xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/SubtargetEmitter.cpp (revision 6ba2210ee039f2f12878c217bcf058e9c8b26b29)
1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits subtarget enumerations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenTarget.h"
14 #include "CodeGenSchedule.h"
15 #include "PredicateExpander.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/MC/MCInstrItineraries.h"
21 #include "llvm/MC/MCSchedule.h"
22 #include "llvm/MC/SubtargetFeature.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include "llvm/TableGen/TableGenBackend.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstdint>
32 #include <iterator>
33 #include <map>
34 #include <string>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "subtarget-emitter"
40 
41 namespace {
42 
43 class SubtargetEmitter {
44   // Each processor has a SchedClassDesc table with an entry for each SchedClass.
45   // The SchedClassDesc table indexes into a global write resource table, write
46   // latency table, and read advance table.
47   struct SchedClassTables {
48     std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses;
49     std::vector<MCWriteProcResEntry> WriteProcResources;
50     std::vector<MCWriteLatencyEntry> WriteLatencies;
51     std::vector<std::string> WriterNames;
52     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
53 
54     // Reserve an invalid entry at index 0
55     SchedClassTables() {
56       ProcSchedClasses.resize(1);
57       WriteProcResources.resize(1);
58       WriteLatencies.resize(1);
59       WriterNames.push_back("InvalidWrite");
60       ReadAdvanceEntries.resize(1);
61     }
62   };
63 
64   struct LessWriteProcResources {
65     bool operator()(const MCWriteProcResEntry &LHS,
66                     const MCWriteProcResEntry &RHS) {
67       return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
68     }
69   };
70 
71   const CodeGenTarget &TGT;
72   RecordKeeper &Records;
73   CodeGenSchedModels &SchedModels;
74   std::string Target;
75 
76   void Enumeration(raw_ostream &OS, DenseMap<Record *, unsigned> &FeatureMap);
77   unsigned FeatureKeyValues(raw_ostream &OS,
78                             const DenseMap<Record *, unsigned> &FeatureMap);
79   unsigned CPUKeyValues(raw_ostream &OS,
80                         const DenseMap<Record *, unsigned> &FeatureMap);
81   void FormItineraryStageString(const std::string &Names,
82                                 Record *ItinData, std::string &ItinString,
83                                 unsigned &NStages);
84   void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
85                                        unsigned &NOperandCycles);
86   void FormItineraryBypassString(const std::string &Names,
87                                  Record *ItinData,
88                                  std::string &ItinString, unsigned NOperandCycles);
89   void EmitStageAndOperandCycleData(raw_ostream &OS,
90                                     std::vector<std::vector<InstrItinerary>>
91                                       &ProcItinLists);
92   void EmitItineraries(raw_ostream &OS,
93                        std::vector<std::vector<InstrItinerary>>
94                          &ProcItinLists);
95   unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
96                                   raw_ostream &OS);
97   void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
98                               raw_ostream &OS);
99   void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
100                               raw_ostream &OS);
101   void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name,
102                          char Separator);
103   void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel,
104                                      raw_ostream &OS);
105   void EmitProcessorResources(const CodeGenProcModel &ProcModel,
106                               raw_ostream &OS);
107   Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
108                              const CodeGenProcModel &ProcModel);
109   Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
110                           const CodeGenProcModel &ProcModel);
111   void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
112                            const CodeGenProcModel &ProcModel);
113   void GenSchedClassTables(const CodeGenProcModel &ProcModel,
114                            SchedClassTables &SchedTables);
115   void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
116   void EmitProcessorModels(raw_ostream &OS);
117   void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
118   void emitSchedModelHelpersImpl(raw_ostream &OS,
119                                  bool OnlyExpandMCInstPredicates = false);
120   void emitGenMCSubtargetInfo(raw_ostream &OS);
121   void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS);
122 
123   void EmitSchedModel(raw_ostream &OS);
124   void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS);
125   void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
126                              unsigned NumProcs);
127 
128 public:
129   SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT)
130       : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()),
131         Target(TGT.getName()) {}
132 
133   void run(raw_ostream &o);
134 };
135 
136 } // end anonymous namespace
137 
138 //
139 // Enumeration - Emit the specified class as an enumeration.
140 //
141 void SubtargetEmitter::Enumeration(raw_ostream &OS,
142                                    DenseMap<Record *, unsigned> &FeatureMap) {
143   // Get all records of class and sort
144   std::vector<Record*> DefList =
145     Records.getAllDerivedDefinitions("SubtargetFeature");
146   llvm::sort(DefList, LessRecord());
147 
148   unsigned N = DefList.size();
149   if (N == 0)
150     return;
151   if (N + 1 > MAX_SUBTARGET_FEATURES)
152     PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
153 
154   OS << "namespace " << Target << " {\n";
155 
156   // Open enumeration.
157   OS << "enum {\n";
158 
159   // For each record
160   for (unsigned i = 0; i < N; ++i) {
161     // Next record
162     Record *Def = DefList[i];
163 
164     // Get and emit name
165     OS << "  " << Def->getName() << " = " << i << ",\n";
166 
167     // Save the index for this feature.
168     FeatureMap[Def] = i;
169   }
170 
171   OS << "  "
172      << "NumSubtargetFeatures = " << N << "\n";
173 
174   // Close enumeration and namespace
175   OS << "};\n";
176   OS << "} // end namespace " << Target << "\n";
177 }
178 
179 static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList,
180                              const DenseMap<Record *, unsigned> &FeatureMap) {
181   std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {};
182   for (unsigned j = 0, M = FeatureList.size(); j < M; ++j) {
183     unsigned Bit = FeatureMap.lookup(FeatureList[j]);
184     Mask[Bit / 64] |= 1ULL << (Bit % 64);
185   }
186 
187   OS << "{ { { ";
188   for (unsigned i = 0; i != Mask.size(); ++i) {
189     OS << "0x";
190     OS.write_hex(Mask[i]);
191     OS << "ULL, ";
192   }
193   OS << "} } }";
194 }
195 
196 //
197 // FeatureKeyValues - Emit data of all the subtarget features.  Used by the
198 // command line.
199 //
200 unsigned SubtargetEmitter::FeatureKeyValues(
201     raw_ostream &OS, const DenseMap<Record *, unsigned> &FeatureMap) {
202   // Gather and sort all the features
203   std::vector<Record*> FeatureList =
204                            Records.getAllDerivedDefinitions("SubtargetFeature");
205 
206   if (FeatureList.empty())
207     return 0;
208 
209   llvm::sort(FeatureList, LessRecordFieldName());
210 
211   // Begin feature table
212   OS << "// Sorted (by key) array of values for CPU features.\n"
213      << "extern const llvm::SubtargetFeatureKV " << Target
214      << "FeatureKV[] = {\n";
215 
216   // For each feature
217   unsigned NumFeatures = 0;
218   for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
219     // Next feature
220     Record *Feature = FeatureList[i];
221 
222     StringRef Name = Feature->getName();
223     StringRef CommandLineName = Feature->getValueAsString("Name");
224     StringRef Desc = Feature->getValueAsString("Desc");
225 
226     if (CommandLineName.empty()) continue;
227 
228     // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
229     OS << "  { "
230        << "\"" << CommandLineName << "\", "
231        << "\"" << Desc << "\", "
232        << Target << "::" << Name << ", ";
233 
234     RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
235 
236     printFeatureMask(OS, ImpliesList, FeatureMap);
237 
238     OS << " },\n";
239     ++NumFeatures;
240   }
241 
242   // End feature table
243   OS << "};\n";
244 
245   return NumFeatures;
246 }
247 
248 //
249 // CPUKeyValues - Emit data of all the subtarget processors.  Used by command
250 // line.
251 //
252 unsigned
253 SubtargetEmitter::CPUKeyValues(raw_ostream &OS,
254                                const DenseMap<Record *, unsigned> &FeatureMap) {
255   // Gather and sort processor information
256   std::vector<Record*> ProcessorList =
257                           Records.getAllDerivedDefinitions("Processor");
258   llvm::sort(ProcessorList, LessRecordFieldName());
259 
260   // Begin processor table
261   OS << "// Sorted (by key) array of values for CPU subtype.\n"
262      << "extern const llvm::SubtargetSubTypeKV " << Target
263      << "SubTypeKV[] = {\n";
264 
265   // For each processor
266   for (Record *Processor : ProcessorList) {
267     StringRef Name = Processor->getValueAsString("Name");
268     RecVec FeatureList = Processor->getValueAsListOfDefs("Features");
269     RecVec TuneFeatureList = Processor->getValueAsListOfDefs("TuneFeatures");
270 
271     // Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } },
272     OS << " { "
273        << "\"" << Name << "\", ";
274 
275     printFeatureMask(OS, FeatureList, FeatureMap);
276     OS << ", ";
277     printFeatureMask(OS, TuneFeatureList, FeatureMap);
278 
279     // Emit the scheduler model pointer.
280     const std::string &ProcModelName =
281       SchedModels.getModelForProc(Processor).ModelName;
282     OS << ", &" << ProcModelName << " },\n";
283   }
284 
285   // End processor table
286   OS << "};\n";
287 
288   return ProcessorList.size();
289 }
290 
291 //
292 // FormItineraryStageString - Compose a string containing the stage
293 // data initialization for the specified itinerary.  N is the number
294 // of stages.
295 //
296 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
297                                                 Record *ItinData,
298                                                 std::string &ItinString,
299                                                 unsigned &NStages) {
300   // Get states list
301   RecVec StageList = ItinData->getValueAsListOfDefs("Stages");
302 
303   // For each stage
304   unsigned N = NStages = StageList.size();
305   for (unsigned i = 0; i < N;) {
306     // Next stage
307     const Record *Stage = StageList[i];
308 
309     // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
310     int Cycles = Stage->getValueAsInt("Cycles");
311     ItinString += "  { " + itostr(Cycles) + ", ";
312 
313     // Get unit list
314     RecVec UnitList = Stage->getValueAsListOfDefs("Units");
315 
316     // For each unit
317     for (unsigned j = 0, M = UnitList.size(); j < M;) {
318       // Add name and bitwise or
319       ItinString += Name + "FU::" + UnitList[j]->getName().str();
320       if (++j < M) ItinString += " | ";
321     }
322 
323     int TimeInc = Stage->getValueAsInt("TimeInc");
324     ItinString += ", " + itostr(TimeInc);
325 
326     int Kind = Stage->getValueAsInt("Kind");
327     ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
328 
329     // Close off stage
330     ItinString += " }";
331     if (++i < N) ItinString += ", ";
332   }
333 }
334 
335 //
336 // FormItineraryOperandCycleString - Compose a string containing the
337 // operand cycle initialization for the specified itinerary.  N is the
338 // number of operands that has cycles specified.
339 //
340 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
341                          std::string &ItinString, unsigned &NOperandCycles) {
342   // Get operand cycle list
343   std::vector<int64_t> OperandCycleList =
344     ItinData->getValueAsListOfInts("OperandCycles");
345 
346   // For each operand cycle
347   unsigned N = NOperandCycles = OperandCycleList.size();
348   for (unsigned i = 0; i < N;) {
349     // Next operand cycle
350     const int OCycle = OperandCycleList[i];
351 
352     ItinString += "  " + itostr(OCycle);
353     if (++i < N) ItinString += ", ";
354   }
355 }
356 
357 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
358                                                  Record *ItinData,
359                                                  std::string &ItinString,
360                                                  unsigned NOperandCycles) {
361   RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses");
362   unsigned N = BypassList.size();
363   unsigned i = 0;
364   for (; i < N;) {
365     ItinString += Name + "Bypass::" + BypassList[i]->getName().str();
366     if (++i < NOperandCycles) ItinString += ", ";
367   }
368   for (; i < NOperandCycles;) {
369     ItinString += " 0";
370     if (++i < NOperandCycles) ItinString += ", ";
371   }
372 }
373 
374 //
375 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
376 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
377 // by CodeGenSchedClass::Index.
378 //
379 void SubtargetEmitter::
380 EmitStageAndOperandCycleData(raw_ostream &OS,
381                              std::vector<std::vector<InstrItinerary>>
382                                &ProcItinLists) {
383   // Multiple processor models may share an itinerary record. Emit it once.
384   SmallPtrSet<Record*, 8> ItinsDefSet;
385 
386   // Emit functional units for all the itineraries.
387   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
388 
389     if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
390       continue;
391 
392     RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
393     if (FUs.empty())
394       continue;
395 
396     StringRef Name = ProcModel.ItinsDef->getName();
397     OS << "\n// Functional units for \"" << Name << "\"\n"
398        << "namespace " << Name << "FU {\n";
399 
400     for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
401       OS << "  const InstrStage::FuncUnits " << FUs[j]->getName()
402          << " = 1ULL << " << j << ";\n";
403 
404     OS << "} // end namespace " << Name << "FU\n";
405 
406     RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
407     if (!BPs.empty()) {
408       OS << "\n// Pipeline forwarding paths for itineraries \"" << Name
409          << "\"\n" << "namespace " << Name << "Bypass {\n";
410 
411       OS << "  const unsigned NoBypass = 0;\n";
412       for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
413         OS << "  const unsigned " << BPs[j]->getName()
414            << " = 1 << " << j << ";\n";
415 
416       OS << "} // end namespace " << Name << "Bypass\n";
417     }
418   }
419 
420   // Begin stages table
421   std::string StageTable = "\nextern const llvm::InstrStage " + Target +
422                            "Stages[] = {\n";
423   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
424 
425   // Begin operand cycle table
426   std::string OperandCycleTable = "extern const unsigned " + Target +
427     "OperandCycles[] = {\n";
428   OperandCycleTable += "  0, // No itinerary\n";
429 
430   // Begin pipeline bypass table
431   std::string BypassTable = "extern const unsigned " + Target +
432     "ForwardingPaths[] = {\n";
433   BypassTable += " 0, // No itinerary\n";
434 
435   // For each Itinerary across all processors, add a unique entry to the stages,
436   // operand cycles, and pipeline bypass tables. Then add the new Itinerary
437   // object with computed offsets to the ProcItinLists result.
438   unsigned StageCount = 1, OperandCycleCount = 1;
439   std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
440   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
441     // Add process itinerary to the list.
442     ProcItinLists.resize(ProcItinLists.size()+1);
443 
444     // If this processor defines no itineraries, then leave the itinerary list
445     // empty.
446     std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
447     if (!ProcModel.hasItineraries())
448       continue;
449 
450     StringRef Name = ProcModel.ItinsDef->getName();
451 
452     ItinList.resize(SchedModels.numInstrSchedClasses());
453     assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
454 
455     for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
456          SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
457 
458       // Next itinerary data
459       Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
460 
461       // Get string and stage count
462       std::string ItinStageString;
463       unsigned NStages = 0;
464       if (ItinData)
465         FormItineraryStageString(std::string(Name), ItinData, ItinStageString,
466                                  NStages);
467 
468       // Get string and operand cycle count
469       std::string ItinOperandCycleString;
470       unsigned NOperandCycles = 0;
471       std::string ItinBypassString;
472       if (ItinData) {
473         FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
474                                         NOperandCycles);
475 
476         FormItineraryBypassString(std::string(Name), ItinData, ItinBypassString,
477                                   NOperandCycles);
478       }
479 
480       // Check to see if stage already exists and create if it doesn't
481       uint16_t FindStage = 0;
482       if (NStages > 0) {
483         FindStage = ItinStageMap[ItinStageString];
484         if (FindStage == 0) {
485           // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
486           StageTable += ItinStageString + ", // " + itostr(StageCount);
487           if (NStages > 1)
488             StageTable += "-" + itostr(StageCount + NStages - 1);
489           StageTable += "\n";
490           // Record Itin class number.
491           ItinStageMap[ItinStageString] = FindStage = StageCount;
492           StageCount += NStages;
493         }
494       }
495 
496       // Check to see if operand cycle already exists and create if it doesn't
497       uint16_t FindOperandCycle = 0;
498       if (NOperandCycles > 0) {
499         std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
500         FindOperandCycle = ItinOperandMap[ItinOperandString];
501         if (FindOperandCycle == 0) {
502           // Emit as  cycle, // index
503           OperandCycleTable += ItinOperandCycleString + ", // ";
504           std::string OperandIdxComment = itostr(OperandCycleCount);
505           if (NOperandCycles > 1)
506             OperandIdxComment += "-"
507               + itostr(OperandCycleCount + NOperandCycles - 1);
508           OperandCycleTable += OperandIdxComment + "\n";
509           // Record Itin class number.
510           ItinOperandMap[ItinOperandCycleString] =
511             FindOperandCycle = OperandCycleCount;
512           // Emit as bypass, // index
513           BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
514           OperandCycleCount += NOperandCycles;
515         }
516       }
517 
518       // Set up itinerary as location and location + stage count
519       int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
520       InstrItinerary Intinerary = {
521           NumUOps,
522           FindStage,
523           uint16_t(FindStage + NStages),
524           FindOperandCycle,
525           uint16_t(FindOperandCycle + NOperandCycles),
526       };
527 
528       // Inject - empty slots will be 0, 0
529       ItinList[SchedClassIdx] = Intinerary;
530     }
531   }
532 
533   // Closing stage
534   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
535   StageTable += "};\n";
536 
537   // Closing operand cycles
538   OperandCycleTable += "  0 // End operand cycles\n";
539   OperandCycleTable += "};\n";
540 
541   BypassTable += " 0 // End bypass tables\n";
542   BypassTable += "};\n";
543 
544   // Emit tables.
545   OS << StageTable;
546   OS << OperandCycleTable;
547   OS << BypassTable;
548 }
549 
550 //
551 // EmitProcessorData - Generate data for processor itineraries that were
552 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
553 // Itineraries for each processor. The Itinerary lists are indexed on
554 // CodeGenSchedClass::Index.
555 //
556 void SubtargetEmitter::
557 EmitItineraries(raw_ostream &OS,
558                 std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
559   // Multiple processor models may share an itinerary record. Emit it once.
560   SmallPtrSet<Record*, 8> ItinsDefSet;
561 
562   // For each processor's machine model
563   std::vector<std::vector<InstrItinerary>>::iterator
564       ProcItinListsIter = ProcItinLists.begin();
565   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
566          PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
567 
568     Record *ItinsDef = PI->ItinsDef;
569     if (!ItinsDefSet.insert(ItinsDef).second)
570       continue;
571 
572     // Get the itinerary list for the processor.
573     assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
574     std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
575 
576     // Empty itineraries aren't referenced anywhere in the tablegen output
577     // so don't emit them.
578     if (ItinList.empty())
579       continue;
580 
581     OS << "\n";
582     OS << "static const llvm::InstrItinerary ";
583 
584     // Begin processor itinerary table
585     OS << ItinsDef->getName() << "[] = {\n";
586 
587     // For each itinerary class in CodeGenSchedClass::Index order.
588     for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
589       InstrItinerary &Intinerary = ItinList[j];
590 
591       // Emit Itinerary in the form of
592       // { firstStage, lastStage, firstCycle, lastCycle } // index
593       OS << "  { " <<
594         Intinerary.NumMicroOps << ", " <<
595         Intinerary.FirstStage << ", " <<
596         Intinerary.LastStage << ", " <<
597         Intinerary.FirstOperandCycle << ", " <<
598         Intinerary.LastOperandCycle << " }" <<
599         ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
600     }
601     // End processor itinerary table
602     OS << "  { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
603           "// end marker\n";
604     OS << "};\n";
605   }
606 }
607 
608 // Emit either the value defined in the TableGen Record, or the default
609 // value defined in the C++ header. The Record is null if the processor does not
610 // define a model.
611 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
612                                          StringRef Name, char Separator) {
613   OS << "  ";
614   int V = R ? R->getValueAsInt(Name) : -1;
615   if (V >= 0)
616     OS << V << Separator << " // " << Name;
617   else
618     OS << "MCSchedModel::Default" << Name << Separator;
619   OS << '\n';
620 }
621 
622 void SubtargetEmitter::EmitProcessorResourceSubUnits(
623     const CodeGenProcModel &ProcModel, raw_ostream &OS) {
624   OS << "\nstatic const unsigned " << ProcModel.ModelName
625      << "ProcResourceSubUnits[] = {\n"
626      << "  0,  // Invalid\n";
627 
628   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
629     Record *PRDef = ProcModel.ProcResourceDefs[i];
630     if (!PRDef->isSubClassOf("ProcResGroup"))
631       continue;
632     RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
633     for (Record *RUDef : ResUnits) {
634       Record *const RU =
635           SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc());
636       for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) {
637         OS << "  " << ProcModel.getProcResourceIdx(RU) << ", ";
638       }
639     }
640     OS << "  // " << PRDef->getName() << "\n";
641   }
642   OS << "};\n";
643 }
644 
645 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
646                                       raw_ostream &OS) {
647   int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
648   if (Record *RCU = ProcModel.RetireControlUnit) {
649     ReorderBufferSize =
650         std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
651     MaxRetirePerCycle =
652         std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
653   }
654 
655   OS << ReorderBufferSize << ", // ReorderBufferSize\n  ";
656   OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n  ";
657 }
658 
659 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel,
660                                  unsigned NumRegisterFiles,
661                                  unsigned NumCostEntries, raw_ostream &OS) {
662   if (NumRegisterFiles)
663     OS << ProcModel.ModelName << "RegisterFiles,\n  " << (1 + NumRegisterFiles);
664   else
665     OS << "nullptr,\n  0";
666 
667   OS << ", // Number of register files.\n  ";
668   if (NumCostEntries)
669     OS << ProcModel.ModelName << "RegisterCosts,\n  ";
670   else
671     OS << "nullptr,\n  ";
672   OS << NumCostEntries << ", // Number of register cost entries.\n";
673 }
674 
675 unsigned
676 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
677                                          raw_ostream &OS) {
678   if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
679         return RF.hasDefaultCosts();
680       }))
681     return 0;
682 
683   // Print the RegisterCost table first.
684   OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n";
685   OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName
686      << "RegisterCosts"
687      << "[] = {\n";
688 
689   for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) {
690     // Skip register files with a default cost table.
691     if (RF.hasDefaultCosts())
692       continue;
693     // Add entries to the cost table.
694     for (const CodeGenRegisterCost &RC : RF.Costs) {
695       OS << "  { ";
696       Record *Rec = RC.RCDef;
697       if (Rec->getValue("Namespace"))
698         OS << Rec->getValueAsString("Namespace") << "::";
699       OS << Rec->getName() << "RegClassID, " << RC.Cost << ", "
700          << RC.AllowMoveElimination << "},\n";
701     }
702   }
703   OS << "};\n";
704 
705   // Now generate a table with register file info.
706   OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, "
707      << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n";
708   OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName
709      << "RegisterFiles"
710      << "[] = {\n"
711      << "  { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n";
712   unsigned CostTblIndex = 0;
713 
714   for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) {
715     OS << "  { ";
716     OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", ";
717     unsigned NumCostEntries = RD.Costs.size();
718     OS << NumCostEntries << ", " << CostTblIndex << ", "
719        << RD.MaxMovesEliminatedPerCycle << ", "
720        << RD.AllowZeroMoveEliminationOnly << "},\n";
721     CostTblIndex += NumCostEntries;
722   }
723   OS << "};\n";
724 
725   return CostTblIndex;
726 }
727 
728 void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
729                                               raw_ostream &OS) {
730   unsigned QueueID = 0;
731   if (ProcModel.LoadQueue) {
732     const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor");
733     QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
734                                 find(ProcModel.ProcResourceDefs, Queue));
735   }
736   OS << "  " << QueueID << ", // Resource Descriptor for the Load Queue\n";
737 
738   QueueID = 0;
739   if (ProcModel.StoreQueue) {
740     const Record *Queue =
741         ProcModel.StoreQueue->getValueAsDef("QueueDescriptor");
742     QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
743                                 find(ProcModel.ProcResourceDefs, Queue));
744   }
745   OS << "  " << QueueID << ", // Resource Descriptor for the Store Queue\n";
746 }
747 
748 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
749                                               raw_ostream &OS) {
750   // Generate a table of register file descriptors (one entry per each user
751   // defined register file), and a table of register costs.
752   unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS);
753 
754   // Now generate a table for the extra processor info.
755   OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName
756      << "ExtraInfo = {\n  ";
757 
758   // Add information related to the retire control unit.
759   EmitRetireControlUnitInfo(ProcModel, OS);
760 
761   // Add information related to the register files (i.e. where to find register
762   // file descriptors and register costs).
763   EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
764                        NumCostEntries, OS);
765 
766   // Add information about load/store queues.
767   EmitLoadStoreQueueInfo(ProcModel, OS);
768 
769   OS << "};\n";
770 }
771 
772 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
773                                               raw_ostream &OS) {
774   EmitProcessorResourceSubUnits(ProcModel, OS);
775 
776   OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n";
777   OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName
778      << "ProcResources"
779      << "[] = {\n"
780      << "  {\"InvalidUnit\", 0, 0, 0, 0},\n";
781 
782   unsigned SubUnitsOffset = 1;
783   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
784     Record *PRDef = ProcModel.ProcResourceDefs[i];
785 
786     Record *SuperDef = nullptr;
787     unsigned SuperIdx = 0;
788     unsigned NumUnits = 0;
789     const unsigned SubUnitsBeginOffset = SubUnitsOffset;
790     int BufferSize = PRDef->getValueAsInt("BufferSize");
791     if (PRDef->isSubClassOf("ProcResGroup")) {
792       RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
793       for (Record *RU : ResUnits) {
794         NumUnits += RU->getValueAsInt("NumUnits");
795         SubUnitsOffset += RU->getValueAsInt("NumUnits");
796       }
797     }
798     else {
799       // Find the SuperIdx
800       if (PRDef->getValueInit("Super")->isComplete()) {
801         SuperDef =
802             SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
803                                          ProcModel, PRDef->getLoc());
804         SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
805       }
806       NumUnits = PRDef->getValueAsInt("NumUnits");
807     }
808     // Emit the ProcResourceDesc
809     OS << "  {\"" << PRDef->getName() << "\", ";
810     if (PRDef->getName().size() < 15)
811       OS.indent(15 - PRDef->getName().size());
812     OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", ";
813     if (SubUnitsBeginOffset != SubUnitsOffset) {
814       OS << ProcModel.ModelName << "ProcResourceSubUnits + "
815          << SubUnitsBeginOffset;
816     } else {
817       OS << "nullptr";
818     }
819     OS << "}, // #" << i+1;
820     if (SuperDef)
821       OS << ", Super=" << SuperDef->getName();
822     OS << "\n";
823   }
824   OS << "};\n";
825 }
826 
827 // Find the WriteRes Record that defines processor resources for this
828 // SchedWrite.
829 Record *SubtargetEmitter::FindWriteResources(
830   const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
831 
832   // Check if the SchedWrite is already subtarget-specific and directly
833   // specifies a set of processor resources.
834   if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
835     return SchedWrite.TheDef;
836 
837   Record *AliasDef = nullptr;
838   for (Record *A : SchedWrite.Aliases) {
839     const CodeGenSchedRW &AliasRW =
840       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
841     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
842       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
843       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
844         continue;
845     }
846     if (AliasDef)
847       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
848                     "defined for processor " + ProcModel.ModelName +
849                     " Ensure only one SchedAlias exists per RW.");
850     AliasDef = AliasRW.TheDef;
851   }
852   if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
853     return AliasDef;
854 
855   // Check this processor's list of write resources.
856   Record *ResDef = nullptr;
857   for (Record *WR : ProcModel.WriteResDefs) {
858     if (!WR->isSubClassOf("WriteRes"))
859       continue;
860     if (AliasDef == WR->getValueAsDef("WriteType")
861         || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
862       if (ResDef) {
863         PrintFatalError(WR->getLoc(), "Resources are defined for both "
864                       "SchedWrite and its alias on processor " +
865                       ProcModel.ModelName);
866       }
867       ResDef = WR;
868     }
869   }
870   // TODO: If ProcModel has a base model (previous generation processor),
871   // then call FindWriteResources recursively with that model here.
872   if (!ResDef) {
873     PrintFatalError(ProcModel.ModelDef->getLoc(),
874                     Twine("Processor does not define resources for ") +
875                     SchedWrite.TheDef->getName());
876   }
877   return ResDef;
878 }
879 
880 /// Find the ReadAdvance record for the given SchedRead on this processor or
881 /// return NULL.
882 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
883                                           const CodeGenProcModel &ProcModel) {
884   // Check for SchedReads that directly specify a ReadAdvance.
885   if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
886     return SchedRead.TheDef;
887 
888   // Check this processor's list of aliases for SchedRead.
889   Record *AliasDef = nullptr;
890   for (Record *A : SchedRead.Aliases) {
891     const CodeGenSchedRW &AliasRW =
892       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
893     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
894       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
895       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
896         continue;
897     }
898     if (AliasDef)
899       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
900                     "defined for processor " + ProcModel.ModelName +
901                     " Ensure only one SchedAlias exists per RW.");
902     AliasDef = AliasRW.TheDef;
903   }
904   if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
905     return AliasDef;
906 
907   // Check this processor's ReadAdvanceList.
908   Record *ResDef = nullptr;
909   for (Record *RA : ProcModel.ReadAdvanceDefs) {
910     if (!RA->isSubClassOf("ReadAdvance"))
911       continue;
912     if (AliasDef == RA->getValueAsDef("ReadType")
913         || SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
914       if (ResDef) {
915         PrintFatalError(RA->getLoc(), "Resources are defined for both "
916                       "SchedRead and its alias on processor " +
917                       ProcModel.ModelName);
918       }
919       ResDef = RA;
920     }
921   }
922   // TODO: If ProcModel has a base model (previous generation processor),
923   // then call FindReadAdvance recursively with that model here.
924   if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
925     PrintFatalError(ProcModel.ModelDef->getLoc(),
926                     Twine("Processor does not define resources for ") +
927                     SchedRead.TheDef->getName());
928   }
929   return ResDef;
930 }
931 
932 // Expand an explicit list of processor resources into a full list of implied
933 // resource groups and super resources that cover them.
934 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
935                                            std::vector<int64_t> &Cycles,
936                                            const CodeGenProcModel &PM) {
937   assert(PRVec.size() == Cycles.size() && "failed precondition");
938   for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
939     Record *PRDef = PRVec[i];
940     RecVec SubResources;
941     if (PRDef->isSubClassOf("ProcResGroup"))
942       SubResources = PRDef->getValueAsListOfDefs("Resources");
943     else {
944       SubResources.push_back(PRDef);
945       PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
946       for (Record *SubDef = PRDef;
947            SubDef->getValueInit("Super")->isComplete();) {
948         if (SubDef->isSubClassOf("ProcResGroup")) {
949           // Disallow this for simplicitly.
950           PrintFatalError(SubDef->getLoc(), "Processor resource group "
951                           " cannot be a super resources.");
952         }
953         Record *SuperDef =
954             SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM,
955                                          SubDef->getLoc());
956         PRVec.push_back(SuperDef);
957         Cycles.push_back(Cycles[i]);
958         SubDef = SuperDef;
959       }
960     }
961     for (Record *PR : PM.ProcResourceDefs) {
962       if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
963         continue;
964       RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
965       RecIter SubI = SubResources.begin(), SubE = SubResources.end();
966       for( ; SubI != SubE; ++SubI) {
967         if (!is_contained(SuperResources, *SubI)) {
968           break;
969         }
970       }
971       if (SubI == SubE) {
972         PRVec.push_back(PR);
973         Cycles.push_back(Cycles[i]);
974       }
975     }
976   }
977 }
978 
979 // Generate the SchedClass table for this processor and update global
980 // tables. Must be called for each processor in order.
981 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
982                                            SchedClassTables &SchedTables) {
983   SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
984   if (!ProcModel.hasInstrSchedModel())
985     return;
986 
987   std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
988   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
989   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
990     LLVM_DEBUG(SC.dump(&SchedModels));
991 
992     SCTab.resize(SCTab.size() + 1);
993     MCSchedClassDesc &SCDesc = SCTab.back();
994     // SCDesc.Name is guarded by NDEBUG
995     SCDesc.NumMicroOps = 0;
996     SCDesc.BeginGroup = false;
997     SCDesc.EndGroup = false;
998     SCDesc.WriteProcResIdx = 0;
999     SCDesc.WriteLatencyIdx = 0;
1000     SCDesc.ReadAdvanceIdx = 0;
1001 
1002     // A Variant SchedClass has no resources of its own.
1003     bool HasVariants = false;
1004     for (const CodeGenSchedTransition &CGT :
1005            make_range(SC.Transitions.begin(), SC.Transitions.end())) {
1006       if (CGT.ProcIndex == ProcModel.Index) {
1007         HasVariants = true;
1008         break;
1009       }
1010     }
1011     if (HasVariants) {
1012       SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
1013       continue;
1014     }
1015 
1016     // Determine if the SchedClass is actually reachable on this processor. If
1017     // not don't try to locate the processor resources, it will fail.
1018     // If ProcIndices contains 0, this class applies to all processors.
1019     assert(!SC.ProcIndices.empty() && "expect at least one procidx");
1020     if (SC.ProcIndices[0] != 0) {
1021       if (!is_contained(SC.ProcIndices, ProcModel.Index))
1022         continue;
1023     }
1024     IdxVec Writes = SC.Writes;
1025     IdxVec Reads = SC.Reads;
1026     if (!SC.InstRWs.empty()) {
1027       // This class has a default ReadWrite list which can be overridden by
1028       // InstRW definitions.
1029       Record *RWDef = nullptr;
1030       for (Record *RW : SC.InstRWs) {
1031         Record *RWModelDef = RW->getValueAsDef("SchedModel");
1032         if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
1033           RWDef = RW;
1034           break;
1035         }
1036       }
1037       if (RWDef) {
1038         Writes.clear();
1039         Reads.clear();
1040         SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
1041                             Writes, Reads);
1042       }
1043     }
1044     if (Writes.empty()) {
1045       // Check this processor's itinerary class resources.
1046       for (Record *I : ProcModel.ItinRWDefs) {
1047         RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
1048         if (is_contained(Matched, SC.ItinClassDef)) {
1049           SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
1050                               Writes, Reads);
1051           break;
1052         }
1053       }
1054       if (Writes.empty()) {
1055         LLVM_DEBUG(dbgs() << ProcModel.ModelName
1056                           << " does not have resources for class " << SC.Name
1057                           << '\n');
1058         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1059       }
1060     }
1061     // Sum resources across all operand writes.
1062     std::vector<MCWriteProcResEntry> WriteProcResources;
1063     std::vector<MCWriteLatencyEntry> WriteLatencies;
1064     std::vector<std::string> WriterNames;
1065     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
1066     for (unsigned W : Writes) {
1067       IdxVec WriteSeq;
1068       SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
1069                                      ProcModel);
1070 
1071       // For each operand, create a latency entry.
1072       MCWriteLatencyEntry WLEntry;
1073       WLEntry.Cycles = 0;
1074       unsigned WriteID = WriteSeq.back();
1075       WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
1076       // If this Write is not referenced by a ReadAdvance, don't distinguish it
1077       // from other WriteLatency entries.
1078       if (!SchedModels.hasReadOfWrite(
1079             SchedModels.getSchedWrite(WriteID).TheDef)) {
1080         WriteID = 0;
1081       }
1082       WLEntry.WriteResourceID = WriteID;
1083 
1084       for (unsigned WS : WriteSeq) {
1085 
1086         Record *WriteRes =
1087           FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
1088 
1089         // Mark the parent class as invalid for unsupported write types.
1090         if (WriteRes->getValueAsBit("Unsupported")) {
1091           SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1092           break;
1093         }
1094         WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
1095         SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
1096         SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
1097         SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
1098         SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
1099         SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
1100 
1101         // Create an entry for each ProcResource listed in WriteRes.
1102         RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
1103         std::vector<int64_t> Cycles =
1104           WriteRes->getValueAsListOfInts("ResourceCycles");
1105 
1106         if (Cycles.empty()) {
1107           // If ResourceCycles is not provided, default to one cycle per
1108           // resource.
1109           Cycles.resize(PRVec.size(), 1);
1110         } else if (Cycles.size() != PRVec.size()) {
1111           // If ResourceCycles is provided, check consistency.
1112           PrintFatalError(
1113               WriteRes->getLoc(),
1114               Twine("Inconsistent resource cycles: !size(ResourceCycles) != "
1115                     "!size(ProcResources): ")
1116                   .concat(Twine(PRVec.size()))
1117                   .concat(" vs ")
1118                   .concat(Twine(Cycles.size())));
1119         }
1120 
1121         ExpandProcResources(PRVec, Cycles, ProcModel);
1122 
1123         for (unsigned PRIdx = 0, PREnd = PRVec.size();
1124              PRIdx != PREnd; ++PRIdx) {
1125           MCWriteProcResEntry WPREntry;
1126           WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
1127           assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
1128           WPREntry.Cycles = Cycles[PRIdx];
1129           // If this resource is already used in this sequence, add the current
1130           // entry's cycles so that the same resource appears to be used
1131           // serially, rather than multiple parallel uses. This is important for
1132           // in-order machine where the resource consumption is a hazard.
1133           unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
1134           for( ; WPRIdx != WPREnd; ++WPRIdx) {
1135             if (WriteProcResources[WPRIdx].ProcResourceIdx
1136                 == WPREntry.ProcResourceIdx) {
1137               WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
1138               break;
1139             }
1140           }
1141           if (WPRIdx == WPREnd)
1142             WriteProcResources.push_back(WPREntry);
1143         }
1144       }
1145       WriteLatencies.push_back(WLEntry);
1146     }
1147     // Create an entry for each operand Read in this SchedClass.
1148     // Entries must be sorted first by UseIdx then by WriteResourceID.
1149     for (unsigned UseIdx = 0, EndIdx = Reads.size();
1150          UseIdx != EndIdx; ++UseIdx) {
1151       Record *ReadAdvance =
1152         FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
1153       if (!ReadAdvance)
1154         continue;
1155 
1156       // Mark the parent class as invalid for unsupported write types.
1157       if (ReadAdvance->getValueAsBit("Unsupported")) {
1158         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1159         break;
1160       }
1161       RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
1162       IdxVec WriteIDs;
1163       if (ValidWrites.empty())
1164         WriteIDs.push_back(0);
1165       else {
1166         for (Record *VW : ValidWrites) {
1167           WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
1168         }
1169       }
1170       llvm::sort(WriteIDs);
1171       for(unsigned W : WriteIDs) {
1172         MCReadAdvanceEntry RAEntry;
1173         RAEntry.UseIdx = UseIdx;
1174         RAEntry.WriteResourceID = W;
1175         RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1176         ReadAdvanceEntries.push_back(RAEntry);
1177       }
1178     }
1179     if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1180       WriteProcResources.clear();
1181       WriteLatencies.clear();
1182       ReadAdvanceEntries.clear();
1183     }
1184     // Add the information for this SchedClass to the global tables using basic
1185     // compression.
1186     //
1187     // WritePrecRes entries are sorted by ProcResIdx.
1188     llvm::sort(WriteProcResources, LessWriteProcResources());
1189 
1190     SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1191     std::vector<MCWriteProcResEntry>::iterator WPRPos =
1192       std::search(SchedTables.WriteProcResources.begin(),
1193                   SchedTables.WriteProcResources.end(),
1194                   WriteProcResources.begin(), WriteProcResources.end());
1195     if (WPRPos != SchedTables.WriteProcResources.end())
1196       SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1197     else {
1198       SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1199       SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1200                                             WriteProcResources.end());
1201     }
1202     // Latency entries must remain in operand order.
1203     SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1204     std::vector<MCWriteLatencyEntry>::iterator WLPos =
1205       std::search(SchedTables.WriteLatencies.begin(),
1206                   SchedTables.WriteLatencies.end(),
1207                   WriteLatencies.begin(), WriteLatencies.end());
1208     if (WLPos != SchedTables.WriteLatencies.end()) {
1209       unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1210       SCDesc.WriteLatencyIdx = idx;
1211       for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1212         if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1213             std::string::npos) {
1214           SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1215         }
1216     }
1217     else {
1218       SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1219       llvm::append_range(SchedTables.WriteLatencies, WriteLatencies);
1220       llvm::append_range(SchedTables.WriterNames, WriterNames);
1221     }
1222     // ReadAdvanceEntries must remain in operand order.
1223     SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1224     std::vector<MCReadAdvanceEntry>::iterator RAPos =
1225       std::search(SchedTables.ReadAdvanceEntries.begin(),
1226                   SchedTables.ReadAdvanceEntries.end(),
1227                   ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1228     if (RAPos != SchedTables.ReadAdvanceEntries.end())
1229       SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1230     else {
1231       SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1232       llvm::append_range(SchedTables.ReadAdvanceEntries, ReadAdvanceEntries);
1233     }
1234   }
1235 }
1236 
1237 // Emit SchedClass tables for all processors and associated global tables.
1238 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1239                                             raw_ostream &OS) {
1240   // Emit global WriteProcResTable.
1241   OS << "\n// {ProcResourceIdx, Cycles}\n"
1242      << "extern const llvm::MCWriteProcResEntry "
1243      << Target << "WriteProcResTable[] = {\n"
1244      << "  { 0,  0}, // Invalid\n";
1245   for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1246        WPRIdx != WPREnd; ++WPRIdx) {
1247     MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1248     OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1249        << format("%2d", WPREntry.Cycles) << "}";
1250     if (WPRIdx + 1 < WPREnd)
1251       OS << ',';
1252     OS << " // #" << WPRIdx << '\n';
1253   }
1254   OS << "}; // " << Target << "WriteProcResTable\n";
1255 
1256   // Emit global WriteLatencyTable.
1257   OS << "\n// {Cycles, WriteResourceID}\n"
1258      << "extern const llvm::MCWriteLatencyEntry "
1259      << Target << "WriteLatencyTable[] = {\n"
1260      << "  { 0,  0}, // Invalid\n";
1261   for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1262        WLIdx != WLEnd; ++WLIdx) {
1263     MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1264     OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
1265        << format("%2d", WLEntry.WriteResourceID) << "}";
1266     if (WLIdx + 1 < WLEnd)
1267       OS << ',';
1268     OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1269   }
1270   OS << "}; // " << Target << "WriteLatencyTable\n";
1271 
1272   // Emit global ReadAdvanceTable.
1273   OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1274      << "extern const llvm::MCReadAdvanceEntry "
1275      << Target << "ReadAdvanceTable[] = {\n"
1276      << "  {0,  0,  0}, // Invalid\n";
1277   for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1278        RAIdx != RAEnd; ++RAIdx) {
1279     MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1280     OS << "  {" << RAEntry.UseIdx << ", "
1281        << format("%2d", RAEntry.WriteResourceID) << ", "
1282        << format("%2d", RAEntry.Cycles) << "}";
1283     if (RAIdx + 1 < RAEnd)
1284       OS << ',';
1285     OS << " // #" << RAIdx << '\n';
1286   }
1287   OS << "}; // " << Target << "ReadAdvanceTable\n";
1288 
1289   // Emit a SchedClass table for each processor.
1290   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1291          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1292     if (!PI->hasInstrSchedModel())
1293       continue;
1294 
1295     std::vector<MCSchedClassDesc> &SCTab =
1296       SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1297 
1298     OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
1299        << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1300     OS << "static const llvm::MCSchedClassDesc "
1301        << PI->ModelName << "SchedClasses[] = {\n";
1302 
1303     // The first class is always invalid. We no way to distinguish it except by
1304     // name and position.
1305     assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1306            && "invalid class not first");
1307     OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
1308        << MCSchedClassDesc::InvalidNumMicroOps
1309        << ", false, false,  0, 0,  0, 0,  0, 0},\n";
1310 
1311     for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1312       MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1313       const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1314       OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
1315       if (SchedClass.Name.size() < 18)
1316         OS.indent(18 - SchedClass.Name.size());
1317       OS << MCDesc.NumMicroOps
1318          << ", " << ( MCDesc.BeginGroup ? "true" : "false" )
1319          << ", " << ( MCDesc.EndGroup ? "true" : "false" )
1320          << ", " << format("%2d", MCDesc.WriteProcResIdx)
1321          << ", " << MCDesc.NumWriteProcResEntries
1322          << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1323          << ", " << MCDesc.NumWriteLatencyEntries
1324          << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1325          << ", " << MCDesc.NumReadAdvanceEntries
1326          << "}, // #" << SCIdx << '\n';
1327     }
1328     OS << "}; // " << PI->ModelName << "SchedClasses\n";
1329   }
1330 }
1331 
1332 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1333   // For each processor model.
1334   for (const CodeGenProcModel &PM : SchedModels.procModels()) {
1335     // Emit extra processor info if available.
1336     if (PM.hasExtraProcessorInfo())
1337       EmitExtraProcessorInfo(PM, OS);
1338     // Emit processor resource table.
1339     if (PM.hasInstrSchedModel())
1340       EmitProcessorResources(PM, OS);
1341     else if(!PM.ProcResourceDefs.empty())
1342       PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
1343                     "ProcResources without defining WriteRes SchedWriteRes");
1344 
1345     // Begin processor itinerary properties
1346     OS << "\n";
1347     OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
1348     EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
1349     EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
1350     EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
1351     EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
1352     EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
1353     EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
1354 
1355     bool PostRAScheduler =
1356       (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
1357 
1358     OS << "  " << (PostRAScheduler ? "true" : "false")  << ", // "
1359        << "PostRAScheduler\n";
1360 
1361     bool CompleteModel =
1362       (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
1363 
1364     OS << "  " << (CompleteModel ? "true" : "false") << ", // "
1365        << "CompleteModel\n";
1366 
1367     OS << "  " << PM.Index << ", // Processor ID\n";
1368     if (PM.hasInstrSchedModel())
1369       OS << "  " << PM.ModelName << "ProcResources" << ",\n"
1370          << "  " << PM.ModelName << "SchedClasses" << ",\n"
1371          << "  " << PM.ProcResourceDefs.size()+1 << ",\n"
1372          << "  " << (SchedModels.schedClassEnd()
1373                      - SchedModels.schedClassBegin()) << ",\n";
1374     else
1375       OS << "  nullptr, nullptr, 0, 0,"
1376          << " // No instruction-level machine model.\n";
1377     if (PM.hasItineraries())
1378       OS << "  " << PM.ItinsDef->getName() << ",\n";
1379     else
1380       OS << "  nullptr, // No Itinerary\n";
1381     if (PM.hasExtraProcessorInfo())
1382       OS << "  &" << PM.ModelName << "ExtraInfo,\n";
1383     else
1384       OS << "  nullptr // No extra processor descriptor\n";
1385     OS << "};\n";
1386   }
1387 }
1388 
1389 //
1390 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1391 //
1392 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1393   OS << "#ifdef DBGFIELD\n"
1394      << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1395      << "#endif\n"
1396      << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
1397      << "#define DBGFIELD(x) x,\n"
1398      << "#else\n"
1399      << "#define DBGFIELD(x)\n"
1400      << "#endif\n";
1401 
1402   if (SchedModels.hasItineraries()) {
1403     std::vector<std::vector<InstrItinerary>> ProcItinLists;
1404     // Emit the stage data
1405     EmitStageAndOperandCycleData(OS, ProcItinLists);
1406     EmitItineraries(OS, ProcItinLists);
1407   }
1408   OS << "\n// ===============================================================\n"
1409      << "// Data tables for the new per-operand machine model.\n";
1410 
1411   SchedClassTables SchedTables;
1412   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
1413     GenSchedClassTables(ProcModel, SchedTables);
1414   }
1415   EmitSchedClassTables(SchedTables, OS);
1416 
1417   OS << "\n#undef DBGFIELD\n";
1418 
1419   // Emit the processor machine model
1420   EmitProcessorModels(OS);
1421 }
1422 
1423 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) {
1424   std::string Buffer;
1425   raw_string_ostream Stream(Buffer);
1426 
1427   // Collect all the PredicateProlog records and print them to the output
1428   // stream.
1429   std::vector<Record *> Prologs =
1430       Records.getAllDerivedDefinitions("PredicateProlog");
1431   llvm::sort(Prologs, LessRecord());
1432   for (Record *P : Prologs)
1433     Stream << P->getValueAsString("Code") << '\n';
1434 
1435   Stream.flush();
1436   OS << Buffer;
1437 }
1438 
1439 static bool isTruePredicate(const Record *Rec) {
1440   return Rec->isSubClassOf("MCSchedPredicate") &&
1441          Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
1442 }
1443 
1444 static void emitPredicates(const CodeGenSchedTransition &T,
1445                            const CodeGenSchedClass &SC, PredicateExpander &PE,
1446                            raw_ostream &OS) {
1447   std::string Buffer;
1448   raw_string_ostream SS(Buffer);
1449 
1450   // If not all predicates are MCTrue, then we need an if-stmt.
1451   unsigned NumNonTruePreds =
1452       T.PredTerm.size() - count_if(T.PredTerm, isTruePredicate);
1453 
1454   SS.indent(PE.getIndentLevel() * 2);
1455 
1456   if (NumNonTruePreds) {
1457     bool FirstNonTruePredicate = true;
1458     SS << "if (";
1459 
1460     PE.setIndentLevel(PE.getIndentLevel() + 2);
1461 
1462     for (const Record *Rec : T.PredTerm) {
1463       // Skip predicates that evaluate to "true".
1464       if (isTruePredicate(Rec))
1465         continue;
1466 
1467       if (FirstNonTruePredicate) {
1468         FirstNonTruePredicate = false;
1469       } else {
1470         SS << "\n";
1471         SS.indent(PE.getIndentLevel() * 2);
1472         SS << "&& ";
1473       }
1474 
1475       if (Rec->isSubClassOf("MCSchedPredicate")) {
1476         PE.expandPredicate(SS, Rec->getValueAsDef("Pred"));
1477         continue;
1478       }
1479 
1480       // Expand this legacy predicate and wrap it around braces if there is more
1481       // than one predicate to expand.
1482       SS << ((NumNonTruePreds > 1) ? "(" : "")
1483          << Rec->getValueAsString("Predicate")
1484          << ((NumNonTruePreds > 1) ? ")" : "");
1485     }
1486 
1487     SS << ")\n"; // end of if-stmt
1488     PE.decreaseIndentLevel();
1489     SS.indent(PE.getIndentLevel() * 2);
1490     PE.decreaseIndentLevel();
1491   }
1492 
1493   SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n';
1494   SS.flush();
1495   OS << Buffer;
1496 }
1497 
1498 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate
1499 // epilogue code for the auto-generated helper.
1500 static void emitSchedModelHelperEpilogue(raw_ostream &OS,
1501                                          bool ShouldReturnZero) {
1502   if (ShouldReturnZero) {
1503     OS << "  // Don't know how to resolve this scheduling class.\n"
1504        << "  return 0;\n";
1505     return;
1506   }
1507 
1508   OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n";
1509 }
1510 
1511 static bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
1512   return all_of(T.PredTerm, [](const Record *Rec) {
1513     return Rec->isSubClassOf("MCSchedPredicate");
1514   });
1515 }
1516 
1517 static void collectVariantClasses(const CodeGenSchedModels &SchedModels,
1518                                   IdxVec &VariantClasses,
1519                                   bool OnlyExpandMCInstPredicates) {
1520   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1521     // Ignore non-variant scheduling classes.
1522     if (SC.Transitions.empty())
1523       continue;
1524 
1525     if (OnlyExpandMCInstPredicates) {
1526       // Ignore this variant scheduling class no transitions use any meaningful
1527       // MCSchedPredicate definitions.
1528       if (!any_of(SC.Transitions, [](const CodeGenSchedTransition &T) {
1529             return hasMCSchedPredicates(T);
1530           }))
1531         continue;
1532     }
1533 
1534     VariantClasses.push_back(SC.Index);
1535   }
1536 }
1537 
1538 static void collectProcessorIndices(const CodeGenSchedClass &SC,
1539                                     IdxVec &ProcIndices) {
1540   // A variant scheduling class may define transitions for multiple
1541   // processors.  This function identifies wich processors are associated with
1542   // transition rules specified by variant class `SC`.
1543   for (const CodeGenSchedTransition &T : SC.Transitions) {
1544     IdxVec PI;
1545     std::set_union(&T.ProcIndex, &T.ProcIndex + 1, ProcIndices.begin(),
1546                    ProcIndices.end(), std::back_inserter(PI));
1547     ProcIndices.swap(PI);
1548   }
1549 }
1550 
1551 static bool isAlwaysTrue(const CodeGenSchedTransition &T) {
1552   return llvm::all_of(T.PredTerm,
1553                       [](const Record *R) { return isTruePredicate(R); });
1554 }
1555 
1556 void SubtargetEmitter::emitSchedModelHelpersImpl(
1557     raw_ostream &OS, bool OnlyExpandMCInstPredicates) {
1558   IdxVec VariantClasses;
1559   collectVariantClasses(SchedModels, VariantClasses,
1560                         OnlyExpandMCInstPredicates);
1561 
1562   if (VariantClasses.empty()) {
1563     emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1564     return;
1565   }
1566 
1567   // Construct a switch statement where the condition is a check on the
1568   // scheduling class identifier. There is a `case` for every variant class
1569   // defined by the processor models of this target.
1570   // Each `case` implements a number of rules to resolve (i.e. to transition from)
1571   // a variant scheduling class to another scheduling class.  Rules are
1572   // described by instances of CodeGenSchedTransition. Note that transitions may
1573   // not be valid for all processors.
1574   OS << "  switch (SchedClass) {\n";
1575   for (unsigned VC : VariantClasses) {
1576     IdxVec ProcIndices;
1577     const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
1578     collectProcessorIndices(SC, ProcIndices);
1579 
1580     OS << "  case " << VC << ": // " << SC.Name << '\n';
1581 
1582     PredicateExpander PE(Target);
1583     PE.setByRef(false);
1584     PE.setExpandForMC(OnlyExpandMCInstPredicates);
1585     for (unsigned PI : ProcIndices) {
1586       OS << "    ";
1587 
1588       // Emit a guard on the processor ID.
1589       if (PI != 0) {
1590         OS << (OnlyExpandMCInstPredicates
1591                    ? "if (CPUID == "
1592                    : "if (SchedModel->getProcessorID() == ");
1593         OS << PI << ") ";
1594         OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n';
1595       }
1596 
1597       // Now emit transitions associated with processor PI.
1598       const CodeGenSchedTransition *FinalT = nullptr;
1599       for (const CodeGenSchedTransition &T : SC.Transitions) {
1600         if (PI != 0 && T.ProcIndex != PI)
1601           continue;
1602 
1603         // Emit only transitions based on MCSchedPredicate, if it's the case.
1604         // At least the transition specified by NoSchedPred is emitted,
1605         // which becomes the default transition for those variants otherwise
1606         // not based on MCSchedPredicate.
1607         // FIXME: preferably, llvm-mca should instead assume a reasonable
1608         // default when a variant transition is not based on MCSchedPredicate
1609         // for a given processor.
1610         if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T))
1611           continue;
1612 
1613         // If transition is folded to 'return X' it should be the last one.
1614         if (isAlwaysTrue(T)) {
1615           FinalT = &T;
1616           continue;
1617         }
1618         PE.setIndentLevel(3);
1619         emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS);
1620       }
1621       if (FinalT)
1622         emitPredicates(*FinalT, SchedModels.getSchedClass(FinalT->ToClassIdx),
1623                        PE, OS);
1624 
1625       OS << "    }\n";
1626 
1627       if (PI == 0)
1628         break;
1629     }
1630 
1631     if (SC.isInferred())
1632       OS << "    return " << SC.Index << ";\n";
1633     OS << "    break;\n";
1634   }
1635 
1636   OS << "  };\n";
1637 
1638   emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1639 }
1640 
1641 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName,
1642                                              raw_ostream &OS) {
1643   OS << "unsigned " << ClassName
1644      << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1645      << " const TargetSchedModel *SchedModel) const {\n";
1646 
1647   // Emit the predicate prolog code.
1648   emitPredicateProlog(Records, OS);
1649 
1650   // Emit target predicates.
1651   emitSchedModelHelpersImpl(OS);
1652 
1653   OS << "} // " << ClassName << "::resolveSchedClass\n\n";
1654 
1655   OS << "unsigned " << ClassName
1656      << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI,"
1657      << " const MCInstrInfo *MCII, unsigned CPUID) const {\n"
1658      << "  return " << Target << "_MC"
1659      << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n"
1660      << "} // " << ClassName << "::resolveVariantSchedClass\n\n";
1661 
1662   STIPredicateExpander PE(Target);
1663   PE.setClassPrefix(ClassName);
1664   PE.setExpandDefinition(true);
1665   PE.setByRef(false);
1666   PE.setIndentLevel(0);
1667 
1668   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1669     PE.expandSTIPredicate(OS, Fn);
1670 }
1671 
1672 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName,
1673                                        raw_ostream &OS) {
1674   const CodeGenHwModes &CGH = TGT.getHwModes();
1675   assert(CGH.getNumModeIds() > 0);
1676   if (CGH.getNumModeIds() == 1)
1677     return;
1678 
1679   OS << "unsigned " << ClassName << "::getHwMode() const {\n";
1680   for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
1681     const HwMode &HM = CGH.getMode(M);
1682     OS << "  if (checkFeatures(\"" << HM.Features
1683        << "\")) return " << M << ";\n";
1684   }
1685   OS << "  return 0;\n}\n";
1686 }
1687 
1688 //
1689 // ParseFeaturesFunction - Produces a subtarget specific function for parsing
1690 // the subtarget features string.
1691 //
1692 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
1693                                              unsigned NumFeatures,
1694                                              unsigned NumProcs) {
1695   std::vector<Record*> Features =
1696                        Records.getAllDerivedDefinitions("SubtargetFeature");
1697   llvm::sort(Features, LessRecord());
1698 
1699   OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1700      << "// subtarget options.\n"
1701      << "void llvm::";
1702   OS << Target;
1703   OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, "
1704      << "StringRef FS) {\n"
1705      << "  LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1706      << "  LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU);\n"
1707      << "  LLVM_DEBUG(dbgs() << \"\\nTuneCPU:\" << TuneCPU << \"\\n\\n\");\n";
1708 
1709   if (Features.empty()) {
1710     OS << "}\n";
1711     return;
1712   }
1713 
1714   OS << "  InitMCProcessorInfo(CPU, TuneCPU, FS);\n"
1715      << "  const FeatureBitset &Bits = getFeatureBits();\n";
1716 
1717   for (Record *R : Features) {
1718     // Next record
1719     StringRef Instance = R->getName();
1720     StringRef Value = R->getValueAsString("Value");
1721     StringRef Attribute = R->getValueAsString("Attribute");
1722 
1723     if (Value=="true" || Value=="false")
1724       OS << "  if (Bits[" << Target << "::"
1725          << Instance << "]) "
1726          << Attribute << " = " << Value << ";\n";
1727     else
1728       OS << "  if (Bits[" << Target << "::"
1729          << Instance << "] && "
1730          << Attribute << " < " << Value << ") "
1731          << Attribute << " = " << Value << ";\n";
1732   }
1733 
1734   OS << "}\n";
1735 }
1736 
1737 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) {
1738   OS << "namespace " << Target << "_MC {\n"
1739      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n"
1740      << "    const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) {\n";
1741   emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true);
1742   OS << "}\n";
1743   OS << "} // end namespace " << Target << "_MC\n\n";
1744 
1745   OS << "struct " << Target
1746      << "GenMCSubtargetInfo : public MCSubtargetInfo {\n";
1747   OS << "  " << Target << "GenMCSubtargetInfo(const Triple &TT,\n"
1748      << "    StringRef CPU, StringRef TuneCPU, StringRef FS,\n"
1749      << "    ArrayRef<SubtargetFeatureKV> PF,\n"
1750      << "    ArrayRef<SubtargetSubTypeKV> PD,\n"
1751      << "    const MCWriteProcResEntry *WPR,\n"
1752      << "    const MCWriteLatencyEntry *WL,\n"
1753      << "    const MCReadAdvanceEntry *RA, const InstrStage *IS,\n"
1754      << "    const unsigned *OC, const unsigned *FP) :\n"
1755      << "      MCSubtargetInfo(TT, CPU, TuneCPU, FS, PF, PD,\n"
1756      << "                      WPR, WL, RA, IS, OC, FP) { }\n\n"
1757      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,\n"
1758      << "      const MCInst *MI, const MCInstrInfo *MCII,\n"
1759      << "      unsigned CPUID) const override {\n"
1760      << "    return " << Target << "_MC"
1761      << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n";
1762   OS << "  }\n";
1763   if (TGT.getHwModes().getNumModeIds() > 1)
1764     OS << "  unsigned getHwMode() const override;\n";
1765   OS << "};\n";
1766   EmitHwModeCheck(Target + "GenMCSubtargetInfo", OS);
1767 }
1768 
1769 void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) {
1770   OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n";
1771   OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1772 
1773   STIPredicateExpander PE(Target);
1774   PE.setExpandForMC(true);
1775   PE.setByRef(true);
1776   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1777     PE.expandSTIPredicate(OS, Fn);
1778 
1779   OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1780 
1781   OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n";
1782   OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1783 
1784   std::string ClassPrefix = Target + "MCInstrAnalysis";
1785   PE.setExpandDefinition(true);
1786   PE.setClassPrefix(ClassPrefix);
1787   PE.setIndentLevel(0);
1788   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1789     PE.expandSTIPredicate(OS, Fn);
1790 
1791   OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1792 }
1793 
1794 //
1795 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1796 //
1797 void SubtargetEmitter::run(raw_ostream &OS) {
1798   emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1799 
1800   OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1801   OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
1802 
1803   DenseMap<Record *, unsigned> FeatureMap;
1804 
1805   OS << "namespace llvm {\n";
1806   Enumeration(OS, FeatureMap);
1807   OS << "} // end namespace llvm\n\n";
1808   OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1809 
1810   OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
1811   OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
1812 
1813   OS << "namespace llvm {\n";
1814 #if 0
1815   OS << "namespace {\n";
1816 #endif
1817   unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap);
1818   OS << "\n";
1819   EmitSchedModel(OS);
1820   OS << "\n";
1821   unsigned NumProcs = CPUKeyValues(OS, FeatureMap);
1822   OS << "\n";
1823 #if 0
1824   OS << "} // end anonymous namespace\n\n";
1825 #endif
1826 
1827   // MCInstrInfo initialization routine.
1828   emitGenMCSubtargetInfo(OS);
1829 
1830   OS << "\nstatic inline MCSubtargetInfo *create" << Target
1831      << "MCSubtargetInfoImpl("
1832      << "const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS) {\n";
1833   OS << "  return new " << Target
1834      << "GenMCSubtargetInfo(TT, CPU, TuneCPU, FS, ";
1835   if (NumFeatures)
1836     OS << Target << "FeatureKV, ";
1837   else
1838     OS << "None, ";
1839   if (NumProcs)
1840     OS << Target << "SubTypeKV, ";
1841   else
1842     OS << "None, ";
1843   OS << '\n'; OS.indent(22);
1844   OS << Target << "WriteProcResTable, "
1845      << Target << "WriteLatencyTable, "
1846      << Target << "ReadAdvanceTable, ";
1847   OS << '\n'; OS.indent(22);
1848   if (SchedModels.hasItineraries()) {
1849     OS << Target << "Stages, "
1850        << Target << "OperandCycles, "
1851        << Target << "ForwardingPaths";
1852   } else
1853     OS << "nullptr, nullptr, nullptr";
1854   OS << ");\n}\n\n";
1855 
1856   OS << "} // end namespace llvm\n\n";
1857 
1858   OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1859 
1860   OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1861   OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
1862 
1863   OS << "#include \"llvm/Support/Debug.h\"\n";
1864   OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
1865   ParseFeaturesFunction(OS, NumFeatures, NumProcs);
1866 
1867   OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1868 
1869   // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1870   OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1871   OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
1872 
1873   std::string ClassName = Target + "GenSubtargetInfo";
1874   OS << "namespace llvm {\n";
1875   OS << "class DFAPacketizer;\n";
1876   OS << "namespace " << Target << "_MC {\n"
1877      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,"
1878      << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID);\n"
1879      << "} // end namespace " << Target << "_MC\n\n";
1880   OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1881      << "  explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
1882      << "StringRef TuneCPU, StringRef FS);\n"
1883      << "public:\n"
1884      << "  unsigned resolveSchedClass(unsigned SchedClass, "
1885      << " const MachineInstr *DefMI,"
1886      << " const TargetSchedModel *SchedModel) const override;\n"
1887      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,"
1888      << " const MCInst *MI, const MCInstrInfo *MCII,"
1889      << " unsigned CPUID) const override;\n"
1890      << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1891      << " const;\n";
1892   if (TGT.getHwModes().getNumModeIds() > 1)
1893     OS << "  unsigned getHwMode() const override;\n";
1894 
1895   STIPredicateExpander PE(Target);
1896   PE.setByRef(false);
1897   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1898     PE.expandSTIPredicate(OS, Fn);
1899 
1900   OS << "};\n"
1901      << "} // end namespace llvm\n\n";
1902 
1903   OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1904 
1905   OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
1906   OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
1907 
1908   OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
1909   OS << "namespace llvm {\n";
1910   OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
1911   OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n";
1912   OS << "extern const llvm::MCWriteProcResEntry "
1913      << Target << "WriteProcResTable[];\n";
1914   OS << "extern const llvm::MCWriteLatencyEntry "
1915      << Target << "WriteLatencyTable[];\n";
1916   OS << "extern const llvm::MCReadAdvanceEntry "
1917      << Target << "ReadAdvanceTable[];\n";
1918 
1919   if (SchedModels.hasItineraries()) {
1920     OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
1921     OS << "extern const unsigned " << Target << "OperandCycles[];\n";
1922     OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
1923   }
1924 
1925   OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
1926      << "StringRef TuneCPU, StringRef FS)\n"
1927      << "  : TargetSubtargetInfo(TT, CPU, TuneCPU, FS, ";
1928   if (NumFeatures)
1929     OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
1930   else
1931     OS << "None, ";
1932   if (NumProcs)
1933     OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
1934   else
1935     OS << "None, ";
1936   OS << '\n'; OS.indent(24);
1937   OS << Target << "WriteProcResTable, "
1938      << Target << "WriteLatencyTable, "
1939      << Target << "ReadAdvanceTable, ";
1940   OS << '\n'; OS.indent(24);
1941   if (SchedModels.hasItineraries()) {
1942     OS << Target << "Stages, "
1943        << Target << "OperandCycles, "
1944        << Target << "ForwardingPaths";
1945   } else
1946     OS << "nullptr, nullptr, nullptr";
1947   OS << ") {}\n\n";
1948 
1949   EmitSchedModelHelpers(ClassName, OS);
1950   EmitHwModeCheck(ClassName, OS);
1951 
1952   OS << "} // end namespace llvm\n\n";
1953 
1954   OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
1955 
1956   EmitMCInstrAnalysisPredicateFunctions(OS);
1957 }
1958 
1959 namespace llvm {
1960 
1961 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
1962   CodeGenTarget CGTarget(RK);
1963   SubtargetEmitter(RK, CGTarget).run(OS);
1964 }
1965 
1966 } // end namespace llvm
1967