xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/X86RecognizableInstr.cpp (revision e9e8876a4d6afc1ad5315faaa191b25121a813d7)
1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler Emitter.
10 // It contains the implementation of a single recognizable instruction.
11 // Documentation for the disassembler emitter in general can be found in
12 //  X86DisassemblerEmitter.h.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "X86RecognizableInstr.h"
17 #include "X86DisassemblerShared.h"
18 #include "X86ModRMFilters.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include <string>
21 
22 using namespace llvm;
23 using namespace X86Disassembler;
24 
25 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
26 ///   Useful for switch statements and the like.
27 ///
28 /// @param init - A reference to the BitsInit to be decoded.
29 /// @return     - The field, with the first bit in the BitsInit as the lowest
30 ///               order bit.
31 static uint8_t byteFromBitsInit(BitsInit &init) {
32   int width = init.getNumBits();
33 
34   assert(width <= 8 && "Field is too large for uint8_t!");
35 
36   int     index;
37   uint8_t mask = 0x01;
38 
39   uint8_t ret = 0;
40 
41   for (index = 0; index < width; index++) {
42     if (cast<BitInit>(init.getBit(index))->getValue())
43       ret |= mask;
44 
45     mask <<= 1;
46   }
47 
48   return ret;
49 }
50 
51 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
52 ///   name of the field.
53 ///
54 /// @param rec  - The record from which to extract the value.
55 /// @param name - The name of the field in the record.
56 /// @return     - The field, as translated by byteFromBitsInit().
57 static uint8_t byteFromRec(const Record* rec, StringRef name) {
58   BitsInit* bits = rec->getValueAsBitsInit(name);
59   return byteFromBitsInit(*bits);
60 }
61 
62 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
63                                      const CodeGenInstruction &insn,
64                                      InstrUID uid) {
65   UID = uid;
66 
67   Rec = insn.TheDef;
68   Name = std::string(Rec->getName());
69   Spec = &tables.specForUID(UID);
70 
71   if (!Rec->isSubClassOf("X86Inst")) {
72     ShouldBeEmitted = false;
73     return;
74   }
75 
76   OpPrefix = byteFromRec(Rec, "OpPrefixBits");
77   OpMap    = byteFromRec(Rec, "OpMapBits");
78   Opcode   = byteFromRec(Rec, "Opcode");
79   Form     = byteFromRec(Rec, "FormBits");
80   Encoding = byteFromRec(Rec, "OpEncBits");
81 
82   OpSize             = byteFromRec(Rec, "OpSizeBits");
83   AdSize             = byteFromRec(Rec, "AdSizeBits");
84   HasREX_WPrefix     = Rec->getValueAsBit("hasREX_WPrefix");
85   HasVEX_4V          = Rec->getValueAsBit("hasVEX_4V");
86   HasVEX_W           = Rec->getValueAsBit("HasVEX_W");
87   IgnoresVEX_W       = Rec->getValueAsBit("IgnoresVEX_W");
88   IgnoresVEX_L       = Rec->getValueAsBit("ignoresVEX_L");
89   HasEVEX_L2Prefix   = Rec->getValueAsBit("hasEVEX_L2");
90   HasEVEX_K          = Rec->getValueAsBit("hasEVEX_K");
91   HasEVEX_KZ         = Rec->getValueAsBit("hasEVEX_Z");
92   HasEVEX_B          = Rec->getValueAsBit("hasEVEX_B");
93   IsCodeGenOnly      = Rec->getValueAsBit("isCodeGenOnly");
94   ForceDisassemble   = Rec->getValueAsBit("ForceDisassemble");
95   CD8_Scale          = byteFromRec(Rec, "CD8_Scale");
96 
97   Name = std::string(Rec->getName());
98 
99   Operands = &insn.Operands.OperandList;
100 
101   HasVEX_LPrefix   = Rec->getValueAsBit("hasVEX_L");
102 
103   EncodeRC = HasEVEX_B &&
104              (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg);
105 
106   // Check for 64-bit inst which does not require REX
107   Is32Bit = false;
108   Is64Bit = false;
109   // FIXME: Is there some better way to check for In64BitMode?
110   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
111   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
112     if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
113         Predicates[i]->getName().find("In32Bit") != Name.npos) {
114       Is32Bit = true;
115       break;
116     }
117     if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
118       Is64Bit = true;
119       break;
120     }
121   }
122 
123   if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
124     ShouldBeEmitted = false;
125     return;
126   }
127 
128   ShouldBeEmitted = true;
129 }
130 
131 void RecognizableInstr::processInstr(DisassemblerTables &tables,
132                                      const CodeGenInstruction &insn,
133                                      InstrUID uid)
134 {
135   // Ignore "asm parser only" instructions.
136   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
137     return;
138 
139   RecognizableInstr recogInstr(tables, insn, uid);
140 
141   if (recogInstr.shouldBeEmitted()) {
142     recogInstr.emitInstructionSpecifier();
143     recogInstr.emitDecodePath(tables);
144   }
145 }
146 
147 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
148                     (HasEVEX_K && HasEVEX_B ? n##_K_B : \
149                     (HasEVEX_KZ ? n##_KZ : \
150                     (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
151 
152 InstructionContext RecognizableInstr::insnContext() const {
153   InstructionContext insnContext;
154 
155   if (Encoding == X86Local::EVEX) {
156     if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
157       errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
158       llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
159     }
160     // VEX_L & VEX_W
161     if (!EncodeRC && HasVEX_LPrefix && HasVEX_W) {
162       if (OpPrefix == X86Local::PD)
163         insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
164       else if (OpPrefix == X86Local::XS)
165         insnContext = EVEX_KB(IC_EVEX_L_W_XS);
166       else if (OpPrefix == X86Local::XD)
167         insnContext = EVEX_KB(IC_EVEX_L_W_XD);
168       else if (OpPrefix == X86Local::PS)
169         insnContext = EVEX_KB(IC_EVEX_L_W);
170       else {
171         errs() << "Instruction does not use a prefix: " << Name << "\n";
172         llvm_unreachable("Invalid prefix");
173       }
174     } else if (!EncodeRC && HasVEX_LPrefix) {
175       // VEX_L
176       if (OpPrefix == X86Local::PD)
177         insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
178       else if (OpPrefix == X86Local::XS)
179         insnContext = EVEX_KB(IC_EVEX_L_XS);
180       else if (OpPrefix == X86Local::XD)
181         insnContext = EVEX_KB(IC_EVEX_L_XD);
182       else if (OpPrefix == X86Local::PS)
183         insnContext = EVEX_KB(IC_EVEX_L);
184       else {
185         errs() << "Instruction does not use a prefix: " << Name << "\n";
186         llvm_unreachable("Invalid prefix");
187       }
188     } else if (!EncodeRC && HasEVEX_L2Prefix && HasVEX_W) {
189       // EVEX_L2 & VEX_W
190       if (OpPrefix == X86Local::PD)
191         insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
192       else if (OpPrefix == X86Local::XS)
193         insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
194       else if (OpPrefix == X86Local::XD)
195         insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
196       else if (OpPrefix == X86Local::PS)
197         insnContext = EVEX_KB(IC_EVEX_L2_W);
198       else {
199         errs() << "Instruction does not use a prefix: " << Name << "\n";
200         llvm_unreachable("Invalid prefix");
201       }
202     } else if (!EncodeRC && HasEVEX_L2Prefix) {
203       // EVEX_L2
204       if (OpPrefix == X86Local::PD)
205         insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
206       else if (OpPrefix == X86Local::XD)
207         insnContext = EVEX_KB(IC_EVEX_L2_XD);
208       else if (OpPrefix == X86Local::XS)
209         insnContext = EVEX_KB(IC_EVEX_L2_XS);
210       else if (OpPrefix == X86Local::PS)
211         insnContext = EVEX_KB(IC_EVEX_L2);
212       else {
213         errs() << "Instruction does not use a prefix: " << Name << "\n";
214         llvm_unreachable("Invalid prefix");
215       }
216     }
217     else if (HasVEX_W) {
218       // VEX_W
219       if (OpPrefix == X86Local::PD)
220         insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
221       else if (OpPrefix == X86Local::XS)
222         insnContext = EVEX_KB(IC_EVEX_W_XS);
223       else if (OpPrefix == X86Local::XD)
224         insnContext = EVEX_KB(IC_EVEX_W_XD);
225       else if (OpPrefix == X86Local::PS)
226         insnContext = EVEX_KB(IC_EVEX_W);
227       else {
228         errs() << "Instruction does not use a prefix: " << Name << "\n";
229         llvm_unreachable("Invalid prefix");
230       }
231     }
232     // No L, no W
233     else if (OpPrefix == X86Local::PD)
234       insnContext = EVEX_KB(IC_EVEX_OPSIZE);
235     else if (OpPrefix == X86Local::XD)
236       insnContext = EVEX_KB(IC_EVEX_XD);
237     else if (OpPrefix == X86Local::XS)
238       insnContext = EVEX_KB(IC_EVEX_XS);
239     else if (OpPrefix == X86Local::PS)
240       insnContext = EVEX_KB(IC_EVEX);
241     else {
242       errs() << "Instruction does not use a prefix: " << Name << "\n";
243       llvm_unreachable("Invalid prefix");
244     }
245     /// eof EVEX
246   } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
247     if (HasVEX_LPrefix && HasVEX_W) {
248       if (OpPrefix == X86Local::PD)
249         insnContext = IC_VEX_L_W_OPSIZE;
250       else if (OpPrefix == X86Local::XS)
251         insnContext = IC_VEX_L_W_XS;
252       else if (OpPrefix == X86Local::XD)
253         insnContext = IC_VEX_L_W_XD;
254       else if (OpPrefix == X86Local::PS)
255         insnContext = IC_VEX_L_W;
256       else {
257         errs() << "Instruction does not use a prefix: " << Name << "\n";
258         llvm_unreachable("Invalid prefix");
259       }
260     } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
261       insnContext = IC_VEX_L_OPSIZE;
262     else if (OpPrefix == X86Local::PD && HasVEX_W)
263       insnContext = IC_VEX_W_OPSIZE;
264     else if (OpPrefix == X86Local::PD && Is64Bit &&
265              AdSize == X86Local::AdSize32)
266       insnContext = IC_64BIT_VEX_OPSIZE_ADSIZE;
267     else if (OpPrefix == X86Local::PD && Is64Bit)
268       insnContext = IC_64BIT_VEX_OPSIZE;
269     else if (OpPrefix == X86Local::PD)
270       insnContext = IC_VEX_OPSIZE;
271     else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
272       insnContext = IC_VEX_L_XS;
273     else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
274       insnContext = IC_VEX_L_XD;
275     else if (HasVEX_W && OpPrefix == X86Local::XS)
276       insnContext = IC_VEX_W_XS;
277     else if (HasVEX_W && OpPrefix == X86Local::XD)
278       insnContext = IC_VEX_W_XD;
279     else if (HasVEX_W && OpPrefix == X86Local::PS)
280       insnContext = IC_VEX_W;
281     else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
282       insnContext = IC_VEX_L;
283     else if (OpPrefix == X86Local::XD)
284       insnContext = IC_VEX_XD;
285     else if (OpPrefix == X86Local::XS)
286       insnContext = IC_VEX_XS;
287     else if (OpPrefix == X86Local::PS)
288       insnContext = IC_VEX;
289     else {
290       errs() << "Instruction does not use a prefix: " << Name << "\n";
291       llvm_unreachable("Invalid prefix");
292     }
293   } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) {
294     if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
295       insnContext = IC_64BIT_REXW_OPSIZE;
296     else if (HasREX_WPrefix && AdSize == X86Local::AdSize32)
297       insnContext = IC_64BIT_REXW_ADSIZE;
298     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
299       insnContext = IC_64BIT_XD_OPSIZE;
300     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
301       insnContext = IC_64BIT_XS_OPSIZE;
302     else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD)
303       insnContext = IC_64BIT_OPSIZE_ADSIZE;
304     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
305       insnContext = IC_64BIT_OPSIZE_ADSIZE;
306     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
307       insnContext = IC_64BIT_OPSIZE;
308     else if (AdSize == X86Local::AdSize32)
309       insnContext = IC_64BIT_ADSIZE;
310     else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
311       insnContext = IC_64BIT_REXW_XS;
312     else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
313       insnContext = IC_64BIT_REXW_XD;
314     else if (OpPrefix == X86Local::XD)
315       insnContext = IC_64BIT_XD;
316     else if (OpPrefix == X86Local::XS)
317       insnContext = IC_64BIT_XS;
318     else if (HasREX_WPrefix)
319       insnContext = IC_64BIT_REXW;
320     else
321       insnContext = IC_64BIT;
322   } else {
323     if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
324       insnContext = IC_XD_OPSIZE;
325     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
326       insnContext = IC_XS_OPSIZE;
327     else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD)
328       insnContext = IC_XD_ADSIZE;
329     else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS)
330       insnContext = IC_XS_ADSIZE;
331     else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD)
332       insnContext = IC_OPSIZE_ADSIZE;
333     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
334       insnContext = IC_OPSIZE_ADSIZE;
335     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
336       insnContext = IC_OPSIZE;
337     else if (AdSize == X86Local::AdSize16)
338       insnContext = IC_ADSIZE;
339     else if (OpPrefix == X86Local::XD)
340       insnContext = IC_XD;
341     else if (OpPrefix == X86Local::XS)
342       insnContext = IC_XS;
343     else
344       insnContext = IC;
345   }
346 
347   return insnContext;
348 }
349 
350 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
351   // The scaling factor for AVX512 compressed displacement encoding is an
352   // instruction attribute.  Adjust the ModRM encoding type to include the
353   // scale for compressed displacement.
354   if ((encoding != ENCODING_RM &&
355        encoding != ENCODING_VSIB &&
356        encoding != ENCODING_SIB) ||CD8_Scale == 0)
357     return;
358   encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
359   assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) ||
360           (encoding == ENCODING_SIB) ||
361           (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) &&
362          "Invalid CDisp scaling");
363 }
364 
365 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
366                                       unsigned &physicalOperandIndex,
367                                       unsigned numPhysicalOperands,
368                                       const unsigned *operandMapping,
369                                       OperandEncoding (*encodingFromString)
370                                         (const std::string&,
371                                          uint8_t OpSize)) {
372   if (optional) {
373     if (physicalOperandIndex >= numPhysicalOperands)
374       return;
375   } else {
376     assert(physicalOperandIndex < numPhysicalOperands);
377   }
378 
379   while (operandMapping[operandIndex] != operandIndex) {
380     Spec->operands[operandIndex].encoding = ENCODING_DUP;
381     Spec->operands[operandIndex].type =
382       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
383     ++operandIndex;
384   }
385 
386   StringRef typeName = (*Operands)[operandIndex].Rec->getName();
387 
388   OperandEncoding encoding = encodingFromString(std::string(typeName), OpSize);
389   // Adjust the encoding type for an operand based on the instruction.
390   adjustOperandEncoding(encoding);
391   Spec->operands[operandIndex].encoding = encoding;
392   Spec->operands[operandIndex].type =
393       typeFromString(std::string(typeName), HasREX_WPrefix, OpSize);
394 
395   ++operandIndex;
396   ++physicalOperandIndex;
397 }
398 
399 void RecognizableInstr::emitInstructionSpecifier() {
400   Spec->name       = Name;
401 
402   Spec->insnContext = insnContext();
403 
404   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
405 
406   unsigned numOperands = OperandList.size();
407   unsigned numPhysicalOperands = 0;
408 
409   // operandMapping maps from operands in OperandList to their originals.
410   // If operandMapping[i] != i, then the entry is a duplicate.
411   unsigned operandMapping[X86_MAX_OPERANDS];
412   assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
413 
414   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
415     if (!OperandList[operandIndex].Constraints.empty()) {
416       const CGIOperandList::ConstraintInfo &Constraint =
417         OperandList[operandIndex].Constraints[0];
418       if (Constraint.isTied()) {
419         operandMapping[operandIndex] = operandIndex;
420         operandMapping[Constraint.getTiedOperand()] = operandIndex;
421       } else {
422         ++numPhysicalOperands;
423         operandMapping[operandIndex] = operandIndex;
424       }
425     } else {
426       ++numPhysicalOperands;
427       operandMapping[operandIndex] = operandIndex;
428     }
429   }
430 
431 #define HANDLE_OPERAND(class)               \
432   handleOperand(false,                      \
433                 operandIndex,               \
434                 physicalOperandIndex,       \
435                 numPhysicalOperands,        \
436                 operandMapping,             \
437                 class##EncodingFromString);
438 
439 #define HANDLE_OPTIONAL(class)              \
440   handleOperand(true,                       \
441                 operandIndex,               \
442                 physicalOperandIndex,       \
443                 numPhysicalOperands,        \
444                 operandMapping,             \
445                 class##EncodingFromString);
446 
447   // operandIndex should always be < numOperands
448   unsigned operandIndex = 0;
449   // physicalOperandIndex should always be < numPhysicalOperands
450   unsigned physicalOperandIndex = 0;
451 
452 #ifndef NDEBUG
453   // Given the set of prefix bits, how many additional operands does the
454   // instruction have?
455   unsigned additionalOperands = 0;
456   if (HasVEX_4V)
457     ++additionalOperands;
458   if (HasEVEX_K)
459     ++additionalOperands;
460 #endif
461 
462   switch (Form) {
463   default: llvm_unreachable("Unhandled form");
464   case X86Local::PrefixByte:
465     return;
466   case X86Local::RawFrmSrc:
467     HANDLE_OPERAND(relocation);
468     return;
469   case X86Local::RawFrmDst:
470     HANDLE_OPERAND(relocation);
471     return;
472   case X86Local::RawFrmDstSrc:
473     HANDLE_OPERAND(relocation);
474     HANDLE_OPERAND(relocation);
475     return;
476   case X86Local::RawFrm:
477     // Operand 1 (optional) is an address or immediate.
478     assert(numPhysicalOperands <= 1 &&
479            "Unexpected number of operands for RawFrm");
480     HANDLE_OPTIONAL(relocation)
481     break;
482   case X86Local::RawFrmMemOffs:
483     // Operand 1 is an address.
484     HANDLE_OPERAND(relocation);
485     break;
486   case X86Local::AddRegFrm:
487     // Operand 1 is added to the opcode.
488     // Operand 2 (optional) is an address.
489     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
490            "Unexpected number of operands for AddRegFrm");
491     HANDLE_OPERAND(opcodeModifier)
492     HANDLE_OPTIONAL(relocation)
493     break;
494   case X86Local::AddCCFrm:
495     // Operand 1 (optional) is an address or immediate.
496     assert(numPhysicalOperands == 2 &&
497            "Unexpected number of operands for AddCCFrm");
498     HANDLE_OPERAND(relocation)
499     HANDLE_OPERAND(opcodeModifier)
500     break;
501   case X86Local::MRMDestReg:
502     // Operand 1 is a register operand in the R/M field.
503     // - In AVX512 there may be a mask operand here -
504     // Operand 2 is a register operand in the Reg/Opcode field.
505     // - In AVX, there is a register operand in the VEX.vvvv field here -
506     // Operand 3 (optional) is an immediate.
507     assert(numPhysicalOperands >= 2 + additionalOperands &&
508            numPhysicalOperands <= 3 + additionalOperands &&
509            "Unexpected number of operands for MRMDestRegFrm");
510 
511     HANDLE_OPERAND(rmRegister)
512     if (HasEVEX_K)
513       HANDLE_OPERAND(writemaskRegister)
514 
515     if (HasVEX_4V)
516       // FIXME: In AVX, the register below becomes the one encoded
517       // in ModRMVEX and the one above the one in the VEX.VVVV field
518       HANDLE_OPERAND(vvvvRegister)
519 
520     HANDLE_OPERAND(roRegister)
521     HANDLE_OPTIONAL(immediate)
522     break;
523   case X86Local::MRMDestMem:
524   case X86Local::MRMDestMemFSIB:
525     // Operand 1 is a memory operand (possibly SIB-extended)
526     // Operand 2 is a register operand in the Reg/Opcode field.
527     // - In AVX, there is a register operand in the VEX.vvvv field here -
528     // Operand 3 (optional) is an immediate.
529     assert(numPhysicalOperands >= 2 + additionalOperands &&
530            numPhysicalOperands <= 3 + additionalOperands &&
531            "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
532 
533     HANDLE_OPERAND(memory)
534 
535     if (HasEVEX_K)
536       HANDLE_OPERAND(writemaskRegister)
537 
538     if (HasVEX_4V)
539       // FIXME: In AVX, the register below becomes the one encoded
540       // in ModRMVEX and the one above the one in the VEX.VVVV field
541       HANDLE_OPERAND(vvvvRegister)
542 
543     HANDLE_OPERAND(roRegister)
544     HANDLE_OPTIONAL(immediate)
545     break;
546   case X86Local::MRMSrcReg:
547     // Operand 1 is a register operand in the Reg/Opcode field.
548     // Operand 2 is a register operand in the R/M field.
549     // - In AVX, there is a register operand in the VEX.vvvv field here -
550     // Operand 3 (optional) is an immediate.
551     // Operand 4 (optional) is an immediate.
552 
553     assert(numPhysicalOperands >= 2 + additionalOperands &&
554            numPhysicalOperands <= 4 + additionalOperands &&
555            "Unexpected number of operands for MRMSrcRegFrm");
556 
557     HANDLE_OPERAND(roRegister)
558 
559     if (HasEVEX_K)
560       HANDLE_OPERAND(writemaskRegister)
561 
562     if (HasVEX_4V)
563       // FIXME: In AVX, the register below becomes the one encoded
564       // in ModRMVEX and the one above the one in the VEX.VVVV field
565       HANDLE_OPERAND(vvvvRegister)
566 
567     HANDLE_OPERAND(rmRegister)
568     HANDLE_OPTIONAL(immediate)
569     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
570     break;
571   case X86Local::MRMSrcReg4VOp3:
572     assert(numPhysicalOperands == 3 &&
573            "Unexpected number of operands for MRMSrcReg4VOp3Frm");
574     HANDLE_OPERAND(roRegister)
575     HANDLE_OPERAND(rmRegister)
576     HANDLE_OPERAND(vvvvRegister)
577     break;
578   case X86Local::MRMSrcRegOp4:
579     assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
580            "Unexpected number of operands for MRMSrcRegOp4Frm");
581     HANDLE_OPERAND(roRegister)
582     HANDLE_OPERAND(vvvvRegister)
583     HANDLE_OPERAND(immediate) // Register in imm[7:4]
584     HANDLE_OPERAND(rmRegister)
585     HANDLE_OPTIONAL(immediate)
586     break;
587   case X86Local::MRMSrcRegCC:
588     assert(numPhysicalOperands == 3 &&
589            "Unexpected number of operands for MRMSrcRegCC");
590     HANDLE_OPERAND(roRegister)
591     HANDLE_OPERAND(rmRegister)
592     HANDLE_OPERAND(opcodeModifier)
593     break;
594   case X86Local::MRMSrcMem:
595   case X86Local::MRMSrcMemFSIB:
596     // Operand 1 is a register operand in the Reg/Opcode field.
597     // Operand 2 is a memory operand (possibly SIB-extended)
598     // - In AVX, there is a register operand in the VEX.vvvv field here -
599     // Operand 3 (optional) is an immediate.
600 
601     assert(numPhysicalOperands >= 2 + additionalOperands &&
602            numPhysicalOperands <= 4 + additionalOperands &&
603            "Unexpected number of operands for MRMSrcMemFrm");
604 
605     HANDLE_OPERAND(roRegister)
606 
607     if (HasEVEX_K)
608       HANDLE_OPERAND(writemaskRegister)
609 
610     if (HasVEX_4V)
611       // FIXME: In AVX, the register below becomes the one encoded
612       // in ModRMVEX and the one above the one in the VEX.VVVV field
613       HANDLE_OPERAND(vvvvRegister)
614 
615     HANDLE_OPERAND(memory)
616     HANDLE_OPTIONAL(immediate)
617     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
618     break;
619   case X86Local::MRMSrcMem4VOp3:
620     assert(numPhysicalOperands == 3 &&
621            "Unexpected number of operands for MRMSrcMem4VOp3Frm");
622     HANDLE_OPERAND(roRegister)
623     HANDLE_OPERAND(memory)
624     HANDLE_OPERAND(vvvvRegister)
625     break;
626   case X86Local::MRMSrcMemOp4:
627     assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
628            "Unexpected number of operands for MRMSrcMemOp4Frm");
629     HANDLE_OPERAND(roRegister)
630     HANDLE_OPERAND(vvvvRegister)
631     HANDLE_OPERAND(immediate) // Register in imm[7:4]
632     HANDLE_OPERAND(memory)
633     HANDLE_OPTIONAL(immediate)
634     break;
635   case X86Local::MRMSrcMemCC:
636     assert(numPhysicalOperands == 3 &&
637            "Unexpected number of operands for MRMSrcMemCC");
638     HANDLE_OPERAND(roRegister)
639     HANDLE_OPERAND(memory)
640     HANDLE_OPERAND(opcodeModifier)
641     break;
642   case X86Local::MRMXrCC:
643     assert(numPhysicalOperands == 2 &&
644            "Unexpected number of operands for MRMXrCC");
645     HANDLE_OPERAND(rmRegister)
646     HANDLE_OPERAND(opcodeModifier)
647     break;
648   case X86Local::MRMr0:
649     // Operand 1 is a register operand in the R/M field.
650     HANDLE_OPERAND(roRegister)
651     break;
652   case X86Local::MRMXr:
653   case X86Local::MRM0r:
654   case X86Local::MRM1r:
655   case X86Local::MRM2r:
656   case X86Local::MRM3r:
657   case X86Local::MRM4r:
658   case X86Local::MRM5r:
659   case X86Local::MRM6r:
660   case X86Local::MRM7r:
661     // Operand 1 is a register operand in the R/M field.
662     // Operand 2 (optional) is an immediate or relocation.
663     // Operand 3 (optional) is an immediate.
664     assert(numPhysicalOperands >= 0 + additionalOperands &&
665            numPhysicalOperands <= 3 + additionalOperands &&
666            "Unexpected number of operands for MRMnr");
667 
668     if (HasVEX_4V)
669       HANDLE_OPERAND(vvvvRegister)
670 
671     if (HasEVEX_K)
672       HANDLE_OPERAND(writemaskRegister)
673     HANDLE_OPTIONAL(rmRegister)
674     HANDLE_OPTIONAL(relocation)
675     HANDLE_OPTIONAL(immediate)
676     break;
677   case X86Local::MRMXmCC:
678     assert(numPhysicalOperands == 2 &&
679            "Unexpected number of operands for MRMXm");
680     HANDLE_OPERAND(memory)
681     HANDLE_OPERAND(opcodeModifier)
682     break;
683   case X86Local::MRMXm:
684   case X86Local::MRM0m:
685   case X86Local::MRM1m:
686   case X86Local::MRM2m:
687   case X86Local::MRM3m:
688   case X86Local::MRM4m:
689   case X86Local::MRM5m:
690   case X86Local::MRM6m:
691   case X86Local::MRM7m:
692     // Operand 1 is a memory operand (possibly SIB-extended)
693     // Operand 2 (optional) is an immediate or relocation.
694     assert(numPhysicalOperands >= 1 + additionalOperands &&
695            numPhysicalOperands <= 2 + additionalOperands &&
696            "Unexpected number of operands for MRMnm");
697 
698     if (HasVEX_4V)
699       HANDLE_OPERAND(vvvvRegister)
700     if (HasEVEX_K)
701       HANDLE_OPERAND(writemaskRegister)
702     HANDLE_OPERAND(memory)
703     HANDLE_OPTIONAL(relocation)
704     break;
705   case X86Local::RawFrmImm8:
706     // operand 1 is a 16-bit immediate
707     // operand 2 is an 8-bit immediate
708     assert(numPhysicalOperands == 2 &&
709            "Unexpected number of operands for X86Local::RawFrmImm8");
710     HANDLE_OPERAND(immediate)
711     HANDLE_OPERAND(immediate)
712     break;
713   case X86Local::RawFrmImm16:
714     // operand 1 is a 16-bit immediate
715     // operand 2 is a 16-bit immediate
716     HANDLE_OPERAND(immediate)
717     HANDLE_OPERAND(immediate)
718     break;
719   case X86Local::MRM0X:
720   case X86Local::MRM1X:
721   case X86Local::MRM2X:
722   case X86Local::MRM3X:
723   case X86Local::MRM4X:
724   case X86Local::MRM5X:
725   case X86Local::MRM6X:
726   case X86Local::MRM7X:
727 #define MAP(from, to) case X86Local::MRM_##from:
728   X86_INSTR_MRM_MAPPING
729 #undef MAP
730     HANDLE_OPTIONAL(relocation)
731     break;
732   }
733 
734 #undef HANDLE_OPERAND
735 #undef HANDLE_OPTIONAL
736 }
737 
738 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
739   // Special cases where the LLVM tables are not complete
740 
741 #define MAP(from, to)                     \
742   case X86Local::MRM_##from:
743 
744   llvm::Optional<OpcodeType> opcodeType;
745   switch (OpMap) {
746   default: llvm_unreachable("Invalid map!");
747   case X86Local::OB:        opcodeType = ONEBYTE;       break;
748   case X86Local::TB:        opcodeType = TWOBYTE;       break;
749   case X86Local::T8:        opcodeType = THREEBYTE_38;  break;
750   case X86Local::TA:        opcodeType = THREEBYTE_3A;  break;
751   case X86Local::XOP8:      opcodeType = XOP8_MAP;      break;
752   case X86Local::XOP9:      opcodeType = XOP9_MAP;      break;
753   case X86Local::XOPA:      opcodeType = XOPA_MAP;      break;
754   case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break;
755   }
756 
757   std::unique_ptr<ModRMFilter> filter;
758   switch (Form) {
759   default: llvm_unreachable("Invalid form!");
760   case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!");
761   case X86Local::RawFrm:
762   case X86Local::AddRegFrm:
763   case X86Local::RawFrmMemOffs:
764   case X86Local::RawFrmSrc:
765   case X86Local::RawFrmDst:
766   case X86Local::RawFrmDstSrc:
767   case X86Local::RawFrmImm8:
768   case X86Local::RawFrmImm16:
769   case X86Local::AddCCFrm:
770   case X86Local::PrefixByte:
771     filter = std::make_unique<DumbFilter>();
772     break;
773   case X86Local::MRMDestReg:
774   case X86Local::MRMSrcReg:
775   case X86Local::MRMSrcReg4VOp3:
776   case X86Local::MRMSrcRegOp4:
777   case X86Local::MRMSrcRegCC:
778   case X86Local::MRMXrCC:
779   case X86Local::MRMXr:
780     filter = std::make_unique<ModFilter>(true);
781     break;
782   case X86Local::MRMDestMem:
783   case X86Local::MRMDestMemFSIB:
784   case X86Local::MRMSrcMem:
785   case X86Local::MRMSrcMemFSIB:
786   case X86Local::MRMSrcMem4VOp3:
787   case X86Local::MRMSrcMemOp4:
788   case X86Local::MRMSrcMemCC:
789   case X86Local::MRMXmCC:
790   case X86Local::MRMXm:
791     filter = std::make_unique<ModFilter>(false);
792     break;
793   case X86Local::MRM0r: case X86Local::MRM1r:
794   case X86Local::MRM2r: case X86Local::MRM3r:
795   case X86Local::MRM4r: case X86Local::MRM5r:
796   case X86Local::MRM6r: case X86Local::MRM7r:
797     filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r);
798     break;
799   case X86Local::MRM0X: case X86Local::MRM1X:
800   case X86Local::MRM2X: case X86Local::MRM3X:
801   case X86Local::MRM4X: case X86Local::MRM5X:
802   case X86Local::MRM6X: case X86Local::MRM7X:
803     filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0X);
804     break;
805   case X86Local::MRMr0:
806     filter = std::make_unique<ExtendedRMFilter>(true, Form - X86Local::MRMr0);
807     break;
808   case X86Local::MRM0m: case X86Local::MRM1m:
809   case X86Local::MRM2m: case X86Local::MRM3m:
810   case X86Local::MRM4m: case X86Local::MRM5m:
811   case X86Local::MRM6m: case X86Local::MRM7m:
812     filter = std::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m);
813     break;
814   X86_INSTR_MRM_MAPPING
815     filter = std::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0);
816     break;
817   } // switch (Form)
818 
819   uint8_t opcodeToSet = Opcode;
820 
821   unsigned AddressSize = 0;
822   switch (AdSize) {
823   case X86Local::AdSize16: AddressSize = 16; break;
824   case X86Local::AdSize32: AddressSize = 32; break;
825   case X86Local::AdSize64: AddressSize = 64; break;
826   }
827 
828   assert(opcodeType && "Opcode type not set");
829   assert(filter && "Filter not set");
830 
831   if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC ||
832       Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC ||
833       Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm) {
834     unsigned Count = Form == X86Local::AddRegFrm ? 8 : 16;
835     assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned");
836 
837     uint8_t currentOpcode;
838 
839     for (currentOpcode = opcodeToSet; currentOpcode < opcodeToSet + Count;
840          ++currentOpcode)
841       tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter,
842                             UID, Is32Bit, OpPrefix == 0,
843                             IgnoresVEX_L || EncodeRC,
844                             IgnoresVEX_W, AddressSize);
845   } else {
846     tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID,
847                           Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC,
848                           IgnoresVEX_W, AddressSize);
849   }
850 
851 #undef MAP
852 }
853 
854 #define TYPE(str, type) if (s == str) return type;
855 OperandType RecognizableInstr::typeFromString(const std::string &s,
856                                               bool hasREX_WPrefix,
857                                               uint8_t OpSize) {
858   if(hasREX_WPrefix) {
859     // For instructions with a REX_W prefix, a declared 32-bit register encoding
860     // is special.
861     TYPE("GR32",              TYPE_R32)
862   }
863   if(OpSize == X86Local::OpSize16) {
864     // For OpSize16 instructions, a declared 16-bit register or
865     // immediate encoding is special.
866     TYPE("GR16",              TYPE_Rv)
867   } else if(OpSize == X86Local::OpSize32) {
868     // For OpSize32 instructions, a declared 32-bit register or
869     // immediate encoding is special.
870     TYPE("GR32",              TYPE_Rv)
871   }
872   TYPE("i16mem",              TYPE_M)
873   TYPE("i16imm",              TYPE_IMM)
874   TYPE("i16i8imm",            TYPE_IMM)
875   TYPE("GR16",                TYPE_R16)
876   TYPE("GR16orGR32orGR64",    TYPE_R16)
877   TYPE("i32mem",              TYPE_M)
878   TYPE("i32imm",              TYPE_IMM)
879   TYPE("i32i8imm",            TYPE_IMM)
880   TYPE("GR32",                TYPE_R32)
881   TYPE("GR32orGR64",          TYPE_R32)
882   TYPE("i64mem",              TYPE_M)
883   TYPE("i64i32imm",           TYPE_IMM)
884   TYPE("i64i8imm",            TYPE_IMM)
885   TYPE("GR64",                TYPE_R64)
886   TYPE("i8mem",               TYPE_M)
887   TYPE("i8imm",               TYPE_IMM)
888   TYPE("u4imm",               TYPE_UIMM8)
889   TYPE("u8imm",               TYPE_UIMM8)
890   TYPE("i16u8imm",            TYPE_UIMM8)
891   TYPE("i32u8imm",            TYPE_UIMM8)
892   TYPE("i64u8imm",            TYPE_UIMM8)
893   TYPE("GR8",                 TYPE_R8)
894   TYPE("VR128",               TYPE_XMM)
895   TYPE("VR128X",              TYPE_XMM)
896   TYPE("f128mem",             TYPE_M)
897   TYPE("f256mem",             TYPE_M)
898   TYPE("f512mem",             TYPE_M)
899   TYPE("FR128",               TYPE_XMM)
900   TYPE("FR64",                TYPE_XMM)
901   TYPE("FR64X",               TYPE_XMM)
902   TYPE("f64mem",              TYPE_M)
903   TYPE("sdmem",               TYPE_M)
904   TYPE("FR32",                TYPE_XMM)
905   TYPE("FR32X",               TYPE_XMM)
906   TYPE("f32mem",              TYPE_M)
907   TYPE("ssmem",               TYPE_M)
908   TYPE("RST",                 TYPE_ST)
909   TYPE("RSTi",                TYPE_ST)
910   TYPE("i128mem",             TYPE_M)
911   TYPE("i256mem",             TYPE_M)
912   TYPE("i512mem",             TYPE_M)
913   TYPE("i64i32imm_brtarget",  TYPE_REL)
914   TYPE("i16imm_brtarget",     TYPE_REL)
915   TYPE("i32imm_brtarget",     TYPE_REL)
916   TYPE("ccode",               TYPE_IMM)
917   TYPE("AVX512RC",            TYPE_IMM)
918   TYPE("brtarget32",          TYPE_REL)
919   TYPE("brtarget16",          TYPE_REL)
920   TYPE("brtarget8",           TYPE_REL)
921   TYPE("f80mem",              TYPE_M)
922   TYPE("lea64_32mem",         TYPE_M)
923   TYPE("lea64mem",            TYPE_M)
924   TYPE("VR64",                TYPE_MM64)
925   TYPE("i64imm",              TYPE_IMM)
926   TYPE("anymem",              TYPE_M)
927   TYPE("opaquemem",           TYPE_M)
928   TYPE("sibmem",              TYPE_MSIB)
929   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
930   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
931   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
932   TYPE("srcidx8",             TYPE_SRCIDX)
933   TYPE("srcidx16",            TYPE_SRCIDX)
934   TYPE("srcidx32",            TYPE_SRCIDX)
935   TYPE("srcidx64",            TYPE_SRCIDX)
936   TYPE("dstidx8",             TYPE_DSTIDX)
937   TYPE("dstidx16",            TYPE_DSTIDX)
938   TYPE("dstidx32",            TYPE_DSTIDX)
939   TYPE("dstidx64",            TYPE_DSTIDX)
940   TYPE("offset16_8",          TYPE_MOFFS)
941   TYPE("offset16_16",         TYPE_MOFFS)
942   TYPE("offset16_32",         TYPE_MOFFS)
943   TYPE("offset32_8",          TYPE_MOFFS)
944   TYPE("offset32_16",         TYPE_MOFFS)
945   TYPE("offset32_32",         TYPE_MOFFS)
946   TYPE("offset32_64",         TYPE_MOFFS)
947   TYPE("offset64_8",          TYPE_MOFFS)
948   TYPE("offset64_16",         TYPE_MOFFS)
949   TYPE("offset64_32",         TYPE_MOFFS)
950   TYPE("offset64_64",         TYPE_MOFFS)
951   TYPE("VR256",               TYPE_YMM)
952   TYPE("VR256X",              TYPE_YMM)
953   TYPE("VR512",               TYPE_ZMM)
954   TYPE("VK1",                 TYPE_VK)
955   TYPE("VK1WM",               TYPE_VK)
956   TYPE("VK2",                 TYPE_VK)
957   TYPE("VK2WM",               TYPE_VK)
958   TYPE("VK4",                 TYPE_VK)
959   TYPE("VK4WM",               TYPE_VK)
960   TYPE("VK8",                 TYPE_VK)
961   TYPE("VK8WM",               TYPE_VK)
962   TYPE("VK16",                TYPE_VK)
963   TYPE("VK16WM",              TYPE_VK)
964   TYPE("VK32",                TYPE_VK)
965   TYPE("VK32WM",              TYPE_VK)
966   TYPE("VK64",                TYPE_VK)
967   TYPE("VK64WM",              TYPE_VK)
968   TYPE("VK1Pair",             TYPE_VK_PAIR)
969   TYPE("VK2Pair",             TYPE_VK_PAIR)
970   TYPE("VK4Pair",             TYPE_VK_PAIR)
971   TYPE("VK8Pair",             TYPE_VK_PAIR)
972   TYPE("VK16Pair",            TYPE_VK_PAIR)
973   TYPE("vx64mem",             TYPE_MVSIBX)
974   TYPE("vx128mem",            TYPE_MVSIBX)
975   TYPE("vx256mem",            TYPE_MVSIBX)
976   TYPE("vy128mem",            TYPE_MVSIBY)
977   TYPE("vy256mem",            TYPE_MVSIBY)
978   TYPE("vx64xmem",            TYPE_MVSIBX)
979   TYPE("vx128xmem",           TYPE_MVSIBX)
980   TYPE("vx256xmem",           TYPE_MVSIBX)
981   TYPE("vy128xmem",           TYPE_MVSIBY)
982   TYPE("vy256xmem",           TYPE_MVSIBY)
983   TYPE("vy512xmem",           TYPE_MVSIBY)
984   TYPE("vz256mem",            TYPE_MVSIBZ)
985   TYPE("vz512mem",            TYPE_MVSIBZ)
986   TYPE("BNDR",                TYPE_BNDR)
987   TYPE("TILE",                TYPE_TMM)
988   errs() << "Unhandled type string " << s << "\n";
989   llvm_unreachable("Unhandled type string");
990 }
991 #undef TYPE
992 
993 #define ENCODING(str, encoding) if (s == str) return encoding;
994 OperandEncoding
995 RecognizableInstr::immediateEncodingFromString(const std::string &s,
996                                                uint8_t OpSize) {
997   if(OpSize != X86Local::OpSize16) {
998     // For instructions without an OpSize prefix, a declared 16-bit register or
999     // immediate encoding is special.
1000     ENCODING("i16imm",        ENCODING_IW)
1001   }
1002   ENCODING("i32i8imm",        ENCODING_IB)
1003   ENCODING("AVX512RC",        ENCODING_IRC)
1004   ENCODING("i16imm",          ENCODING_Iv)
1005   ENCODING("i16i8imm",        ENCODING_IB)
1006   ENCODING("i32imm",          ENCODING_Iv)
1007   ENCODING("i64i32imm",       ENCODING_ID)
1008   ENCODING("i64i8imm",        ENCODING_IB)
1009   ENCODING("i8imm",           ENCODING_IB)
1010   ENCODING("u4imm",           ENCODING_IB)
1011   ENCODING("u8imm",           ENCODING_IB)
1012   ENCODING("i16u8imm",        ENCODING_IB)
1013   ENCODING("i32u8imm",        ENCODING_IB)
1014   ENCODING("i64u8imm",        ENCODING_IB)
1015   // This is not a typo.  Instructions like BLENDVPD put
1016   // register IDs in 8-bit immediates nowadays.
1017   ENCODING("FR32",            ENCODING_IB)
1018   ENCODING("FR64",            ENCODING_IB)
1019   ENCODING("FR128",           ENCODING_IB)
1020   ENCODING("VR128",           ENCODING_IB)
1021   ENCODING("VR256",           ENCODING_IB)
1022   ENCODING("FR32X",           ENCODING_IB)
1023   ENCODING("FR64X",           ENCODING_IB)
1024   ENCODING("VR128X",          ENCODING_IB)
1025   ENCODING("VR256X",          ENCODING_IB)
1026   ENCODING("VR512",           ENCODING_IB)
1027   ENCODING("TILE",            ENCODING_IB)
1028   errs() << "Unhandled immediate encoding " << s << "\n";
1029   llvm_unreachable("Unhandled immediate encoding");
1030 }
1031 
1032 OperandEncoding
1033 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
1034                                                 uint8_t OpSize) {
1035   ENCODING("RST",             ENCODING_FP)
1036   ENCODING("RSTi",            ENCODING_FP)
1037   ENCODING("GR16",            ENCODING_RM)
1038   ENCODING("GR16orGR32orGR64",ENCODING_RM)
1039   ENCODING("GR32",            ENCODING_RM)
1040   ENCODING("GR32orGR64",      ENCODING_RM)
1041   ENCODING("GR64",            ENCODING_RM)
1042   ENCODING("GR8",             ENCODING_RM)
1043   ENCODING("VR128",           ENCODING_RM)
1044   ENCODING("VR128X",          ENCODING_RM)
1045   ENCODING("FR128",           ENCODING_RM)
1046   ENCODING("FR64",            ENCODING_RM)
1047   ENCODING("FR32",            ENCODING_RM)
1048   ENCODING("FR64X",           ENCODING_RM)
1049   ENCODING("FR32X",           ENCODING_RM)
1050   ENCODING("VR64",            ENCODING_RM)
1051   ENCODING("VR256",           ENCODING_RM)
1052   ENCODING("VR256X",          ENCODING_RM)
1053   ENCODING("VR512",           ENCODING_RM)
1054   ENCODING("VK1",             ENCODING_RM)
1055   ENCODING("VK2",             ENCODING_RM)
1056   ENCODING("VK4",             ENCODING_RM)
1057   ENCODING("VK8",             ENCODING_RM)
1058   ENCODING("VK16",            ENCODING_RM)
1059   ENCODING("VK32",            ENCODING_RM)
1060   ENCODING("VK64",            ENCODING_RM)
1061   ENCODING("VK1PAIR",         ENCODING_RM)
1062   ENCODING("VK2PAIR",         ENCODING_RM)
1063   ENCODING("VK4PAIR",         ENCODING_RM)
1064   ENCODING("VK8PAIR",         ENCODING_RM)
1065   ENCODING("VK16PAIR",        ENCODING_RM)
1066   ENCODING("BNDR",            ENCODING_RM)
1067   ENCODING("TILE",            ENCODING_RM)
1068   errs() << "Unhandled R/M register encoding " << s << "\n";
1069   llvm_unreachable("Unhandled R/M register encoding");
1070 }
1071 
1072 OperandEncoding
1073 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
1074                                                 uint8_t OpSize) {
1075   ENCODING("GR16",            ENCODING_REG)
1076   ENCODING("GR16orGR32orGR64",ENCODING_REG)
1077   ENCODING("GR32",            ENCODING_REG)
1078   ENCODING("GR32orGR64",      ENCODING_REG)
1079   ENCODING("GR64",            ENCODING_REG)
1080   ENCODING("GR8",             ENCODING_REG)
1081   ENCODING("VR128",           ENCODING_REG)
1082   ENCODING("FR128",           ENCODING_REG)
1083   ENCODING("FR64",            ENCODING_REG)
1084   ENCODING("FR32",            ENCODING_REG)
1085   ENCODING("VR64",            ENCODING_REG)
1086   ENCODING("SEGMENT_REG",     ENCODING_REG)
1087   ENCODING("DEBUG_REG",       ENCODING_REG)
1088   ENCODING("CONTROL_REG",     ENCODING_REG)
1089   ENCODING("VR256",           ENCODING_REG)
1090   ENCODING("VR256X",          ENCODING_REG)
1091   ENCODING("VR128X",          ENCODING_REG)
1092   ENCODING("FR64X",           ENCODING_REG)
1093   ENCODING("FR32X",           ENCODING_REG)
1094   ENCODING("VR512",           ENCODING_REG)
1095   ENCODING("VK1",             ENCODING_REG)
1096   ENCODING("VK2",             ENCODING_REG)
1097   ENCODING("VK4",             ENCODING_REG)
1098   ENCODING("VK8",             ENCODING_REG)
1099   ENCODING("VK16",            ENCODING_REG)
1100   ENCODING("VK32",            ENCODING_REG)
1101   ENCODING("VK64",            ENCODING_REG)
1102   ENCODING("VK1Pair",         ENCODING_REG)
1103   ENCODING("VK2Pair",         ENCODING_REG)
1104   ENCODING("VK4Pair",         ENCODING_REG)
1105   ENCODING("VK8Pair",         ENCODING_REG)
1106   ENCODING("VK16Pair",        ENCODING_REG)
1107   ENCODING("VK1WM",           ENCODING_REG)
1108   ENCODING("VK2WM",           ENCODING_REG)
1109   ENCODING("VK4WM",           ENCODING_REG)
1110   ENCODING("VK8WM",           ENCODING_REG)
1111   ENCODING("VK16WM",          ENCODING_REG)
1112   ENCODING("VK32WM",          ENCODING_REG)
1113   ENCODING("VK64WM",          ENCODING_REG)
1114   ENCODING("BNDR",            ENCODING_REG)
1115   ENCODING("TILE",            ENCODING_REG)
1116   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1117   llvm_unreachable("Unhandled reg/opcode register encoding");
1118 }
1119 
1120 OperandEncoding
1121 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1122                                                   uint8_t OpSize) {
1123   ENCODING("GR32",            ENCODING_VVVV)
1124   ENCODING("GR64",            ENCODING_VVVV)
1125   ENCODING("FR32",            ENCODING_VVVV)
1126   ENCODING("FR128",           ENCODING_VVVV)
1127   ENCODING("FR64",            ENCODING_VVVV)
1128   ENCODING("VR128",           ENCODING_VVVV)
1129   ENCODING("VR256",           ENCODING_VVVV)
1130   ENCODING("FR32X",           ENCODING_VVVV)
1131   ENCODING("FR64X",           ENCODING_VVVV)
1132   ENCODING("VR128X",          ENCODING_VVVV)
1133   ENCODING("VR256X",          ENCODING_VVVV)
1134   ENCODING("VR512",           ENCODING_VVVV)
1135   ENCODING("VK1",             ENCODING_VVVV)
1136   ENCODING("VK2",             ENCODING_VVVV)
1137   ENCODING("VK4",             ENCODING_VVVV)
1138   ENCODING("VK8",             ENCODING_VVVV)
1139   ENCODING("VK16",            ENCODING_VVVV)
1140   ENCODING("VK32",            ENCODING_VVVV)
1141   ENCODING("VK64",            ENCODING_VVVV)
1142   ENCODING("VK1PAIR",         ENCODING_VVVV)
1143   ENCODING("VK2PAIR",         ENCODING_VVVV)
1144   ENCODING("VK4PAIR",         ENCODING_VVVV)
1145   ENCODING("VK8PAIR",         ENCODING_VVVV)
1146   ENCODING("VK16PAIR",        ENCODING_VVVV)
1147   ENCODING("TILE",            ENCODING_VVVV)
1148   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1149   llvm_unreachable("Unhandled VEX.vvvv register encoding");
1150 }
1151 
1152 OperandEncoding
1153 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1154                                                        uint8_t OpSize) {
1155   ENCODING("VK1WM",           ENCODING_WRITEMASK)
1156   ENCODING("VK2WM",           ENCODING_WRITEMASK)
1157   ENCODING("VK4WM",           ENCODING_WRITEMASK)
1158   ENCODING("VK8WM",           ENCODING_WRITEMASK)
1159   ENCODING("VK16WM",          ENCODING_WRITEMASK)
1160   ENCODING("VK32WM",          ENCODING_WRITEMASK)
1161   ENCODING("VK64WM",          ENCODING_WRITEMASK)
1162   errs() << "Unhandled mask register encoding " << s << "\n";
1163   llvm_unreachable("Unhandled mask register encoding");
1164 }
1165 
1166 OperandEncoding
1167 RecognizableInstr::memoryEncodingFromString(const std::string &s,
1168                                             uint8_t OpSize) {
1169   ENCODING("i16mem",          ENCODING_RM)
1170   ENCODING("i32mem",          ENCODING_RM)
1171   ENCODING("i64mem",          ENCODING_RM)
1172   ENCODING("i8mem",           ENCODING_RM)
1173   ENCODING("ssmem",           ENCODING_RM)
1174   ENCODING("sdmem",           ENCODING_RM)
1175   ENCODING("f128mem",         ENCODING_RM)
1176   ENCODING("f256mem",         ENCODING_RM)
1177   ENCODING("f512mem",         ENCODING_RM)
1178   ENCODING("f64mem",          ENCODING_RM)
1179   ENCODING("f32mem",          ENCODING_RM)
1180   ENCODING("i128mem",         ENCODING_RM)
1181   ENCODING("i256mem",         ENCODING_RM)
1182   ENCODING("i512mem",         ENCODING_RM)
1183   ENCODING("f80mem",          ENCODING_RM)
1184   ENCODING("lea64_32mem",     ENCODING_RM)
1185   ENCODING("lea64mem",        ENCODING_RM)
1186   ENCODING("anymem",          ENCODING_RM)
1187   ENCODING("opaquemem",       ENCODING_RM)
1188   ENCODING("sibmem",          ENCODING_SIB)
1189   ENCODING("vx64mem",         ENCODING_VSIB)
1190   ENCODING("vx128mem",        ENCODING_VSIB)
1191   ENCODING("vx256mem",        ENCODING_VSIB)
1192   ENCODING("vy128mem",        ENCODING_VSIB)
1193   ENCODING("vy256mem",        ENCODING_VSIB)
1194   ENCODING("vx64xmem",        ENCODING_VSIB)
1195   ENCODING("vx128xmem",       ENCODING_VSIB)
1196   ENCODING("vx256xmem",       ENCODING_VSIB)
1197   ENCODING("vy128xmem",       ENCODING_VSIB)
1198   ENCODING("vy256xmem",       ENCODING_VSIB)
1199   ENCODING("vy512xmem",       ENCODING_VSIB)
1200   ENCODING("vz256mem",        ENCODING_VSIB)
1201   ENCODING("vz512mem",        ENCODING_VSIB)
1202   errs() << "Unhandled memory encoding " << s << "\n";
1203   llvm_unreachable("Unhandled memory encoding");
1204 }
1205 
1206 OperandEncoding
1207 RecognizableInstr::relocationEncodingFromString(const std::string &s,
1208                                                 uint8_t OpSize) {
1209   if(OpSize != X86Local::OpSize16) {
1210     // For instructions without an OpSize prefix, a declared 16-bit register or
1211     // immediate encoding is special.
1212     ENCODING("i16imm",           ENCODING_IW)
1213   }
1214   ENCODING("i16imm",             ENCODING_Iv)
1215   ENCODING("i16i8imm",           ENCODING_IB)
1216   ENCODING("i32imm",             ENCODING_Iv)
1217   ENCODING("i32i8imm",           ENCODING_IB)
1218   ENCODING("i64i32imm",          ENCODING_ID)
1219   ENCODING("i64i8imm",           ENCODING_IB)
1220   ENCODING("i8imm",              ENCODING_IB)
1221   ENCODING("u8imm",              ENCODING_IB)
1222   ENCODING("i16u8imm",           ENCODING_IB)
1223   ENCODING("i32u8imm",           ENCODING_IB)
1224   ENCODING("i64u8imm",           ENCODING_IB)
1225   ENCODING("i64i32imm_brtarget", ENCODING_ID)
1226   ENCODING("i16imm_brtarget",    ENCODING_IW)
1227   ENCODING("i32imm_brtarget",    ENCODING_ID)
1228   ENCODING("brtarget32",         ENCODING_ID)
1229   ENCODING("brtarget16",         ENCODING_IW)
1230   ENCODING("brtarget8",          ENCODING_IB)
1231   ENCODING("i64imm",             ENCODING_IO)
1232   ENCODING("offset16_8",         ENCODING_Ia)
1233   ENCODING("offset16_16",        ENCODING_Ia)
1234   ENCODING("offset16_32",        ENCODING_Ia)
1235   ENCODING("offset32_8",         ENCODING_Ia)
1236   ENCODING("offset32_16",        ENCODING_Ia)
1237   ENCODING("offset32_32",        ENCODING_Ia)
1238   ENCODING("offset32_64",        ENCODING_Ia)
1239   ENCODING("offset64_8",         ENCODING_Ia)
1240   ENCODING("offset64_16",        ENCODING_Ia)
1241   ENCODING("offset64_32",        ENCODING_Ia)
1242   ENCODING("offset64_64",        ENCODING_Ia)
1243   ENCODING("srcidx8",            ENCODING_SI)
1244   ENCODING("srcidx16",           ENCODING_SI)
1245   ENCODING("srcidx32",           ENCODING_SI)
1246   ENCODING("srcidx64",           ENCODING_SI)
1247   ENCODING("dstidx8",            ENCODING_DI)
1248   ENCODING("dstidx16",           ENCODING_DI)
1249   ENCODING("dstidx32",           ENCODING_DI)
1250   ENCODING("dstidx64",           ENCODING_DI)
1251   errs() << "Unhandled relocation encoding " << s << "\n";
1252   llvm_unreachable("Unhandled relocation encoding");
1253 }
1254 
1255 OperandEncoding
1256 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1257                                                     uint8_t OpSize) {
1258   ENCODING("GR32",            ENCODING_Rv)
1259   ENCODING("GR64",            ENCODING_RO)
1260   ENCODING("GR16",            ENCODING_Rv)
1261   ENCODING("GR8",             ENCODING_RB)
1262   ENCODING("ccode",           ENCODING_CC)
1263   errs() << "Unhandled opcode modifier encoding " << s << "\n";
1264   llvm_unreachable("Unhandled opcode modifier encoding");
1265 }
1266 #undef ENCODING
1267