1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits subtarget enumerations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenTarget.h" 14 #include "CodeGenSchedule.h" 15 #include "PredicateExpander.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/MC/MCInstrItineraries.h" 21 #include "llvm/MC/MCSchedule.h" 22 #include "llvm/MC/SubtargetFeature.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include "llvm/TableGen/TableGenBackend.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstdint> 32 #include <iterator> 33 #include <map> 34 #include <string> 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "subtarget-emitter" 40 41 namespace { 42 43 class SubtargetEmitter { 44 // Each processor has a SchedClassDesc table with an entry for each SchedClass. 45 // The SchedClassDesc table indexes into a global write resource table, write 46 // latency table, and read advance table. 47 struct SchedClassTables { 48 std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses; 49 std::vector<MCWriteProcResEntry> WriteProcResources; 50 std::vector<MCWriteLatencyEntry> WriteLatencies; 51 std::vector<std::string> WriterNames; 52 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 53 54 // Reserve an invalid entry at index 0 55 SchedClassTables() { 56 ProcSchedClasses.resize(1); 57 WriteProcResources.resize(1); 58 WriteLatencies.resize(1); 59 WriterNames.push_back("InvalidWrite"); 60 ReadAdvanceEntries.resize(1); 61 } 62 }; 63 64 struct LessWriteProcResources { 65 bool operator()(const MCWriteProcResEntry &LHS, 66 const MCWriteProcResEntry &RHS) { 67 return LHS.ProcResourceIdx < RHS.ProcResourceIdx; 68 } 69 }; 70 71 const CodeGenTarget &TGT; 72 RecordKeeper &Records; 73 CodeGenSchedModels &SchedModels; 74 std::string Target; 75 76 void Enumeration(raw_ostream &OS, DenseMap<Record *, unsigned> &FeatureMap); 77 unsigned FeatureKeyValues(raw_ostream &OS, 78 const DenseMap<Record *, unsigned> &FeatureMap); 79 unsigned CPUKeyValues(raw_ostream &OS, 80 const DenseMap<Record *, unsigned> &FeatureMap); 81 void FormItineraryStageString(const std::string &Names, 82 Record *ItinData, std::string &ItinString, 83 unsigned &NStages); 84 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, 85 unsigned &NOperandCycles); 86 void FormItineraryBypassString(const std::string &Names, 87 Record *ItinData, 88 std::string &ItinString, unsigned NOperandCycles); 89 void EmitStageAndOperandCycleData(raw_ostream &OS, 90 std::vector<std::vector<InstrItinerary>> 91 &ProcItinLists); 92 void EmitItineraries(raw_ostream &OS, 93 std::vector<std::vector<InstrItinerary>> 94 &ProcItinLists); 95 unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel, 96 raw_ostream &OS); 97 void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel, 98 raw_ostream &OS); 99 void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, 100 raw_ostream &OS); 101 void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name, 102 char Separator); 103 void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel, 104 raw_ostream &OS); 105 void EmitProcessorResources(const CodeGenProcModel &ProcModel, 106 raw_ostream &OS); 107 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, 108 const CodeGenProcModel &ProcModel); 109 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, 110 const CodeGenProcModel &ProcModel); 111 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, 112 const CodeGenProcModel &ProcModel); 113 void GenSchedClassTables(const CodeGenProcModel &ProcModel, 114 SchedClassTables &SchedTables); 115 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); 116 void EmitProcessorModels(raw_ostream &OS); 117 void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS); 118 void emitSchedModelHelpersImpl(raw_ostream &OS, 119 bool OnlyExpandMCInstPredicates = false); 120 void emitGenMCSubtargetInfo(raw_ostream &OS); 121 void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS); 122 123 void EmitSchedModel(raw_ostream &OS); 124 void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS); 125 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, 126 unsigned NumProcs); 127 128 public: 129 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT) 130 : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()), 131 Target(TGT.getName()) {} 132 133 void run(raw_ostream &o); 134 }; 135 136 } // end anonymous namespace 137 138 // 139 // Enumeration - Emit the specified class as an enumeration. 140 // 141 void SubtargetEmitter::Enumeration(raw_ostream &OS, 142 DenseMap<Record *, unsigned> &FeatureMap) { 143 // Get all records of class and sort 144 std::vector<Record*> DefList = 145 Records.getAllDerivedDefinitions("SubtargetFeature"); 146 llvm::sort(DefList, LessRecord()); 147 148 unsigned N = DefList.size(); 149 if (N == 0) 150 return; 151 if (N + 1 > MAX_SUBTARGET_FEATURES) 152 PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES."); 153 154 OS << "namespace " << Target << " {\n"; 155 156 // Open enumeration. 157 OS << "enum {\n"; 158 159 // For each record 160 for (unsigned i = 0; i < N; ++i) { 161 // Next record 162 Record *Def = DefList[i]; 163 164 // Get and emit name 165 OS << " " << Def->getName() << " = " << i << ",\n"; 166 167 // Save the index for this feature. 168 FeatureMap[Def] = i; 169 } 170 171 OS << " " 172 << "NumSubtargetFeatures = " << N << "\n"; 173 174 // Close enumeration and namespace 175 OS << "};\n"; 176 OS << "} // end namespace " << Target << "\n"; 177 } 178 179 static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList, 180 const DenseMap<Record *, unsigned> &FeatureMap) { 181 std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {}; 182 for (unsigned j = 0, M = FeatureList.size(); j < M; ++j) { 183 unsigned Bit = FeatureMap.lookup(FeatureList[j]); 184 Mask[Bit / 64] |= 1ULL << (Bit % 64); 185 } 186 187 OS << "{ { { "; 188 for (unsigned i = 0; i != Mask.size(); ++i) { 189 OS << "0x"; 190 OS.write_hex(Mask[i]); 191 OS << "ULL, "; 192 } 193 OS << "} } }"; 194 } 195 196 // 197 // FeatureKeyValues - Emit data of all the subtarget features. Used by the 198 // command line. 199 // 200 unsigned SubtargetEmitter::FeatureKeyValues( 201 raw_ostream &OS, const DenseMap<Record *, unsigned> &FeatureMap) { 202 // Gather and sort all the features 203 std::vector<Record*> FeatureList = 204 Records.getAllDerivedDefinitions("SubtargetFeature"); 205 206 if (FeatureList.empty()) 207 return 0; 208 209 llvm::sort(FeatureList, LessRecordFieldName()); 210 211 // Begin feature table 212 OS << "// Sorted (by key) array of values for CPU features.\n" 213 << "extern const llvm::SubtargetFeatureKV " << Target 214 << "FeatureKV[] = {\n"; 215 216 // For each feature 217 unsigned NumFeatures = 0; 218 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { 219 // Next feature 220 Record *Feature = FeatureList[i]; 221 222 StringRef Name = Feature->getName(); 223 StringRef CommandLineName = Feature->getValueAsString("Name"); 224 StringRef Desc = Feature->getValueAsString("Desc"); 225 226 if (CommandLineName.empty()) continue; 227 228 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } } 229 OS << " { " 230 << "\"" << CommandLineName << "\", " 231 << "\"" << Desc << "\", " 232 << Target << "::" << Name << ", "; 233 234 RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies"); 235 236 printFeatureMask(OS, ImpliesList, FeatureMap); 237 238 OS << " },\n"; 239 ++NumFeatures; 240 } 241 242 // End feature table 243 OS << "};\n"; 244 245 return NumFeatures; 246 } 247 248 // 249 // CPUKeyValues - Emit data of all the subtarget processors. Used by command 250 // line. 251 // 252 unsigned 253 SubtargetEmitter::CPUKeyValues(raw_ostream &OS, 254 const DenseMap<Record *, unsigned> &FeatureMap) { 255 // Gather and sort processor information 256 std::vector<Record*> ProcessorList = 257 Records.getAllDerivedDefinitions("Processor"); 258 llvm::sort(ProcessorList, LessRecordFieldName()); 259 260 // Begin processor table 261 OS << "// Sorted (by key) array of values for CPU subtype.\n" 262 << "extern const llvm::SubtargetSubTypeKV " << Target 263 << "SubTypeKV[] = {\n"; 264 265 // For each processor 266 for (Record *Processor : ProcessorList) { 267 StringRef Name = Processor->getValueAsString("Name"); 268 RecVec FeatureList = Processor->getValueAsListOfDefs("Features"); 269 RecVec TuneFeatureList = Processor->getValueAsListOfDefs("TuneFeatures"); 270 271 // Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } }, 272 OS << " { " 273 << "\"" << Name << "\", "; 274 275 printFeatureMask(OS, FeatureList, FeatureMap); 276 OS << ", "; 277 printFeatureMask(OS, TuneFeatureList, FeatureMap); 278 279 // Emit the scheduler model pointer. 280 const std::string &ProcModelName = 281 SchedModels.getModelForProc(Processor).ModelName; 282 OS << ", &" << ProcModelName << " },\n"; 283 } 284 285 // End processor table 286 OS << "};\n"; 287 288 return ProcessorList.size(); 289 } 290 291 // 292 // FormItineraryStageString - Compose a string containing the stage 293 // data initialization for the specified itinerary. N is the number 294 // of stages. 295 // 296 void SubtargetEmitter::FormItineraryStageString(const std::string &Name, 297 Record *ItinData, 298 std::string &ItinString, 299 unsigned &NStages) { 300 // Get states list 301 RecVec StageList = ItinData->getValueAsListOfDefs("Stages"); 302 303 // For each stage 304 unsigned N = NStages = StageList.size(); 305 for (unsigned i = 0; i < N;) { 306 // Next stage 307 const Record *Stage = StageList[i]; 308 309 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } 310 int Cycles = Stage->getValueAsInt("Cycles"); 311 ItinString += " { " + itostr(Cycles) + ", "; 312 313 // Get unit list 314 RecVec UnitList = Stage->getValueAsListOfDefs("Units"); 315 316 // For each unit 317 for (unsigned j = 0, M = UnitList.size(); j < M;) { 318 // Add name and bitwise or 319 ItinString += Name + "FU::" + UnitList[j]->getName().str(); 320 if (++j < M) ItinString += " | "; 321 } 322 323 int TimeInc = Stage->getValueAsInt("TimeInc"); 324 ItinString += ", " + itostr(TimeInc); 325 326 int Kind = Stage->getValueAsInt("Kind"); 327 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); 328 329 // Close off stage 330 ItinString += " }"; 331 if (++i < N) ItinString += ", "; 332 } 333 } 334 335 // 336 // FormItineraryOperandCycleString - Compose a string containing the 337 // operand cycle initialization for the specified itinerary. N is the 338 // number of operands that has cycles specified. 339 // 340 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, 341 std::string &ItinString, unsigned &NOperandCycles) { 342 // Get operand cycle list 343 std::vector<int64_t> OperandCycleList = 344 ItinData->getValueAsListOfInts("OperandCycles"); 345 346 // For each operand cycle 347 unsigned N = NOperandCycles = OperandCycleList.size(); 348 for (unsigned i = 0; i < N;) { 349 // Next operand cycle 350 const int OCycle = OperandCycleList[i]; 351 352 ItinString += " " + itostr(OCycle); 353 if (++i < N) ItinString += ", "; 354 } 355 } 356 357 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, 358 Record *ItinData, 359 std::string &ItinString, 360 unsigned NOperandCycles) { 361 RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses"); 362 unsigned N = BypassList.size(); 363 unsigned i = 0; 364 for (; i < N;) { 365 ItinString += Name + "Bypass::" + BypassList[i]->getName().str(); 366 if (++i < NOperandCycles) ItinString += ", "; 367 } 368 for (; i < NOperandCycles;) { 369 ItinString += " 0"; 370 if (++i < NOperandCycles) ItinString += ", "; 371 } 372 } 373 374 // 375 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand 376 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed 377 // by CodeGenSchedClass::Index. 378 // 379 void SubtargetEmitter:: 380 EmitStageAndOperandCycleData(raw_ostream &OS, 381 std::vector<std::vector<InstrItinerary>> 382 &ProcItinLists) { 383 // Multiple processor models may share an itinerary record. Emit it once. 384 SmallPtrSet<Record*, 8> ItinsDefSet; 385 386 // Emit functional units for all the itineraries. 387 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 388 389 if (!ItinsDefSet.insert(ProcModel.ItinsDef).second) 390 continue; 391 392 RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU"); 393 if (FUs.empty()) 394 continue; 395 396 StringRef Name = ProcModel.ItinsDef->getName(); 397 OS << "\n// Functional units for \"" << Name << "\"\n" 398 << "namespace " << Name << "FU {\n"; 399 400 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) 401 OS << " const InstrStage::FuncUnits " << FUs[j]->getName() 402 << " = 1ULL << " << j << ";\n"; 403 404 OS << "} // end namespace " << Name << "FU\n"; 405 406 RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP"); 407 if (!BPs.empty()) { 408 OS << "\n// Pipeline forwarding paths for itineraries \"" << Name 409 << "\"\n" << "namespace " << Name << "Bypass {\n"; 410 411 OS << " const unsigned NoBypass = 0;\n"; 412 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) 413 OS << " const unsigned " << BPs[j]->getName() 414 << " = 1 << " << j << ";\n"; 415 416 OS << "} // end namespace " << Name << "Bypass\n"; 417 } 418 } 419 420 // Begin stages table 421 std::string StageTable = "\nextern const llvm::InstrStage " + Target + 422 "Stages[] = {\n"; 423 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; 424 425 // Begin operand cycle table 426 std::string OperandCycleTable = "extern const unsigned " + Target + 427 "OperandCycles[] = {\n"; 428 OperandCycleTable += " 0, // No itinerary\n"; 429 430 // Begin pipeline bypass table 431 std::string BypassTable = "extern const unsigned " + Target + 432 "ForwardingPaths[] = {\n"; 433 BypassTable += " 0, // No itinerary\n"; 434 435 // For each Itinerary across all processors, add a unique entry to the stages, 436 // operand cycles, and pipeline bypass tables. Then add the new Itinerary 437 // object with computed offsets to the ProcItinLists result. 438 unsigned StageCount = 1, OperandCycleCount = 1; 439 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; 440 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 441 // Add process itinerary to the list. 442 ProcItinLists.resize(ProcItinLists.size()+1); 443 444 // If this processor defines no itineraries, then leave the itinerary list 445 // empty. 446 std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); 447 if (!ProcModel.hasItineraries()) 448 continue; 449 450 StringRef Name = ProcModel.ItinsDef->getName(); 451 452 ItinList.resize(SchedModels.numInstrSchedClasses()); 453 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); 454 455 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); 456 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { 457 458 // Next itinerary data 459 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; 460 461 // Get string and stage count 462 std::string ItinStageString; 463 unsigned NStages = 0; 464 if (ItinData) 465 FormItineraryStageString(std::string(Name), ItinData, ItinStageString, 466 NStages); 467 468 // Get string and operand cycle count 469 std::string ItinOperandCycleString; 470 unsigned NOperandCycles = 0; 471 std::string ItinBypassString; 472 if (ItinData) { 473 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, 474 NOperandCycles); 475 476 FormItineraryBypassString(std::string(Name), ItinData, ItinBypassString, 477 NOperandCycles); 478 } 479 480 // Check to see if stage already exists and create if it doesn't 481 uint16_t FindStage = 0; 482 if (NStages > 0) { 483 FindStage = ItinStageMap[ItinStageString]; 484 if (FindStage == 0) { 485 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices 486 StageTable += ItinStageString + ", // " + itostr(StageCount); 487 if (NStages > 1) 488 StageTable += "-" + itostr(StageCount + NStages - 1); 489 StageTable += "\n"; 490 // Record Itin class number. 491 ItinStageMap[ItinStageString] = FindStage = StageCount; 492 StageCount += NStages; 493 } 494 } 495 496 // Check to see if operand cycle already exists and create if it doesn't 497 uint16_t FindOperandCycle = 0; 498 if (NOperandCycles > 0) { 499 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; 500 FindOperandCycle = ItinOperandMap[ItinOperandString]; 501 if (FindOperandCycle == 0) { 502 // Emit as cycle, // index 503 OperandCycleTable += ItinOperandCycleString + ", // "; 504 std::string OperandIdxComment = itostr(OperandCycleCount); 505 if (NOperandCycles > 1) 506 OperandIdxComment += "-" 507 + itostr(OperandCycleCount + NOperandCycles - 1); 508 OperandCycleTable += OperandIdxComment + "\n"; 509 // Record Itin class number. 510 ItinOperandMap[ItinOperandCycleString] = 511 FindOperandCycle = OperandCycleCount; 512 // Emit as bypass, // index 513 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; 514 OperandCycleCount += NOperandCycles; 515 } 516 } 517 518 // Set up itinerary as location and location + stage count 519 int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; 520 InstrItinerary Intinerary = { 521 NumUOps, 522 FindStage, 523 uint16_t(FindStage + NStages), 524 FindOperandCycle, 525 uint16_t(FindOperandCycle + NOperandCycles), 526 }; 527 528 // Inject - empty slots will be 0, 0 529 ItinList[SchedClassIdx] = Intinerary; 530 } 531 } 532 533 // Closing stage 534 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; 535 StageTable += "};\n"; 536 537 // Closing operand cycles 538 OperandCycleTable += " 0 // End operand cycles\n"; 539 OperandCycleTable += "};\n"; 540 541 BypassTable += " 0 // End bypass tables\n"; 542 BypassTable += "};\n"; 543 544 // Emit tables. 545 OS << StageTable; 546 OS << OperandCycleTable; 547 OS << BypassTable; 548 } 549 550 // 551 // EmitProcessorData - Generate data for processor itineraries that were 552 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all 553 // Itineraries for each processor. The Itinerary lists are indexed on 554 // CodeGenSchedClass::Index. 555 // 556 void SubtargetEmitter:: 557 EmitItineraries(raw_ostream &OS, 558 std::vector<std::vector<InstrItinerary>> &ProcItinLists) { 559 // Multiple processor models may share an itinerary record. Emit it once. 560 SmallPtrSet<Record*, 8> ItinsDefSet; 561 562 // For each processor's machine model 563 std::vector<std::vector<InstrItinerary>>::iterator 564 ProcItinListsIter = ProcItinLists.begin(); 565 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 566 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { 567 568 Record *ItinsDef = PI->ItinsDef; 569 if (!ItinsDefSet.insert(ItinsDef).second) 570 continue; 571 572 // Get the itinerary list for the processor. 573 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); 574 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; 575 576 // Empty itineraries aren't referenced anywhere in the tablegen output 577 // so don't emit them. 578 if (ItinList.empty()) 579 continue; 580 581 OS << "\n"; 582 OS << "static const llvm::InstrItinerary "; 583 584 // Begin processor itinerary table 585 OS << ItinsDef->getName() << "[] = {\n"; 586 587 // For each itinerary class in CodeGenSchedClass::Index order. 588 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { 589 InstrItinerary &Intinerary = ItinList[j]; 590 591 // Emit Itinerary in the form of 592 // { firstStage, lastStage, firstCycle, lastCycle } // index 593 OS << " { " << 594 Intinerary.NumMicroOps << ", " << 595 Intinerary.FirstStage << ", " << 596 Intinerary.LastStage << ", " << 597 Intinerary.FirstOperandCycle << ", " << 598 Intinerary.LastOperandCycle << " }" << 599 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; 600 } 601 // End processor itinerary table 602 OS << " { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }" 603 "// end marker\n"; 604 OS << "};\n"; 605 } 606 } 607 608 // Emit either the value defined in the TableGen Record, or the default 609 // value defined in the C++ header. The Record is null if the processor does not 610 // define a model. 611 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, 612 StringRef Name, char Separator) { 613 OS << " "; 614 int V = R ? R->getValueAsInt(Name) : -1; 615 if (V >= 0) 616 OS << V << Separator << " // " << Name; 617 else 618 OS << "MCSchedModel::Default" << Name << Separator; 619 OS << '\n'; 620 } 621 622 void SubtargetEmitter::EmitProcessorResourceSubUnits( 623 const CodeGenProcModel &ProcModel, raw_ostream &OS) { 624 OS << "\nstatic const unsigned " << ProcModel.ModelName 625 << "ProcResourceSubUnits[] = {\n" 626 << " 0, // Invalid\n"; 627 628 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 629 Record *PRDef = ProcModel.ProcResourceDefs[i]; 630 if (!PRDef->isSubClassOf("ProcResGroup")) 631 continue; 632 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 633 for (Record *RUDef : ResUnits) { 634 Record *const RU = 635 SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc()); 636 for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) { 637 OS << " " << ProcModel.getProcResourceIdx(RU) << ", "; 638 } 639 } 640 OS << " // " << PRDef->getName() << "\n"; 641 } 642 OS << "};\n"; 643 } 644 645 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel, 646 raw_ostream &OS) { 647 int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0; 648 if (Record *RCU = ProcModel.RetireControlUnit) { 649 ReorderBufferSize = 650 std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize")); 651 MaxRetirePerCycle = 652 std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle")); 653 } 654 655 OS << ReorderBufferSize << ", // ReorderBufferSize\n "; 656 OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n "; 657 } 658 659 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel, 660 unsigned NumRegisterFiles, 661 unsigned NumCostEntries, raw_ostream &OS) { 662 if (NumRegisterFiles) 663 OS << ProcModel.ModelName << "RegisterFiles,\n " << (1 + NumRegisterFiles); 664 else 665 OS << "nullptr,\n 0"; 666 667 OS << ", // Number of register files.\n "; 668 if (NumCostEntries) 669 OS << ProcModel.ModelName << "RegisterCosts,\n "; 670 else 671 OS << "nullptr,\n "; 672 OS << NumCostEntries << ", // Number of register cost entries.\n"; 673 } 674 675 unsigned 676 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel, 677 raw_ostream &OS) { 678 if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) { 679 return RF.hasDefaultCosts(); 680 })) 681 return 0; 682 683 // Print the RegisterCost table first. 684 OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n"; 685 OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName 686 << "RegisterCosts" 687 << "[] = {\n"; 688 689 for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) { 690 // Skip register files with a default cost table. 691 if (RF.hasDefaultCosts()) 692 continue; 693 // Add entries to the cost table. 694 for (const CodeGenRegisterCost &RC : RF.Costs) { 695 OS << " { "; 696 Record *Rec = RC.RCDef; 697 if (Rec->getValue("Namespace")) 698 OS << Rec->getValueAsString("Namespace") << "::"; 699 OS << Rec->getName() << "RegClassID, " << RC.Cost << ", " 700 << RC.AllowMoveElimination << "},\n"; 701 } 702 } 703 OS << "};\n"; 704 705 // Now generate a table with register file info. 706 OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, " 707 << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n"; 708 OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName 709 << "RegisterFiles" 710 << "[] = {\n" 711 << " { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n"; 712 unsigned CostTblIndex = 0; 713 714 for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) { 715 OS << " { "; 716 OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", "; 717 unsigned NumCostEntries = RD.Costs.size(); 718 OS << NumCostEntries << ", " << CostTblIndex << ", " 719 << RD.MaxMovesEliminatedPerCycle << ", " 720 << RD.AllowZeroMoveEliminationOnly << "},\n"; 721 CostTblIndex += NumCostEntries; 722 } 723 OS << "};\n"; 724 725 return CostTblIndex; 726 } 727 728 void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel, 729 raw_ostream &OS) { 730 unsigned QueueID = 0; 731 if (ProcModel.LoadQueue) { 732 const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor"); 733 QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(), 734 find(ProcModel.ProcResourceDefs, Queue)); 735 } 736 OS << " " << QueueID << ", // Resource Descriptor for the Load Queue\n"; 737 738 QueueID = 0; 739 if (ProcModel.StoreQueue) { 740 const Record *Queue = 741 ProcModel.StoreQueue->getValueAsDef("QueueDescriptor"); 742 QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(), 743 find(ProcModel.ProcResourceDefs, Queue)); 744 } 745 OS << " " << QueueID << ", // Resource Descriptor for the Store Queue\n"; 746 } 747 748 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, 749 raw_ostream &OS) { 750 // Generate a table of register file descriptors (one entry per each user 751 // defined register file), and a table of register costs. 752 unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS); 753 754 // Now generate a table for the extra processor info. 755 OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName 756 << "ExtraInfo = {\n "; 757 758 // Add information related to the retire control unit. 759 EmitRetireControlUnitInfo(ProcModel, OS); 760 761 // Add information related to the register files (i.e. where to find register 762 // file descriptors and register costs). 763 EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(), 764 NumCostEntries, OS); 765 766 // Add information about load/store queues. 767 EmitLoadStoreQueueInfo(ProcModel, OS); 768 769 OS << "};\n"; 770 } 771 772 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, 773 raw_ostream &OS) { 774 EmitProcessorResourceSubUnits(ProcModel, OS); 775 776 OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n"; 777 OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName 778 << "ProcResources" 779 << "[] = {\n" 780 << " {\"InvalidUnit\", 0, 0, 0, 0},\n"; 781 782 unsigned SubUnitsOffset = 1; 783 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 784 Record *PRDef = ProcModel.ProcResourceDefs[i]; 785 786 Record *SuperDef = nullptr; 787 unsigned SuperIdx = 0; 788 unsigned NumUnits = 0; 789 const unsigned SubUnitsBeginOffset = SubUnitsOffset; 790 int BufferSize = PRDef->getValueAsInt("BufferSize"); 791 if (PRDef->isSubClassOf("ProcResGroup")) { 792 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 793 for (Record *RU : ResUnits) { 794 NumUnits += RU->getValueAsInt("NumUnits"); 795 SubUnitsOffset += RU->getValueAsInt("NumUnits"); 796 } 797 } 798 else { 799 // Find the SuperIdx 800 if (PRDef->getValueInit("Super")->isComplete()) { 801 SuperDef = 802 SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"), 803 ProcModel, PRDef->getLoc()); 804 SuperIdx = ProcModel.getProcResourceIdx(SuperDef); 805 } 806 NumUnits = PRDef->getValueAsInt("NumUnits"); 807 } 808 // Emit the ProcResourceDesc 809 OS << " {\"" << PRDef->getName() << "\", "; 810 if (PRDef->getName().size() < 15) 811 OS.indent(15 - PRDef->getName().size()); 812 OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", "; 813 if (SubUnitsBeginOffset != SubUnitsOffset) { 814 OS << ProcModel.ModelName << "ProcResourceSubUnits + " 815 << SubUnitsBeginOffset; 816 } else { 817 OS << "nullptr"; 818 } 819 OS << "}, // #" << i+1; 820 if (SuperDef) 821 OS << ", Super=" << SuperDef->getName(); 822 OS << "\n"; 823 } 824 OS << "};\n"; 825 } 826 827 // Find the WriteRes Record that defines processor resources for this 828 // SchedWrite. 829 Record *SubtargetEmitter::FindWriteResources( 830 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { 831 832 // Check if the SchedWrite is already subtarget-specific and directly 833 // specifies a set of processor resources. 834 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) 835 return SchedWrite.TheDef; 836 837 Record *AliasDef = nullptr; 838 for (Record *A : SchedWrite.Aliases) { 839 const CodeGenSchedRW &AliasRW = 840 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 841 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 842 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 843 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 844 continue; 845 } 846 if (AliasDef) 847 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 848 "defined for processor " + ProcModel.ModelName + 849 " Ensure only one SchedAlias exists per RW."); 850 AliasDef = AliasRW.TheDef; 851 } 852 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) 853 return AliasDef; 854 855 // Check this processor's list of write resources. 856 Record *ResDef = nullptr; 857 for (Record *WR : ProcModel.WriteResDefs) { 858 if (!WR->isSubClassOf("WriteRes")) 859 continue; 860 if (AliasDef == WR->getValueAsDef("WriteType") 861 || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) { 862 if (ResDef) { 863 PrintFatalError(WR->getLoc(), "Resources are defined for both " 864 "SchedWrite and its alias on processor " + 865 ProcModel.ModelName); 866 } 867 ResDef = WR; 868 } 869 } 870 // TODO: If ProcModel has a base model (previous generation processor), 871 // then call FindWriteResources recursively with that model here. 872 if (!ResDef) { 873 PrintFatalError(ProcModel.ModelDef->getLoc(), 874 Twine("Processor does not define resources for ") + 875 SchedWrite.TheDef->getName()); 876 } 877 return ResDef; 878 } 879 880 /// Find the ReadAdvance record for the given SchedRead on this processor or 881 /// return NULL. 882 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, 883 const CodeGenProcModel &ProcModel) { 884 // Check for SchedReads that directly specify a ReadAdvance. 885 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) 886 return SchedRead.TheDef; 887 888 // Check this processor's list of aliases for SchedRead. 889 Record *AliasDef = nullptr; 890 for (Record *A : SchedRead.Aliases) { 891 const CodeGenSchedRW &AliasRW = 892 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 893 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 894 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 895 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 896 continue; 897 } 898 if (AliasDef) 899 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 900 "defined for processor " + ProcModel.ModelName + 901 " Ensure only one SchedAlias exists per RW."); 902 AliasDef = AliasRW.TheDef; 903 } 904 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) 905 return AliasDef; 906 907 // Check this processor's ReadAdvanceList. 908 Record *ResDef = nullptr; 909 for (Record *RA : ProcModel.ReadAdvanceDefs) { 910 if (!RA->isSubClassOf("ReadAdvance")) 911 continue; 912 if (AliasDef == RA->getValueAsDef("ReadType") 913 || SchedRead.TheDef == RA->getValueAsDef("ReadType")) { 914 if (ResDef) { 915 PrintFatalError(RA->getLoc(), "Resources are defined for both " 916 "SchedRead and its alias on processor " + 917 ProcModel.ModelName); 918 } 919 ResDef = RA; 920 } 921 } 922 // TODO: If ProcModel has a base model (previous generation processor), 923 // then call FindReadAdvance recursively with that model here. 924 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { 925 PrintFatalError(ProcModel.ModelDef->getLoc(), 926 Twine("Processor does not define resources for ") + 927 SchedRead.TheDef->getName()); 928 } 929 return ResDef; 930 } 931 932 // Expand an explicit list of processor resources into a full list of implied 933 // resource groups and super resources that cover them. 934 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, 935 std::vector<int64_t> &Cycles, 936 const CodeGenProcModel &PM) { 937 assert(PRVec.size() == Cycles.size() && "failed precondition"); 938 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { 939 Record *PRDef = PRVec[i]; 940 RecVec SubResources; 941 if (PRDef->isSubClassOf("ProcResGroup")) 942 SubResources = PRDef->getValueAsListOfDefs("Resources"); 943 else { 944 SubResources.push_back(PRDef); 945 PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc()); 946 for (Record *SubDef = PRDef; 947 SubDef->getValueInit("Super")->isComplete();) { 948 if (SubDef->isSubClassOf("ProcResGroup")) { 949 // Disallow this for simplicitly. 950 PrintFatalError(SubDef->getLoc(), "Processor resource group " 951 " cannot be a super resources."); 952 } 953 Record *SuperDef = 954 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM, 955 SubDef->getLoc()); 956 PRVec.push_back(SuperDef); 957 Cycles.push_back(Cycles[i]); 958 SubDef = SuperDef; 959 } 960 } 961 for (Record *PR : PM.ProcResourceDefs) { 962 if (PR == PRDef || !PR->isSubClassOf("ProcResGroup")) 963 continue; 964 RecVec SuperResources = PR->getValueAsListOfDefs("Resources"); 965 RecIter SubI = SubResources.begin(), SubE = SubResources.end(); 966 for( ; SubI != SubE; ++SubI) { 967 if (!is_contained(SuperResources, *SubI)) { 968 break; 969 } 970 } 971 if (SubI == SubE) { 972 PRVec.push_back(PR); 973 Cycles.push_back(Cycles[i]); 974 } 975 } 976 } 977 } 978 979 // Generate the SchedClass table for this processor and update global 980 // tables. Must be called for each processor in order. 981 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, 982 SchedClassTables &SchedTables) { 983 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); 984 if (!ProcModel.hasInstrSchedModel()) 985 return; 986 987 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); 988 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n"); 989 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 990 LLVM_DEBUG(SC.dump(&SchedModels)); 991 992 SCTab.resize(SCTab.size() + 1); 993 MCSchedClassDesc &SCDesc = SCTab.back(); 994 // SCDesc.Name is guarded by NDEBUG 995 SCDesc.NumMicroOps = 0; 996 SCDesc.BeginGroup = false; 997 SCDesc.EndGroup = false; 998 SCDesc.WriteProcResIdx = 0; 999 SCDesc.WriteLatencyIdx = 0; 1000 SCDesc.ReadAdvanceIdx = 0; 1001 1002 // A Variant SchedClass has no resources of its own. 1003 bool HasVariants = false; 1004 for (const CodeGenSchedTransition &CGT : 1005 make_range(SC.Transitions.begin(), SC.Transitions.end())) { 1006 if (CGT.ProcIndex == ProcModel.Index) { 1007 HasVariants = true; 1008 break; 1009 } 1010 } 1011 if (HasVariants) { 1012 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; 1013 continue; 1014 } 1015 1016 // Determine if the SchedClass is actually reachable on this processor. If 1017 // not don't try to locate the processor resources, it will fail. 1018 // If ProcIndices contains 0, this class applies to all processors. 1019 assert(!SC.ProcIndices.empty() && "expect at least one procidx"); 1020 if (SC.ProcIndices[0] != 0) { 1021 if (!is_contained(SC.ProcIndices, ProcModel.Index)) 1022 continue; 1023 } 1024 IdxVec Writes = SC.Writes; 1025 IdxVec Reads = SC.Reads; 1026 if (!SC.InstRWs.empty()) { 1027 // This class has a default ReadWrite list which can be overridden by 1028 // InstRW definitions. 1029 Record *RWDef = nullptr; 1030 for (Record *RW : SC.InstRWs) { 1031 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 1032 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { 1033 RWDef = RW; 1034 break; 1035 } 1036 } 1037 if (RWDef) { 1038 Writes.clear(); 1039 Reads.clear(); 1040 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 1041 Writes, Reads); 1042 } 1043 } 1044 if (Writes.empty()) { 1045 // Check this processor's itinerary class resources. 1046 for (Record *I : ProcModel.ItinRWDefs) { 1047 RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses"); 1048 if (is_contained(Matched, SC.ItinClassDef)) { 1049 SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"), 1050 Writes, Reads); 1051 break; 1052 } 1053 } 1054 if (Writes.empty()) { 1055 LLVM_DEBUG(dbgs() << ProcModel.ModelName 1056 << " does not have resources for class " << SC.Name 1057 << '\n'); 1058 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1059 } 1060 } 1061 // Sum resources across all operand writes. 1062 std::vector<MCWriteProcResEntry> WriteProcResources; 1063 std::vector<MCWriteLatencyEntry> WriteLatencies; 1064 std::vector<std::string> WriterNames; 1065 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 1066 for (unsigned W : Writes) { 1067 IdxVec WriteSeq; 1068 SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false, 1069 ProcModel); 1070 1071 // For each operand, create a latency entry. 1072 MCWriteLatencyEntry WLEntry; 1073 WLEntry.Cycles = 0; 1074 unsigned WriteID = WriteSeq.back(); 1075 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); 1076 // If this Write is not referenced by a ReadAdvance, don't distinguish it 1077 // from other WriteLatency entries. 1078 if (!SchedModels.hasReadOfWrite( 1079 SchedModels.getSchedWrite(WriteID).TheDef)) { 1080 WriteID = 0; 1081 } 1082 WLEntry.WriteResourceID = WriteID; 1083 1084 for (unsigned WS : WriteSeq) { 1085 1086 Record *WriteRes = 1087 FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel); 1088 1089 // Mark the parent class as invalid for unsupported write types. 1090 if (WriteRes->getValueAsBit("Unsupported")) { 1091 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1092 break; 1093 } 1094 WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); 1095 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); 1096 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); 1097 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); 1098 SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue"); 1099 SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue"); 1100 1101 // Create an entry for each ProcResource listed in WriteRes. 1102 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); 1103 std::vector<int64_t> Cycles = 1104 WriteRes->getValueAsListOfInts("ResourceCycles"); 1105 1106 if (Cycles.empty()) { 1107 // If ResourceCycles is not provided, default to one cycle per 1108 // resource. 1109 Cycles.resize(PRVec.size(), 1); 1110 } else if (Cycles.size() != PRVec.size()) { 1111 // If ResourceCycles is provided, check consistency. 1112 PrintFatalError( 1113 WriteRes->getLoc(), 1114 Twine("Inconsistent resource cycles: !size(ResourceCycles) != " 1115 "!size(ProcResources): ") 1116 .concat(Twine(PRVec.size())) 1117 .concat(" vs ") 1118 .concat(Twine(Cycles.size()))); 1119 } 1120 1121 ExpandProcResources(PRVec, Cycles, ProcModel); 1122 1123 for (unsigned PRIdx = 0, PREnd = PRVec.size(); 1124 PRIdx != PREnd; ++PRIdx) { 1125 MCWriteProcResEntry WPREntry; 1126 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); 1127 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); 1128 WPREntry.Cycles = Cycles[PRIdx]; 1129 // If this resource is already used in this sequence, add the current 1130 // entry's cycles so that the same resource appears to be used 1131 // serially, rather than multiple parallel uses. This is important for 1132 // in-order machine where the resource consumption is a hazard. 1133 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); 1134 for( ; WPRIdx != WPREnd; ++WPRIdx) { 1135 if (WriteProcResources[WPRIdx].ProcResourceIdx 1136 == WPREntry.ProcResourceIdx) { 1137 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; 1138 break; 1139 } 1140 } 1141 if (WPRIdx == WPREnd) 1142 WriteProcResources.push_back(WPREntry); 1143 } 1144 } 1145 WriteLatencies.push_back(WLEntry); 1146 } 1147 // Create an entry for each operand Read in this SchedClass. 1148 // Entries must be sorted first by UseIdx then by WriteResourceID. 1149 for (unsigned UseIdx = 0, EndIdx = Reads.size(); 1150 UseIdx != EndIdx; ++UseIdx) { 1151 Record *ReadAdvance = 1152 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); 1153 if (!ReadAdvance) 1154 continue; 1155 1156 // Mark the parent class as invalid for unsupported write types. 1157 if (ReadAdvance->getValueAsBit("Unsupported")) { 1158 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1159 break; 1160 } 1161 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); 1162 IdxVec WriteIDs; 1163 if (ValidWrites.empty()) 1164 WriteIDs.push_back(0); 1165 else { 1166 for (Record *VW : ValidWrites) { 1167 WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false)); 1168 } 1169 } 1170 llvm::sort(WriteIDs); 1171 for(unsigned W : WriteIDs) { 1172 MCReadAdvanceEntry RAEntry; 1173 RAEntry.UseIdx = UseIdx; 1174 RAEntry.WriteResourceID = W; 1175 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); 1176 ReadAdvanceEntries.push_back(RAEntry); 1177 } 1178 } 1179 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { 1180 WriteProcResources.clear(); 1181 WriteLatencies.clear(); 1182 ReadAdvanceEntries.clear(); 1183 } 1184 // Add the information for this SchedClass to the global tables using basic 1185 // compression. 1186 // 1187 // WritePrecRes entries are sorted by ProcResIdx. 1188 llvm::sort(WriteProcResources, LessWriteProcResources()); 1189 1190 SCDesc.NumWriteProcResEntries = WriteProcResources.size(); 1191 std::vector<MCWriteProcResEntry>::iterator WPRPos = 1192 std::search(SchedTables.WriteProcResources.begin(), 1193 SchedTables.WriteProcResources.end(), 1194 WriteProcResources.begin(), WriteProcResources.end()); 1195 if (WPRPos != SchedTables.WriteProcResources.end()) 1196 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); 1197 else { 1198 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); 1199 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), 1200 WriteProcResources.end()); 1201 } 1202 // Latency entries must remain in operand order. 1203 SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); 1204 std::vector<MCWriteLatencyEntry>::iterator WLPos = 1205 std::search(SchedTables.WriteLatencies.begin(), 1206 SchedTables.WriteLatencies.end(), 1207 WriteLatencies.begin(), WriteLatencies.end()); 1208 if (WLPos != SchedTables.WriteLatencies.end()) { 1209 unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); 1210 SCDesc.WriteLatencyIdx = idx; 1211 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) 1212 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == 1213 std::string::npos) { 1214 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; 1215 } 1216 } 1217 else { 1218 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); 1219 llvm::append_range(SchedTables.WriteLatencies, WriteLatencies); 1220 llvm::append_range(SchedTables.WriterNames, WriterNames); 1221 } 1222 // ReadAdvanceEntries must remain in operand order. 1223 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); 1224 std::vector<MCReadAdvanceEntry>::iterator RAPos = 1225 std::search(SchedTables.ReadAdvanceEntries.begin(), 1226 SchedTables.ReadAdvanceEntries.end(), 1227 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); 1228 if (RAPos != SchedTables.ReadAdvanceEntries.end()) 1229 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); 1230 else { 1231 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); 1232 llvm::append_range(SchedTables.ReadAdvanceEntries, ReadAdvanceEntries); 1233 } 1234 } 1235 } 1236 1237 // Emit SchedClass tables for all processors and associated global tables. 1238 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, 1239 raw_ostream &OS) { 1240 // Emit global WriteProcResTable. 1241 OS << "\n// {ProcResourceIdx, Cycles}\n" 1242 << "extern const llvm::MCWriteProcResEntry " 1243 << Target << "WriteProcResTable[] = {\n" 1244 << " { 0, 0}, // Invalid\n"; 1245 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); 1246 WPRIdx != WPREnd; ++WPRIdx) { 1247 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; 1248 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " 1249 << format("%2d", WPREntry.Cycles) << "}"; 1250 if (WPRIdx + 1 < WPREnd) 1251 OS << ','; 1252 OS << " // #" << WPRIdx << '\n'; 1253 } 1254 OS << "}; // " << Target << "WriteProcResTable\n"; 1255 1256 // Emit global WriteLatencyTable. 1257 OS << "\n// {Cycles, WriteResourceID}\n" 1258 << "extern const llvm::MCWriteLatencyEntry " 1259 << Target << "WriteLatencyTable[] = {\n" 1260 << " { 0, 0}, // Invalid\n"; 1261 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); 1262 WLIdx != WLEnd; ++WLIdx) { 1263 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; 1264 OS << " {" << format("%2d", WLEntry.Cycles) << ", " 1265 << format("%2d", WLEntry.WriteResourceID) << "}"; 1266 if (WLIdx + 1 < WLEnd) 1267 OS << ','; 1268 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; 1269 } 1270 OS << "}; // " << Target << "WriteLatencyTable\n"; 1271 1272 // Emit global ReadAdvanceTable. 1273 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" 1274 << "extern const llvm::MCReadAdvanceEntry " 1275 << Target << "ReadAdvanceTable[] = {\n" 1276 << " {0, 0, 0}, // Invalid\n"; 1277 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); 1278 RAIdx != RAEnd; ++RAIdx) { 1279 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; 1280 OS << " {" << RAEntry.UseIdx << ", " 1281 << format("%2d", RAEntry.WriteResourceID) << ", " 1282 << format("%2d", RAEntry.Cycles) << "}"; 1283 if (RAIdx + 1 < RAEnd) 1284 OS << ','; 1285 OS << " // #" << RAIdx << '\n'; 1286 } 1287 OS << "}; // " << Target << "ReadAdvanceTable\n"; 1288 1289 // Emit a SchedClass table for each processor. 1290 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1291 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1292 if (!PI->hasInstrSchedModel()) 1293 continue; 1294 1295 std::vector<MCSchedClassDesc> &SCTab = 1296 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; 1297 1298 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," 1299 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; 1300 OS << "static const llvm::MCSchedClassDesc " 1301 << PI->ModelName << "SchedClasses[] = {\n"; 1302 1303 // The first class is always invalid. We no way to distinguish it except by 1304 // name and position. 1305 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" 1306 && "invalid class not first"); 1307 OS << " {DBGFIELD(\"InvalidSchedClass\") " 1308 << MCSchedClassDesc::InvalidNumMicroOps 1309 << ", false, false, 0, 0, 0, 0, 0, 0},\n"; 1310 1311 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { 1312 MCSchedClassDesc &MCDesc = SCTab[SCIdx]; 1313 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); 1314 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; 1315 if (SchedClass.Name.size() < 18) 1316 OS.indent(18 - SchedClass.Name.size()); 1317 OS << MCDesc.NumMicroOps 1318 << ", " << ( MCDesc.BeginGroup ? "true" : "false" ) 1319 << ", " << ( MCDesc.EndGroup ? "true" : "false" ) 1320 << ", " << format("%2d", MCDesc.WriteProcResIdx) 1321 << ", " << MCDesc.NumWriteProcResEntries 1322 << ", " << format("%2d", MCDesc.WriteLatencyIdx) 1323 << ", " << MCDesc.NumWriteLatencyEntries 1324 << ", " << format("%2d", MCDesc.ReadAdvanceIdx) 1325 << ", " << MCDesc.NumReadAdvanceEntries 1326 << "}, // #" << SCIdx << '\n'; 1327 } 1328 OS << "}; // " << PI->ModelName << "SchedClasses\n"; 1329 } 1330 } 1331 1332 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { 1333 // For each processor model. 1334 for (const CodeGenProcModel &PM : SchedModels.procModels()) { 1335 // Emit extra processor info if available. 1336 if (PM.hasExtraProcessorInfo()) 1337 EmitExtraProcessorInfo(PM, OS); 1338 // Emit processor resource table. 1339 if (PM.hasInstrSchedModel()) 1340 EmitProcessorResources(PM, OS); 1341 else if(!PM.ProcResourceDefs.empty()) 1342 PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines " 1343 "ProcResources without defining WriteRes SchedWriteRes"); 1344 1345 // Begin processor itinerary properties 1346 OS << "\n"; 1347 OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n"; 1348 EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ','); 1349 EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ','); 1350 EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ','); 1351 EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ','); 1352 EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ','); 1353 EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ','); 1354 1355 bool PostRAScheduler = 1356 (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false); 1357 1358 OS << " " << (PostRAScheduler ? "true" : "false") << ", // " 1359 << "PostRAScheduler\n"; 1360 1361 bool CompleteModel = 1362 (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false); 1363 1364 OS << " " << (CompleteModel ? "true" : "false") << ", // " 1365 << "CompleteModel\n"; 1366 1367 OS << " " << PM.Index << ", // Processor ID\n"; 1368 if (PM.hasInstrSchedModel()) 1369 OS << " " << PM.ModelName << "ProcResources" << ",\n" 1370 << " " << PM.ModelName << "SchedClasses" << ",\n" 1371 << " " << PM.ProcResourceDefs.size()+1 << ",\n" 1372 << " " << (SchedModels.schedClassEnd() 1373 - SchedModels.schedClassBegin()) << ",\n"; 1374 else 1375 OS << " nullptr, nullptr, 0, 0," 1376 << " // No instruction-level machine model.\n"; 1377 if (PM.hasItineraries()) 1378 OS << " " << PM.ItinsDef->getName() << ",\n"; 1379 else 1380 OS << " nullptr, // No Itinerary\n"; 1381 if (PM.hasExtraProcessorInfo()) 1382 OS << " &" << PM.ModelName << "ExtraInfo,\n"; 1383 else 1384 OS << " nullptr // No extra processor descriptor\n"; 1385 OS << "};\n"; 1386 } 1387 } 1388 1389 // 1390 // EmitSchedModel - Emits all scheduling model tables, folding common patterns. 1391 // 1392 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { 1393 OS << "#ifdef DBGFIELD\n" 1394 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" 1395 << "#endif\n" 1396 << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n" 1397 << "#define DBGFIELD(x) x,\n" 1398 << "#else\n" 1399 << "#define DBGFIELD(x)\n" 1400 << "#endif\n"; 1401 1402 if (SchedModels.hasItineraries()) { 1403 std::vector<std::vector<InstrItinerary>> ProcItinLists; 1404 // Emit the stage data 1405 EmitStageAndOperandCycleData(OS, ProcItinLists); 1406 EmitItineraries(OS, ProcItinLists); 1407 } 1408 OS << "\n// ===============================================================\n" 1409 << "// Data tables for the new per-operand machine model.\n"; 1410 1411 SchedClassTables SchedTables; 1412 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 1413 GenSchedClassTables(ProcModel, SchedTables); 1414 } 1415 EmitSchedClassTables(SchedTables, OS); 1416 1417 OS << "\n#undef DBGFIELD\n"; 1418 1419 // Emit the processor machine model 1420 EmitProcessorModels(OS); 1421 } 1422 1423 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) { 1424 std::string Buffer; 1425 raw_string_ostream Stream(Buffer); 1426 1427 // Collect all the PredicateProlog records and print them to the output 1428 // stream. 1429 std::vector<Record *> Prologs = 1430 Records.getAllDerivedDefinitions("PredicateProlog"); 1431 llvm::sort(Prologs, LessRecord()); 1432 for (Record *P : Prologs) 1433 Stream << P->getValueAsString("Code") << '\n'; 1434 1435 Stream.flush(); 1436 OS << Buffer; 1437 } 1438 1439 static bool isTruePredicate(const Record *Rec) { 1440 return Rec->isSubClassOf("MCSchedPredicate") && 1441 Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue"); 1442 } 1443 1444 static void emitPredicates(const CodeGenSchedTransition &T, 1445 const CodeGenSchedClass &SC, PredicateExpander &PE, 1446 raw_ostream &OS) { 1447 std::string Buffer; 1448 raw_string_ostream SS(Buffer); 1449 1450 // If not all predicates are MCTrue, then we need an if-stmt. 1451 unsigned NumNonTruePreds = 1452 T.PredTerm.size() - count_if(T.PredTerm, isTruePredicate); 1453 1454 SS.indent(PE.getIndentLevel() * 2); 1455 1456 if (NumNonTruePreds) { 1457 bool FirstNonTruePredicate = true; 1458 SS << "if ("; 1459 1460 PE.setIndentLevel(PE.getIndentLevel() + 2); 1461 1462 for (const Record *Rec : T.PredTerm) { 1463 // Skip predicates that evaluate to "true". 1464 if (isTruePredicate(Rec)) 1465 continue; 1466 1467 if (FirstNonTruePredicate) { 1468 FirstNonTruePredicate = false; 1469 } else { 1470 SS << "\n"; 1471 SS.indent(PE.getIndentLevel() * 2); 1472 SS << "&& "; 1473 } 1474 1475 if (Rec->isSubClassOf("MCSchedPredicate")) { 1476 PE.expandPredicate(SS, Rec->getValueAsDef("Pred")); 1477 continue; 1478 } 1479 1480 // Expand this legacy predicate and wrap it around braces if there is more 1481 // than one predicate to expand. 1482 SS << ((NumNonTruePreds > 1) ? "(" : "") 1483 << Rec->getValueAsString("Predicate") 1484 << ((NumNonTruePreds > 1) ? ")" : ""); 1485 } 1486 1487 SS << ")\n"; // end of if-stmt 1488 PE.decreaseIndentLevel(); 1489 SS.indent(PE.getIndentLevel() * 2); 1490 PE.decreaseIndentLevel(); 1491 } 1492 1493 SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n'; 1494 SS.flush(); 1495 OS << Buffer; 1496 } 1497 1498 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate 1499 // epilogue code for the auto-generated helper. 1500 static void emitSchedModelHelperEpilogue(raw_ostream &OS, 1501 bool ShouldReturnZero) { 1502 if (ShouldReturnZero) { 1503 OS << " // Don't know how to resolve this scheduling class.\n" 1504 << " return 0;\n"; 1505 return; 1506 } 1507 1508 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n"; 1509 } 1510 1511 static bool hasMCSchedPredicates(const CodeGenSchedTransition &T) { 1512 return all_of(T.PredTerm, [](const Record *Rec) { 1513 return Rec->isSubClassOf("MCSchedPredicate"); 1514 }); 1515 } 1516 1517 static void collectVariantClasses(const CodeGenSchedModels &SchedModels, 1518 IdxVec &VariantClasses, 1519 bool OnlyExpandMCInstPredicates) { 1520 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 1521 // Ignore non-variant scheduling classes. 1522 if (SC.Transitions.empty()) 1523 continue; 1524 1525 if (OnlyExpandMCInstPredicates) { 1526 // Ignore this variant scheduling class no transitions use any meaningful 1527 // MCSchedPredicate definitions. 1528 if (!any_of(SC.Transitions, [](const CodeGenSchedTransition &T) { 1529 return hasMCSchedPredicates(T); 1530 })) 1531 continue; 1532 } 1533 1534 VariantClasses.push_back(SC.Index); 1535 } 1536 } 1537 1538 static void collectProcessorIndices(const CodeGenSchedClass &SC, 1539 IdxVec &ProcIndices) { 1540 // A variant scheduling class may define transitions for multiple 1541 // processors. This function identifies wich processors are associated with 1542 // transition rules specified by variant class `SC`. 1543 for (const CodeGenSchedTransition &T : SC.Transitions) { 1544 IdxVec PI; 1545 std::set_union(&T.ProcIndex, &T.ProcIndex + 1, ProcIndices.begin(), 1546 ProcIndices.end(), std::back_inserter(PI)); 1547 ProcIndices.swap(PI); 1548 } 1549 } 1550 1551 static bool isAlwaysTrue(const CodeGenSchedTransition &T) { 1552 return llvm::all_of(T.PredTerm, 1553 [](const Record *R) { return isTruePredicate(R); }); 1554 } 1555 1556 void SubtargetEmitter::emitSchedModelHelpersImpl( 1557 raw_ostream &OS, bool OnlyExpandMCInstPredicates) { 1558 IdxVec VariantClasses; 1559 collectVariantClasses(SchedModels, VariantClasses, 1560 OnlyExpandMCInstPredicates); 1561 1562 if (VariantClasses.empty()) { 1563 emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates); 1564 return; 1565 } 1566 1567 // Construct a switch statement where the condition is a check on the 1568 // scheduling class identifier. There is a `case` for every variant class 1569 // defined by the processor models of this target. 1570 // Each `case` implements a number of rules to resolve (i.e. to transition from) 1571 // a variant scheduling class to another scheduling class. Rules are 1572 // described by instances of CodeGenSchedTransition. Note that transitions may 1573 // not be valid for all processors. 1574 OS << " switch (SchedClass) {\n"; 1575 for (unsigned VC : VariantClasses) { 1576 IdxVec ProcIndices; 1577 const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC); 1578 collectProcessorIndices(SC, ProcIndices); 1579 1580 OS << " case " << VC << ": // " << SC.Name << '\n'; 1581 1582 PredicateExpander PE(Target); 1583 PE.setByRef(false); 1584 PE.setExpandForMC(OnlyExpandMCInstPredicates); 1585 for (unsigned PI : ProcIndices) { 1586 OS << " "; 1587 1588 // Emit a guard on the processor ID. 1589 if (PI != 0) { 1590 OS << (OnlyExpandMCInstPredicates 1591 ? "if (CPUID == " 1592 : "if (SchedModel->getProcessorID() == "); 1593 OS << PI << ") "; 1594 OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n'; 1595 } 1596 1597 // Now emit transitions associated with processor PI. 1598 const CodeGenSchedTransition *FinalT = nullptr; 1599 for (const CodeGenSchedTransition &T : SC.Transitions) { 1600 if (PI != 0 && T.ProcIndex != PI) 1601 continue; 1602 1603 // Emit only transitions based on MCSchedPredicate, if it's the case. 1604 // At least the transition specified by NoSchedPred is emitted, 1605 // which becomes the default transition for those variants otherwise 1606 // not based on MCSchedPredicate. 1607 // FIXME: preferably, llvm-mca should instead assume a reasonable 1608 // default when a variant transition is not based on MCSchedPredicate 1609 // for a given processor. 1610 if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T)) 1611 continue; 1612 1613 // If transition is folded to 'return X' it should be the last one. 1614 if (isAlwaysTrue(T)) { 1615 FinalT = &T; 1616 continue; 1617 } 1618 PE.setIndentLevel(3); 1619 emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS); 1620 } 1621 if (FinalT) 1622 emitPredicates(*FinalT, SchedModels.getSchedClass(FinalT->ToClassIdx), 1623 PE, OS); 1624 1625 OS << " }\n"; 1626 1627 if (PI == 0) 1628 break; 1629 } 1630 1631 if (SC.isInferred()) 1632 OS << " return " << SC.Index << ";\n"; 1633 OS << " break;\n"; 1634 } 1635 1636 OS << " };\n"; 1637 1638 emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates); 1639 } 1640 1641 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName, 1642 raw_ostream &OS) { 1643 OS << "unsigned " << ClassName 1644 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," 1645 << " const TargetSchedModel *SchedModel) const {\n"; 1646 1647 // Emit the predicate prolog code. 1648 emitPredicateProlog(Records, OS); 1649 1650 // Emit target predicates. 1651 emitSchedModelHelpersImpl(OS); 1652 1653 OS << "} // " << ClassName << "::resolveSchedClass\n\n"; 1654 1655 OS << "unsigned " << ClassName 1656 << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI," 1657 << " const MCInstrInfo *MCII, unsigned CPUID) const {\n" 1658 << " return " << Target << "_MC" 1659 << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n" 1660 << "} // " << ClassName << "::resolveVariantSchedClass\n\n"; 1661 1662 STIPredicateExpander PE(Target); 1663 PE.setClassPrefix(ClassName); 1664 PE.setExpandDefinition(true); 1665 PE.setByRef(false); 1666 PE.setIndentLevel(0); 1667 1668 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1669 PE.expandSTIPredicate(OS, Fn); 1670 } 1671 1672 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName, 1673 raw_ostream &OS) { 1674 const CodeGenHwModes &CGH = TGT.getHwModes(); 1675 assert(CGH.getNumModeIds() > 0); 1676 if (CGH.getNumModeIds() == 1) 1677 return; 1678 1679 OS << "unsigned " << ClassName << "::getHwMode() const {\n"; 1680 for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) { 1681 const HwMode &HM = CGH.getMode(M); 1682 OS << " if (checkFeatures(\"" << HM.Features 1683 << "\")) return " << M << ";\n"; 1684 } 1685 OS << " return 0;\n}\n"; 1686 } 1687 1688 // 1689 // ParseFeaturesFunction - Produces a subtarget specific function for parsing 1690 // the subtarget features string. 1691 // 1692 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, 1693 unsigned NumFeatures, 1694 unsigned NumProcs) { 1695 std::vector<Record*> Features = 1696 Records.getAllDerivedDefinitions("SubtargetFeature"); 1697 llvm::sort(Features, LessRecord()); 1698 1699 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" 1700 << "// subtarget options.\n" 1701 << "void llvm::"; 1702 OS << Target; 1703 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, " 1704 << "StringRef FS) {\n" 1705 << " LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" 1706 << " LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU);\n" 1707 << " LLVM_DEBUG(dbgs() << \"\\nTuneCPU:\" << TuneCPU << \"\\n\\n\");\n"; 1708 1709 if (Features.empty()) { 1710 OS << "}\n"; 1711 return; 1712 } 1713 1714 OS << " InitMCProcessorInfo(CPU, TuneCPU, FS);\n" 1715 << " const FeatureBitset &Bits = getFeatureBits();\n"; 1716 1717 for (Record *R : Features) { 1718 // Next record 1719 StringRef Instance = R->getName(); 1720 StringRef Value = R->getValueAsString("Value"); 1721 StringRef Attribute = R->getValueAsString("Attribute"); 1722 1723 if (Value=="true" || Value=="false") 1724 OS << " if (Bits[" << Target << "::" 1725 << Instance << "]) " 1726 << Attribute << " = " << Value << ";\n"; 1727 else 1728 OS << " if (Bits[" << Target << "::" 1729 << Instance << "] && " 1730 << Attribute << " < " << Value << ") " 1731 << Attribute << " = " << Value << ";\n"; 1732 } 1733 1734 OS << "}\n"; 1735 } 1736 1737 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) { 1738 OS << "namespace " << Target << "_MC {\n" 1739 << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n" 1740 << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) {\n"; 1741 emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true); 1742 OS << "}\n"; 1743 OS << "} // end namespace " << Target << "_MC\n\n"; 1744 1745 OS << "struct " << Target 1746 << "GenMCSubtargetInfo : public MCSubtargetInfo {\n"; 1747 OS << " " << Target << "GenMCSubtargetInfo(const Triple &TT,\n" 1748 << " StringRef CPU, StringRef TuneCPU, StringRef FS,\n" 1749 << " ArrayRef<SubtargetFeatureKV> PF,\n" 1750 << " ArrayRef<SubtargetSubTypeKV> PD,\n" 1751 << " const MCWriteProcResEntry *WPR,\n" 1752 << " const MCWriteLatencyEntry *WL,\n" 1753 << " const MCReadAdvanceEntry *RA, const InstrStage *IS,\n" 1754 << " const unsigned *OC, const unsigned *FP) :\n" 1755 << " MCSubtargetInfo(TT, CPU, TuneCPU, FS, PF, PD,\n" 1756 << " WPR, WL, RA, IS, OC, FP) { }\n\n" 1757 << " unsigned resolveVariantSchedClass(unsigned SchedClass,\n" 1758 << " const MCInst *MI, const MCInstrInfo *MCII,\n" 1759 << " unsigned CPUID) const override {\n" 1760 << " return " << Target << "_MC" 1761 << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n"; 1762 OS << " }\n"; 1763 if (TGT.getHwModes().getNumModeIds() > 1) 1764 OS << " unsigned getHwMode() const override;\n"; 1765 OS << "};\n"; 1766 EmitHwModeCheck(Target + "GenMCSubtargetInfo", OS); 1767 } 1768 1769 void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) { 1770 OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n"; 1771 OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n"; 1772 1773 STIPredicateExpander PE(Target); 1774 PE.setExpandForMC(true); 1775 PE.setByRef(true); 1776 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1777 PE.expandSTIPredicate(OS, Fn); 1778 1779 OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n"; 1780 1781 OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n"; 1782 OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n"; 1783 1784 std::string ClassPrefix = Target + "MCInstrAnalysis"; 1785 PE.setExpandDefinition(true); 1786 PE.setClassPrefix(ClassPrefix); 1787 PE.setIndentLevel(0); 1788 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1789 PE.expandSTIPredicate(OS, Fn); 1790 1791 OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n"; 1792 } 1793 1794 // 1795 // SubtargetEmitter::run - Main subtarget enumeration emitter. 1796 // 1797 void SubtargetEmitter::run(raw_ostream &OS) { 1798 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); 1799 1800 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; 1801 OS << "#undef GET_SUBTARGETINFO_ENUM\n\n"; 1802 1803 DenseMap<Record *, unsigned> FeatureMap; 1804 1805 OS << "namespace llvm {\n"; 1806 Enumeration(OS, FeatureMap); 1807 OS << "} // end namespace llvm\n\n"; 1808 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; 1809 1810 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; 1811 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n"; 1812 1813 OS << "namespace llvm {\n"; 1814 #if 0 1815 OS << "namespace {\n"; 1816 #endif 1817 unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap); 1818 OS << "\n"; 1819 EmitSchedModel(OS); 1820 OS << "\n"; 1821 unsigned NumProcs = CPUKeyValues(OS, FeatureMap); 1822 OS << "\n"; 1823 #if 0 1824 OS << "} // end anonymous namespace\n\n"; 1825 #endif 1826 1827 // MCInstrInfo initialization routine. 1828 emitGenMCSubtargetInfo(OS); 1829 1830 OS << "\nstatic inline MCSubtargetInfo *create" << Target 1831 << "MCSubtargetInfoImpl(" 1832 << "const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS) {\n"; 1833 OS << " return new " << Target 1834 << "GenMCSubtargetInfo(TT, CPU, TuneCPU, FS, "; 1835 if (NumFeatures) 1836 OS << Target << "FeatureKV, "; 1837 else 1838 OS << "None, "; 1839 if (NumProcs) 1840 OS << Target << "SubTypeKV, "; 1841 else 1842 OS << "None, "; 1843 OS << '\n'; OS.indent(22); 1844 OS << Target << "WriteProcResTable, " 1845 << Target << "WriteLatencyTable, " 1846 << Target << "ReadAdvanceTable, "; 1847 OS << '\n'; OS.indent(22); 1848 if (SchedModels.hasItineraries()) { 1849 OS << Target << "Stages, " 1850 << Target << "OperandCycles, " 1851 << Target << "ForwardingPaths"; 1852 } else 1853 OS << "nullptr, nullptr, nullptr"; 1854 OS << ");\n}\n\n"; 1855 1856 OS << "} // end namespace llvm\n\n"; 1857 1858 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; 1859 1860 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; 1861 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1862 1863 OS << "#include \"llvm/Support/Debug.h\"\n"; 1864 OS << "#include \"llvm/Support/raw_ostream.h\"\n\n"; 1865 ParseFeaturesFunction(OS, NumFeatures, NumProcs); 1866 1867 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1868 1869 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. 1870 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; 1871 OS << "#undef GET_SUBTARGETINFO_HEADER\n\n"; 1872 1873 std::string ClassName = Target + "GenSubtargetInfo"; 1874 OS << "namespace llvm {\n"; 1875 OS << "class DFAPacketizer;\n"; 1876 OS << "namespace " << Target << "_MC {\n" 1877 << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass," 1878 << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID);\n" 1879 << "} // end namespace " << Target << "_MC\n\n"; 1880 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" 1881 << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, " 1882 << "StringRef TuneCPU, StringRef FS);\n" 1883 << "public:\n" 1884 << " unsigned resolveSchedClass(unsigned SchedClass, " 1885 << " const MachineInstr *DefMI," 1886 << " const TargetSchedModel *SchedModel) const override;\n" 1887 << " unsigned resolveVariantSchedClass(unsigned SchedClass," 1888 << " const MCInst *MI, const MCInstrInfo *MCII," 1889 << " unsigned CPUID) const override;\n" 1890 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" 1891 << " const;\n"; 1892 if (TGT.getHwModes().getNumModeIds() > 1) 1893 OS << " unsigned getHwMode() const override;\n"; 1894 1895 STIPredicateExpander PE(Target); 1896 PE.setByRef(false); 1897 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1898 PE.expandSTIPredicate(OS, Fn); 1899 1900 OS << "};\n" 1901 << "} // end namespace llvm\n\n"; 1902 1903 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; 1904 1905 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; 1906 OS << "#undef GET_SUBTARGETINFO_CTOR\n\n"; 1907 1908 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n"; 1909 OS << "namespace llvm {\n"; 1910 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; 1911 OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n"; 1912 OS << "extern const llvm::MCWriteProcResEntry " 1913 << Target << "WriteProcResTable[];\n"; 1914 OS << "extern const llvm::MCWriteLatencyEntry " 1915 << Target << "WriteLatencyTable[];\n"; 1916 OS << "extern const llvm::MCReadAdvanceEntry " 1917 << Target << "ReadAdvanceTable[];\n"; 1918 1919 if (SchedModels.hasItineraries()) { 1920 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; 1921 OS << "extern const unsigned " << Target << "OperandCycles[];\n"; 1922 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; 1923 } 1924 1925 OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, " 1926 << "StringRef TuneCPU, StringRef FS)\n" 1927 << " : TargetSubtargetInfo(TT, CPU, TuneCPU, FS, "; 1928 if (NumFeatures) 1929 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; 1930 else 1931 OS << "None, "; 1932 if (NumProcs) 1933 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; 1934 else 1935 OS << "None, "; 1936 OS << '\n'; OS.indent(24); 1937 OS << Target << "WriteProcResTable, " 1938 << Target << "WriteLatencyTable, " 1939 << Target << "ReadAdvanceTable, "; 1940 OS << '\n'; OS.indent(24); 1941 if (SchedModels.hasItineraries()) { 1942 OS << Target << "Stages, " 1943 << Target << "OperandCycles, " 1944 << Target << "ForwardingPaths"; 1945 } else 1946 OS << "nullptr, nullptr, nullptr"; 1947 OS << ") {}\n\n"; 1948 1949 EmitSchedModelHelpers(ClassName, OS); 1950 EmitHwModeCheck(ClassName, OS); 1951 1952 OS << "} // end namespace llvm\n\n"; 1953 1954 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; 1955 1956 EmitMCInstrAnalysisPredicateFunctions(OS); 1957 } 1958 1959 namespace llvm { 1960 1961 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { 1962 CodeGenTarget CGTarget(RK); 1963 SubtargetEmitter(RK, CGTarget).run(OS); 1964 } 1965 1966 } // end namespace llvm 1967