1 //===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend is responsible for emitting the memory fold tables of 10 // the X86 backend instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTarget.h" 15 #include "X86RecognizableInstr.h" 16 #include "llvm/Support/FormattedStream.h" 17 #include "llvm/TableGen/Error.h" 18 #include "llvm/TableGen/TableGenBackend.h" 19 20 using namespace llvm; 21 22 namespace { 23 24 // 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the 25 // manual added entries. 26 enum UnfoldStrategy { 27 UNFOLD, // Allow unfolding 28 NO_UNFOLD, // Prevent unfolding 29 NO_STRATEGY // Make decision according to operands' sizes 30 }; 31 32 // Represents an entry in the manual mapped instructions set. 33 struct ManualMapEntry { 34 const char *RegInstStr; 35 const char *MemInstStr; 36 UnfoldStrategy Strategy; 37 38 ManualMapEntry(const char *RegInstStr, const char *MemInstStr, 39 UnfoldStrategy Strategy = NO_STRATEGY) 40 : RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {} 41 }; 42 43 class IsMatch; 44 45 // List of instructions requiring explicitly aligned memory. 46 const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS", 47 "MOVNTPD", "MOVNTDQ", "MOVNTDQA"}; 48 49 // List of instructions NOT requiring explicit memory alignment. 50 const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD", 51 "PCMPESTRM", "PCMPESTRI", 52 "PCMPISTRM", "PCMPISTRI" }; 53 54 // For manually mapping instructions that do not match by their encoding. 55 const ManualMapEntry ManualMapSet[] = { 56 { "ADD16ri_DB", "ADD16mi", NO_UNFOLD }, 57 { "ADD16ri8_DB", "ADD16mi8", NO_UNFOLD }, 58 { "ADD16rr_DB", "ADD16mr", NO_UNFOLD }, 59 { "ADD32ri_DB", "ADD32mi", NO_UNFOLD }, 60 { "ADD32ri8_DB", "ADD32mi8", NO_UNFOLD }, 61 { "ADD32rr_DB", "ADD32mr", NO_UNFOLD }, 62 { "ADD64ri32_DB", "ADD64mi32", NO_UNFOLD }, 63 { "ADD64ri8_DB", "ADD64mi8", NO_UNFOLD }, 64 { "ADD64rr_DB", "ADD64mr", NO_UNFOLD }, 65 { "ADD8ri_DB", "ADD8mi", NO_UNFOLD }, 66 { "ADD8rr_DB", "ADD8mr", NO_UNFOLD }, 67 { "ADD16rr_DB", "ADD16rm", NO_UNFOLD }, 68 { "ADD32rr_DB", "ADD32rm", NO_UNFOLD }, 69 { "ADD64rr_DB", "ADD64rm", NO_UNFOLD }, 70 { "ADD8rr_DB", "ADD8rm", NO_UNFOLD }, 71 { "PUSH16r", "PUSH16rmm", UNFOLD }, 72 { "PUSH32r", "PUSH32rmm", UNFOLD }, 73 { "PUSH64r", "PUSH64rmm", UNFOLD }, 74 { "TAILJMPr", "TAILJMPm", UNFOLD }, 75 { "TAILJMPr64", "TAILJMPm64", UNFOLD }, 76 { "TAILJMPr64_REX", "TAILJMPm64_REX", UNFOLD }, 77 }; 78 79 80 static bool isExplicitAlign(const CodeGenInstruction *Inst) { 81 return any_of(ExplicitAlign, [Inst](const char *InstStr) { 82 return Inst->TheDef->getName().find(InstStr) != StringRef::npos; 83 }); 84 } 85 86 static bool isExplicitUnalign(const CodeGenInstruction *Inst) { 87 return any_of(ExplicitUnalign, [Inst](const char *InstStr) { 88 return Inst->TheDef->getName().find(InstStr) != StringRef::npos; 89 }); 90 } 91 92 class X86FoldTablesEmitter { 93 RecordKeeper &Records; 94 CodeGenTarget Target; 95 96 // Represents an entry in the folding table 97 class X86FoldTableEntry { 98 const CodeGenInstruction *RegInst; 99 const CodeGenInstruction *MemInst; 100 101 public: 102 bool CannotUnfold = false; 103 bool IsLoad = false; 104 bool IsStore = false; 105 bool IsAligned = false; 106 unsigned int Alignment = 0; 107 108 X86FoldTableEntry(const CodeGenInstruction *RegInst, 109 const CodeGenInstruction *MemInst) 110 : RegInst(RegInst), MemInst(MemInst) {} 111 112 void print(formatted_raw_ostream &OS) const { 113 OS.indent(2); 114 OS << "{ X86::" << RegInst->TheDef->getName() << ","; 115 OS.PadToColumn(40); 116 OS << "X86::" << MemInst->TheDef->getName() << ","; 117 OS.PadToColumn(75); 118 119 if (IsLoad) 120 OS << "TB_FOLDED_LOAD | "; 121 if (IsStore) 122 OS << "TB_FOLDED_STORE | "; 123 if (CannotUnfold) 124 OS << "TB_NO_REVERSE | "; 125 if (IsAligned) 126 OS << "TB_ALIGN_" << Alignment << " | "; 127 128 OS << "0 },\n"; 129 } 130 }; 131 132 typedef std::vector<X86FoldTableEntry> FoldTable; 133 // std::vector for each folding table. 134 // Table2Addr - Holds instructions which their memory form performs load+store 135 // Table#i - Holds instructions which the their memory form perform a load OR 136 // a store, and their #i'th operand is folded. 137 FoldTable Table2Addr; 138 FoldTable Table0; 139 FoldTable Table1; 140 FoldTable Table2; 141 FoldTable Table3; 142 FoldTable Table4; 143 144 public: 145 X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {} 146 147 // run - Generate the 6 X86 memory fold tables. 148 void run(formatted_raw_ostream &OS); 149 150 private: 151 // Decides to which table to add the entry with the given instructions. 152 // S sets the strategy of adding the TB_NO_REVERSE flag. 153 void updateTables(const CodeGenInstruction *RegInstr, 154 const CodeGenInstruction *MemInstr, 155 const UnfoldStrategy S = NO_STRATEGY); 156 157 // Generates X86FoldTableEntry with the given instructions and fill it with 158 // the appropriate flags - then adds it to Table. 159 void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr, 160 const CodeGenInstruction *MemInstr, 161 const UnfoldStrategy S, const unsigned int FoldedInd); 162 163 // Print the given table as a static const C++ array of type 164 // X86MemoryFoldTableEntry. 165 void printTable(const FoldTable &Table, StringRef TableName, 166 formatted_raw_ostream &OS) { 167 OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName 168 << "[] = {\n"; 169 170 for (const X86FoldTableEntry &E : Table) 171 E.print(OS); 172 173 OS << "};\n\n"; 174 } 175 }; 176 177 // Return true if one of the instruction's operands is a RST register class 178 static bool hasRSTRegClass(const CodeGenInstruction *Inst) { 179 return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { 180 return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi"; 181 }); 182 } 183 184 // Return true if one of the instruction's operands is a ptr_rc_tailcall 185 static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) { 186 return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { 187 return OpIn.Rec->getName() == "ptr_rc_tailcall"; 188 }); 189 } 190 191 // Calculates the integer value representing the BitsInit object 192 static inline uint64_t getValueFromBitsInit(const BitsInit *B) { 193 assert(B->getNumBits() <= sizeof(uint64_t) * 8 && "BitInits' too long!"); 194 195 uint64_t Value = 0; 196 for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) { 197 BitInit *Bit = cast<BitInit>(B->getBit(i)); 198 Value |= uint64_t(Bit->getValue()) << i; 199 } 200 return Value; 201 } 202 203 // Returns true if the two given BitsInits represent the same integer value 204 static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) { 205 if (B1->getNumBits() != B2->getNumBits()) 206 PrintFatalError("Comparing two BitsInits with different sizes!"); 207 208 for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) { 209 BitInit *Bit1 = cast<BitInit>(B1->getBit(i)); 210 BitInit *Bit2 = cast<BitInit>(B2->getBit(i)); 211 if (Bit1->getValue() != Bit2->getValue()) 212 return false; 213 } 214 return true; 215 } 216 217 // Return the size of the register operand 218 static inline unsigned int getRegOperandSize(const Record *RegRec) { 219 if (RegRec->isSubClassOf("RegisterOperand")) 220 RegRec = RegRec->getValueAsDef("RegClass"); 221 if (RegRec->isSubClassOf("RegisterClass")) 222 return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size"); 223 224 llvm_unreachable("Register operand's size not known!"); 225 } 226 227 // Return the size of the memory operand 228 static inline unsigned int 229 getMemOperandSize(const Record *MemRec, const bool IntrinsicSensitive = false) { 230 if (MemRec->isSubClassOf("Operand")) { 231 // Intrinsic memory instructions use ssmem/sdmem. 232 if (IntrinsicSensitive && 233 (MemRec->getName() == "sdmem" || MemRec->getName() == "ssmem")) 234 return 128; 235 236 StringRef Name = 237 MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name"); 238 if (Name == "Mem8") 239 return 8; 240 if (Name == "Mem16") 241 return 16; 242 if (Name == "Mem32") 243 return 32; 244 if (Name == "Mem64") 245 return 64; 246 if (Name == "Mem80") 247 return 80; 248 if (Name == "Mem128") 249 return 128; 250 if (Name == "Mem256") 251 return 256; 252 if (Name == "Mem512") 253 return 512; 254 } 255 256 llvm_unreachable("Memory operand's size not known!"); 257 } 258 259 // Return true if the instruction defined as a register flavor. 260 static inline bool hasRegisterFormat(const Record *Inst) { 261 const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits"); 262 uint64_t FormBitsNum = getValueFromBitsInit(FormBits); 263 264 // Values from X86Local namespace defined in X86RecognizableInstr.cpp 265 return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r; 266 } 267 268 // Return true if the instruction defined as a memory flavor. 269 static inline bool hasMemoryFormat(const Record *Inst) { 270 const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits"); 271 uint64_t FormBitsNum = getValueFromBitsInit(FormBits); 272 273 // Values from X86Local namespace defined in X86RecognizableInstr.cpp 274 return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m; 275 } 276 277 static inline bool isNOREXRegClass(const Record *Op) { 278 return Op->getName().find("_NOREX") != StringRef::npos; 279 } 280 281 static inline bool isRegisterOperand(const Record *Rec) { 282 return Rec->isSubClassOf("RegisterClass") || 283 Rec->isSubClassOf("RegisterOperand") || 284 Rec->isSubClassOf("PointerLikeRegClass"); 285 } 286 287 static inline bool isMemoryOperand(const Record *Rec) { 288 return Rec->isSubClassOf("Operand") && 289 Rec->getValueAsString("OperandType") == "OPERAND_MEMORY"; 290 } 291 292 static inline bool isImmediateOperand(const Record *Rec) { 293 return Rec->isSubClassOf("Operand") && 294 Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE"; 295 } 296 297 // Get the alternative instruction pointed by "FoldGenRegForm" field. 298 static inline const CodeGenInstruction * 299 getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records, 300 const CodeGenTarget &Target) { 301 302 StringRef AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm"); 303 Record *AltRegInstRec = Records.getDef(AltRegInstStr); 304 assert(AltRegInstRec && 305 "Alternative register form instruction def not found"); 306 CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec); 307 return &AltRegInst; 308 } 309 310 // Function object - Operator() returns true if the given VEX instruction 311 // matches the EVEX instruction of this object. 312 class IsMatch { 313 const CodeGenInstruction *MemInst; 314 315 public: 316 IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records) 317 : MemInst(Inst) {} 318 319 bool operator()(const CodeGenInstruction *RegInst) { 320 Record *MemRec = MemInst->TheDef; 321 Record *RegRec = RegInst->TheDef; 322 323 // Return false if one (at least) of the encoding fields of both 324 // instructions do not match. 325 if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") || 326 !equalBitsInits(RegRec->getValueAsBitsInit("Opcode"), 327 MemRec->getValueAsBitsInit("Opcode")) || 328 // VEX/EVEX fields 329 RegRec->getValueAsDef("OpPrefix") != 330 MemRec->getValueAsDef("OpPrefix") || 331 RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") || 332 RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") || 333 RegRec->getValueAsDef("AdSize") != MemRec->getValueAsDef("AdSize") || 334 RegRec->getValueAsBit("hasVEX_4V") != 335 MemRec->getValueAsBit("hasVEX_4V") || 336 RegRec->getValueAsBit("hasEVEX_K") != 337 MemRec->getValueAsBit("hasEVEX_K") || 338 RegRec->getValueAsBit("hasEVEX_Z") != 339 MemRec->getValueAsBit("hasEVEX_Z") || 340 // EVEX_B means different things for memory and register forms. 341 RegRec->getValueAsBit("hasEVEX_B") != 0 || 342 MemRec->getValueAsBit("hasEVEX_B") != 0 || 343 RegRec->getValueAsBit("hasEVEX_RC") != 344 MemRec->getValueAsBit("hasEVEX_RC") || 345 RegRec->getValueAsBit("hasREX_WPrefix") != 346 MemRec->getValueAsBit("hasREX_WPrefix") || 347 RegRec->getValueAsBit("hasLockPrefix") != 348 MemRec->getValueAsBit("hasLockPrefix") || 349 RegRec->getValueAsBit("hasNoTrackPrefix") != 350 MemRec->getValueAsBit("hasNoTrackPrefix") || 351 RegRec->getValueAsBit("hasVEX_L") != 352 MemRec->getValueAsBit("hasVEX_L") || 353 RegRec->getValueAsBit("hasEVEX_L2") != 354 MemRec->getValueAsBit("hasEVEX_L2") || 355 RegRec->getValueAsBit("ignoresVEX_L") != 356 MemRec->getValueAsBit("ignoresVEX_L") || 357 RegRec->getValueAsBit("HasVEX_W") != 358 MemRec->getValueAsBit("HasVEX_W") || 359 RegRec->getValueAsBit("IgnoresVEX_W") != 360 MemRec->getValueAsBit("IgnoresVEX_W") || 361 RegRec->getValueAsBit("EVEX_W1_VEX_W0") != 362 MemRec->getValueAsBit("EVEX_W1_VEX_W0") || 363 // Instruction's format - The register form's "Form" field should be 364 // the opposite of the memory form's "Form" field. 365 !areOppositeForms(RegRec->getValueAsBitsInit("FormBits"), 366 MemRec->getValueAsBitsInit("FormBits")) || 367 RegRec->getValueAsBit("isAsmParserOnly") != 368 MemRec->getValueAsBit("isAsmParserOnly")) 369 return false; 370 371 // Make sure the sizes of the operands of both instructions suit each other. 372 // This is needed for instructions with intrinsic version (_Int). 373 // Where the only difference is the size of the operands. 374 // For example: VUCOMISDZrm and Int_VUCOMISDrm 375 // Also for instructions that their EVEX version was upgraded to work with 376 // k-registers. For example VPCMPEQBrm (xmm output register) and 377 // VPCMPEQBZ128rm (k register output register). 378 bool ArgFolded = false; 379 unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); 380 unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); 381 unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); 382 unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); 383 384 // Instructions with one output in their memory form use the memory folded 385 // operand as source and destination (Read-Modify-Write). 386 unsigned RegStartIdx = 387 (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0; 388 389 for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) { 390 Record *MemOpRec = MemInst->Operands[i].Rec; 391 Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec; 392 393 if (MemOpRec == RegOpRec) 394 continue; 395 396 if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) { 397 if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) || 398 isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec)) 399 return false; 400 } else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) { 401 if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec)) 402 return false; 403 } else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) { 404 if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type")) 405 return false; 406 } else { 407 // Only one operand can be folded. 408 if (ArgFolded) 409 return false; 410 411 assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)); 412 ArgFolded = true; 413 } 414 } 415 416 return true; 417 } 418 419 private: 420 // Return true of the 2 given forms are the opposite of each other. 421 bool areOppositeForms(const BitsInit *RegFormBits, 422 const BitsInit *MemFormBits) { 423 uint64_t MemFormNum = getValueFromBitsInit(MemFormBits); 424 uint64_t RegFormNum = getValueFromBitsInit(RegFormBits); 425 426 if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) || 427 (MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) || 428 (MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) || 429 (MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) || 430 (MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) || 431 (MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) || 432 (MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) || 433 (MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) || 434 (MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) || 435 (MemFormNum == X86Local::MRMXmCC && RegFormNum == X86Local::MRMXrCC) || 436 (MemFormNum == X86Local::MRMDestMem && 437 RegFormNum == X86Local::MRMDestReg) || 438 (MemFormNum == X86Local::MRMSrcMem && 439 RegFormNum == X86Local::MRMSrcReg) || 440 (MemFormNum == X86Local::MRMSrcMem4VOp3 && 441 RegFormNum == X86Local::MRMSrcReg4VOp3) || 442 (MemFormNum == X86Local::MRMSrcMemOp4 && 443 RegFormNum == X86Local::MRMSrcRegOp4) || 444 (MemFormNum == X86Local::MRMSrcMemCC && 445 RegFormNum == X86Local::MRMSrcRegCC)) 446 return true; 447 448 return false; 449 } 450 }; 451 452 } // end anonymous namespace 453 454 void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table, 455 const CodeGenInstruction *RegInstr, 456 const CodeGenInstruction *MemInstr, 457 const UnfoldStrategy S, 458 const unsigned int FoldedInd) { 459 460 X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr); 461 Record *RegRec = RegInstr->TheDef; 462 Record *MemRec = MemInstr->TheDef; 463 464 // Only table0 entries should explicitly specify a load or store flag. 465 if (&Table == &Table0) { 466 unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs(); 467 unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs(); 468 // If the instruction writes to the folded operand, it will appear as an 469 // output in the register form instruction and as an input in the memory 470 // form instruction. 471 // If the instruction reads from the folded operand, it well appear as in 472 // input in both forms. 473 if (MemInOpsNum == RegInOpsNum) 474 Result.IsLoad = true; 475 else 476 Result.IsStore = true; 477 } 478 479 Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec; 480 Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec; 481 482 // Unfolding code generates a load/store instruction according to the size of 483 // the register in the register form instruction. 484 // If the register's size is greater than the memory's operand size, do not 485 // allow unfolding. 486 if (S == UNFOLD) 487 Result.CannotUnfold = false; 488 else if (S == NO_UNFOLD) 489 Result.CannotUnfold = true; 490 else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec)) 491 Result.CannotUnfold = true; // S == NO_STRATEGY 492 493 uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits")); 494 if (isExplicitAlign(RegInstr)) { 495 // The instruction require explicitly aligned memory. 496 BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize"); 497 uint64_t Value = getValueFromBitsInit(VectSize); 498 Result.IsAligned = true; 499 Result.Alignment = Value; 500 } else if (Enc != X86Local::XOP && Enc != X86Local::VEX && 501 Enc != X86Local::EVEX) { 502 // Instructions with VEX encoding do not require alignment. 503 if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) { 504 // SSE packed vector instructions require a 16 byte alignment. 505 Result.IsAligned = true; 506 Result.Alignment = 16; 507 } 508 } 509 510 Table.push_back(Result); 511 } 512 513 void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr, 514 const CodeGenInstruction *MemInstr, 515 const UnfoldStrategy S) { 516 517 Record *RegRec = RegInstr->TheDef; 518 Record *MemRec = MemInstr->TheDef; 519 unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); 520 unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); 521 unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); 522 unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); 523 524 // Instructions which Read-Modify-Write should be added to Table2Addr. 525 if (MemOutSize != RegOutSize && MemInSize == RegInSize) { 526 addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0); 527 return; 528 } 529 530 if (MemInSize == RegInSize && MemOutSize == RegOutSize) { 531 // Load-Folding cases. 532 // If the i'th register form operand is a register and the i'th memory form 533 // operand is a memory operand, add instructions to Table#i. 534 for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) { 535 Record *RegOpRec = RegInstr->Operands[i].Rec; 536 Record *MemOpRec = MemInstr->Operands[i].Rec; 537 if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) { 538 switch (i) { 539 case 0: 540 addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0); 541 return; 542 case 1: 543 addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1); 544 return; 545 case 2: 546 addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2); 547 return; 548 case 3: 549 addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3); 550 return; 551 case 4: 552 addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4); 553 return; 554 } 555 } 556 } 557 } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) { 558 // Store-Folding cases. 559 // If the memory form instruction performs a store, the *output* 560 // register of the register form instructions disappear and instead a 561 // memory *input* operand appears in the memory form instruction. 562 // For example: 563 // MOVAPSrr => (outs VR128:$dst), (ins VR128:$src) 564 // MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src) 565 Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec; 566 Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec; 567 if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) && 568 getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec)) 569 addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0); 570 } 571 572 return; 573 } 574 575 void X86FoldTablesEmitter::run(formatted_raw_ostream &OS) { 576 emitSourceFileHeader("X86 fold tables", OS); 577 578 // Holds all memory instructions 579 std::vector<const CodeGenInstruction *> MemInsts; 580 // Holds all register instructions - divided according to opcode. 581 std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts; 582 583 ArrayRef<const CodeGenInstruction *> NumberedInstructions = 584 Target.getInstructionsByEnumValue(); 585 586 for (const CodeGenInstruction *Inst : NumberedInstructions) { 587 if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst")) 588 continue; 589 590 const Record *Rec = Inst->TheDef; 591 592 // - Do not proceed if the instruction is marked as notMemoryFoldable. 593 // - Instructions including RST register class operands are not relevant 594 // for memory folding (for further details check the explanation in 595 // lib/Target/X86/X86InstrFPStack.td file). 596 // - Some instructions (listed in the manual map above) use the register 597 // class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure 598 // safe mapping of these instruction we manually map them and exclude 599 // them from the automation. 600 if (Rec->getValueAsBit("isMemoryFoldable") == false || 601 hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst)) 602 continue; 603 604 // Add all the memory form instructions to MemInsts, and all the register 605 // form instructions to RegInsts[Opc], where Opc in the opcode of each 606 // instructions. this helps reducing the runtime of the backend. 607 if (hasMemoryFormat(Rec)) 608 MemInsts.push_back(Inst); 609 else if (hasRegisterFormat(Rec)) { 610 uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode")); 611 RegInsts[Opc].push_back(Inst); 612 } 613 } 614 615 // For each memory form instruction, try to find its register form 616 // instruction. 617 for (const CodeGenInstruction *MemInst : MemInsts) { 618 uint8_t Opc = 619 getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode")); 620 621 if (RegInsts.count(Opc) == 0) 622 continue; 623 624 // Two forms (memory & register) of the same instruction must have the same 625 // opcode. try matching only with register form instructions with the same 626 // opcode. 627 std::vector<const CodeGenInstruction *> &OpcRegInsts = 628 RegInsts.find(Opc)->second; 629 630 auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records)); 631 if (Match != OpcRegInsts.end()) { 632 const CodeGenInstruction *RegInst = *Match; 633 // If the matched instruction has it's "FoldGenRegForm" set, map the 634 // memory form instruction to the register form instruction pointed by 635 // this field 636 if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) { 637 updateTables(RegInst, MemInst); 638 } else { 639 const CodeGenInstruction *AltRegInst = 640 getAltRegInst(RegInst, Records, Target); 641 updateTables(AltRegInst, MemInst); 642 } 643 OpcRegInsts.erase(Match); 644 } 645 } 646 647 // Add the manually mapped instructions listed above. 648 for (const ManualMapEntry &Entry : ManualMapSet) { 649 Record *RegInstIter = Records.getDef(Entry.RegInstStr); 650 Record *MemInstIter = Records.getDef(Entry.MemInstStr); 651 652 updateTables(&(Target.getInstruction(RegInstIter)), 653 &(Target.getInstruction(MemInstIter)), Entry.Strategy); 654 } 655 656 // Print all tables. 657 printTable(Table2Addr, "Table2Addr", OS); 658 printTable(Table0, "Table0", OS); 659 printTable(Table1, "Table1", OS); 660 printTable(Table2, "Table2", OS); 661 printTable(Table3, "Table3", OS); 662 printTable(Table4, "Table4", OS); 663 } 664 665 namespace llvm { 666 667 void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &o) { 668 formatted_raw_ostream OS(o); 669 X86FoldTablesEmitter(RK).run(OS); 670 } 671 } // namespace llvm 672