xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/SubtargetEmitter.cpp (revision 5fb307d29b364982acbde82cbf77db3cae486f8c)
1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits subtarget enumerations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenHwModes.h"
14 #include "CodeGenSchedule.h"
15 #include "CodeGenTarget.h"
16 #include "PredicateExpander.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/MC/MCInstrItineraries.h"
22 #include "llvm/MC/MCSchedule.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include "llvm/TableGen/TableGenBackend.h"
29 #include "llvm/TargetParser/SubtargetFeature.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <iterator>
34 #include <map>
35 #include <string>
36 #include <vector>
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "subtarget-emitter"
41 
42 namespace {
43 
44 /// Sorting predicate to sort record pointers by their
45 /// FieldName field.
46 struct LessRecordFieldFieldName {
47   bool operator()(const Record *Rec1, const Record *Rec2) const {
48     return Rec1->getValueAsString("FieldName") <
49            Rec2->getValueAsString("FieldName");
50   }
51 };
52 
53 class SubtargetEmitter {
54   // Each processor has a SchedClassDesc table with an entry for each SchedClass.
55   // The SchedClassDesc table indexes into a global write resource table, write
56   // latency table, and read advance table.
57   struct SchedClassTables {
58     std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses;
59     std::vector<MCWriteProcResEntry> WriteProcResources;
60     std::vector<MCWriteLatencyEntry> WriteLatencies;
61     std::vector<std::string> WriterNames;
62     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
63 
64     // Reserve an invalid entry at index 0
65     SchedClassTables() {
66       ProcSchedClasses.resize(1);
67       WriteProcResources.resize(1);
68       WriteLatencies.resize(1);
69       WriterNames.push_back("InvalidWrite");
70       ReadAdvanceEntries.resize(1);
71     }
72   };
73 
74   struct LessWriteProcResources {
75     bool operator()(const MCWriteProcResEntry &LHS,
76                     const MCWriteProcResEntry &RHS) {
77       return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
78     }
79   };
80 
81   CodeGenTarget TGT;
82   RecordKeeper &Records;
83   CodeGenSchedModels &SchedModels;
84   std::string Target;
85 
86   void Enumeration(raw_ostream &OS, DenseMap<Record *, unsigned> &FeatureMap);
87   void EmitSubtargetInfoMacroCalls(raw_ostream &OS);
88   unsigned FeatureKeyValues(raw_ostream &OS,
89                             const DenseMap<Record *, unsigned> &FeatureMap);
90   unsigned CPUKeyValues(raw_ostream &OS,
91                         const DenseMap<Record *, unsigned> &FeatureMap);
92   void FormItineraryStageString(const std::string &Names,
93                                 Record *ItinData, std::string &ItinString,
94                                 unsigned &NStages);
95   void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
96                                        unsigned &NOperandCycles);
97   void FormItineraryBypassString(const std::string &Names,
98                                  Record *ItinData,
99                                  std::string &ItinString, unsigned NOperandCycles);
100   void EmitStageAndOperandCycleData(raw_ostream &OS,
101                                     std::vector<std::vector<InstrItinerary>>
102                                       &ProcItinLists);
103   void EmitItineraries(raw_ostream &OS,
104                        std::vector<std::vector<InstrItinerary>>
105                          &ProcItinLists);
106   unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
107                                   raw_ostream &OS);
108   void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
109                               raw_ostream &OS);
110   void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
111                               raw_ostream &OS);
112   void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name,
113                          char Separator);
114   void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel,
115                                      raw_ostream &OS);
116   void EmitProcessorResources(const CodeGenProcModel &ProcModel,
117                               raw_ostream &OS);
118   Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
119                              const CodeGenProcModel &ProcModel);
120   Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
121                           const CodeGenProcModel &ProcModel);
122   void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
123                            std::vector<int64_t> &StartAtCycles,
124                            const CodeGenProcModel &ProcModel);
125   void GenSchedClassTables(const CodeGenProcModel &ProcModel,
126                            SchedClassTables &SchedTables);
127   void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
128   void EmitProcessorModels(raw_ostream &OS);
129   void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
130   void emitSchedModelHelpersImpl(raw_ostream &OS,
131                                  bool OnlyExpandMCInstPredicates = false);
132   void emitGenMCSubtargetInfo(raw_ostream &OS);
133   void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS);
134 
135   void EmitSchedModel(raw_ostream &OS);
136   void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS);
137   void ParseFeaturesFunction(raw_ostream &OS);
138 
139 public:
140   SubtargetEmitter(RecordKeeper &R)
141       : TGT(R), Records(R), SchedModels(TGT.getSchedModels()),
142         Target(TGT.getName()) {}
143 
144   void run(raw_ostream &o);
145 };
146 
147 } // end anonymous namespace
148 
149 //
150 // Enumeration - Emit the specified class as an enumeration.
151 //
152 void SubtargetEmitter::Enumeration(raw_ostream &OS,
153                                    DenseMap<Record *, unsigned> &FeatureMap) {
154   // Get all records of class and sort
155   std::vector<Record*> DefList =
156     Records.getAllDerivedDefinitions("SubtargetFeature");
157   llvm::sort(DefList, LessRecord());
158 
159   unsigned N = DefList.size();
160   if (N == 0)
161     return;
162   if (N + 1 > MAX_SUBTARGET_FEATURES)
163     PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
164 
165   OS << "namespace " << Target << " {\n";
166 
167   // Open enumeration.
168   OS << "enum {\n";
169 
170   // For each record
171   for (unsigned i = 0; i < N; ++i) {
172     // Next record
173     Record *Def = DefList[i];
174 
175     // Get and emit name
176     OS << "  " << Def->getName() << " = " << i << ",\n";
177 
178     // Save the index for this feature.
179     FeatureMap[Def] = i;
180   }
181 
182   OS << "  "
183      << "NumSubtargetFeatures = " << N << "\n";
184 
185   // Close enumeration and namespace
186   OS << "};\n";
187   OS << "} // end namespace " << Target << "\n";
188 }
189 
190 static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList,
191                              const DenseMap<Record *, unsigned> &FeatureMap) {
192   std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {};
193   for (const Record *Feature : FeatureList) {
194     unsigned Bit = FeatureMap.lookup(Feature);
195     Mask[Bit / 64] |= 1ULL << (Bit % 64);
196   }
197 
198   OS << "{ { { ";
199   for (unsigned i = 0; i != Mask.size(); ++i) {
200     OS << "0x";
201     OS.write_hex(Mask[i]);
202     OS << "ULL, ";
203   }
204   OS << "} } }";
205 }
206 
207 /// Emit some information about the SubtargetFeature as calls to a macro so
208 /// that they can be used from C++.
209 void SubtargetEmitter::EmitSubtargetInfoMacroCalls(raw_ostream &OS) {
210   OS << "\n#ifdef GET_SUBTARGETINFO_MACRO\n";
211 
212   std::vector<Record *> FeatureList =
213       Records.getAllDerivedDefinitions("SubtargetFeature");
214   llvm::sort(FeatureList, LessRecordFieldFieldName());
215 
216   for (const Record *Feature : FeatureList) {
217     const StringRef FieldName = Feature->getValueAsString("FieldName");
218     const StringRef Value = Feature->getValueAsString("Value");
219 
220     // Only handle boolean features for now, excluding BitVectors and enums.
221     const bool IsBool = (Value == "false" || Value == "true") &&
222                         !StringRef(FieldName).contains('[');
223     if (!IsBool)
224       continue;
225 
226     // Some features default to true, with values set to false if enabled.
227     const char *Default = Value == "false" ? "true" : "false";
228 
229     // Define the getter with lowercased first char: xxxYyy() { return XxxYyy; }
230     const std::string Getter =
231         FieldName.substr(0, 1).lower() + FieldName.substr(1).str();
232 
233     OS << "GET_SUBTARGETINFO_MACRO(" << FieldName << ", " << Default << ", "
234        << Getter << ")\n";
235   }
236   OS << "#undef GET_SUBTARGETINFO_MACRO\n";
237   OS << "#endif // GET_SUBTARGETINFO_MACRO\n\n";
238 
239   OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
240   OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
241 }
242 
243 //
244 // FeatureKeyValues - Emit data of all the subtarget features.  Used by the
245 // command line.
246 //
247 unsigned SubtargetEmitter::FeatureKeyValues(
248     raw_ostream &OS, const DenseMap<Record *, unsigned> &FeatureMap) {
249   // Gather and sort all the features
250   std::vector<Record*> FeatureList =
251                            Records.getAllDerivedDefinitions("SubtargetFeature");
252 
253   if (FeatureList.empty())
254     return 0;
255 
256   llvm::sort(FeatureList, LessRecordFieldName());
257 
258   // Begin feature table
259   OS << "// Sorted (by key) array of values for CPU features.\n"
260      << "extern const llvm::SubtargetFeatureKV " << Target
261      << "FeatureKV[] = {\n";
262 
263   // For each feature
264   unsigned NumFeatures = 0;
265   for (const Record *Feature : FeatureList) {
266     // Next feature
267     StringRef Name = Feature->getName();
268     StringRef CommandLineName = Feature->getValueAsString("Name");
269     StringRef Desc = Feature->getValueAsString("Desc");
270 
271     if (CommandLineName.empty()) continue;
272 
273     // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
274     OS << "  { "
275        << "\"" << CommandLineName << "\", "
276        << "\"" << Desc << "\", "
277        << Target << "::" << Name << ", ";
278 
279     RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
280 
281     printFeatureMask(OS, ImpliesList, FeatureMap);
282 
283     OS << " },\n";
284     ++NumFeatures;
285   }
286 
287   // End feature table
288   OS << "};\n";
289 
290   return NumFeatures;
291 }
292 
293 //
294 // CPUKeyValues - Emit data of all the subtarget processors.  Used by command
295 // line.
296 //
297 unsigned
298 SubtargetEmitter::CPUKeyValues(raw_ostream &OS,
299                                const DenseMap<Record *, unsigned> &FeatureMap) {
300   // Gather and sort processor information
301   std::vector<Record*> ProcessorList =
302                           Records.getAllDerivedDefinitions("Processor");
303   llvm::sort(ProcessorList, LessRecordFieldName());
304 
305   // Begin processor table
306   OS << "// Sorted (by key) array of values for CPU subtype.\n"
307      << "extern const llvm::SubtargetSubTypeKV " << Target
308      << "SubTypeKV[] = {\n";
309 
310   // For each processor
311   for (Record *Processor : ProcessorList) {
312     StringRef Name = Processor->getValueAsString("Name");
313     RecVec FeatureList = Processor->getValueAsListOfDefs("Features");
314     RecVec TuneFeatureList = Processor->getValueAsListOfDefs("TuneFeatures");
315 
316     // Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } },
317     OS << " { "
318        << "\"" << Name << "\", ";
319 
320     printFeatureMask(OS, FeatureList, FeatureMap);
321     OS << ", ";
322     printFeatureMask(OS, TuneFeatureList, FeatureMap);
323 
324     // Emit the scheduler model pointer.
325     const std::string &ProcModelName =
326       SchedModels.getModelForProc(Processor).ModelName;
327     OS << ", &" << ProcModelName << " },\n";
328   }
329 
330   // End processor table
331   OS << "};\n";
332 
333   return ProcessorList.size();
334 }
335 
336 //
337 // FormItineraryStageString - Compose a string containing the stage
338 // data initialization for the specified itinerary.  N is the number
339 // of stages.
340 //
341 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
342                                                 Record *ItinData,
343                                                 std::string &ItinString,
344                                                 unsigned &NStages) {
345   // Get states list
346   RecVec StageList = ItinData->getValueAsListOfDefs("Stages");
347 
348   // For each stage
349   unsigned N = NStages = StageList.size();
350   for (unsigned i = 0; i < N;) {
351     // Next stage
352     const Record *Stage = StageList[i];
353 
354     // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
355     int Cycles = Stage->getValueAsInt("Cycles");
356     ItinString += "  { " + itostr(Cycles) + ", ";
357 
358     // Get unit list
359     RecVec UnitList = Stage->getValueAsListOfDefs("Units");
360 
361     // For each unit
362     for (unsigned j = 0, M = UnitList.size(); j < M;) {
363       // Add name and bitwise or
364       ItinString += Name + "FU::" + UnitList[j]->getName().str();
365       if (++j < M) ItinString += " | ";
366     }
367 
368     int TimeInc = Stage->getValueAsInt("TimeInc");
369     ItinString += ", " + itostr(TimeInc);
370 
371     int Kind = Stage->getValueAsInt("Kind");
372     ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
373 
374     // Close off stage
375     ItinString += " }";
376     if (++i < N) ItinString += ", ";
377   }
378 }
379 
380 //
381 // FormItineraryOperandCycleString - Compose a string containing the
382 // operand cycle initialization for the specified itinerary.  N is the
383 // number of operands that has cycles specified.
384 //
385 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
386                          std::string &ItinString, unsigned &NOperandCycles) {
387   // Get operand cycle list
388   std::vector<int64_t> OperandCycleList =
389     ItinData->getValueAsListOfInts("OperandCycles");
390 
391   // For each operand cycle
392   NOperandCycles = OperandCycleList.size();
393   ListSeparator LS;
394   for (int OCycle : OperandCycleList) {
395     // Next operand cycle
396     ItinString += LS;
397     ItinString += "  " + itostr(OCycle);
398   }
399 }
400 
401 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
402                                                  Record *ItinData,
403                                                  std::string &ItinString,
404                                                  unsigned NOperandCycles) {
405   RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses");
406   unsigned N = BypassList.size();
407   unsigned i = 0;
408   ListSeparator LS;
409   for (; i < N; ++i) {
410     ItinString += LS;
411     ItinString += Name + "Bypass::" + BypassList[i]->getName().str();
412   }
413   for (; i < NOperandCycles; ++i) {
414     ItinString += LS;
415     ItinString += " 0";
416   }
417 }
418 
419 //
420 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
421 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
422 // by CodeGenSchedClass::Index.
423 //
424 void SubtargetEmitter::
425 EmitStageAndOperandCycleData(raw_ostream &OS,
426                              std::vector<std::vector<InstrItinerary>>
427                                &ProcItinLists) {
428   // Multiple processor models may share an itinerary record. Emit it once.
429   SmallPtrSet<Record*, 8> ItinsDefSet;
430 
431   // Emit functional units for all the itineraries.
432   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
433 
434     if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
435       continue;
436 
437     RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
438     if (FUs.empty())
439       continue;
440 
441     StringRef Name = ProcModel.ItinsDef->getName();
442     OS << "\n// Functional units for \"" << Name << "\"\n"
443        << "namespace " << Name << "FU {\n";
444 
445     for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
446       OS << "  const InstrStage::FuncUnits " << FUs[j]->getName()
447          << " = 1ULL << " << j << ";\n";
448 
449     OS << "} // end namespace " << Name << "FU\n";
450 
451     RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
452     if (!BPs.empty()) {
453       OS << "\n// Pipeline forwarding paths for itineraries \"" << Name
454          << "\"\n" << "namespace " << Name << "Bypass {\n";
455 
456       OS << "  const unsigned NoBypass = 0;\n";
457       for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
458         OS << "  const unsigned " << BPs[j]->getName()
459            << " = 1 << " << j << ";\n";
460 
461       OS << "} // end namespace " << Name << "Bypass\n";
462     }
463   }
464 
465   // Begin stages table
466   std::string StageTable = "\nextern const llvm::InstrStage " + Target +
467                            "Stages[] = {\n";
468   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
469 
470   // Begin operand cycle table
471   std::string OperandCycleTable = "extern const unsigned " + Target +
472     "OperandCycles[] = {\n";
473   OperandCycleTable += "  0, // No itinerary\n";
474 
475   // Begin pipeline bypass table
476   std::string BypassTable = "extern const unsigned " + Target +
477     "ForwardingPaths[] = {\n";
478   BypassTable += " 0, // No itinerary\n";
479 
480   // For each Itinerary across all processors, add a unique entry to the stages,
481   // operand cycles, and pipeline bypass tables. Then add the new Itinerary
482   // object with computed offsets to the ProcItinLists result.
483   unsigned StageCount = 1, OperandCycleCount = 1;
484   std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
485   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
486     // Add process itinerary to the list.
487     ProcItinLists.resize(ProcItinLists.size()+1);
488 
489     // If this processor defines no itineraries, then leave the itinerary list
490     // empty.
491     std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
492     if (!ProcModel.hasItineraries())
493       continue;
494 
495     StringRef Name = ProcModel.ItinsDef->getName();
496 
497     ItinList.resize(SchedModels.numInstrSchedClasses());
498     assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
499 
500     for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
501          SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
502 
503       // Next itinerary data
504       Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
505 
506       // Get string and stage count
507       std::string ItinStageString;
508       unsigned NStages = 0;
509       if (ItinData)
510         FormItineraryStageString(std::string(Name), ItinData, ItinStageString,
511                                  NStages);
512 
513       // Get string and operand cycle count
514       std::string ItinOperandCycleString;
515       unsigned NOperandCycles = 0;
516       std::string ItinBypassString;
517       if (ItinData) {
518         FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
519                                         NOperandCycles);
520 
521         FormItineraryBypassString(std::string(Name), ItinData, ItinBypassString,
522                                   NOperandCycles);
523       }
524 
525       // Check to see if stage already exists and create if it doesn't
526       uint16_t FindStage = 0;
527       if (NStages > 0) {
528         FindStage = ItinStageMap[ItinStageString];
529         if (FindStage == 0) {
530           // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
531           StageTable += ItinStageString + ", // " + itostr(StageCount);
532           if (NStages > 1)
533             StageTable += "-" + itostr(StageCount + NStages - 1);
534           StageTable += "\n";
535           // Record Itin class number.
536           ItinStageMap[ItinStageString] = FindStage = StageCount;
537           StageCount += NStages;
538         }
539       }
540 
541       // Check to see if operand cycle already exists and create if it doesn't
542       uint16_t FindOperandCycle = 0;
543       if (NOperandCycles > 0) {
544         std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
545         FindOperandCycle = ItinOperandMap[ItinOperandString];
546         if (FindOperandCycle == 0) {
547           // Emit as  cycle, // index
548           OperandCycleTable += ItinOperandCycleString + ", // ";
549           std::string OperandIdxComment = itostr(OperandCycleCount);
550           if (NOperandCycles > 1)
551             OperandIdxComment += "-"
552               + itostr(OperandCycleCount + NOperandCycles - 1);
553           OperandCycleTable += OperandIdxComment + "\n";
554           // Record Itin class number.
555           ItinOperandMap[ItinOperandCycleString] =
556             FindOperandCycle = OperandCycleCount;
557           // Emit as bypass, // index
558           BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
559           OperandCycleCount += NOperandCycles;
560         }
561       }
562 
563       // Set up itinerary as location and location + stage count
564       int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
565       InstrItinerary Intinerary = {
566           NumUOps,
567           FindStage,
568           uint16_t(FindStage + NStages),
569           FindOperandCycle,
570           uint16_t(FindOperandCycle + NOperandCycles),
571       };
572 
573       // Inject - empty slots will be 0, 0
574       ItinList[SchedClassIdx] = Intinerary;
575     }
576   }
577 
578   // Closing stage
579   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
580   StageTable += "};\n";
581 
582   // Closing operand cycles
583   OperandCycleTable += "  0 // End operand cycles\n";
584   OperandCycleTable += "};\n";
585 
586   BypassTable += " 0 // End bypass tables\n";
587   BypassTable += "};\n";
588 
589   // Emit tables.
590   OS << StageTable;
591   OS << OperandCycleTable;
592   OS << BypassTable;
593 }
594 
595 //
596 // EmitProcessorData - Generate data for processor itineraries that were
597 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
598 // Itineraries for each processor. The Itinerary lists are indexed on
599 // CodeGenSchedClass::Index.
600 //
601 void SubtargetEmitter::
602 EmitItineraries(raw_ostream &OS,
603                 std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
604   // Multiple processor models may share an itinerary record. Emit it once.
605   SmallPtrSet<Record*, 8> ItinsDefSet;
606 
607   // For each processor's machine model
608   std::vector<std::vector<InstrItinerary>>::iterator
609       ProcItinListsIter = ProcItinLists.begin();
610   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
611          PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
612 
613     Record *ItinsDef = PI->ItinsDef;
614     if (!ItinsDefSet.insert(ItinsDef).second)
615       continue;
616 
617     // Get the itinerary list for the processor.
618     assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
619     std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
620 
621     // Empty itineraries aren't referenced anywhere in the tablegen output
622     // so don't emit them.
623     if (ItinList.empty())
624       continue;
625 
626     OS << "\n";
627     OS << "static const llvm::InstrItinerary ";
628 
629     // Begin processor itinerary table
630     OS << ItinsDef->getName() << "[] = {\n";
631 
632     // For each itinerary class in CodeGenSchedClass::Index order.
633     for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
634       InstrItinerary &Intinerary = ItinList[j];
635 
636       // Emit Itinerary in the form of
637       // { firstStage, lastStage, firstCycle, lastCycle } // index
638       OS << "  { " <<
639         Intinerary.NumMicroOps << ", " <<
640         Intinerary.FirstStage << ", " <<
641         Intinerary.LastStage << ", " <<
642         Intinerary.FirstOperandCycle << ", " <<
643         Intinerary.LastOperandCycle << " }" <<
644         ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
645     }
646     // End processor itinerary table
647     OS << "  { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
648           "// end marker\n";
649     OS << "};\n";
650   }
651 }
652 
653 // Emit either the value defined in the TableGen Record, or the default
654 // value defined in the C++ header. The Record is null if the processor does not
655 // define a model.
656 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
657                                          StringRef Name, char Separator) {
658   OS << "  ";
659   int V = R ? R->getValueAsInt(Name) : -1;
660   if (V >= 0)
661     OS << V << Separator << " // " << Name;
662   else
663     OS << "MCSchedModel::Default" << Name << Separator;
664   OS << '\n';
665 }
666 
667 void SubtargetEmitter::EmitProcessorResourceSubUnits(
668     const CodeGenProcModel &ProcModel, raw_ostream &OS) {
669   OS << "\nstatic const unsigned " << ProcModel.ModelName
670      << "ProcResourceSubUnits[] = {\n"
671      << "  0,  // Invalid\n";
672 
673   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
674     Record *PRDef = ProcModel.ProcResourceDefs[i];
675     if (!PRDef->isSubClassOf("ProcResGroup"))
676       continue;
677     RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
678     for (Record *RUDef : ResUnits) {
679       Record *const RU =
680           SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc());
681       for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) {
682         OS << "  " << ProcModel.getProcResourceIdx(RU) << ", ";
683       }
684     }
685     OS << "  // " << PRDef->getName() << "\n";
686   }
687   OS << "};\n";
688 }
689 
690 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
691                                       raw_ostream &OS) {
692   int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
693   if (Record *RCU = ProcModel.RetireControlUnit) {
694     ReorderBufferSize =
695         std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
696     MaxRetirePerCycle =
697         std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
698   }
699 
700   OS << ReorderBufferSize << ", // ReorderBufferSize\n  ";
701   OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n  ";
702 }
703 
704 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel,
705                                  unsigned NumRegisterFiles,
706                                  unsigned NumCostEntries, raw_ostream &OS) {
707   if (NumRegisterFiles)
708     OS << ProcModel.ModelName << "RegisterFiles,\n  " << (1 + NumRegisterFiles);
709   else
710     OS << "nullptr,\n  0";
711 
712   OS << ", // Number of register files.\n  ";
713   if (NumCostEntries)
714     OS << ProcModel.ModelName << "RegisterCosts,\n  ";
715   else
716     OS << "nullptr,\n  ";
717   OS << NumCostEntries << ", // Number of register cost entries.\n";
718 }
719 
720 unsigned
721 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
722                                          raw_ostream &OS) {
723   if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
724         return RF.hasDefaultCosts();
725       }))
726     return 0;
727 
728   // Print the RegisterCost table first.
729   OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n";
730   OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName
731      << "RegisterCosts"
732      << "[] = {\n";
733 
734   for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) {
735     // Skip register files with a default cost table.
736     if (RF.hasDefaultCosts())
737       continue;
738     // Add entries to the cost table.
739     for (const CodeGenRegisterCost &RC : RF.Costs) {
740       OS << "  { ";
741       Record *Rec = RC.RCDef;
742       if (Rec->getValue("Namespace"))
743         OS << Rec->getValueAsString("Namespace") << "::";
744       OS << Rec->getName() << "RegClassID, " << RC.Cost << ", "
745          << RC.AllowMoveElimination << "},\n";
746     }
747   }
748   OS << "};\n";
749 
750   // Now generate a table with register file info.
751   OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, "
752      << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n";
753   OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName
754      << "RegisterFiles"
755      << "[] = {\n"
756      << "  { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n";
757   unsigned CostTblIndex = 0;
758 
759   for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) {
760     OS << "  { ";
761     OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", ";
762     unsigned NumCostEntries = RD.Costs.size();
763     OS << NumCostEntries << ", " << CostTblIndex << ", "
764        << RD.MaxMovesEliminatedPerCycle << ", "
765        << RD.AllowZeroMoveEliminationOnly << "},\n";
766     CostTblIndex += NumCostEntries;
767   }
768   OS << "};\n";
769 
770   return CostTblIndex;
771 }
772 
773 void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
774                                               raw_ostream &OS) {
775   unsigned QueueID = 0;
776   if (ProcModel.LoadQueue) {
777     const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor");
778     QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
779                                 find(ProcModel.ProcResourceDefs, Queue));
780   }
781   OS << "  " << QueueID << ", // Resource Descriptor for the Load Queue\n";
782 
783   QueueID = 0;
784   if (ProcModel.StoreQueue) {
785     const Record *Queue =
786         ProcModel.StoreQueue->getValueAsDef("QueueDescriptor");
787     QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
788                                 find(ProcModel.ProcResourceDefs, Queue));
789   }
790   OS << "  " << QueueID << ", // Resource Descriptor for the Store Queue\n";
791 }
792 
793 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
794                                               raw_ostream &OS) {
795   // Generate a table of register file descriptors (one entry per each user
796   // defined register file), and a table of register costs.
797   unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS);
798 
799   // Now generate a table for the extra processor info.
800   OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName
801      << "ExtraInfo = {\n  ";
802 
803   // Add information related to the retire control unit.
804   EmitRetireControlUnitInfo(ProcModel, OS);
805 
806   // Add information related to the register files (i.e. where to find register
807   // file descriptors and register costs).
808   EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
809                        NumCostEntries, OS);
810 
811   // Add information about load/store queues.
812   EmitLoadStoreQueueInfo(ProcModel, OS);
813 
814   OS << "};\n";
815 }
816 
817 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
818                                               raw_ostream &OS) {
819   EmitProcessorResourceSubUnits(ProcModel, OS);
820 
821   OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n";
822   OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName
823      << "ProcResources"
824      << "[] = {\n"
825      << "  {\"InvalidUnit\", 0, 0, 0, 0},\n";
826 
827   unsigned SubUnitsOffset = 1;
828   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
829     Record *PRDef = ProcModel.ProcResourceDefs[i];
830 
831     Record *SuperDef = nullptr;
832     unsigned SuperIdx = 0;
833     unsigned NumUnits = 0;
834     const unsigned SubUnitsBeginOffset = SubUnitsOffset;
835     int BufferSize = PRDef->getValueAsInt("BufferSize");
836     if (PRDef->isSubClassOf("ProcResGroup")) {
837       RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
838       for (Record *RU : ResUnits) {
839         NumUnits += RU->getValueAsInt("NumUnits");
840         SubUnitsOffset += RU->getValueAsInt("NumUnits");
841       }
842     }
843     else {
844       // Find the SuperIdx
845       if (PRDef->getValueInit("Super")->isComplete()) {
846         SuperDef =
847             SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
848                                          ProcModel, PRDef->getLoc());
849         SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
850       }
851       NumUnits = PRDef->getValueAsInt("NumUnits");
852     }
853     // Emit the ProcResourceDesc
854     OS << "  {\"" << PRDef->getName() << "\", ";
855     if (PRDef->getName().size() < 15)
856       OS.indent(15 - PRDef->getName().size());
857     OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", ";
858     if (SubUnitsBeginOffset != SubUnitsOffset) {
859       OS << ProcModel.ModelName << "ProcResourceSubUnits + "
860          << SubUnitsBeginOffset;
861     } else {
862       OS << "nullptr";
863     }
864     OS << "}, // #" << i+1;
865     if (SuperDef)
866       OS << ", Super=" << SuperDef->getName();
867     OS << "\n";
868   }
869   OS << "};\n";
870 }
871 
872 // Find the WriteRes Record that defines processor resources for this
873 // SchedWrite.
874 Record *SubtargetEmitter::FindWriteResources(
875   const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
876 
877   // Check if the SchedWrite is already subtarget-specific and directly
878   // specifies a set of processor resources.
879   if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
880     return SchedWrite.TheDef;
881 
882   Record *AliasDef = nullptr;
883   for (Record *A : SchedWrite.Aliases) {
884     const CodeGenSchedRW &AliasRW =
885       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
886     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
887       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
888       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
889         continue;
890     }
891     if (AliasDef)
892       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
893                     "defined for processor " + ProcModel.ModelName +
894                     " Ensure only one SchedAlias exists per RW.");
895     AliasDef = AliasRW.TheDef;
896   }
897   if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
898     return AliasDef;
899 
900   // Check this processor's list of write resources.
901   Record *ResDef = nullptr;
902   for (Record *WR : ProcModel.WriteResDefs) {
903     if (!WR->isSubClassOf("WriteRes"))
904       continue;
905     if (AliasDef == WR->getValueAsDef("WriteType")
906         || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
907       if (ResDef) {
908         PrintFatalError(WR->getLoc(), "Resources are defined for both "
909                       "SchedWrite and its alias on processor " +
910                       ProcModel.ModelName);
911       }
912       ResDef = WR;
913     }
914   }
915   // TODO: If ProcModel has a base model (previous generation processor),
916   // then call FindWriteResources recursively with that model here.
917   if (!ResDef) {
918     PrintFatalError(ProcModel.ModelDef->getLoc(),
919                     Twine("Processor does not define resources for ") +
920                     SchedWrite.TheDef->getName());
921   }
922   return ResDef;
923 }
924 
925 /// Find the ReadAdvance record for the given SchedRead on this processor or
926 /// return NULL.
927 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
928                                           const CodeGenProcModel &ProcModel) {
929   // Check for SchedReads that directly specify a ReadAdvance.
930   if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
931     return SchedRead.TheDef;
932 
933   // Check this processor's list of aliases for SchedRead.
934   Record *AliasDef = nullptr;
935   for (Record *A : SchedRead.Aliases) {
936     const CodeGenSchedRW &AliasRW =
937       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
938     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
939       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
940       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
941         continue;
942     }
943     if (AliasDef)
944       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
945                     "defined for processor " + ProcModel.ModelName +
946                     " Ensure only one SchedAlias exists per RW.");
947     AliasDef = AliasRW.TheDef;
948   }
949   if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
950     return AliasDef;
951 
952   // Check this processor's ReadAdvanceList.
953   Record *ResDef = nullptr;
954   for (Record *RA : ProcModel.ReadAdvanceDefs) {
955     if (!RA->isSubClassOf("ReadAdvance"))
956       continue;
957     if (AliasDef == RA->getValueAsDef("ReadType")
958         || SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
959       if (ResDef) {
960         PrintFatalError(RA->getLoc(), "Resources are defined for both "
961                       "SchedRead and its alias on processor " +
962                       ProcModel.ModelName);
963       }
964       ResDef = RA;
965     }
966   }
967   // TODO: If ProcModel has a base model (previous generation processor),
968   // then call FindReadAdvance recursively with that model here.
969   if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
970     PrintFatalError(ProcModel.ModelDef->getLoc(),
971                     Twine("Processor does not define resources for ") +
972                     SchedRead.TheDef->getName());
973   }
974   return ResDef;
975 }
976 
977 // Expand an explicit list of processor resources into a full list of implied
978 // resource groups and super resources that cover them.
979 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
980                                            std::vector<int64_t> &Cycles,
981                                            std::vector<int64_t> &StartAtCycles,
982                                            const CodeGenProcModel &PM) {
983   assert(PRVec.size() == Cycles.size() && "failed precondition");
984   for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
985     Record *PRDef = PRVec[i];
986     RecVec SubResources;
987     if (PRDef->isSubClassOf("ProcResGroup"))
988       SubResources = PRDef->getValueAsListOfDefs("Resources");
989     else {
990       SubResources.push_back(PRDef);
991       PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
992       for (Record *SubDef = PRDef;
993            SubDef->getValueInit("Super")->isComplete();) {
994         if (SubDef->isSubClassOf("ProcResGroup")) {
995           // Disallow this for simplicitly.
996           PrintFatalError(SubDef->getLoc(), "Processor resource group "
997                           " cannot be a super resources.");
998         }
999         Record *SuperDef =
1000             SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM,
1001                                          SubDef->getLoc());
1002         PRVec.push_back(SuperDef);
1003         Cycles.push_back(Cycles[i]);
1004         StartAtCycles.push_back(StartAtCycles[i]);
1005         SubDef = SuperDef;
1006       }
1007     }
1008     for (Record *PR : PM.ProcResourceDefs) {
1009       if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
1010         continue;
1011       RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
1012       RecIter SubI = SubResources.begin(), SubE = SubResources.end();
1013       for( ; SubI != SubE; ++SubI) {
1014         if (!is_contained(SuperResources, *SubI)) {
1015           break;
1016         }
1017       }
1018       if (SubI == SubE) {
1019         PRVec.push_back(PR);
1020         Cycles.push_back(Cycles[i]);
1021         StartAtCycles.push_back(StartAtCycles[i]);
1022       }
1023     }
1024   }
1025 }
1026 
1027 // Generate the SchedClass table for this processor and update global
1028 // tables. Must be called for each processor in order.
1029 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
1030                                            SchedClassTables &SchedTables) {
1031   SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
1032   if (!ProcModel.hasInstrSchedModel())
1033     return;
1034 
1035   std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
1036   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
1037   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1038     LLVM_DEBUG(SC.dump(&SchedModels));
1039 
1040     SCTab.resize(SCTab.size() + 1);
1041     MCSchedClassDesc &SCDesc = SCTab.back();
1042     // SCDesc.Name is guarded by NDEBUG
1043     SCDesc.NumMicroOps = 0;
1044     SCDesc.BeginGroup = false;
1045     SCDesc.EndGroup = false;
1046     SCDesc.RetireOOO = false;
1047     SCDesc.WriteProcResIdx = 0;
1048     SCDesc.WriteLatencyIdx = 0;
1049     SCDesc.ReadAdvanceIdx = 0;
1050 
1051     // A Variant SchedClass has no resources of its own.
1052     bool HasVariants = false;
1053     for (const CodeGenSchedTransition &CGT :
1054            make_range(SC.Transitions.begin(), SC.Transitions.end())) {
1055       if (CGT.ProcIndex == ProcModel.Index) {
1056         HasVariants = true;
1057         break;
1058       }
1059     }
1060     if (HasVariants) {
1061       SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
1062       continue;
1063     }
1064 
1065     // Determine if the SchedClass is actually reachable on this processor. If
1066     // not don't try to locate the processor resources, it will fail.
1067     // If ProcIndices contains 0, this class applies to all processors.
1068     assert(!SC.ProcIndices.empty() && "expect at least one procidx");
1069     if (SC.ProcIndices[0] != 0) {
1070       if (!is_contained(SC.ProcIndices, ProcModel.Index))
1071         continue;
1072     }
1073     IdxVec Writes = SC.Writes;
1074     IdxVec Reads = SC.Reads;
1075     if (!SC.InstRWs.empty()) {
1076       // This class has a default ReadWrite list which can be overridden by
1077       // InstRW definitions.
1078       Record *RWDef = nullptr;
1079       for (Record *RW : SC.InstRWs) {
1080         Record *RWModelDef = RW->getValueAsDef("SchedModel");
1081         if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
1082           RWDef = RW;
1083           break;
1084         }
1085       }
1086       if (RWDef) {
1087         Writes.clear();
1088         Reads.clear();
1089         SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
1090                             Writes, Reads);
1091       }
1092     }
1093     if (Writes.empty()) {
1094       // Check this processor's itinerary class resources.
1095       for (Record *I : ProcModel.ItinRWDefs) {
1096         RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
1097         if (is_contained(Matched, SC.ItinClassDef)) {
1098           SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
1099                               Writes, Reads);
1100           break;
1101         }
1102       }
1103       if (Writes.empty()) {
1104         LLVM_DEBUG(dbgs() << ProcModel.ModelName
1105                           << " does not have resources for class " << SC.Name
1106                           << '\n');
1107         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1108       }
1109     }
1110     // Sum resources across all operand writes.
1111     std::vector<MCWriteProcResEntry> WriteProcResources;
1112     std::vector<MCWriteLatencyEntry> WriteLatencies;
1113     std::vector<std::string> WriterNames;
1114     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
1115     for (unsigned W : Writes) {
1116       IdxVec WriteSeq;
1117       SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
1118                                      ProcModel);
1119 
1120       // For each operand, create a latency entry.
1121       MCWriteLatencyEntry WLEntry;
1122       WLEntry.Cycles = 0;
1123       unsigned WriteID = WriteSeq.back();
1124       WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
1125       // If this Write is not referenced by a ReadAdvance, don't distinguish it
1126       // from other WriteLatency entries.
1127       if (!SchedModels.hasReadOfWrite(
1128             SchedModels.getSchedWrite(WriteID).TheDef)) {
1129         WriteID = 0;
1130       }
1131       WLEntry.WriteResourceID = WriteID;
1132 
1133       for (unsigned WS : WriteSeq) {
1134 
1135         Record *WriteRes =
1136           FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
1137 
1138         // Mark the parent class as invalid for unsupported write types.
1139         if (WriteRes->getValueAsBit("Unsupported")) {
1140           SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1141           break;
1142         }
1143         WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
1144         SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
1145         SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
1146         SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
1147         SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
1148         SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
1149         SCDesc.RetireOOO |= WriteRes->getValueAsBit("RetireOOO");
1150 
1151         // Create an entry for each ProcResource listed in WriteRes.
1152         RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
1153         std::vector<int64_t> Cycles =
1154           WriteRes->getValueAsListOfInts("ResourceCycles");
1155 
1156         std::vector<int64_t> StartAtCycles =
1157             WriteRes->getValueAsListOfInts("StartAtCycles");
1158 
1159         // Check consistency of the two vectors carrying the start and
1160         // stop cycles of the resources.
1161         if (!Cycles.empty() && Cycles.size() != PRVec.size()) {
1162           // If ResourceCycles is provided, check consistency.
1163           PrintFatalError(
1164               WriteRes->getLoc(),
1165               Twine("Inconsistent resource cycles: size(ResourceCycles) != "
1166                     "size(ProcResources): ")
1167                   .concat(Twine(PRVec.size()))
1168                   .concat(" vs ")
1169                   .concat(Twine(Cycles.size())));
1170         }
1171 
1172         if (!StartAtCycles.empty() && StartAtCycles.size() != PRVec.size()) {
1173           PrintFatalError(
1174               WriteRes->getLoc(),
1175               Twine("Inconsistent resource cycles: size(StartAtCycles) != "
1176                     "size(ProcResources): ")
1177                   .concat(Twine(StartAtCycles.size()))
1178                   .concat(" vs ")
1179                   .concat(Twine(PRVec.size())));
1180         }
1181 
1182         if (Cycles.empty()) {
1183           // If ResourceCycles is not provided, default to one cycle
1184           // per resource.
1185           Cycles.resize(PRVec.size(), 1);
1186         }
1187 
1188         if (StartAtCycles.empty()) {
1189           // If StartAtCycles is not provided, reserve the resource
1190           // starting from cycle 0.
1191           StartAtCycles.resize(PRVec.size(), 0);
1192         }
1193 
1194         assert(StartAtCycles.size() == Cycles.size());
1195 
1196         ExpandProcResources(PRVec, Cycles, StartAtCycles, ProcModel);
1197         assert(StartAtCycles.size() == Cycles.size());
1198 
1199         for (unsigned PRIdx = 0, PREnd = PRVec.size();
1200              PRIdx != PREnd; ++PRIdx) {
1201           MCWriteProcResEntry WPREntry;
1202           WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
1203           assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
1204           WPREntry.Cycles = Cycles[PRIdx];
1205           WPREntry.StartAtCycle = StartAtCycles[PRIdx];
1206           if (StartAtCycles[PRIdx] > Cycles[PRIdx]) {
1207             PrintFatalError(WriteRes->getLoc(),
1208                             Twine("Inconsistent resource cycles: StartAtCycles "
1209                                   "< Cycles must hold."));
1210           }
1211           if (StartAtCycles[PRIdx] < 0) {
1212             PrintFatalError(WriteRes->getLoc(),
1213                             Twine("Invalid value: StartAtCycle "
1214                                   "must be a non-negative value."));
1215           }
1216           // If this resource is already used in this sequence, add the current
1217           // entry's cycles so that the same resource appears to be used
1218           // serially, rather than multiple parallel uses. This is important for
1219           // in-order machine where the resource consumption is a hazard.
1220           unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
1221           for( ; WPRIdx != WPREnd; ++WPRIdx) {
1222             if (WriteProcResources[WPRIdx].ProcResourceIdx
1223                 == WPREntry.ProcResourceIdx) {
1224               // TODO: multiple use of the same resources would
1225               // require either 1. thinking of how to handle multiple
1226               // intervals for the same resource in
1227               // `<Target>WriteProcResTable` (see
1228               // `SubtargetEmitter::EmitSchedClassTables`), or
1229               // 2. thinking how to merge multiple intervals into a
1230               // single interval.
1231               assert(WPREntry.StartAtCycle == 0 &&
1232                      "multiple use ofthe same resource is not yet handled");
1233               WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
1234               break;
1235             }
1236           }
1237           if (WPRIdx == WPREnd)
1238             WriteProcResources.push_back(WPREntry);
1239         }
1240       }
1241       WriteLatencies.push_back(WLEntry);
1242     }
1243     // Create an entry for each operand Read in this SchedClass.
1244     // Entries must be sorted first by UseIdx then by WriteResourceID.
1245     for (unsigned UseIdx = 0, EndIdx = Reads.size();
1246          UseIdx != EndIdx; ++UseIdx) {
1247       Record *ReadAdvance =
1248         FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
1249       if (!ReadAdvance)
1250         continue;
1251 
1252       // Mark the parent class as invalid for unsupported write types.
1253       if (ReadAdvance->getValueAsBit("Unsupported")) {
1254         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1255         break;
1256       }
1257       RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
1258       IdxVec WriteIDs;
1259       if (ValidWrites.empty())
1260         WriteIDs.push_back(0);
1261       else {
1262         for (Record *VW : ValidWrites) {
1263           WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
1264         }
1265       }
1266       llvm::sort(WriteIDs);
1267       for(unsigned W : WriteIDs) {
1268         MCReadAdvanceEntry RAEntry;
1269         RAEntry.UseIdx = UseIdx;
1270         RAEntry.WriteResourceID = W;
1271         RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1272         ReadAdvanceEntries.push_back(RAEntry);
1273       }
1274     }
1275     if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1276       WriteProcResources.clear();
1277       WriteLatencies.clear();
1278       ReadAdvanceEntries.clear();
1279     }
1280     // Add the information for this SchedClass to the global tables using basic
1281     // compression.
1282     //
1283     // WritePrecRes entries are sorted by ProcResIdx.
1284     llvm::sort(WriteProcResources, LessWriteProcResources());
1285 
1286     SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1287     std::vector<MCWriteProcResEntry>::iterator WPRPos =
1288       std::search(SchedTables.WriteProcResources.begin(),
1289                   SchedTables.WriteProcResources.end(),
1290                   WriteProcResources.begin(), WriteProcResources.end());
1291     if (WPRPos != SchedTables.WriteProcResources.end())
1292       SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1293     else {
1294       SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1295       SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1296                                             WriteProcResources.end());
1297     }
1298     // Latency entries must remain in operand order.
1299     SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1300     std::vector<MCWriteLatencyEntry>::iterator WLPos =
1301       std::search(SchedTables.WriteLatencies.begin(),
1302                   SchedTables.WriteLatencies.end(),
1303                   WriteLatencies.begin(), WriteLatencies.end());
1304     if (WLPos != SchedTables.WriteLatencies.end()) {
1305       unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1306       SCDesc.WriteLatencyIdx = idx;
1307       for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1308         if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1309             std::string::npos) {
1310           SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1311         }
1312     }
1313     else {
1314       SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1315       llvm::append_range(SchedTables.WriteLatencies, WriteLatencies);
1316       llvm::append_range(SchedTables.WriterNames, WriterNames);
1317     }
1318     // ReadAdvanceEntries must remain in operand order.
1319     SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1320     std::vector<MCReadAdvanceEntry>::iterator RAPos =
1321       std::search(SchedTables.ReadAdvanceEntries.begin(),
1322                   SchedTables.ReadAdvanceEntries.end(),
1323                   ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1324     if (RAPos != SchedTables.ReadAdvanceEntries.end())
1325       SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1326     else {
1327       SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1328       llvm::append_range(SchedTables.ReadAdvanceEntries, ReadAdvanceEntries);
1329     }
1330   }
1331 }
1332 
1333 // Emit SchedClass tables for all processors and associated global tables.
1334 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1335                                             raw_ostream &OS) {
1336   // Emit global WriteProcResTable.
1337   OS << "\n// {ProcResourceIdx, Cycles, StartAtCycle}\n"
1338      << "extern const llvm::MCWriteProcResEntry " << Target
1339      << "WriteProcResTable[] = {\n"
1340      << "  { 0,  0,  0 }, // Invalid\n";
1341   for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1342        WPRIdx != WPREnd; ++WPRIdx) {
1343     MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1344     OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1345        << format("%2d", WPREntry.Cycles) << ",  "
1346        << format("%2d", WPREntry.StartAtCycle) << "}";
1347     if (WPRIdx + 1 < WPREnd)
1348       OS << ',';
1349     OS << " // #" << WPRIdx << '\n';
1350   }
1351   OS << "}; // " << Target << "WriteProcResTable\n";
1352 
1353   // Emit global WriteLatencyTable.
1354   OS << "\n// {Cycles, WriteResourceID}\n"
1355      << "extern const llvm::MCWriteLatencyEntry "
1356      << Target << "WriteLatencyTable[] = {\n"
1357      << "  { 0,  0}, // Invalid\n";
1358   for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1359        WLIdx != WLEnd; ++WLIdx) {
1360     MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1361     OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
1362        << format("%2d", WLEntry.WriteResourceID) << "}";
1363     if (WLIdx + 1 < WLEnd)
1364       OS << ',';
1365     OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1366   }
1367   OS << "}; // " << Target << "WriteLatencyTable\n";
1368 
1369   // Emit global ReadAdvanceTable.
1370   OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1371      << "extern const llvm::MCReadAdvanceEntry "
1372      << Target << "ReadAdvanceTable[] = {\n"
1373      << "  {0,  0,  0}, // Invalid\n";
1374   for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1375        RAIdx != RAEnd; ++RAIdx) {
1376     MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1377     OS << "  {" << RAEntry.UseIdx << ", "
1378        << format("%2d", RAEntry.WriteResourceID) << ", "
1379        << format("%2d", RAEntry.Cycles) << "}";
1380     if (RAIdx + 1 < RAEnd)
1381       OS << ',';
1382     OS << " // #" << RAIdx << '\n';
1383   }
1384   OS << "}; // " << Target << "ReadAdvanceTable\n";
1385 
1386   // Emit a SchedClass table for each processor.
1387   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1388          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1389     if (!PI->hasInstrSchedModel())
1390       continue;
1391 
1392     std::vector<MCSchedClassDesc> &SCTab =
1393       SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1394 
1395     OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup, RetireOOO,"
1396        << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1397     OS << "static const llvm::MCSchedClassDesc "
1398        << PI->ModelName << "SchedClasses[] = {\n";
1399 
1400     // The first class is always invalid. We no way to distinguish it except by
1401     // name and position.
1402     assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1403            && "invalid class not first");
1404     OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
1405        << MCSchedClassDesc::InvalidNumMicroOps
1406        << ", false, false, false, 0, 0,  0, 0,  0, 0},\n";
1407 
1408     for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1409       MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1410       const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1411       OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
1412       if (SchedClass.Name.size() < 18)
1413         OS.indent(18 - SchedClass.Name.size());
1414       OS << MCDesc.NumMicroOps
1415          << ", " << ( MCDesc.BeginGroup ? "true" : "false" )
1416          << ", " << ( MCDesc.EndGroup ? "true" : "false" )
1417          << ", " << ( MCDesc.RetireOOO ? "true" : "false" )
1418          << ", " << format("%2d", MCDesc.WriteProcResIdx)
1419          << ", " << MCDesc.NumWriteProcResEntries
1420          << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1421          << ", " << MCDesc.NumWriteLatencyEntries
1422          << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1423          << ", " << MCDesc.NumReadAdvanceEntries
1424          << "}, // #" << SCIdx << '\n';
1425     }
1426     OS << "}; // " << PI->ModelName << "SchedClasses\n";
1427   }
1428 }
1429 
1430 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1431   // For each processor model.
1432   for (const CodeGenProcModel &PM : SchedModels.procModels()) {
1433     // Emit extra processor info if available.
1434     if (PM.hasExtraProcessorInfo())
1435       EmitExtraProcessorInfo(PM, OS);
1436     // Emit processor resource table.
1437     if (PM.hasInstrSchedModel())
1438       EmitProcessorResources(PM, OS);
1439     else if(!PM.ProcResourceDefs.empty())
1440       PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
1441                     "ProcResources without defining WriteRes SchedWriteRes");
1442 
1443     // Begin processor itinerary properties
1444     OS << "\n";
1445     OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
1446     EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
1447     EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
1448     EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
1449     EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
1450     EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
1451     EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
1452 
1453     bool PostRAScheduler =
1454       (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
1455 
1456     OS << "  " << (PostRAScheduler ? "true" : "false")  << ", // "
1457        << "PostRAScheduler\n";
1458 
1459     bool CompleteModel =
1460       (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
1461 
1462     OS << "  " << (CompleteModel ? "true" : "false") << ", // "
1463        << "CompleteModel\n";
1464 
1465     bool EnableIntervals =
1466         (PM.ModelDef ? PM.ModelDef->getValueAsBit("EnableIntervals") : false);
1467 
1468     OS << "  " << (EnableIntervals ? "true" : "false") << ", // "
1469        << "EnableIntervals\n";
1470 
1471     OS << "  " << PM.Index << ", // Processor ID\n";
1472     if (PM.hasInstrSchedModel())
1473       OS << "  " << PM.ModelName << "ProcResources" << ",\n"
1474          << "  " << PM.ModelName << "SchedClasses" << ",\n"
1475          << "  " << PM.ProcResourceDefs.size()+1 << ",\n"
1476          << "  " << (SchedModels.schedClassEnd()
1477                      - SchedModels.schedClassBegin()) << ",\n";
1478     else
1479       OS << "  nullptr, nullptr, 0, 0,"
1480          << " // No instruction-level machine model.\n";
1481     if (PM.hasItineraries())
1482       OS << "  " << PM.ItinsDef->getName() << ",\n";
1483     else
1484       OS << "  nullptr, // No Itinerary\n";
1485     if (PM.hasExtraProcessorInfo())
1486       OS << "  &" << PM.ModelName << "ExtraInfo,\n";
1487     else
1488       OS << "  nullptr // No extra processor descriptor\n";
1489     OS << "};\n";
1490   }
1491 }
1492 
1493 //
1494 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1495 //
1496 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1497   OS << "#ifdef DBGFIELD\n"
1498      << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1499      << "#endif\n"
1500      << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
1501      << "#define DBGFIELD(x) x,\n"
1502      << "#else\n"
1503      << "#define DBGFIELD(x)\n"
1504      << "#endif\n";
1505 
1506   if (SchedModels.hasItineraries()) {
1507     std::vector<std::vector<InstrItinerary>> ProcItinLists;
1508     // Emit the stage data
1509     EmitStageAndOperandCycleData(OS, ProcItinLists);
1510     EmitItineraries(OS, ProcItinLists);
1511   }
1512   OS << "\n// ===============================================================\n"
1513      << "// Data tables for the new per-operand machine model.\n";
1514 
1515   SchedClassTables SchedTables;
1516   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
1517     GenSchedClassTables(ProcModel, SchedTables);
1518   }
1519   EmitSchedClassTables(SchedTables, OS);
1520 
1521   OS << "\n#undef DBGFIELD\n";
1522 
1523   // Emit the processor machine model
1524   EmitProcessorModels(OS);
1525 }
1526 
1527 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) {
1528   std::string Buffer;
1529   raw_string_ostream Stream(Buffer);
1530 
1531   // Collect all the PredicateProlog records and print them to the output
1532   // stream.
1533   std::vector<Record *> Prologs =
1534       Records.getAllDerivedDefinitions("PredicateProlog");
1535   llvm::sort(Prologs, LessRecord());
1536   for (Record *P : Prologs)
1537     Stream << P->getValueAsString("Code") << '\n';
1538 
1539   OS << Buffer;
1540 }
1541 
1542 static bool isTruePredicate(const Record *Rec) {
1543   return Rec->isSubClassOf("MCSchedPredicate") &&
1544          Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
1545 }
1546 
1547 static void emitPredicates(const CodeGenSchedTransition &T,
1548                            const CodeGenSchedClass &SC, PredicateExpander &PE,
1549                            raw_ostream &OS) {
1550   std::string Buffer;
1551   raw_string_ostream SS(Buffer);
1552 
1553   // If not all predicates are MCTrue, then we need an if-stmt.
1554   unsigned NumNonTruePreds =
1555       T.PredTerm.size() - count_if(T.PredTerm, isTruePredicate);
1556 
1557   SS.indent(PE.getIndentLevel() * 2);
1558 
1559   if (NumNonTruePreds) {
1560     bool FirstNonTruePredicate = true;
1561     SS << "if (";
1562 
1563     PE.setIndentLevel(PE.getIndentLevel() + 2);
1564 
1565     for (const Record *Rec : T.PredTerm) {
1566       // Skip predicates that evaluate to "true".
1567       if (isTruePredicate(Rec))
1568         continue;
1569 
1570       if (FirstNonTruePredicate) {
1571         FirstNonTruePredicate = false;
1572       } else {
1573         SS << "\n";
1574         SS.indent(PE.getIndentLevel() * 2);
1575         SS << "&& ";
1576       }
1577 
1578       if (Rec->isSubClassOf("MCSchedPredicate")) {
1579         PE.expandPredicate(SS, Rec->getValueAsDef("Pred"));
1580         continue;
1581       }
1582 
1583       // Expand this legacy predicate and wrap it around braces if there is more
1584       // than one predicate to expand.
1585       SS << ((NumNonTruePreds > 1) ? "(" : "")
1586          << Rec->getValueAsString("Predicate")
1587          << ((NumNonTruePreds > 1) ? ")" : "");
1588     }
1589 
1590     SS << ")\n"; // end of if-stmt
1591     PE.decreaseIndentLevel();
1592     SS.indent(PE.getIndentLevel() * 2);
1593     PE.decreaseIndentLevel();
1594   }
1595 
1596   SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n';
1597   OS << Buffer;
1598 }
1599 
1600 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate
1601 // epilogue code for the auto-generated helper.
1602 static void emitSchedModelHelperEpilogue(raw_ostream &OS,
1603                                          bool ShouldReturnZero) {
1604   if (ShouldReturnZero) {
1605     OS << "  // Don't know how to resolve this scheduling class.\n"
1606        << "  return 0;\n";
1607     return;
1608   }
1609 
1610   OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n";
1611 }
1612 
1613 static bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
1614   return all_of(T.PredTerm, [](const Record *Rec) {
1615     return Rec->isSubClassOf("MCSchedPredicate");
1616   });
1617 }
1618 
1619 static void collectVariantClasses(const CodeGenSchedModels &SchedModels,
1620                                   IdxVec &VariantClasses,
1621                                   bool OnlyExpandMCInstPredicates) {
1622   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1623     // Ignore non-variant scheduling classes.
1624     if (SC.Transitions.empty())
1625       continue;
1626 
1627     if (OnlyExpandMCInstPredicates) {
1628       // Ignore this variant scheduling class no transitions use any meaningful
1629       // MCSchedPredicate definitions.
1630       if (llvm::none_of(SC.Transitions, hasMCSchedPredicates))
1631         continue;
1632     }
1633 
1634     VariantClasses.push_back(SC.Index);
1635   }
1636 }
1637 
1638 static void collectProcessorIndices(const CodeGenSchedClass &SC,
1639                                     IdxVec &ProcIndices) {
1640   // A variant scheduling class may define transitions for multiple
1641   // processors.  This function identifies wich processors are associated with
1642   // transition rules specified by variant class `SC`.
1643   for (const CodeGenSchedTransition &T : SC.Transitions) {
1644     IdxVec PI;
1645     std::set_union(&T.ProcIndex, &T.ProcIndex + 1, ProcIndices.begin(),
1646                    ProcIndices.end(), std::back_inserter(PI));
1647     ProcIndices.swap(PI);
1648   }
1649 }
1650 
1651 static bool isAlwaysTrue(const CodeGenSchedTransition &T) {
1652   return llvm::all_of(T.PredTerm, isTruePredicate);
1653 }
1654 
1655 void SubtargetEmitter::emitSchedModelHelpersImpl(
1656     raw_ostream &OS, bool OnlyExpandMCInstPredicates) {
1657   IdxVec VariantClasses;
1658   collectVariantClasses(SchedModels, VariantClasses,
1659                         OnlyExpandMCInstPredicates);
1660 
1661   if (VariantClasses.empty()) {
1662     emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1663     return;
1664   }
1665 
1666   // Construct a switch statement where the condition is a check on the
1667   // scheduling class identifier. There is a `case` for every variant class
1668   // defined by the processor models of this target.
1669   // Each `case` implements a number of rules to resolve (i.e. to transition from)
1670   // a variant scheduling class to another scheduling class.  Rules are
1671   // described by instances of CodeGenSchedTransition. Note that transitions may
1672   // not be valid for all processors.
1673   OS << "  switch (SchedClass) {\n";
1674   for (unsigned VC : VariantClasses) {
1675     IdxVec ProcIndices;
1676     const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
1677     collectProcessorIndices(SC, ProcIndices);
1678 
1679     OS << "  case " << VC << ": // " << SC.Name << '\n';
1680 
1681     PredicateExpander PE(Target);
1682     PE.setByRef(false);
1683     PE.setExpandForMC(OnlyExpandMCInstPredicates);
1684     for (unsigned PI : ProcIndices) {
1685       OS << "    ";
1686 
1687       // Emit a guard on the processor ID.
1688       if (PI != 0) {
1689         OS << (OnlyExpandMCInstPredicates
1690                    ? "if (CPUID == "
1691                    : "if (SchedModel->getProcessorID() == ");
1692         OS << PI << ") ";
1693         OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n';
1694       }
1695 
1696       // Now emit transitions associated with processor PI.
1697       const CodeGenSchedTransition *FinalT = nullptr;
1698       for (const CodeGenSchedTransition &T : SC.Transitions) {
1699         if (PI != 0 && T.ProcIndex != PI)
1700           continue;
1701 
1702         // Emit only transitions based on MCSchedPredicate, if it's the case.
1703         // At least the transition specified by NoSchedPred is emitted,
1704         // which becomes the default transition for those variants otherwise
1705         // not based on MCSchedPredicate.
1706         // FIXME: preferably, llvm-mca should instead assume a reasonable
1707         // default when a variant transition is not based on MCSchedPredicate
1708         // for a given processor.
1709         if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T))
1710           continue;
1711 
1712         // If transition is folded to 'return X' it should be the last one.
1713         if (isAlwaysTrue(T)) {
1714           FinalT = &T;
1715           continue;
1716         }
1717         PE.setIndentLevel(3);
1718         emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS);
1719       }
1720       if (FinalT)
1721         emitPredicates(*FinalT, SchedModels.getSchedClass(FinalT->ToClassIdx),
1722                        PE, OS);
1723 
1724       OS << "    }\n";
1725 
1726       if (PI == 0)
1727         break;
1728     }
1729 
1730     if (SC.isInferred())
1731       OS << "    return " << SC.Index << ";\n";
1732     OS << "    break;\n";
1733   }
1734 
1735   OS << "  };\n";
1736 
1737   emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1738 }
1739 
1740 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName,
1741                                              raw_ostream &OS) {
1742   OS << "unsigned " << ClassName
1743      << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1744      << " const TargetSchedModel *SchedModel) const {\n";
1745 
1746   // Emit the predicate prolog code.
1747   emitPredicateProlog(Records, OS);
1748 
1749   // Emit target predicates.
1750   emitSchedModelHelpersImpl(OS);
1751 
1752   OS << "} // " << ClassName << "::resolveSchedClass\n\n";
1753 
1754   OS << "unsigned " << ClassName
1755      << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI,"
1756      << " const MCInstrInfo *MCII, unsigned CPUID) const {\n"
1757      << "  return " << Target << "_MC"
1758      << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n"
1759      << "} // " << ClassName << "::resolveVariantSchedClass\n\n";
1760 
1761   STIPredicateExpander PE(Target);
1762   PE.setClassPrefix(ClassName);
1763   PE.setExpandDefinition(true);
1764   PE.setByRef(false);
1765   PE.setIndentLevel(0);
1766 
1767   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1768     PE.expandSTIPredicate(OS, Fn);
1769 }
1770 
1771 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName,
1772                                        raw_ostream &OS) {
1773   const CodeGenHwModes &CGH = TGT.getHwModes();
1774   assert(CGH.getNumModeIds() > 0);
1775   if (CGH.getNumModeIds() == 1)
1776     return;
1777 
1778   OS << "unsigned " << ClassName << "::getHwMode() const {\n";
1779   for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
1780     const HwMode &HM = CGH.getMode(M);
1781     OS << "  if (checkFeatures(\"" << HM.Features
1782        << "\")) return " << M << ";\n";
1783   }
1784   OS << "  return 0;\n}\n";
1785 }
1786 
1787 // Produces a subtarget specific function for parsing
1788 // the subtarget features string.
1789 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS) {
1790   std::vector<Record*> Features =
1791                        Records.getAllDerivedDefinitions("SubtargetFeature");
1792   llvm::sort(Features, LessRecord());
1793 
1794   OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1795      << "// subtarget options.\n"
1796      << "void llvm::";
1797   OS << Target;
1798   OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, "
1799      << "StringRef FS) {\n"
1800      << "  LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1801      << "  LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU);\n"
1802      << "  LLVM_DEBUG(dbgs() << \"\\nTuneCPU:\" << TuneCPU << \"\\n\\n\");\n";
1803 
1804   if (Features.empty()) {
1805     OS << "}\n";
1806     return;
1807   }
1808 
1809   OS << "  InitMCProcessorInfo(CPU, TuneCPU, FS);\n"
1810      << "  const FeatureBitset &Bits = getFeatureBits();\n";
1811 
1812   for (Record *R : Features) {
1813     // Next record
1814     StringRef Instance = R->getName();
1815     StringRef Value = R->getValueAsString("Value");
1816     StringRef FieldName = R->getValueAsString("FieldName");
1817 
1818     if (Value=="true" || Value=="false")
1819       OS << "  if (Bits[" << Target << "::"
1820          << Instance << "]) "
1821          << FieldName << " = " << Value << ";\n";
1822     else
1823       OS << "  if (Bits[" << Target << "::"
1824          << Instance << "] && "
1825          << FieldName << " < " << Value << ") "
1826          << FieldName << " = " << Value << ";\n";
1827   }
1828 
1829   OS << "}\n";
1830 }
1831 
1832 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) {
1833   OS << "namespace " << Target << "_MC {\n"
1834      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n"
1835      << "    const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) {\n";
1836   emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true);
1837   OS << "}\n";
1838   OS << "} // end namespace " << Target << "_MC\n\n";
1839 
1840   OS << "struct " << Target
1841      << "GenMCSubtargetInfo : public MCSubtargetInfo {\n";
1842   OS << "  " << Target << "GenMCSubtargetInfo(const Triple &TT,\n"
1843      << "    StringRef CPU, StringRef TuneCPU, StringRef FS,\n"
1844      << "    ArrayRef<SubtargetFeatureKV> PF,\n"
1845      << "    ArrayRef<SubtargetSubTypeKV> PD,\n"
1846      << "    const MCWriteProcResEntry *WPR,\n"
1847      << "    const MCWriteLatencyEntry *WL,\n"
1848      << "    const MCReadAdvanceEntry *RA, const InstrStage *IS,\n"
1849      << "    const unsigned *OC, const unsigned *FP) :\n"
1850      << "      MCSubtargetInfo(TT, CPU, TuneCPU, FS, PF, PD,\n"
1851      << "                      WPR, WL, RA, IS, OC, FP) { }\n\n"
1852      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,\n"
1853      << "      const MCInst *MI, const MCInstrInfo *MCII,\n"
1854      << "      unsigned CPUID) const override {\n"
1855      << "    return " << Target << "_MC"
1856      << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n";
1857   OS << "  }\n";
1858   if (TGT.getHwModes().getNumModeIds() > 1)
1859     OS << "  unsigned getHwMode() const override;\n";
1860   OS << "};\n";
1861   EmitHwModeCheck(Target + "GenMCSubtargetInfo", OS);
1862 }
1863 
1864 void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) {
1865   OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n";
1866   OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1867 
1868   STIPredicateExpander PE(Target);
1869   PE.setExpandForMC(true);
1870   PE.setByRef(true);
1871   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1872     PE.expandSTIPredicate(OS, Fn);
1873 
1874   OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1875 
1876   OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n";
1877   OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1878 
1879   std::string ClassPrefix = Target + "MCInstrAnalysis";
1880   PE.setExpandDefinition(true);
1881   PE.setClassPrefix(ClassPrefix);
1882   PE.setIndentLevel(0);
1883   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1884     PE.expandSTIPredicate(OS, Fn);
1885 
1886   OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1887 }
1888 
1889 //
1890 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1891 //
1892 void SubtargetEmitter::run(raw_ostream &OS) {
1893   emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1894 
1895   OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1896   OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
1897 
1898   DenseMap<Record *, unsigned> FeatureMap;
1899 
1900   OS << "namespace llvm {\n";
1901   Enumeration(OS, FeatureMap);
1902   OS << "} // end namespace llvm\n\n";
1903   OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1904 
1905   EmitSubtargetInfoMacroCalls(OS);
1906 
1907   OS << "namespace llvm {\n";
1908 #if 0
1909   OS << "namespace {\n";
1910 #endif
1911   unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap);
1912   OS << "\n";
1913   EmitSchedModel(OS);
1914   OS << "\n";
1915   unsigned NumProcs = CPUKeyValues(OS, FeatureMap);
1916   OS << "\n";
1917 #if 0
1918   OS << "} // end anonymous namespace\n\n";
1919 #endif
1920 
1921   // MCInstrInfo initialization routine.
1922   emitGenMCSubtargetInfo(OS);
1923 
1924   OS << "\nstatic inline MCSubtargetInfo *create" << Target
1925      << "MCSubtargetInfoImpl("
1926      << "const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS) {\n";
1927   OS << "  return new " << Target
1928      << "GenMCSubtargetInfo(TT, CPU, TuneCPU, FS, ";
1929   if (NumFeatures)
1930     OS << Target << "FeatureKV, ";
1931   else
1932     OS << "std::nullopt, ";
1933   if (NumProcs)
1934     OS << Target << "SubTypeKV, ";
1935   else
1936     OS << "None, ";
1937   OS << '\n'; OS.indent(22);
1938   OS << Target << "WriteProcResTable, "
1939      << Target << "WriteLatencyTable, "
1940      << Target << "ReadAdvanceTable, ";
1941   OS << '\n'; OS.indent(22);
1942   if (SchedModels.hasItineraries()) {
1943     OS << Target << "Stages, "
1944        << Target << "OperandCycles, "
1945        << Target << "ForwardingPaths";
1946   } else
1947     OS << "nullptr, nullptr, nullptr";
1948   OS << ");\n}\n\n";
1949 
1950   OS << "} // end namespace llvm\n\n";
1951 
1952   OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1953 
1954   OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1955   OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
1956 
1957   OS << "#include \"llvm/Support/Debug.h\"\n";
1958   OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
1959   ParseFeaturesFunction(OS);
1960 
1961   OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1962 
1963   // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1964   OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1965   OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
1966 
1967   std::string ClassName = Target + "GenSubtargetInfo";
1968   OS << "namespace llvm {\n";
1969   OS << "class DFAPacketizer;\n";
1970   OS << "namespace " << Target << "_MC {\n"
1971      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,"
1972      << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID);\n"
1973      << "} // end namespace " << Target << "_MC\n\n";
1974   OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1975      << "  explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
1976      << "StringRef TuneCPU, StringRef FS);\n"
1977      << "public:\n"
1978      << "  unsigned resolveSchedClass(unsigned SchedClass, "
1979      << " const MachineInstr *DefMI,"
1980      << " const TargetSchedModel *SchedModel) const override;\n"
1981      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,"
1982      << " const MCInst *MI, const MCInstrInfo *MCII,"
1983      << " unsigned CPUID) const override;\n"
1984      << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1985      << " const;\n";
1986   if (TGT.getHwModes().getNumModeIds() > 1)
1987     OS << "  unsigned getHwMode() const override;\n";
1988 
1989   STIPredicateExpander PE(Target);
1990   PE.setByRef(false);
1991   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1992     PE.expandSTIPredicate(OS, Fn);
1993 
1994   OS << "};\n"
1995      << "} // end namespace llvm\n\n";
1996 
1997   OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1998 
1999   OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
2000   OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
2001 
2002   OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
2003   OS << "namespace llvm {\n";
2004   OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
2005   OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n";
2006   OS << "extern const llvm::MCWriteProcResEntry "
2007      << Target << "WriteProcResTable[];\n";
2008   OS << "extern const llvm::MCWriteLatencyEntry "
2009      << Target << "WriteLatencyTable[];\n";
2010   OS << "extern const llvm::MCReadAdvanceEntry "
2011      << Target << "ReadAdvanceTable[];\n";
2012 
2013   if (SchedModels.hasItineraries()) {
2014     OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
2015     OS << "extern const unsigned " << Target << "OperandCycles[];\n";
2016     OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
2017   }
2018 
2019   OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
2020      << "StringRef TuneCPU, StringRef FS)\n"
2021      << "  : TargetSubtargetInfo(TT, CPU, TuneCPU, FS, ";
2022   if (NumFeatures)
2023     OS << "ArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
2024   else
2025     OS << "std::nullopt, ";
2026   if (NumProcs)
2027     OS << "ArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
2028   else
2029     OS << "None, ";
2030   OS << '\n'; OS.indent(24);
2031   OS << Target << "WriteProcResTable, "
2032      << Target << "WriteLatencyTable, "
2033      << Target << "ReadAdvanceTable, ";
2034   OS << '\n'; OS.indent(24);
2035   if (SchedModels.hasItineraries()) {
2036     OS << Target << "Stages, "
2037        << Target << "OperandCycles, "
2038        << Target << "ForwardingPaths";
2039   } else
2040     OS << "nullptr, nullptr, nullptr";
2041   OS << ") {}\n\n";
2042 
2043   EmitSchedModelHelpers(ClassName, OS);
2044   EmitHwModeCheck(ClassName, OS);
2045 
2046   OS << "} // end namespace llvm\n\n";
2047 
2048   OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
2049 
2050   EmitMCInstrAnalysisPredicateFunctions(OS);
2051 }
2052 
2053 static TableGen::Emitter::OptClass<SubtargetEmitter>
2054     X("gen-subtarget", "Generate subtarget enumerations");
2055