 3031 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce 3032 // the synch overhead or keeping r_active 3033 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */ 3034 // keeps a count of active parallel regions per root 3035 std::atomic<int> r_in_parallel; 3036 // GEH: This is misnamed, should be r_active_levels 3037 kmp_team_t *r_root_team; 3038 kmp_team_t *r_hot_team; 3039 kmp_info_t *r_uber_thread; 3040 kmp_lock_t r_begin_lock; 3041 volatile int r_begin; 3042 int r_blocktime; /* blocktime for this root and descendants */ 3043 #if KMP_AFFINITY_SUPPORTED 3044 int r_affinity_assigned; 3045 #endif // KMP_AFFINITY_SUPPORTED 3046 } kmp_base_root_t; 3047 3048 typedef union KMP_ALIGN_CACHE kmp_root { 3049 kmp_base_root_t r; 3050 double r_align; /* use worst case alignment */ 3051 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)]; 3052 } kmp_root_t; 3053 3054 struct fortran_inx_info { 3055 kmp_int32 data; 3056 }; 3057 3058 // This list type exists to hold old __kmp_threads arrays so that 3059 // old references to them may complete while reallocation takes place when 3060 // expanding the array. The items in this list are kept alive until library 3061 // shutdown. 3062 typedef struct kmp_old_threads_list_t { 3063 kmp_info_t **threads; 3064 struct kmp_old_threads_list_t *next; 3065 } kmp_old_threads_list_t; 3066 3067 /* ------------------------------------------------------------------------ */ 3068 3069 extern int __kmp_settings; 3070 extern int __kmp_duplicate_library_ok; 3071 #if USE_ITT_BUILD 3072 extern int __kmp_forkjoin_frames; 3073 extern int __kmp_forkjoin_frames_mode; 3074 #endif 3075 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method; 3076 extern int __kmp_determ_red; 3077 3078 #ifdef KMP_DEBUG 3079 extern int kmp_a_debug; 3080 extern int kmp_b_debug; 3081 extern int kmp_c_debug; 3082 extern int kmp_d_debug; 3083 extern int kmp_e_debug; 3084 extern int kmp_f_debug; 3085 #endif /* KMP_DEBUG */ 3086 3087 /* For debug information logging using rotating buffer */ 3088 #define KMP_DEBUG_BUF_LINES_INIT 512 3089 #define KMP_DEBUG_BUF_LINES_MIN 1 3090 3091 #define KMP_DEBUG_BUF_CHARS_INIT 128 3092 #define KMP_DEBUG_BUF_CHARS_MIN 2 3093 3094 extern int 3095 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */ 3096 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */ 3097 extern int 3098 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */ 3099 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer 3100 entry pointer */ 3101 3102 extern char *__kmp_debug_buffer; /* Debug buffer itself */ 3103 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines 3104 printed in buffer so far */ 3105 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase 3106 recommended in warnings */ 3107 /* end rotating debug buffer */ 3108 3109 #ifdef KMP_DEBUG 3110 extern int __kmp_par_range; /* +1 => only go par for constructs in range */ 3111 3112 #define KMP_PAR_RANGE_ROUTINE_LEN 1024 3113 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN]; 3114 #define KMP_PAR_RANGE_FILENAME_LEN 1024 3115 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN]; 3116 extern int __kmp_par_range_lb; 3117 extern int __kmp_par_range_ub; 3118 #endif 3119 3120 /* For printing out dynamic storage map for threads and teams */ 3121 extern int 3122 __kmp_storage_map; /* True means print storage map for threads and teams */ 3123 extern int __kmp_storage_map_verbose; /* True means storage map includes 3124 placement info */ 3125 extern int __kmp_storage_map_verbose_specified; 3126 3127 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 3128 extern kmp_cpuinfo_t __kmp_cpuinfo; 3129 static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; } 3130 #elif KMP_OS_DARWIN && KMP_ARCH_AARCH64 3131 static inline bool __kmp_is_hybrid_cpu() { return true; } 3132 #else 3133 static inline bool __kmp_is_hybrid_cpu() { return false; } 3134 #endif 3135 3136 extern volatile int __kmp_init_serial; 3137 extern volatile int __kmp_init_gtid; 3138 extern volatile int __kmp_init_common; 3139 extern volatile int __kmp_need_register_serial; 3140 extern volatile int __kmp_init_middle; 3141 extern volatile int __kmp_init_parallel; 3142 #if KMP_USE_MONITOR 3143 extern volatile int __kmp_init_monitor; 3144 #endif 3145 extern volatile int __kmp_init_user_locks; 3146 extern volatile int __kmp_init_hidden_helper_threads; 3147 extern int __kmp_init_counter; 3148 extern int __kmp_root_counter; 3149 extern int __kmp_version; 3150 3151 /* list of address of allocated caches for commons */ 3152 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list; 3153 3154 /* Barrier algorithm types and options */ 3155 extern kmp_uint32 __kmp_barrier_gather_bb_dflt; 3156 extern kmp_uint32 __kmp_barrier_release_bb_dflt; 3157 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt; 3158 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt; 3159 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier]; 3160 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier]; 3161 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier]; 3162 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier]; 3163 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier]; 3164 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier]; 3165 extern char const *__kmp_barrier_type_name[bs_last_barrier]; 3166 extern char const *__kmp_barrier_pattern_name[bp_last_bar]; 3167 3168 /* Global Locks */ 3169 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */ 3170 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */ 3171 extern kmp_bootstrap_lock_t __kmp_task_team_lock; 3172 extern kmp_bootstrap_lock_t 3173 __kmp_exit_lock; /* exit() is not always thread-safe */ 3174 #if KMP_USE_MONITOR 3175 extern kmp_bootstrap_lock_t 3176 __kmp_monitor_lock; /* control monitor thread creation */ 3177 #endif 3178 extern kmp_bootstrap_lock_t 3179 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and 3180 __kmp_threads expansion to co-exist */ 3181 3182 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */ 3183 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */ 3184 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */ 3185 3186 extern enum library_type __kmp_library; 3187 3188 extern enum sched_type __kmp_sched; /* default runtime scheduling */ 3189 extern enum sched_type __kmp_static; /* default static scheduling method */ 3190 extern enum sched_type __kmp_guided; /* default guided scheduling method */ 3191 extern enum sched_type __kmp_auto; /* default auto scheduling method */ 3192 extern int __kmp_chunk; /* default runtime chunk size */ 3193 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */ 3194 3195 extern size_t __kmp_stksize; /* stack size per thread */ 3196 #if KMP_USE_MONITOR 3197 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */ 3198 #endif 3199 extern size_t __kmp_stkoffset; /* stack offset per thread */ 3200 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */ 3201 3202 extern size_t 3203 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */ 3204 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */ 3205 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */ 3206 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */ 3207 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified? 3208 extern int __kmp_generate_warnings; /* should we issue warnings? */ 3209 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */ 3210 3211 #ifdef DEBUG_SUSPEND 3212 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */ 3213 #endif 3214 3215 extern kmp_int32 __kmp_use_yield; 3216 extern kmp_int32 __kmp_use_yield_exp_set; 3217 extern kmp_uint32 __kmp_yield_init; 3218 extern kmp_uint32 __kmp_yield_next; 3219 extern kmp_uint64 __kmp_pause_init; 3220 3221 /* ------------------------------------------------------------------------- */ 3222 extern int __kmp_allThreadsSpecified; 3223 3224 extern size_t __kmp_align_alloc; 3225 /* following data protected by initialization routines */ 3226 extern int __kmp_xproc; /* number of processors in the system */ 3227 extern int __kmp_avail_proc; /* number of processors available to the process */ 3228 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */ 3229 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */ 3230 // maximum total number of concurrently-existing threads on device 3231 extern int __kmp_max_nth; 3232 // maximum total number of concurrently-existing threads in a contention group 3233 extern int __kmp_cg_max_nth; 3234 extern int __kmp_teams_max_nth; // max threads used in a teams construct 3235 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and 3236 __kmp_root */ 3237 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel 3238 region a la OMP_NUM_THREADS */ 3239 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial 3240 initialization */ 3241 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is 3242 used (fixed) */ 3243 extern int __kmp_tp_cached; /* whether threadprivate cache has been created 3244 (__kmpc_threadprivate_cached()) */ 3245 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before 3246 blocking (env setting) */ 3247 extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */ 3248 #if KMP_USE_MONITOR 3249 extern int 3250 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */ 3251 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before 3252 blocking */ 3253 #endif 3254 #ifdef KMP_ADJUST_BLOCKTIME 3255 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */ 3256 #endif /* KMP_ADJUST_BLOCKTIME */ 3257 #ifdef KMP_DFLT_NTH_CORES 3258 extern int __kmp_ncores; /* Total number of cores for threads placement */ 3259 #endif 3260 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */ 3261 extern int __kmp_abort_delay; 3262 3263 extern int __kmp_need_register_atfork_specified; 3264 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork 3265 to install fork handler */ 3266 extern int __kmp_gtid_mode; /* Method of getting gtid, values: 3267 0 - not set, will be set at runtime 3268 1 - using stack search 3269 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS 3270 X*) or TlsGetValue(Windows* OS)) 3271 3 - static TLS (__declspec(thread) __kmp_gtid), 3272 Linux* OS .so only. */ 3273 extern int 3274 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */ 3275 #ifdef KMP_TDATA_GTID 3276 extern KMP_THREAD_LOCAL int __kmp_gtid; 3277 #endif 3278 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */ 3279 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread 3280 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 3281 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork 3282 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg 3283 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */ 3284 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 3285 3286 // max_active_levels for nested parallelism enabled by default via 3287 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND 3288 extern int __kmp_dflt_max_active_levels; 3289 // Indicates whether value of __kmp_dflt_max_active_levels was already 3290 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false 3291 extern bool __kmp_dflt_max_active_levels_set; 3292 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in 3293 concurrent execution per team */ 3294 #if KMP_NESTED_HOT_TEAMS 3295 extern int __kmp_hot_teams_mode; 3296 extern int __kmp_hot_teams_max_level; 3297 #endif 3298 3299 #if KMP_OS_LINUX 3300 extern enum clock_function_type __kmp_clock_function; 3301 extern int __kmp_clock_function_param; 3302 #endif /* KMP_OS_LINUX */ 3303 3304 #if KMP_MIC_SUPPORTED 3305 extern enum mic_type __kmp_mic_type; 3306 #endif 3307 3308 #ifdef USE_LOAD_BALANCE 3309 extern double __kmp_load_balance_interval; // load balance algorithm interval 3310 #endif /* USE_LOAD_BALANCE */ 3311 3312 // OpenMP 3.1 - Nested num threads array 3313 typedef struct kmp_nested_nthreads_t { 3314 int *nth; 3315 int size; 3316 int used; 3317 } kmp_nested_nthreads_t; 3318 3319 extern kmp_nested_nthreads_t __kmp_nested_nth; 3320 3321 #if KMP_USE_ADAPTIVE_LOCKS 3322 3323 // Parameters for the speculative lock backoff system. 3324 struct kmp_adaptive_backoff_params_t { 3325 // Number of soft retries before it counts as a hard retry. 3326 kmp_uint32 max_soft_retries; 3327 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to 3328 // the right 3329 kmp_uint32 max_badness; 3330 }; 3331 3332 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params; 3333 3334 #if KMP_DEBUG_ADAPTIVE_LOCKS 3335 extern const char *__kmp_speculative_statsfile; 3336 #endif 3337 3338 #endif // KMP_USE_ADAPTIVE_LOCKS 3339 3340 extern int __kmp_display_env; /* TRUE or FALSE */ 3341 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */ 3342 extern int __kmp_omp_cancellation; /* TRUE or FALSE */ 3343 extern int __kmp_nteams; 3344 extern int __kmp_teams_thread_limit; 3345 3346 /* ------------------------------------------------------------------------- */ 3347 3348 /* the following are protected by the fork/join lock */ 3349 /* write: lock read: anytime */ 3350 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */ 3351 /* Holds old arrays of __kmp_threads until library shutdown */ 3352 extern kmp_old_threads_list_t *__kmp_old_threads_list; 3353 /* read/write: lock */ 3354 extern volatile kmp_team_t *__kmp_team_pool; 3355 extern volatile kmp_info_t *__kmp_thread_pool; 3356 extern kmp_info_t *__kmp_thread_pool_insert_pt; 3357 3358 // total num threads reachable from some root thread including all root threads 3359 extern volatile int __kmp_nth; 3360 /* total number of threads reachable from some root thread including all root 3361 threads, and those in the thread pool */ 3362 extern volatile int __kmp_all_nth; 3363 extern std::atomic<int> __kmp_thread_pool_active_nth; 3364 3365 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */ 3366 /* end data protected by fork/join lock */ 3367 /* ------------------------------------------------------------------------- */ 3368 3369 #define __kmp_get_gtid() __kmp_get_global_thread_id() 3370 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg() 3371 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid())) 3372 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team) 3373 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid())) 3374 3375 // AT: Which way is correct? 3376 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc; 3377 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc; 3378 #define __kmp_get_team_num_threads(gtid) \ 3379 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc) 3380 3381 static inline bool KMP_UBER_GTID(int gtid) { 3382 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN); 3383 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity); 3384 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] && 3385 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread); 3386 } 3387 3388 static inline int __kmp_tid_from_gtid(int gtid) { 3389 KMP_DEBUG_ASSERT(gtid >= 0); 3390 return __kmp_threads[gtid]->th.th_info.ds.ds_tid; 3391 } 3392 3393 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) { 3394 KMP_DEBUG_ASSERT(tid >= 0 && team); 3395 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid; 3396 } 3397 3398 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) { 3399 KMP_DEBUG_ASSERT(thr); 3400 return thr->th.th_info.ds.ds_gtid; 3401 } 3402 3403 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) { 3404 KMP_DEBUG_ASSERT(gtid >= 0); 3405 return __kmp_threads[gtid]; 3406 } 3407 3408 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) { 3409 KMP_DEBUG_ASSERT(gtid >= 0); 3410 return __kmp_threads[gtid]->th.th_team; 3411 } 3412 3413 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) { 3414 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity)) 3415 KMP_FATAL(ThreadIdentInvalid); 3416 } 3417 3418 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 3419 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT 3420 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled 3421 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled 3422 extern int __kmp_mwait_hints; // Hints to pass in to mwait 3423 #endif 3424 3425 #if KMP_HAVE_UMWAIT 3426 extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists 3427 extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE 3428 extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE 3429 extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero) 3430 #endif 3431 3432 /* ------------------------------------------------------------------------- */ 3433 3434 extern kmp_global_t __kmp_global; /* global status */ 3435 3436 extern kmp_info_t __kmp_monitor; 3437 // For Debugging Support Library 3438 extern std::atomic<kmp_int32> __kmp_team_counter; 3439 // For Debugging Support Library 3440 extern std::atomic<kmp_int32> __kmp_task_counter; 3441 3442 #if USE_DEBUGGER 3443 #define _KMP_GEN_ID(counter) \ 3444 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0) 3445 #else 3446 #define _KMP_GEN_ID(counter) (~0) 3447 #endif /* USE_DEBUGGER */ 3448 3449 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter) 3450 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter) 3451 3452 /* ------------------------------------------------------------------------ */ 3453 3454 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, 3455 size_t size, char const *format, ...); 3456 3457 extern void __kmp_serial_initialize(void); 3458 extern void __kmp_middle_initialize(void); 3459 extern void __kmp_parallel_initialize(void); 3460 3461 extern void __kmp_internal_begin(void); 3462 extern void __kmp_internal_end_library(int gtid); 3463 extern void __kmp_internal_end_thread(int gtid); 3464 extern void __kmp_internal_end_atexit(void); 3465 extern void __kmp_internal_end_dtor(void); 3466 extern void __kmp_internal_end_dest(void *); 3467 3468 extern int __kmp_register_root(int initial_thread); 3469 extern void __kmp_unregister_root(int gtid); 3470 extern void __kmp_unregister_library(void); // called by __kmp_internal_end() 3471 3472 extern int __kmp_ignore_mppbeg(void); 3473 extern int __kmp_ignore_mppend(void); 3474 3475 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws); 3476 extern void __kmp_exit_single(int gtid); 3477 3478 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref); 3479 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref); 3480 3481 #ifdef USE_LOAD_BALANCE 3482 extern int __kmp_get_load_balance(int); 3483 #endif 3484 3485 extern int __kmp_get_global_thread_id(void); 3486 extern int __kmp_get_global_thread_id_reg(void); 3487 extern void __kmp_exit_thread(int exit_status); 3488 extern void __kmp_abort(char const *format, ...); 3489 extern void __kmp_abort_thread(void); 3490 KMP_NORETURN extern void __kmp_abort_process(void); 3491 extern void __kmp_warn(char const *format, ...); 3492 3493 extern void __kmp_set_num_threads(int new_nth, int gtid); 3494 3495 // Returns current thread (pointer to kmp_info_t). Current thread *must* be 3496 // registered. 3497 static inline kmp_info_t *__kmp_entry_thread() { 3498 int gtid = __kmp_entry_gtid(); 3499 3500 return __kmp_threads[gtid]; 3501 } 3502 3503 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels); 3504 extern int __kmp_get_max_active_levels(int gtid); 3505 extern int __kmp_get_ancestor_thread_num(int gtid, int level); 3506 extern int __kmp_get_team_size(int gtid, int level); 3507 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk); 3508 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk); 3509 3510 extern unsigned short __kmp_get_random(kmp_info_t *thread); 3511 extern void __kmp_init_random(kmp_info_t *thread); 3512 3513 extern kmp_r_sched_t __kmp_get_schedule_global(void); 3514 extern void __kmp_adjust_num_threads(int new_nproc); 3515 extern void __kmp_check_stksize(size_t *val); 3516 3517 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL); 3518 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL); 3519 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL); 3520 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR) 3521 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR) 3522 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR) 3523 3524 #if USE_FAST_MEMORY 3525 extern void *___kmp_fast_allocate(kmp_info_t *this_thr, 3526 size_t size KMP_SRC_LOC_DECL); 3527 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL); 3528 extern void __kmp_free_fast_memory(kmp_info_t *this_thr); 3529 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr); 3530 #define __kmp_fast_allocate(this_thr, size) \ 3531 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR) 3532 #define __kmp_fast_free(this_thr, ptr) \ 3533 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR) 3534 #endif 3535 3536 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL); 3537 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem, 3538 size_t elsize KMP_SRC_LOC_DECL); 3539 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr, 3540 size_t size KMP_SRC_LOC_DECL); 3541 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL); 3542 #define __kmp_thread_malloc(th, size) \ 3543 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR) 3544 #define __kmp_thread_calloc(th, nelem, elsize) \ 3545 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR) 3546 #define __kmp_thread_realloc(th, ptr, size) \ 3547 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR) 3548 #define __kmp_thread_free(th, ptr) \ 3549 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR) 3550 3551 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads); 3552 3553 extern void __kmp_push_proc_bind(ident_t *loc, int gtid, 3554 kmp_proc_bind_t proc_bind); 3555 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams, 3556 int num_threads); 3557 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb, 3558 int num_teams_ub, int num_threads); 3559 3560 extern void __kmp_yield(); 3561 3562 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 3563 enum sched_type schedule, kmp_int32 lb, 3564 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk); 3565 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 3566 enum sched_type schedule, kmp_uint32 lb, 3567 kmp_uint32 ub, kmp_int32 st, 3568 kmp_int32 chunk); 3569 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 3570 enum sched_type schedule, kmp_int64 lb, 3571 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk); 3572 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 3573 enum sched_type schedule, kmp_uint64 lb, 3574 kmp_uint64 ub, kmp_int64 st, 3575 kmp_int64 chunk); 3576 3577 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, 3578 kmp_int32 *p_last, kmp_int32 *p_lb, 3579 kmp_int32 *p_ub, kmp_int32 *p_st); 3580 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, 3581 kmp_int32 *p_last, kmp_uint32 *p_lb, 3582 kmp_uint32 *p_ub, kmp_int32 *p_st); 3583 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, 3584 kmp_int32 *p_last, kmp_int64 *p_lb, 3585 kmp_int64 *p_ub, kmp_int64 *p_st); 3586 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, 3587 kmp_int32 *p_last, kmp_uint64 *p_lb, 3588 kmp_uint64 *p_ub, kmp_int64 *p_st); 3589 3590 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid); 3591 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid); 3592 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid); 3593 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid); 3594 3595 #ifdef KMP_GOMP_COMPAT 3596 3597 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 3598 enum sched_type schedule, kmp_int32 lb, 3599 kmp_int32 ub, kmp_int32 st, 3600 kmp_int32 chunk, int push_ws); 3601 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 3602 enum sched_type schedule, kmp_uint32 lb, 3603 kmp_uint32 ub, kmp_int32 st, 3604 kmp_int32 chunk, int push_ws); 3605 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 3606 enum sched_type schedule, kmp_int64 lb, 3607 kmp_int64 ub, kmp_int64 st, 3608 kmp_int64 chunk, int push_ws); 3609 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 3610 enum sched_type schedule, kmp_uint64 lb, 3611 kmp_uint64 ub, kmp_int64 st, 3612 kmp_int64 chunk, int push_ws); 3613 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid); 3614 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid); 3615 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid); 3616 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid); 3617 3618 #endif /* KMP_GOMP_COMPAT */ 3619 3620 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker); 3621 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker); 3622 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker); 3623 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker); 3624 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker); 3625 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker, 3626 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32), 3627 void *obj); 3628 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker, 3629 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj); 3630 3631 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag, 3632 int final_spin 3633 #if USE_ITT_BUILD 3634 , 3635 void *itt_sync_obj 3636 #endif 3637 ); 3638 extern void __kmp_release_64(kmp_flag_64<> *flag); 3639 3640 extern void __kmp_infinite_loop(void); 3641 3642 extern void __kmp_cleanup(void); 3643 3644 #if KMP_HANDLE_SIGNALS 3645 extern int __kmp_handle_signals; 3646 extern void __kmp_install_signals(int parallel_init); 3647 extern void __kmp_remove_signals(void); 3648 #endif 3649 3650 extern void __kmp_clear_system_time(void); 3651 extern void __kmp_read_system_time(double *delta); 3652 3653 extern void __kmp_check_stack_overlap(kmp_info_t *thr); 3654 3655 extern void __kmp_expand_host_name(char *buffer, size_t size); 3656 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern); 3657 3658 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM)) 3659 extern void 3660 __kmp_initialize_system_tick(void); /* Initialize timer tick value */ 3661 #endif 3662 3663 extern void 3664 __kmp_runtime_initialize(void); /* machine specific initialization */ 3665 extern void __kmp_runtime_destroy(void); 3666 3667 #if KMP_AFFINITY_SUPPORTED 3668 extern char *__kmp_affinity_print_mask(char *buf, int buf_len, 3669 kmp_affin_mask_t *mask); 3670 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 3671 kmp_affin_mask_t *mask); 3672 extern void __kmp_affinity_initialize(kmp_affinity_t &affinity); 3673 extern void __kmp_affinity_uninitialize(void); 3674 extern void __kmp_affinity_set_init_mask( 3675 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */ 3676 extern void __kmp_affinity_set_place(int gtid); 3677 extern void __kmp_affinity_determine_capable(const char *env_var); 3678 extern int __kmp_aux_set_affinity(void **mask); 3679 extern int __kmp_aux_get_affinity(void **mask); 3680 extern int __kmp_aux_get_affinity_max_proc(); 3681 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask); 3682 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask); 3683 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask); 3684 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size); 3685 #if KMP_OS_LINUX || KMP_OS_FREEBSD 3686 extern int kmp_set_thread_affinity_mask_initial(void); 3687 #endif 3688 static inline void __kmp_assign_root_init_mask() { 3689 int gtid = __kmp_entry_gtid(); 3690 kmp_root_t *r = __kmp_threads[gtid]->th.th_root; 3691 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) { 3692 __kmp_affinity_set_init_mask(gtid, TRUE); 3693 r->r.r_affinity_assigned = TRUE; 3694 } 3695 } 3696 static inline void __kmp_reset_root_init_mask(int gtid) { 3697 if (!KMP_AFFINITY_CAPABLE()) 3698 return; 3699 kmp_info_t *th = __kmp_threads[gtid]; 3700 kmp_root_t *r = th->th.th_root; 3701 if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) { 3702 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE); 3703 KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask); 3704 r->r.r_affinity_assigned = FALSE; 3705 } 3706 } 3707 #else /* KMP_AFFINITY_SUPPORTED */ 3708 #define __kmp_assign_root_init_mask() /* Nothing */ 3709 static inline void __kmp_reset_root_init_mask(int gtid) {} 3710 #endif /* KMP_AFFINITY_SUPPORTED */ 3711 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the 3712 // format string is for affinity, so platforms that do not support 3713 // affinity can still use the other fields, e.g., %n for num_threads 3714 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format, 3715 kmp_str_buf_t *buffer); 3716 extern void __kmp_aux_display_affinity(int gtid, const char *format); 3717 3718 extern void __kmp_cleanup_hierarchy(); 3719 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar); 3720 3721 #if KMP_USE_FUTEX 3722 3723 extern int __kmp_futex_determine_capable(void); 3724 3725 #endif // KMP_USE_FUTEX 3726 3727 extern void __kmp_gtid_set_specific(int gtid); 3728 extern int __kmp_gtid_get_specific(void); 3729 3730 extern double __kmp_read_cpu_time(void); 3731 3732 extern int __kmp_read_system_info(struct kmp_sys_info *info); 3733 3734 #if KMP_USE_MONITOR 3735 extern void __kmp_create_monitor(kmp_info_t *th); 3736 #endif 3737 3738 extern void *__kmp_launch_thread(kmp_info_t *thr); 3739 3740 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size); 3741 3742 #if KMP_OS_WINDOWS 3743 extern int __kmp_still_running(kmp_info_t *th); 3744 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val); 3745 extern void __kmp_free_handle(kmp_thread_t tHandle); 3746 #endif 3747 3748 #if KMP_USE_MONITOR 3749 extern void __kmp_reap_monitor(kmp_info_t *th); 3750 #endif 3751 extern void __kmp_reap_worker(kmp_info_t *th); 3752 extern void __kmp_terminate_thread(int gtid); 3753 3754 extern int __kmp_try_suspend_mx(kmp_info_t *th); 3755 extern void __kmp_lock_suspend_mx(kmp_info_t *th); 3756 extern void __kmp_unlock_suspend_mx(kmp_info_t *th); 3757 3758 extern void __kmp_elapsed(double *); 3759 extern void __kmp_elapsed_tick(double *); 3760 3761 extern void __kmp_enable(int old_state); 3762 extern void __kmp_disable(int *old_state); 3763 3764 extern void __kmp_thread_sleep(int millis); 3765 3766 extern void __kmp_common_initialize(void); 3767 extern void __kmp_common_destroy(void); 3768 extern void __kmp_common_destroy_gtid(int gtid); 3769 3770 #if KMP_OS_UNIX 3771 extern void __kmp_register_atfork(void); 3772 #endif 3773 extern void __kmp_suspend_initialize(void); 3774 extern void __kmp_suspend_initialize_thread(kmp_info_t *th); 3775 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th); 3776 3777 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 3778 int tid); 3779 extern kmp_team_t * 3780 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 3781 #if OMPT_SUPPORT 3782 ompt_data_t ompt_parallel_data, 3783 #endif 3784 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs, 3785 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr)); 3786 extern void __kmp_free_thread(kmp_info_t *); 3787 extern void __kmp_free_team(kmp_root_t *, 3788 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *)); 3789 extern kmp_team_t *__kmp_reap_team(kmp_team_t *); 3790 3791 /* ------------------------------------------------------------------------ */ 3792 3793 extern void __kmp_initialize_bget(kmp_info_t *th); 3794 extern void __kmp_finalize_bget(kmp_info_t *th); 3795 3796 KMP_EXPORT void *kmpc_malloc(size_t size); 3797 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment); 3798 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize); 3799 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size); 3800 KMP_EXPORT void kmpc_free(void *ptr); 3801 3802 /* declarations for internal use */ 3803 3804 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split, 3805 size_t reduce_size, void *reduce_data, 3806 void (*reduce)(void *, void *)); 3807 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid); 3808 extern int __kmp_barrier_gomp_cancel(int gtid); 3809 3810 /*! 3811 * Tell the fork call which compiler generated the fork call, and therefore how 3812 * to deal with the call. 3813 */ 3814 enum fork_context_e { 3815 fork_context_gnu, /**< Called from GNU generated code, so must not invoke the 3816 microtask internally. */ 3817 fork_context_intel, /**< Called from Intel generated code. */ 3818 fork_context_last 3819 }; 3820 extern int __kmp_fork_call(ident_t *loc, int gtid, 3821 enum fork_context_e fork_context, kmp_int32 argc, 3822 microtask_t microtask, launch_t invoker, 3823 kmp_va_list ap); 3824 3825 extern void __kmp_join_call(ident_t *loc, int gtid 3826 #if OMPT_SUPPORT 3827 , 3828 enum fork_context_e fork_context 3829 #endif 3830 , 3831 int exit_teams = 0); 3832 3833 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid); 3834 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team); 3835 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team); 3836 extern int __kmp_invoke_task_func(int gtid); 3837 extern void __kmp_run_before_invoked_task(int gtid, int tid, 3838 kmp_info_t *this_thr, 3839 kmp_team_t *team); 3840 extern void __kmp_run_after_invoked_task(int gtid, int tid, 3841 kmp_info_t *this_thr, 3842 kmp_team_t *team); 3843 3844 // should never have been exported 3845 KMP_EXPORT int __kmpc_invoke_task_func(int gtid); 3846 extern int __kmp_invoke_teams_master(int gtid); 3847 extern void __kmp_teams_master(int gtid); 3848 extern int __kmp_aux_get_team_num(); 3849 extern int __kmp_aux_get_num_teams(); 3850 extern void __kmp_save_internal_controls(kmp_info_t *thread); 3851 extern void __kmp_user_set_library(enum library_type arg); 3852 extern void __kmp_aux_set_library(enum library_type arg); 3853 extern void __kmp_aux_set_stacksize(size_t arg); 3854 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid); 3855 extern void __kmp_aux_set_defaults(char const *str, size_t len); 3856 3857 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */ 3858 void kmpc_set_blocktime(int arg); 3859 void ompc_set_nested(int flag); 3860 void ompc_set_dynamic(int flag); 3861 void ompc_set_num_threads(int arg); 3862 3863 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, 3864 kmp_team_t *team, int tid); 3865 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr); 3866 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 3867 kmp_tasking_flags_t *flags, 3868 size_t sizeof_kmp_task_t, 3869 size_t sizeof_shareds, 3870 kmp_routine_entry_t task_entry); 3871 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 3872 kmp_team_t *team, int tid, 3873 int set_curr_task); 3874 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr); 3875 extern void __kmp_free_implicit_task(kmp_info_t *this_thr); 3876 3877 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, 3878 int gtid, 3879 kmp_task_t *task); 3880 extern void __kmp_fulfill_event(kmp_event_t *event); 3881 3882 extern void __kmp_free_task_team(kmp_info_t *thread, 3883 kmp_task_team_t *task_team); 3884 extern void __kmp_reap_task_teams(void); 3885 extern void __kmp_wait_to_unref_task_teams(void); 3886 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, 3887 int always); 3888 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team); 3889 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team 3890 #if USE_ITT_BUILD 3891 , 3892 void *itt_sync_obj 3893 #endif /* USE_ITT_BUILD */ 3894 , 3895 int wait = 1); 3896 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, 3897 int gtid); 3898 3899 extern int __kmp_is_address_mapped(void *addr); 3900 extern kmp_uint64 __kmp_hardware_timestamp(void); 3901 3902 #if KMP_OS_UNIX 3903 extern int __kmp_read_from_file(char const *path, char const *format, ...); 3904 #endif 3905 3906 /* ------------------------------------------------------------------------ */ 3907 // 3908 // Assembly routines that have no compiler intrinsic replacement 3909 // 3910 3911 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc, 3912 void *argv[] 3913 #if OMPT_SUPPORT 3914 , 3915 void **exit_frame_ptr 3916 #endif 3917 ); 3918 3919 /* ------------------------------------------------------------------------ */ 3920 3921 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags); 3922 KMP_EXPORT void __kmpc_end(ident_t *); 3923 3924 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, 3925 kmpc_ctor_vec ctor, 3926 kmpc_cctor_vec cctor, 3927 kmpc_dtor_vec dtor, 3928 size_t vector_length); 3929 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, 3930 kmpc_ctor ctor, kmpc_cctor cctor, 3931 kmpc_dtor dtor); 3932 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid, 3933 void *data, size_t size); 3934 3935 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *); 3936 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *); 3937 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *); 3938 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *); 3939 3940 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *); 3941 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, 3942 kmpc_micro microtask, ...); 3943 KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs, 3944 kmpc_micro microtask, kmp_int32 cond, 3945 void *args); 3946 3947 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid); 3948 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid); 3949 3950 KMP_EXPORT void __kmpc_flush(ident_t *); 3951 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid); 3952 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid); 3953 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid); 3954 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, 3955 kmp_int32 filter); 3956 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid); 3957 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid); 3958 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid); 3959 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, 3960 kmp_critical_name *); 3961 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, 3962 kmp_critical_name *); 3963 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, 3964 kmp_critical_name *, uint32_t hint); 3965 3966 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid); 3967 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid); 3968 3969 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, 3970 kmp_int32 global_tid); 3971 3972 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid); 3973 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid); 3974 3975 KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid); 3976 KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid, 3977 kmp_int32 numberOfSections); 3978 KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid); 3979 3980 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid, 3981 kmp_int32 schedtype, kmp_int32 *plastiter, 3982 kmp_int *plower, kmp_int *pupper, 3983 kmp_int *pstride, kmp_int incr, 3984 kmp_int chunk); 3985 3986 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); 3987 3988 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, 3989 size_t cpy_size, void *cpy_data, 3990 void (*cpy_func)(void *, void *), 3991 kmp_int32 didit); 3992 3993 KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid, 3994 void *cpy_data); 3995 3996 extern void KMPC_SET_NUM_THREADS(int arg); 3997 extern void KMPC_SET_DYNAMIC(int flag); 3998 extern void KMPC_SET_NESTED(int flag); 3999 4000 /* OMP 3.0 tasking interface routines */ 4001 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 4002 kmp_task_t *new_task); 4003 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 4004 kmp_int32 flags, 4005 size_t sizeof_kmp_task_t, 4006 size_t sizeof_shareds, 4007 kmp_routine_entry_t task_entry); 4008 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc( 4009 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, 4010 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id); 4011 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 4012 kmp_task_t *task); 4013 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 4014 kmp_task_t *task); 4015 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 4016 kmp_task_t *new_task); 4017 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid); 4018 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, 4019 int end_part); 4020 4021 #if TASK_UNUSED 4022 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task); 4023 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 4024 kmp_task_t *task); 4025 #endif // TASK_UNUSED 4026 4027 /* ------------------------------------------------------------------------ */ 4028 4029 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid); 4030 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid); 4031 4032 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps( 4033 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, 4034 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, 4035 kmp_depend_info_t *noalias_dep_list); 4036 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, 4037 kmp_int32 ndeps, 4038 kmp_depend_info_t *dep_list, 4039 kmp_int32 ndeps_noalias, 4040 kmp_depend_info_t *noalias_dep_list); 4041 /* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause. 4042 * Placeholder for taskwait with nowait clause.*/ 4043 KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid, 4044 kmp_int32 ndeps, 4045 kmp_depend_info_t *dep_list, 4046 kmp_int32 ndeps_noalias, 4047 kmp_depend_info_t *noalias_dep_list, 4048 kmp_int32 has_no_wait); 4049 4050 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 4051 bool serialize_immediate); 4052 4053 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid, 4054 kmp_int32 cncl_kind); 4055 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid, 4056 kmp_int32 cncl_kind); 4057 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid); 4058 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind); 4059 4060 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask); 4061 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask); 4062 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task, 4063 kmp_int32 if_val, kmp_uint64 *lb, 4064 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup, 4065 kmp_int32 sched, kmp_uint64 grainsize, 4066 void *task_dup); 4067 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid, 4068 kmp_task_t *task, kmp_int32 if_val, 4069 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4070 kmp_int32 nogroup, kmp_int32 sched, 4071 kmp_uint64 grainsize, kmp_int32 modifier, 4072 void *task_dup); 4073 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data); 4074 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data); 4075 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d); 4076 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, 4077 int is_ws, int num, 4078 void *data); 4079 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, 4080 int num, void *data); 4081 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, 4082 int is_ws); 4083 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity( 4084 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, 4085 kmp_task_affinity_info_t *affin_list); 4086 KMP_EXPORT void __kmp_set_num_teams(int num_teams); 4087 KMP_EXPORT int __kmp_get_max_teams(void); 4088 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit); 4089 KMP_EXPORT int __kmp_get_teams_thread_limit(void); 4090 4091 /* Interface target task integration */ 4092 KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid); 4093 KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid); 4094 4095 /* Lock interface routines (fast versions with gtid passed in) */ 4096 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid, 4097 void **user_lock); 4098 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid, 4099 void **user_lock); 4100 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid, 4101 void **user_lock); 4102 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid, 4103 void **user_lock); 4104 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock); 4105 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid, 4106 void **user_lock); 4107 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid, 4108 void **user_lock); 4109 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid, 4110 void **user_lock); 4111 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock); 4112 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid, 4113 void **user_lock); 4114 4115 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid, 4116 void **user_lock, uintptr_t hint); 4117 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid, 4118 void **user_lock, 4119 uintptr_t hint); 4120 4121 /* Interface to fast scalable reduce methods routines */ 4122 4123 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait( 4124 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 4125 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 4126 kmp_critical_name *lck); 4127 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, 4128 kmp_critical_name *lck); 4129 KMP_EXPORT kmp_int32 __kmpc_reduce( 4130 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 4131 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 4132 kmp_critical_name *lck); 4133 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, 4134 kmp_critical_name *lck); 4135 4136 /* Internal fast reduction routines */ 4137 4138 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method( 4139 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 4140 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 4141 kmp_critical_name *lck); 4142 4143 // this function is for testing set/get/determine reduce method 4144 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void); 4145 4146 KMP_EXPORT kmp_uint64 __kmpc_get_taskid(); 4147 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid(); 4148 4149 // C++ port 4150 // missing 'extern "C"' declarations 4151 4152 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc); 4153 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid); 4154 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, 4155 kmp_int32 num_threads); 4156 4157 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, 4158 int proc_bind); 4159 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, 4160 kmp_int32 num_teams, 4161 kmp_int32 num_threads); 4162 /* Function for OpenMP 5.1 num_teams clause */ 4163 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, 4164 kmp_int32 num_teams_lb, 4165 kmp_int32 num_teams_ub, 4166 kmp_int32 num_threads); 4167 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, 4168 kmpc_micro microtask, ...); 4169 struct kmp_dim { // loop bounds info casted to kmp_int64 4170 kmp_int64 lo; // lower 4171 kmp_int64 up; // upper 4172 kmp_int64 st; // stride 4173 }; 4174 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, 4175 kmp_int32 num_dims, 4176 const struct kmp_dim *dims); 4177 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, 4178 const kmp_int64 *vec); 4179 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, 4180 const kmp_int64 *vec); 4181 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); 4182 4183 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, 4184 void *data, size_t size, 4185 void ***cache); 4186 4187 // Symbols for MS mutual detection. 4188 extern int _You_must_link_with_exactly_one_OpenMP_library; 4189 extern int _You_must_link_with_Intel_OpenMP_library; 4190 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4) 4191 extern int _You_must_link_with_Microsoft_OpenMP_library; 4192 #endif 4193 4194 // The routines below are not exported. 4195 // Consider making them 'static' in corresponding source files. 4196 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr, 4197 void *data_addr, size_t pc_size); 4198 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr, 4199 void *data_addr, 4200 size_t pc_size); 4201 void __kmp_threadprivate_resize_cache(int newCapacity); 4202 void __kmp_cleanup_threadprivate_caches(); 4203 4204 // ompc_, kmpc_ entries moved from omp.h. 4205 #if KMP_OS_WINDOWS 4206 #define KMPC_CONVENTION __cdecl 4207 #else 4208 #define KMPC_CONVENTION 4209 #endif 4210 4211 #ifndef __OMP_H 4212 typedef enum omp_sched_t { 4213 omp_sched_static = 1, 4214 omp_sched_dynamic = 2, 4215 omp_sched_guided = 3, 4216 omp_sched_auto = 4 4217 } omp_sched_t; 4218 typedef void *kmp_affinity_mask_t; 4219 #endif 4220 4221 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int); 4222 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int); 4223 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int); 4224 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int); 4225 KMP_EXPORT int KMPC_CONVENTION 4226 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *); 4227 KMP_EXPORT int KMPC_CONVENTION 4228 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *); 4229 KMP_EXPORT int KMPC_CONVENTION 4230 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *); 4231 4232 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int); 4233 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t); 4234 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int); 4235 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *); 4236 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int); 4237 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format); 4238 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size); 4239 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format); 4240 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size, 4241 char const *format); 4242 4243 enum kmp_target_offload_kind { 4244 tgt_disabled = 0, 4245 tgt_default = 1, 4246 tgt_mandatory = 2 4247 }; 4248 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t; 4249 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise 4250 extern kmp_target_offload_kind_t __kmp_target_offload; 4251 extern int __kmpc_get_target_offload(); 4252 4253 // Constants used in libomptarget 4254 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device. 4255 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices". 4256 4257 // OMP Pause Resource 4258 4259 // The following enum is used both to set the status in __kmp_pause_status, and 4260 // as the internal equivalent of the externally-visible omp_pause_resource_t. 4261 typedef enum kmp_pause_status_t { 4262 kmp_not_paused = 0, // status is not paused, or, requesting resume 4263 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause 4264 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause 4265 } kmp_pause_status_t; 4266 4267 // This stores the pause state of the runtime 4268 extern kmp_pause_status_t __kmp_pause_status; 4269 extern int __kmpc_pause_resource(kmp_pause_status_t level); 4270 extern int __kmp_pause_resource(kmp_pause_status_t level); 4271 // Soft resume sets __kmp_pause_status, and wakes up all threads. 4272 extern void __kmp_resume_if_soft_paused(); 4273 // Hard resume simply resets the status to not paused. Library will appear to 4274 // be uninitialized after hard pause. Let OMP constructs trigger required 4275 // initializations. 4276 static inline void __kmp_resume_if_hard_paused() { 4277 if (__kmp_pause_status == kmp_hard_paused) { 4278 __kmp_pause_status = kmp_not_paused; 4279 } 4280 } 4281 4282 extern void __kmp_omp_display_env(int verbose); 4283 4284 // 1: it is initializing hidden helper team 4285 extern volatile int __kmp_init_hidden_helper; 4286 // 1: the hidden helper team is done 4287 extern volatile int __kmp_hidden_helper_team_done; 4288 // 1: enable hidden helper task 4289 extern kmp_int32 __kmp_enable_hidden_helper; 4290 // Main thread of hidden helper team 4291 extern kmp_info_t *__kmp_hidden_helper_main_thread; 4292 // Descriptors for the hidden helper threads 4293 extern kmp_info_t **__kmp_hidden_helper_threads; 4294 // Number of hidden helper threads 4295 extern kmp_int32 __kmp_hidden_helper_threads_num; 4296 // Number of hidden helper tasks that have not been executed yet 4297 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks; 4298 4299 extern void __kmp_hidden_helper_initialize(); 4300 extern void __kmp_hidden_helper_threads_initz_routine(); 4301 extern void __kmp_do_initialize_hidden_helper_threads(); 4302 extern void __kmp_hidden_helper_threads_initz_wait(); 4303 extern void __kmp_hidden_helper_initz_release(); 4304 extern void __kmp_hidden_helper_threads_deinitz_wait(); 4305 extern void __kmp_hidden_helper_threads_deinitz_release(); 4306 extern void __kmp_hidden_helper_main_thread_wait(); 4307 extern void __kmp_hidden_helper_worker_thread_wait(); 4308 extern void __kmp_hidden_helper_worker_thread_signal(); 4309 extern void __kmp_hidden_helper_main_thread_release(); 4310 4311 // Check whether a given thread is a hidden helper thread 4312 #define KMP_HIDDEN_HELPER_THREAD(gtid) \ 4313 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num) 4314 4315 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \ 4316 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num) 4317 4318 #define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid) \ 4319 ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num) 4320 4321 #define KMP_HIDDEN_HELPER_TEAM(team) \ 4322 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread) 4323 4324 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a 4325 // main thread, is skipped. 4326 #define KMP_GTID_TO_SHADOW_GTID(gtid) \ 4327 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2) 4328 4329 // Return the adjusted gtid value by subtracting from gtid the number 4330 // of hidden helper threads. This adjusted value is the gtid the thread would 4331 // have received if there were no hidden helper threads. 4332 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) { 4333 int adjusted_gtid = gtid; 4334 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 && 4335 gtid - __kmp_hidden_helper_threads_num >= 0) { 4336 adjusted_gtid -= __kmp_hidden_helper_threads_num; 4337 } 4338 return adjusted_gtid; 4339 } 4340 4341 // Support for error directive 4342 typedef enum kmp_severity_t { 4343 severity_warning = 1, 4344 severity_fatal = 2 4345 } kmp_severity_t; 4346 extern void __kmpc_error(ident_t *loc, int severity, const char *message); 4347 4348 // Support for scope directive 4349 KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved); 4350 KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved); 4351 4352 #ifdef __cplusplus 4353 } 4354 #endif 4355 4356 template <bool C, bool S> 4357 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag); 4358 template <bool C, bool S> 4359 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag); 4360 template <bool C, bool S> 4361 extern void __kmp_atomic_suspend_64(int th_gtid, 4362 kmp_atomic_flag_64<C, S> *flag); 4363 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag); 4364 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 4365 template <bool C, bool S> 4366 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag); 4367 template <bool C, bool S> 4368 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag); 4369 template <bool C, bool S> 4370 extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag); 4371 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag); 4372 #endif 4373 template <bool C, bool S> 4374 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag); 4375 template <bool C, bool S> 4376 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag); 4377 template <bool C, bool S> 4378 extern void __kmp_atomic_resume_64(int target_gtid, 4379 kmp_atomic_flag_64<C, S> *flag); 4380 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag); 4381 4382 template <bool C, bool S> 4383 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid, 4384 kmp_flag_32<C, S> *flag, int final_spin, 4385 int *thread_finished, 4386 #if USE_ITT_BUILD 4387 void *itt_sync_obj, 4388 #endif /* USE_ITT_BUILD */ 4389 kmp_int32 is_constrained); 4390 template <bool C, bool S> 4391 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid, 4392 kmp_flag_64<C, S> *flag, int final_spin, 4393 int *thread_finished, 4394 #if USE_ITT_BUILD 4395 void *itt_sync_obj, 4396 #endif /* USE_ITT_BUILD */ 4397 kmp_int32 is_constrained); 4398 template <bool C, bool S> 4399 int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid, 4400 kmp_atomic_flag_64<C, S> *flag, 4401 int final_spin, int *thread_finished, 4402 #if USE_ITT_BUILD 4403 void *itt_sync_obj, 4404 #endif /* USE_ITT_BUILD */ 4405 kmp_int32 is_constrained); 4406 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid, 4407 kmp_flag_oncore *flag, int final_spin, 4408 int *thread_finished, 4409 #if USE_ITT_BUILD 4410 void *itt_sync_obj, 4411 #endif /* USE_ITT_BUILD */ 4412 kmp_int32 is_constrained); 4413 4414 extern int __kmp_nesting_mode; 4415 extern int __kmp_nesting_mode_nlevels; 4416 extern int *__kmp_nesting_nth_level; 4417 extern void __kmp_init_nesting_mode(); 4418 extern void __kmp_set_nesting_mode_threads(); 4419 4420 /// This class safely opens and closes a C-style FILE* object using RAII 4421 /// semantics. There are also methods which allow using stdout or stderr as 4422 /// the underlying FILE* object. With the implicit conversion operator to 4423 /// FILE*, an object with this type can be used in any function which takes 4424 /// a FILE* object e.g., fprintf(). 4425 /// No close method is needed at use sites. 4426 class kmp_safe_raii_file_t { 4427 FILE *f; 4428 4429 void close() { 4430 if (f && f != stdout && f != stderr) { 4431 fclose(f); 4432 f = nullptr; 4433 } 4434 } 4435 4436 public: 4437 kmp_safe_raii_file_t() : f(nullptr) {} 4438 kmp_safe_raii_file_t(const char *filename, const char *mode, 4439 const char *env_var = nullptr) 4440 : f(nullptr) { 4441 open(filename, mode, env_var); 4442 } 4443 ~kmp_safe_raii_file_t() { close(); } 4444 4445 /// Open filename using mode. This is automatically closed in the destructor. 4446 /// The env_var parameter indicates the environment variable the filename 4447 /// came from if != nullptr. 4448 void open(const char *filename, const char *mode, 4449 const char *env_var = nullptr) { 4450 KMP_ASSERT(!f); 4451 f = fopen(filename, mode); 4452 if (!f) { 4453 int code = errno; 4454 if (env_var) { 4455 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4456 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null); 4457 } else { 4458 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4459 __kmp_msg_null); 4460 } 4461 } 4462 } 4463 /// Instead of erroring out, return non-zero when 4464 /// unsuccessful fopen() for any reason 4465 int try_open(const char *filename, const char *mode) { 4466 KMP_ASSERT(!f); 4467 f = fopen(filename, mode); 4468 if (!f) 4469 return errno; 4470 return 0; 4471 } 4472 /// Set the FILE* object to stdout and output there 4473 /// No open call should happen before this call. 4474 void set_stdout() { 4475 KMP_ASSERT(!f); 4476 f = stdout; 4477 } 4478 /// Set the FILE* object to stderr and output there 4479 /// No open call should happen before this call. 4480 void set_stderr() { 4481 KMP_ASSERT(!f); 4482 f = stderr; 4483 } 4484 operator bool() { return bool(f); } 4485 operator FILE *() { return f; } 4486 }; 4487 4488 template <typename SourceType, typename TargetType, 4489 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)), 4490 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)), 4491 bool isSourceSigned = std::is_signed<SourceType>::value, 4492 bool isTargetSigned = std::is_signed<TargetType>::value> 4493 struct kmp_convert {}; 4494 4495 // Both types are signed; Source smaller 4496 template <typename SourceType, typename TargetType> 4497 struct kmp_convert<SourceType, TargetType, true, false, true, true> { 4498 static TargetType to(SourceType src) { return (TargetType)src; } 4499 }; 4500 // Source equal 4501 template <typename SourceType, typename TargetType> 4502 struct kmp_convert<SourceType, TargetType, false, true, true, true> { 4503 static TargetType to(SourceType src) { return src; } 4504 }; 4505 // Source bigger 4506 template <typename SourceType, typename TargetType> 4507 struct kmp_convert<SourceType, TargetType, false, false, true, true> { 4508 static TargetType to(SourceType src) { 4509 KMP_ASSERT(src <= static_cast<SourceType>( 4510 (std::numeric_limits<TargetType>::max)())); 4511 KMP_ASSERT(src >= static_cast<SourceType>( 4512 (std::numeric_limits<TargetType>::min)())); 4513 return (TargetType)src; 4514 } 4515 }; 4516 4517 // Source signed, Target unsigned 4518 // Source smaller 4519 template <typename SourceType, typename TargetType> 4520 struct kmp_convert<SourceType, TargetType, true, false, true, false> { 4521 static TargetType to(SourceType src) { 4522 KMP_ASSERT(src >= 0); 4523 return (TargetType)src; 4524 } 4525 }; 4526 // Source equal 4527 template <typename SourceType, typename TargetType> 4528 struct kmp_convert<SourceType, TargetType, false, true, true, false> { 4529 static TargetType to(SourceType src) { 4530 KMP_ASSERT(src >= 0); 4531 return (TargetType)src; 4532 } 4533 }; 4534 // Source bigger 4535 template <typename SourceType, typename TargetType> 4536 struct kmp_convert<SourceType, TargetType, false, false, true, false> { 4537 static TargetType to(SourceType src) { 4538 KMP_ASSERT(src >= 0); 4539 KMP_ASSERT(src <= static_cast<SourceType>( 4540 (std::numeric_limits<TargetType>::max)())); 4541 return (TargetType)src; 4542 } 4543 }; 4544 4545 // Source unsigned, Target signed 4546 // Source smaller 4547 template <typename SourceType, typename TargetType> 4548 struct kmp_convert<SourceType, TargetType, true, false, false, true> { 4549 static TargetType to(SourceType src) { return (TargetType)src; } 4550 }; 4551 // Source equal 4552 template <typename SourceType, typename TargetType> 4553 struct kmp_convert<SourceType, TargetType, false, true, false, true> { 4554 static TargetType to(SourceType src) { 4555 KMP_ASSERT(src <= static_cast<SourceType>( 4556 (std::numeric_limits<TargetType>::max)())); 4557 return (TargetType)src; 4558 } 4559 }; 4560 // Source bigger 4561 template <typename SourceType, typename TargetType> 4562 struct kmp_convert<SourceType, TargetType, false, false, false, true> { 4563 static TargetType to(SourceType src) { 4564 KMP_ASSERT(src <= static_cast<SourceType>( 4565 (std::numeric_limits<TargetType>::max)())); 4566 return (TargetType)src; 4567 } 4568 }; 4569 4570 // Source unsigned, Target unsigned 4571 // Source smaller 4572 template <typename SourceType, typename TargetType> 4573 struct kmp_convert<SourceType, TargetType, true, false, false, false> { 4574 static TargetType to(SourceType src) { return (TargetType)src; } 4575 }; 4576 // Source equal 4577 template <typename SourceType, typename TargetType> 4578 struct kmp_convert<SourceType, TargetType, false, true, false, false> { 4579 static TargetType to(SourceType src) { return src; } 4580 }; 4581 // Source bigger 4582 template <typename SourceType, typename TargetType> 4583 struct kmp_convert<SourceType, TargetType, false, false, false, false> { 4584 static TargetType to(SourceType src) { 4585 KMP_ASSERT(src <= static_cast<SourceType>( 4586 (std::numeric_limits<TargetType>::max)())); 4587 return (TargetType)src; 4588 } 4589 }; 4590 4591 template <typename T1, typename T2> 4592 static inline void __kmp_type_convert(T1 src, T2 *dest) { 4593 *dest = kmp_convert<T1, T2>::to(src); 4594 } 4595 4596 #endif /* KMP_H */ 4597