xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/SubtargetEmitter.cpp (revision d33f5a0afa54be7f18775f6506f015c7f79a6a5f)
1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits subtarget enumerations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenHwModes.h"
14 #include "CodeGenSchedule.h"
15 #include "CodeGenTarget.h"
16 #include "PredicateExpander.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/MC/MCInstrItineraries.h"
22 #include "llvm/MC/MCSchedule.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include "llvm/TableGen/TableGenBackend.h"
29 #include "llvm/TargetParser/SubtargetFeature.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <iterator>
34 #include <map>
35 #include <string>
36 #include <vector>
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "subtarget-emitter"
41 
42 namespace {
43 
44 /// Sorting predicate to sort record pointers by their
45 /// FieldName field.
46 struct LessRecordFieldFieldName {
47   bool operator()(const Record *Rec1, const Record *Rec2) const {
48     return Rec1->getValueAsString("FieldName") <
49            Rec2->getValueAsString("FieldName");
50   }
51 };
52 
53 class SubtargetEmitter {
54   // Each processor has a SchedClassDesc table with an entry for each SchedClass.
55   // The SchedClassDesc table indexes into a global write resource table, write
56   // latency table, and read advance table.
57   struct SchedClassTables {
58     std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses;
59     std::vector<MCWriteProcResEntry> WriteProcResources;
60     std::vector<MCWriteLatencyEntry> WriteLatencies;
61     std::vector<std::string> WriterNames;
62     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
63 
64     // Reserve an invalid entry at index 0
65     SchedClassTables() {
66       ProcSchedClasses.resize(1);
67       WriteProcResources.resize(1);
68       WriteLatencies.resize(1);
69       WriterNames.push_back("InvalidWrite");
70       ReadAdvanceEntries.resize(1);
71     }
72   };
73 
74   struct LessWriteProcResources {
75     bool operator()(const MCWriteProcResEntry &LHS,
76                     const MCWriteProcResEntry &RHS) {
77       return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
78     }
79   };
80 
81   CodeGenTarget TGT;
82   RecordKeeper &Records;
83   CodeGenSchedModels &SchedModels;
84   std::string Target;
85 
86   void Enumeration(raw_ostream &OS, DenseMap<Record *, unsigned> &FeatureMap);
87   void EmitSubtargetInfoMacroCalls(raw_ostream &OS);
88   unsigned FeatureKeyValues(raw_ostream &OS,
89                             const DenseMap<Record *, unsigned> &FeatureMap);
90   unsigned CPUKeyValues(raw_ostream &OS,
91                         const DenseMap<Record *, unsigned> &FeatureMap);
92   void FormItineraryStageString(const std::string &Names,
93                                 Record *ItinData, std::string &ItinString,
94                                 unsigned &NStages);
95   void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
96                                        unsigned &NOperandCycles);
97   void FormItineraryBypassString(const std::string &Names,
98                                  Record *ItinData,
99                                  std::string &ItinString, unsigned NOperandCycles);
100   void EmitStageAndOperandCycleData(raw_ostream &OS,
101                                     std::vector<std::vector<InstrItinerary>>
102                                       &ProcItinLists);
103   void EmitItineraries(raw_ostream &OS,
104                        std::vector<std::vector<InstrItinerary>>
105                          &ProcItinLists);
106   unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
107                                   raw_ostream &OS);
108   void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
109                               raw_ostream &OS);
110   void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
111                               raw_ostream &OS);
112   void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name,
113                          char Separator);
114   void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel,
115                                      raw_ostream &OS);
116   void EmitProcessorResources(const CodeGenProcModel &ProcModel,
117                               raw_ostream &OS);
118   Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
119                              const CodeGenProcModel &ProcModel);
120   Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
121                           const CodeGenProcModel &ProcModel);
122   void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &ReleaseAtCycles,
123                            std::vector<int64_t> &AcquireAtCycles,
124                            const CodeGenProcModel &ProcModel);
125   void GenSchedClassTables(const CodeGenProcModel &ProcModel,
126                            SchedClassTables &SchedTables);
127   void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
128   void EmitProcessorModels(raw_ostream &OS);
129   void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
130   void emitSchedModelHelpersImpl(raw_ostream &OS,
131                                  bool OnlyExpandMCInstPredicates = false);
132   void emitGenMCSubtargetInfo(raw_ostream &OS);
133   void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS);
134 
135   void EmitSchedModel(raw_ostream &OS);
136   void emitGetMacroFusions(const std::string &ClassName, raw_ostream &OS);
137   void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS);
138   void ParseFeaturesFunction(raw_ostream &OS);
139 
140 public:
141   SubtargetEmitter(RecordKeeper &R)
142       : TGT(R), Records(R), SchedModels(TGT.getSchedModels()),
143         Target(TGT.getName()) {}
144 
145   void run(raw_ostream &o);
146 };
147 
148 } // end anonymous namespace
149 
150 //
151 // Enumeration - Emit the specified class as an enumeration.
152 //
153 void SubtargetEmitter::Enumeration(raw_ostream &OS,
154                                    DenseMap<Record *, unsigned> &FeatureMap) {
155   // Get all records of class and sort
156   std::vector<Record*> DefList =
157     Records.getAllDerivedDefinitions("SubtargetFeature");
158   llvm::sort(DefList, LessRecord());
159 
160   unsigned N = DefList.size();
161   if (N == 0)
162     return;
163   if (N + 1 > MAX_SUBTARGET_FEATURES)
164     PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
165 
166   OS << "namespace " << Target << " {\n";
167 
168   // Open enumeration.
169   OS << "enum {\n";
170 
171   // For each record
172   for (unsigned i = 0; i < N; ++i) {
173     // Next record
174     Record *Def = DefList[i];
175 
176     // Get and emit name
177     OS << "  " << Def->getName() << " = " << i << ",\n";
178 
179     // Save the index for this feature.
180     FeatureMap[Def] = i;
181   }
182 
183   OS << "  "
184      << "NumSubtargetFeatures = " << N << "\n";
185 
186   // Close enumeration and namespace
187   OS << "};\n";
188   OS << "} // end namespace " << Target << "\n";
189 }
190 
191 static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList,
192                              const DenseMap<Record *, unsigned> &FeatureMap) {
193   std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {};
194   for (const Record *Feature : FeatureList) {
195     unsigned Bit = FeatureMap.lookup(Feature);
196     Mask[Bit / 64] |= 1ULL << (Bit % 64);
197   }
198 
199   OS << "{ { { ";
200   for (unsigned i = 0; i != Mask.size(); ++i) {
201     OS << "0x";
202     OS.write_hex(Mask[i]);
203     OS << "ULL, ";
204   }
205   OS << "} } }";
206 }
207 
208 /// Emit some information about the SubtargetFeature as calls to a macro so
209 /// that they can be used from C++.
210 void SubtargetEmitter::EmitSubtargetInfoMacroCalls(raw_ostream &OS) {
211   OS << "\n#ifdef GET_SUBTARGETINFO_MACRO\n";
212 
213   std::vector<Record *> FeatureList =
214       Records.getAllDerivedDefinitions("SubtargetFeature");
215   llvm::sort(FeatureList, LessRecordFieldFieldName());
216 
217   for (const Record *Feature : FeatureList) {
218     const StringRef FieldName = Feature->getValueAsString("FieldName");
219     const StringRef Value = Feature->getValueAsString("Value");
220 
221     // Only handle boolean features for now, excluding BitVectors and enums.
222     const bool IsBool = (Value == "false" || Value == "true") &&
223                         !StringRef(FieldName).contains('[');
224     if (!IsBool)
225       continue;
226 
227     // Some features default to true, with values set to false if enabled.
228     const char *Default = Value == "false" ? "true" : "false";
229 
230     // Define the getter with lowercased first char: xxxYyy() { return XxxYyy; }
231     const std::string Getter =
232         FieldName.substr(0, 1).lower() + FieldName.substr(1).str();
233 
234     OS << "GET_SUBTARGETINFO_MACRO(" << FieldName << ", " << Default << ", "
235        << Getter << ")\n";
236   }
237   OS << "#undef GET_SUBTARGETINFO_MACRO\n";
238   OS << "#endif // GET_SUBTARGETINFO_MACRO\n\n";
239 
240   OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
241   OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
242 }
243 
244 //
245 // FeatureKeyValues - Emit data of all the subtarget features.  Used by the
246 // command line.
247 //
248 unsigned SubtargetEmitter::FeatureKeyValues(
249     raw_ostream &OS, const DenseMap<Record *, unsigned> &FeatureMap) {
250   // Gather and sort all the features
251   std::vector<Record*> FeatureList =
252                            Records.getAllDerivedDefinitions("SubtargetFeature");
253 
254   if (FeatureList.empty())
255     return 0;
256 
257   llvm::sort(FeatureList, LessRecordFieldName());
258 
259   // Begin feature table
260   OS << "// Sorted (by key) array of values for CPU features.\n"
261      << "extern const llvm::SubtargetFeatureKV " << Target
262      << "FeatureKV[] = {\n";
263 
264   // For each feature
265   unsigned NumFeatures = 0;
266   for (const Record *Feature : FeatureList) {
267     // Next feature
268     StringRef Name = Feature->getName();
269     StringRef CommandLineName = Feature->getValueAsString("Name");
270     StringRef Desc = Feature->getValueAsString("Desc");
271 
272     if (CommandLineName.empty()) continue;
273 
274     // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
275     OS << "  { "
276        << "\"" << CommandLineName << "\", "
277        << "\"" << Desc << "\", "
278        << Target << "::" << Name << ", ";
279 
280     RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
281 
282     printFeatureMask(OS, ImpliesList, FeatureMap);
283 
284     OS << " },\n";
285     ++NumFeatures;
286   }
287 
288   // End feature table
289   OS << "};\n";
290 
291   return NumFeatures;
292 }
293 
294 //
295 // CPUKeyValues - Emit data of all the subtarget processors.  Used by command
296 // line.
297 //
298 unsigned
299 SubtargetEmitter::CPUKeyValues(raw_ostream &OS,
300                                const DenseMap<Record *, unsigned> &FeatureMap) {
301   // Gather and sort processor information
302   std::vector<Record*> ProcessorList =
303                           Records.getAllDerivedDefinitions("Processor");
304   llvm::sort(ProcessorList, LessRecordFieldName());
305 
306   // Begin processor table
307   OS << "// Sorted (by key) array of values for CPU subtype.\n"
308      << "extern const llvm::SubtargetSubTypeKV " << Target
309      << "SubTypeKV[] = {\n";
310 
311   // For each processor
312   for (Record *Processor : ProcessorList) {
313     StringRef Name = Processor->getValueAsString("Name");
314     RecVec FeatureList = Processor->getValueAsListOfDefs("Features");
315     RecVec TuneFeatureList = Processor->getValueAsListOfDefs("TuneFeatures");
316 
317     // Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } },
318     OS << " { "
319        << "\"" << Name << "\", ";
320 
321     printFeatureMask(OS, FeatureList, FeatureMap);
322     OS << ", ";
323     printFeatureMask(OS, TuneFeatureList, FeatureMap);
324 
325     // Emit the scheduler model pointer.
326     const std::string &ProcModelName =
327       SchedModels.getModelForProc(Processor).ModelName;
328     OS << ", &" << ProcModelName << " },\n";
329   }
330 
331   // End processor table
332   OS << "};\n";
333 
334   return ProcessorList.size();
335 }
336 
337 //
338 // FormItineraryStageString - Compose a string containing the stage
339 // data initialization for the specified itinerary.  N is the number
340 // of stages.
341 //
342 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
343                                                 Record *ItinData,
344                                                 std::string &ItinString,
345                                                 unsigned &NStages) {
346   // Get states list
347   RecVec StageList = ItinData->getValueAsListOfDefs("Stages");
348 
349   // For each stage
350   unsigned N = NStages = StageList.size();
351   for (unsigned i = 0; i < N;) {
352     // Next stage
353     const Record *Stage = StageList[i];
354 
355     // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
356     int Cycles = Stage->getValueAsInt("Cycles");
357     ItinString += "  { " + itostr(Cycles) + ", ";
358 
359     // Get unit list
360     RecVec UnitList = Stage->getValueAsListOfDefs("Units");
361 
362     // For each unit
363     for (unsigned j = 0, M = UnitList.size(); j < M;) {
364       // Add name and bitwise or
365       ItinString += Name + "FU::" + UnitList[j]->getName().str();
366       if (++j < M) ItinString += " | ";
367     }
368 
369     int TimeInc = Stage->getValueAsInt("TimeInc");
370     ItinString += ", " + itostr(TimeInc);
371 
372     int Kind = Stage->getValueAsInt("Kind");
373     ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
374 
375     // Close off stage
376     ItinString += " }";
377     if (++i < N) ItinString += ", ";
378   }
379 }
380 
381 //
382 // FormItineraryOperandCycleString - Compose a string containing the
383 // operand cycle initialization for the specified itinerary.  N is the
384 // number of operands that has cycles specified.
385 //
386 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
387                          std::string &ItinString, unsigned &NOperandCycles) {
388   // Get operand cycle list
389   std::vector<int64_t> OperandCycleList =
390     ItinData->getValueAsListOfInts("OperandCycles");
391 
392   // For each operand cycle
393   NOperandCycles = OperandCycleList.size();
394   ListSeparator LS;
395   for (int OCycle : OperandCycleList) {
396     // Next operand cycle
397     ItinString += LS;
398     ItinString += "  " + itostr(OCycle);
399   }
400 }
401 
402 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
403                                                  Record *ItinData,
404                                                  std::string &ItinString,
405                                                  unsigned NOperandCycles) {
406   RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses");
407   unsigned N = BypassList.size();
408   unsigned i = 0;
409   ListSeparator LS;
410   for (; i < N; ++i) {
411     ItinString += LS;
412     ItinString += Name + "Bypass::" + BypassList[i]->getName().str();
413   }
414   for (; i < NOperandCycles; ++i) {
415     ItinString += LS;
416     ItinString += " 0";
417   }
418 }
419 
420 //
421 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
422 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
423 // by CodeGenSchedClass::Index.
424 //
425 void SubtargetEmitter::
426 EmitStageAndOperandCycleData(raw_ostream &OS,
427                              std::vector<std::vector<InstrItinerary>>
428                                &ProcItinLists) {
429   // Multiple processor models may share an itinerary record. Emit it once.
430   SmallPtrSet<Record*, 8> ItinsDefSet;
431 
432   // Emit functional units for all the itineraries.
433   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
434 
435     if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
436       continue;
437 
438     RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
439     if (FUs.empty())
440       continue;
441 
442     StringRef Name = ProcModel.ItinsDef->getName();
443     OS << "\n// Functional units for \"" << Name << "\"\n"
444        << "namespace " << Name << "FU {\n";
445 
446     for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
447       OS << "  const InstrStage::FuncUnits " << FUs[j]->getName()
448          << " = 1ULL << " << j << ";\n";
449 
450     OS << "} // end namespace " << Name << "FU\n";
451 
452     RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
453     if (!BPs.empty()) {
454       OS << "\n// Pipeline forwarding paths for itineraries \"" << Name
455          << "\"\n" << "namespace " << Name << "Bypass {\n";
456 
457       OS << "  const unsigned NoBypass = 0;\n";
458       for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
459         OS << "  const unsigned " << BPs[j]->getName()
460            << " = 1 << " << j << ";\n";
461 
462       OS << "} // end namespace " << Name << "Bypass\n";
463     }
464   }
465 
466   // Begin stages table
467   std::string StageTable = "\nextern const llvm::InstrStage " + Target +
468                            "Stages[] = {\n";
469   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
470 
471   // Begin operand cycle table
472   std::string OperandCycleTable = "extern const unsigned " + Target +
473     "OperandCycles[] = {\n";
474   OperandCycleTable += "  0, // No itinerary\n";
475 
476   // Begin pipeline bypass table
477   std::string BypassTable = "extern const unsigned " + Target +
478     "ForwardingPaths[] = {\n";
479   BypassTable += " 0, // No itinerary\n";
480 
481   // For each Itinerary across all processors, add a unique entry to the stages,
482   // operand cycles, and pipeline bypass tables. Then add the new Itinerary
483   // object with computed offsets to the ProcItinLists result.
484   unsigned StageCount = 1, OperandCycleCount = 1;
485   std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
486   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
487     // Add process itinerary to the list.
488     ProcItinLists.resize(ProcItinLists.size()+1);
489 
490     // If this processor defines no itineraries, then leave the itinerary list
491     // empty.
492     std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
493     if (!ProcModel.hasItineraries())
494       continue;
495 
496     StringRef Name = ProcModel.ItinsDef->getName();
497 
498     ItinList.resize(SchedModels.numInstrSchedClasses());
499     assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
500 
501     for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
502          SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
503 
504       // Next itinerary data
505       Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
506 
507       // Get string and stage count
508       std::string ItinStageString;
509       unsigned NStages = 0;
510       if (ItinData)
511         FormItineraryStageString(std::string(Name), ItinData, ItinStageString,
512                                  NStages);
513 
514       // Get string and operand cycle count
515       std::string ItinOperandCycleString;
516       unsigned NOperandCycles = 0;
517       std::string ItinBypassString;
518       if (ItinData) {
519         FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
520                                         NOperandCycles);
521 
522         FormItineraryBypassString(std::string(Name), ItinData, ItinBypassString,
523                                   NOperandCycles);
524       }
525 
526       // Check to see if stage already exists and create if it doesn't
527       uint16_t FindStage = 0;
528       if (NStages > 0) {
529         FindStage = ItinStageMap[ItinStageString];
530         if (FindStage == 0) {
531           // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
532           StageTable += ItinStageString + ", // " + itostr(StageCount);
533           if (NStages > 1)
534             StageTable += "-" + itostr(StageCount + NStages - 1);
535           StageTable += "\n";
536           // Record Itin class number.
537           ItinStageMap[ItinStageString] = FindStage = StageCount;
538           StageCount += NStages;
539         }
540       }
541 
542       // Check to see if operand cycle already exists and create if it doesn't
543       uint16_t FindOperandCycle = 0;
544       if (NOperandCycles > 0) {
545         std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
546         FindOperandCycle = ItinOperandMap[ItinOperandString];
547         if (FindOperandCycle == 0) {
548           // Emit as  cycle, // index
549           OperandCycleTable += ItinOperandCycleString + ", // ";
550           std::string OperandIdxComment = itostr(OperandCycleCount);
551           if (NOperandCycles > 1)
552             OperandIdxComment += "-"
553               + itostr(OperandCycleCount + NOperandCycles - 1);
554           OperandCycleTable += OperandIdxComment + "\n";
555           // Record Itin class number.
556           ItinOperandMap[ItinOperandCycleString] =
557             FindOperandCycle = OperandCycleCount;
558           // Emit as bypass, // index
559           BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
560           OperandCycleCount += NOperandCycles;
561         }
562       }
563 
564       // Set up itinerary as location and location + stage count
565       int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
566       InstrItinerary Intinerary = {
567           NumUOps,
568           FindStage,
569           uint16_t(FindStage + NStages),
570           FindOperandCycle,
571           uint16_t(FindOperandCycle + NOperandCycles),
572       };
573 
574       // Inject - empty slots will be 0, 0
575       ItinList[SchedClassIdx] = Intinerary;
576     }
577   }
578 
579   // Closing stage
580   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
581   StageTable += "};\n";
582 
583   // Closing operand cycles
584   OperandCycleTable += "  0 // End operand cycles\n";
585   OperandCycleTable += "};\n";
586 
587   BypassTable += " 0 // End bypass tables\n";
588   BypassTable += "};\n";
589 
590   // Emit tables.
591   OS << StageTable;
592   OS << OperandCycleTable;
593   OS << BypassTable;
594 }
595 
596 //
597 // EmitProcessorData - Generate data for processor itineraries that were
598 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
599 // Itineraries for each processor. The Itinerary lists are indexed on
600 // CodeGenSchedClass::Index.
601 //
602 void SubtargetEmitter::
603 EmitItineraries(raw_ostream &OS,
604                 std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
605   // Multiple processor models may share an itinerary record. Emit it once.
606   SmallPtrSet<Record*, 8> ItinsDefSet;
607 
608   // For each processor's machine model
609   std::vector<std::vector<InstrItinerary>>::iterator
610       ProcItinListsIter = ProcItinLists.begin();
611   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
612          PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
613 
614     Record *ItinsDef = PI->ItinsDef;
615     if (!ItinsDefSet.insert(ItinsDef).second)
616       continue;
617 
618     // Get the itinerary list for the processor.
619     assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
620     std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
621 
622     // Empty itineraries aren't referenced anywhere in the tablegen output
623     // so don't emit them.
624     if (ItinList.empty())
625       continue;
626 
627     OS << "\n";
628     OS << "static const llvm::InstrItinerary ";
629 
630     // Begin processor itinerary table
631     OS << ItinsDef->getName() << "[] = {\n";
632 
633     // For each itinerary class in CodeGenSchedClass::Index order.
634     for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
635       InstrItinerary &Intinerary = ItinList[j];
636 
637       // Emit Itinerary in the form of
638       // { firstStage, lastStage, firstCycle, lastCycle } // index
639       OS << "  { " <<
640         Intinerary.NumMicroOps << ", " <<
641         Intinerary.FirstStage << ", " <<
642         Intinerary.LastStage << ", " <<
643         Intinerary.FirstOperandCycle << ", " <<
644         Intinerary.LastOperandCycle << " }" <<
645         ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
646     }
647     // End processor itinerary table
648     OS << "  { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
649           "// end marker\n";
650     OS << "};\n";
651   }
652 }
653 
654 // Emit either the value defined in the TableGen Record, or the default
655 // value defined in the C++ header. The Record is null if the processor does not
656 // define a model.
657 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
658                                          StringRef Name, char Separator) {
659   OS << "  ";
660   int V = R ? R->getValueAsInt(Name) : -1;
661   if (V >= 0)
662     OS << V << Separator << " // " << Name;
663   else
664     OS << "MCSchedModel::Default" << Name << Separator;
665   OS << '\n';
666 }
667 
668 void SubtargetEmitter::EmitProcessorResourceSubUnits(
669     const CodeGenProcModel &ProcModel, raw_ostream &OS) {
670   OS << "\nstatic const unsigned " << ProcModel.ModelName
671      << "ProcResourceSubUnits[] = {\n"
672      << "  0,  // Invalid\n";
673 
674   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
675     Record *PRDef = ProcModel.ProcResourceDefs[i];
676     if (!PRDef->isSubClassOf("ProcResGroup"))
677       continue;
678     RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
679     for (Record *RUDef : ResUnits) {
680       Record *const RU =
681           SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc());
682       for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) {
683         OS << "  " << ProcModel.getProcResourceIdx(RU) << ", ";
684       }
685     }
686     OS << "  // " << PRDef->getName() << "\n";
687   }
688   OS << "};\n";
689 }
690 
691 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
692                                       raw_ostream &OS) {
693   int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
694   if (Record *RCU = ProcModel.RetireControlUnit) {
695     ReorderBufferSize =
696         std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
697     MaxRetirePerCycle =
698         std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
699   }
700 
701   OS << ReorderBufferSize << ", // ReorderBufferSize\n  ";
702   OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n  ";
703 }
704 
705 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel,
706                                  unsigned NumRegisterFiles,
707                                  unsigned NumCostEntries, raw_ostream &OS) {
708   if (NumRegisterFiles)
709     OS << ProcModel.ModelName << "RegisterFiles,\n  " << (1 + NumRegisterFiles);
710   else
711     OS << "nullptr,\n  0";
712 
713   OS << ", // Number of register files.\n  ";
714   if (NumCostEntries)
715     OS << ProcModel.ModelName << "RegisterCosts,\n  ";
716   else
717     OS << "nullptr,\n  ";
718   OS << NumCostEntries << ", // Number of register cost entries.\n";
719 }
720 
721 unsigned
722 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
723                                          raw_ostream &OS) {
724   if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
725         return RF.hasDefaultCosts();
726       }))
727     return 0;
728 
729   // Print the RegisterCost table first.
730   OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n";
731   OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName
732      << "RegisterCosts"
733      << "[] = {\n";
734 
735   for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) {
736     // Skip register files with a default cost table.
737     if (RF.hasDefaultCosts())
738       continue;
739     // Add entries to the cost table.
740     for (const CodeGenRegisterCost &RC : RF.Costs) {
741       OS << "  { ";
742       Record *Rec = RC.RCDef;
743       if (Rec->getValue("Namespace"))
744         OS << Rec->getValueAsString("Namespace") << "::";
745       OS << Rec->getName() << "RegClassID, " << RC.Cost << ", "
746          << RC.AllowMoveElimination << "},\n";
747     }
748   }
749   OS << "};\n";
750 
751   // Now generate a table with register file info.
752   OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, "
753      << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n";
754   OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName
755      << "RegisterFiles"
756      << "[] = {\n"
757      << "  { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n";
758   unsigned CostTblIndex = 0;
759 
760   for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) {
761     OS << "  { ";
762     OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", ";
763     unsigned NumCostEntries = RD.Costs.size();
764     OS << NumCostEntries << ", " << CostTblIndex << ", "
765        << RD.MaxMovesEliminatedPerCycle << ", "
766        << RD.AllowZeroMoveEliminationOnly << "},\n";
767     CostTblIndex += NumCostEntries;
768   }
769   OS << "};\n";
770 
771   return CostTblIndex;
772 }
773 
774 void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
775                                               raw_ostream &OS) {
776   unsigned QueueID = 0;
777   if (ProcModel.LoadQueue) {
778     const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor");
779     QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
780                                 find(ProcModel.ProcResourceDefs, Queue));
781   }
782   OS << "  " << QueueID << ", // Resource Descriptor for the Load Queue\n";
783 
784   QueueID = 0;
785   if (ProcModel.StoreQueue) {
786     const Record *Queue =
787         ProcModel.StoreQueue->getValueAsDef("QueueDescriptor");
788     QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
789                                 find(ProcModel.ProcResourceDefs, Queue));
790   }
791   OS << "  " << QueueID << ", // Resource Descriptor for the Store Queue\n";
792 }
793 
794 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
795                                               raw_ostream &OS) {
796   // Generate a table of register file descriptors (one entry per each user
797   // defined register file), and a table of register costs.
798   unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS);
799 
800   // Now generate a table for the extra processor info.
801   OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName
802      << "ExtraInfo = {\n  ";
803 
804   // Add information related to the retire control unit.
805   EmitRetireControlUnitInfo(ProcModel, OS);
806 
807   // Add information related to the register files (i.e. where to find register
808   // file descriptors and register costs).
809   EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
810                        NumCostEntries, OS);
811 
812   // Add information about load/store queues.
813   EmitLoadStoreQueueInfo(ProcModel, OS);
814 
815   OS << "};\n";
816 }
817 
818 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
819                                               raw_ostream &OS) {
820   EmitProcessorResourceSubUnits(ProcModel, OS);
821 
822   OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n";
823   OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName
824      << "ProcResources"
825      << "[] = {\n"
826      << "  {\"InvalidUnit\", 0, 0, 0, 0},\n";
827 
828   unsigned SubUnitsOffset = 1;
829   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
830     Record *PRDef = ProcModel.ProcResourceDefs[i];
831 
832     Record *SuperDef = nullptr;
833     unsigned SuperIdx = 0;
834     unsigned NumUnits = 0;
835     const unsigned SubUnitsBeginOffset = SubUnitsOffset;
836     int BufferSize = PRDef->getValueAsInt("BufferSize");
837     if (PRDef->isSubClassOf("ProcResGroup")) {
838       RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
839       for (Record *RU : ResUnits) {
840         NumUnits += RU->getValueAsInt("NumUnits");
841         SubUnitsOffset += RU->getValueAsInt("NumUnits");
842       }
843     }
844     else {
845       // Find the SuperIdx
846       if (PRDef->getValueInit("Super")->isComplete()) {
847         SuperDef =
848             SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
849                                          ProcModel, PRDef->getLoc());
850         SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
851       }
852       NumUnits = PRDef->getValueAsInt("NumUnits");
853     }
854     // Emit the ProcResourceDesc
855     OS << "  {\"" << PRDef->getName() << "\", ";
856     if (PRDef->getName().size() < 15)
857       OS.indent(15 - PRDef->getName().size());
858     OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", ";
859     if (SubUnitsBeginOffset != SubUnitsOffset) {
860       OS << ProcModel.ModelName << "ProcResourceSubUnits + "
861          << SubUnitsBeginOffset;
862     } else {
863       OS << "nullptr";
864     }
865     OS << "}, // #" << i+1;
866     if (SuperDef)
867       OS << ", Super=" << SuperDef->getName();
868     OS << "\n";
869   }
870   OS << "};\n";
871 }
872 
873 // Find the WriteRes Record that defines processor resources for this
874 // SchedWrite.
875 Record *SubtargetEmitter::FindWriteResources(
876   const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
877 
878   // Check if the SchedWrite is already subtarget-specific and directly
879   // specifies a set of processor resources.
880   if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
881     return SchedWrite.TheDef;
882 
883   Record *AliasDef = nullptr;
884   for (Record *A : SchedWrite.Aliases) {
885     const CodeGenSchedRW &AliasRW =
886       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
887     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
888       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
889       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
890         continue;
891     }
892     if (AliasDef)
893       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
894                     "defined for processor " + ProcModel.ModelName +
895                     " Ensure only one SchedAlias exists per RW.");
896     AliasDef = AliasRW.TheDef;
897   }
898   if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
899     return AliasDef;
900 
901   // Check this processor's list of write resources.
902   Record *ResDef = nullptr;
903   for (Record *WR : ProcModel.WriteResDefs) {
904     if (!WR->isSubClassOf("WriteRes"))
905       continue;
906     if (AliasDef == WR->getValueAsDef("WriteType")
907         || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
908       if (ResDef) {
909         PrintFatalError(WR->getLoc(), "Resources are defined for both "
910                       "SchedWrite and its alias on processor " +
911                       ProcModel.ModelName);
912       }
913       ResDef = WR;
914     }
915   }
916   // TODO: If ProcModel has a base model (previous generation processor),
917   // then call FindWriteResources recursively with that model here.
918   if (!ResDef) {
919     PrintFatalError(ProcModel.ModelDef->getLoc(),
920                     Twine("Processor does not define resources for ") +
921                     SchedWrite.TheDef->getName());
922   }
923   return ResDef;
924 }
925 
926 /// Find the ReadAdvance record for the given SchedRead on this processor or
927 /// return NULL.
928 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
929                                           const CodeGenProcModel &ProcModel) {
930   // Check for SchedReads that directly specify a ReadAdvance.
931   if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
932     return SchedRead.TheDef;
933 
934   // Check this processor's list of aliases for SchedRead.
935   Record *AliasDef = nullptr;
936   for (Record *A : SchedRead.Aliases) {
937     const CodeGenSchedRW &AliasRW =
938       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
939     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
940       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
941       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
942         continue;
943     }
944     if (AliasDef)
945       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
946                     "defined for processor " + ProcModel.ModelName +
947                     " Ensure only one SchedAlias exists per RW.");
948     AliasDef = AliasRW.TheDef;
949   }
950   if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
951     return AliasDef;
952 
953   // Check this processor's ReadAdvanceList.
954   Record *ResDef = nullptr;
955   for (Record *RA : ProcModel.ReadAdvanceDefs) {
956     if (!RA->isSubClassOf("ReadAdvance"))
957       continue;
958     if (AliasDef == RA->getValueAsDef("ReadType")
959         || SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
960       if (ResDef) {
961         PrintFatalError(RA->getLoc(), "Resources are defined for both "
962                       "SchedRead and its alias on processor " +
963                       ProcModel.ModelName);
964       }
965       ResDef = RA;
966     }
967   }
968   // TODO: If ProcModel has a base model (previous generation processor),
969   // then call FindReadAdvance recursively with that model here.
970   if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
971     PrintFatalError(ProcModel.ModelDef->getLoc(),
972                     Twine("Processor does not define resources for ") +
973                     SchedRead.TheDef->getName());
974   }
975   return ResDef;
976 }
977 
978 // Expand an explicit list of processor resources into a full list of implied
979 // resource groups and super resources that cover them.
980 void SubtargetEmitter::ExpandProcResources(
981     RecVec &PRVec, std::vector<int64_t> &ReleaseAtCycles,
982     std::vector<int64_t> &AcquireAtCycles, const CodeGenProcModel &PM) {
983   assert(PRVec.size() == ReleaseAtCycles.size() && "failed precondition");
984   for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
985     Record *PRDef = PRVec[i];
986     RecVec SubResources;
987     if (PRDef->isSubClassOf("ProcResGroup"))
988       SubResources = PRDef->getValueAsListOfDefs("Resources");
989     else {
990       SubResources.push_back(PRDef);
991       PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
992       for (Record *SubDef = PRDef;
993            SubDef->getValueInit("Super")->isComplete();) {
994         if (SubDef->isSubClassOf("ProcResGroup")) {
995           // Disallow this for simplicitly.
996           PrintFatalError(SubDef->getLoc(), "Processor resource group "
997                           " cannot be a super resources.");
998         }
999         Record *SuperDef =
1000             SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM,
1001                                          SubDef->getLoc());
1002         PRVec.push_back(SuperDef);
1003         ReleaseAtCycles.push_back(ReleaseAtCycles[i]);
1004         AcquireAtCycles.push_back(AcquireAtCycles[i]);
1005         SubDef = SuperDef;
1006       }
1007     }
1008     for (Record *PR : PM.ProcResourceDefs) {
1009       if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
1010         continue;
1011       RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
1012       RecIter SubI = SubResources.begin(), SubE = SubResources.end();
1013       for( ; SubI != SubE; ++SubI) {
1014         if (!is_contained(SuperResources, *SubI)) {
1015           break;
1016         }
1017       }
1018       if (SubI == SubE) {
1019         PRVec.push_back(PR);
1020         ReleaseAtCycles.push_back(ReleaseAtCycles[i]);
1021         AcquireAtCycles.push_back(AcquireAtCycles[i]);
1022       }
1023     }
1024   }
1025 }
1026 
1027 // Generate the SchedClass table for this processor and update global
1028 // tables. Must be called for each processor in order.
1029 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
1030                                            SchedClassTables &SchedTables) {
1031   SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
1032   if (!ProcModel.hasInstrSchedModel())
1033     return;
1034 
1035   std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
1036   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
1037   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1038     LLVM_DEBUG(SC.dump(&SchedModels));
1039 
1040     SCTab.resize(SCTab.size() + 1);
1041     MCSchedClassDesc &SCDesc = SCTab.back();
1042     // SCDesc.Name is guarded by NDEBUG
1043     SCDesc.NumMicroOps = 0;
1044     SCDesc.BeginGroup = false;
1045     SCDesc.EndGroup = false;
1046     SCDesc.RetireOOO = false;
1047     SCDesc.WriteProcResIdx = 0;
1048     SCDesc.WriteLatencyIdx = 0;
1049     SCDesc.ReadAdvanceIdx = 0;
1050 
1051     // A Variant SchedClass has no resources of its own.
1052     bool HasVariants = false;
1053     for (const CodeGenSchedTransition &CGT :
1054            make_range(SC.Transitions.begin(), SC.Transitions.end())) {
1055       if (CGT.ProcIndex == ProcModel.Index) {
1056         HasVariants = true;
1057         break;
1058       }
1059     }
1060     if (HasVariants) {
1061       SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
1062       continue;
1063     }
1064 
1065     // Determine if the SchedClass is actually reachable on this processor. If
1066     // not don't try to locate the processor resources, it will fail.
1067     // If ProcIndices contains 0, this class applies to all processors.
1068     assert(!SC.ProcIndices.empty() && "expect at least one procidx");
1069     if (SC.ProcIndices[0] != 0) {
1070       if (!is_contained(SC.ProcIndices, ProcModel.Index))
1071         continue;
1072     }
1073     IdxVec Writes = SC.Writes;
1074     IdxVec Reads = SC.Reads;
1075     if (!SC.InstRWs.empty()) {
1076       // This class has a default ReadWrite list which can be overridden by
1077       // InstRW definitions.
1078       Record *RWDef = nullptr;
1079       for (Record *RW : SC.InstRWs) {
1080         Record *RWModelDef = RW->getValueAsDef("SchedModel");
1081         if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
1082           RWDef = RW;
1083           break;
1084         }
1085       }
1086       if (RWDef) {
1087         Writes.clear();
1088         Reads.clear();
1089         SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
1090                             Writes, Reads);
1091       }
1092     }
1093     if (Writes.empty()) {
1094       // Check this processor's itinerary class resources.
1095       for (Record *I : ProcModel.ItinRWDefs) {
1096         RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
1097         if (is_contained(Matched, SC.ItinClassDef)) {
1098           SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
1099                               Writes, Reads);
1100           break;
1101         }
1102       }
1103       if (Writes.empty()) {
1104         LLVM_DEBUG(dbgs() << ProcModel.ModelName
1105                           << " does not have resources for class " << SC.Name
1106                           << '\n');
1107         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1108       }
1109     }
1110     // Sum resources across all operand writes.
1111     std::vector<MCWriteProcResEntry> WriteProcResources;
1112     std::vector<MCWriteLatencyEntry> WriteLatencies;
1113     std::vector<std::string> WriterNames;
1114     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
1115     for (unsigned W : Writes) {
1116       IdxVec WriteSeq;
1117       SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
1118                                      ProcModel);
1119 
1120       // For each operand, create a latency entry.
1121       MCWriteLatencyEntry WLEntry;
1122       WLEntry.Cycles = 0;
1123       unsigned WriteID = WriteSeq.back();
1124       WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
1125       // If this Write is not referenced by a ReadAdvance, don't distinguish it
1126       // from other WriteLatency entries.
1127       if (!SchedModels.hasReadOfWrite(
1128             SchedModels.getSchedWrite(WriteID).TheDef)) {
1129         WriteID = 0;
1130       }
1131       WLEntry.WriteResourceID = WriteID;
1132 
1133       for (unsigned WS : WriteSeq) {
1134 
1135         Record *WriteRes =
1136           FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
1137 
1138         // Mark the parent class as invalid for unsupported write types.
1139         if (WriteRes->getValueAsBit("Unsupported")) {
1140           SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1141           break;
1142         }
1143         WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
1144         SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
1145         SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
1146         SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
1147         SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
1148         SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
1149         SCDesc.RetireOOO |= WriteRes->getValueAsBit("RetireOOO");
1150 
1151         // Create an entry for each ProcResource listed in WriteRes.
1152         RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
1153         std::vector<int64_t> ReleaseAtCycles =
1154             WriteRes->getValueAsListOfInts("ReleaseAtCycles");
1155 
1156         std::vector<int64_t> AcquireAtCycles =
1157             WriteRes->getValueAsListOfInts("AcquireAtCycles");
1158 
1159         // Check consistency of the two vectors carrying the start and
1160         // stop cycles of the resources.
1161         if (!ReleaseAtCycles.empty() &&
1162             ReleaseAtCycles.size() != PRVec.size()) {
1163           // If ReleaseAtCycles is provided, check consistency.
1164           PrintFatalError(
1165               WriteRes->getLoc(),
1166               Twine("Inconsistent release at cycles: size(ReleaseAtCycles) != "
1167                     "size(ProcResources): ")
1168                   .concat(Twine(PRVec.size()))
1169                   .concat(" vs ")
1170                   .concat(Twine(ReleaseAtCycles.size())));
1171         }
1172 
1173         if (!AcquireAtCycles.empty() && AcquireAtCycles.size() != PRVec.size()) {
1174           PrintFatalError(
1175               WriteRes->getLoc(),
1176               Twine("Inconsistent resource cycles: size(AcquireAtCycles) != "
1177                     "size(ProcResources): ")
1178                   .concat(Twine(AcquireAtCycles.size()))
1179                   .concat(" vs ")
1180                   .concat(Twine(PRVec.size())));
1181         }
1182 
1183         if (ReleaseAtCycles.empty()) {
1184           // If ReleaseAtCycles is not provided, default to one cycle
1185           // per resource.
1186           ReleaseAtCycles.resize(PRVec.size(), 1);
1187         }
1188 
1189         if (AcquireAtCycles.empty()) {
1190           // If AcquireAtCycles is not provided, reserve the resource
1191           // starting from cycle 0.
1192           AcquireAtCycles.resize(PRVec.size(), 0);
1193         }
1194 
1195         assert(AcquireAtCycles.size() == ReleaseAtCycles.size());
1196 
1197         ExpandProcResources(PRVec, ReleaseAtCycles, AcquireAtCycles, ProcModel);
1198         assert(AcquireAtCycles.size() == ReleaseAtCycles.size());
1199 
1200         for (unsigned PRIdx = 0, PREnd = PRVec.size();
1201              PRIdx != PREnd; ++PRIdx) {
1202           MCWriteProcResEntry WPREntry;
1203           WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
1204           assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
1205           WPREntry.ReleaseAtCycle = ReleaseAtCycles[PRIdx];
1206           WPREntry.AcquireAtCycle = AcquireAtCycles[PRIdx];
1207           if (AcquireAtCycles[PRIdx] > ReleaseAtCycles[PRIdx]) {
1208             PrintFatalError(
1209                 WriteRes->getLoc(),
1210                 Twine("Inconsistent resource cycles: AcquireAtCycles "
1211                       "< ReleaseAtCycles must hold."));
1212           }
1213           if (AcquireAtCycles[PRIdx] < 0) {
1214             PrintFatalError(WriteRes->getLoc(),
1215                             Twine("Invalid value: AcquireAtCycle "
1216                                   "must be a non-negative value."));
1217           }
1218           // If this resource is already used in this sequence, add the current
1219           // entry's cycles so that the same resource appears to be used
1220           // serially, rather than multiple parallel uses. This is important for
1221           // in-order machine where the resource consumption is a hazard.
1222           unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
1223           for( ; WPRIdx != WPREnd; ++WPRIdx) {
1224             if (WriteProcResources[WPRIdx].ProcResourceIdx
1225                 == WPREntry.ProcResourceIdx) {
1226               // TODO: multiple use of the same resources would
1227               // require either 1. thinking of how to handle multiple
1228               // intervals for the same resource in
1229               // `<Target>WriteProcResTable` (see
1230               // `SubtargetEmitter::EmitSchedClassTables`), or
1231               // 2. thinking how to merge multiple intervals into a
1232               // single interval.
1233               assert(WPREntry.AcquireAtCycle == 0 &&
1234                      "multiple use ofthe same resource is not yet handled");
1235               WriteProcResources[WPRIdx].ReleaseAtCycle +=
1236                   WPREntry.ReleaseAtCycle;
1237               break;
1238             }
1239           }
1240           if (WPRIdx == WPREnd)
1241             WriteProcResources.push_back(WPREntry);
1242         }
1243       }
1244       WriteLatencies.push_back(WLEntry);
1245     }
1246     // Create an entry for each operand Read in this SchedClass.
1247     // Entries must be sorted first by UseIdx then by WriteResourceID.
1248     for (unsigned UseIdx = 0, EndIdx = Reads.size();
1249          UseIdx != EndIdx; ++UseIdx) {
1250       Record *ReadAdvance =
1251         FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
1252       if (!ReadAdvance)
1253         continue;
1254 
1255       // Mark the parent class as invalid for unsupported write types.
1256       if (ReadAdvance->getValueAsBit("Unsupported")) {
1257         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1258         break;
1259       }
1260       RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
1261       IdxVec WriteIDs;
1262       if (ValidWrites.empty())
1263         WriteIDs.push_back(0);
1264       else {
1265         for (Record *VW : ValidWrites) {
1266           WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
1267         }
1268       }
1269       llvm::sort(WriteIDs);
1270       for(unsigned W : WriteIDs) {
1271         MCReadAdvanceEntry RAEntry;
1272         RAEntry.UseIdx = UseIdx;
1273         RAEntry.WriteResourceID = W;
1274         RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1275         ReadAdvanceEntries.push_back(RAEntry);
1276       }
1277     }
1278     if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1279       WriteProcResources.clear();
1280       WriteLatencies.clear();
1281       ReadAdvanceEntries.clear();
1282     }
1283     // Add the information for this SchedClass to the global tables using basic
1284     // compression.
1285     //
1286     // WritePrecRes entries are sorted by ProcResIdx.
1287     llvm::sort(WriteProcResources, LessWriteProcResources());
1288 
1289     SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1290     std::vector<MCWriteProcResEntry>::iterator WPRPos =
1291       std::search(SchedTables.WriteProcResources.begin(),
1292                   SchedTables.WriteProcResources.end(),
1293                   WriteProcResources.begin(), WriteProcResources.end());
1294     if (WPRPos != SchedTables.WriteProcResources.end())
1295       SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1296     else {
1297       SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1298       SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1299                                             WriteProcResources.end());
1300     }
1301     // Latency entries must remain in operand order.
1302     SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1303     std::vector<MCWriteLatencyEntry>::iterator WLPos =
1304       std::search(SchedTables.WriteLatencies.begin(),
1305                   SchedTables.WriteLatencies.end(),
1306                   WriteLatencies.begin(), WriteLatencies.end());
1307     if (WLPos != SchedTables.WriteLatencies.end()) {
1308       unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1309       SCDesc.WriteLatencyIdx = idx;
1310       for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1311         if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1312             std::string::npos) {
1313           SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1314         }
1315     }
1316     else {
1317       SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1318       llvm::append_range(SchedTables.WriteLatencies, WriteLatencies);
1319       llvm::append_range(SchedTables.WriterNames, WriterNames);
1320     }
1321     // ReadAdvanceEntries must remain in operand order.
1322     SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1323     std::vector<MCReadAdvanceEntry>::iterator RAPos =
1324       std::search(SchedTables.ReadAdvanceEntries.begin(),
1325                   SchedTables.ReadAdvanceEntries.end(),
1326                   ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1327     if (RAPos != SchedTables.ReadAdvanceEntries.end())
1328       SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1329     else {
1330       SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1331       llvm::append_range(SchedTables.ReadAdvanceEntries, ReadAdvanceEntries);
1332     }
1333   }
1334 }
1335 
1336 // Emit SchedClass tables for all processors and associated global tables.
1337 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1338                                             raw_ostream &OS) {
1339   // Emit global WriteProcResTable.
1340   OS << "\n// {ProcResourceIdx, ReleaseAtCycle, AcquireAtCycle}\n"
1341      << "extern const llvm::MCWriteProcResEntry " << Target
1342      << "WriteProcResTable[] = {\n"
1343      << "  { 0,  0,  0 }, // Invalid\n";
1344   for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1345        WPRIdx != WPREnd; ++WPRIdx) {
1346     MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1347     OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1348        << format("%2d", WPREntry.ReleaseAtCycle) << ",  "
1349        << format("%2d", WPREntry.AcquireAtCycle) << "}";
1350     if (WPRIdx + 1 < WPREnd)
1351       OS << ',';
1352     OS << " // #" << WPRIdx << '\n';
1353   }
1354   OS << "}; // " << Target << "WriteProcResTable\n";
1355 
1356   // Emit global WriteLatencyTable.
1357   OS << "\n// {Cycles, WriteResourceID}\n"
1358      << "extern const llvm::MCWriteLatencyEntry "
1359      << Target << "WriteLatencyTable[] = {\n"
1360      << "  { 0,  0}, // Invalid\n";
1361   for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1362        WLIdx != WLEnd; ++WLIdx) {
1363     MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1364     OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
1365        << format("%2d", WLEntry.WriteResourceID) << "}";
1366     if (WLIdx + 1 < WLEnd)
1367       OS << ',';
1368     OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1369   }
1370   OS << "}; // " << Target << "WriteLatencyTable\n";
1371 
1372   // Emit global ReadAdvanceTable.
1373   OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1374      << "extern const llvm::MCReadAdvanceEntry "
1375      << Target << "ReadAdvanceTable[] = {\n"
1376      << "  {0,  0,  0}, // Invalid\n";
1377   for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1378        RAIdx != RAEnd; ++RAIdx) {
1379     MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1380     OS << "  {" << RAEntry.UseIdx << ", "
1381        << format("%2d", RAEntry.WriteResourceID) << ", "
1382        << format("%2d", RAEntry.Cycles) << "}";
1383     if (RAIdx + 1 < RAEnd)
1384       OS << ',';
1385     OS << " // #" << RAIdx << '\n';
1386   }
1387   OS << "}; // " << Target << "ReadAdvanceTable\n";
1388 
1389   // Emit a SchedClass table for each processor.
1390   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1391          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1392     if (!PI->hasInstrSchedModel())
1393       continue;
1394 
1395     std::vector<MCSchedClassDesc> &SCTab =
1396       SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1397 
1398     OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup, RetireOOO,"
1399        << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1400     OS << "static const llvm::MCSchedClassDesc "
1401        << PI->ModelName << "SchedClasses[] = {\n";
1402 
1403     // The first class is always invalid. We no way to distinguish it except by
1404     // name and position.
1405     assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1406            && "invalid class not first");
1407     OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
1408        << MCSchedClassDesc::InvalidNumMicroOps
1409        << ", false, false, false, 0, 0,  0, 0,  0, 0},\n";
1410 
1411     for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1412       MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1413       const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1414       OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
1415       if (SchedClass.Name.size() < 18)
1416         OS.indent(18 - SchedClass.Name.size());
1417       OS << MCDesc.NumMicroOps
1418          << ", " << ( MCDesc.BeginGroup ? "true" : "false" )
1419          << ", " << ( MCDesc.EndGroup ? "true" : "false" )
1420          << ", " << ( MCDesc.RetireOOO ? "true" : "false" )
1421          << ", " << format("%2d", MCDesc.WriteProcResIdx)
1422          << ", " << MCDesc.NumWriteProcResEntries
1423          << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1424          << ", " << MCDesc.NumWriteLatencyEntries
1425          << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1426          << ", " << MCDesc.NumReadAdvanceEntries
1427          << "}, // #" << SCIdx << '\n';
1428     }
1429     OS << "}; // " << PI->ModelName << "SchedClasses\n";
1430   }
1431 }
1432 
1433 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1434   // For each processor model.
1435   for (const CodeGenProcModel &PM : SchedModels.procModels()) {
1436     // Emit extra processor info if available.
1437     if (PM.hasExtraProcessorInfo())
1438       EmitExtraProcessorInfo(PM, OS);
1439     // Emit processor resource table.
1440     if (PM.hasInstrSchedModel())
1441       EmitProcessorResources(PM, OS);
1442     else if(!PM.ProcResourceDefs.empty())
1443       PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
1444                     "ProcResources without defining WriteRes SchedWriteRes");
1445 
1446     // Begin processor itinerary properties
1447     OS << "\n";
1448     OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
1449     EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
1450     EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
1451     EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
1452     EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
1453     EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
1454     EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
1455 
1456     bool PostRAScheduler =
1457       (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
1458 
1459     OS << "  " << (PostRAScheduler ? "true" : "false")  << ", // "
1460        << "PostRAScheduler\n";
1461 
1462     bool CompleteModel =
1463       (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
1464 
1465     OS << "  " << (CompleteModel ? "true" : "false") << ", // "
1466        << "CompleteModel\n";
1467 
1468     bool EnableIntervals =
1469         (PM.ModelDef ? PM.ModelDef->getValueAsBit("EnableIntervals") : false);
1470 
1471     OS << "  " << (EnableIntervals ? "true" : "false") << ", // "
1472        << "EnableIntervals\n";
1473 
1474     OS << "  " << PM.Index << ", // Processor ID\n";
1475     if (PM.hasInstrSchedModel())
1476       OS << "  " << PM.ModelName << "ProcResources" << ",\n"
1477          << "  " << PM.ModelName << "SchedClasses" << ",\n"
1478          << "  " << PM.ProcResourceDefs.size()+1 << ",\n"
1479          << "  " << (SchedModels.schedClassEnd()
1480                      - SchedModels.schedClassBegin()) << ",\n";
1481     else
1482       OS << "  nullptr, nullptr, 0, 0,"
1483          << " // No instruction-level machine model.\n";
1484     if (PM.hasItineraries())
1485       OS << "  " << PM.ItinsDef->getName() << ",\n";
1486     else
1487       OS << "  nullptr, // No Itinerary\n";
1488     if (PM.hasExtraProcessorInfo())
1489       OS << "  &" << PM.ModelName << "ExtraInfo,\n";
1490     else
1491       OS << "  nullptr // No extra processor descriptor\n";
1492     OS << "};\n";
1493   }
1494 }
1495 
1496 //
1497 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1498 //
1499 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1500   OS << "#ifdef DBGFIELD\n"
1501      << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1502      << "#endif\n"
1503      << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
1504      << "#define DBGFIELD(x) x,\n"
1505      << "#else\n"
1506      << "#define DBGFIELD(x)\n"
1507      << "#endif\n";
1508 
1509   if (SchedModels.hasItineraries()) {
1510     std::vector<std::vector<InstrItinerary>> ProcItinLists;
1511     // Emit the stage data
1512     EmitStageAndOperandCycleData(OS, ProcItinLists);
1513     EmitItineraries(OS, ProcItinLists);
1514   }
1515   OS << "\n// ===============================================================\n"
1516      << "// Data tables for the new per-operand machine model.\n";
1517 
1518   SchedClassTables SchedTables;
1519   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
1520     GenSchedClassTables(ProcModel, SchedTables);
1521   }
1522   EmitSchedClassTables(SchedTables, OS);
1523 
1524   OS << "\n#undef DBGFIELD\n";
1525 
1526   // Emit the processor machine model
1527   EmitProcessorModels(OS);
1528 }
1529 
1530 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) {
1531   std::string Buffer;
1532   raw_string_ostream Stream(Buffer);
1533 
1534   // Collect all the PredicateProlog records and print them to the output
1535   // stream.
1536   std::vector<Record *> Prologs =
1537       Records.getAllDerivedDefinitions("PredicateProlog");
1538   llvm::sort(Prologs, LessRecord());
1539   for (Record *P : Prologs)
1540     Stream << P->getValueAsString("Code") << '\n';
1541 
1542   OS << Buffer;
1543 }
1544 
1545 static bool isTruePredicate(const Record *Rec) {
1546   return Rec->isSubClassOf("MCSchedPredicate") &&
1547          Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
1548 }
1549 
1550 static void emitPredicates(const CodeGenSchedTransition &T,
1551                            const CodeGenSchedClass &SC, PredicateExpander &PE,
1552                            raw_ostream &OS) {
1553   std::string Buffer;
1554   raw_string_ostream SS(Buffer);
1555 
1556   // If not all predicates are MCTrue, then we need an if-stmt.
1557   unsigned NumNonTruePreds =
1558       T.PredTerm.size() - count_if(T.PredTerm, isTruePredicate);
1559 
1560   SS.indent(PE.getIndentLevel() * 2);
1561 
1562   if (NumNonTruePreds) {
1563     bool FirstNonTruePredicate = true;
1564     SS << "if (";
1565 
1566     PE.setIndentLevel(PE.getIndentLevel() + 2);
1567 
1568     for (const Record *Rec : T.PredTerm) {
1569       // Skip predicates that evaluate to "true".
1570       if (isTruePredicate(Rec))
1571         continue;
1572 
1573       if (FirstNonTruePredicate) {
1574         FirstNonTruePredicate = false;
1575       } else {
1576         SS << "\n";
1577         SS.indent(PE.getIndentLevel() * 2);
1578         SS << "&& ";
1579       }
1580 
1581       if (Rec->isSubClassOf("MCSchedPredicate")) {
1582         PE.expandPredicate(SS, Rec->getValueAsDef("Pred"));
1583         continue;
1584       }
1585 
1586       // Expand this legacy predicate and wrap it around braces if there is more
1587       // than one predicate to expand.
1588       SS << ((NumNonTruePreds > 1) ? "(" : "")
1589          << Rec->getValueAsString("Predicate")
1590          << ((NumNonTruePreds > 1) ? ")" : "");
1591     }
1592 
1593     SS << ")\n"; // end of if-stmt
1594     PE.decreaseIndentLevel();
1595     SS.indent(PE.getIndentLevel() * 2);
1596     PE.decreaseIndentLevel();
1597   }
1598 
1599   SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n';
1600   OS << Buffer;
1601 }
1602 
1603 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate
1604 // epilogue code for the auto-generated helper.
1605 static void emitSchedModelHelperEpilogue(raw_ostream &OS,
1606                                          bool ShouldReturnZero) {
1607   if (ShouldReturnZero) {
1608     OS << "  // Don't know how to resolve this scheduling class.\n"
1609        << "  return 0;\n";
1610     return;
1611   }
1612 
1613   OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n";
1614 }
1615 
1616 static bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
1617   return all_of(T.PredTerm, [](const Record *Rec) {
1618     return Rec->isSubClassOf("MCSchedPredicate");
1619   });
1620 }
1621 
1622 static void collectVariantClasses(const CodeGenSchedModels &SchedModels,
1623                                   IdxVec &VariantClasses,
1624                                   bool OnlyExpandMCInstPredicates) {
1625   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1626     // Ignore non-variant scheduling classes.
1627     if (SC.Transitions.empty())
1628       continue;
1629 
1630     if (OnlyExpandMCInstPredicates) {
1631       // Ignore this variant scheduling class no transitions use any meaningful
1632       // MCSchedPredicate definitions.
1633       if (llvm::none_of(SC.Transitions, hasMCSchedPredicates))
1634         continue;
1635     }
1636 
1637     VariantClasses.push_back(SC.Index);
1638   }
1639 }
1640 
1641 static void collectProcessorIndices(const CodeGenSchedClass &SC,
1642                                     IdxVec &ProcIndices) {
1643   // A variant scheduling class may define transitions for multiple
1644   // processors.  This function identifies wich processors are associated with
1645   // transition rules specified by variant class `SC`.
1646   for (const CodeGenSchedTransition &T : SC.Transitions) {
1647     IdxVec PI;
1648     std::set_union(&T.ProcIndex, &T.ProcIndex + 1, ProcIndices.begin(),
1649                    ProcIndices.end(), std::back_inserter(PI));
1650     ProcIndices.swap(PI);
1651   }
1652 }
1653 
1654 static bool isAlwaysTrue(const CodeGenSchedTransition &T) {
1655   return llvm::all_of(T.PredTerm, isTruePredicate);
1656 }
1657 
1658 void SubtargetEmitter::emitSchedModelHelpersImpl(
1659     raw_ostream &OS, bool OnlyExpandMCInstPredicates) {
1660   IdxVec VariantClasses;
1661   collectVariantClasses(SchedModels, VariantClasses,
1662                         OnlyExpandMCInstPredicates);
1663 
1664   if (VariantClasses.empty()) {
1665     emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1666     return;
1667   }
1668 
1669   // Construct a switch statement where the condition is a check on the
1670   // scheduling class identifier. There is a `case` for every variant class
1671   // defined by the processor models of this target.
1672   // Each `case` implements a number of rules to resolve (i.e. to transition from)
1673   // a variant scheduling class to another scheduling class.  Rules are
1674   // described by instances of CodeGenSchedTransition. Note that transitions may
1675   // not be valid for all processors.
1676   OS << "  switch (SchedClass) {\n";
1677   for (unsigned VC : VariantClasses) {
1678     IdxVec ProcIndices;
1679     const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
1680     collectProcessorIndices(SC, ProcIndices);
1681 
1682     OS << "  case " << VC << ": // " << SC.Name << '\n';
1683 
1684     PredicateExpander PE(Target);
1685     PE.setByRef(false);
1686     PE.setExpandForMC(OnlyExpandMCInstPredicates);
1687     for (unsigned PI : ProcIndices) {
1688       OS << "    ";
1689 
1690       // Emit a guard on the processor ID.
1691       if (PI != 0) {
1692         OS << (OnlyExpandMCInstPredicates
1693                    ? "if (CPUID == "
1694                    : "if (SchedModel->getProcessorID() == ");
1695         OS << PI << ") ";
1696         OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n';
1697       }
1698 
1699       // Now emit transitions associated with processor PI.
1700       const CodeGenSchedTransition *FinalT = nullptr;
1701       for (const CodeGenSchedTransition &T : SC.Transitions) {
1702         if (PI != 0 && T.ProcIndex != PI)
1703           continue;
1704 
1705         // Emit only transitions based on MCSchedPredicate, if it's the case.
1706         // At least the transition specified by NoSchedPred is emitted,
1707         // which becomes the default transition for those variants otherwise
1708         // not based on MCSchedPredicate.
1709         // FIXME: preferably, llvm-mca should instead assume a reasonable
1710         // default when a variant transition is not based on MCSchedPredicate
1711         // for a given processor.
1712         if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T))
1713           continue;
1714 
1715         // If transition is folded to 'return X' it should be the last one.
1716         if (isAlwaysTrue(T)) {
1717           FinalT = &T;
1718           continue;
1719         }
1720         PE.setIndentLevel(3);
1721         emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS);
1722       }
1723       if (FinalT)
1724         emitPredicates(*FinalT, SchedModels.getSchedClass(FinalT->ToClassIdx),
1725                        PE, OS);
1726 
1727       OS << "    }\n";
1728 
1729       if (PI == 0)
1730         break;
1731     }
1732 
1733     if (SC.isInferred())
1734       OS << "    return " << SC.Index << ";\n";
1735     OS << "    break;\n";
1736   }
1737 
1738   OS << "  };\n";
1739 
1740   emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1741 }
1742 
1743 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName,
1744                                              raw_ostream &OS) {
1745   OS << "unsigned " << ClassName
1746      << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1747      << " const TargetSchedModel *SchedModel) const {\n";
1748 
1749   // Emit the predicate prolog code.
1750   emitPredicateProlog(Records, OS);
1751 
1752   // Emit target predicates.
1753   emitSchedModelHelpersImpl(OS);
1754 
1755   OS << "} // " << ClassName << "::resolveSchedClass\n\n";
1756 
1757   OS << "unsigned " << ClassName
1758      << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI,"
1759      << " const MCInstrInfo *MCII, unsigned CPUID) const {\n"
1760      << "  return " << Target << "_MC"
1761      << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n"
1762      << "} // " << ClassName << "::resolveVariantSchedClass\n\n";
1763 
1764   STIPredicateExpander PE(Target);
1765   PE.setClassPrefix(ClassName);
1766   PE.setExpandDefinition(true);
1767   PE.setByRef(false);
1768   PE.setIndentLevel(0);
1769 
1770   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1771     PE.expandSTIPredicate(OS, Fn);
1772 }
1773 
1774 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName,
1775                                        raw_ostream &OS) {
1776   const CodeGenHwModes &CGH = TGT.getHwModes();
1777   assert(CGH.getNumModeIds() > 0);
1778   if (CGH.getNumModeIds() == 1)
1779     return;
1780 
1781   OS << "unsigned " << ClassName << "::getHwMode() const {\n";
1782   for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
1783     const HwMode &HM = CGH.getMode(M);
1784     OS << "  if (checkFeatures(\"" << HM.Features
1785        << "\")) return " << M << ";\n";
1786   }
1787   OS << "  return 0;\n}\n";
1788 }
1789 
1790 void SubtargetEmitter::emitGetMacroFusions(const std::string &ClassName,
1791                                            raw_ostream &OS) {
1792   if (!TGT.hasMacroFusion())
1793     return;
1794 
1795   OS << "std::vector<MacroFusionPredTy> " << ClassName
1796      << "::getMacroFusions() const {\n";
1797   OS.indent(2) << "std::vector<MacroFusionPredTy> Fusions;\n";
1798   for (auto *Fusion : TGT.getMacroFusions()) {
1799     std::string Name = Fusion->getNameInitAsString();
1800     OS.indent(2) << "if (hasFeature(" << Target << "::" << Name
1801                  << ")) Fusions.push_back(llvm::is" << Name << ");\n";
1802   }
1803 
1804   OS.indent(2) << "return Fusions;\n";
1805   OS << "}\n";
1806 }
1807 
1808 // Produces a subtarget specific function for parsing
1809 // the subtarget features string.
1810 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS) {
1811   std::vector<Record*> Features =
1812                        Records.getAllDerivedDefinitions("SubtargetFeature");
1813   llvm::sort(Features, LessRecord());
1814 
1815   OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1816      << "// subtarget options.\n"
1817      << "void llvm::";
1818   OS << Target;
1819   OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, "
1820      << "StringRef FS) {\n"
1821      << "  LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1822      << "  LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU);\n"
1823      << "  LLVM_DEBUG(dbgs() << \"\\nTuneCPU:\" << TuneCPU << \"\\n\\n\");\n";
1824 
1825   if (Features.empty()) {
1826     OS << "}\n";
1827     return;
1828   }
1829 
1830   OS << "  InitMCProcessorInfo(CPU, TuneCPU, FS);\n"
1831      << "  const FeatureBitset &Bits = getFeatureBits();\n";
1832 
1833   for (Record *R : Features) {
1834     // Next record
1835     StringRef Instance = R->getName();
1836     StringRef Value = R->getValueAsString("Value");
1837     StringRef FieldName = R->getValueAsString("FieldName");
1838 
1839     if (Value=="true" || Value=="false")
1840       OS << "  if (Bits[" << Target << "::"
1841          << Instance << "]) "
1842          << FieldName << " = " << Value << ";\n";
1843     else
1844       OS << "  if (Bits[" << Target << "::"
1845          << Instance << "] && "
1846          << FieldName << " < " << Value << ") "
1847          << FieldName << " = " << Value << ";\n";
1848   }
1849 
1850   OS << "}\n";
1851 }
1852 
1853 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) {
1854   OS << "namespace " << Target << "_MC {\n"
1855      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n"
1856      << "    const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) {\n";
1857   emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true);
1858   OS << "}\n";
1859   OS << "} // end namespace " << Target << "_MC\n\n";
1860 
1861   OS << "struct " << Target
1862      << "GenMCSubtargetInfo : public MCSubtargetInfo {\n";
1863   OS << "  " << Target << "GenMCSubtargetInfo(const Triple &TT,\n"
1864      << "    StringRef CPU, StringRef TuneCPU, StringRef FS,\n"
1865      << "    ArrayRef<SubtargetFeatureKV> PF,\n"
1866      << "    ArrayRef<SubtargetSubTypeKV> PD,\n"
1867      << "    const MCWriteProcResEntry *WPR,\n"
1868      << "    const MCWriteLatencyEntry *WL,\n"
1869      << "    const MCReadAdvanceEntry *RA, const InstrStage *IS,\n"
1870      << "    const unsigned *OC, const unsigned *FP) :\n"
1871      << "      MCSubtargetInfo(TT, CPU, TuneCPU, FS, PF, PD,\n"
1872      << "                      WPR, WL, RA, IS, OC, FP) { }\n\n"
1873      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,\n"
1874      << "      const MCInst *MI, const MCInstrInfo *MCII,\n"
1875      << "      unsigned CPUID) const override {\n"
1876      << "    return " << Target << "_MC"
1877      << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n";
1878   OS << "  }\n";
1879   if (TGT.getHwModes().getNumModeIds() > 1)
1880     OS << "  unsigned getHwMode() const override;\n";
1881   OS << "};\n";
1882   EmitHwModeCheck(Target + "GenMCSubtargetInfo", OS);
1883 }
1884 
1885 void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) {
1886   OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n";
1887   OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1888 
1889   STIPredicateExpander PE(Target);
1890   PE.setExpandForMC(true);
1891   PE.setByRef(true);
1892   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1893     PE.expandSTIPredicate(OS, Fn);
1894 
1895   OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1896 
1897   OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n";
1898   OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1899 
1900   std::string ClassPrefix = Target + "MCInstrAnalysis";
1901   PE.setExpandDefinition(true);
1902   PE.setClassPrefix(ClassPrefix);
1903   PE.setIndentLevel(0);
1904   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1905     PE.expandSTIPredicate(OS, Fn);
1906 
1907   OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1908 }
1909 
1910 //
1911 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1912 //
1913 void SubtargetEmitter::run(raw_ostream &OS) {
1914   emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1915 
1916   OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1917   OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
1918 
1919   DenseMap<Record *, unsigned> FeatureMap;
1920 
1921   OS << "namespace llvm {\n";
1922   Enumeration(OS, FeatureMap);
1923   OS << "} // end namespace llvm\n\n";
1924   OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1925 
1926   EmitSubtargetInfoMacroCalls(OS);
1927 
1928   OS << "namespace llvm {\n";
1929 #if 0
1930   OS << "namespace {\n";
1931 #endif
1932   unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap);
1933   OS << "\n";
1934   EmitSchedModel(OS);
1935   OS << "\n";
1936   unsigned NumProcs = CPUKeyValues(OS, FeatureMap);
1937   OS << "\n";
1938 #if 0
1939   OS << "} // end anonymous namespace\n\n";
1940 #endif
1941 
1942   // MCInstrInfo initialization routine.
1943   emitGenMCSubtargetInfo(OS);
1944 
1945   OS << "\nstatic inline MCSubtargetInfo *create" << Target
1946      << "MCSubtargetInfoImpl("
1947      << "const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS) {\n";
1948   OS << "  return new " << Target
1949      << "GenMCSubtargetInfo(TT, CPU, TuneCPU, FS, ";
1950   if (NumFeatures)
1951     OS << Target << "FeatureKV, ";
1952   else
1953     OS << "std::nullopt, ";
1954   if (NumProcs)
1955     OS << Target << "SubTypeKV, ";
1956   else
1957     OS << "std::nullopt, ";
1958   OS << '\n'; OS.indent(22);
1959   OS << Target << "WriteProcResTable, "
1960      << Target << "WriteLatencyTable, "
1961      << Target << "ReadAdvanceTable, ";
1962   OS << '\n'; OS.indent(22);
1963   if (SchedModels.hasItineraries()) {
1964     OS << Target << "Stages, "
1965        << Target << "OperandCycles, "
1966        << Target << "ForwardingPaths";
1967   } else
1968     OS << "nullptr, nullptr, nullptr";
1969   OS << ");\n}\n\n";
1970 
1971   OS << "} // end namespace llvm\n\n";
1972 
1973   OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1974 
1975   OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1976   OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
1977 
1978   OS << "#include \"llvm/Support/Debug.h\"\n";
1979   OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
1980   ParseFeaturesFunction(OS);
1981 
1982   OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1983 
1984   // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1985   OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1986   OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
1987 
1988   std::string ClassName = Target + "GenSubtargetInfo";
1989   OS << "namespace llvm {\n";
1990   OS << "class DFAPacketizer;\n";
1991   OS << "namespace " << Target << "_MC {\n"
1992      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,"
1993      << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID);\n"
1994      << "} // end namespace " << Target << "_MC\n\n";
1995   OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1996      << "  explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
1997      << "StringRef TuneCPU, StringRef FS);\n"
1998      << "public:\n"
1999      << "  unsigned resolveSchedClass(unsigned SchedClass, "
2000      << " const MachineInstr *DefMI,"
2001      << " const TargetSchedModel *SchedModel) const override;\n"
2002      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,"
2003      << " const MCInst *MI, const MCInstrInfo *MCII,"
2004      << " unsigned CPUID) const override;\n"
2005      << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
2006      << " const;\n";
2007   if (TGT.getHwModes().getNumModeIds() > 1)
2008     OS << "  unsigned getHwMode() const override;\n";
2009   if (TGT.hasMacroFusion())
2010     OS << "  std::vector<MacroFusionPredTy> getMacroFusions() const "
2011           "override;\n";
2012 
2013   STIPredicateExpander PE(Target);
2014   PE.setByRef(false);
2015   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
2016     PE.expandSTIPredicate(OS, Fn);
2017 
2018   OS << "};\n"
2019      << "} // end namespace llvm\n\n";
2020 
2021   OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
2022 
2023   OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
2024   OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
2025 
2026   OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
2027   OS << "namespace llvm {\n";
2028   OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
2029   OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n";
2030   OS << "extern const llvm::MCWriteProcResEntry "
2031      << Target << "WriteProcResTable[];\n";
2032   OS << "extern const llvm::MCWriteLatencyEntry "
2033      << Target << "WriteLatencyTable[];\n";
2034   OS << "extern const llvm::MCReadAdvanceEntry "
2035      << Target << "ReadAdvanceTable[];\n";
2036 
2037   if (SchedModels.hasItineraries()) {
2038     OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
2039     OS << "extern const unsigned " << Target << "OperandCycles[];\n";
2040     OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
2041   }
2042 
2043   OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
2044      << "StringRef TuneCPU, StringRef FS)\n"
2045      << "  : TargetSubtargetInfo(TT, CPU, TuneCPU, FS, ";
2046   if (NumFeatures)
2047     OS << "ArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
2048   else
2049     OS << "std::nullopt, ";
2050   if (NumProcs)
2051     OS << "ArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
2052   else
2053     OS << "std::nullopt, ";
2054   OS << '\n'; OS.indent(24);
2055   OS << Target << "WriteProcResTable, "
2056      << Target << "WriteLatencyTable, "
2057      << Target << "ReadAdvanceTable, ";
2058   OS << '\n'; OS.indent(24);
2059   if (SchedModels.hasItineraries()) {
2060     OS << Target << "Stages, "
2061        << Target << "OperandCycles, "
2062        << Target << "ForwardingPaths";
2063   } else
2064     OS << "nullptr, nullptr, nullptr";
2065   OS << ") {}\n\n";
2066 
2067   EmitSchedModelHelpers(ClassName, OS);
2068   EmitHwModeCheck(ClassName, OS);
2069   emitGetMacroFusions(ClassName, OS);
2070 
2071   OS << "} // end namespace llvm\n\n";
2072 
2073   OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
2074 
2075   EmitMCInstrAnalysisPredicateFunctions(OS);
2076 }
2077 
2078 static TableGen::Emitter::OptClass<SubtargetEmitter>
2079     X("gen-subtarget", "Generate subtarget enumerations");
2080