xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/X86FoldTablesEmitter.cpp (revision 297eecfb02bb25902531dbb5c3b9a88caf8adf29)
1 //===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting the memory fold tables of
10 // the X86 backend instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenInstruction.h"
15 #include "CodeGenTarget.h"
16 #include "X86RecognizableInstr.h"
17 #include "llvm/Support/FormattedStream.h"
18 #include "llvm/Support/X86FoldTablesUtils.h"
19 #include "llvm/TableGen/Record.h"
20 #include "llvm/TableGen/TableGenBackend.h"
21 #include <set>
22 
23 using namespace llvm;
24 using namespace X86Disassembler;
25 
26 namespace {
27 // Represents an entry in the manual mapped instructions set.
28 struct ManualMapEntry {
29   const char *RegInstStr;
30   const char *MemInstStr;
31   uint16_t Strategy;
32 };
33 
34 // List of instructions requiring explicitly aligned memory.
35 const char *ExplicitAlign[] = {
36     "MOVDQA",    "MOVAPS",     "MOVAPD",     "MOVNTPS",    "MOVNTPD",
37     "MOVNTDQ",   "MOVNTDQA",   "SHA1MSG1",   "SHA1MSG2",   "SHA1NEXTE",
38     "SHA1RNDS4", "SHA256MSG1", "SHA256MSG2", "SHA256RNDS2"};
39 
40 // List of instructions NOT requiring explicit memory alignment.
41 const char *ExplicitUnalign[] = {"MOVDQU",    "MOVUPS",    "MOVUPD",
42                                  "PCMPESTRM", "PCMPESTRI", "PCMPISTRM",
43                                  "PCMPISTRI"};
44 
45 const ManualMapEntry ManualMapSet[] = {
46 #define ENTRY(REG, MEM, FLAGS) {#REG, #MEM, FLAGS},
47 #include "X86ManualFoldTables.def"
48 };
49 
50 const std::set<StringRef> NoFoldSet = {
51 #define NOFOLD(INSN) #INSN,
52 #include "X86ManualFoldTables.def"
53 };
54 
55 static bool isExplicitAlign(const CodeGenInstruction *Inst) {
56   return any_of(ExplicitAlign, [Inst](const char *InstStr) {
57     return Inst->TheDef->getName().contains(InstStr);
58   });
59 }
60 
61 static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
62   return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
63     return Inst->TheDef->getName().contains(InstStr);
64   });
65 }
66 
67 class X86FoldTablesEmitter {
68   RecordKeeper &Records;
69   CodeGenTarget Target;
70 
71   // Represents an entry in the folding table
72   class X86FoldTableEntry {
73     const CodeGenInstruction *RegInst;
74     const CodeGenInstruction *MemInst;
75 
76   public:
77     bool NoReverse = false;
78     bool NoForward = false;
79     bool FoldLoad = false;
80     bool FoldStore = false;
81     enum BcastType {
82       BCAST_NONE,
83       BCAST_D,
84       BCAST_Q,
85       BCAST_SS,
86       BCAST_SD,
87       BCAST_SH,
88     };
89     BcastType BroadcastKind = BCAST_NONE;
90 
91     Align Alignment;
92 
93     X86FoldTableEntry() = default;
94     X86FoldTableEntry(const CodeGenInstruction *RegInst,
95                       const CodeGenInstruction *MemInst)
96         : RegInst(RegInst), MemInst(MemInst) {}
97 
98     void print(formatted_raw_ostream &OS) const {
99       OS.indent(2);
100       OS << "{X86::" << RegInst->TheDef->getName() << ", ";
101       OS << "X86::" << MemInst->TheDef->getName() << ", ";
102 
103       std::string Attrs;
104       if (FoldLoad)
105         Attrs += "TB_FOLDED_LOAD|";
106       if (FoldStore)
107         Attrs += "TB_FOLDED_STORE|";
108       if (NoReverse)
109         Attrs += "TB_NO_REVERSE|";
110       if (NoForward)
111         Attrs += "TB_NO_FORWARD|";
112       if (Alignment != Align(1))
113         Attrs += "TB_ALIGN_" + std::to_string(Alignment.value()) + "|";
114       switch (BroadcastKind) {
115       case BCAST_NONE:
116         break;
117       case BCAST_D:
118         Attrs += "TB_BCAST_D|";
119         break;
120       case BCAST_Q:
121         Attrs += "TB_BCAST_Q|";
122         break;
123       case BCAST_SS:
124         Attrs += "TB_BCAST_SS|";
125         break;
126       case BCAST_SD:
127         Attrs += "TB_BCAST_SD|";
128         break;
129       case BCAST_SH:
130         Attrs += "TB_BCAST_SH|";
131         break;
132       }
133 
134       StringRef SimplifiedAttrs = StringRef(Attrs).rtrim("|");
135       if (SimplifiedAttrs.empty())
136         SimplifiedAttrs = "0";
137 
138       OS << SimplifiedAttrs << "},\n";
139     }
140 
141 #ifndef NDEBUG
142     // Check that Uses and Defs are same after memory fold.
143     void checkCorrectness() const {
144       auto &RegInstRec = *RegInst->TheDef;
145       auto &MemInstRec = *MemInst->TheDef;
146       auto ListOfUsesReg = RegInstRec.getValueAsListOfDefs("Uses");
147       auto ListOfUsesMem = MemInstRec.getValueAsListOfDefs("Uses");
148       auto ListOfDefsReg = RegInstRec.getValueAsListOfDefs("Defs");
149       auto ListOfDefsMem = MemInstRec.getValueAsListOfDefs("Defs");
150       if (ListOfUsesReg != ListOfUsesMem || ListOfDefsReg != ListOfDefsMem)
151         report_fatal_error("Uses/Defs couldn't be changed after folding " +
152                            RegInstRec.getName() + " to " +
153                            MemInstRec.getName());
154     }
155 #endif
156   };
157 
158   // NOTE: We check the fold tables are sorted in X86InstrFoldTables.cpp by the
159   // enum of the instruction, which is computed in
160   // CodeGenTarget::ComputeInstrsByEnum. So we should use the same comparator
161   // here.
162   // FIXME: Could we share the code with CodeGenTarget::ComputeInstrsByEnum?
163   struct CompareInstrsByEnum {
164     bool operator()(const CodeGenInstruction *LHS,
165                     const CodeGenInstruction *RHS) const {
166       assert(LHS && RHS && "LHS and RHS shouldn't be nullptr");
167       const auto &D1 = *LHS->TheDef;
168       const auto &D2 = *RHS->TheDef;
169       return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
170              std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
171     }
172   };
173 
174   typedef std::map<const CodeGenInstruction *, X86FoldTableEntry,
175                    CompareInstrsByEnum>
176       FoldTable;
177   // Table2Addr - Holds instructions which their memory form performs
178   //              load+store.
179   //
180   // Table#i - Holds instructions which the their memory form
181   //           performs a load OR a store, and their #i'th operand is folded.
182   //
183   // BroadcastTable#i - Holds instructions which the their memory form performs
184   //                    a broadcast load and their #i'th operand is folded.
185   FoldTable Table2Addr;
186   FoldTable Table0;
187   FoldTable Table1;
188   FoldTable Table2;
189   FoldTable Table3;
190   FoldTable Table4;
191   FoldTable BroadcastTable1;
192   FoldTable BroadcastTable2;
193   FoldTable BroadcastTable3;
194   FoldTable BroadcastTable4;
195 
196 public:
197   X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}
198 
199   // run - Generate the 6 X86 memory fold tables.
200   void run(raw_ostream &OS);
201 
202 private:
203   // Decides to which table to add the entry with the given instructions.
204   // S sets the strategy of adding the TB_NO_REVERSE flag.
205   void updateTables(const CodeGenInstruction *RegInst,
206                     const CodeGenInstruction *MemInst, uint16_t S = 0,
207                     bool IsManual = false, bool IsBroadcast = false);
208 
209   // Generates X86FoldTableEntry with the given instructions and fill it with
210   // the appropriate flags, then adds it to a memory fold table.
211   void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInst,
212                          const CodeGenInstruction *MemInst, uint16_t S,
213                          unsigned FoldedIdx, bool IsManual);
214   // Generates X86FoldTableEntry with the given instructions and adds it to a
215   // broadcast table.
216   void addBroadcastEntry(FoldTable &Table, const CodeGenInstruction *RegInst,
217                          const CodeGenInstruction *MemInst);
218 
219   // Print the given table as a static const C++ array of type
220   // X86FoldTableEntry.
221   void printTable(const FoldTable &Table, StringRef TableName,
222                   formatted_raw_ostream &OS) {
223     OS << "static const X86FoldTableEntry " << TableName << "[] = {\n";
224 
225     for (auto &E : Table)
226       E.second.print(OS);
227 
228     OS << "};\n\n";
229   }
230 };
231 
232 // Return true if one of the instruction's operands is a RST register class
233 static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
234   return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
235     return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi";
236   });
237 }
238 
239 // Return true if one of the instruction's operands is a ptr_rc_tailcall
240 static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
241   return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
242     return OpIn.Rec->getName() == "ptr_rc_tailcall";
243   });
244 }
245 
246 static uint8_t byteFromBitsInit(const BitsInit *B) {
247   unsigned N = B->getNumBits();
248   assert(N <= 8 && "Field is too large for uint8_t!");
249 
250   uint8_t Value = 0;
251   for (unsigned I = 0; I != N; ++I) {
252     BitInit *Bit = cast<BitInit>(B->getBit(I));
253     Value |= Bit->getValue() << I;
254   }
255   return Value;
256 }
257 
258 static bool mayFoldFromForm(uint8_t Form) {
259   switch (Form) {
260   default:
261     return Form >= X86Local::MRM0r && Form <= X86Local::MRM7r;
262   case X86Local::MRMXr:
263   case X86Local::MRMXrCC:
264   case X86Local::MRMDestReg:
265   case X86Local::MRMSrcReg:
266   case X86Local::MRMSrcReg4VOp3:
267   case X86Local::MRMSrcRegOp4:
268   case X86Local::MRMSrcRegCC:
269     return true;
270   }
271 }
272 
273 static bool mayFoldToForm(uint8_t Form) {
274   switch (Form) {
275   default:
276     return Form >= X86Local::MRM0m && Form <= X86Local::MRM7m;
277   case X86Local::MRMXm:
278   case X86Local::MRMXmCC:
279   case X86Local::MRMDestMem:
280   case X86Local::MRMSrcMem:
281   case X86Local::MRMSrcMem4VOp3:
282   case X86Local::MRMSrcMemOp4:
283   case X86Local::MRMSrcMemCC:
284     return true;
285   }
286 }
287 
288 static bool mayFoldFromLeftToRight(uint8_t LHS, uint8_t RHS) {
289   switch (LHS) {
290   default:
291     llvm_unreachable("Unexpected Form!");
292   case X86Local::MRM0r:
293     return RHS == X86Local::MRM0m;
294   case X86Local::MRM1r:
295     return RHS == X86Local::MRM1m;
296   case X86Local::MRM2r:
297     return RHS == X86Local::MRM2m;
298   case X86Local::MRM3r:
299     return RHS == X86Local::MRM3m;
300   case X86Local::MRM4r:
301     return RHS == X86Local::MRM4m;
302   case X86Local::MRM5r:
303     return RHS == X86Local::MRM5m;
304   case X86Local::MRM6r:
305     return RHS == X86Local::MRM6m;
306   case X86Local::MRM7r:
307     return RHS == X86Local::MRM7m;
308   case X86Local::MRMXr:
309     return RHS == X86Local::MRMXm;
310   case X86Local::MRMXrCC:
311     return RHS == X86Local::MRMXmCC;
312   case X86Local::MRMDestReg:
313     return RHS == X86Local::MRMDestMem;
314   case X86Local::MRMSrcReg:
315     return RHS == X86Local::MRMSrcMem;
316   case X86Local::MRMSrcReg4VOp3:
317     return RHS == X86Local::MRMSrcMem4VOp3;
318   case X86Local::MRMSrcRegOp4:
319     return RHS == X86Local::MRMSrcMemOp4;
320   case X86Local::MRMSrcRegCC:
321     return RHS == X86Local::MRMSrcMemCC;
322   }
323 }
324 
325 static bool isNOREXRegClass(const Record *Op) {
326   return Op->getName().contains("_NOREX");
327 }
328 
329 // Function object - Operator() returns true if the given Reg instruction
330 // matches the Mem instruction of this object.
331 class IsMatch {
332   const CodeGenInstruction *MemInst;
333   const X86Disassembler::RecognizableInstrBase MemRI;
334   bool IsBroadcast;
335   const unsigned Variant;
336 
337 public:
338   IsMatch(const CodeGenInstruction *Inst, bool IsBroadcast, unsigned V)
339       : MemInst(Inst), MemRI(*MemInst), IsBroadcast(IsBroadcast), Variant(V) {}
340 
341   bool operator()(const CodeGenInstruction *RegInst) {
342     X86Disassembler::RecognizableInstrBase RegRI(*RegInst);
343     const Record *RegRec = RegInst->TheDef;
344     const Record *MemRec = MemInst->TheDef;
345 
346     // EVEX_B means different things for memory and register forms.
347     // register form: rounding control or SAE
348     // memory form: broadcast
349     if (IsBroadcast && (RegRI.HasEVEX_B || !MemRI.HasEVEX_B))
350       return false;
351     // EVEX_B indicates NDD for MAP4 instructions
352     if (!IsBroadcast && (RegRI.HasEVEX_B || MemRI.HasEVEX_B) &&
353         RegRI.OpMap != X86Local::T_MAP4)
354       return false;
355 
356     if (!mayFoldFromLeftToRight(RegRI.Form, MemRI.Form))
357       return false;
358 
359     // X86 encoding is crazy, e.g
360     //
361     // f3 0f c7 30       vmxon   (%rax)
362     // f3 0f c7 f0       senduipi        %rax
363     //
364     // This two instruction have similiar encoding fields but are unrelated
365     if (X86Disassembler::getMnemonic(MemInst, Variant) !=
366         X86Disassembler::getMnemonic(RegInst, Variant))
367       return false;
368 
369     // Return false if any of the following fields of does not match.
370     if (std::make_tuple(RegRI.Encoding, RegRI.Opcode, RegRI.OpPrefix,
371                         RegRI.OpMap, RegRI.OpSize, RegRI.AdSize, RegRI.HasREX_W,
372                         RegRI.HasVEX_4V, RegRI.HasVEX_L, RegRI.IgnoresVEX_L,
373                         RegRI.IgnoresW, RegRI.HasEVEX_K, RegRI.HasEVEX_KZ,
374                         RegRI.HasEVEX_L2, RegRI.HasEVEX_NF,
375                         RegRec->getValueAsBit("hasEVEX_RC"),
376                         RegRec->getValueAsBit("hasLockPrefix"),
377                         RegRec->getValueAsBit("hasNoTrackPrefix")) !=
378         std::make_tuple(MemRI.Encoding, MemRI.Opcode, MemRI.OpPrefix,
379                         MemRI.OpMap, MemRI.OpSize, MemRI.AdSize, MemRI.HasREX_W,
380                         MemRI.HasVEX_4V, MemRI.HasVEX_L, MemRI.IgnoresVEX_L,
381                         MemRI.IgnoresW, MemRI.HasEVEX_K, MemRI.HasEVEX_KZ,
382                         MemRI.HasEVEX_L2, MemRI.HasEVEX_NF,
383                         MemRec->getValueAsBit("hasEVEX_RC"),
384                         MemRec->getValueAsBit("hasLockPrefix"),
385                         MemRec->getValueAsBit("hasNoTrackPrefix")))
386       return false;
387 
388     // Make sure the sizes of the operands of both instructions suit each other.
389     // This is needed for instructions with intrinsic version (_Int).
390     // Where the only difference is the size of the operands.
391     // For example: VUCOMISDZrm and VUCOMISDrm_Int
392     // Also for instructions that their EVEX version was upgraded to work with
393     // k-registers. For example VPCMPEQBrm (xmm output register) and
394     // VPCMPEQBZ128rm (k register output register).
395     unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
396     unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
397     unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
398     unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
399 
400     // Instructions with one output in their memory form use the memory folded
401     // operand as source and destination (Read-Modify-Write).
402     unsigned RegStartIdx =
403         (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
404 
405     bool FoundFoldedOp = false;
406     for (unsigned I = 0, E = MemInst->Operands.size(); I != E; I++) {
407       Record *MemOpRec = MemInst->Operands[I].Rec;
408       Record *RegOpRec = RegInst->Operands[I + RegStartIdx].Rec;
409 
410       if (MemOpRec == RegOpRec)
411         continue;
412 
413       if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec) &&
414           ((getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec)) ||
415            (isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))))
416         return false;
417 
418       if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec) &&
419           (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec)))
420         return false;
421 
422       if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec) &&
423           (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type")))
424         return false;
425 
426       // Only one operand can be folded.
427       if (FoundFoldedOp)
428         return false;
429 
430       assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
431       FoundFoldedOp = true;
432     }
433 
434     return FoundFoldedOp;
435   }
436 };
437 
438 } // end anonymous namespace
439 
440 void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
441                                              const CodeGenInstruction *RegInst,
442                                              const CodeGenInstruction *MemInst,
443                                              uint16_t S, unsigned FoldedIdx,
444                                              bool IsManual) {
445 
446   assert((IsManual || Table.find(RegInst) == Table.end()) &&
447          "Override entry unexpectedly");
448   X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst);
449   Record *RegRec = RegInst->TheDef;
450   Record *MemRec = MemInst->TheDef;
451 
452   Result.NoReverse = S & TB_NO_REVERSE;
453   Result.NoForward = S & TB_NO_FORWARD;
454   Result.FoldLoad = S & TB_FOLDED_LOAD;
455   Result.FoldStore = S & TB_FOLDED_STORE;
456   Result.Alignment = Align(1ULL << ((S & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT));
457   if (IsManual) {
458     Table[RegInst] = Result;
459     return;
460   }
461 
462   // Only table0 entries should explicitly specify a load or store flag.
463   if (&Table == &Table0) {
464     unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs();
465     unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs();
466     // If the instruction writes to the folded operand, it will appear as an
467     // output in the register form instruction and as an input in the memory
468     // form instruction.
469     // If the instruction reads from the folded operand, it well appear as in
470     // input in both forms.
471     if (MemInOpsNum == RegInOpsNum)
472       Result.FoldLoad = true;
473     else
474       Result.FoldStore = true;
475   }
476 
477   Record *RegOpRec = RegInst->Operands[FoldedIdx].Rec;
478   Record *MemOpRec = MemInst->Operands[FoldedIdx].Rec;
479 
480   // Unfolding code generates a load/store instruction according to the size of
481   // the register in the register form instruction.
482   // If the register's size is greater than the memory's operand size, do not
483   // allow unfolding.
484 
485   // the unfolded load size will be based on the register size. If that’s bigger
486   // than the memory operand size, the unfolded load will load more memory and
487   // potentially cause a memory fault.
488   if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
489     Result.NoReverse = true;
490 
491   // Check no-kz version's isMoveReg
492   StringRef RegInstName = RegRec->getName();
493   unsigned DropLen =
494       RegInstName.ends_with("rkz") ? 2 : (RegInstName.ends_with("rk") ? 1 : 0);
495   Record *BaseDef =
496       DropLen ? Records.getDef(RegInstName.drop_back(DropLen)) : nullptr;
497   bool IsMoveReg =
498       BaseDef ? Target.getInstruction(BaseDef).isMoveReg : RegInst->isMoveReg;
499   // A masked load can not be unfolded to a full load, otherwise it would access
500   // unexpected memory. A simple store can not be unfolded.
501   if (IsMoveReg && (BaseDef || Result.FoldStore))
502     Result.NoReverse = true;
503 
504   uint8_t Enc = byteFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
505   if (isExplicitAlign(RegInst)) {
506     // The instruction require explicitly aligned memory.
507     BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
508     Result.Alignment = Align(byteFromBitsInit(VectSize));
509   } else if (!Enc && !isExplicitUnalign(RegInst) &&
510              getMemOperandSize(MemOpRec) > 64) {
511     // Instructions with XOP/VEX/EVEX encoding do not require alignment while
512     // SSE packed vector instructions require a 16 byte alignment.
513     Result.Alignment = Align(16);
514   }
515   // Expand is only ever created as a masked instruction. It is not safe to
516   // unfold a masked expand because we don't know if it came from an expand load
517   // intrinsic or folding a plain load. If it is from a expand load intrinsic,
518   // Unfolding to plain load would read more elements and could trigger a fault.
519   if (RegRec->getName().contains("EXPAND"))
520     Result.NoReverse = true;
521 
522   Table[RegInst] = Result;
523 }
524 
525 void X86FoldTablesEmitter::addBroadcastEntry(
526     FoldTable &Table, const CodeGenInstruction *RegInst,
527     const CodeGenInstruction *MemInst) {
528 
529   assert(Table.find(RegInst) == Table.end() && "Override entry unexpectedly");
530   X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst);
531 
532   Record *RegRec = RegInst->TheDef;
533   StringRef RegInstName = RegRec->getName();
534   StringRef MemInstName = MemInst->TheDef->getName();
535   Record *Domain = RegRec->getValueAsDef("ExeDomain");
536   bool IsSSEPackedInt = Domain->getName() == "SSEPackedInt";
537   if ((RegInstName.contains("DZ") || RegInstName.contains("DWZ") ||
538        RegInstName.contains("Dr") || RegInstName.contains("I32")) &&
539       IsSSEPackedInt) {
540     assert((MemInstName.contains("DZ") || RegInstName.contains("DWZ") ||
541             MemInstName.contains("Dr") || MemInstName.contains("I32")) &&
542            "Unmatched names for broadcast");
543     Result.BroadcastKind = X86FoldTableEntry::BCAST_D;
544   } else if ((RegInstName.contains("QZ") || RegInstName.contains("QBZ") ||
545               RegInstName.contains("Qr") || RegInstName.contains("I64")) &&
546              IsSSEPackedInt) {
547     assert((MemInstName.contains("QZ") || MemInstName.contains("QBZ") ||
548             MemInstName.contains("Qr") || MemInstName.contains("I64")) &&
549            "Unmatched names for broadcast");
550     Result.BroadcastKind = X86FoldTableEntry::BCAST_Q;
551   } else if ((RegInstName.contains("PS") || RegInstName.contains("F32") ||
552               RegInstName.contains("CPH")) &&
553              !RegInstName.contains("PH2PS")) {
554     assert((MemInstName.contains("PS") || MemInstName.contains("F32") ||
555             MemInstName.contains("CPH")) &&
556            "Unmatched names for broadcast");
557     Result.BroadcastKind = X86FoldTableEntry::BCAST_SS;
558   } else if ((RegInstName.contains("PD") || RegInstName.contains("F64")) &&
559              !RegInstName.contains("PH2PD")) {
560     assert((MemInstName.contains("PD") || MemInstName.contains("F64")) &&
561            "Unmatched names for broadcast");
562     Result.BroadcastKind = X86FoldTableEntry::BCAST_SD;
563   } else if (RegInstName.contains("PH")) {
564     assert(MemInstName.contains("PH") && "Unmatched names for broadcast");
565     Result.BroadcastKind = X86FoldTableEntry::BCAST_SH;
566   } else {
567     errs() << RegInstName << ", " << MemInstName << "\n";
568     llvm_unreachable("Name is not canoicalized for broadcast or "
569                      "ExeDomain is incorrect");
570   }
571 
572   Table[RegInst] = Result;
573 }
574 
575 void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInst,
576                                         const CodeGenInstruction *MemInst,
577                                         uint16_t S, bool IsManual,
578                                         bool IsBroadcast) {
579 
580   Record *RegRec = RegInst->TheDef;
581   Record *MemRec = MemInst->TheDef;
582   unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
583   unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
584   unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
585   unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
586 
587   // Instructions which Read-Modify-Write should be added to Table2Addr.
588   if (!MemOutSize && RegOutSize == 1 && MemInSize == RegInSize) {
589     assert(!IsBroadcast && "Read-Modify-Write can not be broadcast");
590     // X86 would not unfold Read-Modify-Write instructions so add TB_NO_REVERSE.
591     addEntryWithFlags(Table2Addr, RegInst, MemInst, S | TB_NO_REVERSE, 0,
592                       IsManual);
593     return;
594   }
595 
596   if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
597     // Load-Folding cases.
598     // If the i'th register form operand is a register and the i'th memory form
599     // operand is a memory operand, add instructions to Table#i.
600     for (unsigned I = RegOutSize, E = RegInst->Operands.size(); I < E; I++) {
601       Record *RegOpRec = RegInst->Operands[I].Rec;
602       Record *MemOpRec = MemInst->Operands[I].Rec;
603       // PointerLikeRegClass: For instructions like TAILJMPr, TAILJMPr64,
604       // TAILJMPr64_REX
605       if ((isRegisterOperand(RegOpRec) ||
606            RegOpRec->isSubClassOf("PointerLikeRegClass")) &&
607           isMemoryOperand(MemOpRec)) {
608         switch (I) {
609         case 0:
610           assert(!IsBroadcast && "BroadcastTable0 needs to be added");
611           addEntryWithFlags(Table0, RegInst, MemInst, S, 0, IsManual);
612           return;
613         case 1:
614           IsBroadcast
615               ? addBroadcastEntry(BroadcastTable1, RegInst, MemInst)
616               : addEntryWithFlags(Table1, RegInst, MemInst, S, 1, IsManual);
617           return;
618         case 2:
619           IsBroadcast
620               ? addBroadcastEntry(BroadcastTable2, RegInst, MemInst)
621               : addEntryWithFlags(Table2, RegInst, MemInst, S, 2, IsManual);
622           return;
623         case 3:
624           IsBroadcast
625               ? addBroadcastEntry(BroadcastTable3, RegInst, MemInst)
626               : addEntryWithFlags(Table3, RegInst, MemInst, S, 3, IsManual);
627           return;
628         case 4:
629           IsBroadcast
630               ? addBroadcastEntry(BroadcastTable4, RegInst, MemInst)
631               : addEntryWithFlags(Table4, RegInst, MemInst, S, 4, IsManual);
632           return;
633         }
634       }
635     }
636   } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
637     // Store-Folding cases.
638     // If the memory form instruction performs a store, the *output*
639     // register of the register form instructions disappear and instead a
640     // memory *input* operand appears in the memory form instruction.
641     // For example:
642     //   MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
643     //   MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
644     Record *RegOpRec = RegInst->Operands[RegOutSize - 1].Rec;
645     Record *MemOpRec = MemInst->Operands[RegOutSize - 1].Rec;
646     if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) &&
647         getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec)) {
648       assert(!IsBroadcast && "Store can not be broadcast");
649       addEntryWithFlags(Table0, RegInst, MemInst, S, 0, IsManual);
650     }
651   }
652 }
653 
654 void X86FoldTablesEmitter::run(raw_ostream &O) {
655   formatted_raw_ostream OS(O);
656 
657   // Holds all memory instructions
658   std::vector<const CodeGenInstruction *> MemInsts;
659   // Holds all register instructions - divided according to opcode.
660   std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
661 
662   ArrayRef<const CodeGenInstruction *> NumberedInstructions =
663       Target.getInstructionsByEnumValue();
664 
665   for (const CodeGenInstruction *Inst : NumberedInstructions) {
666     const Record *Rec = Inst->TheDef;
667     if (!Rec->isSubClassOf("X86Inst") || Rec->getValueAsBit("isAsmParserOnly"))
668       continue;
669 
670     if (NoFoldSet.find(Rec->getName()) != NoFoldSet.end())
671       continue;
672 
673     // Promoted legacy instruction is in EVEX space, and has REX2-encoding
674     // alternative. It's added due to HW design and never emitted by compiler.
675     if (byteFromBitsInit(Rec->getValueAsBitsInit("OpMapBits")) ==
676             X86Local::T_MAP4 &&
677         byteFromBitsInit(Rec->getValueAsBitsInit("explicitOpPrefixBits")) ==
678             X86Local::ExplicitEVEX)
679       continue;
680 
681     // - Instructions including RST register class operands are not relevant
682     //   for memory folding (for further details check the explanation in
683     //   lib/Target/X86/X86InstrFPStack.td file).
684     // - Some instructions (listed in the manual map above) use the register
685     //   class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
686     //   safe mapping of these instruction we manually map them and exclude
687     //   them from the automation.
688     if (hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
689       continue;
690 
691     // Add all the memory form instructions to MemInsts, and all the register
692     // form instructions to RegInsts[Opc], where Opc is the opcode of each
693     // instructions. this helps reducing the runtime of the backend.
694     const BitsInit *FormBits = Rec->getValueAsBitsInit("FormBits");
695     uint8_t Form = byteFromBitsInit(FormBits);
696     if (mayFoldToForm(Form))
697       MemInsts.push_back(Inst);
698     else if (mayFoldFromForm(Form)) {
699       uint8_t Opc = byteFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
700       RegInsts[Opc].push_back(Inst);
701     }
702   }
703 
704   // Create a copy b/c the register instruction will removed when a new entry is
705   // added into memory fold tables.
706   auto RegInstsForBroadcast = RegInsts;
707 
708   Record *AsmWriter = Target.getAsmWriter();
709   unsigned Variant = AsmWriter->getValueAsInt("Variant");
710   auto FixUp = [&](const CodeGenInstruction *RegInst) {
711     StringRef RegInstName = RegInst->TheDef->getName();
712     if (RegInstName.ends_with("_REV") || RegInstName.ends_with("_alt"))
713       if (auto *RegAltRec = Records.getDef(RegInstName.drop_back(4)))
714         RegInst = &Target.getInstruction(RegAltRec);
715     return RegInst;
716   };
717   // For each memory form instruction, try to find its register form
718   // instruction.
719   for (const CodeGenInstruction *MemInst : MemInsts) {
720     uint8_t Opc =
721         byteFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
722 
723     auto RegInstsIt = RegInsts.find(Opc);
724     if (RegInstsIt == RegInsts.end())
725       continue;
726 
727     // Two forms (memory & register) of the same instruction must have the same
728     // opcode.
729     std::vector<const CodeGenInstruction *> &OpcRegInsts = RegInstsIt->second;
730 
731     // Memory fold tables
732     auto Match =
733         find_if(OpcRegInsts, IsMatch(MemInst, /*IsBroadcast=*/false, Variant));
734     if (Match != OpcRegInsts.end()) {
735       updateTables(FixUp(*Match), MemInst);
736       OpcRegInsts.erase(Match);
737     }
738 
739     // Broadcast tables
740     StringRef MemInstName = MemInst->TheDef->getName();
741     if (!MemInstName.contains("mb") && !MemInstName.contains("mib"))
742       continue;
743     RegInstsIt = RegInstsForBroadcast.find(Opc);
744     assert(RegInstsIt != RegInstsForBroadcast.end() &&
745            "Unexpected control flow");
746     std::vector<const CodeGenInstruction *> &OpcRegInstsForBroadcast =
747         RegInstsIt->second;
748     Match = find_if(OpcRegInstsForBroadcast,
749                     IsMatch(MemInst, /*IsBroadcast=*/true, Variant));
750     if (Match != OpcRegInstsForBroadcast.end()) {
751       updateTables(FixUp(*Match), MemInst, 0, /*IsManual=*/false,
752                    /*IsBroadcast=*/true);
753       OpcRegInstsForBroadcast.erase(Match);
754     }
755   }
756 
757   // Add the manually mapped instructions listed above.
758   for (const ManualMapEntry &Entry : ManualMapSet) {
759     Record *RegInstIter = Records.getDef(Entry.RegInstStr);
760     Record *MemInstIter = Records.getDef(Entry.MemInstStr);
761 
762     updateTables(&(Target.getInstruction(RegInstIter)),
763                  &(Target.getInstruction(MemInstIter)), Entry.Strategy, true);
764   }
765 
766 #ifndef NDEBUG
767   auto CheckMemFoldTable = [](const FoldTable &Table) -> void {
768     for (const auto &Record : Table) {
769       auto &FoldEntry = Record.second;
770       FoldEntry.checkCorrectness();
771     }
772   };
773   CheckMemFoldTable(Table2Addr);
774   CheckMemFoldTable(Table0);
775   CheckMemFoldTable(Table1);
776   CheckMemFoldTable(Table2);
777   CheckMemFoldTable(Table3);
778   CheckMemFoldTable(Table4);
779   CheckMemFoldTable(BroadcastTable1);
780   CheckMemFoldTable(BroadcastTable2);
781   CheckMemFoldTable(BroadcastTable3);
782   CheckMemFoldTable(BroadcastTable4);
783 #endif
784 #define PRINT_TABLE(TABLE) printTable(TABLE, #TABLE, OS);
785   // Print all tables.
786   PRINT_TABLE(Table2Addr)
787   PRINT_TABLE(Table0)
788   PRINT_TABLE(Table1)
789   PRINT_TABLE(Table2)
790   PRINT_TABLE(Table3)
791   PRINT_TABLE(Table4)
792   PRINT_TABLE(BroadcastTable1)
793   PRINT_TABLE(BroadcastTable2)
794   PRINT_TABLE(BroadcastTable3)
795   PRINT_TABLE(BroadcastTable4)
796 }
797 
798 static TableGen::Emitter::OptClass<X86FoldTablesEmitter>
799     X("gen-x86-fold-tables", "Generate X86 fold tables");
800