xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/SubtargetEmitter.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits subtarget enumerations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenTarget.h"
14 #include "CodeGenSchedule.h"
15 #include "PredicateExpander.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/MC/MCInstrItineraries.h"
21 #include "llvm/MC/MCSchedule.h"
22 #include "llvm/MC/SubtargetFeature.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include "llvm/TableGen/TableGenBackend.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstdint>
32 #include <iterator>
33 #include <map>
34 #include <string>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "subtarget-emitter"
40 
41 namespace {
42 
43 class SubtargetEmitter {
44   // Each processor has a SchedClassDesc table with an entry for each SchedClass.
45   // The SchedClassDesc table indexes into a global write resource table, write
46   // latency table, and read advance table.
47   struct SchedClassTables {
48     std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses;
49     std::vector<MCWriteProcResEntry> WriteProcResources;
50     std::vector<MCWriteLatencyEntry> WriteLatencies;
51     std::vector<std::string> WriterNames;
52     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
53 
54     // Reserve an invalid entry at index 0
55     SchedClassTables() {
56       ProcSchedClasses.resize(1);
57       WriteProcResources.resize(1);
58       WriteLatencies.resize(1);
59       WriterNames.push_back("InvalidWrite");
60       ReadAdvanceEntries.resize(1);
61     }
62   };
63 
64   struct LessWriteProcResources {
65     bool operator()(const MCWriteProcResEntry &LHS,
66                     const MCWriteProcResEntry &RHS) {
67       return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
68     }
69   };
70 
71   const CodeGenTarget &TGT;
72   RecordKeeper &Records;
73   CodeGenSchedModels &SchedModels;
74   std::string Target;
75 
76   void Enumeration(raw_ostream &OS, DenseMap<Record *, unsigned> &FeatureMap);
77   void EmitSubtargetInfoMacroCalls(raw_ostream &OS);
78   unsigned FeatureKeyValues(raw_ostream &OS,
79                             const DenseMap<Record *, unsigned> &FeatureMap);
80   unsigned CPUKeyValues(raw_ostream &OS,
81                         const DenseMap<Record *, unsigned> &FeatureMap);
82   void FormItineraryStageString(const std::string &Names,
83                                 Record *ItinData, std::string &ItinString,
84                                 unsigned &NStages);
85   void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
86                                        unsigned &NOperandCycles);
87   void FormItineraryBypassString(const std::string &Names,
88                                  Record *ItinData,
89                                  std::string &ItinString, unsigned NOperandCycles);
90   void EmitStageAndOperandCycleData(raw_ostream &OS,
91                                     std::vector<std::vector<InstrItinerary>>
92                                       &ProcItinLists);
93   void EmitItineraries(raw_ostream &OS,
94                        std::vector<std::vector<InstrItinerary>>
95                          &ProcItinLists);
96   unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
97                                   raw_ostream &OS);
98   void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
99                               raw_ostream &OS);
100   void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
101                               raw_ostream &OS);
102   void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name,
103                          char Separator);
104   void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel,
105                                      raw_ostream &OS);
106   void EmitProcessorResources(const CodeGenProcModel &ProcModel,
107                               raw_ostream &OS);
108   Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
109                              const CodeGenProcModel &ProcModel);
110   Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
111                           const CodeGenProcModel &ProcModel);
112   void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
113                            const CodeGenProcModel &ProcModel);
114   void GenSchedClassTables(const CodeGenProcModel &ProcModel,
115                            SchedClassTables &SchedTables);
116   void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
117   void EmitProcessorModels(raw_ostream &OS);
118   void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
119   void emitSchedModelHelpersImpl(raw_ostream &OS,
120                                  bool OnlyExpandMCInstPredicates = false);
121   void emitGenMCSubtargetInfo(raw_ostream &OS);
122   void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS);
123 
124   void EmitSchedModel(raw_ostream &OS);
125   void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS);
126   void ParseFeaturesFunction(raw_ostream &OS);
127 
128 public:
129   SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT)
130       : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()),
131         Target(TGT.getName()) {}
132 
133   void run(raw_ostream &o);
134 };
135 
136 } // end anonymous namespace
137 
138 //
139 // Enumeration - Emit the specified class as an enumeration.
140 //
141 void SubtargetEmitter::Enumeration(raw_ostream &OS,
142                                    DenseMap<Record *, unsigned> &FeatureMap) {
143   // Get all records of class and sort
144   std::vector<Record*> DefList =
145     Records.getAllDerivedDefinitions("SubtargetFeature");
146   llvm::sort(DefList, LessRecord());
147 
148   unsigned N = DefList.size();
149   if (N == 0)
150     return;
151   if (N + 1 > MAX_SUBTARGET_FEATURES)
152     PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
153 
154   OS << "namespace " << Target << " {\n";
155 
156   // Open enumeration.
157   OS << "enum {\n";
158 
159   // For each record
160   for (unsigned i = 0; i < N; ++i) {
161     // Next record
162     Record *Def = DefList[i];
163 
164     // Get and emit name
165     OS << "  " << Def->getName() << " = " << i << ",\n";
166 
167     // Save the index for this feature.
168     FeatureMap[Def] = i;
169   }
170 
171   OS << "  "
172      << "NumSubtargetFeatures = " << N << "\n";
173 
174   // Close enumeration and namespace
175   OS << "};\n";
176   OS << "} // end namespace " << Target << "\n";
177 }
178 
179 static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList,
180                              const DenseMap<Record *, unsigned> &FeatureMap) {
181   std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {};
182   for (const Record *Feature : FeatureList) {
183     unsigned Bit = FeatureMap.lookup(Feature);
184     Mask[Bit / 64] |= 1ULL << (Bit % 64);
185   }
186 
187   OS << "{ { { ";
188   for (unsigned i = 0; i != Mask.size(); ++i) {
189     OS << "0x";
190     OS.write_hex(Mask[i]);
191     OS << "ULL, ";
192   }
193   OS << "} } }";
194 }
195 
196 /// Emit some information about the SubtargetFeature as calls to a macro so
197 /// that they can be used from C++.
198 void SubtargetEmitter::EmitSubtargetInfoMacroCalls(raw_ostream &OS) {
199   OS << "\n#ifdef GET_SUBTARGETINFO_MACRO\n";
200 
201   std::vector<Record *> FeatureList =
202       Records.getAllDerivedDefinitions("SubtargetFeature");
203   llvm::sort(FeatureList, LessRecordFieldName());
204 
205   for (const Record *Feature : FeatureList) {
206     const StringRef Attribute = Feature->getValueAsString("Attribute");
207     const StringRef Value = Feature->getValueAsString("Value");
208 
209     // Only handle boolean features for now, excluding BitVectors and enums.
210     const bool IsBool = (Value == "false" || Value == "true") &&
211                         !StringRef(Attribute).contains('[');
212     if (!IsBool)
213       continue;
214 
215     // Some features default to true, with values set to false if enabled.
216     const char *Default = Value == "false" ? "true" : "false";
217 
218     // Define the getter with lowercased first char: xxxYyy() { return XxxYyy; }
219     const std::string Getter =
220         Attribute.substr(0, 1).lower() + Attribute.substr(1).str();
221 
222     OS << "GET_SUBTARGETINFO_MACRO(" << Attribute << ", " << Default << ", "
223        << Getter << ")\n";
224   }
225   OS << "#undef GET_SUBTARGETINFO_MACRO\n";
226   OS << "#endif // GET_SUBTARGETINFO_MACRO\n\n";
227 
228   OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
229   OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
230 }
231 
232 //
233 // FeatureKeyValues - Emit data of all the subtarget features.  Used by the
234 // command line.
235 //
236 unsigned SubtargetEmitter::FeatureKeyValues(
237     raw_ostream &OS, const DenseMap<Record *, unsigned> &FeatureMap) {
238   // Gather and sort all the features
239   std::vector<Record*> FeatureList =
240                            Records.getAllDerivedDefinitions("SubtargetFeature");
241 
242   if (FeatureList.empty())
243     return 0;
244 
245   llvm::sort(FeatureList, LessRecordFieldName());
246 
247   // Begin feature table
248   OS << "// Sorted (by key) array of values for CPU features.\n"
249      << "extern const llvm::SubtargetFeatureKV " << Target
250      << "FeatureKV[] = {\n";
251 
252   // For each feature
253   unsigned NumFeatures = 0;
254   for (const Record *Feature : FeatureList) {
255     // Next feature
256     StringRef Name = Feature->getName();
257     StringRef CommandLineName = Feature->getValueAsString("Name");
258     StringRef Desc = Feature->getValueAsString("Desc");
259 
260     if (CommandLineName.empty()) continue;
261 
262     // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
263     OS << "  { "
264        << "\"" << CommandLineName << "\", "
265        << "\"" << Desc << "\", "
266        << Target << "::" << Name << ", ";
267 
268     RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
269 
270     printFeatureMask(OS, ImpliesList, FeatureMap);
271 
272     OS << " },\n";
273     ++NumFeatures;
274   }
275 
276   // End feature table
277   OS << "};\n";
278 
279   return NumFeatures;
280 }
281 
282 //
283 // CPUKeyValues - Emit data of all the subtarget processors.  Used by command
284 // line.
285 //
286 unsigned
287 SubtargetEmitter::CPUKeyValues(raw_ostream &OS,
288                                const DenseMap<Record *, unsigned> &FeatureMap) {
289   // Gather and sort processor information
290   std::vector<Record*> ProcessorList =
291                           Records.getAllDerivedDefinitions("Processor");
292   llvm::sort(ProcessorList, LessRecordFieldName());
293 
294   // Begin processor table
295   OS << "// Sorted (by key) array of values for CPU subtype.\n"
296      << "extern const llvm::SubtargetSubTypeKV " << Target
297      << "SubTypeKV[] = {\n";
298 
299   // For each processor
300   for (Record *Processor : ProcessorList) {
301     StringRef Name = Processor->getValueAsString("Name");
302     RecVec FeatureList = Processor->getValueAsListOfDefs("Features");
303     RecVec TuneFeatureList = Processor->getValueAsListOfDefs("TuneFeatures");
304 
305     // Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } },
306     OS << " { "
307        << "\"" << Name << "\", ";
308 
309     printFeatureMask(OS, FeatureList, FeatureMap);
310     OS << ", ";
311     printFeatureMask(OS, TuneFeatureList, FeatureMap);
312 
313     // Emit the scheduler model pointer.
314     const std::string &ProcModelName =
315       SchedModels.getModelForProc(Processor).ModelName;
316     OS << ", &" << ProcModelName << " },\n";
317   }
318 
319   // End processor table
320   OS << "};\n";
321 
322   return ProcessorList.size();
323 }
324 
325 //
326 // FormItineraryStageString - Compose a string containing the stage
327 // data initialization for the specified itinerary.  N is the number
328 // of stages.
329 //
330 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
331                                                 Record *ItinData,
332                                                 std::string &ItinString,
333                                                 unsigned &NStages) {
334   // Get states list
335   RecVec StageList = ItinData->getValueAsListOfDefs("Stages");
336 
337   // For each stage
338   unsigned N = NStages = StageList.size();
339   for (unsigned i = 0; i < N;) {
340     // Next stage
341     const Record *Stage = StageList[i];
342 
343     // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
344     int Cycles = Stage->getValueAsInt("Cycles");
345     ItinString += "  { " + itostr(Cycles) + ", ";
346 
347     // Get unit list
348     RecVec UnitList = Stage->getValueAsListOfDefs("Units");
349 
350     // For each unit
351     for (unsigned j = 0, M = UnitList.size(); j < M;) {
352       // Add name and bitwise or
353       ItinString += Name + "FU::" + UnitList[j]->getName().str();
354       if (++j < M) ItinString += " | ";
355     }
356 
357     int TimeInc = Stage->getValueAsInt("TimeInc");
358     ItinString += ", " + itostr(TimeInc);
359 
360     int Kind = Stage->getValueAsInt("Kind");
361     ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
362 
363     // Close off stage
364     ItinString += " }";
365     if (++i < N) ItinString += ", ";
366   }
367 }
368 
369 //
370 // FormItineraryOperandCycleString - Compose a string containing the
371 // operand cycle initialization for the specified itinerary.  N is the
372 // number of operands that has cycles specified.
373 //
374 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
375                          std::string &ItinString, unsigned &NOperandCycles) {
376   // Get operand cycle list
377   std::vector<int64_t> OperandCycleList =
378     ItinData->getValueAsListOfInts("OperandCycles");
379 
380   // For each operand cycle
381   NOperandCycles = OperandCycleList.size();
382   ListSeparator LS;
383   for (int OCycle : OperandCycleList) {
384     // Next operand cycle
385     ItinString += LS;
386     ItinString += "  " + itostr(OCycle);
387   }
388 }
389 
390 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
391                                                  Record *ItinData,
392                                                  std::string &ItinString,
393                                                  unsigned NOperandCycles) {
394   RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses");
395   unsigned N = BypassList.size();
396   unsigned i = 0;
397   ListSeparator LS;
398   for (; i < N; ++i) {
399     ItinString += LS;
400     ItinString += Name + "Bypass::" + BypassList[i]->getName().str();
401   }
402   for (; i < NOperandCycles; ++i) {
403     ItinString += LS;
404     ItinString += " 0";
405   }
406 }
407 
408 //
409 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
410 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
411 // by CodeGenSchedClass::Index.
412 //
413 void SubtargetEmitter::
414 EmitStageAndOperandCycleData(raw_ostream &OS,
415                              std::vector<std::vector<InstrItinerary>>
416                                &ProcItinLists) {
417   // Multiple processor models may share an itinerary record. Emit it once.
418   SmallPtrSet<Record*, 8> ItinsDefSet;
419 
420   // Emit functional units for all the itineraries.
421   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
422 
423     if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
424       continue;
425 
426     RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
427     if (FUs.empty())
428       continue;
429 
430     StringRef Name = ProcModel.ItinsDef->getName();
431     OS << "\n// Functional units for \"" << Name << "\"\n"
432        << "namespace " << Name << "FU {\n";
433 
434     for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
435       OS << "  const InstrStage::FuncUnits " << FUs[j]->getName()
436          << " = 1ULL << " << j << ";\n";
437 
438     OS << "} // end namespace " << Name << "FU\n";
439 
440     RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
441     if (!BPs.empty()) {
442       OS << "\n// Pipeline forwarding paths for itineraries \"" << Name
443          << "\"\n" << "namespace " << Name << "Bypass {\n";
444 
445       OS << "  const unsigned NoBypass = 0;\n";
446       for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
447         OS << "  const unsigned " << BPs[j]->getName()
448            << " = 1 << " << j << ";\n";
449 
450       OS << "} // end namespace " << Name << "Bypass\n";
451     }
452   }
453 
454   // Begin stages table
455   std::string StageTable = "\nextern const llvm::InstrStage " + Target +
456                            "Stages[] = {\n";
457   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
458 
459   // Begin operand cycle table
460   std::string OperandCycleTable = "extern const unsigned " + Target +
461     "OperandCycles[] = {\n";
462   OperandCycleTable += "  0, // No itinerary\n";
463 
464   // Begin pipeline bypass table
465   std::string BypassTable = "extern const unsigned " + Target +
466     "ForwardingPaths[] = {\n";
467   BypassTable += " 0, // No itinerary\n";
468 
469   // For each Itinerary across all processors, add a unique entry to the stages,
470   // operand cycles, and pipeline bypass tables. Then add the new Itinerary
471   // object with computed offsets to the ProcItinLists result.
472   unsigned StageCount = 1, OperandCycleCount = 1;
473   std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
474   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
475     // Add process itinerary to the list.
476     ProcItinLists.resize(ProcItinLists.size()+1);
477 
478     // If this processor defines no itineraries, then leave the itinerary list
479     // empty.
480     std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
481     if (!ProcModel.hasItineraries())
482       continue;
483 
484     StringRef Name = ProcModel.ItinsDef->getName();
485 
486     ItinList.resize(SchedModels.numInstrSchedClasses());
487     assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
488 
489     for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
490          SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
491 
492       // Next itinerary data
493       Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
494 
495       // Get string and stage count
496       std::string ItinStageString;
497       unsigned NStages = 0;
498       if (ItinData)
499         FormItineraryStageString(std::string(Name), ItinData, ItinStageString,
500                                  NStages);
501 
502       // Get string and operand cycle count
503       std::string ItinOperandCycleString;
504       unsigned NOperandCycles = 0;
505       std::string ItinBypassString;
506       if (ItinData) {
507         FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
508                                         NOperandCycles);
509 
510         FormItineraryBypassString(std::string(Name), ItinData, ItinBypassString,
511                                   NOperandCycles);
512       }
513 
514       // Check to see if stage already exists and create if it doesn't
515       uint16_t FindStage = 0;
516       if (NStages > 0) {
517         FindStage = ItinStageMap[ItinStageString];
518         if (FindStage == 0) {
519           // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
520           StageTable += ItinStageString + ", // " + itostr(StageCount);
521           if (NStages > 1)
522             StageTable += "-" + itostr(StageCount + NStages - 1);
523           StageTable += "\n";
524           // Record Itin class number.
525           ItinStageMap[ItinStageString] = FindStage = StageCount;
526           StageCount += NStages;
527         }
528       }
529 
530       // Check to see if operand cycle already exists and create if it doesn't
531       uint16_t FindOperandCycle = 0;
532       if (NOperandCycles > 0) {
533         std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
534         FindOperandCycle = ItinOperandMap[ItinOperandString];
535         if (FindOperandCycle == 0) {
536           // Emit as  cycle, // index
537           OperandCycleTable += ItinOperandCycleString + ", // ";
538           std::string OperandIdxComment = itostr(OperandCycleCount);
539           if (NOperandCycles > 1)
540             OperandIdxComment += "-"
541               + itostr(OperandCycleCount + NOperandCycles - 1);
542           OperandCycleTable += OperandIdxComment + "\n";
543           // Record Itin class number.
544           ItinOperandMap[ItinOperandCycleString] =
545             FindOperandCycle = OperandCycleCount;
546           // Emit as bypass, // index
547           BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
548           OperandCycleCount += NOperandCycles;
549         }
550       }
551 
552       // Set up itinerary as location and location + stage count
553       int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
554       InstrItinerary Intinerary = {
555           NumUOps,
556           FindStage,
557           uint16_t(FindStage + NStages),
558           FindOperandCycle,
559           uint16_t(FindOperandCycle + NOperandCycles),
560       };
561 
562       // Inject - empty slots will be 0, 0
563       ItinList[SchedClassIdx] = Intinerary;
564     }
565   }
566 
567   // Closing stage
568   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
569   StageTable += "};\n";
570 
571   // Closing operand cycles
572   OperandCycleTable += "  0 // End operand cycles\n";
573   OperandCycleTable += "};\n";
574 
575   BypassTable += " 0 // End bypass tables\n";
576   BypassTable += "};\n";
577 
578   // Emit tables.
579   OS << StageTable;
580   OS << OperandCycleTable;
581   OS << BypassTable;
582 }
583 
584 //
585 // EmitProcessorData - Generate data for processor itineraries that were
586 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
587 // Itineraries for each processor. The Itinerary lists are indexed on
588 // CodeGenSchedClass::Index.
589 //
590 void SubtargetEmitter::
591 EmitItineraries(raw_ostream &OS,
592                 std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
593   // Multiple processor models may share an itinerary record. Emit it once.
594   SmallPtrSet<Record*, 8> ItinsDefSet;
595 
596   // For each processor's machine model
597   std::vector<std::vector<InstrItinerary>>::iterator
598       ProcItinListsIter = ProcItinLists.begin();
599   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
600          PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
601 
602     Record *ItinsDef = PI->ItinsDef;
603     if (!ItinsDefSet.insert(ItinsDef).second)
604       continue;
605 
606     // Get the itinerary list for the processor.
607     assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
608     std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
609 
610     // Empty itineraries aren't referenced anywhere in the tablegen output
611     // so don't emit them.
612     if (ItinList.empty())
613       continue;
614 
615     OS << "\n";
616     OS << "static const llvm::InstrItinerary ";
617 
618     // Begin processor itinerary table
619     OS << ItinsDef->getName() << "[] = {\n";
620 
621     // For each itinerary class in CodeGenSchedClass::Index order.
622     for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
623       InstrItinerary &Intinerary = ItinList[j];
624 
625       // Emit Itinerary in the form of
626       // { firstStage, lastStage, firstCycle, lastCycle } // index
627       OS << "  { " <<
628         Intinerary.NumMicroOps << ", " <<
629         Intinerary.FirstStage << ", " <<
630         Intinerary.LastStage << ", " <<
631         Intinerary.FirstOperandCycle << ", " <<
632         Intinerary.LastOperandCycle << " }" <<
633         ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
634     }
635     // End processor itinerary table
636     OS << "  { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
637           "// end marker\n";
638     OS << "};\n";
639   }
640 }
641 
642 // Emit either the value defined in the TableGen Record, or the default
643 // value defined in the C++ header. The Record is null if the processor does not
644 // define a model.
645 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
646                                          StringRef Name, char Separator) {
647   OS << "  ";
648   int V = R ? R->getValueAsInt(Name) : -1;
649   if (V >= 0)
650     OS << V << Separator << " // " << Name;
651   else
652     OS << "MCSchedModel::Default" << Name << Separator;
653   OS << '\n';
654 }
655 
656 void SubtargetEmitter::EmitProcessorResourceSubUnits(
657     const CodeGenProcModel &ProcModel, raw_ostream &OS) {
658   OS << "\nstatic const unsigned " << ProcModel.ModelName
659      << "ProcResourceSubUnits[] = {\n"
660      << "  0,  // Invalid\n";
661 
662   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
663     Record *PRDef = ProcModel.ProcResourceDefs[i];
664     if (!PRDef->isSubClassOf("ProcResGroup"))
665       continue;
666     RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
667     for (Record *RUDef : ResUnits) {
668       Record *const RU =
669           SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc());
670       for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) {
671         OS << "  " << ProcModel.getProcResourceIdx(RU) << ", ";
672       }
673     }
674     OS << "  // " << PRDef->getName() << "\n";
675   }
676   OS << "};\n";
677 }
678 
679 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
680                                       raw_ostream &OS) {
681   int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
682   if (Record *RCU = ProcModel.RetireControlUnit) {
683     ReorderBufferSize =
684         std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
685     MaxRetirePerCycle =
686         std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
687   }
688 
689   OS << ReorderBufferSize << ", // ReorderBufferSize\n  ";
690   OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n  ";
691 }
692 
693 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel,
694                                  unsigned NumRegisterFiles,
695                                  unsigned NumCostEntries, raw_ostream &OS) {
696   if (NumRegisterFiles)
697     OS << ProcModel.ModelName << "RegisterFiles,\n  " << (1 + NumRegisterFiles);
698   else
699     OS << "nullptr,\n  0";
700 
701   OS << ", // Number of register files.\n  ";
702   if (NumCostEntries)
703     OS << ProcModel.ModelName << "RegisterCosts,\n  ";
704   else
705     OS << "nullptr,\n  ";
706   OS << NumCostEntries << ", // Number of register cost entries.\n";
707 }
708 
709 unsigned
710 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
711                                          raw_ostream &OS) {
712   if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
713         return RF.hasDefaultCosts();
714       }))
715     return 0;
716 
717   // Print the RegisterCost table first.
718   OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n";
719   OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName
720      << "RegisterCosts"
721      << "[] = {\n";
722 
723   for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) {
724     // Skip register files with a default cost table.
725     if (RF.hasDefaultCosts())
726       continue;
727     // Add entries to the cost table.
728     for (const CodeGenRegisterCost &RC : RF.Costs) {
729       OS << "  { ";
730       Record *Rec = RC.RCDef;
731       if (Rec->getValue("Namespace"))
732         OS << Rec->getValueAsString("Namespace") << "::";
733       OS << Rec->getName() << "RegClassID, " << RC.Cost << ", "
734          << RC.AllowMoveElimination << "},\n";
735     }
736   }
737   OS << "};\n";
738 
739   // Now generate a table with register file info.
740   OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, "
741      << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n";
742   OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName
743      << "RegisterFiles"
744      << "[] = {\n"
745      << "  { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n";
746   unsigned CostTblIndex = 0;
747 
748   for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) {
749     OS << "  { ";
750     OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", ";
751     unsigned NumCostEntries = RD.Costs.size();
752     OS << NumCostEntries << ", " << CostTblIndex << ", "
753        << RD.MaxMovesEliminatedPerCycle << ", "
754        << RD.AllowZeroMoveEliminationOnly << "},\n";
755     CostTblIndex += NumCostEntries;
756   }
757   OS << "};\n";
758 
759   return CostTblIndex;
760 }
761 
762 void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
763                                               raw_ostream &OS) {
764   unsigned QueueID = 0;
765   if (ProcModel.LoadQueue) {
766     const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor");
767     QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
768                                 find(ProcModel.ProcResourceDefs, Queue));
769   }
770   OS << "  " << QueueID << ", // Resource Descriptor for the Load Queue\n";
771 
772   QueueID = 0;
773   if (ProcModel.StoreQueue) {
774     const Record *Queue =
775         ProcModel.StoreQueue->getValueAsDef("QueueDescriptor");
776     QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
777                                 find(ProcModel.ProcResourceDefs, Queue));
778   }
779   OS << "  " << QueueID << ", // Resource Descriptor for the Store Queue\n";
780 }
781 
782 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
783                                               raw_ostream &OS) {
784   // Generate a table of register file descriptors (one entry per each user
785   // defined register file), and a table of register costs.
786   unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS);
787 
788   // Now generate a table for the extra processor info.
789   OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName
790      << "ExtraInfo = {\n  ";
791 
792   // Add information related to the retire control unit.
793   EmitRetireControlUnitInfo(ProcModel, OS);
794 
795   // Add information related to the register files (i.e. where to find register
796   // file descriptors and register costs).
797   EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
798                        NumCostEntries, OS);
799 
800   // Add information about load/store queues.
801   EmitLoadStoreQueueInfo(ProcModel, OS);
802 
803   OS << "};\n";
804 }
805 
806 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
807                                               raw_ostream &OS) {
808   EmitProcessorResourceSubUnits(ProcModel, OS);
809 
810   OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n";
811   OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName
812      << "ProcResources"
813      << "[] = {\n"
814      << "  {\"InvalidUnit\", 0, 0, 0, 0},\n";
815 
816   unsigned SubUnitsOffset = 1;
817   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
818     Record *PRDef = ProcModel.ProcResourceDefs[i];
819 
820     Record *SuperDef = nullptr;
821     unsigned SuperIdx = 0;
822     unsigned NumUnits = 0;
823     const unsigned SubUnitsBeginOffset = SubUnitsOffset;
824     int BufferSize = PRDef->getValueAsInt("BufferSize");
825     if (PRDef->isSubClassOf("ProcResGroup")) {
826       RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
827       for (Record *RU : ResUnits) {
828         NumUnits += RU->getValueAsInt("NumUnits");
829         SubUnitsOffset += RU->getValueAsInt("NumUnits");
830       }
831     }
832     else {
833       // Find the SuperIdx
834       if (PRDef->getValueInit("Super")->isComplete()) {
835         SuperDef =
836             SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
837                                          ProcModel, PRDef->getLoc());
838         SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
839       }
840       NumUnits = PRDef->getValueAsInt("NumUnits");
841     }
842     // Emit the ProcResourceDesc
843     OS << "  {\"" << PRDef->getName() << "\", ";
844     if (PRDef->getName().size() < 15)
845       OS.indent(15 - PRDef->getName().size());
846     OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", ";
847     if (SubUnitsBeginOffset != SubUnitsOffset) {
848       OS << ProcModel.ModelName << "ProcResourceSubUnits + "
849          << SubUnitsBeginOffset;
850     } else {
851       OS << "nullptr";
852     }
853     OS << "}, // #" << i+1;
854     if (SuperDef)
855       OS << ", Super=" << SuperDef->getName();
856     OS << "\n";
857   }
858   OS << "};\n";
859 }
860 
861 // Find the WriteRes Record that defines processor resources for this
862 // SchedWrite.
863 Record *SubtargetEmitter::FindWriteResources(
864   const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
865 
866   // Check if the SchedWrite is already subtarget-specific and directly
867   // specifies a set of processor resources.
868   if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
869     return SchedWrite.TheDef;
870 
871   Record *AliasDef = nullptr;
872   for (Record *A : SchedWrite.Aliases) {
873     const CodeGenSchedRW &AliasRW =
874       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
875     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
876       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
877       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
878         continue;
879     }
880     if (AliasDef)
881       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
882                     "defined for processor " + ProcModel.ModelName +
883                     " Ensure only one SchedAlias exists per RW.");
884     AliasDef = AliasRW.TheDef;
885   }
886   if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
887     return AliasDef;
888 
889   // Check this processor's list of write resources.
890   Record *ResDef = nullptr;
891   for (Record *WR : ProcModel.WriteResDefs) {
892     if (!WR->isSubClassOf("WriteRes"))
893       continue;
894     if (AliasDef == WR->getValueAsDef("WriteType")
895         || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
896       if (ResDef) {
897         PrintFatalError(WR->getLoc(), "Resources are defined for both "
898                       "SchedWrite and its alias on processor " +
899                       ProcModel.ModelName);
900       }
901       ResDef = WR;
902     }
903   }
904   // TODO: If ProcModel has a base model (previous generation processor),
905   // then call FindWriteResources recursively with that model here.
906   if (!ResDef) {
907     PrintFatalError(ProcModel.ModelDef->getLoc(),
908                     Twine("Processor does not define resources for ") +
909                     SchedWrite.TheDef->getName());
910   }
911   return ResDef;
912 }
913 
914 /// Find the ReadAdvance record for the given SchedRead on this processor or
915 /// return NULL.
916 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
917                                           const CodeGenProcModel &ProcModel) {
918   // Check for SchedReads that directly specify a ReadAdvance.
919   if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
920     return SchedRead.TheDef;
921 
922   // Check this processor's list of aliases for SchedRead.
923   Record *AliasDef = nullptr;
924   for (Record *A : SchedRead.Aliases) {
925     const CodeGenSchedRW &AliasRW =
926       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
927     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
928       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
929       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
930         continue;
931     }
932     if (AliasDef)
933       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
934                     "defined for processor " + ProcModel.ModelName +
935                     " Ensure only one SchedAlias exists per RW.");
936     AliasDef = AliasRW.TheDef;
937   }
938   if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
939     return AliasDef;
940 
941   // Check this processor's ReadAdvanceList.
942   Record *ResDef = nullptr;
943   for (Record *RA : ProcModel.ReadAdvanceDefs) {
944     if (!RA->isSubClassOf("ReadAdvance"))
945       continue;
946     if (AliasDef == RA->getValueAsDef("ReadType")
947         || SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
948       if (ResDef) {
949         PrintFatalError(RA->getLoc(), "Resources are defined for both "
950                       "SchedRead and its alias on processor " +
951                       ProcModel.ModelName);
952       }
953       ResDef = RA;
954     }
955   }
956   // TODO: If ProcModel has a base model (previous generation processor),
957   // then call FindReadAdvance recursively with that model here.
958   if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
959     PrintFatalError(ProcModel.ModelDef->getLoc(),
960                     Twine("Processor does not define resources for ") +
961                     SchedRead.TheDef->getName());
962   }
963   return ResDef;
964 }
965 
966 // Expand an explicit list of processor resources into a full list of implied
967 // resource groups and super resources that cover them.
968 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
969                                            std::vector<int64_t> &Cycles,
970                                            const CodeGenProcModel &PM) {
971   assert(PRVec.size() == Cycles.size() && "failed precondition");
972   for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
973     Record *PRDef = PRVec[i];
974     RecVec SubResources;
975     if (PRDef->isSubClassOf("ProcResGroup"))
976       SubResources = PRDef->getValueAsListOfDefs("Resources");
977     else {
978       SubResources.push_back(PRDef);
979       PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
980       for (Record *SubDef = PRDef;
981            SubDef->getValueInit("Super")->isComplete();) {
982         if (SubDef->isSubClassOf("ProcResGroup")) {
983           // Disallow this for simplicitly.
984           PrintFatalError(SubDef->getLoc(), "Processor resource group "
985                           " cannot be a super resources.");
986         }
987         Record *SuperDef =
988             SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM,
989                                          SubDef->getLoc());
990         PRVec.push_back(SuperDef);
991         Cycles.push_back(Cycles[i]);
992         SubDef = SuperDef;
993       }
994     }
995     for (Record *PR : PM.ProcResourceDefs) {
996       if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
997         continue;
998       RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
999       RecIter SubI = SubResources.begin(), SubE = SubResources.end();
1000       for( ; SubI != SubE; ++SubI) {
1001         if (!is_contained(SuperResources, *SubI)) {
1002           break;
1003         }
1004       }
1005       if (SubI == SubE) {
1006         PRVec.push_back(PR);
1007         Cycles.push_back(Cycles[i]);
1008       }
1009     }
1010   }
1011 }
1012 
1013 // Generate the SchedClass table for this processor and update global
1014 // tables. Must be called for each processor in order.
1015 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
1016                                            SchedClassTables &SchedTables) {
1017   SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
1018   if (!ProcModel.hasInstrSchedModel())
1019     return;
1020 
1021   std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
1022   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
1023   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1024     LLVM_DEBUG(SC.dump(&SchedModels));
1025 
1026     SCTab.resize(SCTab.size() + 1);
1027     MCSchedClassDesc &SCDesc = SCTab.back();
1028     // SCDesc.Name is guarded by NDEBUG
1029     SCDesc.NumMicroOps = 0;
1030     SCDesc.BeginGroup = false;
1031     SCDesc.EndGroup = false;
1032     SCDesc.RetireOOO = false;
1033     SCDesc.WriteProcResIdx = 0;
1034     SCDesc.WriteLatencyIdx = 0;
1035     SCDesc.ReadAdvanceIdx = 0;
1036 
1037     // A Variant SchedClass has no resources of its own.
1038     bool HasVariants = false;
1039     for (const CodeGenSchedTransition &CGT :
1040            make_range(SC.Transitions.begin(), SC.Transitions.end())) {
1041       if (CGT.ProcIndex == ProcModel.Index) {
1042         HasVariants = true;
1043         break;
1044       }
1045     }
1046     if (HasVariants) {
1047       SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
1048       continue;
1049     }
1050 
1051     // Determine if the SchedClass is actually reachable on this processor. If
1052     // not don't try to locate the processor resources, it will fail.
1053     // If ProcIndices contains 0, this class applies to all processors.
1054     assert(!SC.ProcIndices.empty() && "expect at least one procidx");
1055     if (SC.ProcIndices[0] != 0) {
1056       if (!is_contained(SC.ProcIndices, ProcModel.Index))
1057         continue;
1058     }
1059     IdxVec Writes = SC.Writes;
1060     IdxVec Reads = SC.Reads;
1061     if (!SC.InstRWs.empty()) {
1062       // This class has a default ReadWrite list which can be overridden by
1063       // InstRW definitions.
1064       Record *RWDef = nullptr;
1065       for (Record *RW : SC.InstRWs) {
1066         Record *RWModelDef = RW->getValueAsDef("SchedModel");
1067         if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
1068           RWDef = RW;
1069           break;
1070         }
1071       }
1072       if (RWDef) {
1073         Writes.clear();
1074         Reads.clear();
1075         SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
1076                             Writes, Reads);
1077       }
1078     }
1079     if (Writes.empty()) {
1080       // Check this processor's itinerary class resources.
1081       for (Record *I : ProcModel.ItinRWDefs) {
1082         RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
1083         if (is_contained(Matched, SC.ItinClassDef)) {
1084           SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
1085                               Writes, Reads);
1086           break;
1087         }
1088       }
1089       if (Writes.empty()) {
1090         LLVM_DEBUG(dbgs() << ProcModel.ModelName
1091                           << " does not have resources for class " << SC.Name
1092                           << '\n');
1093         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1094       }
1095     }
1096     // Sum resources across all operand writes.
1097     std::vector<MCWriteProcResEntry> WriteProcResources;
1098     std::vector<MCWriteLatencyEntry> WriteLatencies;
1099     std::vector<std::string> WriterNames;
1100     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
1101     for (unsigned W : Writes) {
1102       IdxVec WriteSeq;
1103       SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
1104                                      ProcModel);
1105 
1106       // For each operand, create a latency entry.
1107       MCWriteLatencyEntry WLEntry;
1108       WLEntry.Cycles = 0;
1109       unsigned WriteID = WriteSeq.back();
1110       WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
1111       // If this Write is not referenced by a ReadAdvance, don't distinguish it
1112       // from other WriteLatency entries.
1113       if (!SchedModels.hasReadOfWrite(
1114             SchedModels.getSchedWrite(WriteID).TheDef)) {
1115         WriteID = 0;
1116       }
1117       WLEntry.WriteResourceID = WriteID;
1118 
1119       for (unsigned WS : WriteSeq) {
1120 
1121         Record *WriteRes =
1122           FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
1123 
1124         // Mark the parent class as invalid for unsupported write types.
1125         if (WriteRes->getValueAsBit("Unsupported")) {
1126           SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1127           break;
1128         }
1129         WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
1130         SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
1131         SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
1132         SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
1133         SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
1134         SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
1135         SCDesc.RetireOOO |= WriteRes->getValueAsBit("RetireOOO");
1136 
1137         // Create an entry for each ProcResource listed in WriteRes.
1138         RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
1139         std::vector<int64_t> Cycles =
1140           WriteRes->getValueAsListOfInts("ResourceCycles");
1141 
1142         if (Cycles.empty()) {
1143           // If ResourceCycles is not provided, default to one cycle per
1144           // resource.
1145           Cycles.resize(PRVec.size(), 1);
1146         } else if (Cycles.size() != PRVec.size()) {
1147           // If ResourceCycles is provided, check consistency.
1148           PrintFatalError(
1149               WriteRes->getLoc(),
1150               Twine("Inconsistent resource cycles: !size(ResourceCycles) != "
1151                     "!size(ProcResources): ")
1152                   .concat(Twine(PRVec.size()))
1153                   .concat(" vs ")
1154                   .concat(Twine(Cycles.size())));
1155         }
1156 
1157         ExpandProcResources(PRVec, Cycles, ProcModel);
1158 
1159         for (unsigned PRIdx = 0, PREnd = PRVec.size();
1160              PRIdx != PREnd; ++PRIdx) {
1161           MCWriteProcResEntry WPREntry;
1162           WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
1163           assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
1164           WPREntry.Cycles = Cycles[PRIdx];
1165           // If this resource is already used in this sequence, add the current
1166           // entry's cycles so that the same resource appears to be used
1167           // serially, rather than multiple parallel uses. This is important for
1168           // in-order machine where the resource consumption is a hazard.
1169           unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
1170           for( ; WPRIdx != WPREnd; ++WPRIdx) {
1171             if (WriteProcResources[WPRIdx].ProcResourceIdx
1172                 == WPREntry.ProcResourceIdx) {
1173               WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
1174               break;
1175             }
1176           }
1177           if (WPRIdx == WPREnd)
1178             WriteProcResources.push_back(WPREntry);
1179         }
1180       }
1181       WriteLatencies.push_back(WLEntry);
1182     }
1183     // Create an entry for each operand Read in this SchedClass.
1184     // Entries must be sorted first by UseIdx then by WriteResourceID.
1185     for (unsigned UseIdx = 0, EndIdx = Reads.size();
1186          UseIdx != EndIdx; ++UseIdx) {
1187       Record *ReadAdvance =
1188         FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
1189       if (!ReadAdvance)
1190         continue;
1191 
1192       // Mark the parent class as invalid for unsupported write types.
1193       if (ReadAdvance->getValueAsBit("Unsupported")) {
1194         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1195         break;
1196       }
1197       RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
1198       IdxVec WriteIDs;
1199       if (ValidWrites.empty())
1200         WriteIDs.push_back(0);
1201       else {
1202         for (Record *VW : ValidWrites) {
1203           WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
1204         }
1205       }
1206       llvm::sort(WriteIDs);
1207       for(unsigned W : WriteIDs) {
1208         MCReadAdvanceEntry RAEntry;
1209         RAEntry.UseIdx = UseIdx;
1210         RAEntry.WriteResourceID = W;
1211         RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1212         ReadAdvanceEntries.push_back(RAEntry);
1213       }
1214     }
1215     if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1216       WriteProcResources.clear();
1217       WriteLatencies.clear();
1218       ReadAdvanceEntries.clear();
1219     }
1220     // Add the information for this SchedClass to the global tables using basic
1221     // compression.
1222     //
1223     // WritePrecRes entries are sorted by ProcResIdx.
1224     llvm::sort(WriteProcResources, LessWriteProcResources());
1225 
1226     SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1227     std::vector<MCWriteProcResEntry>::iterator WPRPos =
1228       std::search(SchedTables.WriteProcResources.begin(),
1229                   SchedTables.WriteProcResources.end(),
1230                   WriteProcResources.begin(), WriteProcResources.end());
1231     if (WPRPos != SchedTables.WriteProcResources.end())
1232       SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1233     else {
1234       SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1235       SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1236                                             WriteProcResources.end());
1237     }
1238     // Latency entries must remain in operand order.
1239     SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1240     std::vector<MCWriteLatencyEntry>::iterator WLPos =
1241       std::search(SchedTables.WriteLatencies.begin(),
1242                   SchedTables.WriteLatencies.end(),
1243                   WriteLatencies.begin(), WriteLatencies.end());
1244     if (WLPos != SchedTables.WriteLatencies.end()) {
1245       unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1246       SCDesc.WriteLatencyIdx = idx;
1247       for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1248         if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1249             std::string::npos) {
1250           SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1251         }
1252     }
1253     else {
1254       SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1255       llvm::append_range(SchedTables.WriteLatencies, WriteLatencies);
1256       llvm::append_range(SchedTables.WriterNames, WriterNames);
1257     }
1258     // ReadAdvanceEntries must remain in operand order.
1259     SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1260     std::vector<MCReadAdvanceEntry>::iterator RAPos =
1261       std::search(SchedTables.ReadAdvanceEntries.begin(),
1262                   SchedTables.ReadAdvanceEntries.end(),
1263                   ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1264     if (RAPos != SchedTables.ReadAdvanceEntries.end())
1265       SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1266     else {
1267       SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1268       llvm::append_range(SchedTables.ReadAdvanceEntries, ReadAdvanceEntries);
1269     }
1270   }
1271 }
1272 
1273 // Emit SchedClass tables for all processors and associated global tables.
1274 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1275                                             raw_ostream &OS) {
1276   // Emit global WriteProcResTable.
1277   OS << "\n// {ProcResourceIdx, Cycles}\n"
1278      << "extern const llvm::MCWriteProcResEntry "
1279      << Target << "WriteProcResTable[] = {\n"
1280      << "  { 0,  0}, // Invalid\n";
1281   for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1282        WPRIdx != WPREnd; ++WPRIdx) {
1283     MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1284     OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1285        << format("%2d", WPREntry.Cycles) << "}";
1286     if (WPRIdx + 1 < WPREnd)
1287       OS << ',';
1288     OS << " // #" << WPRIdx << '\n';
1289   }
1290   OS << "}; // " << Target << "WriteProcResTable\n";
1291 
1292   // Emit global WriteLatencyTable.
1293   OS << "\n// {Cycles, WriteResourceID}\n"
1294      << "extern const llvm::MCWriteLatencyEntry "
1295      << Target << "WriteLatencyTable[] = {\n"
1296      << "  { 0,  0}, // Invalid\n";
1297   for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1298        WLIdx != WLEnd; ++WLIdx) {
1299     MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1300     OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
1301        << format("%2d", WLEntry.WriteResourceID) << "}";
1302     if (WLIdx + 1 < WLEnd)
1303       OS << ',';
1304     OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1305   }
1306   OS << "}; // " << Target << "WriteLatencyTable\n";
1307 
1308   // Emit global ReadAdvanceTable.
1309   OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1310      << "extern const llvm::MCReadAdvanceEntry "
1311      << Target << "ReadAdvanceTable[] = {\n"
1312      << "  {0,  0,  0}, // Invalid\n";
1313   for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1314        RAIdx != RAEnd; ++RAIdx) {
1315     MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1316     OS << "  {" << RAEntry.UseIdx << ", "
1317        << format("%2d", RAEntry.WriteResourceID) << ", "
1318        << format("%2d", RAEntry.Cycles) << "}";
1319     if (RAIdx + 1 < RAEnd)
1320       OS << ',';
1321     OS << " // #" << RAIdx << '\n';
1322   }
1323   OS << "}; // " << Target << "ReadAdvanceTable\n";
1324 
1325   // Emit a SchedClass table for each processor.
1326   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1327          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1328     if (!PI->hasInstrSchedModel())
1329       continue;
1330 
1331     std::vector<MCSchedClassDesc> &SCTab =
1332       SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1333 
1334     OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup, RetireOOO,"
1335        << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1336     OS << "static const llvm::MCSchedClassDesc "
1337        << PI->ModelName << "SchedClasses[] = {\n";
1338 
1339     // The first class is always invalid. We no way to distinguish it except by
1340     // name and position.
1341     assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1342            && "invalid class not first");
1343     OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
1344        << MCSchedClassDesc::InvalidNumMicroOps
1345        << ", false, false, false, 0, 0,  0, 0,  0, 0},\n";
1346 
1347     for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1348       MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1349       const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1350       OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
1351       if (SchedClass.Name.size() < 18)
1352         OS.indent(18 - SchedClass.Name.size());
1353       OS << MCDesc.NumMicroOps
1354          << ", " << ( MCDesc.BeginGroup ? "true" : "false" )
1355          << ", " << ( MCDesc.EndGroup ? "true" : "false" )
1356          << ", " << ( MCDesc.RetireOOO ? "true" : "false" )
1357          << ", " << format("%2d", MCDesc.WriteProcResIdx)
1358          << ", " << MCDesc.NumWriteProcResEntries
1359          << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1360          << ", " << MCDesc.NumWriteLatencyEntries
1361          << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1362          << ", " << MCDesc.NumReadAdvanceEntries
1363          << "}, // #" << SCIdx << '\n';
1364     }
1365     OS << "}; // " << PI->ModelName << "SchedClasses\n";
1366   }
1367 }
1368 
1369 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1370   // For each processor model.
1371   for (const CodeGenProcModel &PM : SchedModels.procModels()) {
1372     // Emit extra processor info if available.
1373     if (PM.hasExtraProcessorInfo())
1374       EmitExtraProcessorInfo(PM, OS);
1375     // Emit processor resource table.
1376     if (PM.hasInstrSchedModel())
1377       EmitProcessorResources(PM, OS);
1378     else if(!PM.ProcResourceDefs.empty())
1379       PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
1380                     "ProcResources without defining WriteRes SchedWriteRes");
1381 
1382     // Begin processor itinerary properties
1383     OS << "\n";
1384     OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
1385     EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
1386     EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
1387     EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
1388     EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
1389     EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
1390     EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
1391 
1392     bool PostRAScheduler =
1393       (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
1394 
1395     OS << "  " << (PostRAScheduler ? "true" : "false")  << ", // "
1396        << "PostRAScheduler\n";
1397 
1398     bool CompleteModel =
1399       (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
1400 
1401     OS << "  " << (CompleteModel ? "true" : "false") << ", // "
1402        << "CompleteModel\n";
1403 
1404     OS << "  " << PM.Index << ", // Processor ID\n";
1405     if (PM.hasInstrSchedModel())
1406       OS << "  " << PM.ModelName << "ProcResources" << ",\n"
1407          << "  " << PM.ModelName << "SchedClasses" << ",\n"
1408          << "  " << PM.ProcResourceDefs.size()+1 << ",\n"
1409          << "  " << (SchedModels.schedClassEnd()
1410                      - SchedModels.schedClassBegin()) << ",\n";
1411     else
1412       OS << "  nullptr, nullptr, 0, 0,"
1413          << " // No instruction-level machine model.\n";
1414     if (PM.hasItineraries())
1415       OS << "  " << PM.ItinsDef->getName() << ",\n";
1416     else
1417       OS << "  nullptr, // No Itinerary\n";
1418     if (PM.hasExtraProcessorInfo())
1419       OS << "  &" << PM.ModelName << "ExtraInfo,\n";
1420     else
1421       OS << "  nullptr // No extra processor descriptor\n";
1422     OS << "};\n";
1423   }
1424 }
1425 
1426 //
1427 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1428 //
1429 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1430   OS << "#ifdef DBGFIELD\n"
1431      << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1432      << "#endif\n"
1433      << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
1434      << "#define DBGFIELD(x) x,\n"
1435      << "#else\n"
1436      << "#define DBGFIELD(x)\n"
1437      << "#endif\n";
1438 
1439   if (SchedModels.hasItineraries()) {
1440     std::vector<std::vector<InstrItinerary>> ProcItinLists;
1441     // Emit the stage data
1442     EmitStageAndOperandCycleData(OS, ProcItinLists);
1443     EmitItineraries(OS, ProcItinLists);
1444   }
1445   OS << "\n// ===============================================================\n"
1446      << "// Data tables for the new per-operand machine model.\n";
1447 
1448   SchedClassTables SchedTables;
1449   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
1450     GenSchedClassTables(ProcModel, SchedTables);
1451   }
1452   EmitSchedClassTables(SchedTables, OS);
1453 
1454   OS << "\n#undef DBGFIELD\n";
1455 
1456   // Emit the processor machine model
1457   EmitProcessorModels(OS);
1458 }
1459 
1460 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) {
1461   std::string Buffer;
1462   raw_string_ostream Stream(Buffer);
1463 
1464   // Collect all the PredicateProlog records and print them to the output
1465   // stream.
1466   std::vector<Record *> Prologs =
1467       Records.getAllDerivedDefinitions("PredicateProlog");
1468   llvm::sort(Prologs, LessRecord());
1469   for (Record *P : Prologs)
1470     Stream << P->getValueAsString("Code") << '\n';
1471 
1472   OS << Buffer;
1473 }
1474 
1475 static bool isTruePredicate(const Record *Rec) {
1476   return Rec->isSubClassOf("MCSchedPredicate") &&
1477          Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
1478 }
1479 
1480 static void emitPredicates(const CodeGenSchedTransition &T,
1481                            const CodeGenSchedClass &SC, PredicateExpander &PE,
1482                            raw_ostream &OS) {
1483   std::string Buffer;
1484   raw_string_ostream SS(Buffer);
1485 
1486   // If not all predicates are MCTrue, then we need an if-stmt.
1487   unsigned NumNonTruePreds =
1488       T.PredTerm.size() - count_if(T.PredTerm, isTruePredicate);
1489 
1490   SS.indent(PE.getIndentLevel() * 2);
1491 
1492   if (NumNonTruePreds) {
1493     bool FirstNonTruePredicate = true;
1494     SS << "if (";
1495 
1496     PE.setIndentLevel(PE.getIndentLevel() + 2);
1497 
1498     for (const Record *Rec : T.PredTerm) {
1499       // Skip predicates that evaluate to "true".
1500       if (isTruePredicate(Rec))
1501         continue;
1502 
1503       if (FirstNonTruePredicate) {
1504         FirstNonTruePredicate = false;
1505       } else {
1506         SS << "\n";
1507         SS.indent(PE.getIndentLevel() * 2);
1508         SS << "&& ";
1509       }
1510 
1511       if (Rec->isSubClassOf("MCSchedPredicate")) {
1512         PE.expandPredicate(SS, Rec->getValueAsDef("Pred"));
1513         continue;
1514       }
1515 
1516       // Expand this legacy predicate and wrap it around braces if there is more
1517       // than one predicate to expand.
1518       SS << ((NumNonTruePreds > 1) ? "(" : "")
1519          << Rec->getValueAsString("Predicate")
1520          << ((NumNonTruePreds > 1) ? ")" : "");
1521     }
1522 
1523     SS << ")\n"; // end of if-stmt
1524     PE.decreaseIndentLevel();
1525     SS.indent(PE.getIndentLevel() * 2);
1526     PE.decreaseIndentLevel();
1527   }
1528 
1529   SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n';
1530   OS << Buffer;
1531 }
1532 
1533 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate
1534 // epilogue code for the auto-generated helper.
1535 static void emitSchedModelHelperEpilogue(raw_ostream &OS,
1536                                          bool ShouldReturnZero) {
1537   if (ShouldReturnZero) {
1538     OS << "  // Don't know how to resolve this scheduling class.\n"
1539        << "  return 0;\n";
1540     return;
1541   }
1542 
1543   OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n";
1544 }
1545 
1546 static bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
1547   return all_of(T.PredTerm, [](const Record *Rec) {
1548     return Rec->isSubClassOf("MCSchedPredicate");
1549   });
1550 }
1551 
1552 static void collectVariantClasses(const CodeGenSchedModels &SchedModels,
1553                                   IdxVec &VariantClasses,
1554                                   bool OnlyExpandMCInstPredicates) {
1555   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1556     // Ignore non-variant scheduling classes.
1557     if (SC.Transitions.empty())
1558       continue;
1559 
1560     if (OnlyExpandMCInstPredicates) {
1561       // Ignore this variant scheduling class no transitions use any meaningful
1562       // MCSchedPredicate definitions.
1563       if (llvm::none_of(SC.Transitions, hasMCSchedPredicates))
1564         continue;
1565     }
1566 
1567     VariantClasses.push_back(SC.Index);
1568   }
1569 }
1570 
1571 static void collectProcessorIndices(const CodeGenSchedClass &SC,
1572                                     IdxVec &ProcIndices) {
1573   // A variant scheduling class may define transitions for multiple
1574   // processors.  This function identifies wich processors are associated with
1575   // transition rules specified by variant class `SC`.
1576   for (const CodeGenSchedTransition &T : SC.Transitions) {
1577     IdxVec PI;
1578     std::set_union(&T.ProcIndex, &T.ProcIndex + 1, ProcIndices.begin(),
1579                    ProcIndices.end(), std::back_inserter(PI));
1580     ProcIndices.swap(PI);
1581   }
1582 }
1583 
1584 static bool isAlwaysTrue(const CodeGenSchedTransition &T) {
1585   return llvm::all_of(T.PredTerm, isTruePredicate);
1586 }
1587 
1588 void SubtargetEmitter::emitSchedModelHelpersImpl(
1589     raw_ostream &OS, bool OnlyExpandMCInstPredicates) {
1590   IdxVec VariantClasses;
1591   collectVariantClasses(SchedModels, VariantClasses,
1592                         OnlyExpandMCInstPredicates);
1593 
1594   if (VariantClasses.empty()) {
1595     emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1596     return;
1597   }
1598 
1599   // Construct a switch statement where the condition is a check on the
1600   // scheduling class identifier. There is a `case` for every variant class
1601   // defined by the processor models of this target.
1602   // Each `case` implements a number of rules to resolve (i.e. to transition from)
1603   // a variant scheduling class to another scheduling class.  Rules are
1604   // described by instances of CodeGenSchedTransition. Note that transitions may
1605   // not be valid for all processors.
1606   OS << "  switch (SchedClass) {\n";
1607   for (unsigned VC : VariantClasses) {
1608     IdxVec ProcIndices;
1609     const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
1610     collectProcessorIndices(SC, ProcIndices);
1611 
1612     OS << "  case " << VC << ": // " << SC.Name << '\n';
1613 
1614     PredicateExpander PE(Target);
1615     PE.setByRef(false);
1616     PE.setExpandForMC(OnlyExpandMCInstPredicates);
1617     for (unsigned PI : ProcIndices) {
1618       OS << "    ";
1619 
1620       // Emit a guard on the processor ID.
1621       if (PI != 0) {
1622         OS << (OnlyExpandMCInstPredicates
1623                    ? "if (CPUID == "
1624                    : "if (SchedModel->getProcessorID() == ");
1625         OS << PI << ") ";
1626         OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n';
1627       }
1628 
1629       // Now emit transitions associated with processor PI.
1630       const CodeGenSchedTransition *FinalT = nullptr;
1631       for (const CodeGenSchedTransition &T : SC.Transitions) {
1632         if (PI != 0 && T.ProcIndex != PI)
1633           continue;
1634 
1635         // Emit only transitions based on MCSchedPredicate, if it's the case.
1636         // At least the transition specified by NoSchedPred is emitted,
1637         // which becomes the default transition for those variants otherwise
1638         // not based on MCSchedPredicate.
1639         // FIXME: preferably, llvm-mca should instead assume a reasonable
1640         // default when a variant transition is not based on MCSchedPredicate
1641         // for a given processor.
1642         if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T))
1643           continue;
1644 
1645         // If transition is folded to 'return X' it should be the last one.
1646         if (isAlwaysTrue(T)) {
1647           FinalT = &T;
1648           continue;
1649         }
1650         PE.setIndentLevel(3);
1651         emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS);
1652       }
1653       if (FinalT)
1654         emitPredicates(*FinalT, SchedModels.getSchedClass(FinalT->ToClassIdx),
1655                        PE, OS);
1656 
1657       OS << "    }\n";
1658 
1659       if (PI == 0)
1660         break;
1661     }
1662 
1663     if (SC.isInferred())
1664       OS << "    return " << SC.Index << ";\n";
1665     OS << "    break;\n";
1666   }
1667 
1668   OS << "  };\n";
1669 
1670   emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1671 }
1672 
1673 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName,
1674                                              raw_ostream &OS) {
1675   OS << "unsigned " << ClassName
1676      << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1677      << " const TargetSchedModel *SchedModel) const {\n";
1678 
1679   // Emit the predicate prolog code.
1680   emitPredicateProlog(Records, OS);
1681 
1682   // Emit target predicates.
1683   emitSchedModelHelpersImpl(OS);
1684 
1685   OS << "} // " << ClassName << "::resolveSchedClass\n\n";
1686 
1687   OS << "unsigned " << ClassName
1688      << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI,"
1689      << " const MCInstrInfo *MCII, unsigned CPUID) const {\n"
1690      << "  return " << Target << "_MC"
1691      << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n"
1692      << "} // " << ClassName << "::resolveVariantSchedClass\n\n";
1693 
1694   STIPredicateExpander PE(Target);
1695   PE.setClassPrefix(ClassName);
1696   PE.setExpandDefinition(true);
1697   PE.setByRef(false);
1698   PE.setIndentLevel(0);
1699 
1700   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1701     PE.expandSTIPredicate(OS, Fn);
1702 }
1703 
1704 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName,
1705                                        raw_ostream &OS) {
1706   const CodeGenHwModes &CGH = TGT.getHwModes();
1707   assert(CGH.getNumModeIds() > 0);
1708   if (CGH.getNumModeIds() == 1)
1709     return;
1710 
1711   OS << "unsigned " << ClassName << "::getHwMode() const {\n";
1712   for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
1713     const HwMode &HM = CGH.getMode(M);
1714     OS << "  if (checkFeatures(\"" << HM.Features
1715        << "\")) return " << M << ";\n";
1716   }
1717   OS << "  return 0;\n}\n";
1718 }
1719 
1720 // Produces a subtarget specific function for parsing
1721 // the subtarget features string.
1722 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS) {
1723   std::vector<Record*> Features =
1724                        Records.getAllDerivedDefinitions("SubtargetFeature");
1725   llvm::sort(Features, LessRecord());
1726 
1727   OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1728      << "// subtarget options.\n"
1729      << "void llvm::";
1730   OS << Target;
1731   OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, "
1732      << "StringRef FS) {\n"
1733      << "  LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1734      << "  LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU);\n"
1735      << "  LLVM_DEBUG(dbgs() << \"\\nTuneCPU:\" << TuneCPU << \"\\n\\n\");\n";
1736 
1737   if (Features.empty()) {
1738     OS << "}\n";
1739     return;
1740   }
1741 
1742   OS << "  InitMCProcessorInfo(CPU, TuneCPU, FS);\n"
1743      << "  const FeatureBitset &Bits = getFeatureBits();\n";
1744 
1745   for (Record *R : Features) {
1746     // Next record
1747     StringRef Instance = R->getName();
1748     StringRef Value = R->getValueAsString("Value");
1749     StringRef Attribute = R->getValueAsString("Attribute");
1750 
1751     if (Value=="true" || Value=="false")
1752       OS << "  if (Bits[" << Target << "::"
1753          << Instance << "]) "
1754          << Attribute << " = " << Value << ";\n";
1755     else
1756       OS << "  if (Bits[" << Target << "::"
1757          << Instance << "] && "
1758          << Attribute << " < " << Value << ") "
1759          << Attribute << " = " << Value << ";\n";
1760   }
1761 
1762   OS << "}\n";
1763 }
1764 
1765 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) {
1766   OS << "namespace " << Target << "_MC {\n"
1767      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n"
1768      << "    const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) {\n";
1769   emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true);
1770   OS << "}\n";
1771   OS << "} // end namespace " << Target << "_MC\n\n";
1772 
1773   OS << "struct " << Target
1774      << "GenMCSubtargetInfo : public MCSubtargetInfo {\n";
1775   OS << "  " << Target << "GenMCSubtargetInfo(const Triple &TT,\n"
1776      << "    StringRef CPU, StringRef TuneCPU, StringRef FS,\n"
1777      << "    ArrayRef<SubtargetFeatureKV> PF,\n"
1778      << "    ArrayRef<SubtargetSubTypeKV> PD,\n"
1779      << "    const MCWriteProcResEntry *WPR,\n"
1780      << "    const MCWriteLatencyEntry *WL,\n"
1781      << "    const MCReadAdvanceEntry *RA, const InstrStage *IS,\n"
1782      << "    const unsigned *OC, const unsigned *FP) :\n"
1783      << "      MCSubtargetInfo(TT, CPU, TuneCPU, FS, PF, PD,\n"
1784      << "                      WPR, WL, RA, IS, OC, FP) { }\n\n"
1785      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,\n"
1786      << "      const MCInst *MI, const MCInstrInfo *MCII,\n"
1787      << "      unsigned CPUID) const override {\n"
1788      << "    return " << Target << "_MC"
1789      << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n";
1790   OS << "  }\n";
1791   if (TGT.getHwModes().getNumModeIds() > 1)
1792     OS << "  unsigned getHwMode() const override;\n";
1793   OS << "};\n";
1794   EmitHwModeCheck(Target + "GenMCSubtargetInfo", OS);
1795 }
1796 
1797 void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) {
1798   OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n";
1799   OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1800 
1801   STIPredicateExpander PE(Target);
1802   PE.setExpandForMC(true);
1803   PE.setByRef(true);
1804   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1805     PE.expandSTIPredicate(OS, Fn);
1806 
1807   OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1808 
1809   OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n";
1810   OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1811 
1812   std::string ClassPrefix = Target + "MCInstrAnalysis";
1813   PE.setExpandDefinition(true);
1814   PE.setClassPrefix(ClassPrefix);
1815   PE.setIndentLevel(0);
1816   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1817     PE.expandSTIPredicate(OS, Fn);
1818 
1819   OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1820 }
1821 
1822 //
1823 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1824 //
1825 void SubtargetEmitter::run(raw_ostream &OS) {
1826   emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1827 
1828   OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1829   OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
1830 
1831   DenseMap<Record *, unsigned> FeatureMap;
1832 
1833   OS << "namespace llvm {\n";
1834   Enumeration(OS, FeatureMap);
1835   OS << "} // end namespace llvm\n\n";
1836   OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1837 
1838   EmitSubtargetInfoMacroCalls(OS);
1839 
1840   OS << "namespace llvm {\n";
1841 #if 0
1842   OS << "namespace {\n";
1843 #endif
1844   unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap);
1845   OS << "\n";
1846   EmitSchedModel(OS);
1847   OS << "\n";
1848   unsigned NumProcs = CPUKeyValues(OS, FeatureMap);
1849   OS << "\n";
1850 #if 0
1851   OS << "} // end anonymous namespace\n\n";
1852 #endif
1853 
1854   // MCInstrInfo initialization routine.
1855   emitGenMCSubtargetInfo(OS);
1856 
1857   OS << "\nstatic inline MCSubtargetInfo *create" << Target
1858      << "MCSubtargetInfoImpl("
1859      << "const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS) {\n";
1860   OS << "  return new " << Target
1861      << "GenMCSubtargetInfo(TT, CPU, TuneCPU, FS, ";
1862   if (NumFeatures)
1863     OS << Target << "FeatureKV, ";
1864   else
1865     OS << "None, ";
1866   if (NumProcs)
1867     OS << Target << "SubTypeKV, ";
1868   else
1869     OS << "None, ";
1870   OS << '\n'; OS.indent(22);
1871   OS << Target << "WriteProcResTable, "
1872      << Target << "WriteLatencyTable, "
1873      << Target << "ReadAdvanceTable, ";
1874   OS << '\n'; OS.indent(22);
1875   if (SchedModels.hasItineraries()) {
1876     OS << Target << "Stages, "
1877        << Target << "OperandCycles, "
1878        << Target << "ForwardingPaths";
1879   } else
1880     OS << "nullptr, nullptr, nullptr";
1881   OS << ");\n}\n\n";
1882 
1883   OS << "} // end namespace llvm\n\n";
1884 
1885   OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1886 
1887   OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1888   OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
1889 
1890   OS << "#include \"llvm/Support/Debug.h\"\n";
1891   OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
1892   ParseFeaturesFunction(OS);
1893 
1894   OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1895 
1896   // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1897   OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1898   OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
1899 
1900   std::string ClassName = Target + "GenSubtargetInfo";
1901   OS << "namespace llvm {\n";
1902   OS << "class DFAPacketizer;\n";
1903   OS << "namespace " << Target << "_MC {\n"
1904      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,"
1905      << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID);\n"
1906      << "} // end namespace " << Target << "_MC\n\n";
1907   OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1908      << "  explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
1909      << "StringRef TuneCPU, StringRef FS);\n"
1910      << "public:\n"
1911      << "  unsigned resolveSchedClass(unsigned SchedClass, "
1912      << " const MachineInstr *DefMI,"
1913      << " const TargetSchedModel *SchedModel) const override;\n"
1914      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,"
1915      << " const MCInst *MI, const MCInstrInfo *MCII,"
1916      << " unsigned CPUID) const override;\n"
1917      << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1918      << " const;\n";
1919   if (TGT.getHwModes().getNumModeIds() > 1)
1920     OS << "  unsigned getHwMode() const override;\n";
1921 
1922   STIPredicateExpander PE(Target);
1923   PE.setByRef(false);
1924   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1925     PE.expandSTIPredicate(OS, Fn);
1926 
1927   OS << "};\n"
1928      << "} // end namespace llvm\n\n";
1929 
1930   OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1931 
1932   OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
1933   OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
1934 
1935   OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
1936   OS << "namespace llvm {\n";
1937   OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
1938   OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n";
1939   OS << "extern const llvm::MCWriteProcResEntry "
1940      << Target << "WriteProcResTable[];\n";
1941   OS << "extern const llvm::MCWriteLatencyEntry "
1942      << Target << "WriteLatencyTable[];\n";
1943   OS << "extern const llvm::MCReadAdvanceEntry "
1944      << Target << "ReadAdvanceTable[];\n";
1945 
1946   if (SchedModels.hasItineraries()) {
1947     OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
1948     OS << "extern const unsigned " << Target << "OperandCycles[];\n";
1949     OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
1950   }
1951 
1952   OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
1953      << "StringRef TuneCPU, StringRef FS)\n"
1954      << "  : TargetSubtargetInfo(TT, CPU, TuneCPU, FS, ";
1955   if (NumFeatures)
1956     OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
1957   else
1958     OS << "None, ";
1959   if (NumProcs)
1960     OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
1961   else
1962     OS << "None, ";
1963   OS << '\n'; OS.indent(24);
1964   OS << Target << "WriteProcResTable, "
1965      << Target << "WriteLatencyTable, "
1966      << Target << "ReadAdvanceTable, ";
1967   OS << '\n'; OS.indent(24);
1968   if (SchedModels.hasItineraries()) {
1969     OS << Target << "Stages, "
1970        << Target << "OperandCycles, "
1971        << Target << "ForwardingPaths";
1972   } else
1973     OS << "nullptr, nullptr, nullptr";
1974   OS << ") {}\n\n";
1975 
1976   EmitSchedModelHelpers(ClassName, OS);
1977   EmitHwModeCheck(ClassName, OS);
1978 
1979   OS << "} // end namespace llvm\n\n";
1980 
1981   OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
1982 
1983   EmitMCInstrAnalysisPredicateFunctions(OS);
1984 }
1985 
1986 namespace llvm {
1987 
1988 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
1989   CodeGenTarget CGTarget(RK);
1990   SubtargetEmitter(RK, CGTarget).run(OS);
1991 }
1992 
1993 } // end namespace llvm
1994