1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is part of the X86 Disassembler Emitter. 10 // It contains the implementation of a single recognizable instruction. 11 // Documentation for the disassembler emitter in general can be found in 12 // X86DisassemblerEmitter.h. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "X86RecognizableInstr.h" 17 #include "X86DisassemblerShared.h" 18 #include "X86ModRMFilters.h" 19 #include "llvm/Support/ErrorHandling.h" 20 #include <string> 21 22 using namespace llvm; 23 using namespace X86Disassembler; 24 25 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. 26 /// Useful for switch statements and the like. 27 /// 28 /// @param init - A reference to the BitsInit to be decoded. 29 /// @return - The field, with the first bit in the BitsInit as the lowest 30 /// order bit. 31 static uint8_t byteFromBitsInit(BitsInit &init) { 32 int width = init.getNumBits(); 33 34 assert(width <= 8 && "Field is too large for uint8_t!"); 35 36 int index; 37 uint8_t mask = 0x01; 38 39 uint8_t ret = 0; 40 41 for (index = 0; index < width; index++) { 42 if (cast<BitInit>(init.getBit(index))->getValue()) 43 ret |= mask; 44 45 mask <<= 1; 46 } 47 48 return ret; 49 } 50 51 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the 52 /// name of the field. 53 /// 54 /// @param rec - The record from which to extract the value. 55 /// @param name - The name of the field in the record. 56 /// @return - The field, as translated by byteFromBitsInit(). 57 static uint8_t byteFromRec(const Record* rec, StringRef name) { 58 BitsInit* bits = rec->getValueAsBitsInit(name); 59 return byteFromBitsInit(*bits); 60 } 61 62 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, 63 const CodeGenInstruction &insn, 64 InstrUID uid) { 65 UID = uid; 66 67 Rec = insn.TheDef; 68 Name = std::string(Rec->getName()); 69 Spec = &tables.specForUID(UID); 70 71 if (!Rec->isSubClassOf("X86Inst")) { 72 ShouldBeEmitted = false; 73 return; 74 } 75 76 OpPrefix = byteFromRec(Rec, "OpPrefixBits"); 77 OpMap = byteFromRec(Rec, "OpMapBits"); 78 Opcode = byteFromRec(Rec, "Opcode"); 79 Form = byteFromRec(Rec, "FormBits"); 80 Encoding = byteFromRec(Rec, "OpEncBits"); 81 82 OpSize = byteFromRec(Rec, "OpSizeBits"); 83 AdSize = byteFromRec(Rec, "AdSizeBits"); 84 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); 85 HasVEX_4V = Rec->getValueAsBit("hasVEX_4V"); 86 HasVEX_W = Rec->getValueAsBit("HasVEX_W"); 87 IgnoresVEX_W = Rec->getValueAsBit("IgnoresVEX_W"); 88 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); 89 HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2"); 90 HasEVEX_K = Rec->getValueAsBit("hasEVEX_K"); 91 HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z"); 92 HasEVEX_B = Rec->getValueAsBit("hasEVEX_B"); 93 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); 94 ForceDisassemble = Rec->getValueAsBit("ForceDisassemble"); 95 CD8_Scale = byteFromRec(Rec, "CD8_Scale"); 96 97 Name = std::string(Rec->getName()); 98 99 Operands = &insn.Operands.OperandList; 100 101 HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L"); 102 103 EncodeRC = HasEVEX_B && 104 (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg); 105 106 // Check for 64-bit inst which does not require REX 107 Is32Bit = false; 108 Is64Bit = false; 109 // FIXME: Is there some better way to check for In64BitMode? 110 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates"); 111 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { 112 if (Predicates[i]->getName().find("Not64Bit") != Name.npos || 113 Predicates[i]->getName().find("In32Bit") != Name.npos) { 114 Is32Bit = true; 115 break; 116 } 117 if (Predicates[i]->getName().find("In64Bit") != Name.npos) { 118 Is64Bit = true; 119 break; 120 } 121 } 122 123 if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) { 124 ShouldBeEmitted = false; 125 return; 126 } 127 128 // Special case since there is no attribute class for 64-bit and VEX 129 if (Name == "VMASKMOVDQU64") { 130 ShouldBeEmitted = false; 131 return; 132 } 133 134 ShouldBeEmitted = true; 135 } 136 137 void RecognizableInstr::processInstr(DisassemblerTables &tables, 138 const CodeGenInstruction &insn, 139 InstrUID uid) 140 { 141 // Ignore "asm parser only" instructions. 142 if (insn.TheDef->getValueAsBit("isAsmParserOnly")) 143 return; 144 145 RecognizableInstr recogInstr(tables, insn, uid); 146 147 if (recogInstr.shouldBeEmitted()) { 148 recogInstr.emitInstructionSpecifier(); 149 recogInstr.emitDecodePath(tables); 150 } 151 } 152 153 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \ 154 (HasEVEX_K && HasEVEX_B ? n##_K_B : \ 155 (HasEVEX_KZ ? n##_KZ : \ 156 (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n))))) 157 158 InstructionContext RecognizableInstr::insnContext() const { 159 InstructionContext insnContext; 160 161 if (Encoding == X86Local::EVEX) { 162 if (HasVEX_LPrefix && HasEVEX_L2Prefix) { 163 errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n"; 164 llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled"); 165 } 166 // VEX_L & VEX_W 167 if (!EncodeRC && HasVEX_LPrefix && HasVEX_W) { 168 if (OpPrefix == X86Local::PD) 169 insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE); 170 else if (OpPrefix == X86Local::XS) 171 insnContext = EVEX_KB(IC_EVEX_L_W_XS); 172 else if (OpPrefix == X86Local::XD) 173 insnContext = EVEX_KB(IC_EVEX_L_W_XD); 174 else if (OpPrefix == X86Local::PS) 175 insnContext = EVEX_KB(IC_EVEX_L_W); 176 else { 177 errs() << "Instruction does not use a prefix: " << Name << "\n"; 178 llvm_unreachable("Invalid prefix"); 179 } 180 } else if (!EncodeRC && HasVEX_LPrefix) { 181 // VEX_L 182 if (OpPrefix == X86Local::PD) 183 insnContext = EVEX_KB(IC_EVEX_L_OPSIZE); 184 else if (OpPrefix == X86Local::XS) 185 insnContext = EVEX_KB(IC_EVEX_L_XS); 186 else if (OpPrefix == X86Local::XD) 187 insnContext = EVEX_KB(IC_EVEX_L_XD); 188 else if (OpPrefix == X86Local::PS) 189 insnContext = EVEX_KB(IC_EVEX_L); 190 else { 191 errs() << "Instruction does not use a prefix: " << Name << "\n"; 192 llvm_unreachable("Invalid prefix"); 193 } 194 } else if (!EncodeRC && HasEVEX_L2Prefix && HasVEX_W) { 195 // EVEX_L2 & VEX_W 196 if (OpPrefix == X86Local::PD) 197 insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE); 198 else if (OpPrefix == X86Local::XS) 199 insnContext = EVEX_KB(IC_EVEX_L2_W_XS); 200 else if (OpPrefix == X86Local::XD) 201 insnContext = EVEX_KB(IC_EVEX_L2_W_XD); 202 else if (OpPrefix == X86Local::PS) 203 insnContext = EVEX_KB(IC_EVEX_L2_W); 204 else { 205 errs() << "Instruction does not use a prefix: " << Name << "\n"; 206 llvm_unreachable("Invalid prefix"); 207 } 208 } else if (!EncodeRC && HasEVEX_L2Prefix) { 209 // EVEX_L2 210 if (OpPrefix == X86Local::PD) 211 insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE); 212 else if (OpPrefix == X86Local::XD) 213 insnContext = EVEX_KB(IC_EVEX_L2_XD); 214 else if (OpPrefix == X86Local::XS) 215 insnContext = EVEX_KB(IC_EVEX_L2_XS); 216 else if (OpPrefix == X86Local::PS) 217 insnContext = EVEX_KB(IC_EVEX_L2); 218 else { 219 errs() << "Instruction does not use a prefix: " << Name << "\n"; 220 llvm_unreachable("Invalid prefix"); 221 } 222 } 223 else if (HasVEX_W) { 224 // VEX_W 225 if (OpPrefix == X86Local::PD) 226 insnContext = EVEX_KB(IC_EVEX_W_OPSIZE); 227 else if (OpPrefix == X86Local::XS) 228 insnContext = EVEX_KB(IC_EVEX_W_XS); 229 else if (OpPrefix == X86Local::XD) 230 insnContext = EVEX_KB(IC_EVEX_W_XD); 231 else if (OpPrefix == X86Local::PS) 232 insnContext = EVEX_KB(IC_EVEX_W); 233 else { 234 errs() << "Instruction does not use a prefix: " << Name << "\n"; 235 llvm_unreachable("Invalid prefix"); 236 } 237 } 238 // No L, no W 239 else if (OpPrefix == X86Local::PD) 240 insnContext = EVEX_KB(IC_EVEX_OPSIZE); 241 else if (OpPrefix == X86Local::XD) 242 insnContext = EVEX_KB(IC_EVEX_XD); 243 else if (OpPrefix == X86Local::XS) 244 insnContext = EVEX_KB(IC_EVEX_XS); 245 else if (OpPrefix == X86Local::PS) 246 insnContext = EVEX_KB(IC_EVEX); 247 else { 248 errs() << "Instruction does not use a prefix: " << Name << "\n"; 249 llvm_unreachable("Invalid prefix"); 250 } 251 /// eof EVEX 252 } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) { 253 if (HasVEX_LPrefix && HasVEX_W) { 254 if (OpPrefix == X86Local::PD) 255 insnContext = IC_VEX_L_W_OPSIZE; 256 else if (OpPrefix == X86Local::XS) 257 insnContext = IC_VEX_L_W_XS; 258 else if (OpPrefix == X86Local::XD) 259 insnContext = IC_VEX_L_W_XD; 260 else if (OpPrefix == X86Local::PS) 261 insnContext = IC_VEX_L_W; 262 else { 263 errs() << "Instruction does not use a prefix: " << Name << "\n"; 264 llvm_unreachable("Invalid prefix"); 265 } 266 } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix) 267 insnContext = IC_VEX_L_OPSIZE; 268 else if (OpPrefix == X86Local::PD && HasVEX_W) 269 insnContext = IC_VEX_W_OPSIZE; 270 else if (OpPrefix == X86Local::PD) 271 insnContext = IC_VEX_OPSIZE; 272 else if (HasVEX_LPrefix && OpPrefix == X86Local::XS) 273 insnContext = IC_VEX_L_XS; 274 else if (HasVEX_LPrefix && OpPrefix == X86Local::XD) 275 insnContext = IC_VEX_L_XD; 276 else if (HasVEX_W && OpPrefix == X86Local::XS) 277 insnContext = IC_VEX_W_XS; 278 else if (HasVEX_W && OpPrefix == X86Local::XD) 279 insnContext = IC_VEX_W_XD; 280 else if (HasVEX_W && OpPrefix == X86Local::PS) 281 insnContext = IC_VEX_W; 282 else if (HasVEX_LPrefix && OpPrefix == X86Local::PS) 283 insnContext = IC_VEX_L; 284 else if (OpPrefix == X86Local::XD) 285 insnContext = IC_VEX_XD; 286 else if (OpPrefix == X86Local::XS) 287 insnContext = IC_VEX_XS; 288 else if (OpPrefix == X86Local::PS) 289 insnContext = IC_VEX; 290 else { 291 errs() << "Instruction does not use a prefix: " << Name << "\n"; 292 llvm_unreachable("Invalid prefix"); 293 } 294 } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) { 295 if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)) 296 insnContext = IC_64BIT_REXW_OPSIZE; 297 else if (HasREX_WPrefix && AdSize == X86Local::AdSize32) 298 insnContext = IC_64BIT_REXW_ADSIZE; 299 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD) 300 insnContext = IC_64BIT_XD_OPSIZE; 301 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS) 302 insnContext = IC_64BIT_XS_OPSIZE; 303 else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD) 304 insnContext = IC_64BIT_OPSIZE_ADSIZE; 305 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32) 306 insnContext = IC_64BIT_OPSIZE_ADSIZE; 307 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD) 308 insnContext = IC_64BIT_OPSIZE; 309 else if (AdSize == X86Local::AdSize32) 310 insnContext = IC_64BIT_ADSIZE; 311 else if (HasREX_WPrefix && OpPrefix == X86Local::XS) 312 insnContext = IC_64BIT_REXW_XS; 313 else if (HasREX_WPrefix && OpPrefix == X86Local::XD) 314 insnContext = IC_64BIT_REXW_XD; 315 else if (OpPrefix == X86Local::XD) 316 insnContext = IC_64BIT_XD; 317 else if (OpPrefix == X86Local::XS) 318 insnContext = IC_64BIT_XS; 319 else if (HasREX_WPrefix) 320 insnContext = IC_64BIT_REXW; 321 else 322 insnContext = IC_64BIT; 323 } else { 324 if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD) 325 insnContext = IC_XD_OPSIZE; 326 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS) 327 insnContext = IC_XS_OPSIZE; 328 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD) 329 insnContext = IC_XD_ADSIZE; 330 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS) 331 insnContext = IC_XS_ADSIZE; 332 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD) 333 insnContext = IC_OPSIZE_ADSIZE; 334 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16) 335 insnContext = IC_OPSIZE_ADSIZE; 336 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD) 337 insnContext = IC_OPSIZE; 338 else if (AdSize == X86Local::AdSize16) 339 insnContext = IC_ADSIZE; 340 else if (OpPrefix == X86Local::XD) 341 insnContext = IC_XD; 342 else if (OpPrefix == X86Local::XS) 343 insnContext = IC_XS; 344 else 345 insnContext = IC; 346 } 347 348 return insnContext; 349 } 350 351 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) { 352 // The scaling factor for AVX512 compressed displacement encoding is an 353 // instruction attribute. Adjust the ModRM encoding type to include the 354 // scale for compressed displacement. 355 if ((encoding != ENCODING_RM && 356 encoding != ENCODING_VSIB && 357 encoding != ENCODING_SIB) ||CD8_Scale == 0) 358 return; 359 encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale)); 360 assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) || 361 (encoding == ENCODING_SIB) || 362 (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) && 363 "Invalid CDisp scaling"); 364 } 365 366 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex, 367 unsigned &physicalOperandIndex, 368 unsigned numPhysicalOperands, 369 const unsigned *operandMapping, 370 OperandEncoding (*encodingFromString) 371 (const std::string&, 372 uint8_t OpSize)) { 373 if (optional) { 374 if (physicalOperandIndex >= numPhysicalOperands) 375 return; 376 } else { 377 assert(physicalOperandIndex < numPhysicalOperands); 378 } 379 380 while (operandMapping[operandIndex] != operandIndex) { 381 Spec->operands[operandIndex].encoding = ENCODING_DUP; 382 Spec->operands[operandIndex].type = 383 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); 384 ++operandIndex; 385 } 386 387 StringRef typeName = (*Operands)[operandIndex].Rec->getName(); 388 389 OperandEncoding encoding = encodingFromString(std::string(typeName), OpSize); 390 // Adjust the encoding type for an operand based on the instruction. 391 adjustOperandEncoding(encoding); 392 Spec->operands[operandIndex].encoding = encoding; 393 Spec->operands[operandIndex].type = 394 typeFromString(std::string(typeName), HasREX_WPrefix, OpSize); 395 396 ++operandIndex; 397 ++physicalOperandIndex; 398 } 399 400 void RecognizableInstr::emitInstructionSpecifier() { 401 Spec->name = Name; 402 403 Spec->insnContext = insnContext(); 404 405 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 406 407 unsigned numOperands = OperandList.size(); 408 unsigned numPhysicalOperands = 0; 409 410 // operandMapping maps from operands in OperandList to their originals. 411 // If operandMapping[i] != i, then the entry is a duplicate. 412 unsigned operandMapping[X86_MAX_OPERANDS]; 413 assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); 414 415 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 416 if (!OperandList[operandIndex].Constraints.empty()) { 417 const CGIOperandList::ConstraintInfo &Constraint = 418 OperandList[operandIndex].Constraints[0]; 419 if (Constraint.isTied()) { 420 operandMapping[operandIndex] = operandIndex; 421 operandMapping[Constraint.getTiedOperand()] = operandIndex; 422 } else { 423 ++numPhysicalOperands; 424 operandMapping[operandIndex] = operandIndex; 425 } 426 } else { 427 ++numPhysicalOperands; 428 operandMapping[operandIndex] = operandIndex; 429 } 430 } 431 432 #define HANDLE_OPERAND(class) \ 433 handleOperand(false, \ 434 operandIndex, \ 435 physicalOperandIndex, \ 436 numPhysicalOperands, \ 437 operandMapping, \ 438 class##EncodingFromString); 439 440 #define HANDLE_OPTIONAL(class) \ 441 handleOperand(true, \ 442 operandIndex, \ 443 physicalOperandIndex, \ 444 numPhysicalOperands, \ 445 operandMapping, \ 446 class##EncodingFromString); 447 448 // operandIndex should always be < numOperands 449 unsigned operandIndex = 0; 450 // physicalOperandIndex should always be < numPhysicalOperands 451 unsigned physicalOperandIndex = 0; 452 453 #ifndef NDEBUG 454 // Given the set of prefix bits, how many additional operands does the 455 // instruction have? 456 unsigned additionalOperands = 0; 457 if (HasVEX_4V) 458 ++additionalOperands; 459 if (HasEVEX_K) 460 ++additionalOperands; 461 #endif 462 463 switch (Form) { 464 default: llvm_unreachable("Unhandled form"); 465 case X86Local::PrefixByte: 466 return; 467 case X86Local::RawFrmSrc: 468 HANDLE_OPERAND(relocation); 469 return; 470 case X86Local::RawFrmDst: 471 HANDLE_OPERAND(relocation); 472 return; 473 case X86Local::RawFrmDstSrc: 474 HANDLE_OPERAND(relocation); 475 HANDLE_OPERAND(relocation); 476 return; 477 case X86Local::RawFrm: 478 // Operand 1 (optional) is an address or immediate. 479 assert(numPhysicalOperands <= 1 && 480 "Unexpected number of operands for RawFrm"); 481 HANDLE_OPTIONAL(relocation) 482 break; 483 case X86Local::RawFrmMemOffs: 484 // Operand 1 is an address. 485 HANDLE_OPERAND(relocation); 486 break; 487 case X86Local::AddRegFrm: 488 // Operand 1 is added to the opcode. 489 // Operand 2 (optional) is an address. 490 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 491 "Unexpected number of operands for AddRegFrm"); 492 HANDLE_OPERAND(opcodeModifier) 493 HANDLE_OPTIONAL(relocation) 494 break; 495 case X86Local::AddCCFrm: 496 // Operand 1 (optional) is an address or immediate. 497 assert(numPhysicalOperands == 2 && 498 "Unexpected number of operands for AddCCFrm"); 499 HANDLE_OPERAND(relocation) 500 HANDLE_OPERAND(opcodeModifier) 501 break; 502 case X86Local::MRMDestReg: 503 // Operand 1 is a register operand in the R/M field. 504 // - In AVX512 there may be a mask operand here - 505 // Operand 2 is a register operand in the Reg/Opcode field. 506 // - In AVX, there is a register operand in the VEX.vvvv field here - 507 // Operand 3 (optional) is an immediate. 508 assert(numPhysicalOperands >= 2 + additionalOperands && 509 numPhysicalOperands <= 3 + additionalOperands && 510 "Unexpected number of operands for MRMDestRegFrm"); 511 512 HANDLE_OPERAND(rmRegister) 513 if (HasEVEX_K) 514 HANDLE_OPERAND(writemaskRegister) 515 516 if (HasVEX_4V) 517 // FIXME: In AVX, the register below becomes the one encoded 518 // in ModRMVEX and the one above the one in the VEX.VVVV field 519 HANDLE_OPERAND(vvvvRegister) 520 521 HANDLE_OPERAND(roRegister) 522 HANDLE_OPTIONAL(immediate) 523 break; 524 case X86Local::MRMDestMem: 525 case X86Local::MRMDestMemFSIB: 526 // Operand 1 is a memory operand (possibly SIB-extended) 527 // Operand 2 is a register operand in the Reg/Opcode field. 528 // - In AVX, there is a register operand in the VEX.vvvv field here - 529 // Operand 3 (optional) is an immediate. 530 assert(numPhysicalOperands >= 2 + additionalOperands && 531 numPhysicalOperands <= 3 + additionalOperands && 532 "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); 533 534 HANDLE_OPERAND(memory) 535 536 if (HasEVEX_K) 537 HANDLE_OPERAND(writemaskRegister) 538 539 if (HasVEX_4V) 540 // FIXME: In AVX, the register below becomes the one encoded 541 // in ModRMVEX and the one above the one in the VEX.VVVV field 542 HANDLE_OPERAND(vvvvRegister) 543 544 HANDLE_OPERAND(roRegister) 545 HANDLE_OPTIONAL(immediate) 546 break; 547 case X86Local::MRMSrcReg: 548 // Operand 1 is a register operand in the Reg/Opcode field. 549 // Operand 2 is a register operand in the R/M field. 550 // - In AVX, there is a register operand in the VEX.vvvv field here - 551 // Operand 3 (optional) is an immediate. 552 // Operand 4 (optional) is an immediate. 553 554 assert(numPhysicalOperands >= 2 + additionalOperands && 555 numPhysicalOperands <= 4 + additionalOperands && 556 "Unexpected number of operands for MRMSrcRegFrm"); 557 558 HANDLE_OPERAND(roRegister) 559 560 if (HasEVEX_K) 561 HANDLE_OPERAND(writemaskRegister) 562 563 if (HasVEX_4V) 564 // FIXME: In AVX, the register below becomes the one encoded 565 // in ModRMVEX and the one above the one in the VEX.VVVV field 566 HANDLE_OPERAND(vvvvRegister) 567 568 HANDLE_OPERAND(rmRegister) 569 HANDLE_OPTIONAL(immediate) 570 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 571 break; 572 case X86Local::MRMSrcReg4VOp3: 573 assert(numPhysicalOperands == 3 && 574 "Unexpected number of operands for MRMSrcReg4VOp3Frm"); 575 HANDLE_OPERAND(roRegister) 576 HANDLE_OPERAND(rmRegister) 577 HANDLE_OPERAND(vvvvRegister) 578 break; 579 case X86Local::MRMSrcRegOp4: 580 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 && 581 "Unexpected number of operands for MRMSrcRegOp4Frm"); 582 HANDLE_OPERAND(roRegister) 583 HANDLE_OPERAND(vvvvRegister) 584 HANDLE_OPERAND(immediate) // Register in imm[7:4] 585 HANDLE_OPERAND(rmRegister) 586 HANDLE_OPTIONAL(immediate) 587 break; 588 case X86Local::MRMSrcRegCC: 589 assert(numPhysicalOperands == 3 && 590 "Unexpected number of operands for MRMSrcRegCC"); 591 HANDLE_OPERAND(roRegister) 592 HANDLE_OPERAND(rmRegister) 593 HANDLE_OPERAND(opcodeModifier) 594 break; 595 case X86Local::MRMSrcMem: 596 case X86Local::MRMSrcMemFSIB: 597 // Operand 1 is a register operand in the Reg/Opcode field. 598 // Operand 2 is a memory operand (possibly SIB-extended) 599 // - In AVX, there is a register operand in the VEX.vvvv field here - 600 // Operand 3 (optional) is an immediate. 601 602 assert(numPhysicalOperands >= 2 + additionalOperands && 603 numPhysicalOperands <= 4 + additionalOperands && 604 "Unexpected number of operands for MRMSrcMemFrm"); 605 606 HANDLE_OPERAND(roRegister) 607 608 if (HasEVEX_K) 609 HANDLE_OPERAND(writemaskRegister) 610 611 if (HasVEX_4V) 612 // FIXME: In AVX, the register below becomes the one encoded 613 // in ModRMVEX and the one above the one in the VEX.VVVV field 614 HANDLE_OPERAND(vvvvRegister) 615 616 HANDLE_OPERAND(memory) 617 HANDLE_OPTIONAL(immediate) 618 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 619 break; 620 case X86Local::MRMSrcMem4VOp3: 621 assert(numPhysicalOperands == 3 && 622 "Unexpected number of operands for MRMSrcMem4VOp3Frm"); 623 HANDLE_OPERAND(roRegister) 624 HANDLE_OPERAND(memory) 625 HANDLE_OPERAND(vvvvRegister) 626 break; 627 case X86Local::MRMSrcMemOp4: 628 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 && 629 "Unexpected number of operands for MRMSrcMemOp4Frm"); 630 HANDLE_OPERAND(roRegister) 631 HANDLE_OPERAND(vvvvRegister) 632 HANDLE_OPERAND(immediate) // Register in imm[7:4] 633 HANDLE_OPERAND(memory) 634 HANDLE_OPTIONAL(immediate) 635 break; 636 case X86Local::MRMSrcMemCC: 637 assert(numPhysicalOperands == 3 && 638 "Unexpected number of operands for MRMSrcMemCC"); 639 HANDLE_OPERAND(roRegister) 640 HANDLE_OPERAND(memory) 641 HANDLE_OPERAND(opcodeModifier) 642 break; 643 case X86Local::MRMXrCC: 644 assert(numPhysicalOperands == 2 && 645 "Unexpected number of operands for MRMXrCC"); 646 HANDLE_OPERAND(rmRegister) 647 HANDLE_OPERAND(opcodeModifier) 648 break; 649 case X86Local::MRMr0: 650 // Operand 1 is a register operand in the R/M field. 651 HANDLE_OPERAND(roRegister) 652 break; 653 case X86Local::MRMXr: 654 case X86Local::MRM0r: 655 case X86Local::MRM1r: 656 case X86Local::MRM2r: 657 case X86Local::MRM3r: 658 case X86Local::MRM4r: 659 case X86Local::MRM5r: 660 case X86Local::MRM6r: 661 case X86Local::MRM7r: 662 // Operand 1 is a register operand in the R/M field. 663 // Operand 2 (optional) is an immediate or relocation. 664 // Operand 3 (optional) is an immediate. 665 assert(numPhysicalOperands >= 0 + additionalOperands && 666 numPhysicalOperands <= 3 + additionalOperands && 667 "Unexpected number of operands for MRMnr"); 668 669 if (HasVEX_4V) 670 HANDLE_OPERAND(vvvvRegister) 671 672 if (HasEVEX_K) 673 HANDLE_OPERAND(writemaskRegister) 674 HANDLE_OPTIONAL(rmRegister) 675 HANDLE_OPTIONAL(relocation) 676 HANDLE_OPTIONAL(immediate) 677 break; 678 case X86Local::MRMXmCC: 679 assert(numPhysicalOperands == 2 && 680 "Unexpected number of operands for MRMXm"); 681 HANDLE_OPERAND(memory) 682 HANDLE_OPERAND(opcodeModifier) 683 break; 684 case X86Local::MRMXm: 685 case X86Local::MRM0m: 686 case X86Local::MRM1m: 687 case X86Local::MRM2m: 688 case X86Local::MRM3m: 689 case X86Local::MRM4m: 690 case X86Local::MRM5m: 691 case X86Local::MRM6m: 692 case X86Local::MRM7m: 693 // Operand 1 is a memory operand (possibly SIB-extended) 694 // Operand 2 (optional) is an immediate or relocation. 695 assert(numPhysicalOperands >= 1 + additionalOperands && 696 numPhysicalOperands <= 2 + additionalOperands && 697 "Unexpected number of operands for MRMnm"); 698 699 if (HasVEX_4V) 700 HANDLE_OPERAND(vvvvRegister) 701 if (HasEVEX_K) 702 HANDLE_OPERAND(writemaskRegister) 703 HANDLE_OPERAND(memory) 704 HANDLE_OPTIONAL(relocation) 705 break; 706 case X86Local::RawFrmImm8: 707 // operand 1 is a 16-bit immediate 708 // operand 2 is an 8-bit immediate 709 assert(numPhysicalOperands == 2 && 710 "Unexpected number of operands for X86Local::RawFrmImm8"); 711 HANDLE_OPERAND(immediate) 712 HANDLE_OPERAND(immediate) 713 break; 714 case X86Local::RawFrmImm16: 715 // operand 1 is a 16-bit immediate 716 // operand 2 is a 16-bit immediate 717 HANDLE_OPERAND(immediate) 718 HANDLE_OPERAND(immediate) 719 break; 720 case X86Local::MRM0X: 721 case X86Local::MRM1X: 722 case X86Local::MRM2X: 723 case X86Local::MRM3X: 724 case X86Local::MRM4X: 725 case X86Local::MRM5X: 726 case X86Local::MRM6X: 727 case X86Local::MRM7X: 728 #define MAP(from, to) case X86Local::MRM_##from: 729 X86_INSTR_MRM_MAPPING 730 #undef MAP 731 HANDLE_OPTIONAL(relocation) 732 break; 733 } 734 735 #undef HANDLE_OPERAND 736 #undef HANDLE_OPTIONAL 737 } 738 739 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { 740 // Special cases where the LLVM tables are not complete 741 742 #define MAP(from, to) \ 743 case X86Local::MRM_##from: 744 745 llvm::Optional<OpcodeType> opcodeType; 746 switch (OpMap) { 747 default: llvm_unreachable("Invalid map!"); 748 case X86Local::OB: opcodeType = ONEBYTE; break; 749 case X86Local::TB: opcodeType = TWOBYTE; break; 750 case X86Local::T8: opcodeType = THREEBYTE_38; break; 751 case X86Local::TA: opcodeType = THREEBYTE_3A; break; 752 case X86Local::XOP8: opcodeType = XOP8_MAP; break; 753 case X86Local::XOP9: opcodeType = XOP9_MAP; break; 754 case X86Local::XOPA: opcodeType = XOPA_MAP; break; 755 case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break; 756 } 757 758 std::unique_ptr<ModRMFilter> filter; 759 switch (Form) { 760 default: llvm_unreachable("Invalid form!"); 761 case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!"); 762 case X86Local::RawFrm: 763 case X86Local::AddRegFrm: 764 case X86Local::RawFrmMemOffs: 765 case X86Local::RawFrmSrc: 766 case X86Local::RawFrmDst: 767 case X86Local::RawFrmDstSrc: 768 case X86Local::RawFrmImm8: 769 case X86Local::RawFrmImm16: 770 case X86Local::AddCCFrm: 771 case X86Local::PrefixByte: 772 filter = std::make_unique<DumbFilter>(); 773 break; 774 case X86Local::MRMDestReg: 775 case X86Local::MRMSrcReg: 776 case X86Local::MRMSrcReg4VOp3: 777 case X86Local::MRMSrcRegOp4: 778 case X86Local::MRMSrcRegCC: 779 case X86Local::MRMXrCC: 780 case X86Local::MRMXr: 781 filter = std::make_unique<ModFilter>(true); 782 break; 783 case X86Local::MRMDestMem: 784 case X86Local::MRMDestMemFSIB: 785 case X86Local::MRMSrcMem: 786 case X86Local::MRMSrcMemFSIB: 787 case X86Local::MRMSrcMem4VOp3: 788 case X86Local::MRMSrcMemOp4: 789 case X86Local::MRMSrcMemCC: 790 case X86Local::MRMXmCC: 791 case X86Local::MRMXm: 792 filter = std::make_unique<ModFilter>(false); 793 break; 794 case X86Local::MRM0r: case X86Local::MRM1r: 795 case X86Local::MRM2r: case X86Local::MRM3r: 796 case X86Local::MRM4r: case X86Local::MRM5r: 797 case X86Local::MRM6r: case X86Local::MRM7r: 798 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r); 799 break; 800 case X86Local::MRM0X: case X86Local::MRM1X: 801 case X86Local::MRM2X: case X86Local::MRM3X: 802 case X86Local::MRM4X: case X86Local::MRM5X: 803 case X86Local::MRM6X: case X86Local::MRM7X: 804 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0X); 805 break; 806 case X86Local::MRMr0: 807 filter = std::make_unique<ExtendedRMFilter>(true, Form - X86Local::MRMr0); 808 break; 809 case X86Local::MRM0m: case X86Local::MRM1m: 810 case X86Local::MRM2m: case X86Local::MRM3m: 811 case X86Local::MRM4m: case X86Local::MRM5m: 812 case X86Local::MRM6m: case X86Local::MRM7m: 813 filter = std::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m); 814 break; 815 X86_INSTR_MRM_MAPPING 816 filter = std::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0); 817 break; 818 } // switch (Form) 819 820 uint8_t opcodeToSet = Opcode; 821 822 unsigned AddressSize = 0; 823 switch (AdSize) { 824 case X86Local::AdSize16: AddressSize = 16; break; 825 case X86Local::AdSize32: AddressSize = 32; break; 826 case X86Local::AdSize64: AddressSize = 64; break; 827 } 828 829 assert(opcodeType && "Opcode type not set"); 830 assert(filter && "Filter not set"); 831 832 if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC || 833 Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC || 834 Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm) { 835 unsigned Count = Form == X86Local::AddRegFrm ? 8 : 16; 836 assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned"); 837 838 uint8_t currentOpcode; 839 840 for (currentOpcode = opcodeToSet; currentOpcode < opcodeToSet + Count; 841 ++currentOpcode) 842 tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter, 843 UID, Is32Bit, OpPrefix == 0, 844 IgnoresVEX_L || EncodeRC, 845 IgnoresVEX_W, AddressSize); 846 } else { 847 tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID, 848 Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC, 849 IgnoresVEX_W, AddressSize); 850 } 851 852 #undef MAP 853 } 854 855 #define TYPE(str, type) if (s == str) return type; 856 OperandType RecognizableInstr::typeFromString(const std::string &s, 857 bool hasREX_WPrefix, 858 uint8_t OpSize) { 859 if(hasREX_WPrefix) { 860 // For instructions with a REX_W prefix, a declared 32-bit register encoding 861 // is special. 862 TYPE("GR32", TYPE_R32) 863 } 864 if(OpSize == X86Local::OpSize16) { 865 // For OpSize16 instructions, a declared 16-bit register or 866 // immediate encoding is special. 867 TYPE("GR16", TYPE_Rv) 868 } else if(OpSize == X86Local::OpSize32) { 869 // For OpSize32 instructions, a declared 32-bit register or 870 // immediate encoding is special. 871 TYPE("GR32", TYPE_Rv) 872 } 873 TYPE("i16mem", TYPE_M) 874 TYPE("i16imm", TYPE_IMM) 875 TYPE("i16i8imm", TYPE_IMM) 876 TYPE("GR16", TYPE_R16) 877 TYPE("GR16orGR32orGR64", TYPE_R16) 878 TYPE("i32mem", TYPE_M) 879 TYPE("i32imm", TYPE_IMM) 880 TYPE("i32i8imm", TYPE_IMM) 881 TYPE("GR32", TYPE_R32) 882 TYPE("GR32orGR64", TYPE_R32) 883 TYPE("i64mem", TYPE_M) 884 TYPE("i64i32imm", TYPE_IMM) 885 TYPE("i64i8imm", TYPE_IMM) 886 TYPE("GR64", TYPE_R64) 887 TYPE("i8mem", TYPE_M) 888 TYPE("i8imm", TYPE_IMM) 889 TYPE("u4imm", TYPE_UIMM8) 890 TYPE("u8imm", TYPE_UIMM8) 891 TYPE("i16u8imm", TYPE_UIMM8) 892 TYPE("i32u8imm", TYPE_UIMM8) 893 TYPE("i64u8imm", TYPE_UIMM8) 894 TYPE("GR8", TYPE_R8) 895 TYPE("VR128", TYPE_XMM) 896 TYPE("VR128X", TYPE_XMM) 897 TYPE("f128mem", TYPE_M) 898 TYPE("f256mem", TYPE_M) 899 TYPE("f512mem", TYPE_M) 900 TYPE("FR128", TYPE_XMM) 901 TYPE("FR64", TYPE_XMM) 902 TYPE("FR64X", TYPE_XMM) 903 TYPE("f64mem", TYPE_M) 904 TYPE("sdmem", TYPE_M) 905 TYPE("FR32", TYPE_XMM) 906 TYPE("FR32X", TYPE_XMM) 907 TYPE("f32mem", TYPE_M) 908 TYPE("ssmem", TYPE_M) 909 TYPE("RST", TYPE_ST) 910 TYPE("RSTi", TYPE_ST) 911 TYPE("i128mem", TYPE_M) 912 TYPE("i256mem", TYPE_M) 913 TYPE("i512mem", TYPE_M) 914 TYPE("i64i32imm_brtarget", TYPE_REL) 915 TYPE("i16imm_brtarget", TYPE_REL) 916 TYPE("i32imm_brtarget", TYPE_REL) 917 TYPE("ccode", TYPE_IMM) 918 TYPE("AVX512RC", TYPE_IMM) 919 TYPE("brtarget32", TYPE_REL) 920 TYPE("brtarget16", TYPE_REL) 921 TYPE("brtarget8", TYPE_REL) 922 TYPE("f80mem", TYPE_M) 923 TYPE("lea64_32mem", TYPE_M) 924 TYPE("lea64mem", TYPE_M) 925 TYPE("VR64", TYPE_MM64) 926 TYPE("i64imm", TYPE_IMM) 927 TYPE("anymem", TYPE_M) 928 TYPE("opaquemem", TYPE_M) 929 TYPE("sibmem", TYPE_MSIB) 930 TYPE("SEGMENT_REG", TYPE_SEGMENTREG) 931 TYPE("DEBUG_REG", TYPE_DEBUGREG) 932 TYPE("CONTROL_REG", TYPE_CONTROLREG) 933 TYPE("srcidx8", TYPE_SRCIDX) 934 TYPE("srcidx16", TYPE_SRCIDX) 935 TYPE("srcidx32", TYPE_SRCIDX) 936 TYPE("srcidx64", TYPE_SRCIDX) 937 TYPE("dstidx8", TYPE_DSTIDX) 938 TYPE("dstidx16", TYPE_DSTIDX) 939 TYPE("dstidx32", TYPE_DSTIDX) 940 TYPE("dstidx64", TYPE_DSTIDX) 941 TYPE("offset16_8", TYPE_MOFFS) 942 TYPE("offset16_16", TYPE_MOFFS) 943 TYPE("offset16_32", TYPE_MOFFS) 944 TYPE("offset32_8", TYPE_MOFFS) 945 TYPE("offset32_16", TYPE_MOFFS) 946 TYPE("offset32_32", TYPE_MOFFS) 947 TYPE("offset32_64", TYPE_MOFFS) 948 TYPE("offset64_8", TYPE_MOFFS) 949 TYPE("offset64_16", TYPE_MOFFS) 950 TYPE("offset64_32", TYPE_MOFFS) 951 TYPE("offset64_64", TYPE_MOFFS) 952 TYPE("VR256", TYPE_YMM) 953 TYPE("VR256X", TYPE_YMM) 954 TYPE("VR512", TYPE_ZMM) 955 TYPE("VK1", TYPE_VK) 956 TYPE("VK1WM", TYPE_VK) 957 TYPE("VK2", TYPE_VK) 958 TYPE("VK2WM", TYPE_VK) 959 TYPE("VK4", TYPE_VK) 960 TYPE("VK4WM", TYPE_VK) 961 TYPE("VK8", TYPE_VK) 962 TYPE("VK8WM", TYPE_VK) 963 TYPE("VK16", TYPE_VK) 964 TYPE("VK16WM", TYPE_VK) 965 TYPE("VK32", TYPE_VK) 966 TYPE("VK32WM", TYPE_VK) 967 TYPE("VK64", TYPE_VK) 968 TYPE("VK64WM", TYPE_VK) 969 TYPE("VK1Pair", TYPE_VK_PAIR) 970 TYPE("VK2Pair", TYPE_VK_PAIR) 971 TYPE("VK4Pair", TYPE_VK_PAIR) 972 TYPE("VK8Pair", TYPE_VK_PAIR) 973 TYPE("VK16Pair", TYPE_VK_PAIR) 974 TYPE("vx64mem", TYPE_MVSIBX) 975 TYPE("vx128mem", TYPE_MVSIBX) 976 TYPE("vx256mem", TYPE_MVSIBX) 977 TYPE("vy128mem", TYPE_MVSIBY) 978 TYPE("vy256mem", TYPE_MVSIBY) 979 TYPE("vx64xmem", TYPE_MVSIBX) 980 TYPE("vx128xmem", TYPE_MVSIBX) 981 TYPE("vx256xmem", TYPE_MVSIBX) 982 TYPE("vy128xmem", TYPE_MVSIBY) 983 TYPE("vy256xmem", TYPE_MVSIBY) 984 TYPE("vy512xmem", TYPE_MVSIBY) 985 TYPE("vz256mem", TYPE_MVSIBZ) 986 TYPE("vz512mem", TYPE_MVSIBZ) 987 TYPE("BNDR", TYPE_BNDR) 988 TYPE("TILE", TYPE_TMM) 989 errs() << "Unhandled type string " << s << "\n"; 990 llvm_unreachable("Unhandled type string"); 991 } 992 #undef TYPE 993 994 #define ENCODING(str, encoding) if (s == str) return encoding; 995 OperandEncoding 996 RecognizableInstr::immediateEncodingFromString(const std::string &s, 997 uint8_t OpSize) { 998 if(OpSize != X86Local::OpSize16) { 999 // For instructions without an OpSize prefix, a declared 16-bit register or 1000 // immediate encoding is special. 1001 ENCODING("i16imm", ENCODING_IW) 1002 } 1003 ENCODING("i32i8imm", ENCODING_IB) 1004 ENCODING("AVX512RC", ENCODING_IRC) 1005 ENCODING("i16imm", ENCODING_Iv) 1006 ENCODING("i16i8imm", ENCODING_IB) 1007 ENCODING("i32imm", ENCODING_Iv) 1008 ENCODING("i64i32imm", ENCODING_ID) 1009 ENCODING("i64i8imm", ENCODING_IB) 1010 ENCODING("i8imm", ENCODING_IB) 1011 ENCODING("u4imm", ENCODING_IB) 1012 ENCODING("u8imm", ENCODING_IB) 1013 ENCODING("i16u8imm", ENCODING_IB) 1014 ENCODING("i32u8imm", ENCODING_IB) 1015 ENCODING("i64u8imm", ENCODING_IB) 1016 // This is not a typo. Instructions like BLENDVPD put 1017 // register IDs in 8-bit immediates nowadays. 1018 ENCODING("FR32", ENCODING_IB) 1019 ENCODING("FR64", ENCODING_IB) 1020 ENCODING("FR128", ENCODING_IB) 1021 ENCODING("VR128", ENCODING_IB) 1022 ENCODING("VR256", ENCODING_IB) 1023 ENCODING("FR32X", ENCODING_IB) 1024 ENCODING("FR64X", ENCODING_IB) 1025 ENCODING("VR128X", ENCODING_IB) 1026 ENCODING("VR256X", ENCODING_IB) 1027 ENCODING("VR512", ENCODING_IB) 1028 ENCODING("TILE", ENCODING_IB) 1029 errs() << "Unhandled immediate encoding " << s << "\n"; 1030 llvm_unreachable("Unhandled immediate encoding"); 1031 } 1032 1033 OperandEncoding 1034 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s, 1035 uint8_t OpSize) { 1036 ENCODING("RST", ENCODING_FP) 1037 ENCODING("RSTi", ENCODING_FP) 1038 ENCODING("GR16", ENCODING_RM) 1039 ENCODING("GR16orGR32orGR64",ENCODING_RM) 1040 ENCODING("GR32", ENCODING_RM) 1041 ENCODING("GR32orGR64", ENCODING_RM) 1042 ENCODING("GR64", ENCODING_RM) 1043 ENCODING("GR8", ENCODING_RM) 1044 ENCODING("VR128", ENCODING_RM) 1045 ENCODING("VR128X", ENCODING_RM) 1046 ENCODING("FR128", ENCODING_RM) 1047 ENCODING("FR64", ENCODING_RM) 1048 ENCODING("FR32", ENCODING_RM) 1049 ENCODING("FR64X", ENCODING_RM) 1050 ENCODING("FR32X", ENCODING_RM) 1051 ENCODING("VR64", ENCODING_RM) 1052 ENCODING("VR256", ENCODING_RM) 1053 ENCODING("VR256X", ENCODING_RM) 1054 ENCODING("VR512", ENCODING_RM) 1055 ENCODING("VK1", ENCODING_RM) 1056 ENCODING("VK2", ENCODING_RM) 1057 ENCODING("VK4", ENCODING_RM) 1058 ENCODING("VK8", ENCODING_RM) 1059 ENCODING("VK16", ENCODING_RM) 1060 ENCODING("VK32", ENCODING_RM) 1061 ENCODING("VK64", ENCODING_RM) 1062 ENCODING("VK1PAIR", ENCODING_RM) 1063 ENCODING("VK2PAIR", ENCODING_RM) 1064 ENCODING("VK4PAIR", ENCODING_RM) 1065 ENCODING("VK8PAIR", ENCODING_RM) 1066 ENCODING("VK16PAIR", ENCODING_RM) 1067 ENCODING("BNDR", ENCODING_RM) 1068 ENCODING("TILE", ENCODING_RM) 1069 errs() << "Unhandled R/M register encoding " << s << "\n"; 1070 llvm_unreachable("Unhandled R/M register encoding"); 1071 } 1072 1073 OperandEncoding 1074 RecognizableInstr::roRegisterEncodingFromString(const std::string &s, 1075 uint8_t OpSize) { 1076 ENCODING("GR16", ENCODING_REG) 1077 ENCODING("GR16orGR32orGR64",ENCODING_REG) 1078 ENCODING("GR32", ENCODING_REG) 1079 ENCODING("GR32orGR64", ENCODING_REG) 1080 ENCODING("GR64", ENCODING_REG) 1081 ENCODING("GR8", ENCODING_REG) 1082 ENCODING("VR128", ENCODING_REG) 1083 ENCODING("FR128", ENCODING_REG) 1084 ENCODING("FR64", ENCODING_REG) 1085 ENCODING("FR32", ENCODING_REG) 1086 ENCODING("VR64", ENCODING_REG) 1087 ENCODING("SEGMENT_REG", ENCODING_REG) 1088 ENCODING("DEBUG_REG", ENCODING_REG) 1089 ENCODING("CONTROL_REG", ENCODING_REG) 1090 ENCODING("VR256", ENCODING_REG) 1091 ENCODING("VR256X", ENCODING_REG) 1092 ENCODING("VR128X", ENCODING_REG) 1093 ENCODING("FR64X", ENCODING_REG) 1094 ENCODING("FR32X", ENCODING_REG) 1095 ENCODING("VR512", ENCODING_REG) 1096 ENCODING("VK1", ENCODING_REG) 1097 ENCODING("VK2", ENCODING_REG) 1098 ENCODING("VK4", ENCODING_REG) 1099 ENCODING("VK8", ENCODING_REG) 1100 ENCODING("VK16", ENCODING_REG) 1101 ENCODING("VK32", ENCODING_REG) 1102 ENCODING("VK64", ENCODING_REG) 1103 ENCODING("VK1Pair", ENCODING_REG) 1104 ENCODING("VK2Pair", ENCODING_REG) 1105 ENCODING("VK4Pair", ENCODING_REG) 1106 ENCODING("VK8Pair", ENCODING_REG) 1107 ENCODING("VK16Pair", ENCODING_REG) 1108 ENCODING("VK1WM", ENCODING_REG) 1109 ENCODING("VK2WM", ENCODING_REG) 1110 ENCODING("VK4WM", ENCODING_REG) 1111 ENCODING("VK8WM", ENCODING_REG) 1112 ENCODING("VK16WM", ENCODING_REG) 1113 ENCODING("VK32WM", ENCODING_REG) 1114 ENCODING("VK64WM", ENCODING_REG) 1115 ENCODING("BNDR", ENCODING_REG) 1116 ENCODING("TILE", ENCODING_REG) 1117 errs() << "Unhandled reg/opcode register encoding " << s << "\n"; 1118 llvm_unreachable("Unhandled reg/opcode register encoding"); 1119 } 1120 1121 OperandEncoding 1122 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s, 1123 uint8_t OpSize) { 1124 ENCODING("GR32", ENCODING_VVVV) 1125 ENCODING("GR64", ENCODING_VVVV) 1126 ENCODING("FR32", ENCODING_VVVV) 1127 ENCODING("FR128", ENCODING_VVVV) 1128 ENCODING("FR64", ENCODING_VVVV) 1129 ENCODING("VR128", ENCODING_VVVV) 1130 ENCODING("VR256", ENCODING_VVVV) 1131 ENCODING("FR32X", ENCODING_VVVV) 1132 ENCODING("FR64X", ENCODING_VVVV) 1133 ENCODING("VR128X", ENCODING_VVVV) 1134 ENCODING("VR256X", ENCODING_VVVV) 1135 ENCODING("VR512", ENCODING_VVVV) 1136 ENCODING("VK1", ENCODING_VVVV) 1137 ENCODING("VK2", ENCODING_VVVV) 1138 ENCODING("VK4", ENCODING_VVVV) 1139 ENCODING("VK8", ENCODING_VVVV) 1140 ENCODING("VK16", ENCODING_VVVV) 1141 ENCODING("VK32", ENCODING_VVVV) 1142 ENCODING("VK64", ENCODING_VVVV) 1143 ENCODING("VK1PAIR", ENCODING_VVVV) 1144 ENCODING("VK2PAIR", ENCODING_VVVV) 1145 ENCODING("VK4PAIR", ENCODING_VVVV) 1146 ENCODING("VK8PAIR", ENCODING_VVVV) 1147 ENCODING("VK16PAIR", ENCODING_VVVV) 1148 ENCODING("TILE", ENCODING_VVVV) 1149 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; 1150 llvm_unreachable("Unhandled VEX.vvvv register encoding"); 1151 } 1152 1153 OperandEncoding 1154 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s, 1155 uint8_t OpSize) { 1156 ENCODING("VK1WM", ENCODING_WRITEMASK) 1157 ENCODING("VK2WM", ENCODING_WRITEMASK) 1158 ENCODING("VK4WM", ENCODING_WRITEMASK) 1159 ENCODING("VK8WM", ENCODING_WRITEMASK) 1160 ENCODING("VK16WM", ENCODING_WRITEMASK) 1161 ENCODING("VK32WM", ENCODING_WRITEMASK) 1162 ENCODING("VK64WM", ENCODING_WRITEMASK) 1163 errs() << "Unhandled mask register encoding " << s << "\n"; 1164 llvm_unreachable("Unhandled mask register encoding"); 1165 } 1166 1167 OperandEncoding 1168 RecognizableInstr::memoryEncodingFromString(const std::string &s, 1169 uint8_t OpSize) { 1170 ENCODING("i16mem", ENCODING_RM) 1171 ENCODING("i32mem", ENCODING_RM) 1172 ENCODING("i64mem", ENCODING_RM) 1173 ENCODING("i8mem", ENCODING_RM) 1174 ENCODING("ssmem", ENCODING_RM) 1175 ENCODING("sdmem", ENCODING_RM) 1176 ENCODING("f128mem", ENCODING_RM) 1177 ENCODING("f256mem", ENCODING_RM) 1178 ENCODING("f512mem", ENCODING_RM) 1179 ENCODING("f64mem", ENCODING_RM) 1180 ENCODING("f32mem", ENCODING_RM) 1181 ENCODING("i128mem", ENCODING_RM) 1182 ENCODING("i256mem", ENCODING_RM) 1183 ENCODING("i512mem", ENCODING_RM) 1184 ENCODING("f80mem", ENCODING_RM) 1185 ENCODING("lea64_32mem", ENCODING_RM) 1186 ENCODING("lea64mem", ENCODING_RM) 1187 ENCODING("anymem", ENCODING_RM) 1188 ENCODING("opaquemem", ENCODING_RM) 1189 ENCODING("sibmem", ENCODING_SIB) 1190 ENCODING("vx64mem", ENCODING_VSIB) 1191 ENCODING("vx128mem", ENCODING_VSIB) 1192 ENCODING("vx256mem", ENCODING_VSIB) 1193 ENCODING("vy128mem", ENCODING_VSIB) 1194 ENCODING("vy256mem", ENCODING_VSIB) 1195 ENCODING("vx64xmem", ENCODING_VSIB) 1196 ENCODING("vx128xmem", ENCODING_VSIB) 1197 ENCODING("vx256xmem", ENCODING_VSIB) 1198 ENCODING("vy128xmem", ENCODING_VSIB) 1199 ENCODING("vy256xmem", ENCODING_VSIB) 1200 ENCODING("vy512xmem", ENCODING_VSIB) 1201 ENCODING("vz256mem", ENCODING_VSIB) 1202 ENCODING("vz512mem", ENCODING_VSIB) 1203 errs() << "Unhandled memory encoding " << s << "\n"; 1204 llvm_unreachable("Unhandled memory encoding"); 1205 } 1206 1207 OperandEncoding 1208 RecognizableInstr::relocationEncodingFromString(const std::string &s, 1209 uint8_t OpSize) { 1210 if(OpSize != X86Local::OpSize16) { 1211 // For instructions without an OpSize prefix, a declared 16-bit register or 1212 // immediate encoding is special. 1213 ENCODING("i16imm", ENCODING_IW) 1214 } 1215 ENCODING("i16imm", ENCODING_Iv) 1216 ENCODING("i16i8imm", ENCODING_IB) 1217 ENCODING("i32imm", ENCODING_Iv) 1218 ENCODING("i32i8imm", ENCODING_IB) 1219 ENCODING("i64i32imm", ENCODING_ID) 1220 ENCODING("i64i8imm", ENCODING_IB) 1221 ENCODING("i8imm", ENCODING_IB) 1222 ENCODING("u8imm", ENCODING_IB) 1223 ENCODING("i16u8imm", ENCODING_IB) 1224 ENCODING("i32u8imm", ENCODING_IB) 1225 ENCODING("i64u8imm", ENCODING_IB) 1226 ENCODING("i64i32imm_brtarget", ENCODING_ID) 1227 ENCODING("i16imm_brtarget", ENCODING_IW) 1228 ENCODING("i32imm_brtarget", ENCODING_ID) 1229 ENCODING("brtarget32", ENCODING_ID) 1230 ENCODING("brtarget16", ENCODING_IW) 1231 ENCODING("brtarget8", ENCODING_IB) 1232 ENCODING("i64imm", ENCODING_IO) 1233 ENCODING("offset16_8", ENCODING_Ia) 1234 ENCODING("offset16_16", ENCODING_Ia) 1235 ENCODING("offset16_32", ENCODING_Ia) 1236 ENCODING("offset32_8", ENCODING_Ia) 1237 ENCODING("offset32_16", ENCODING_Ia) 1238 ENCODING("offset32_32", ENCODING_Ia) 1239 ENCODING("offset32_64", ENCODING_Ia) 1240 ENCODING("offset64_8", ENCODING_Ia) 1241 ENCODING("offset64_16", ENCODING_Ia) 1242 ENCODING("offset64_32", ENCODING_Ia) 1243 ENCODING("offset64_64", ENCODING_Ia) 1244 ENCODING("srcidx8", ENCODING_SI) 1245 ENCODING("srcidx16", ENCODING_SI) 1246 ENCODING("srcidx32", ENCODING_SI) 1247 ENCODING("srcidx64", ENCODING_SI) 1248 ENCODING("dstidx8", ENCODING_DI) 1249 ENCODING("dstidx16", ENCODING_DI) 1250 ENCODING("dstidx32", ENCODING_DI) 1251 ENCODING("dstidx64", ENCODING_DI) 1252 errs() << "Unhandled relocation encoding " << s << "\n"; 1253 llvm_unreachable("Unhandled relocation encoding"); 1254 } 1255 1256 OperandEncoding 1257 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s, 1258 uint8_t OpSize) { 1259 ENCODING("GR32", ENCODING_Rv) 1260 ENCODING("GR64", ENCODING_RO) 1261 ENCODING("GR16", ENCODING_Rv) 1262 ENCODING("GR8", ENCODING_RB) 1263 ENCODING("ccode", ENCODING_CC) 1264 errs() << "Unhandled opcode modifier encoding " << s << "\n"; 1265 llvm_unreachable("Unhandled opcode modifier encoding"); 1266 } 1267 #undef ENCODING 1268