1 /*! \file */ 2 /* 3 * kmp.h -- KPTS runtime header file. 4 */ 5 6 //===----------------------------------------------------------------------===// 7 // 8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 9 // See https://llvm.org/LICENSE.txt for license information. 10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef KMP_H 15 #define KMP_H 16 17 #include "kmp_config.h" 18 19 /* #define BUILD_PARALLEL_ORDERED 1 */ 20 21 /* This fix replaces gettimeofday with clock_gettime for better scalability on 22 the Altix. Requires user code to be linked with -lrt. */ 23 //#define FIX_SGI_CLOCK 24 25 /* Defines for OpenMP 3.0 tasking and auto scheduling */ 26 27 #ifndef KMP_STATIC_STEAL_ENABLED 28 #define KMP_STATIC_STEAL_ENABLED 1 29 #endif 30 #define KMP_WEIGHTED_ITERATIONS_SUPPORTED \ 31 (KMP_AFFINITY_SUPPORTED && KMP_STATIC_STEAL_ENABLED && \ 32 (KMP_ARCH_X86 || KMP_ARCH_X86_64)) 33 34 #define TASK_CURRENT_NOT_QUEUED 0 35 #define TASK_CURRENT_QUEUED 1 36 37 #ifdef BUILD_TIED_TASK_STACK 38 #define TASK_STACK_EMPTY 0 // entries when the stack is empty 39 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK 40 // Number of entries in each task stack array 41 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS) 42 // Mask for determining index into stack block 43 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1) 44 #endif // BUILD_TIED_TASK_STACK 45 46 #define TASK_NOT_PUSHED 1 47 #define TASK_SUCCESSFULLY_PUSHED 0 48 #define TASK_TIED 1 49 #define TASK_UNTIED 0 50 #define TASK_EXPLICIT 1 51 #define TASK_IMPLICIT 0 52 #define TASK_PROXY 1 53 #define TASK_FULL 0 54 #define TASK_DETACHABLE 1 55 #define TASK_UNDETACHABLE 0 56 57 #define KMP_CANCEL_THREADS 58 #define KMP_THREAD_ATTR 59 60 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being 61 // built on Android 62 #if defined(__ANDROID__) 63 #undef KMP_CANCEL_THREADS 64 #endif 65 66 // Some WASI targets (e.g., wasm32-wasi-threads) do not support thread 67 // cancellation. 68 #if KMP_OS_WASI 69 #undef KMP_CANCEL_THREADS 70 #endif 71 72 #if !KMP_OS_WASI 73 #include <signal.h> 74 #endif 75 #include <stdarg.h> 76 #include <stddef.h> 77 #include <stdio.h> 78 #include <stdlib.h> 79 #include <string.h> 80 #include <limits> 81 #include <type_traits> 82 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad 83 Microsoft library. Some macros provided below to replace these functions */ 84 #ifndef __ABSOFT_WIN 85 #include <sys/types.h> 86 #endif 87 #include <limits.h> 88 #include <time.h> 89 90 #include <errno.h> 91 92 #include "kmp_os.h" 93 94 #include "kmp_safe_c_api.h" 95 96 #if KMP_STATS_ENABLED 97 class kmp_stats_list; 98 #endif 99 100 #if KMP_USE_HIER_SCHED 101 // Only include hierarchical scheduling if affinity is supported 102 #undef KMP_USE_HIER_SCHED 103 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED 104 #endif 105 106 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED 107 #include "hwloc.h" 108 #ifndef HWLOC_OBJ_NUMANODE 109 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE 110 #endif 111 #ifndef HWLOC_OBJ_PACKAGE 112 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET 113 #endif 114 #endif 115 116 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 117 #include <xmmintrin.h> 118 #endif 119 120 // The below has to be defined before including "kmp_barrier.h". 121 #define KMP_INTERNAL_MALLOC(sz) malloc(sz) 122 #define KMP_INTERNAL_FREE(p) free(p) 123 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz)) 124 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz)) 125 126 #include "kmp_debug.h" 127 #include "kmp_lock.h" 128 #include "kmp_version.h" 129 #include "kmp_barrier.h" 130 #if USE_DEBUGGER 131 #include "kmp_debugger.h" 132 #endif 133 #include "kmp_i18n.h" 134 135 #define KMP_HANDLE_SIGNALS ((KMP_OS_UNIX && !KMP_OS_WASI) || KMP_OS_WINDOWS) 136 137 #include "kmp_wrapper_malloc.h" 138 #if KMP_OS_UNIX 139 #include <unistd.h> 140 #if !defined NSIG && defined _NSIG 141 #define NSIG _NSIG 142 #endif 143 #endif 144 145 #if KMP_OS_LINUX 146 #pragma weak clock_gettime 147 #endif 148 149 #if OMPT_SUPPORT 150 #include "ompt-internal.h" 151 #endif 152 153 #if OMPD_SUPPORT 154 #include "ompd-specific.h" 155 #endif 156 157 #ifndef UNLIKELY 158 #define UNLIKELY(x) (x) 159 #endif 160 161 // Affinity format function 162 #include "kmp_str.h" 163 164 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64. 165 // 3 - fast allocation using sync, non-sync free lists of any size, non-self 166 // free lists of limited size. 167 #ifndef USE_FAST_MEMORY 168 #define USE_FAST_MEMORY 3 169 #endif 170 171 #ifndef KMP_NESTED_HOT_TEAMS 172 #define KMP_NESTED_HOT_TEAMS 0 173 #define USE_NESTED_HOT_ARG(x) 174 #else 175 #if KMP_NESTED_HOT_TEAMS 176 #define USE_NESTED_HOT_ARG(x) , x 177 #else 178 #define USE_NESTED_HOT_ARG(x) 179 #endif 180 #endif 181 182 // Assume using BGET compare_exchange instruction instead of lock by default. 183 #ifndef USE_CMP_XCHG_FOR_BGET 184 #define USE_CMP_XCHG_FOR_BGET 1 185 #endif 186 187 // Test to see if queuing lock is better than bootstrap lock for bget 188 // #ifndef USE_QUEUING_LOCK_FOR_BGET 189 // #define USE_QUEUING_LOCK_FOR_BGET 190 // #endif 191 192 #define KMP_NSEC_PER_SEC 1000000000L 193 #define KMP_USEC_PER_SEC 1000000L 194 #define KMP_NSEC_PER_USEC 1000L 195 196 /*! 197 @ingroup BASIC_TYPES 198 @{ 199 */ 200 201 /*! 202 Values for bit flags used in the ident_t to describe the fields. 203 */ 204 enum { 205 /*! Use trampoline for internal microtasks */ 206 KMP_IDENT_IMB = 0x01, 207 /*! Use c-style ident structure */ 208 KMP_IDENT_KMPC = 0x02, 209 /* 0x04 is no longer used */ 210 /*! Entry point generated by auto-parallelization */ 211 KMP_IDENT_AUTOPAR = 0x08, 212 /*! Compiler generates atomic reduction option for kmpc_reduce* */ 213 KMP_IDENT_ATOMIC_REDUCE = 0x10, 214 /*! To mark a 'barrier' directive in user code */ 215 KMP_IDENT_BARRIER_EXPL = 0x20, 216 /*! To Mark implicit barriers. */ 217 KMP_IDENT_BARRIER_IMPL = 0x0040, 218 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0, 219 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040, 220 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0, 221 222 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140, 223 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0, 224 225 /*! To mark a static loop in OMPT callbacks */ 226 KMP_IDENT_WORK_LOOP = 0x200, 227 /*! To mark a sections directive in OMPT callbacks */ 228 KMP_IDENT_WORK_SECTIONS = 0x400, 229 /*! To mark a distribute construct in OMPT callbacks */ 230 KMP_IDENT_WORK_DISTRIBUTE = 0x800, 231 /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and 232 not currently used. If one day we need more bits, then we can use 233 an invalid combination of hints to mean that another, larger field 234 should be used in a different flag. */ 235 KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000, 236 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000, 237 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000, 238 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000, 239 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000, 240 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000 241 }; 242 243 /*! 244 * The ident structure that describes a source location. 245 */ 246 typedef struct ident { 247 kmp_int32 reserved_1; /**< might be used in Fortran; see above */ 248 kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC 249 identifies this union member */ 250 kmp_int32 reserved_2; /**< not really used in Fortran any more; see above */ 251 #if USE_ITT_BUILD 252 /* but currently used for storing region-specific ITT */ 253 /* contextual information. */ 254 #endif /* USE_ITT_BUILD */ 255 kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++ */ 256 char const *psource; /**< String describing the source location. 257 The string is composed of semi-colon separated fields 258 which describe the source file, the function and a pair 259 of line numbers that delimit the construct. */ 260 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0) 261 kmp_int32 get_openmp_version() { 262 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF); 263 } 264 } ident_t; 265 /*! 266 @} 267 */ 268 269 // Some forward declarations. 270 typedef union kmp_team kmp_team_t; 271 typedef struct kmp_taskdata kmp_taskdata_t; 272 typedef union kmp_task_team kmp_task_team_t; 273 typedef union kmp_team kmp_team_p; 274 typedef union kmp_info kmp_info_p; 275 typedef union kmp_root kmp_root_p; 276 277 template <bool C = false, bool S = true> class kmp_flag_32; 278 template <bool C = false, bool S = true> class kmp_flag_64; 279 template <bool C = false, bool S = true> class kmp_atomic_flag_64; 280 class kmp_flag_oncore; 281 282 #ifdef __cplusplus 283 extern "C" { 284 #endif 285 286 /* ------------------------------------------------------------------------ */ 287 288 /* Pack two 32-bit signed integers into a 64-bit signed integer */ 289 /* ToDo: Fix word ordering for big-endian machines. */ 290 #define KMP_PACK_64(HIGH_32, LOW_32) \ 291 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32))) 292 293 // Generic string manipulation macros. Assume that _x is of type char * 294 #define SKIP_WS(_x) \ 295 { \ 296 while (*(_x) == ' ' || *(_x) == '\t') \ 297 (_x)++; \ 298 } 299 #define SKIP_DIGITS(_x) \ 300 { \ 301 while (*(_x) >= '0' && *(_x) <= '9') \ 302 (_x)++; \ 303 } 304 #define SKIP_TOKEN(_x) \ 305 { \ 306 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \ 307 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \ 308 (_x)++; \ 309 } 310 #define SKIP_TO(_x, _c) \ 311 { \ 312 while (*(_x) != '\0' && *(_x) != (_c)) \ 313 (_x)++; \ 314 } 315 316 /* ------------------------------------------------------------------------ */ 317 318 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y)) 319 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 320 321 /* ------------------------------------------------------------------------ */ 322 /* Enumeration types */ 323 324 enum kmp_state_timer { 325 ts_stop, 326 ts_start, 327 ts_pause, 328 329 ts_last_state 330 }; 331 332 enum dynamic_mode { 333 dynamic_default, 334 #ifdef USE_LOAD_BALANCE 335 dynamic_load_balance, 336 #endif /* USE_LOAD_BALANCE */ 337 dynamic_random, 338 dynamic_thread_limit, 339 dynamic_max 340 }; 341 342 /* external schedule constants, duplicate enum omp_sched in omp.h in order to 343 * not include it here */ 344 #ifndef KMP_SCHED_TYPE_DEFINED 345 #define KMP_SCHED_TYPE_DEFINED 346 typedef enum kmp_sched { 347 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check 348 // Note: need to adjust __kmp_sch_map global array in case enum is changed 349 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33) 350 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35) 351 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36) 352 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38) 353 kmp_sched_upper_std = 5, // upper bound for standard schedules 354 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules 355 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39) 356 #if KMP_STATIC_STEAL_ENABLED 357 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44) 358 #endif 359 kmp_sched_upper, 360 kmp_sched_default = kmp_sched_static, // default scheduling 361 kmp_sched_monotonic = 0x80000000 362 } kmp_sched_t; 363 #endif 364 365 /*! 366 @ingroup WORK_SHARING 367 * Describes the loop schedule to be used for a parallel for loop. 368 */ 369 enum sched_type : kmp_int32 { 370 kmp_sch_lower = 32, /**< lower bound for unordered values */ 371 kmp_sch_static_chunked = 33, 372 kmp_sch_static = 34, /**< static unspecialized */ 373 kmp_sch_dynamic_chunked = 35, 374 kmp_sch_guided_chunked = 36, /**< guided unspecialized */ 375 kmp_sch_runtime = 37, 376 kmp_sch_auto = 38, /**< auto */ 377 kmp_sch_trapezoidal = 39, 378 379 /* accessible only through KMP_SCHEDULE environment variable */ 380 kmp_sch_static_greedy = 40, 381 kmp_sch_static_balanced = 41, 382 /* accessible only through KMP_SCHEDULE environment variable */ 383 kmp_sch_guided_iterative_chunked = 42, 384 kmp_sch_guided_analytical_chunked = 43, 385 /* accessible only through KMP_SCHEDULE environment variable */ 386 kmp_sch_static_steal = 44, 387 388 /* static with chunk adjustment (e.g., simd) */ 389 kmp_sch_static_balanced_chunked = 45, 390 kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */ 391 kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */ 392 393 /* accessible only through KMP_SCHEDULE environment variable */ 394 kmp_sch_upper, /**< upper bound for unordered values */ 395 396 kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */ 397 kmp_ord_static_chunked = 65, 398 kmp_ord_static = 66, /**< ordered static unspecialized */ 399 kmp_ord_dynamic_chunked = 67, 400 kmp_ord_guided_chunked = 68, 401 kmp_ord_runtime = 69, 402 kmp_ord_auto = 70, /**< ordered auto */ 403 kmp_ord_trapezoidal = 71, 404 kmp_ord_upper, /**< upper bound for ordered values */ 405 406 /* Schedules for Distribute construct */ 407 kmp_distribute_static_chunked = 91, /**< distribute static chunked */ 408 kmp_distribute_static = 92, /**< distribute static unspecialized */ 409 410 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a 411 single iteration/chunk, even if the loop is serialized. For the schedule 412 types listed above, the entire iteration vector is returned if the loop is 413 serialized. This doesn't work for gcc/gcomp sections. */ 414 kmp_nm_lower = 160, /**< lower bound for nomerge values */ 415 416 kmp_nm_static_chunked = 417 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower), 418 kmp_nm_static = 162, /**< static unspecialized */ 419 kmp_nm_dynamic_chunked = 163, 420 kmp_nm_guided_chunked = 164, /**< guided unspecialized */ 421 kmp_nm_runtime = 165, 422 kmp_nm_auto = 166, /**< auto */ 423 kmp_nm_trapezoidal = 167, 424 425 /* accessible only through KMP_SCHEDULE environment variable */ 426 kmp_nm_static_greedy = 168, 427 kmp_nm_static_balanced = 169, 428 /* accessible only through KMP_SCHEDULE environment variable */ 429 kmp_nm_guided_iterative_chunked = 170, 430 kmp_nm_guided_analytical_chunked = 171, 431 kmp_nm_static_steal = 432 172, /* accessible only through OMP_SCHEDULE environment variable */ 433 434 kmp_nm_ord_static_chunked = 193, 435 kmp_nm_ord_static = 194, /**< ordered static unspecialized */ 436 kmp_nm_ord_dynamic_chunked = 195, 437 kmp_nm_ord_guided_chunked = 196, 438 kmp_nm_ord_runtime = 197, 439 kmp_nm_ord_auto = 198, /**< auto */ 440 kmp_nm_ord_trapezoidal = 199, 441 kmp_nm_upper, /**< upper bound for nomerge values */ 442 443 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since 444 we need to distinguish the three possible cases (no modifier, monotonic 445 modifier, nonmonotonic modifier), we need separate bits for each modifier. 446 The absence of monotonic does not imply nonmonotonic, especially since 4.5 447 says that the behaviour of the "no modifier" case is implementation defined 448 in 4.5, but will become "nonmonotonic" in 5.0. 449 450 Since we're passing a full 32 bit value, we can use a couple of high bits 451 for these flags; out of paranoia we avoid the sign bit. 452 453 These modifiers can be or-ed into non-static schedules by the compiler to 454 pass the additional information. They will be stripped early in the 455 processing in __kmp_dispatch_init when setting up schedules, so most of the 456 code won't ever see schedules with these bits set. */ 457 kmp_sch_modifier_monotonic = 458 (1 << 29), /**< Set if the monotonic schedule modifier was present */ 459 kmp_sch_modifier_nonmonotonic = 460 (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */ 461 462 #define SCHEDULE_WITHOUT_MODIFIERS(s) \ 463 (enum sched_type)( \ 464 (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) 465 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0) 466 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0) 467 #define SCHEDULE_HAS_NO_MODIFIERS(s) \ 468 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0) 469 #define SCHEDULE_GET_MODIFIERS(s) \ 470 ((enum sched_type)( \ 471 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))) 472 #define SCHEDULE_SET_MODIFIERS(s, m) \ 473 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m)) 474 #define SCHEDULE_NONMONOTONIC 0 475 #define SCHEDULE_MONOTONIC 1 476 477 kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */ 478 }; 479 480 // Apply modifiers on internal kind to standard kind 481 static inline void 482 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind, 483 enum sched_type internal_kind) { 484 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) { 485 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic); 486 } 487 } 488 489 // Apply modifiers on standard kind to internal kind 490 static inline void 491 __kmp_sched_apply_mods_intkind(kmp_sched_t kind, 492 enum sched_type *internal_kind) { 493 if ((int)kind & (int)kmp_sched_monotonic) { 494 *internal_kind = (enum sched_type)((int)*internal_kind | 495 (int)kmp_sch_modifier_monotonic); 496 } 497 } 498 499 // Get standard schedule without modifiers 500 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) { 501 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic)); 502 } 503 504 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */ 505 typedef union kmp_r_sched { 506 struct { 507 enum sched_type r_sched_type; 508 int chunk; 509 }; 510 kmp_int64 sched; 511 } kmp_r_sched_t; 512 513 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our 514 // internal schedule types 515 516 enum library_type { 517 library_none, 518 library_serial, 519 library_turnaround, 520 library_throughput 521 }; 522 523 #if KMP_OS_LINUX 524 enum clock_function_type { 525 clock_function_gettimeofday, 526 clock_function_clock_gettime 527 }; 528 #endif /* KMP_OS_LINUX */ 529 530 #if KMP_MIC_SUPPORTED 531 enum mic_type { non_mic, mic1, mic2, mic3, dummy }; 532 #endif 533 534 /* -- fast reduction stuff ------------------------------------------------ */ 535 536 #undef KMP_FAST_REDUCTION_BARRIER 537 #define KMP_FAST_REDUCTION_BARRIER 1 538 539 #undef KMP_FAST_REDUCTION_CORE_DUO 540 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 541 #define KMP_FAST_REDUCTION_CORE_DUO 1 542 #endif 543 544 enum _reduction_method { 545 reduction_method_not_defined = 0, 546 critical_reduce_block = (1 << 8), 547 atomic_reduce_block = (2 << 8), 548 tree_reduce_block = (3 << 8), 549 empty_reduce_block = (4 << 8) 550 }; 551 552 // Description of the packed_reduction_method variable: 553 // The packed_reduction_method variable consists of two enum types variables 554 // that are packed together into 0-th byte and 1-st byte: 555 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of 556 // barrier that will be used in fast reduction: bs_plain_barrier or 557 // bs_reduction_barrier 558 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will 559 // be used in fast reduction; 560 // Reduction method is of 'enum _reduction_method' type and it's defined the way 561 // so that the bits of 0-th byte are empty, so no need to execute a shift 562 // instruction while packing/unpacking 563 564 #if KMP_FAST_REDUCTION_BARRIER 565 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \ 566 ((reduction_method) | (barrier_type)) 567 568 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ 569 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00))) 570 571 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \ 572 ((enum barrier_type)((packed_reduction_method) & (0x000000FF))) 573 #else 574 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \ 575 (reduction_method) 576 577 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ 578 (packed_reduction_method) 579 580 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier) 581 #endif 582 583 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \ 584 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \ 585 (which_reduction_block)) 586 587 #if KMP_FAST_REDUCTION_BARRIER 588 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \ 589 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier)) 590 591 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \ 592 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier)) 593 #endif 594 595 typedef int PACKED_REDUCTION_METHOD_T; 596 597 /* -- end of fast reduction stuff ----------------------------------------- */ 598 599 #if KMP_OS_WINDOWS 600 #define USE_CBLKDATA 601 #if KMP_MSVC_COMPAT 602 #pragma warning(push) 603 #pragma warning(disable : 271 310) 604 #endif 605 #include <windows.h> 606 #if KMP_MSVC_COMPAT 607 #pragma warning(pop) 608 #endif 609 #endif 610 611 #if KMP_OS_UNIX 612 #if !KMP_OS_WASI 613 #include <dlfcn.h> 614 #endif 615 #include <pthread.h> 616 #endif 617 618 enum kmp_hw_t : int { 619 KMP_HW_UNKNOWN = -1, 620 KMP_HW_SOCKET = 0, 621 KMP_HW_PROC_GROUP, 622 KMP_HW_NUMA, 623 KMP_HW_DIE, 624 KMP_HW_LLC, 625 KMP_HW_L3, 626 KMP_HW_TILE, 627 KMP_HW_MODULE, 628 KMP_HW_L2, 629 KMP_HW_L1, 630 KMP_HW_CORE, 631 KMP_HW_THREAD, 632 KMP_HW_LAST 633 }; 634 635 typedef enum kmp_hw_core_type_t { 636 KMP_HW_CORE_TYPE_UNKNOWN = 0x0, 637 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 638 KMP_HW_CORE_TYPE_ATOM = 0x20, 639 KMP_HW_CORE_TYPE_CORE = 0x40, 640 KMP_HW_MAX_NUM_CORE_TYPES = 3, 641 #else 642 KMP_HW_MAX_NUM_CORE_TYPES = 1, 643 #endif 644 } kmp_hw_core_type_t; 645 646 #define KMP_HW_MAX_NUM_CORE_EFFS 8 647 648 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \ 649 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST) 650 #define KMP_ASSERT_VALID_HW_TYPE(type) \ 651 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST) 652 653 #define KMP_FOREACH_HW_TYPE(type) \ 654 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \ 655 type = (kmp_hw_t)((int)type + 1)) 656 657 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false); 658 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false); 659 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type); 660 661 /* Only Linux* OS and Windows* OS support thread affinity. */ 662 #if KMP_AFFINITY_SUPPORTED 663 664 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later). 665 #if KMP_OS_WINDOWS 666 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT 667 typedef struct GROUP_AFFINITY { 668 KAFFINITY Mask; 669 WORD Group; 670 WORD Reserved[3]; 671 } GROUP_AFFINITY; 672 #endif /* _MSC_VER < 1600 */ 673 #if KMP_GROUP_AFFINITY 674 extern int __kmp_num_proc_groups; 675 #else 676 static const int __kmp_num_proc_groups = 1; 677 #endif /* KMP_GROUP_AFFINITY */ 678 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD); 679 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount; 680 681 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void); 682 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount; 683 684 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *); 685 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity; 686 687 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *, 688 GROUP_AFFINITY *); 689 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity; 690 #endif /* KMP_OS_WINDOWS */ 691 692 #if KMP_USE_HWLOC 693 extern hwloc_topology_t __kmp_hwloc_topology; 694 extern int __kmp_hwloc_error; 695 #endif 696 697 extern size_t __kmp_affin_mask_size; 698 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0) 699 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0) 700 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size) 701 #define KMP_CPU_SET_ITERATE(i, mask) \ 702 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i)) 703 #define KMP_CPU_SET(i, mask) (mask)->set(i) 704 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i) 705 #define KMP_CPU_CLR(i, mask) (mask)->clear(i) 706 #define KMP_CPU_ZERO(mask) (mask)->zero() 707 #define KMP_CPU_ISEMPTY(mask) (mask)->empty() 708 #define KMP_CPU_COPY(dest, src) (dest)->copy(src) 709 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src) 710 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not() 711 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src) 712 #define KMP_CPU_EQUAL(dest, src) (dest)->is_equal(src) 713 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask()) 714 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr) 715 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr) 716 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr) 717 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr) 718 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr) 719 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i) 720 #define KMP_CPU_ALLOC_ARRAY(arr, n) \ 721 (arr = __kmp_affinity_dispatch->allocate_mask_array(n)) 722 #define KMP_CPU_FREE_ARRAY(arr, n) \ 723 __kmp_affinity_dispatch->deallocate_mask_array(arr) 724 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n) 725 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n) 726 #define __kmp_get_system_affinity(mask, abort_bool) \ 727 (mask)->get_system_affinity(abort_bool) 728 #define __kmp_set_system_affinity(mask, abort_bool) \ 729 (mask)->set_system_affinity(abort_bool) 730 #define __kmp_get_proc_group(mask) (mask)->get_proc_group() 731 732 class KMPAffinity { 733 public: 734 class Mask { 735 public: 736 void *operator new(size_t n); 737 void operator delete(void *p); 738 void *operator new[](size_t n); 739 void operator delete[](void *p); 740 virtual ~Mask() {} 741 // Set bit i to 1 742 virtual void set(int i) {} 743 // Return bit i 744 virtual bool is_set(int i) const { return false; } 745 // Set bit i to 0 746 virtual void clear(int i) {} 747 // Zero out entire mask 748 virtual void zero() {} 749 // Check whether mask is empty 750 virtual bool empty() const { return true; } 751 // Copy src into this mask 752 virtual void copy(const Mask *src) {} 753 // this &= rhs 754 virtual void bitwise_and(const Mask *rhs) {} 755 // this |= rhs 756 virtual void bitwise_or(const Mask *rhs) {} 757 // this = ~this 758 virtual void bitwise_not() {} 759 // this == rhs 760 virtual bool is_equal(const Mask *rhs) const { return false; } 761 // API for iterating over an affinity mask 762 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i)) 763 virtual int begin() const { return 0; } 764 virtual int end() const { return 0; } 765 virtual int next(int previous) const { return 0; } 766 #if KMP_OS_WINDOWS 767 virtual int set_process_affinity(bool abort_on_error) const { return -1; } 768 #endif 769 // Set the system's affinity to this affinity mask's value 770 virtual int set_system_affinity(bool abort_on_error) const { return -1; } 771 // Set this affinity mask to the current system affinity 772 virtual int get_system_affinity(bool abort_on_error) { return -1; } 773 // Only 1 DWORD in the mask should have any procs set. 774 // Return the appropriate index, or -1 for an invalid mask. 775 virtual int get_proc_group() const { return -1; } 776 int get_max_cpu() const { 777 int cpu; 778 int max_cpu = -1; 779 KMP_CPU_SET_ITERATE(cpu, this) { 780 if (cpu > max_cpu) 781 max_cpu = cpu; 782 } 783 return max_cpu; 784 } 785 }; 786 void *operator new(size_t n); 787 void operator delete(void *p); 788 // Need virtual destructor 789 virtual ~KMPAffinity() = default; 790 // Determine if affinity is capable 791 virtual void determine_capable(const char *env_var) {} 792 // Bind the current thread to os proc 793 virtual void bind_thread(int proc) {} 794 // Factory functions to allocate/deallocate a mask 795 virtual Mask *allocate_mask() { return nullptr; } 796 virtual void deallocate_mask(Mask *m) {} 797 virtual Mask *allocate_mask_array(int num) { return nullptr; } 798 virtual void deallocate_mask_array(Mask *m) {} 799 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; } 800 static void pick_api(); 801 static void destroy_api(); 802 enum api_type { 803 NATIVE_OS 804 #if KMP_USE_HWLOC 805 , 806 HWLOC 807 #endif 808 }; 809 virtual api_type get_api_type() const { 810 KMP_ASSERT(0); 811 return NATIVE_OS; 812 } 813 814 private: 815 static bool picked_api; 816 }; 817 818 typedef KMPAffinity::Mask kmp_affin_mask_t; 819 extern KMPAffinity *__kmp_affinity_dispatch; 820 821 class kmp_affinity_raii_t { 822 kmp_affin_mask_t *mask; 823 bool restored; 824 825 public: 826 kmp_affinity_raii_t(const kmp_affin_mask_t *new_mask = nullptr) 827 : restored(false) { 828 if (KMP_AFFINITY_CAPABLE()) { 829 KMP_CPU_ALLOC(mask); 830 KMP_ASSERT(mask != NULL); 831 __kmp_get_system_affinity(mask, /*abort_on_error=*/true); 832 if (new_mask) 833 __kmp_set_system_affinity(new_mask, /*abort_on_error=*/true); 834 } 835 } 836 void restore() { 837 if (!restored && KMP_AFFINITY_CAPABLE()) { 838 __kmp_set_system_affinity(mask, /*abort_on_error=*/true); 839 KMP_CPU_FREE(mask); 840 } 841 restored = true; 842 } 843 ~kmp_affinity_raii_t() { restore(); } 844 }; 845 846 // Declare local char buffers with this size for printing debug and info 847 // messages, using __kmp_affinity_print_mask(). 848 #define KMP_AFFIN_MASK_PRINT_LEN 1024 849 850 enum affinity_type { 851 affinity_none = 0, 852 affinity_physical, 853 affinity_logical, 854 affinity_compact, 855 affinity_scatter, 856 affinity_explicit, 857 affinity_balanced, 858 affinity_disabled, // not used outsize the env var parser 859 affinity_default 860 }; 861 862 enum affinity_top_method { 863 affinity_top_method_all = 0, // try all (supported) methods, in order 864 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 865 affinity_top_method_apicid, 866 affinity_top_method_x2apicid, 867 affinity_top_method_x2apicid_1f, 868 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 869 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too 870 #if KMP_GROUP_AFFINITY 871 affinity_top_method_group, 872 #endif /* KMP_GROUP_AFFINITY */ 873 affinity_top_method_flat, 874 #if KMP_USE_HWLOC 875 affinity_top_method_hwloc, 876 #endif 877 affinity_top_method_default 878 }; 879 880 #define affinity_respect_mask_default (2) 881 882 typedef struct kmp_affinity_flags_t { 883 unsigned dups : 1; 884 unsigned verbose : 1; 885 unsigned warnings : 1; 886 unsigned respect : 2; 887 unsigned reset : 1; 888 unsigned initialized : 1; 889 unsigned core_types_gran : 1; 890 unsigned core_effs_gran : 1; 891 unsigned omp_places : 1; 892 unsigned reserved : 22; 893 } kmp_affinity_flags_t; 894 KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4); 895 896 typedef struct kmp_affinity_ids_t { 897 int os_id; 898 int ids[KMP_HW_LAST]; 899 } kmp_affinity_ids_t; 900 901 typedef struct kmp_affinity_attrs_t { 902 int core_type : 8; 903 int core_eff : 8; 904 unsigned valid : 1; 905 unsigned reserved : 15; 906 } kmp_affinity_attrs_t; 907 #define KMP_AFFINITY_ATTRS_UNKNOWN \ 908 { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 } 909 910 typedef struct kmp_affinity_t { 911 char *proclist; 912 enum affinity_type type; 913 kmp_hw_t gran; 914 int gran_levels; 915 kmp_affinity_attrs_t core_attr_gran; 916 int compact; 917 int offset; 918 kmp_affinity_flags_t flags; 919 unsigned num_masks; 920 kmp_affin_mask_t *masks; 921 kmp_affinity_ids_t *ids; 922 kmp_affinity_attrs_t *attrs; 923 unsigned num_os_id_masks; 924 kmp_affin_mask_t *os_id_masks; 925 const char *env_var; 926 } kmp_affinity_t; 927 928 #define KMP_AFFINITY_INIT(env) \ 929 { \ 930 nullptr, affinity_default, KMP_HW_UNKNOWN, -1, KMP_AFFINITY_ATTRS_UNKNOWN, \ 931 0, 0, \ 932 {TRUE, FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE, \ 933 FALSE, FALSE, FALSE}, \ 934 0, nullptr, nullptr, nullptr, 0, nullptr, env \ 935 } 936 937 extern enum affinity_top_method __kmp_affinity_top_method; 938 extern kmp_affinity_t __kmp_affinity; 939 extern kmp_affinity_t __kmp_hh_affinity; 940 extern kmp_affinity_t *__kmp_affinities[2]; 941 942 extern void __kmp_affinity_bind_thread(int which); 943 944 extern kmp_affin_mask_t *__kmp_affin_fullMask; 945 extern kmp_affin_mask_t *__kmp_affin_origMask; 946 extern char *__kmp_cpuinfo_file; 947 948 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED 949 extern int __kmp_first_osid_with_ecore; 950 #endif 951 952 #endif /* KMP_AFFINITY_SUPPORTED */ 953 954 // This needs to be kept in sync with the values in omp.h !!! 955 typedef enum kmp_proc_bind_t { 956 proc_bind_false = 0, 957 proc_bind_true, 958 proc_bind_primary, 959 proc_bind_close, 960 proc_bind_spread, 961 proc_bind_intel, // use KMP_AFFINITY interface 962 proc_bind_default 963 } kmp_proc_bind_t; 964 965 typedef struct kmp_nested_proc_bind_t { 966 kmp_proc_bind_t *bind_types; 967 int size; 968 int used; 969 } kmp_nested_proc_bind_t; 970 971 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind; 972 extern kmp_proc_bind_t __kmp_teams_proc_bind; 973 974 extern int __kmp_display_affinity; 975 extern char *__kmp_affinity_format; 976 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512; 977 #if OMPT_SUPPORT 978 extern int __kmp_tool; 979 extern char *__kmp_tool_libraries; 980 #endif // OMPT_SUPPORT 981 982 #if KMP_AFFINITY_SUPPORTED 983 #define KMP_PLACE_ALL (-1) 984 #define KMP_PLACE_UNDEFINED (-2) 985 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES? 986 #define KMP_AFFINITY_NON_PROC_BIND \ 987 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \ 988 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \ 989 (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced)) 990 #endif /* KMP_AFFINITY_SUPPORTED */ 991 992 extern int __kmp_affinity_num_places; 993 994 typedef enum kmp_cancel_kind_t { 995 cancel_noreq = 0, 996 cancel_parallel = 1, 997 cancel_loop = 2, 998 cancel_sections = 3, 999 cancel_taskgroup = 4 1000 } kmp_cancel_kind_t; 1001 1002 // KMP_HW_SUBSET support: 1003 typedef struct kmp_hws_item { 1004 int num; 1005 int offset; 1006 } kmp_hws_item_t; 1007 1008 extern kmp_hws_item_t __kmp_hws_socket; 1009 extern kmp_hws_item_t __kmp_hws_die; 1010 extern kmp_hws_item_t __kmp_hws_node; 1011 extern kmp_hws_item_t __kmp_hws_tile; 1012 extern kmp_hws_item_t __kmp_hws_core; 1013 extern kmp_hws_item_t __kmp_hws_proc; 1014 extern int __kmp_hws_requested; 1015 extern int __kmp_hws_abs_flag; // absolute or per-item number requested 1016 1017 /* ------------------------------------------------------------------------ */ 1018 1019 #define KMP_PAD(type, sz) \ 1020 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1)) 1021 1022 // We need to avoid using -1 as a GTID as +1 is added to the gtid 1023 // when storing it in a lock, and the value 0 is reserved. 1024 #define KMP_GTID_DNE (-2) /* Does not exist */ 1025 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */ 1026 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */ 1027 #define KMP_GTID_UNKNOWN (-5) /* Is not known */ 1028 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */ 1029 1030 /* OpenMP 5.0 Memory Management support */ 1031 1032 #ifndef __OMP_H 1033 // Duplicate type definitions from omp.h 1034 typedef uintptr_t omp_uintptr_t; 1035 1036 typedef enum { 1037 omp_atk_sync_hint = 1, 1038 omp_atk_alignment = 2, 1039 omp_atk_access = 3, 1040 omp_atk_pool_size = 4, 1041 omp_atk_fallback = 5, 1042 omp_atk_fb_data = 6, 1043 omp_atk_pinned = 7, 1044 omp_atk_partition = 8 1045 } omp_alloctrait_key_t; 1046 1047 typedef enum { 1048 omp_atv_false = 0, 1049 omp_atv_true = 1, 1050 omp_atv_contended = 3, 1051 omp_atv_uncontended = 4, 1052 omp_atv_serialized = 5, 1053 omp_atv_sequential = omp_atv_serialized, // (deprecated) 1054 omp_atv_private = 6, 1055 omp_atv_all = 7, 1056 omp_atv_thread = 8, 1057 omp_atv_pteam = 9, 1058 omp_atv_cgroup = 10, 1059 omp_atv_default_mem_fb = 11, 1060 omp_atv_null_fb = 12, 1061 omp_atv_abort_fb = 13, 1062 omp_atv_allocator_fb = 14, 1063 omp_atv_environment = 15, 1064 omp_atv_nearest = 16, 1065 omp_atv_blocked = 17, 1066 omp_atv_interleaved = 18 1067 } omp_alloctrait_value_t; 1068 #define omp_atv_default ((omp_uintptr_t)-1) 1069 1070 typedef void *omp_memspace_handle_t; 1071 extern omp_memspace_handle_t const omp_default_mem_space; 1072 extern omp_memspace_handle_t const omp_large_cap_mem_space; 1073 extern omp_memspace_handle_t const omp_const_mem_space; 1074 extern omp_memspace_handle_t const omp_high_bw_mem_space; 1075 extern omp_memspace_handle_t const omp_low_lat_mem_space; 1076 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space; 1077 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space; 1078 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space; 1079 1080 typedef struct { 1081 omp_alloctrait_key_t key; 1082 omp_uintptr_t value; 1083 } omp_alloctrait_t; 1084 1085 typedef void *omp_allocator_handle_t; 1086 extern omp_allocator_handle_t const omp_null_allocator; 1087 extern omp_allocator_handle_t const omp_default_mem_alloc; 1088 extern omp_allocator_handle_t const omp_large_cap_mem_alloc; 1089 extern omp_allocator_handle_t const omp_const_mem_alloc; 1090 extern omp_allocator_handle_t const omp_high_bw_mem_alloc; 1091 extern omp_allocator_handle_t const omp_low_lat_mem_alloc; 1092 extern omp_allocator_handle_t const omp_cgroup_mem_alloc; 1093 extern omp_allocator_handle_t const omp_pteam_mem_alloc; 1094 extern omp_allocator_handle_t const omp_thread_mem_alloc; 1095 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc; 1096 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc; 1097 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc; 1098 extern omp_allocator_handle_t const kmp_max_mem_alloc; 1099 extern omp_allocator_handle_t __kmp_def_allocator; 1100 1101 // end of duplicate type definitions from omp.h 1102 #endif 1103 1104 extern int __kmp_memkind_available; 1105 1106 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder 1107 1108 typedef struct kmp_allocator_t { 1109 omp_memspace_handle_t memspace; 1110 void **memkind; // pointer to memkind 1111 size_t alignment; 1112 omp_alloctrait_value_t fb; 1113 kmp_allocator_t *fb_data; 1114 kmp_uint64 pool_size; 1115 kmp_uint64 pool_used; 1116 bool pinned; 1117 } kmp_allocator_t; 1118 1119 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid, 1120 omp_memspace_handle_t, 1121 int ntraits, 1122 omp_alloctrait_t traits[]); 1123 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al); 1124 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al); 1125 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid); 1126 // external interfaces, may be used by compiler 1127 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al); 1128 extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz, 1129 omp_allocator_handle_t al); 1130 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz, 1131 omp_allocator_handle_t al); 1132 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz, 1133 omp_allocator_handle_t al, 1134 omp_allocator_handle_t free_al); 1135 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al); 1136 // internal interfaces, contain real implementation 1137 extern void *__kmp_alloc(int gtid, size_t align, size_t sz, 1138 omp_allocator_handle_t al); 1139 extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz, 1140 omp_allocator_handle_t al); 1141 extern void *__kmp_realloc(int gtid, void *ptr, size_t sz, 1142 omp_allocator_handle_t al, 1143 omp_allocator_handle_t free_al); 1144 extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al); 1145 1146 extern void __kmp_init_memkind(); 1147 extern void __kmp_fini_memkind(); 1148 extern void __kmp_init_target_mem(); 1149 1150 /* ------------------------------------------------------------------------ */ 1151 1152 #if ENABLE_LIBOMPTARGET 1153 extern void __kmp_init_target_task(); 1154 #endif 1155 1156 /* ------------------------------------------------------------------------ */ 1157 1158 #define KMP_UINT64_MAX \ 1159 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1))) 1160 1161 #define KMP_MIN_NTH 1 1162 1163 #ifndef KMP_MAX_NTH 1164 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX 1165 #define KMP_MAX_NTH PTHREAD_THREADS_MAX 1166 #else 1167 #ifdef __ve__ 1168 // VE's pthread supports only up to 64 threads per a VE process. 1169 // Please check p. 14 of following documentation for more details. 1170 // https://sxauroratsubasa.sakura.ne.jp/documents/veos/en/VEOS_high_level_design.pdf 1171 #define KMP_MAX_NTH 64 1172 #else 1173 #define KMP_MAX_NTH INT_MAX 1174 #endif 1175 #endif 1176 #endif /* KMP_MAX_NTH */ 1177 1178 #ifdef PTHREAD_STACK_MIN 1179 #define KMP_MIN_STKSIZE ((size_t)PTHREAD_STACK_MIN) 1180 #else 1181 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024)) 1182 #endif 1183 1184 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1))) 1185 1186 #if KMP_ARCH_X86 1187 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024)) 1188 #elif KMP_ARCH_X86_64 1189 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024)) 1190 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024)) 1191 #elif KMP_ARCH_VE 1192 // Minimum stack size for pthread for VE is 4MB. 1193 // https://www.hpc.nec/documents/veos/en/glibc/Difference_Points_glibc.htm 1194 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024)) 1195 #elif KMP_OS_AIX 1196 // The default stack size for worker threads on AIX is 4MB. 1197 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024)) 1198 #else 1199 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024)) 1200 #endif 1201 1202 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024)) 1203 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024)) 1204 #define KMP_MAX_MALLOC_POOL_INCR \ 1205 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1))) 1206 1207 #define KMP_MIN_STKOFFSET (0) 1208 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE 1209 #if KMP_OS_DARWIN 1210 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET 1211 #else 1212 #define KMP_DEFAULT_STKOFFSET CACHE_LINE 1213 #endif 1214 1215 #define KMP_MIN_STKPADDING (0) 1216 #define KMP_MAX_STKPADDING (2 * 1024 * 1024) 1217 1218 #define KMP_BLOCKTIME_MULTIPLIER \ 1219 (1000000) /* number of blocktime units per second */ 1220 #define KMP_MIN_BLOCKTIME (0) 1221 #define KMP_MAX_BLOCKTIME \ 1222 (INT_MAX) /* Must be this for "infinite" setting the work */ 1223 1224 /* __kmp_blocktime is in microseconds */ 1225 #define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200000)) 1226 1227 #if KMP_USE_MONITOR 1228 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024)) 1229 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second 1230 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec 1231 1232 /* Calculate new number of monitor wakeups for a specific block time based on 1233 previous monitor_wakeups. Only allow increasing number of wakeups */ 1234 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ 1235 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \ 1236 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \ 1237 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \ 1238 ? (monitor_wakeups) \ 1239 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime)) 1240 1241 /* Calculate number of intervals for a specific block time based on 1242 monitor_wakeups */ 1243 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ 1244 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \ 1245 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups))) 1246 #else 1247 #define KMP_BLOCKTIME(team, tid) \ 1248 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime) 1249 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1250 // HW TSC is used to reduce overhead (clock tick instead of nanosecond). 1251 extern kmp_uint64 __kmp_ticks_per_msec; 1252 extern kmp_uint64 __kmp_ticks_per_usec; 1253 #if KMP_COMPILER_ICC || KMP_COMPILER_ICX 1254 #define KMP_NOW() ((kmp_uint64)_rdtsc()) 1255 #else 1256 #define KMP_NOW() __kmp_hardware_timestamp() 1257 #endif 1258 #define KMP_BLOCKTIME_INTERVAL(team, tid) \ 1259 ((kmp_uint64)KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_usec) 1260 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW()) 1261 #else 1262 // System time is retrieved sporadically while blocking. 1263 extern kmp_uint64 __kmp_now_nsec(); 1264 #define KMP_NOW() __kmp_now_nsec() 1265 #define KMP_BLOCKTIME_INTERVAL(team, tid) \ 1266 ((kmp_uint64)KMP_BLOCKTIME(team, tid) * (kmp_uint64)KMP_NSEC_PER_USEC) 1267 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW()) 1268 #endif 1269 #endif // KMP_USE_MONITOR 1270 1271 #define KMP_MIN_STATSCOLS 40 1272 #define KMP_MAX_STATSCOLS 4096 1273 #define KMP_DEFAULT_STATSCOLS 80 1274 1275 #define KMP_MIN_INTERVAL 0 1276 #define KMP_MAX_INTERVAL (INT_MAX - 1) 1277 #define KMP_DEFAULT_INTERVAL 0 1278 1279 #define KMP_MIN_CHUNK 1 1280 #define KMP_MAX_CHUNK (INT_MAX - 1) 1281 #define KMP_DEFAULT_CHUNK 1 1282 1283 #define KMP_MIN_DISP_NUM_BUFF 1 1284 #define KMP_DFLT_DISP_NUM_BUFF 7 1285 #define KMP_MAX_DISP_NUM_BUFF 4096 1286 1287 #define KMP_MAX_ORDERED 8 1288 1289 #define KMP_MAX_FIELDS 32 1290 1291 #define KMP_MAX_BRANCH_BITS 31 1292 1293 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX 1294 1295 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX 1296 1297 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX 1298 1299 /* Minimum number of threads before switch to TLS gtid (experimentally 1300 determined) */ 1301 /* josh TODO: what about OS X* tuning? */ 1302 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1303 #define KMP_TLS_GTID_MIN 5 1304 #else 1305 #define KMP_TLS_GTID_MIN INT_MAX 1306 #endif 1307 1308 #define KMP_MASTER_TID(tid) (0 == (tid)) 1309 #define KMP_WORKER_TID(tid) (0 != (tid)) 1310 1311 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid))) 1312 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid))) 1313 #define KMP_INITIAL_GTID(gtid) (0 == (gtid)) 1314 1315 #ifndef TRUE 1316 #define FALSE 0 1317 #define TRUE (!FALSE) 1318 #endif 1319 1320 /* NOTE: all of the following constants must be even */ 1321 1322 #if KMP_OS_WINDOWS 1323 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */ 1324 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */ 1325 #elif KMP_OS_LINUX 1326 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1327 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1328 #elif KMP_OS_DARWIN 1329 /* TODO: tune for KMP_OS_DARWIN */ 1330 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1331 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1332 #elif KMP_OS_DRAGONFLY 1333 /* TODO: tune for KMP_OS_DRAGONFLY */ 1334 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1335 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1336 #elif KMP_OS_FREEBSD 1337 /* TODO: tune for KMP_OS_FREEBSD */ 1338 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1339 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1340 #elif KMP_OS_NETBSD 1341 /* TODO: tune for KMP_OS_NETBSD */ 1342 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1343 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1344 #elif KMP_OS_OPENBSD 1345 /* TODO: tune for KMP_OS_OPENBSD */ 1346 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1347 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1348 #elif KMP_OS_HURD 1349 /* TODO: tune for KMP_OS_HURD */ 1350 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1351 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1352 #elif KMP_OS_SOLARIS 1353 /* TODO: tune for KMP_OS_SOLARIS */ 1354 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1355 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1356 #elif KMP_OS_WASI 1357 /* TODO: tune for KMP_OS_WASI */ 1358 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1359 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1360 #elif KMP_OS_AIX 1361 /* TODO: tune for KMP_OS_AIX */ 1362 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ 1363 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ 1364 #endif 1365 1366 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1367 typedef struct kmp_cpuid { 1368 kmp_uint32 eax; 1369 kmp_uint32 ebx; 1370 kmp_uint32 ecx; 1371 kmp_uint32 edx; 1372 } kmp_cpuid_t; 1373 1374 typedef struct kmp_cpuinfo_flags_t { 1375 unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise. 1376 unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise. 1377 unsigned hybrid : 1; 1378 unsigned reserved : 29; // Ensure size of 32 bits 1379 } kmp_cpuinfo_flags_t; 1380 1381 typedef struct kmp_cpuinfo { 1382 int initialized; // If 0, other fields are not initialized. 1383 int signature; // CPUID(1).EAX 1384 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family) 1385 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended 1386 // Model << 4 ) + Model) 1387 int stepping; // CPUID(1).EAX[3:0] ( Stepping ) 1388 kmp_cpuinfo_flags_t flags; 1389 int apic_id; 1390 int physical_id; 1391 int logical_id; 1392 kmp_uint64 frequency; // Nominal CPU frequency in Hz. 1393 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004) 1394 } kmp_cpuinfo_t; 1395 1396 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p); 1397 1398 #if KMP_OS_UNIX 1399 // subleaf is only needed for cache and topology discovery and can be set to 1400 // zero in most cases 1401 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) { 1402 __asm__ __volatile__("cpuid" 1403 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx) 1404 : "a"(leaf), "c"(subleaf)); 1405 } 1406 // Load p into FPU control word 1407 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) { 1408 __asm__ __volatile__("fldcw %0" : : "m"(*p)); 1409 } 1410 // Store FPU control word into p 1411 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) { 1412 __asm__ __volatile__("fstcw %0" : "=m"(*p)); 1413 } 1414 static inline void __kmp_clear_x87_fpu_status_word() { 1415 #if KMP_MIC 1416 // 32-bit protected mode x87 FPU state 1417 struct x87_fpu_state { 1418 unsigned cw; 1419 unsigned sw; 1420 unsigned tw; 1421 unsigned fip; 1422 unsigned fips; 1423 unsigned fdp; 1424 unsigned fds; 1425 }; 1426 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0}; 1427 __asm__ __volatile__("fstenv %0\n\t" // store FP env 1428 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW 1429 "fldenv %0\n\t" // load FP env back 1430 : "+m"(fpu_state), "+m"(fpu_state.sw)); 1431 #else 1432 __asm__ __volatile__("fnclex"); 1433 #endif // KMP_MIC 1434 } 1435 #if __SSE__ 1436 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); } 1437 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); } 1438 #else 1439 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {} 1440 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; } 1441 #endif 1442 #else 1443 // Windows still has these as external functions in assembly file 1444 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p); 1445 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p); 1446 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p); 1447 extern void __kmp_clear_x87_fpu_status_word(); 1448 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); } 1449 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); } 1450 #endif // KMP_OS_UNIX 1451 1452 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */ 1453 1454 // User-level Monitor/Mwait 1455 #if KMP_HAVE_UMWAIT 1456 // We always try for UMWAIT first 1457 #if KMP_HAVE_WAITPKG_INTRINSICS 1458 #if KMP_HAVE_IMMINTRIN_H 1459 #include <immintrin.h> 1460 #elif KMP_HAVE_INTRIN_H 1461 #include <intrin.h> 1462 #endif 1463 #endif // KMP_HAVE_WAITPKG_INTRINSICS 1464 1465 KMP_ATTRIBUTE_TARGET_WAITPKG 1466 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) { 1467 #if !KMP_HAVE_WAITPKG_INTRINSICS 1468 uint32_t timeHi = uint32_t(counter >> 32); 1469 uint32_t timeLo = uint32_t(counter & 0xffffffff); 1470 char flag; 1471 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n" 1472 "setb %0" 1473 // The "=q" restraint means any register accessible as rl 1474 // in 32-bit mode: a, b, c, and d; 1475 // in 64-bit mode: any integer register 1476 : "=q"(flag) 1477 : "a"(timeLo), "d"(timeHi), "c"(hint) 1478 :); 1479 return flag; 1480 #else 1481 return _tpause(hint, counter); 1482 #endif 1483 } 1484 KMP_ATTRIBUTE_TARGET_WAITPKG 1485 static inline void __kmp_umonitor(void *cacheline) { 1486 #if !KMP_HAVE_WAITPKG_INTRINSICS 1487 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 " 1488 : 1489 : "a"(cacheline) 1490 :); 1491 #else 1492 _umonitor(cacheline); 1493 #endif 1494 } 1495 KMP_ATTRIBUTE_TARGET_WAITPKG 1496 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) { 1497 #if !KMP_HAVE_WAITPKG_INTRINSICS 1498 uint32_t timeHi = uint32_t(counter >> 32); 1499 uint32_t timeLo = uint32_t(counter & 0xffffffff); 1500 char flag; 1501 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n" 1502 "setb %0" 1503 // The "=q" restraint means any register accessible as rl 1504 // in 32-bit mode: a, b, c, and d; 1505 // in 64-bit mode: any integer register 1506 : "=q"(flag) 1507 : "a"(timeLo), "d"(timeHi), "c"(hint) 1508 :); 1509 return flag; 1510 #else 1511 return _umwait(hint, counter); 1512 #endif 1513 } 1514 #elif KMP_HAVE_MWAIT 1515 #if KMP_OS_UNIX 1516 #include <pmmintrin.h> 1517 #else 1518 #include <intrin.h> 1519 #endif 1520 #if KMP_OS_UNIX 1521 __attribute__((target("sse3"))) 1522 #endif 1523 static inline void 1524 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) { 1525 _mm_monitor(cacheline, extensions, hints); 1526 } 1527 #if KMP_OS_UNIX 1528 __attribute__((target("sse3"))) 1529 #endif 1530 static inline void 1531 __kmp_mm_mwait(unsigned extensions, unsigned hints) { 1532 _mm_mwait(extensions, hints); 1533 } 1534 #endif // KMP_HAVE_UMWAIT 1535 1536 #if KMP_ARCH_X86 1537 extern void __kmp_x86_pause(void); 1538 #elif KMP_MIC 1539 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed 1540 // regression after removal of extra PAUSE from spin loops. Changing 1541 // the delay from 100 to 300 showed even better performance than double PAUSE 1542 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC. 1543 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); } 1544 #else 1545 static inline void __kmp_x86_pause(void) { _mm_pause(); } 1546 #endif 1547 #define KMP_CPU_PAUSE() __kmp_x86_pause() 1548 #elif KMP_ARCH_PPC64 1549 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1") 1550 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2") 1551 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory") 1552 #define KMP_CPU_PAUSE() \ 1553 do { \ 1554 KMP_PPC64_PRI_LOW(); \ 1555 KMP_PPC64_PRI_MED(); \ 1556 KMP_PPC64_PRI_LOC_MB(); \ 1557 } while (0) 1558 #else 1559 #define KMP_CPU_PAUSE() /* nothing to do */ 1560 #endif 1561 1562 #define KMP_INIT_YIELD(count) \ 1563 { (count) = __kmp_yield_init; } 1564 1565 #define KMP_INIT_BACKOFF(time) \ 1566 { (time) = __kmp_pause_init; } 1567 1568 #define KMP_OVERSUBSCRIBED \ 1569 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) 1570 1571 #define KMP_TRY_YIELD \ 1572 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED))) 1573 1574 #define KMP_TRY_YIELD_OVERSUB \ 1575 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED)) 1576 1577 #define KMP_YIELD(cond) \ 1578 { \ 1579 KMP_CPU_PAUSE(); \ 1580 if ((cond) && (KMP_TRY_YIELD)) \ 1581 __kmp_yield(); \ 1582 } 1583 1584 #define KMP_YIELD_OVERSUB() \ 1585 { \ 1586 KMP_CPU_PAUSE(); \ 1587 if ((KMP_TRY_YIELD_OVERSUB)) \ 1588 __kmp_yield(); \ 1589 } 1590 1591 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround, 1592 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd. 1593 #define KMP_YIELD_SPIN(count) \ 1594 { \ 1595 KMP_CPU_PAUSE(); \ 1596 if (KMP_TRY_YIELD) { \ 1597 (count) -= 2; \ 1598 if (!(count)) { \ 1599 __kmp_yield(); \ 1600 (count) = __kmp_yield_next; \ 1601 } \ 1602 } \ 1603 } 1604 1605 // If TPAUSE is available & enabled, use it. If oversubscribed, use the slower 1606 // (C0.2) state, which improves performance of other SMT threads on the same 1607 // core, otherwise, use the fast (C0.1) default state, or whatever the user has 1608 // requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't 1609 // available, fall back to the regular CPU pause and yield combination. 1610 #if KMP_HAVE_UMWAIT 1611 #define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF) 1612 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \ 1613 { \ 1614 if (__kmp_tpause_enabled) { \ 1615 if (KMP_OVERSUBSCRIBED) { \ 1616 __kmp_tpause(0, (time)); \ 1617 } else { \ 1618 __kmp_tpause(__kmp_tpause_hint, (time)); \ 1619 } \ 1620 (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK; \ 1621 } else { \ 1622 KMP_CPU_PAUSE(); \ 1623 if ((KMP_TRY_YIELD_OVERSUB)) { \ 1624 __kmp_yield(); \ 1625 } else if (__kmp_use_yield == 1) { \ 1626 (count) -= 2; \ 1627 if (!(count)) { \ 1628 __kmp_yield(); \ 1629 (count) = __kmp_yield_next; \ 1630 } \ 1631 } \ 1632 } \ 1633 } 1634 #else 1635 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \ 1636 { \ 1637 KMP_CPU_PAUSE(); \ 1638 if ((KMP_TRY_YIELD_OVERSUB)) \ 1639 __kmp_yield(); \ 1640 else if (__kmp_use_yield == 1) { \ 1641 (count) -= 2; \ 1642 if (!(count)) { \ 1643 __kmp_yield(); \ 1644 (count) = __kmp_yield_next; \ 1645 } \ 1646 } \ 1647 } 1648 #endif // KMP_HAVE_UMWAIT 1649 1650 /* ------------------------------------------------------------------------ */ 1651 /* Support datatypes for the orphaned construct nesting checks. */ 1652 /* ------------------------------------------------------------------------ */ 1653 1654 /* When adding to this enum, add its corresponding string in cons_text_c[] 1655 * array in kmp_error.cpp */ 1656 enum cons_type { 1657 ct_none, 1658 ct_parallel, 1659 ct_pdo, 1660 ct_pdo_ordered, 1661 ct_psections, 1662 ct_psingle, 1663 ct_critical, 1664 ct_ordered_in_parallel, 1665 ct_ordered_in_pdo, 1666 ct_master, 1667 ct_reduce, 1668 ct_barrier, 1669 ct_masked 1670 }; 1671 1672 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered) 1673 1674 struct cons_data { 1675 ident_t const *ident; 1676 enum cons_type type; 1677 int prev; 1678 kmp_user_lock_p 1679 name; /* address exclusively for critical section name comparison */ 1680 }; 1681 1682 struct cons_header { 1683 int p_top, w_top, s_top; 1684 int stack_size, stack_top; 1685 struct cons_data *stack_data; 1686 }; 1687 1688 struct kmp_region_info { 1689 char *text; 1690 int offset[KMP_MAX_FIELDS]; 1691 int length[KMP_MAX_FIELDS]; 1692 }; 1693 1694 /* ---------------------------------------------------------------------- */ 1695 /* ---------------------------------------------------------------------- */ 1696 1697 #if KMP_OS_WINDOWS 1698 typedef HANDLE kmp_thread_t; 1699 typedef DWORD kmp_key_t; 1700 #endif /* KMP_OS_WINDOWS */ 1701 1702 #if KMP_OS_UNIX 1703 typedef pthread_t kmp_thread_t; 1704 typedef pthread_key_t kmp_key_t; 1705 #endif 1706 1707 extern kmp_key_t __kmp_gtid_threadprivate_key; 1708 1709 typedef struct kmp_sys_info { 1710 long maxrss; /* the maximum resident set size utilized (in kilobytes) */ 1711 long minflt; /* the number of page faults serviced without any I/O */ 1712 long majflt; /* the number of page faults serviced that required I/O */ 1713 long nswap; /* the number of times a process was "swapped" out of memory */ 1714 long inblock; /* the number of times the file system had to perform input */ 1715 long oublock; /* the number of times the file system had to perform output */ 1716 long nvcsw; /* the number of times a context switch was voluntarily */ 1717 long nivcsw; /* the number of times a context switch was forced */ 1718 } kmp_sys_info_t; 1719 1720 #if USE_ITT_BUILD 1721 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only 1722 // required type here. Later we will check the type meets requirements. 1723 typedef int kmp_itt_mark_t; 1724 #define KMP_ITT_DEBUG 0 1725 #endif /* USE_ITT_BUILD */ 1726 1727 typedef kmp_int32 kmp_critical_name[8]; 1728 1729 /*! 1730 @ingroup PARALLEL 1731 The type for a microtask which gets passed to @ref __kmpc_fork_call(). 1732 The arguments to the outlined function are 1733 @param global_tid the global thread identity of the thread executing the 1734 function. 1735 @param bound_tid the local identity of the thread executing the function 1736 @param ... pointers to shared variables accessed by the function. 1737 */ 1738 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...); 1739 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth, 1740 ...); 1741 1742 /*! 1743 @ingroup THREADPRIVATE 1744 @{ 1745 */ 1746 /* --------------------------------------------------------------------------- 1747 */ 1748 /* Threadprivate initialization/finalization function declarations */ 1749 1750 /* for non-array objects: __kmpc_threadprivate_register() */ 1751 1752 /*! 1753 Pointer to the constructor function. 1754 The first argument is the <tt>this</tt> pointer 1755 */ 1756 typedef void *(*kmpc_ctor)(void *); 1757 1758 /*! 1759 Pointer to the destructor function. 1760 The first argument is the <tt>this</tt> pointer 1761 */ 1762 typedef void (*kmpc_dtor)( 1763 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel 1764 compiler */ 1765 /*! 1766 Pointer to an alternate constructor. 1767 The first argument is the <tt>this</tt> pointer. 1768 */ 1769 typedef void *(*kmpc_cctor)(void *, void *); 1770 1771 /* for array objects: __kmpc_threadprivate_register_vec() */ 1772 /* First arg: "this" pointer */ 1773 /* Last arg: number of array elements */ 1774 /*! 1775 Array constructor. 1776 First argument is the <tt>this</tt> pointer 1777 Second argument the number of array elements. 1778 */ 1779 typedef void *(*kmpc_ctor_vec)(void *, size_t); 1780 /*! 1781 Pointer to the array destructor function. 1782 The first argument is the <tt>this</tt> pointer 1783 Second argument the number of array elements. 1784 */ 1785 typedef void (*kmpc_dtor_vec)(void *, size_t); 1786 /*! 1787 Array constructor. 1788 First argument is the <tt>this</tt> pointer 1789 Third argument the number of array elements. 1790 */ 1791 typedef void *(*kmpc_cctor_vec)(void *, void *, 1792 size_t); /* function unused by compiler */ 1793 1794 /*! 1795 @} 1796 */ 1797 1798 /* keeps tracked of threadprivate cache allocations for cleanup later */ 1799 typedef struct kmp_cached_addr { 1800 void **addr; /* address of allocated cache */ 1801 void ***compiler_cache; /* pointer to compiler's cache */ 1802 void *data; /* pointer to global data */ 1803 struct kmp_cached_addr *next; /* pointer to next cached address */ 1804 } kmp_cached_addr_t; 1805 1806 struct private_data { 1807 struct private_data *next; /* The next descriptor in the list */ 1808 void *data; /* The data buffer for this descriptor */ 1809 int more; /* The repeat count for this descriptor */ 1810 size_t size; /* The data size for this descriptor */ 1811 }; 1812 1813 struct private_common { 1814 struct private_common *next; 1815 struct private_common *link; 1816 void *gbl_addr; 1817 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */ 1818 size_t cmn_size; 1819 }; 1820 1821 struct shared_common { 1822 struct shared_common *next; 1823 struct private_data *pod_init; 1824 void *obj_init; 1825 void *gbl_addr; 1826 union { 1827 kmpc_ctor ctor; 1828 kmpc_ctor_vec ctorv; 1829 } ct; 1830 union { 1831 kmpc_cctor cctor; 1832 kmpc_cctor_vec cctorv; 1833 } cct; 1834 union { 1835 kmpc_dtor dtor; 1836 kmpc_dtor_vec dtorv; 1837 } dt; 1838 size_t vec_len; 1839 int is_vec; 1840 size_t cmn_size; 1841 }; 1842 1843 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */ 1844 #define KMP_HASH_TABLE_SIZE \ 1845 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */ 1846 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */ 1847 #define KMP_HASH(x) \ 1848 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1)) 1849 1850 struct common_table { 1851 struct private_common *data[KMP_HASH_TABLE_SIZE]; 1852 }; 1853 1854 struct shared_table { 1855 struct shared_common *data[KMP_HASH_TABLE_SIZE]; 1856 }; 1857 1858 /* ------------------------------------------------------------------------ */ 1859 1860 #if KMP_USE_HIER_SCHED 1861 // Shared barrier data that exists inside a single unit of the scheduling 1862 // hierarchy 1863 typedef struct kmp_hier_private_bdata_t { 1864 kmp_int32 num_active; 1865 kmp_uint64 index; 1866 kmp_uint64 wait_val[2]; 1867 } kmp_hier_private_bdata_t; 1868 #endif 1869 1870 typedef struct kmp_sched_flags { 1871 unsigned ordered : 1; 1872 unsigned nomerge : 1; 1873 unsigned contains_last : 1; 1874 unsigned use_hier : 1; // Used in KMP_USE_HIER_SCHED code 1875 unsigned use_hybrid : 1; // Used in KMP_WEIGHTED_ITERATIONS_SUPPORTED code 1876 unsigned unused : 27; 1877 } kmp_sched_flags_t; 1878 1879 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4); 1880 1881 #if KMP_STATIC_STEAL_ENABLED 1882 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { 1883 kmp_int32 count; 1884 kmp_int32 ub; 1885 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ 1886 kmp_int32 lb; 1887 kmp_int32 st; 1888 kmp_int32 tc; 1889 kmp_lock_t *steal_lock; // lock used for chunk stealing 1890 1891 kmp_uint32 ordered_lower; 1892 kmp_uint32 ordered_upper; 1893 1894 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on) 1895 // a) parm3 is properly aligned and 1896 // b) all parm1-4 are on the same cache line. 1897 // Because of parm1-4 are used together, performance seems to be better 1898 // if they are on the same cache line (not measured though). 1899 1900 struct KMP_ALIGN(32) { 1901 kmp_int32 parm1; 1902 kmp_int32 parm2; 1903 kmp_int32 parm3; 1904 kmp_int32 parm4; 1905 }; 1906 1907 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED 1908 kmp_uint32 pchunks; 1909 kmp_uint32 num_procs_with_pcore; 1910 kmp_int32 first_thread_with_ecore; 1911 #endif 1912 #if KMP_OS_WINDOWS 1913 kmp_int32 last_upper; 1914 #endif /* KMP_OS_WINDOWS */ 1915 } dispatch_private_info32_t; 1916 1917 #if CACHE_LINE <= 128 1918 KMP_BUILD_ASSERT(sizeof(dispatch_private_info32_t) <= 128); 1919 #endif 1920 1921 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { 1922 kmp_int64 count; // current chunk number for static & static-steal scheduling 1923 kmp_int64 ub; /* upper-bound */ 1924 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ 1925 kmp_int64 lb; /* lower-bound */ 1926 kmp_int64 st; /* stride */ 1927 kmp_int64 tc; /* trip count (number of iterations) */ 1928 kmp_lock_t *steal_lock; // lock used for chunk stealing 1929 1930 kmp_uint64 ordered_lower; 1931 kmp_uint64 ordered_upper; 1932 /* parm[1-4] are used in different ways by different scheduling algorithms */ 1933 1934 // KMP_ALIGN(32) ensures ( if the KMP_ALIGN macro is turned on ) 1935 // a) parm3 is properly aligned and 1936 // b) all parm1-4 are in the same cache line. 1937 // Because of parm1-4 are used together, performance seems to be better 1938 // if they are in the same line (not measured though). 1939 struct KMP_ALIGN(32) { 1940 kmp_int64 parm1; 1941 kmp_int64 parm2; 1942 kmp_int64 parm3; 1943 kmp_int64 parm4; 1944 }; 1945 1946 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED 1947 kmp_uint64 pchunks; 1948 kmp_uint64 num_procs_with_pcore; 1949 kmp_int64 first_thread_with_ecore; 1950 #endif 1951 1952 #if KMP_OS_WINDOWS 1953 kmp_int64 last_upper; 1954 #endif /* KMP_OS_WINDOWS */ 1955 } dispatch_private_info64_t; 1956 1957 #if CACHE_LINE <= 128 1958 KMP_BUILD_ASSERT(sizeof(dispatch_private_info64_t) <= 128); 1959 #endif 1960 1961 #else /* KMP_STATIC_STEAL_ENABLED */ 1962 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { 1963 kmp_int32 lb; 1964 kmp_int32 ub; 1965 kmp_int32 st; 1966 kmp_int32 tc; 1967 1968 kmp_int32 parm1; 1969 kmp_int32 parm2; 1970 kmp_int32 parm3; 1971 kmp_int32 parm4; 1972 1973 kmp_int32 count; 1974 1975 kmp_uint32 ordered_lower; 1976 kmp_uint32 ordered_upper; 1977 #if KMP_OS_WINDOWS 1978 kmp_int32 last_upper; 1979 #endif /* KMP_OS_WINDOWS */ 1980 } dispatch_private_info32_t; 1981 1982 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { 1983 kmp_int64 lb; /* lower-bound */ 1984 kmp_int64 ub; /* upper-bound */ 1985 kmp_int64 st; /* stride */ 1986 kmp_int64 tc; /* trip count (number of iterations) */ 1987 1988 /* parm[1-4] are used in different ways by different scheduling algorithms */ 1989 kmp_int64 parm1; 1990 kmp_int64 parm2; 1991 kmp_int64 parm3; 1992 kmp_int64 parm4; 1993 1994 kmp_int64 count; /* current chunk number for static scheduling */ 1995 1996 kmp_uint64 ordered_lower; 1997 kmp_uint64 ordered_upper; 1998 #if KMP_OS_WINDOWS 1999 kmp_int64 last_upper; 2000 #endif /* KMP_OS_WINDOWS */ 2001 } dispatch_private_info64_t; 2002 #endif /* KMP_STATIC_STEAL_ENABLED */ 2003 2004 typedef struct KMP_ALIGN_CACHE dispatch_private_info { 2005 union private_info { 2006 dispatch_private_info32_t p32; 2007 dispatch_private_info64_t p64; 2008 } u; 2009 enum sched_type schedule; /* scheduling algorithm */ 2010 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */ 2011 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer 2012 kmp_int32 ordered_bumped; 2013 // Stack of buffers for nest of serial regions 2014 struct dispatch_private_info *next; 2015 kmp_int32 type_size; /* the size of types in private_info */ 2016 #if KMP_USE_HIER_SCHED 2017 kmp_int32 hier_id; 2018 void *parent; /* hierarchical scheduling parent pointer */ 2019 #endif 2020 enum cons_type pushed_ws; 2021 } dispatch_private_info_t; 2022 2023 typedef struct dispatch_shared_info32 { 2024 /* chunk index under dynamic, number of idle threads under static-steal; 2025 iteration index otherwise */ 2026 volatile kmp_uint32 iteration; 2027 volatile kmp_int32 num_done; 2028 volatile kmp_uint32 ordered_iteration; 2029 // Dummy to retain the structure size after making ordered_iteration scalar 2030 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1]; 2031 } dispatch_shared_info32_t; 2032 2033 typedef struct dispatch_shared_info64 { 2034 /* chunk index under dynamic, number of idle threads under static-steal; 2035 iteration index otherwise */ 2036 volatile kmp_uint64 iteration; 2037 volatile kmp_int64 num_done; 2038 volatile kmp_uint64 ordered_iteration; 2039 // Dummy to retain the structure size after making ordered_iteration scalar 2040 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3]; 2041 } dispatch_shared_info64_t; 2042 2043 typedef struct dispatch_shared_info { 2044 union shared_info { 2045 dispatch_shared_info32_t s32; 2046 dispatch_shared_info64_t s64; 2047 } u; 2048 volatile kmp_uint32 buffer_index; 2049 volatile kmp_int32 doacross_buf_idx; // teamwise index 2050 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1) 2051 kmp_int32 doacross_num_done; // count finished threads 2052 #if KMP_USE_HIER_SCHED 2053 void *hier; 2054 #endif 2055 #if KMP_USE_HWLOC 2056 // When linking with libhwloc, the ORDERED EPCC test slows down on big 2057 // machines (> 48 cores). Performance analysis showed that a cache thrash 2058 // was occurring and this padding helps alleviate the problem. 2059 char padding[64]; 2060 #endif 2061 } dispatch_shared_info_t; 2062 2063 typedef struct kmp_disp { 2064 /* Vector for ORDERED SECTION */ 2065 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *); 2066 /* Vector for END ORDERED SECTION */ 2067 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *); 2068 2069 dispatch_shared_info_t *th_dispatch_sh_current; 2070 dispatch_private_info_t *th_dispatch_pr_current; 2071 2072 dispatch_private_info_t *th_disp_buffer; 2073 kmp_uint32 th_disp_index; 2074 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index 2075 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags 2076 kmp_int64 *th_doacross_info; // info on loop bounds 2077 #if KMP_USE_INTERNODE_ALIGNMENT 2078 char more_padding[INTERNODE_CACHE_LINE]; 2079 #endif 2080 } kmp_disp_t; 2081 2082 /* ------------------------------------------------------------------------ */ 2083 /* Barrier stuff */ 2084 2085 /* constants for barrier state update */ 2086 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */ 2087 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */ 2088 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state 2089 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */ 2090 2091 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT) 2092 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT) 2093 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT) 2094 2095 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT) 2096 #error "Barrier sleep bit must be smaller than barrier bump bit" 2097 #endif 2098 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT) 2099 #error "Barrier unused bit must be smaller than barrier bump bit" 2100 #endif 2101 2102 // Constants for release barrier wait state: currently, hierarchical only 2103 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep 2104 #define KMP_BARRIER_OWN_FLAG \ 2105 1 // Normal state; worker waiting on own b_go flag in release 2106 #define KMP_BARRIER_PARENT_FLAG \ 2107 2 // Special state; worker waiting on parent's b_go flag in release 2108 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \ 2109 3 // Special state; tells worker to shift from parent to own b_go 2110 #define KMP_BARRIER_SWITCHING \ 2111 4 // Special state; worker resets appropriate flag on wake-up 2112 2113 #define KMP_NOT_SAFE_TO_REAP \ 2114 0 // Thread th_reap_state: not safe to reap (tasking) 2115 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking) 2116 2117 // The flag_type describes the storage used for the flag. 2118 enum flag_type { 2119 flag32, /**< atomic 32 bit flags */ 2120 flag64, /**< 64 bit flags */ 2121 atomic_flag64, /**< atomic 64 bit flags */ 2122 flag_oncore, /**< special 64-bit flag for on-core barrier (hierarchical) */ 2123 flag_unset 2124 }; 2125 2126 enum barrier_type { 2127 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction 2128 barriers if enabled) */ 2129 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */ 2130 #if KMP_FAST_REDUCTION_BARRIER 2131 bs_reduction_barrier, /* 2, All barriers that are used in reduction */ 2132 #endif // KMP_FAST_REDUCTION_BARRIER 2133 bs_last_barrier /* Just a placeholder to mark the end */ 2134 }; 2135 2136 // to work with reduction barriers just like with plain barriers 2137 #if !KMP_FAST_REDUCTION_BARRIER 2138 #define bs_reduction_barrier bs_plain_barrier 2139 #endif // KMP_FAST_REDUCTION_BARRIER 2140 2141 typedef enum kmp_bar_pat { /* Barrier communication patterns */ 2142 bp_linear_bar = 2143 0, /* Single level (degenerate) tree */ 2144 bp_tree_bar = 2145 1, /* Balanced tree with branching factor 2^n */ 2146 bp_hyper_bar = 2, /* Hypercube-embedded tree with min 2147 branching factor 2^n */ 2148 bp_hierarchical_bar = 3, /* Machine hierarchy tree */ 2149 bp_dist_bar = 4, /* Distributed barrier */ 2150 bp_last_bar /* Placeholder to mark the end */ 2151 } kmp_bar_pat_e; 2152 2153 #define KMP_BARRIER_ICV_PUSH 1 2154 2155 /* Record for holding the values of the internal controls stack records */ 2156 typedef struct kmp_internal_control { 2157 int serial_nesting_level; /* corresponds to the value of the 2158 th_team_serialized field */ 2159 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per 2160 thread) */ 2161 kmp_int8 2162 bt_set; /* internal control for whether blocktime is explicitly set */ 2163 int blocktime; /* internal control for blocktime */ 2164 #if KMP_USE_MONITOR 2165 int bt_intervals; /* internal control for blocktime intervals */ 2166 #endif 2167 int nproc; /* internal control for #threads for next parallel region (per 2168 thread) */ 2169 int thread_limit; /* internal control for thread-limit-var */ 2170 int task_thread_limit; /* internal control for thread-limit-var of a task*/ 2171 int max_active_levels; /* internal control for max_active_levels */ 2172 kmp_r_sched_t 2173 sched; /* internal control for runtime schedule {sched,chunk} pair */ 2174 kmp_proc_bind_t proc_bind; /* internal control for affinity */ 2175 kmp_int32 default_device; /* internal control for default device */ 2176 struct kmp_internal_control *next; 2177 } kmp_internal_control_t; 2178 2179 static inline void copy_icvs(kmp_internal_control_t *dst, 2180 kmp_internal_control_t *src) { 2181 *dst = *src; 2182 } 2183 2184 /* Thread barrier needs volatile barrier fields */ 2185 typedef struct KMP_ALIGN_CACHE kmp_bstate { 2186 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all 2187 // uses of it). It is not explicitly aligned below, because we *don't* want 2188 // it to be padded -- instead, we fit b_go into the same cache line with 2189 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier. 2190 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread 2191 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with 2192 // same NGO store 2193 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical) 2194 KMP_ALIGN_CACHE volatile kmp_uint64 2195 b_arrived; // STATE => task reached synch point. 2196 kmp_uint32 *skip_per_level; 2197 kmp_uint32 my_level; 2198 kmp_int32 parent_tid; 2199 kmp_int32 old_tid; 2200 kmp_uint32 depth; 2201 struct kmp_bstate *parent_bar; 2202 kmp_team_t *team; 2203 kmp_uint64 leaf_state; 2204 kmp_uint32 nproc; 2205 kmp_uint8 base_leaf_kids; 2206 kmp_uint8 leaf_kids; 2207 kmp_uint8 offset; 2208 kmp_uint8 wait_flag; 2209 kmp_uint8 use_oncore_barrier; 2210 #if USE_DEBUGGER 2211 // The following field is intended for the debugger solely. Only the worker 2212 // thread itself accesses this field: the worker increases it by 1 when it 2213 // arrives to a barrier. 2214 KMP_ALIGN_CACHE kmp_uint b_worker_arrived; 2215 #endif /* USE_DEBUGGER */ 2216 } kmp_bstate_t; 2217 2218 union KMP_ALIGN_CACHE kmp_barrier_union { 2219 double b_align; /* use worst case alignment */ 2220 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)]; 2221 kmp_bstate_t bb; 2222 }; 2223 2224 typedef union kmp_barrier_union kmp_balign_t; 2225 2226 /* Team barrier needs only non-volatile arrived counter */ 2227 union KMP_ALIGN_CACHE kmp_barrier_team_union { 2228 double b_align; /* use worst case alignment */ 2229 char b_pad[CACHE_LINE]; 2230 struct { 2231 kmp_uint64 b_arrived; /* STATE => task reached synch point. */ 2232 #if USE_DEBUGGER 2233 // The following two fields are indended for the debugger solely. Only 2234 // primary thread of the team accesses these fields: the first one is 2235 // increased by 1 when the primary thread arrives to a barrier, the second 2236 // one is increased by one when all the threads arrived. 2237 kmp_uint b_master_arrived; 2238 kmp_uint b_team_arrived; 2239 #endif 2240 }; 2241 }; 2242 2243 typedef union kmp_barrier_team_union kmp_balign_team_t; 2244 2245 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal 2246 threads when a condition changes. This is to workaround an NPTL bug where 2247 padding was added to pthread_cond_t which caused the initialization routine 2248 to write outside of the structure if compiled on pre-NPTL threads. */ 2249 #if KMP_OS_WINDOWS 2250 typedef struct kmp_win32_mutex { 2251 /* The Lock */ 2252 CRITICAL_SECTION cs; 2253 } kmp_win32_mutex_t; 2254 2255 typedef struct kmp_win32_cond { 2256 /* Count of the number of waiters. */ 2257 int waiters_count_; 2258 2259 /* Serialize access to <waiters_count_> */ 2260 kmp_win32_mutex_t waiters_count_lock_; 2261 2262 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */ 2263 int release_count_; 2264 2265 /* Keeps track of the current "generation" so that we don't allow */ 2266 /* one thread to steal all the "releases" from the broadcast. */ 2267 int wait_generation_count_; 2268 2269 /* A manual-reset event that's used to block and release waiting threads. */ 2270 HANDLE event_; 2271 } kmp_win32_cond_t; 2272 #endif 2273 2274 #if KMP_OS_UNIX 2275 2276 union KMP_ALIGN_CACHE kmp_cond_union { 2277 double c_align; 2278 char c_pad[CACHE_LINE]; 2279 pthread_cond_t c_cond; 2280 }; 2281 2282 typedef union kmp_cond_union kmp_cond_align_t; 2283 2284 union KMP_ALIGN_CACHE kmp_mutex_union { 2285 double m_align; 2286 char m_pad[CACHE_LINE]; 2287 pthread_mutex_t m_mutex; 2288 }; 2289 2290 typedef union kmp_mutex_union kmp_mutex_align_t; 2291 2292 #endif /* KMP_OS_UNIX */ 2293 2294 typedef struct kmp_desc_base { 2295 void *ds_stackbase; 2296 size_t ds_stacksize; 2297 int ds_stackgrow; 2298 kmp_thread_t ds_thread; 2299 volatile int ds_tid; 2300 int ds_gtid; 2301 #if KMP_OS_WINDOWS 2302 volatile int ds_alive; 2303 DWORD ds_thread_id; 2304 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes. 2305 However, debugger support (libomp_db) cannot work with handles, because they 2306 uncomparable. For example, debugger requests info about thread with handle h. 2307 h is valid within debugger process, and meaningless within debugee process. 2308 Even if h is duped by call to DuplicateHandle(), so the result h' is valid 2309 within debugee process, but it is a *new* handle which does *not* equal to 2310 any other handle in debugee... The only way to compare handles is convert 2311 them to system-wide ids. GetThreadId() function is available only in 2312 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available 2313 on all Windows* OS flavours (including Windows* 95). Thus, we have to get 2314 thread id by call to GetCurrentThreadId() from within the thread and save it 2315 to let libomp_db identify threads. */ 2316 #endif /* KMP_OS_WINDOWS */ 2317 } kmp_desc_base_t; 2318 2319 typedef union KMP_ALIGN_CACHE kmp_desc { 2320 double ds_align; /* use worst case alignment */ 2321 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)]; 2322 kmp_desc_base_t ds; 2323 } kmp_desc_t; 2324 2325 typedef struct kmp_local { 2326 volatile int this_construct; /* count of single's encountered by thread */ 2327 void *reduce_data; 2328 #if KMP_USE_BGET 2329 void *bget_data; 2330 void *bget_list; 2331 #if !USE_CMP_XCHG_FOR_BGET 2332 #ifdef USE_QUEUING_LOCK_FOR_BGET 2333 kmp_lock_t bget_lock; /* Lock for accessing bget free list */ 2334 #else 2335 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be 2336 // bootstrap lock so we can use it at library 2337 // shutdown. 2338 #endif /* USE_LOCK_FOR_BGET */ 2339 #endif /* ! USE_CMP_XCHG_FOR_BGET */ 2340 #endif /* KMP_USE_BGET */ 2341 2342 PACKED_REDUCTION_METHOD_T 2343 packed_reduction_method; /* stored by __kmpc_reduce*(), used by 2344 __kmpc_end_reduce*() */ 2345 2346 } kmp_local_t; 2347 2348 #define KMP_CHECK_UPDATE(a, b) \ 2349 if ((a) != (b)) \ 2350 (a) = (b) 2351 #define KMP_CHECK_UPDATE_SYNC(a, b) \ 2352 if ((a) != (b)) \ 2353 TCW_SYNC_PTR((a), (b)) 2354 2355 #define get__blocktime(xteam, xtid) \ 2356 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) 2357 #define get__bt_set(xteam, xtid) \ 2358 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) 2359 #if KMP_USE_MONITOR 2360 #define get__bt_intervals(xteam, xtid) \ 2361 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) 2362 #endif 2363 2364 #define get__dynamic_2(xteam, xtid) \ 2365 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic) 2366 #define get__nproc_2(xteam, xtid) \ 2367 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc) 2368 #define get__sched_2(xteam, xtid) \ 2369 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched) 2370 2371 #define set__blocktime_team(xteam, xtid, xval) \ 2372 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \ 2373 (xval)) 2374 2375 #if KMP_USE_MONITOR 2376 #define set__bt_intervals_team(xteam, xtid, xval) \ 2377 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \ 2378 (xval)) 2379 #endif 2380 2381 #define set__bt_set_team(xteam, xtid, xval) \ 2382 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval)) 2383 2384 #define set__dynamic(xthread, xval) \ 2385 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval)) 2386 #define get__dynamic(xthread) \ 2387 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE)) 2388 2389 #define set__nproc(xthread, xval) \ 2390 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval)) 2391 2392 #define set__thread_limit(xthread, xval) \ 2393 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval)) 2394 2395 #define set__max_active_levels(xthread, xval) \ 2396 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval)) 2397 2398 #define get__max_active_levels(xthread) \ 2399 ((xthread)->th.th_current_task->td_icvs.max_active_levels) 2400 2401 #define set__sched(xthread, xval) \ 2402 (((xthread)->th.th_current_task->td_icvs.sched) = (xval)) 2403 2404 #define set__proc_bind(xthread, xval) \ 2405 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval)) 2406 #define get__proc_bind(xthread) \ 2407 ((xthread)->th.th_current_task->td_icvs.proc_bind) 2408 2409 // OpenMP tasking data structures 2410 2411 typedef enum kmp_tasking_mode { 2412 tskm_immediate_exec = 0, 2413 tskm_extra_barrier = 1, 2414 tskm_task_teams = 2, 2415 tskm_max = 2 2416 } kmp_tasking_mode_t; 2417 2418 extern kmp_tasking_mode_t 2419 __kmp_tasking_mode; /* determines how/when to execute tasks */ 2420 extern int __kmp_task_stealing_constraint; 2421 extern int __kmp_enable_task_throttling; 2422 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if 2423 // specified, defaults to 0 otherwise 2424 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise 2425 extern kmp_int32 __kmp_max_task_priority; 2426 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise 2427 extern kmp_uint64 __kmp_taskloop_min_tasks; 2428 2429 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with 2430 taskdata first */ 2431 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1) 2432 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1) 2433 2434 // The tt_found_tasks flag is a signal to all threads in the team that tasks 2435 // were spawned and queued since the previous barrier release. 2436 #define KMP_TASKING_ENABLED(task_team) \ 2437 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks)) 2438 /*! 2439 @ingroup BASIC_TYPES 2440 @{ 2441 */ 2442 2443 /*! 2444 */ 2445 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *); 2446 2447 typedef union kmp_cmplrdata { 2448 kmp_int32 priority; /**< priority specified by user for the task */ 2449 kmp_routine_entry_t 2450 destructors; /* pointer to function to invoke deconstructors of 2451 firstprivate C++ objects */ 2452 /* future data */ 2453 } kmp_cmplrdata_t; 2454 2455 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */ 2456 /*! 2457 */ 2458 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */ 2459 void *shareds; /**< pointer to block of pointers to shared vars */ 2460 kmp_routine_entry_t 2461 routine; /**< pointer to routine to call for executing task */ 2462 kmp_int32 part_id; /**< part id for the task */ 2463 kmp_cmplrdata_t 2464 data1; /* Two known optional additions: destructors and priority */ 2465 kmp_cmplrdata_t data2; /* Process destructors first, priority second */ 2466 /* future data */ 2467 /* private vars */ 2468 } kmp_task_t; 2469 2470 /*! 2471 @} 2472 */ 2473 2474 typedef struct kmp_taskgroup { 2475 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks 2476 std::atomic<kmp_int32> 2477 cancel_request; // request for cancellation of this taskgroup 2478 struct kmp_taskgroup *parent; // parent taskgroup 2479 // Block of data to perform task reduction 2480 void *reduce_data; // reduction related info 2481 kmp_int32 reduce_num_data; // number of data items to reduce 2482 uintptr_t *gomp_data; // gomp reduction data 2483 } kmp_taskgroup_t; 2484 2485 // forward declarations 2486 typedef union kmp_depnode kmp_depnode_t; 2487 typedef struct kmp_depnode_list kmp_depnode_list_t; 2488 typedef struct kmp_dephash_entry kmp_dephash_entry_t; 2489 2490 // macros for checking dep flag as an integer 2491 #define KMP_DEP_IN 0x1 2492 #define KMP_DEP_OUT 0x2 2493 #define KMP_DEP_INOUT 0x3 2494 #define KMP_DEP_MTX 0x4 2495 #define KMP_DEP_SET 0x8 2496 #define KMP_DEP_ALL 0x80 2497 // Compiler sends us this info: 2498 typedef struct kmp_depend_info { 2499 kmp_intptr_t base_addr; 2500 size_t len; 2501 union { 2502 kmp_uint8 flag; // flag as an unsigned char 2503 struct { // flag as a set of 8 bits 2504 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 2505 /* Same fields as in the #else branch, but in reverse order */ 2506 unsigned all : 1; 2507 unsigned unused : 3; 2508 unsigned set : 1; 2509 unsigned mtx : 1; 2510 unsigned out : 1; 2511 unsigned in : 1; 2512 #else 2513 unsigned in : 1; 2514 unsigned out : 1; 2515 unsigned mtx : 1; 2516 unsigned set : 1; 2517 unsigned unused : 3; 2518 unsigned all : 1; 2519 #endif 2520 } flags; 2521 }; 2522 } kmp_depend_info_t; 2523 2524 // Internal structures to work with task dependencies: 2525 struct kmp_depnode_list { 2526 kmp_depnode_t *node; 2527 kmp_depnode_list_t *next; 2528 }; 2529 2530 // Max number of mutexinoutset dependencies per node 2531 #define MAX_MTX_DEPS 4 2532 2533 typedef struct kmp_base_depnode { 2534 kmp_depnode_list_t *successors; /* used under lock */ 2535 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */ 2536 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */ 2537 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */ 2538 kmp_lock_t lock; /* guards shared fields: task, successors */ 2539 #if KMP_SUPPORT_GRAPH_OUTPUT 2540 kmp_uint32 id; 2541 #endif 2542 std::atomic<kmp_int32> npredecessors; 2543 std::atomic<kmp_int32> nrefs; 2544 } kmp_base_depnode_t; 2545 2546 union KMP_ALIGN_CACHE kmp_depnode { 2547 double dn_align; /* use worst case alignment */ 2548 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)]; 2549 kmp_base_depnode_t dn; 2550 }; 2551 2552 struct kmp_dephash_entry { 2553 kmp_intptr_t addr; 2554 kmp_depnode_t *last_out; 2555 kmp_depnode_list_t *last_set; 2556 kmp_depnode_list_t *prev_set; 2557 kmp_uint8 last_flag; 2558 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */ 2559 kmp_dephash_entry_t *next_in_bucket; 2560 }; 2561 2562 typedef struct kmp_dephash { 2563 kmp_dephash_entry_t **buckets; 2564 size_t size; 2565 kmp_depnode_t *last_all; 2566 size_t generation; 2567 kmp_uint32 nelements; 2568 kmp_uint32 nconflicts; 2569 } kmp_dephash_t; 2570 2571 typedef struct kmp_task_affinity_info { 2572 kmp_intptr_t base_addr; 2573 size_t len; 2574 struct { 2575 bool flag1 : 1; 2576 bool flag2 : 1; 2577 kmp_int32 reserved : 30; 2578 } flags; 2579 } kmp_task_affinity_info_t; 2580 2581 typedef enum kmp_event_type_t { 2582 KMP_EVENT_UNINITIALIZED = 0, 2583 KMP_EVENT_ALLOW_COMPLETION = 1 2584 } kmp_event_type_t; 2585 2586 typedef struct { 2587 kmp_event_type_t type; 2588 kmp_tas_lock_t lock; 2589 union { 2590 kmp_task_t *task; 2591 } ed; 2592 } kmp_event_t; 2593 2594 #if OMPX_TASKGRAPH 2595 // Initial number of allocated nodes while recording 2596 #define INIT_MAPSIZE 50 2597 2598 typedef struct kmp_taskgraph_flags { /*This needs to be exactly 32 bits */ 2599 unsigned nowait : 1; 2600 unsigned re_record : 1; 2601 unsigned reserved : 30; 2602 } kmp_taskgraph_flags_t; 2603 2604 /// Represents a TDG node 2605 typedef struct kmp_node_info { 2606 kmp_task_t *task; // Pointer to the actual task 2607 kmp_int32 *successors; // Array of the succesors ids 2608 kmp_int32 nsuccessors; // Number of succesors of the node 2609 std::atomic<kmp_int32> 2610 npredecessors_counter; // Number of predessors on the fly 2611 kmp_int32 npredecessors; // Total number of predecessors 2612 kmp_int32 successors_size; // Number of allocated succesors ids 2613 kmp_taskdata_t *parent_task; // Parent implicit task 2614 } kmp_node_info_t; 2615 2616 /// Represent a TDG's current status 2617 typedef enum kmp_tdg_status { 2618 KMP_TDG_NONE = 0, 2619 KMP_TDG_RECORDING = 1, 2620 KMP_TDG_READY = 2 2621 } kmp_tdg_status_t; 2622 2623 /// Structure that contains a TDG 2624 typedef struct kmp_tdg_info { 2625 kmp_int32 tdg_id; // Unique idenfifier of the TDG 2626 kmp_taskgraph_flags_t tdg_flags; // Flags related to a TDG 2627 kmp_int32 map_size; // Number of allocated TDG nodes 2628 kmp_int32 num_roots; // Number of roots tasks int the TDG 2629 kmp_int32 *root_tasks; // Array of tasks identifiers that are roots 2630 kmp_node_info_t *record_map; // Array of TDG nodes 2631 kmp_tdg_status_t tdg_status = 2632 KMP_TDG_NONE; // Status of the TDG (recording, ready...) 2633 std::atomic<kmp_int32> num_tasks; // Number of TDG nodes 2634 kmp_bootstrap_lock_t 2635 graph_lock; // Protect graph attributes when updated via taskloop_recur 2636 // Taskloop reduction related 2637 void *rec_taskred_data; // Data to pass to __kmpc_task_reduction_init or 2638 // __kmpc_taskred_init 2639 kmp_int32 rec_num_taskred; 2640 } kmp_tdg_info_t; 2641 2642 extern int __kmp_tdg_dot; 2643 extern kmp_int32 __kmp_max_tdgs; 2644 extern kmp_tdg_info_t **__kmp_global_tdgs; 2645 extern kmp_int32 __kmp_curr_tdg_idx; 2646 extern kmp_int32 __kmp_successors_size; 2647 extern std::atomic<kmp_int32> __kmp_tdg_task_id; 2648 extern kmp_int32 __kmp_num_tdg; 2649 #endif 2650 2651 #ifdef BUILD_TIED_TASK_STACK 2652 2653 /* Tied Task stack definitions */ 2654 typedef struct kmp_stack_block { 2655 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE]; 2656 struct kmp_stack_block *sb_next; 2657 struct kmp_stack_block *sb_prev; 2658 } kmp_stack_block_t; 2659 2660 typedef struct kmp_task_stack { 2661 kmp_stack_block_t ts_first_block; // first block of stack entries 2662 kmp_taskdata_t **ts_top; // pointer to the top of stack 2663 kmp_int32 ts_entries; // number of entries on the stack 2664 } kmp_task_stack_t; 2665 2666 #endif // BUILD_TIED_TASK_STACK 2667 2668 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */ 2669 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 2670 /* Same fields as in the #else branch, but in reverse order */ 2671 #if OMPX_TASKGRAPH 2672 unsigned reserved31 : 6; 2673 unsigned onced : 1; 2674 #else 2675 unsigned reserved31 : 7; 2676 #endif 2677 unsigned native : 1; 2678 unsigned freed : 1; 2679 unsigned complete : 1; 2680 unsigned executing : 1; 2681 unsigned started : 1; 2682 unsigned team_serial : 1; 2683 unsigned tasking_ser : 1; 2684 unsigned task_serial : 1; 2685 unsigned tasktype : 1; 2686 unsigned reserved : 8; 2687 unsigned hidden_helper : 1; 2688 unsigned detachable : 1; 2689 unsigned priority_specified : 1; 2690 unsigned proxy : 1; 2691 unsigned destructors_thunk : 1; 2692 unsigned merged_if0 : 1; 2693 unsigned final : 1; 2694 unsigned tiedness : 1; 2695 #else 2696 /* Compiler flags */ /* Total compiler flags must be 16 bits */ 2697 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */ 2698 unsigned final : 1; /* task is final(1) so execute immediately */ 2699 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0 2700 code path */ 2701 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to 2702 invoke destructors from the runtime */ 2703 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the 2704 context of the RTL) */ 2705 unsigned priority_specified : 1; /* set if the compiler provides priority 2706 setting for the task */ 2707 unsigned detachable : 1; /* 1 == can detach */ 2708 unsigned hidden_helper : 1; /* 1 == hidden helper task */ 2709 unsigned reserved : 8; /* reserved for compiler use */ 2710 2711 /* Library flags */ /* Total library flags must be 16 bits */ 2712 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */ 2713 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0) 2714 unsigned tasking_ser : 1; // all tasks in team are either executed immediately 2715 // (1) or may be deferred (0) 2716 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel 2717 // (0) [>= 2 threads] 2718 /* If either team_serial or tasking_ser is set, task team may be NULL */ 2719 /* Task State Flags: */ 2720 unsigned started : 1; /* 1==started, 0==not started */ 2721 unsigned executing : 1; /* 1==executing, 0==not executing */ 2722 unsigned complete : 1; /* 1==complete, 0==not complete */ 2723 unsigned freed : 1; /* 1==freed, 0==allocated */ 2724 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */ 2725 #if OMPX_TASKGRAPH 2726 unsigned onced : 1; /* 1==ran once already, 0==never ran, record & replay purposes */ 2727 unsigned reserved31 : 6; /* reserved for library use */ 2728 #else 2729 unsigned reserved31 : 7; /* reserved for library use */ 2730 #endif 2731 #endif 2732 } kmp_tasking_flags_t; 2733 2734 typedef struct kmp_target_data { 2735 void *async_handle; // libomptarget async handle for task completion query 2736 } kmp_target_data_t; 2737 2738 struct kmp_taskdata { /* aligned during dynamic allocation */ 2739 kmp_int32 td_task_id; /* id, assigned by debugger */ 2740 kmp_tasking_flags_t td_flags; /* task flags */ 2741 kmp_team_t *td_team; /* team for this task */ 2742 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */ 2743 /* Currently not used except for perhaps IDB */ 2744 kmp_taskdata_t *td_parent; /* parent task */ 2745 kmp_int32 td_level; /* task nesting level */ 2746 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter 2747 ident_t *td_ident; /* task identifier */ 2748 // Taskwait data. 2749 ident_t *td_taskwait_ident; 2750 kmp_uint32 td_taskwait_counter; 2751 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */ 2752 KMP_ALIGN_CACHE kmp_internal_control_t 2753 td_icvs; /* Internal control variables for the task */ 2754 KMP_ALIGN_CACHE std::atomic<kmp_int32> 2755 td_allocated_child_tasks; /* Child tasks (+ current task) not yet 2756 deallocated */ 2757 std::atomic<kmp_int32> 2758 td_incomplete_child_tasks; /* Child tasks not yet complete */ 2759 kmp_taskgroup_t 2760 *td_taskgroup; // Each task keeps pointer to its current taskgroup 2761 kmp_dephash_t 2762 *td_dephash; // Dependencies for children tasks are tracked from here 2763 kmp_depnode_t 2764 *td_depnode; // Pointer to graph node if this task has dependencies 2765 kmp_task_team_t *td_task_team; 2766 size_t td_size_alloc; // Size of task structure, including shareds etc. 2767 #if defined(KMP_GOMP_COMPAT) 2768 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop 2769 kmp_int32 td_size_loop_bounds; 2770 #endif 2771 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint 2772 #if defined(KMP_GOMP_COMPAT) 2773 // GOMP sends in a copy function for copy constructors 2774 void (*td_copy_func)(void *, void *); 2775 #endif 2776 kmp_event_t td_allow_completion_event; 2777 #if OMPT_SUPPORT 2778 ompt_task_info_t ompt_task_info; 2779 #endif 2780 #if OMPX_TASKGRAPH 2781 bool is_taskgraph = 0; // whether the task is within a TDG 2782 kmp_tdg_info_t *tdg; // used to associate task with a TDG 2783 #endif 2784 kmp_target_data_t td_target_data; 2785 }; // struct kmp_taskdata 2786 2787 // Make sure padding above worked 2788 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0); 2789 2790 // Data for task team but per thread 2791 typedef struct kmp_base_thread_data { 2792 kmp_info_p *td_thr; // Pointer back to thread info 2793 // Used only in __kmp_execute_tasks_template, maybe not avail until task is 2794 // queued? 2795 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque 2796 kmp_taskdata_t * 2797 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated 2798 kmp_int32 td_deque_size; // Size of deck 2799 kmp_uint32 td_deque_head; // Head of deque (will wrap) 2800 kmp_uint32 td_deque_tail; // Tail of deque (will wrap) 2801 kmp_int32 td_deque_ntasks; // Number of tasks in deque 2802 // GEH: shouldn't this be volatile since used in while-spin? 2803 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal 2804 #ifdef BUILD_TIED_TASK_STACK 2805 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task 2806 // scheduling constraint 2807 #endif // BUILD_TIED_TASK_STACK 2808 } kmp_base_thread_data_t; 2809 2810 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE 2811 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS) 2812 2813 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size) 2814 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1) 2815 2816 typedef union KMP_ALIGN_CACHE kmp_thread_data { 2817 kmp_base_thread_data_t td; 2818 double td_align; /* use worst case alignment */ 2819 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)]; 2820 } kmp_thread_data_t; 2821 2822 typedef struct kmp_task_pri { 2823 kmp_thread_data_t td; 2824 kmp_int32 priority; 2825 kmp_task_pri *next; 2826 } kmp_task_pri_t; 2827 2828 // Data for task teams which are used when tasking is enabled for the team 2829 typedef struct kmp_base_task_team { 2830 kmp_bootstrap_lock_t 2831 tt_threads_lock; /* Lock used to allocate per-thread part of task team */ 2832 /* must be bootstrap lock since used at library shutdown*/ 2833 2834 // TODO: check performance vs kmp_tas_lock_t 2835 kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */ 2836 kmp_task_pri_t *tt_task_pri_list; 2837 2838 kmp_task_team_t *tt_next; /* For linking the task team free list */ 2839 kmp_thread_data_t 2840 *tt_threads_data; /* Array of per-thread structures for task team */ 2841 /* Data survives task team deallocation */ 2842 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while 2843 executing this team? */ 2844 /* TRUE means tt_threads_data is set up and initialized */ 2845 kmp_int32 tt_nproc; /* #threads in team */ 2846 kmp_int32 tt_max_threads; // # entries allocated for threads_data array 2847 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier 2848 kmp_int32 tt_untied_task_encountered; 2849 std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued 2850 // There is hidden helper thread encountered in this task team so that we must 2851 // wait when waiting on task team 2852 kmp_int32 tt_hidden_helper_task_encountered; 2853 2854 KMP_ALIGN_CACHE 2855 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */ 2856 2857 KMP_ALIGN_CACHE 2858 volatile kmp_uint32 2859 tt_active; /* is the team still actively executing tasks */ 2860 } kmp_base_task_team_t; 2861 2862 union KMP_ALIGN_CACHE kmp_task_team { 2863 kmp_base_task_team_t tt; 2864 double tt_align; /* use worst case alignment */ 2865 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)]; 2866 }; 2867 2868 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5) 2869 // Free lists keep same-size free memory slots for fast memory allocation 2870 // routines 2871 typedef struct kmp_free_list { 2872 void *th_free_list_self; // Self-allocated tasks free list 2873 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other 2874 // threads 2875 void *th_free_list_other; // Non-self free list (to be returned to owner's 2876 // sync list) 2877 } kmp_free_list_t; 2878 #endif 2879 #if KMP_NESTED_HOT_TEAMS 2880 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams 2881 // are not put in teams pool, and they don't put threads in threads pool. 2882 typedef struct kmp_hot_team_ptr { 2883 kmp_team_p *hot_team; // pointer to hot_team of given nesting level 2884 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team 2885 } kmp_hot_team_ptr_t; 2886 #endif 2887 typedef struct kmp_teams_size { 2888 kmp_int32 nteams; // number of teams in a league 2889 kmp_int32 nth; // number of threads in each team of the league 2890 } kmp_teams_size_t; 2891 2892 // This struct stores a thread that acts as a "root" for a contention 2893 // group. Contention groups are rooted at kmp_root threads, but also at 2894 // each primary thread of each team created in the teams construct. 2895 // This struct therefore also stores a thread_limit associated with 2896 // that contention group, and a counter to track the number of threads 2897 // active in that contention group. Each thread has a list of these: CG 2898 // root threads have an entry in their list in which cg_root refers to 2899 // the thread itself, whereas other workers in the CG will have a 2900 // single entry where cg_root is same as the entry containing their CG 2901 // root. When a thread encounters a teams construct, it will add a new 2902 // entry to the front of its list, because it now roots a new CG. 2903 typedef struct kmp_cg_root { 2904 kmp_info_p *cg_root; // "root" thread for a contention group 2905 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or 2906 // thread_limit clause for teams primary threads 2907 kmp_int32 cg_thread_limit; 2908 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root 2909 struct kmp_cg_root *up; // pointer to higher level CG root in list 2910 } kmp_cg_root_t; 2911 2912 // OpenMP thread data structures 2913 2914 typedef struct KMP_ALIGN_CACHE kmp_base_info { 2915 /* Start with the readonly data which is cache aligned and padded. This is 2916 written before the thread starts working by the primary thread. Uber 2917 masters may update themselves later. Usage does not consider serialized 2918 regions. */ 2919 kmp_desc_t th_info; 2920 kmp_team_p *th_team; /* team we belong to */ 2921 kmp_root_p *th_root; /* pointer to root of task hierarchy */ 2922 kmp_info_p *th_next_pool; /* next available thread in the pool */ 2923 kmp_disp_t *th_dispatch; /* thread's dispatch data */ 2924 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */ 2925 2926 /* The following are cached from the team info structure */ 2927 /* TODO use these in more places as determined to be needed via profiling */ 2928 int th_team_nproc; /* number of threads in a team */ 2929 kmp_info_p *th_team_master; /* the team's primary thread */ 2930 int th_team_serialized; /* team is serialized */ 2931 microtask_t th_teams_microtask; /* save entry address for teams construct */ 2932 int th_teams_level; /* save initial level of teams construct */ 2933 /* it is 0 on device but may be any on host */ 2934 2935 /* The blocktime info is copied from the team struct to the thread struct */ 2936 /* at the start of a barrier, and the values stored in the team are used */ 2937 /* at points in the code where the team struct is no longer guaranteed */ 2938 /* to exist (from the POV of worker threads). */ 2939 #if KMP_USE_MONITOR 2940 int th_team_bt_intervals; 2941 int th_team_bt_set; 2942 #else 2943 kmp_uint64 th_team_bt_intervals; 2944 #endif 2945 2946 #if KMP_AFFINITY_SUPPORTED 2947 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */ 2948 kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */ 2949 kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */ 2950 #endif 2951 omp_allocator_handle_t th_def_allocator; /* default allocator */ 2952 /* The data set by the primary thread at reinit, then R/W by the worker */ 2953 KMP_ALIGN_CACHE int 2954 th_set_nproc; /* if > 0, then only use this request for the next fork */ 2955 #if KMP_NESTED_HOT_TEAMS 2956 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */ 2957 #endif 2958 kmp_proc_bind_t 2959 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */ 2960 kmp_teams_size_t 2961 th_teams_size; /* number of teams/threads in teams construct */ 2962 #if KMP_AFFINITY_SUPPORTED 2963 int th_current_place; /* place currently bound to */ 2964 int th_new_place; /* place to bind to in par reg */ 2965 int th_first_place; /* first place in partition */ 2966 int th_last_place; /* last place in partition */ 2967 #endif 2968 int th_prev_level; /* previous level for affinity format */ 2969 int th_prev_num_threads; /* previous num_threads for affinity format */ 2970 #if USE_ITT_BUILD 2971 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */ 2972 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */ 2973 kmp_uint64 th_frame_time; /* frame timestamp */ 2974 #endif /* USE_ITT_BUILD */ 2975 kmp_local_t th_local; 2976 struct private_common *th_pri_head; 2977 2978 /* Now the data only used by the worker (after initial allocation) */ 2979 /* TODO the first serial team should actually be stored in the info_t 2980 structure. this will help reduce initial allocation overhead */ 2981 KMP_ALIGN_CACHE kmp_team_p 2982 *th_serial_team; /*serialized team held in reserve*/ 2983 2984 #if OMPT_SUPPORT 2985 ompt_thread_info_t ompt_thread_info; 2986 #endif 2987 2988 /* The following are also read by the primary thread during reinit */ 2989 struct common_table *th_pri_common; 2990 2991 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */ 2992 /* while awaiting queuing lock acquire */ 2993 2994 volatile void *th_sleep_loc; // this points at a kmp_flag<T> 2995 flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc 2996 2997 ident_t *th_ident; 2998 unsigned th_x; // Random number generator data 2999 unsigned th_a; // Random number generator data 3000 3001 /* Tasking-related data for the thread */ 3002 kmp_task_team_t *th_task_team; // Task team struct 3003 kmp_taskdata_t *th_current_task; // Innermost Task being executed 3004 kmp_uint8 th_task_state; // alternating 0/1 for task team identification 3005 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state 3006 // at nested levels 3007 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack 3008 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack 3009 kmp_uint32 th_reap_state; // Non-zero indicates thread is not 3010 // tasking, thus safe to reap 3011 3012 /* More stuff for keeping track of active/sleeping threads (this part is 3013 written by the worker thread) */ 3014 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool 3015 int th_active; // ! sleeping; 32 bits for TCR/TCW 3016 std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team 3017 // 0 = not used in team; 1 = used in team; 3018 // 2 = transitioning to not used in team; 3 = transitioning to used in team 3019 struct cons_header *th_cons; // used for consistency check 3020 #if KMP_USE_HIER_SCHED 3021 // used for hierarchical scheduling 3022 kmp_hier_private_bdata_t *th_hier_bar_data; 3023 #endif 3024 3025 /* Add the syncronizing data which is cache aligned and padded. */ 3026 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier]; 3027 3028 KMP_ALIGN_CACHE volatile kmp_int32 3029 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */ 3030 3031 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5) 3032 #define NUM_LISTS 4 3033 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory 3034 // allocation routines 3035 #endif 3036 3037 #if KMP_OS_WINDOWS 3038 kmp_win32_cond_t th_suspend_cv; 3039 kmp_win32_mutex_t th_suspend_mx; 3040 std::atomic<int> th_suspend_init; 3041 #endif 3042 #if KMP_OS_UNIX 3043 kmp_cond_align_t th_suspend_cv; 3044 kmp_mutex_align_t th_suspend_mx; 3045 std::atomic<int> th_suspend_init_count; 3046 #endif 3047 3048 #if USE_ITT_BUILD 3049 kmp_itt_mark_t th_itt_mark_single; 3050 // alignment ??? 3051 #endif /* USE_ITT_BUILD */ 3052 #if KMP_STATS_ENABLED 3053 kmp_stats_list *th_stats; 3054 #endif 3055 #if KMP_OS_UNIX 3056 std::atomic<bool> th_blocking; 3057 #endif 3058 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread 3059 } kmp_base_info_t; 3060 3061 typedef union KMP_ALIGN_CACHE kmp_info { 3062 double th_align; /* use worst case alignment */ 3063 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)]; 3064 kmp_base_info_t th; 3065 } kmp_info_t; 3066 3067 // OpenMP thread team data structures 3068 3069 typedef struct kmp_base_data { 3070 volatile kmp_uint32 t_value; 3071 } kmp_base_data_t; 3072 3073 typedef union KMP_ALIGN_CACHE kmp_sleep_team { 3074 double dt_align; /* use worst case alignment */ 3075 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 3076 kmp_base_data_t dt; 3077 } kmp_sleep_team_t; 3078 3079 typedef union KMP_ALIGN_CACHE kmp_ordered_team { 3080 double dt_align; /* use worst case alignment */ 3081 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 3082 kmp_base_data_t dt; 3083 } kmp_ordered_team_t; 3084 3085 typedef int (*launch_t)(int gtid); 3086 3087 /* Minimum number of ARGV entries to malloc if necessary */ 3088 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100 3089 3090 // Set up how many argv pointers will fit in cache lines containing 3091 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a 3092 // larger value for more space between the primary write/worker read section and 3093 // read/write by all section seems to buy more performance on EPCC PARALLEL. 3094 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 3095 #define KMP_INLINE_ARGV_BYTES \ 3096 (4 * CACHE_LINE - \ 3097 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \ 3098 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \ 3099 CACHE_LINE)) 3100 #else 3101 #define KMP_INLINE_ARGV_BYTES \ 3102 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE)) 3103 #endif 3104 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP) 3105 3106 typedef struct KMP_ALIGN_CACHE kmp_base_team { 3107 // Synchronization Data 3108 // --------------------------------------------------------------------------- 3109 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered; 3110 kmp_balign_team_t t_bar[bs_last_barrier]; 3111 std::atomic<int> t_construct; // count of single directive encountered by team 3112 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron 3113 3114 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups 3115 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier 3116 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions 3117 3118 // Primary thread only 3119 // --------------------------------------------------------------------------- 3120 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team 3121 int t_master_this_cons; // "this_construct" single counter of primary thread 3122 // in parent team 3123 ident_t *t_ident; // if volatile, have to change too much other crud to 3124 // volatile too 3125 kmp_team_p *t_parent; // parent team 3126 kmp_team_p *t_next_pool; // next free team in the team pool 3127 kmp_disp_t *t_dispatch; // thread's dispatch data 3128 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2 3129 kmp_proc_bind_t t_proc_bind; // bind type for par region 3130 #if USE_ITT_BUILD 3131 kmp_uint64 t_region_time; // region begin timestamp 3132 #endif /* USE_ITT_BUILD */ 3133 3134 // Primary thread write, workers read 3135 // -------------------------------------------------------------------------- 3136 KMP_ALIGN_CACHE void **t_argv; 3137 int t_argc; 3138 int t_nproc; // number of threads in team 3139 microtask_t t_pkfn; 3140 launch_t t_invoke; // procedure to launch the microtask 3141 3142 #if OMPT_SUPPORT 3143 ompt_team_info_t ompt_team_info; 3144 ompt_lw_taskteam_t *ompt_serialized_team_info; 3145 #endif 3146 3147 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 3148 kmp_int8 t_fp_control_saved; 3149 kmp_int8 t_pad2b; 3150 kmp_int16 t_x87_fpu_control_word; // FP control regs 3151 kmp_uint32 t_mxcsr; 3152 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 3153 3154 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES]; 3155 3156 KMP_ALIGN_CACHE kmp_info_t **t_threads; 3157 kmp_taskdata_t 3158 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task 3159 int t_level; // nested parallel level 3160 3161 KMP_ALIGN_CACHE int t_max_argc; 3162 int t_max_nproc; // max threads this team can handle (dynamically expandable) 3163 int t_serialized; // levels deep of serialized teams 3164 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system 3165 int t_id; // team's id, assigned by debugger. 3166 int t_active_level; // nested active parallel level 3167 kmp_r_sched_t t_sched; // run-time schedule for the team 3168 #if KMP_AFFINITY_SUPPORTED 3169 int t_first_place; // first & last place in parent thread's partition. 3170 int t_last_place; // Restore these values to primary thread after par region. 3171 #endif // KMP_AFFINITY_SUPPORTED 3172 int t_display_affinity; 3173 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via 3174 // omp_set_num_threads() call 3175 omp_allocator_handle_t t_def_allocator; /* default allocator */ 3176 3177 // Read/write by workers as well 3178 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 3179 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf 3180 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra 3181 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when 3182 // CACHE_LINE=64. TODO: investigate more and get rid if this padding. 3183 char dummy_padding[1024]; 3184 #endif 3185 // Internal control stack for additional nested teams. 3186 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top; 3187 // for SERIALIZED teams nested 2 or more levels deep 3188 // typed flag to store request state of cancellation 3189 std::atomic<kmp_int32> t_cancel_request; 3190 int t_master_active; // save on fork, restore on join 3191 void *t_copypriv_data; // team specific pointer to copyprivate data array 3192 #if KMP_OS_WINDOWS 3193 std::atomic<kmp_uint32> t_copyin_counter; 3194 #endif 3195 #if USE_ITT_BUILD 3196 void *t_stack_id; // team specific stack stitching id (for ittnotify) 3197 #endif /* USE_ITT_BUILD */ 3198 distributedBarrier *b; // Distributed barrier data associated with team 3199 } kmp_base_team_t; 3200 3201 union KMP_ALIGN_CACHE kmp_team { 3202 kmp_base_team_t t; 3203 double t_align; /* use worst case alignment */ 3204 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)]; 3205 }; 3206 3207 typedef union KMP_ALIGN_CACHE kmp_time_global { 3208 double dt_align; /* use worst case alignment */ 3209 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)]; 3210 kmp_base_data_t dt; 3211 } kmp_time_global_t; 3212 3213 typedef struct kmp_base_global { 3214 /* cache-aligned */ 3215 kmp_time_global_t g_time; 3216 3217 /* non cache-aligned */ 3218 volatile int g_abort; 3219 volatile int g_done; 3220 3221 int g_dynamic; 3222 enum dynamic_mode g_dynamic_mode; 3223 } kmp_base_global_t; 3224 3225 typedef union KMP_ALIGN_CACHE kmp_global { 3226 kmp_base_global_t g; 3227 double g_align; /* use worst case alignment */ 3228 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)]; 3229 } kmp_global_t; 3230 3231 typedef struct kmp_base_root { 3232 // TODO: GEH - combine r_active with r_in_parallel then r_active == 3233 // (r_in_parallel>= 0) 3234 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce 3235 // the synch overhead or keeping r_active 3236 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */ 3237 // keeps a count of active parallel regions per root 3238 std::atomic<int> r_in_parallel; 3239 // GEH: This is misnamed, should be r_active_levels 3240 kmp_team_t *r_root_team; 3241 kmp_team_t *r_hot_team; 3242 kmp_info_t *r_uber_thread; 3243 kmp_lock_t r_begin_lock; 3244 volatile int r_begin; 3245 int r_blocktime; /* blocktime for this root and descendants */ 3246 #if KMP_AFFINITY_SUPPORTED 3247 int r_affinity_assigned; 3248 #endif // KMP_AFFINITY_SUPPORTED 3249 } kmp_base_root_t; 3250 3251 typedef union KMP_ALIGN_CACHE kmp_root { 3252 kmp_base_root_t r; 3253 double r_align; /* use worst case alignment */ 3254 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)]; 3255 } kmp_root_t; 3256 3257 struct fortran_inx_info { 3258 kmp_int32 data; 3259 }; 3260 3261 // This list type exists to hold old __kmp_threads arrays so that 3262 // old references to them may complete while reallocation takes place when 3263 // expanding the array. The items in this list are kept alive until library 3264 // shutdown. 3265 typedef struct kmp_old_threads_list_t { 3266 kmp_info_t **threads; 3267 struct kmp_old_threads_list_t *next; 3268 } kmp_old_threads_list_t; 3269 3270 /* ------------------------------------------------------------------------ */ 3271 3272 extern int __kmp_settings; 3273 extern int __kmp_duplicate_library_ok; 3274 #if USE_ITT_BUILD 3275 extern int __kmp_forkjoin_frames; 3276 extern int __kmp_forkjoin_frames_mode; 3277 #endif 3278 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method; 3279 extern int __kmp_determ_red; 3280 3281 #ifdef KMP_DEBUG 3282 extern int kmp_a_debug; 3283 extern int kmp_b_debug; 3284 extern int kmp_c_debug; 3285 extern int kmp_d_debug; 3286 extern int kmp_e_debug; 3287 extern int kmp_f_debug; 3288 #endif /* KMP_DEBUG */ 3289 3290 /* For debug information logging using rotating buffer */ 3291 #define KMP_DEBUG_BUF_LINES_INIT 512 3292 #define KMP_DEBUG_BUF_LINES_MIN 1 3293 3294 #define KMP_DEBUG_BUF_CHARS_INIT 128 3295 #define KMP_DEBUG_BUF_CHARS_MIN 2 3296 3297 extern int 3298 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */ 3299 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */ 3300 extern int 3301 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */ 3302 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer 3303 entry pointer */ 3304 3305 extern char *__kmp_debug_buffer; /* Debug buffer itself */ 3306 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines 3307 printed in buffer so far */ 3308 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase 3309 recommended in warnings */ 3310 /* end rotating debug buffer */ 3311 3312 #ifdef KMP_DEBUG 3313 extern int __kmp_par_range; /* +1 => only go par for constructs in range */ 3314 3315 #define KMP_PAR_RANGE_ROUTINE_LEN 1024 3316 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN]; 3317 #define KMP_PAR_RANGE_FILENAME_LEN 1024 3318 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN]; 3319 extern int __kmp_par_range_lb; 3320 extern int __kmp_par_range_ub; 3321 #endif 3322 3323 /* For printing out dynamic storage map for threads and teams */ 3324 extern int 3325 __kmp_storage_map; /* True means print storage map for threads and teams */ 3326 extern int __kmp_storage_map_verbose; /* True means storage map includes 3327 placement info */ 3328 extern int __kmp_storage_map_verbose_specified; 3329 3330 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 3331 extern kmp_cpuinfo_t __kmp_cpuinfo; 3332 static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; } 3333 #elif KMP_OS_DARWIN && KMP_ARCH_AARCH64 3334 static inline bool __kmp_is_hybrid_cpu() { return true; } 3335 #else 3336 static inline bool __kmp_is_hybrid_cpu() { return false; } 3337 #endif 3338 3339 extern volatile int __kmp_init_serial; 3340 extern volatile int __kmp_init_gtid; 3341 extern volatile int __kmp_init_common; 3342 extern volatile int __kmp_need_register_serial; 3343 extern volatile int __kmp_init_middle; 3344 extern volatile int __kmp_init_parallel; 3345 #if KMP_USE_MONITOR 3346 extern volatile int __kmp_init_monitor; 3347 #endif 3348 extern volatile int __kmp_init_user_locks; 3349 extern volatile int __kmp_init_hidden_helper_threads; 3350 extern int __kmp_init_counter; 3351 extern int __kmp_root_counter; 3352 extern int __kmp_version; 3353 3354 /* list of address of allocated caches for commons */ 3355 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list; 3356 3357 /* Barrier algorithm types and options */ 3358 extern kmp_uint32 __kmp_barrier_gather_bb_dflt; 3359 extern kmp_uint32 __kmp_barrier_release_bb_dflt; 3360 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt; 3361 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt; 3362 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier]; 3363 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier]; 3364 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier]; 3365 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier]; 3366 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier]; 3367 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier]; 3368 extern char const *__kmp_barrier_type_name[bs_last_barrier]; 3369 extern char const *__kmp_barrier_pattern_name[bp_last_bar]; 3370 3371 /* Global Locks */ 3372 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */ 3373 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */ 3374 extern kmp_bootstrap_lock_t __kmp_task_team_lock; 3375 extern kmp_bootstrap_lock_t 3376 __kmp_exit_lock; /* exit() is not always thread-safe */ 3377 #if KMP_USE_MONITOR 3378 extern kmp_bootstrap_lock_t 3379 __kmp_monitor_lock; /* control monitor thread creation */ 3380 #endif 3381 extern kmp_bootstrap_lock_t 3382 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and 3383 __kmp_threads expansion to co-exist */ 3384 3385 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */ 3386 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */ 3387 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */ 3388 3389 extern enum library_type __kmp_library; 3390 3391 extern enum sched_type __kmp_sched; /* default runtime scheduling */ 3392 extern enum sched_type __kmp_static; /* default static scheduling method */ 3393 extern enum sched_type __kmp_guided; /* default guided scheduling method */ 3394 extern enum sched_type __kmp_auto; /* default auto scheduling method */ 3395 extern int __kmp_chunk; /* default runtime chunk size */ 3396 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */ 3397 3398 extern size_t __kmp_stksize; /* stack size per thread */ 3399 #if KMP_USE_MONITOR 3400 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */ 3401 #endif 3402 extern size_t __kmp_stkoffset; /* stack offset per thread */ 3403 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */ 3404 3405 extern size_t 3406 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */ 3407 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */ 3408 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */ 3409 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */ 3410 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified? 3411 extern int __kmp_generate_warnings; /* should we issue warnings? */ 3412 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */ 3413 3414 #ifdef DEBUG_SUSPEND 3415 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */ 3416 #endif 3417 3418 extern kmp_int32 __kmp_use_yield; 3419 extern kmp_int32 __kmp_use_yield_exp_set; 3420 extern kmp_uint32 __kmp_yield_init; 3421 extern kmp_uint32 __kmp_yield_next; 3422 extern kmp_uint64 __kmp_pause_init; 3423 3424 /* ------------------------------------------------------------------------- */ 3425 extern int __kmp_allThreadsSpecified; 3426 3427 extern size_t __kmp_align_alloc; 3428 /* following data protected by initialization routines */ 3429 extern int __kmp_xproc; /* number of processors in the system */ 3430 extern int __kmp_avail_proc; /* number of processors available to the process */ 3431 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */ 3432 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */ 3433 // maximum total number of concurrently-existing threads on device 3434 extern int __kmp_max_nth; 3435 // maximum total number of concurrently-existing threads in a contention group 3436 extern int __kmp_cg_max_nth; 3437 extern int __kmp_task_max_nth; // max threads used in a task 3438 extern int __kmp_teams_max_nth; // max threads used in a teams construct 3439 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and 3440 __kmp_root */ 3441 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel 3442 region a la OMP_NUM_THREADS */ 3443 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial 3444 initialization */ 3445 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is 3446 used (fixed) */ 3447 extern int __kmp_tp_cached; /* whether threadprivate cache has been created 3448 (__kmpc_threadprivate_cached()) */ 3449 extern int __kmp_dflt_blocktime; /* number of microseconds to wait before 3450 blocking (env setting) */ 3451 extern char __kmp_blocktime_units; /* 'm' or 'u' to note units specified */ 3452 extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */ 3453 3454 // Convert raw blocktime from ms to us if needed. 3455 static inline void __kmp_aux_convert_blocktime(int *bt) { 3456 if (__kmp_blocktime_units == 'm') { 3457 if (*bt > INT_MAX / 1000) { 3458 *bt = INT_MAX / 1000; 3459 KMP_INFORM(MaxValueUsing, "kmp_set_blocktime(ms)", bt); 3460 } 3461 *bt = *bt * 1000; 3462 } 3463 } 3464 3465 #if KMP_USE_MONITOR 3466 extern int 3467 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */ 3468 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before 3469 blocking */ 3470 #endif 3471 #ifdef KMP_ADJUST_BLOCKTIME 3472 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */ 3473 #endif /* KMP_ADJUST_BLOCKTIME */ 3474 #ifdef KMP_DFLT_NTH_CORES 3475 extern int __kmp_ncores; /* Total number of cores for threads placement */ 3476 #endif 3477 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */ 3478 extern int __kmp_abort_delay; 3479 3480 extern int __kmp_need_register_atfork_specified; 3481 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork 3482 to install fork handler */ 3483 extern int __kmp_gtid_mode; /* Method of getting gtid, values: 3484 0 - not set, will be set at runtime 3485 1 - using stack search 3486 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS 3487 X*) or TlsGetValue(Windows* OS)) 3488 3 - static TLS (__declspec(thread) __kmp_gtid), 3489 Linux* OS .so only. */ 3490 extern int 3491 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */ 3492 #ifdef KMP_TDATA_GTID 3493 extern KMP_THREAD_LOCAL int __kmp_gtid; 3494 #endif 3495 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */ 3496 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread 3497 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 3498 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork 3499 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg 3500 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */ 3501 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 3502 3503 // max_active_levels for nested parallelism enabled by default via 3504 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND 3505 extern int __kmp_dflt_max_active_levels; 3506 // Indicates whether value of __kmp_dflt_max_active_levels was already 3507 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false 3508 extern bool __kmp_dflt_max_active_levels_set; 3509 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in 3510 concurrent execution per team */ 3511 #if KMP_NESTED_HOT_TEAMS 3512 extern int __kmp_hot_teams_mode; 3513 extern int __kmp_hot_teams_max_level; 3514 #endif 3515 3516 #if KMP_OS_LINUX 3517 extern enum clock_function_type __kmp_clock_function; 3518 extern int __kmp_clock_function_param; 3519 #endif /* KMP_OS_LINUX */ 3520 3521 #if KMP_MIC_SUPPORTED 3522 extern enum mic_type __kmp_mic_type; 3523 #endif 3524 3525 #ifdef USE_LOAD_BALANCE 3526 extern double __kmp_load_balance_interval; // load balance algorithm interval 3527 #endif /* USE_LOAD_BALANCE */ 3528 3529 // OpenMP 3.1 - Nested num threads array 3530 typedef struct kmp_nested_nthreads_t { 3531 int *nth; 3532 int size; 3533 int used; 3534 } kmp_nested_nthreads_t; 3535 3536 extern kmp_nested_nthreads_t __kmp_nested_nth; 3537 3538 #if KMP_USE_ADAPTIVE_LOCKS 3539 3540 // Parameters for the speculative lock backoff system. 3541 struct kmp_adaptive_backoff_params_t { 3542 // Number of soft retries before it counts as a hard retry. 3543 kmp_uint32 max_soft_retries; 3544 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to 3545 // the right 3546 kmp_uint32 max_badness; 3547 }; 3548 3549 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params; 3550 3551 #if KMP_DEBUG_ADAPTIVE_LOCKS 3552 extern const char *__kmp_speculative_statsfile; 3553 #endif 3554 3555 #endif // KMP_USE_ADAPTIVE_LOCKS 3556 3557 extern int __kmp_display_env; /* TRUE or FALSE */ 3558 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */ 3559 extern int __kmp_omp_cancellation; /* TRUE or FALSE */ 3560 extern int __kmp_nteams; 3561 extern int __kmp_teams_thread_limit; 3562 3563 /* ------------------------------------------------------------------------- */ 3564 3565 /* the following are protected by the fork/join lock */ 3566 /* write: lock read: anytime */ 3567 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */ 3568 /* Holds old arrays of __kmp_threads until library shutdown */ 3569 extern kmp_old_threads_list_t *__kmp_old_threads_list; 3570 /* read/write: lock */ 3571 extern volatile kmp_team_t *__kmp_team_pool; 3572 extern volatile kmp_info_t *__kmp_thread_pool; 3573 extern kmp_info_t *__kmp_thread_pool_insert_pt; 3574 3575 // total num threads reachable from some root thread including all root threads 3576 extern volatile int __kmp_nth; 3577 /* total number of threads reachable from some root thread including all root 3578 threads, and those in the thread pool */ 3579 extern volatile int __kmp_all_nth; 3580 extern std::atomic<int> __kmp_thread_pool_active_nth; 3581 3582 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */ 3583 /* end data protected by fork/join lock */ 3584 /* ------------------------------------------------------------------------- */ 3585 3586 #define __kmp_get_gtid() __kmp_get_global_thread_id() 3587 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg() 3588 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid())) 3589 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team) 3590 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid())) 3591 3592 // AT: Which way is correct? 3593 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc; 3594 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc; 3595 #define __kmp_get_team_num_threads(gtid) \ 3596 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc) 3597 3598 static inline bool KMP_UBER_GTID(int gtid) { 3599 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN); 3600 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity); 3601 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] && 3602 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread); 3603 } 3604 3605 static inline int __kmp_tid_from_gtid(int gtid) { 3606 KMP_DEBUG_ASSERT(gtid >= 0); 3607 return __kmp_threads[gtid]->th.th_info.ds.ds_tid; 3608 } 3609 3610 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) { 3611 KMP_DEBUG_ASSERT(tid >= 0 && team); 3612 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid; 3613 } 3614 3615 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) { 3616 KMP_DEBUG_ASSERT(thr); 3617 return thr->th.th_info.ds.ds_gtid; 3618 } 3619 3620 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) { 3621 KMP_DEBUG_ASSERT(gtid >= 0); 3622 return __kmp_threads[gtid]; 3623 } 3624 3625 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) { 3626 KMP_DEBUG_ASSERT(gtid >= 0); 3627 return __kmp_threads[gtid]->th.th_team; 3628 } 3629 3630 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) { 3631 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity)) 3632 KMP_FATAL(ThreadIdentInvalid); 3633 } 3634 3635 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 3636 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT 3637 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled 3638 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled 3639 extern int __kmp_mwait_hints; // Hints to pass in to mwait 3640 #endif 3641 3642 #if KMP_HAVE_UMWAIT 3643 extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists 3644 extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE 3645 extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE 3646 extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero) 3647 #endif 3648 3649 /* ------------------------------------------------------------------------- */ 3650 3651 extern kmp_global_t __kmp_global; /* global status */ 3652 3653 extern kmp_info_t __kmp_monitor; 3654 // For Debugging Support Library 3655 extern std::atomic<kmp_int32> __kmp_team_counter; 3656 // For Debugging Support Library 3657 extern std::atomic<kmp_int32> __kmp_task_counter; 3658 3659 #if USE_DEBUGGER 3660 #define _KMP_GEN_ID(counter) \ 3661 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0) 3662 #else 3663 #define _KMP_GEN_ID(counter) (~0) 3664 #endif /* USE_DEBUGGER */ 3665 3666 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter) 3667 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter) 3668 3669 /* ------------------------------------------------------------------------ */ 3670 3671 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, 3672 size_t size, char const *format, ...); 3673 3674 extern void __kmp_serial_initialize(void); 3675 extern void __kmp_middle_initialize(void); 3676 extern void __kmp_parallel_initialize(void); 3677 3678 extern void __kmp_internal_begin(void); 3679 extern void __kmp_internal_end_library(int gtid); 3680 extern void __kmp_internal_end_thread(int gtid); 3681 extern void __kmp_internal_end_atexit(void); 3682 extern void __kmp_internal_end_dtor(void); 3683 extern void __kmp_internal_end_dest(void *); 3684 3685 extern int __kmp_register_root(int initial_thread); 3686 extern void __kmp_unregister_root(int gtid); 3687 extern void __kmp_unregister_library(void); // called by __kmp_internal_end() 3688 3689 extern int __kmp_ignore_mppbeg(void); 3690 extern int __kmp_ignore_mppend(void); 3691 3692 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws); 3693 extern void __kmp_exit_single(int gtid); 3694 3695 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref); 3696 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref); 3697 3698 #ifdef USE_LOAD_BALANCE 3699 extern int __kmp_get_load_balance(int); 3700 #endif 3701 3702 extern int __kmp_get_global_thread_id(void); 3703 extern int __kmp_get_global_thread_id_reg(void); 3704 extern void __kmp_exit_thread(int exit_status); 3705 extern void __kmp_abort(char const *format, ...); 3706 extern void __kmp_abort_thread(void); 3707 KMP_NORETURN extern void __kmp_abort_process(void); 3708 extern void __kmp_warn(char const *format, ...); 3709 3710 extern void __kmp_set_num_threads(int new_nth, int gtid); 3711 3712 extern bool __kmp_detect_shm(); 3713 extern bool __kmp_detect_tmp(); 3714 3715 // Returns current thread (pointer to kmp_info_t). Current thread *must* be 3716 // registered. 3717 static inline kmp_info_t *__kmp_entry_thread() { 3718 int gtid = __kmp_entry_gtid(); 3719 3720 return __kmp_threads[gtid]; 3721 } 3722 3723 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels); 3724 extern int __kmp_get_max_active_levels(int gtid); 3725 extern int __kmp_get_ancestor_thread_num(int gtid, int level); 3726 extern int __kmp_get_team_size(int gtid, int level); 3727 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk); 3728 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk); 3729 3730 extern unsigned short __kmp_get_random(kmp_info_t *thread); 3731 extern void __kmp_init_random(kmp_info_t *thread); 3732 3733 extern kmp_r_sched_t __kmp_get_schedule_global(void); 3734 extern void __kmp_adjust_num_threads(int new_nproc); 3735 extern void __kmp_check_stksize(size_t *val); 3736 3737 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL); 3738 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL); 3739 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL); 3740 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR) 3741 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR) 3742 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR) 3743 3744 #if USE_FAST_MEMORY 3745 extern void *___kmp_fast_allocate(kmp_info_t *this_thr, 3746 size_t size KMP_SRC_LOC_DECL); 3747 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL); 3748 extern void __kmp_free_fast_memory(kmp_info_t *this_thr); 3749 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr); 3750 #define __kmp_fast_allocate(this_thr, size) \ 3751 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR) 3752 #define __kmp_fast_free(this_thr, ptr) \ 3753 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR) 3754 #endif 3755 3756 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL); 3757 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem, 3758 size_t elsize KMP_SRC_LOC_DECL); 3759 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr, 3760 size_t size KMP_SRC_LOC_DECL); 3761 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL); 3762 #define __kmp_thread_malloc(th, size) \ 3763 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR) 3764 #define __kmp_thread_calloc(th, nelem, elsize) \ 3765 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR) 3766 #define __kmp_thread_realloc(th, ptr, size) \ 3767 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR) 3768 #define __kmp_thread_free(th, ptr) \ 3769 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR) 3770 3771 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads); 3772 3773 extern void __kmp_push_proc_bind(ident_t *loc, int gtid, 3774 kmp_proc_bind_t proc_bind); 3775 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams, 3776 int num_threads); 3777 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb, 3778 int num_teams_ub, int num_threads); 3779 3780 extern void __kmp_yield(); 3781 3782 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 3783 enum sched_type schedule, kmp_int32 lb, 3784 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk); 3785 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 3786 enum sched_type schedule, kmp_uint32 lb, 3787 kmp_uint32 ub, kmp_int32 st, 3788 kmp_int32 chunk); 3789 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 3790 enum sched_type schedule, kmp_int64 lb, 3791 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk); 3792 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 3793 enum sched_type schedule, kmp_uint64 lb, 3794 kmp_uint64 ub, kmp_int64 st, 3795 kmp_int64 chunk); 3796 3797 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, 3798 kmp_int32 *p_last, kmp_int32 *p_lb, 3799 kmp_int32 *p_ub, kmp_int32 *p_st); 3800 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, 3801 kmp_int32 *p_last, kmp_uint32 *p_lb, 3802 kmp_uint32 *p_ub, kmp_int32 *p_st); 3803 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, 3804 kmp_int32 *p_last, kmp_int64 *p_lb, 3805 kmp_int64 *p_ub, kmp_int64 *p_st); 3806 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, 3807 kmp_int32 *p_last, kmp_uint64 *p_lb, 3808 kmp_uint64 *p_ub, kmp_int64 *p_st); 3809 3810 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid); 3811 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid); 3812 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid); 3813 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid); 3814 3815 #ifdef KMP_GOMP_COMPAT 3816 3817 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 3818 enum sched_type schedule, kmp_int32 lb, 3819 kmp_int32 ub, kmp_int32 st, 3820 kmp_int32 chunk, int push_ws); 3821 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 3822 enum sched_type schedule, kmp_uint32 lb, 3823 kmp_uint32 ub, kmp_int32 st, 3824 kmp_int32 chunk, int push_ws); 3825 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 3826 enum sched_type schedule, kmp_int64 lb, 3827 kmp_int64 ub, kmp_int64 st, 3828 kmp_int64 chunk, int push_ws); 3829 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 3830 enum sched_type schedule, kmp_uint64 lb, 3831 kmp_uint64 ub, kmp_int64 st, 3832 kmp_int64 chunk, int push_ws); 3833 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid); 3834 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid); 3835 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid); 3836 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid); 3837 3838 #endif /* KMP_GOMP_COMPAT */ 3839 3840 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker); 3841 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker); 3842 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker); 3843 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker); 3844 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker); 3845 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker, 3846 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32), 3847 void *obj); 3848 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker, 3849 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj); 3850 3851 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag, 3852 int final_spin 3853 #if USE_ITT_BUILD 3854 , 3855 void *itt_sync_obj 3856 #endif 3857 ); 3858 extern void __kmp_release_64(kmp_flag_64<> *flag); 3859 3860 extern void __kmp_infinite_loop(void); 3861 3862 extern void __kmp_cleanup(void); 3863 3864 #if KMP_HANDLE_SIGNALS 3865 extern int __kmp_handle_signals; 3866 extern void __kmp_install_signals(int parallel_init); 3867 extern void __kmp_remove_signals(void); 3868 #endif 3869 3870 extern void __kmp_clear_system_time(void); 3871 extern void __kmp_read_system_time(double *delta); 3872 3873 extern void __kmp_check_stack_overlap(kmp_info_t *thr); 3874 3875 extern void __kmp_expand_host_name(char *buffer, size_t size); 3876 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern); 3877 3878 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM)) 3879 extern void 3880 __kmp_initialize_system_tick(void); /* Initialize timer tick value */ 3881 #endif 3882 3883 extern void 3884 __kmp_runtime_initialize(void); /* machine specific initialization */ 3885 extern void __kmp_runtime_destroy(void); 3886 3887 #if KMP_AFFINITY_SUPPORTED 3888 extern char *__kmp_affinity_print_mask(char *buf, int buf_len, 3889 kmp_affin_mask_t *mask); 3890 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 3891 kmp_affin_mask_t *mask); 3892 extern void __kmp_affinity_initialize(kmp_affinity_t &affinity); 3893 extern void __kmp_affinity_uninitialize(void); 3894 extern void __kmp_affinity_set_init_mask( 3895 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */ 3896 void __kmp_affinity_bind_init_mask(int gtid); 3897 extern void __kmp_affinity_bind_place(int gtid); 3898 extern void __kmp_affinity_determine_capable(const char *env_var); 3899 extern int __kmp_aux_set_affinity(void **mask); 3900 extern int __kmp_aux_get_affinity(void **mask); 3901 extern int __kmp_aux_get_affinity_max_proc(); 3902 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask); 3903 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask); 3904 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask); 3905 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size); 3906 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED 3907 extern int __kmp_get_first_osid_with_ecore(void); 3908 #endif 3909 #if KMP_OS_LINUX || KMP_OS_FREEBSD 3910 extern int kmp_set_thread_affinity_mask_initial(void); 3911 #endif 3912 static inline void __kmp_assign_root_init_mask() { 3913 int gtid = __kmp_entry_gtid(); 3914 kmp_root_t *r = __kmp_threads[gtid]->th.th_root; 3915 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) { 3916 __kmp_affinity_set_init_mask(gtid, /*isa_root=*/TRUE); 3917 __kmp_affinity_bind_init_mask(gtid); 3918 r->r.r_affinity_assigned = TRUE; 3919 } 3920 } 3921 static inline void __kmp_reset_root_init_mask(int gtid) { 3922 if (!KMP_AFFINITY_CAPABLE()) 3923 return; 3924 kmp_info_t *th = __kmp_threads[gtid]; 3925 kmp_root_t *r = th->th.th_root; 3926 if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) { 3927 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE); 3928 KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask); 3929 r->r.r_affinity_assigned = FALSE; 3930 } 3931 } 3932 #else /* KMP_AFFINITY_SUPPORTED */ 3933 #define __kmp_assign_root_init_mask() /* Nothing */ 3934 static inline void __kmp_reset_root_init_mask(int gtid) {} 3935 #endif /* KMP_AFFINITY_SUPPORTED */ 3936 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the 3937 // format string is for affinity, so platforms that do not support 3938 // affinity can still use the other fields, e.g., %n for num_threads 3939 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format, 3940 kmp_str_buf_t *buffer); 3941 extern void __kmp_aux_display_affinity(int gtid, const char *format); 3942 3943 extern void __kmp_cleanup_hierarchy(); 3944 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar); 3945 3946 #if KMP_USE_FUTEX 3947 3948 extern int __kmp_futex_determine_capable(void); 3949 3950 #endif // KMP_USE_FUTEX 3951 3952 extern void __kmp_gtid_set_specific(int gtid); 3953 extern int __kmp_gtid_get_specific(void); 3954 3955 extern double __kmp_read_cpu_time(void); 3956 3957 extern int __kmp_read_system_info(struct kmp_sys_info *info); 3958 3959 #if KMP_USE_MONITOR 3960 extern void __kmp_create_monitor(kmp_info_t *th); 3961 #endif 3962 3963 extern void *__kmp_launch_thread(kmp_info_t *thr); 3964 3965 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size); 3966 3967 #if KMP_OS_WINDOWS 3968 extern int __kmp_still_running(kmp_info_t *th); 3969 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val); 3970 extern void __kmp_free_handle(kmp_thread_t tHandle); 3971 #endif 3972 3973 #if KMP_USE_MONITOR 3974 extern void __kmp_reap_monitor(kmp_info_t *th); 3975 #endif 3976 extern void __kmp_reap_worker(kmp_info_t *th); 3977 extern void __kmp_terminate_thread(int gtid); 3978 3979 extern int __kmp_try_suspend_mx(kmp_info_t *th); 3980 extern void __kmp_lock_suspend_mx(kmp_info_t *th); 3981 extern void __kmp_unlock_suspend_mx(kmp_info_t *th); 3982 3983 extern void __kmp_elapsed(double *); 3984 extern void __kmp_elapsed_tick(double *); 3985 3986 extern void __kmp_enable(int old_state); 3987 extern void __kmp_disable(int *old_state); 3988 3989 extern void __kmp_thread_sleep(int millis); 3990 3991 extern void __kmp_common_initialize(void); 3992 extern void __kmp_common_destroy(void); 3993 extern void __kmp_common_destroy_gtid(int gtid); 3994 3995 #if KMP_OS_UNIX 3996 extern void __kmp_register_atfork(void); 3997 #endif 3998 extern void __kmp_suspend_initialize(void); 3999 extern void __kmp_suspend_initialize_thread(kmp_info_t *th); 4000 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th); 4001 4002 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4003 int tid); 4004 extern kmp_team_t * 4005 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4006 #if OMPT_SUPPORT 4007 ompt_data_t ompt_parallel_data, 4008 #endif 4009 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs, 4010 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr)); 4011 extern void __kmp_free_thread(kmp_info_t *); 4012 extern void __kmp_free_team(kmp_root_t *, 4013 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *)); 4014 extern kmp_team_t *__kmp_reap_team(kmp_team_t *); 4015 4016 /* ------------------------------------------------------------------------ */ 4017 4018 extern void __kmp_initialize_bget(kmp_info_t *th); 4019 extern void __kmp_finalize_bget(kmp_info_t *th); 4020 4021 KMP_EXPORT void *kmpc_malloc(size_t size); 4022 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment); 4023 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize); 4024 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size); 4025 KMP_EXPORT void kmpc_free(void *ptr); 4026 4027 /* declarations for internal use */ 4028 4029 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split, 4030 size_t reduce_size, void *reduce_data, 4031 void (*reduce)(void *, void *)); 4032 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid); 4033 extern int __kmp_barrier_gomp_cancel(int gtid); 4034 4035 /*! 4036 * Tell the fork call which compiler generated the fork call, and therefore how 4037 * to deal with the call. 4038 */ 4039 enum fork_context_e { 4040 fork_context_gnu, /**< Called from GNU generated code, so must not invoke the 4041 microtask internally. */ 4042 fork_context_intel, /**< Called from Intel generated code. */ 4043 fork_context_last 4044 }; 4045 extern int __kmp_fork_call(ident_t *loc, int gtid, 4046 enum fork_context_e fork_context, kmp_int32 argc, 4047 microtask_t microtask, launch_t invoker, 4048 kmp_va_list ap); 4049 4050 extern void __kmp_join_call(ident_t *loc, int gtid 4051 #if OMPT_SUPPORT 4052 , 4053 enum fork_context_e fork_context 4054 #endif 4055 , 4056 int exit_teams = 0); 4057 4058 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid); 4059 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team); 4060 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team); 4061 extern int __kmp_invoke_task_func(int gtid); 4062 extern void __kmp_run_before_invoked_task(int gtid, int tid, 4063 kmp_info_t *this_thr, 4064 kmp_team_t *team); 4065 extern void __kmp_run_after_invoked_task(int gtid, int tid, 4066 kmp_info_t *this_thr, 4067 kmp_team_t *team); 4068 4069 // should never have been exported 4070 KMP_EXPORT int __kmpc_invoke_task_func(int gtid); 4071 extern int __kmp_invoke_teams_master(int gtid); 4072 extern void __kmp_teams_master(int gtid); 4073 extern int __kmp_aux_get_team_num(); 4074 extern int __kmp_aux_get_num_teams(); 4075 extern void __kmp_save_internal_controls(kmp_info_t *thread); 4076 extern void __kmp_user_set_library(enum library_type arg); 4077 extern void __kmp_aux_set_library(enum library_type arg); 4078 extern void __kmp_aux_set_stacksize(size_t arg); 4079 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid); 4080 extern void __kmp_aux_set_defaults(char const *str, size_t len); 4081 4082 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */ 4083 void kmpc_set_blocktime(int arg); 4084 void ompc_set_nested(int flag); 4085 void ompc_set_dynamic(int flag); 4086 void ompc_set_num_threads(int arg); 4087 4088 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, 4089 kmp_team_t *team, int tid); 4090 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr); 4091 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 4092 kmp_tasking_flags_t *flags, 4093 size_t sizeof_kmp_task_t, 4094 size_t sizeof_shareds, 4095 kmp_routine_entry_t task_entry); 4096 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 4097 kmp_team_t *team, int tid, 4098 int set_curr_task); 4099 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr); 4100 extern void __kmp_free_implicit_task(kmp_info_t *this_thr); 4101 4102 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, 4103 int gtid, 4104 kmp_task_t *task); 4105 extern void __kmp_fulfill_event(kmp_event_t *event); 4106 4107 extern void __kmp_free_task_team(kmp_info_t *thread, 4108 kmp_task_team_t *task_team); 4109 extern void __kmp_reap_task_teams(void); 4110 extern void __kmp_wait_to_unref_task_teams(void); 4111 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, 4112 int always); 4113 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team); 4114 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team 4115 #if USE_ITT_BUILD 4116 , 4117 void *itt_sync_obj 4118 #endif /* USE_ITT_BUILD */ 4119 , 4120 int wait = 1); 4121 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, 4122 int gtid); 4123 4124 extern int __kmp_is_address_mapped(void *addr); 4125 extern kmp_uint64 __kmp_hardware_timestamp(void); 4126 4127 #if KMP_OS_UNIX 4128 extern int __kmp_read_from_file(char const *path, char const *format, ...); 4129 #endif 4130 4131 /* ------------------------------------------------------------------------ */ 4132 // 4133 // Assembly routines that have no compiler intrinsic replacement 4134 // 4135 4136 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc, 4137 void *argv[] 4138 #if OMPT_SUPPORT 4139 , 4140 void **exit_frame_ptr 4141 #endif 4142 ); 4143 4144 /* ------------------------------------------------------------------------ */ 4145 4146 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags); 4147 KMP_EXPORT void __kmpc_end(ident_t *); 4148 4149 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, 4150 kmpc_ctor_vec ctor, 4151 kmpc_cctor_vec cctor, 4152 kmpc_dtor_vec dtor, 4153 size_t vector_length); 4154 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, 4155 kmpc_ctor ctor, kmpc_cctor cctor, 4156 kmpc_dtor dtor); 4157 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid, 4158 void *data, size_t size); 4159 4160 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *); 4161 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *); 4162 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *); 4163 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *); 4164 4165 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *); 4166 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, 4167 kmpc_micro microtask, ...); 4168 KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs, 4169 kmpc_micro microtask, kmp_int32 cond, 4170 void *args); 4171 4172 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid); 4173 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid); 4174 4175 KMP_EXPORT void __kmpc_flush(ident_t *); 4176 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid); 4177 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid); 4178 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid); 4179 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, 4180 kmp_int32 filter); 4181 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid); 4182 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid); 4183 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid); 4184 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, 4185 kmp_critical_name *); 4186 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, 4187 kmp_critical_name *); 4188 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, 4189 kmp_critical_name *, uint32_t hint); 4190 4191 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid); 4192 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid); 4193 4194 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, 4195 kmp_int32 global_tid); 4196 4197 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid); 4198 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid); 4199 4200 KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid); 4201 KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid, 4202 kmp_int32 numberOfSections); 4203 KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid); 4204 4205 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid, 4206 kmp_int32 schedtype, kmp_int32 *plastiter, 4207 kmp_int *plower, kmp_int *pupper, 4208 kmp_int *pstride, kmp_int incr, 4209 kmp_int chunk); 4210 4211 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); 4212 4213 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, 4214 size_t cpy_size, void *cpy_data, 4215 void (*cpy_func)(void *, void *), 4216 kmp_int32 didit); 4217 4218 KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid, 4219 void *cpy_data); 4220 4221 extern void KMPC_SET_NUM_THREADS(int arg); 4222 extern void KMPC_SET_DYNAMIC(int flag); 4223 extern void KMPC_SET_NESTED(int flag); 4224 4225 /* OMP 3.0 tasking interface routines */ 4226 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 4227 kmp_task_t *new_task); 4228 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 4229 kmp_int32 flags, 4230 size_t sizeof_kmp_task_t, 4231 size_t sizeof_shareds, 4232 kmp_routine_entry_t task_entry); 4233 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc( 4234 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, 4235 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id); 4236 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 4237 kmp_task_t *task); 4238 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 4239 kmp_task_t *task); 4240 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 4241 kmp_task_t *new_task); 4242 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid); 4243 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, 4244 int end_part); 4245 4246 #if TASK_UNUSED 4247 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task); 4248 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 4249 kmp_task_t *task); 4250 #endif // TASK_UNUSED 4251 4252 /* ------------------------------------------------------------------------ */ 4253 4254 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid); 4255 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid); 4256 4257 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps( 4258 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, 4259 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, 4260 kmp_depend_info_t *noalias_dep_list); 4261 4262 KMP_EXPORT kmp_base_depnode_t *__kmpc_task_get_depnode(kmp_task_t *task); 4263 4264 KMP_EXPORT kmp_depnode_list_t *__kmpc_task_get_successors(kmp_task_t *task); 4265 4266 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, 4267 kmp_int32 ndeps, 4268 kmp_depend_info_t *dep_list, 4269 kmp_int32 ndeps_noalias, 4270 kmp_depend_info_t *noalias_dep_list); 4271 /* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause. 4272 * Placeholder for taskwait with nowait clause.*/ 4273 KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid, 4274 kmp_int32 ndeps, 4275 kmp_depend_info_t *dep_list, 4276 kmp_int32 ndeps_noalias, 4277 kmp_depend_info_t *noalias_dep_list, 4278 kmp_int32 has_no_wait); 4279 4280 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 4281 bool serialize_immediate); 4282 4283 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid, 4284 kmp_int32 cncl_kind); 4285 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid, 4286 kmp_int32 cncl_kind); 4287 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid); 4288 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind); 4289 4290 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask); 4291 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask); 4292 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task, 4293 kmp_int32 if_val, kmp_uint64 *lb, 4294 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup, 4295 kmp_int32 sched, kmp_uint64 grainsize, 4296 void *task_dup); 4297 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid, 4298 kmp_task_t *task, kmp_int32 if_val, 4299 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4300 kmp_int32 nogroup, kmp_int32 sched, 4301 kmp_uint64 grainsize, kmp_int32 modifier, 4302 void *task_dup); 4303 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data); 4304 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data); 4305 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d); 4306 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, 4307 int is_ws, int num, 4308 void *data); 4309 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, 4310 int num, void *data); 4311 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, 4312 int is_ws); 4313 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity( 4314 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, 4315 kmp_task_affinity_info_t *affin_list); 4316 KMP_EXPORT void __kmp_set_num_teams(int num_teams); 4317 KMP_EXPORT int __kmp_get_max_teams(void); 4318 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit); 4319 KMP_EXPORT int __kmp_get_teams_thread_limit(void); 4320 4321 /* Interface target task integration */ 4322 KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid); 4323 KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid); 4324 4325 /* Lock interface routines (fast versions with gtid passed in) */ 4326 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid, 4327 void **user_lock); 4328 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid, 4329 void **user_lock); 4330 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid, 4331 void **user_lock); 4332 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid, 4333 void **user_lock); 4334 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock); 4335 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid, 4336 void **user_lock); 4337 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid, 4338 void **user_lock); 4339 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid, 4340 void **user_lock); 4341 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock); 4342 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid, 4343 void **user_lock); 4344 4345 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid, 4346 void **user_lock, uintptr_t hint); 4347 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid, 4348 void **user_lock, 4349 uintptr_t hint); 4350 4351 #if OMPX_TASKGRAPH 4352 // Taskgraph's Record & Replay mechanism 4353 // __kmp_tdg_is_recording: check whether a given TDG is recording 4354 // status: the tdg's current status 4355 static inline bool __kmp_tdg_is_recording(kmp_tdg_status_t status) { 4356 return status == KMP_TDG_RECORDING; 4357 } 4358 4359 KMP_EXPORT kmp_int32 __kmpc_start_record_task(ident_t *loc, kmp_int32 gtid, 4360 kmp_int32 input_flags, 4361 kmp_int32 tdg_id); 4362 KMP_EXPORT void __kmpc_end_record_task(ident_t *loc, kmp_int32 gtid, 4363 kmp_int32 input_flags, kmp_int32 tdg_id); 4364 #endif 4365 /* Interface to fast scalable reduce methods routines */ 4366 4367 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait( 4368 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 4369 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 4370 kmp_critical_name *lck); 4371 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, 4372 kmp_critical_name *lck); 4373 KMP_EXPORT kmp_int32 __kmpc_reduce( 4374 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 4375 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 4376 kmp_critical_name *lck); 4377 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, 4378 kmp_critical_name *lck); 4379 4380 /* Internal fast reduction routines */ 4381 4382 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method( 4383 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 4384 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 4385 kmp_critical_name *lck); 4386 4387 // this function is for testing set/get/determine reduce method 4388 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void); 4389 4390 KMP_EXPORT kmp_uint64 __kmpc_get_taskid(); 4391 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid(); 4392 4393 // C++ port 4394 // missing 'extern "C"' declarations 4395 4396 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc); 4397 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid); 4398 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, 4399 kmp_int32 num_threads); 4400 4401 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, 4402 int proc_bind); 4403 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, 4404 kmp_int32 num_teams, 4405 kmp_int32 num_threads); 4406 KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid, 4407 kmp_int32 thread_limit); 4408 /* Function for OpenMP 5.1 num_teams clause */ 4409 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, 4410 kmp_int32 num_teams_lb, 4411 kmp_int32 num_teams_ub, 4412 kmp_int32 num_threads); 4413 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, 4414 kmpc_micro microtask, ...); 4415 struct kmp_dim { // loop bounds info casted to kmp_int64 4416 kmp_int64 lo; // lower 4417 kmp_int64 up; // upper 4418 kmp_int64 st; // stride 4419 }; 4420 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, 4421 kmp_int32 num_dims, 4422 const struct kmp_dim *dims); 4423 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, 4424 const kmp_int64 *vec); 4425 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, 4426 const kmp_int64 *vec); 4427 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); 4428 4429 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, 4430 void *data, size_t size, 4431 void ***cache); 4432 4433 // The routines below are not exported. 4434 // Consider making them 'static' in corresponding source files. 4435 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr, 4436 void *data_addr, size_t pc_size); 4437 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr, 4438 void *data_addr, 4439 size_t pc_size); 4440 void __kmp_threadprivate_resize_cache(int newCapacity); 4441 void __kmp_cleanup_threadprivate_caches(); 4442 4443 // ompc_, kmpc_ entries moved from omp.h. 4444 #if KMP_OS_WINDOWS 4445 #define KMPC_CONVENTION __cdecl 4446 #else 4447 #define KMPC_CONVENTION 4448 #endif 4449 4450 #ifndef __OMP_H 4451 typedef enum omp_sched_t { 4452 omp_sched_static = 1, 4453 omp_sched_dynamic = 2, 4454 omp_sched_guided = 3, 4455 omp_sched_auto = 4 4456 } omp_sched_t; 4457 typedef void *kmp_affinity_mask_t; 4458 #endif 4459 4460 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int); 4461 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int); 4462 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int); 4463 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int); 4464 KMP_EXPORT int KMPC_CONVENTION 4465 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *); 4466 KMP_EXPORT int KMPC_CONVENTION 4467 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *); 4468 KMP_EXPORT int KMPC_CONVENTION 4469 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *); 4470 4471 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int); 4472 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t); 4473 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int); 4474 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *); 4475 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int); 4476 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format); 4477 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size); 4478 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format); 4479 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size, 4480 char const *format); 4481 4482 enum kmp_target_offload_kind { 4483 tgt_disabled = 0, 4484 tgt_default = 1, 4485 tgt_mandatory = 2 4486 }; 4487 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t; 4488 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise 4489 extern kmp_target_offload_kind_t __kmp_target_offload; 4490 extern int __kmpc_get_target_offload(); 4491 4492 // Constants used in libomptarget 4493 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device. 4494 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices". 4495 4496 // OMP Pause Resource 4497 4498 // The following enum is used both to set the status in __kmp_pause_status, and 4499 // as the internal equivalent of the externally-visible omp_pause_resource_t. 4500 typedef enum kmp_pause_status_t { 4501 kmp_not_paused = 0, // status is not paused, or, requesting resume 4502 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause 4503 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause 4504 } kmp_pause_status_t; 4505 4506 // This stores the pause state of the runtime 4507 extern kmp_pause_status_t __kmp_pause_status; 4508 extern int __kmpc_pause_resource(kmp_pause_status_t level); 4509 extern int __kmp_pause_resource(kmp_pause_status_t level); 4510 // Soft resume sets __kmp_pause_status, and wakes up all threads. 4511 extern void __kmp_resume_if_soft_paused(); 4512 // Hard resume simply resets the status to not paused. Library will appear to 4513 // be uninitialized after hard pause. Let OMP constructs trigger required 4514 // initializations. 4515 static inline void __kmp_resume_if_hard_paused() { 4516 if (__kmp_pause_status == kmp_hard_paused) { 4517 __kmp_pause_status = kmp_not_paused; 4518 } 4519 } 4520 4521 extern void __kmp_omp_display_env(int verbose); 4522 4523 // 1: it is initializing hidden helper team 4524 extern volatile int __kmp_init_hidden_helper; 4525 // 1: the hidden helper team is done 4526 extern volatile int __kmp_hidden_helper_team_done; 4527 // 1: enable hidden helper task 4528 extern kmp_int32 __kmp_enable_hidden_helper; 4529 // Main thread of hidden helper team 4530 extern kmp_info_t *__kmp_hidden_helper_main_thread; 4531 // Descriptors for the hidden helper threads 4532 extern kmp_info_t **__kmp_hidden_helper_threads; 4533 // Number of hidden helper threads 4534 extern kmp_int32 __kmp_hidden_helper_threads_num; 4535 // Number of hidden helper tasks that have not been executed yet 4536 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks; 4537 4538 extern void __kmp_hidden_helper_initialize(); 4539 extern void __kmp_hidden_helper_threads_initz_routine(); 4540 extern void __kmp_do_initialize_hidden_helper_threads(); 4541 extern void __kmp_hidden_helper_threads_initz_wait(); 4542 extern void __kmp_hidden_helper_initz_release(); 4543 extern void __kmp_hidden_helper_threads_deinitz_wait(); 4544 extern void __kmp_hidden_helper_threads_deinitz_release(); 4545 extern void __kmp_hidden_helper_main_thread_wait(); 4546 extern void __kmp_hidden_helper_worker_thread_wait(); 4547 extern void __kmp_hidden_helper_worker_thread_signal(); 4548 extern void __kmp_hidden_helper_main_thread_release(); 4549 4550 // Check whether a given thread is a hidden helper thread 4551 #define KMP_HIDDEN_HELPER_THREAD(gtid) \ 4552 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num) 4553 4554 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \ 4555 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num) 4556 4557 #define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid) \ 4558 ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num) 4559 4560 #define KMP_HIDDEN_HELPER_TEAM(team) \ 4561 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread) 4562 4563 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a 4564 // main thread, is skipped. 4565 #define KMP_GTID_TO_SHADOW_GTID(gtid) \ 4566 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2) 4567 4568 // Return the adjusted gtid value by subtracting from gtid the number 4569 // of hidden helper threads. This adjusted value is the gtid the thread would 4570 // have received if there were no hidden helper threads. 4571 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) { 4572 int adjusted_gtid = gtid; 4573 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 && 4574 gtid - __kmp_hidden_helper_threads_num >= 0) { 4575 adjusted_gtid -= __kmp_hidden_helper_threads_num; 4576 } 4577 return adjusted_gtid; 4578 } 4579 4580 // Support for error directive 4581 typedef enum kmp_severity_t { 4582 severity_warning = 1, 4583 severity_fatal = 2 4584 } kmp_severity_t; 4585 extern void __kmpc_error(ident_t *loc, int severity, const char *message); 4586 4587 // Support for scope directive 4588 KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved); 4589 KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved); 4590 4591 #ifdef __cplusplus 4592 } 4593 #endif 4594 4595 template <bool C, bool S> 4596 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag); 4597 template <bool C, bool S> 4598 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag); 4599 template <bool C, bool S> 4600 extern void __kmp_atomic_suspend_64(int th_gtid, 4601 kmp_atomic_flag_64<C, S> *flag); 4602 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag); 4603 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 4604 template <bool C, bool S> 4605 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag); 4606 template <bool C, bool S> 4607 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag); 4608 template <bool C, bool S> 4609 extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag); 4610 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag); 4611 #endif 4612 template <bool C, bool S> 4613 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag); 4614 template <bool C, bool S> 4615 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag); 4616 template <bool C, bool S> 4617 extern void __kmp_atomic_resume_64(int target_gtid, 4618 kmp_atomic_flag_64<C, S> *flag); 4619 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag); 4620 4621 template <bool C, bool S> 4622 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid, 4623 kmp_flag_32<C, S> *flag, int final_spin, 4624 int *thread_finished, 4625 #if USE_ITT_BUILD 4626 void *itt_sync_obj, 4627 #endif /* USE_ITT_BUILD */ 4628 kmp_int32 is_constrained); 4629 template <bool C, bool S> 4630 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid, 4631 kmp_flag_64<C, S> *flag, int final_spin, 4632 int *thread_finished, 4633 #if USE_ITT_BUILD 4634 void *itt_sync_obj, 4635 #endif /* USE_ITT_BUILD */ 4636 kmp_int32 is_constrained); 4637 template <bool C, bool S> 4638 int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid, 4639 kmp_atomic_flag_64<C, S> *flag, 4640 int final_spin, int *thread_finished, 4641 #if USE_ITT_BUILD 4642 void *itt_sync_obj, 4643 #endif /* USE_ITT_BUILD */ 4644 kmp_int32 is_constrained); 4645 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid, 4646 kmp_flag_oncore *flag, int final_spin, 4647 int *thread_finished, 4648 #if USE_ITT_BUILD 4649 void *itt_sync_obj, 4650 #endif /* USE_ITT_BUILD */ 4651 kmp_int32 is_constrained); 4652 4653 extern int __kmp_nesting_mode; 4654 extern int __kmp_nesting_mode_nlevels; 4655 extern int *__kmp_nesting_nth_level; 4656 extern void __kmp_init_nesting_mode(); 4657 extern void __kmp_set_nesting_mode_threads(); 4658 4659 /// This class safely opens and closes a C-style FILE* object using RAII 4660 /// semantics. There are also methods which allow using stdout or stderr as 4661 /// the underlying FILE* object. With the implicit conversion operator to 4662 /// FILE*, an object with this type can be used in any function which takes 4663 /// a FILE* object e.g., fprintf(). 4664 /// No close method is needed at use sites. 4665 class kmp_safe_raii_file_t { 4666 FILE *f; 4667 4668 void close() { 4669 if (f && f != stdout && f != stderr) { 4670 fclose(f); 4671 f = nullptr; 4672 } 4673 } 4674 4675 public: 4676 kmp_safe_raii_file_t() : f(nullptr) {} 4677 kmp_safe_raii_file_t(const char *filename, const char *mode, 4678 const char *env_var = nullptr) 4679 : f(nullptr) { 4680 open(filename, mode, env_var); 4681 } 4682 ~kmp_safe_raii_file_t() { close(); } 4683 4684 /// Open filename using mode. This is automatically closed in the destructor. 4685 /// The env_var parameter indicates the environment variable the filename 4686 /// came from if != nullptr. 4687 void open(const char *filename, const char *mode, 4688 const char *env_var = nullptr) { 4689 KMP_ASSERT(!f); 4690 f = fopen(filename, mode); 4691 if (!f) { 4692 int code = errno; 4693 if (env_var) { 4694 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4695 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null); 4696 } else { 4697 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4698 __kmp_msg_null); 4699 } 4700 } 4701 } 4702 /// Instead of erroring out, return non-zero when 4703 /// unsuccessful fopen() for any reason 4704 int try_open(const char *filename, const char *mode) { 4705 KMP_ASSERT(!f); 4706 f = fopen(filename, mode); 4707 if (!f) 4708 return errno; 4709 return 0; 4710 } 4711 /// Set the FILE* object to stdout and output there 4712 /// No open call should happen before this call. 4713 void set_stdout() { 4714 KMP_ASSERT(!f); 4715 f = stdout; 4716 } 4717 /// Set the FILE* object to stderr and output there 4718 /// No open call should happen before this call. 4719 void set_stderr() { 4720 KMP_ASSERT(!f); 4721 f = stderr; 4722 } 4723 operator bool() { return bool(f); } 4724 operator FILE *() { return f; } 4725 }; 4726 4727 template <typename SourceType, typename TargetType, 4728 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)), 4729 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)), 4730 bool isSourceSigned = std::is_signed<SourceType>::value, 4731 bool isTargetSigned = std::is_signed<TargetType>::value> 4732 struct kmp_convert {}; 4733 4734 // Both types are signed; Source smaller 4735 template <typename SourceType, typename TargetType> 4736 struct kmp_convert<SourceType, TargetType, true, false, true, true> { 4737 static TargetType to(SourceType src) { return (TargetType)src; } 4738 }; 4739 // Source equal 4740 template <typename SourceType, typename TargetType> 4741 struct kmp_convert<SourceType, TargetType, false, true, true, true> { 4742 static TargetType to(SourceType src) { return src; } 4743 }; 4744 // Source bigger 4745 template <typename SourceType, typename TargetType> 4746 struct kmp_convert<SourceType, TargetType, false, false, true, true> { 4747 static TargetType to(SourceType src) { 4748 KMP_ASSERT(src <= static_cast<SourceType>( 4749 (std::numeric_limits<TargetType>::max)())); 4750 KMP_ASSERT(src >= static_cast<SourceType>( 4751 (std::numeric_limits<TargetType>::min)())); 4752 return (TargetType)src; 4753 } 4754 }; 4755 4756 // Source signed, Target unsigned 4757 // Source smaller 4758 template <typename SourceType, typename TargetType> 4759 struct kmp_convert<SourceType, TargetType, true, false, true, false> { 4760 static TargetType to(SourceType src) { 4761 KMP_ASSERT(src >= 0); 4762 return (TargetType)src; 4763 } 4764 }; 4765 // Source equal 4766 template <typename SourceType, typename TargetType> 4767 struct kmp_convert<SourceType, TargetType, false, true, true, false> { 4768 static TargetType to(SourceType src) { 4769 KMP_ASSERT(src >= 0); 4770 return (TargetType)src; 4771 } 4772 }; 4773 // Source bigger 4774 template <typename SourceType, typename TargetType> 4775 struct kmp_convert<SourceType, TargetType, false, false, true, false> { 4776 static TargetType to(SourceType src) { 4777 KMP_ASSERT(src >= 0); 4778 KMP_ASSERT(src <= static_cast<SourceType>( 4779 (std::numeric_limits<TargetType>::max)())); 4780 return (TargetType)src; 4781 } 4782 }; 4783 4784 // Source unsigned, Target signed 4785 // Source smaller 4786 template <typename SourceType, typename TargetType> 4787 struct kmp_convert<SourceType, TargetType, true, false, false, true> { 4788 static TargetType to(SourceType src) { return (TargetType)src; } 4789 }; 4790 // Source equal 4791 template <typename SourceType, typename TargetType> 4792 struct kmp_convert<SourceType, TargetType, false, true, false, true> { 4793 static TargetType to(SourceType src) { 4794 KMP_ASSERT(src <= static_cast<SourceType>( 4795 (std::numeric_limits<TargetType>::max)())); 4796 return (TargetType)src; 4797 } 4798 }; 4799 // Source bigger 4800 template <typename SourceType, typename TargetType> 4801 struct kmp_convert<SourceType, TargetType, false, false, false, true> { 4802 static TargetType to(SourceType src) { 4803 KMP_ASSERT(src <= static_cast<SourceType>( 4804 (std::numeric_limits<TargetType>::max)())); 4805 return (TargetType)src; 4806 } 4807 }; 4808 4809 // Source unsigned, Target unsigned 4810 // Source smaller 4811 template <typename SourceType, typename TargetType> 4812 struct kmp_convert<SourceType, TargetType, true, false, false, false> { 4813 static TargetType to(SourceType src) { return (TargetType)src; } 4814 }; 4815 // Source equal 4816 template <typename SourceType, typename TargetType> 4817 struct kmp_convert<SourceType, TargetType, false, true, false, false> { 4818 static TargetType to(SourceType src) { return src; } 4819 }; 4820 // Source bigger 4821 template <typename SourceType, typename TargetType> 4822 struct kmp_convert<SourceType, TargetType, false, false, false, false> { 4823 static TargetType to(SourceType src) { 4824 KMP_ASSERT(src <= static_cast<SourceType>( 4825 (std::numeric_limits<TargetType>::max)())); 4826 return (TargetType)src; 4827 } 4828 }; 4829 4830 template <typename T1, typename T2> 4831 static inline void __kmp_type_convert(T1 src, T2 *dest) { 4832 *dest = kmp_convert<T1, T2>::to(src); 4833 } 4834 4835 #endif /* KMP_H */ 4836