1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits information about intrinsic functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenIntrinsics.h" 14 #include "CodeGenTarget.h" 15 #include "SequenceToOffsetTable.h" 16 #include "TableGenBackends.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Support/CommandLine.h" 19 #include "llvm/TableGen/Error.h" 20 #include "llvm/TableGen/Record.h" 21 #include "llvm/TableGen/StringToOffsetTable.h" 22 #include "llvm/TableGen/TableGenBackend.h" 23 #include <algorithm> 24 using namespace llvm; 25 26 cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums"); 27 cl::opt<std::string> 28 IntrinsicPrefix("intrinsic-prefix", 29 cl::desc("Generate intrinsics with this target prefix"), 30 cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat)); 31 32 namespace { 33 class IntrinsicEmitter { 34 RecordKeeper &Records; 35 36 public: 37 IntrinsicEmitter(RecordKeeper &R) : Records(R) {} 38 39 void run(raw_ostream &OS, bool Enums); 40 41 void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 42 void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 43 void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints, 44 raw_ostream &OS); 45 void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints, 46 raw_ostream &OS); 47 void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 48 void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 49 void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC, 50 raw_ostream &OS); 51 }; 52 } // End anonymous namespace 53 54 //===----------------------------------------------------------------------===// 55 // IntrinsicEmitter Implementation 56 //===----------------------------------------------------------------------===// 57 58 void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) { 59 emitSourceFileHeader("Intrinsic Function Source Fragment", OS); 60 61 CodeGenIntrinsicTable Ints(Records); 62 63 if (Enums) { 64 // Emit the enum information. 65 EmitEnumInfo(Ints, OS); 66 } else { 67 // Emit the target metadata. 68 EmitTargetInfo(Ints, OS); 69 70 // Emit the intrinsic ID -> name table. 71 EmitIntrinsicToNameTable(Ints, OS); 72 73 // Emit the intrinsic ID -> overload table. 74 EmitIntrinsicToOverloadTable(Ints, OS); 75 76 // Emit the intrinsic declaration generator. 77 EmitGenerator(Ints, OS); 78 79 // Emit the intrinsic parameter attributes. 80 EmitAttributes(Ints, OS); 81 82 // Emit code to translate GCC builtins into LLVM intrinsics. 83 EmitIntrinsicToBuiltinMap(Ints, true, OS); 84 85 // Emit code to translate MS builtins into LLVM intrinsics. 86 EmitIntrinsicToBuiltinMap(Ints, false, OS); 87 } 88 } 89 90 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints, 91 raw_ostream &OS) { 92 // Find the TargetSet for which to generate enums. There will be an initial 93 // set with an empty target prefix which will include target independent 94 // intrinsics like dbg.value. 95 const CodeGenIntrinsicTable::TargetSet *Set = nullptr; 96 for (const auto &Target : Ints.Targets) { 97 if (Target.Name == IntrinsicPrefix) { 98 Set = &Target; 99 break; 100 } 101 } 102 if (!Set) { 103 std::vector<std::string> KnownTargets; 104 for (const auto &Target : Ints.Targets) 105 if (!Target.Name.empty()) 106 KnownTargets.push_back(Target.Name); 107 PrintFatalError("tried to generate intrinsics for unknown target " + 108 IntrinsicPrefix + 109 "\nKnown targets are: " + join(KnownTargets, ", ") + "\n"); 110 } 111 112 // Generate a complete header for target specific intrinsics. 113 if (!IntrinsicPrefix.empty()) { 114 std::string UpperPrefix = StringRef(IntrinsicPrefix).upper(); 115 OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n"; 116 OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n"; 117 OS << "namespace llvm {\n"; 118 OS << "namespace Intrinsic {\n"; 119 OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n"; 120 } 121 122 OS << "// Enum values for intrinsics\n"; 123 for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) { 124 OS << " " << Ints[i].EnumName; 125 126 // Assign a value to the first intrinsic in this target set so that all 127 // intrinsic ids are distinct. 128 if (i == Set->Offset) 129 OS << " = " << (Set->Offset + 1); 130 131 OS << ", "; 132 if (Ints[i].EnumName.size() < 40) 133 OS.indent(40 - Ints[i].EnumName.size()); 134 OS << " // " << Ints[i].Name << "\n"; 135 } 136 137 // Emit num_intrinsics into the target neutral enum. 138 if (IntrinsicPrefix.empty()) { 139 OS << " num_intrinsics = " << (Ints.size() + 1) << "\n"; 140 } else { 141 OS << "}; // enum\n"; 142 OS << "} // namespace Intrinsic\n"; 143 OS << "} // namespace llvm\n\n"; 144 OS << "#endif\n"; 145 } 146 } 147 148 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints, 149 raw_ostream &OS) { 150 OS << "// Target mapping\n"; 151 OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n"; 152 OS << "struct IntrinsicTargetInfo {\n" 153 << " llvm::StringLiteral Name;\n" 154 << " size_t Offset;\n" 155 << " size_t Count;\n" 156 << "};\n"; 157 OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n"; 158 for (auto Target : Ints.Targets) 159 OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset 160 << ", " << Target.Count << "},\n"; 161 OS << "};\n"; 162 OS << "#endif\n\n"; 163 } 164 165 void IntrinsicEmitter::EmitIntrinsicToNameTable( 166 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { 167 OS << "// Intrinsic ID to name table\n"; 168 OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; 169 OS << " // Note that entry #0 is the invalid intrinsic!\n"; 170 for (unsigned i = 0, e = Ints.size(); i != e; ++i) 171 OS << " \"" << Ints[i].Name << "\",\n"; 172 OS << "#endif\n\n"; 173 } 174 175 void IntrinsicEmitter::EmitIntrinsicToOverloadTable( 176 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { 177 OS << "// Intrinsic ID to overload bitset\n"; 178 OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; 179 OS << "static const uint8_t OTable[] = {\n"; 180 OS << " 0"; 181 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 182 // Add one to the index so we emit a null bit for the invalid #0 intrinsic. 183 if ((i+1)%8 == 0) 184 OS << ",\n 0"; 185 if (Ints[i].isOverloaded) 186 OS << " | (1<<" << (i+1)%8 << ')'; 187 } 188 OS << "\n};\n\n"; 189 // OTable contains a true bit at the position if the intrinsic is overloaded. 190 OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n"; 191 OS << "#endif\n\n"; 192 } 193 194 195 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp! 196 enum IIT_Info { 197 // Common values should be encoded with 0-15. 198 IIT_Done = 0, 199 IIT_I1 = 1, 200 IIT_I8 = 2, 201 IIT_I16 = 3, 202 IIT_I32 = 4, 203 IIT_I64 = 5, 204 IIT_F16 = 6, 205 IIT_F32 = 7, 206 IIT_F64 = 8, 207 IIT_V2 = 9, 208 IIT_V4 = 10, 209 IIT_V8 = 11, 210 IIT_V16 = 12, 211 IIT_V32 = 13, 212 IIT_PTR = 14, 213 IIT_ARG = 15, 214 215 // Values from 16+ are only encodable with the inefficient encoding. 216 IIT_V64 = 16, 217 IIT_MMX = 17, 218 IIT_TOKEN = 18, 219 IIT_METADATA = 19, 220 IIT_EMPTYSTRUCT = 20, 221 IIT_STRUCT2 = 21, 222 IIT_STRUCT3 = 22, 223 IIT_STRUCT4 = 23, 224 IIT_STRUCT5 = 24, 225 IIT_EXTEND_ARG = 25, 226 IIT_TRUNC_ARG = 26, 227 IIT_ANYPTR = 27, 228 IIT_V1 = 28, 229 IIT_VARARG = 29, 230 IIT_HALF_VEC_ARG = 30, 231 IIT_SAME_VEC_WIDTH_ARG = 31, 232 IIT_PTR_TO_ARG = 32, 233 IIT_PTR_TO_ELT = 33, 234 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 235 IIT_I128 = 35, 236 IIT_V512 = 36, 237 IIT_V1024 = 37, 238 IIT_STRUCT6 = 38, 239 IIT_STRUCT7 = 39, 240 IIT_STRUCT8 = 40, 241 IIT_F128 = 41, 242 IIT_VEC_ELEMENT = 42, 243 IIT_SCALABLE_VEC = 43, 244 IIT_SUBDIVIDE2_ARG = 44, 245 IIT_SUBDIVIDE4_ARG = 45, 246 IIT_VEC_OF_BITCASTS_TO_INT = 46, 247 IIT_V128 = 47, 248 IIT_BF16 = 48, 249 IIT_STRUCT9 = 49, 250 IIT_V256 = 50, 251 IIT_AMX = 51, 252 IIT_PPCF128 = 52, 253 IIT_V3 = 53, 254 IIT_EXTERNREF = 54, 255 IIT_FUNCREF = 55 256 }; 257 258 static void EncodeFixedValueType(MVT::SimpleValueType VT, 259 std::vector<unsigned char> &Sig) { 260 if (MVT(VT).isInteger()) { 261 unsigned BitWidth = MVT(VT).getFixedSizeInBits(); 262 switch (BitWidth) { 263 default: PrintFatalError("unhandled integer type width in intrinsic!"); 264 case 1: return Sig.push_back(IIT_I1); 265 case 8: return Sig.push_back(IIT_I8); 266 case 16: return Sig.push_back(IIT_I16); 267 case 32: return Sig.push_back(IIT_I32); 268 case 64: return Sig.push_back(IIT_I64); 269 case 128: return Sig.push_back(IIT_I128); 270 } 271 } 272 273 switch (VT) { 274 default: PrintFatalError("unhandled MVT in intrinsic!"); 275 case MVT::f16: return Sig.push_back(IIT_F16); 276 case MVT::bf16: return Sig.push_back(IIT_BF16); 277 case MVT::f32: return Sig.push_back(IIT_F32); 278 case MVT::f64: return Sig.push_back(IIT_F64); 279 case MVT::f128: return Sig.push_back(IIT_F128); 280 case MVT::ppcf128: return Sig.push_back(IIT_PPCF128); 281 case MVT::token: return Sig.push_back(IIT_TOKEN); 282 case MVT::Metadata: return Sig.push_back(IIT_METADATA); 283 case MVT::x86mmx: return Sig.push_back(IIT_MMX); 284 case MVT::x86amx: return Sig.push_back(IIT_AMX); 285 // MVT::OtherVT is used to mean the empty struct type here. 286 case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT); 287 // MVT::isVoid is used to represent varargs here. 288 case MVT::isVoid: return Sig.push_back(IIT_VARARG); 289 case MVT::externref: 290 return Sig.push_back(IIT_EXTERNREF); 291 case MVT::funcref: 292 return Sig.push_back(IIT_FUNCREF); 293 } 294 } 295 296 #if defined(_MSC_VER) && !defined(__clang__) 297 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function. 298 #endif 299 300 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes, 301 unsigned &NextArgCode, 302 std::vector<unsigned char> &Sig, 303 ArrayRef<unsigned char> Mapping) { 304 305 if (R->isSubClassOf("LLVMMatchType")) { 306 unsigned Number = Mapping[R->getValueAsInt("Number")]; 307 assert(Number < ArgCodes.size() && "Invalid matching number!"); 308 if (R->isSubClassOf("LLVMExtendedType")) 309 Sig.push_back(IIT_EXTEND_ARG); 310 else if (R->isSubClassOf("LLVMTruncatedType")) 311 Sig.push_back(IIT_TRUNC_ARG); 312 else if (R->isSubClassOf("LLVMHalfElementsVectorType")) 313 Sig.push_back(IIT_HALF_VEC_ARG); 314 else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) { 315 Sig.push_back(IIT_SAME_VEC_WIDTH_ARG); 316 Sig.push_back((Number << 3) | ArgCodes[Number]); 317 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy")); 318 EncodeFixedValueType(VT, Sig); 319 return; 320 } 321 else if (R->isSubClassOf("LLVMPointerTo")) 322 Sig.push_back(IIT_PTR_TO_ARG); 323 else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) { 324 Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT); 325 // Encode overloaded ArgNo 326 Sig.push_back(NextArgCode++); 327 // Encode LLVMMatchType<Number> ArgNo 328 Sig.push_back(Number); 329 return; 330 } else if (R->isSubClassOf("LLVMPointerToElt")) 331 Sig.push_back(IIT_PTR_TO_ELT); 332 else if (R->isSubClassOf("LLVMVectorElementType")) 333 Sig.push_back(IIT_VEC_ELEMENT); 334 else if (R->isSubClassOf("LLVMSubdivide2VectorType")) 335 Sig.push_back(IIT_SUBDIVIDE2_ARG); 336 else if (R->isSubClassOf("LLVMSubdivide4VectorType")) 337 Sig.push_back(IIT_SUBDIVIDE4_ARG); 338 else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt")) 339 Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT); 340 else 341 Sig.push_back(IIT_ARG); 342 return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/); 343 } 344 345 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT")); 346 347 unsigned Tmp = 0; 348 switch (VT) { 349 default: break; 350 case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH; 351 case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH; 352 case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH; 353 case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH; 354 case MVT::Any: { 355 // If this is an "any" valuetype, then the type is the type of the next 356 // type in the list specified to getIntrinsic(). 357 Sig.push_back(IIT_ARG); 358 359 // Figure out what arg # this is consuming, and remember what kind it was. 360 assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp && 361 "Invalid or no ArgCode associated with overloaded VT!"); 362 unsigned ArgNo = NextArgCode++; 363 364 // Encode what sort of argument it must be in the low 3 bits of the ArgNo. 365 return Sig.push_back((ArgNo << 3) | Tmp); 366 } 367 368 case MVT::iPTR: { 369 unsigned AddrSpace = 0; 370 if (R->isSubClassOf("LLVMQualPointerType")) { 371 AddrSpace = R->getValueAsInt("AddrSpace"); 372 assert(AddrSpace < 256 && "Address space exceeds 255"); 373 } 374 if (AddrSpace) { 375 Sig.push_back(IIT_ANYPTR); 376 Sig.push_back(AddrSpace); 377 } else { 378 Sig.push_back(IIT_PTR); 379 } 380 return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig, 381 Mapping); 382 } 383 } 384 385 if (MVT(VT).isVector()) { 386 MVT VVT = VT; 387 if (VVT.isScalableVector()) 388 Sig.push_back(IIT_SCALABLE_VEC); 389 switch (VVT.getVectorMinNumElements()) { 390 default: PrintFatalError("unhandled vector type width in intrinsic!"); 391 case 1: Sig.push_back(IIT_V1); break; 392 case 2: Sig.push_back(IIT_V2); break; 393 case 3: Sig.push_back(IIT_V3); break; 394 case 4: Sig.push_back(IIT_V4); break; 395 case 8: Sig.push_back(IIT_V8); break; 396 case 16: Sig.push_back(IIT_V16); break; 397 case 32: Sig.push_back(IIT_V32); break; 398 case 64: Sig.push_back(IIT_V64); break; 399 case 128: Sig.push_back(IIT_V128); break; 400 case 256: Sig.push_back(IIT_V256); break; 401 case 512: Sig.push_back(IIT_V512); break; 402 case 1024: Sig.push_back(IIT_V1024); break; 403 } 404 405 return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig); 406 } 407 408 EncodeFixedValueType(VT, Sig); 409 } 410 411 static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes, 412 unsigned int &NumInserted, 413 SmallVectorImpl<unsigned char> &Mapping) { 414 if (R->isSubClassOf("LLVMMatchType")) { 415 if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) { 416 ArgCodes.push_back(3 /*vAny*/); 417 ++NumInserted; 418 } 419 return; 420 } 421 422 unsigned Tmp = 0; 423 switch (getValueType(R->getValueAsDef("VT"))) { 424 default: break; 425 case MVT::iPTR: 426 UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping); 427 break; 428 case MVT::iPTRAny: 429 ++Tmp; 430 LLVM_FALLTHROUGH; 431 case MVT::vAny: 432 ++Tmp; 433 LLVM_FALLTHROUGH; 434 case MVT::fAny: 435 ++Tmp; 436 LLVM_FALLTHROUGH; 437 case MVT::iAny: 438 ++Tmp; 439 LLVM_FALLTHROUGH; 440 case MVT::Any: 441 unsigned OriginalIdx = ArgCodes.size() - NumInserted; 442 assert(OriginalIdx >= Mapping.size()); 443 Mapping.resize(OriginalIdx+1); 444 Mapping[OriginalIdx] = ArgCodes.size(); 445 ArgCodes.push_back(Tmp); 446 break; 447 } 448 } 449 450 #if defined(_MSC_VER) && !defined(__clang__) 451 #pragma optimize("",on) 452 #endif 453 454 /// ComputeFixedEncoding - If we can encode the type signature for this 455 /// intrinsic into 32 bits, return it. If not, return ~0U. 456 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int, 457 std::vector<unsigned char> &TypeSig) { 458 std::vector<unsigned char> ArgCodes; 459 460 // Add codes for any overloaded result VTs. 461 unsigned int NumInserted = 0; 462 SmallVector<unsigned char, 8> ArgMapping; 463 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) 464 UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping); 465 466 // Add codes for any overloaded operand VTs. 467 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) 468 UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping); 469 470 unsigned NextArgCode = 0; 471 if (Int.IS.RetVTs.empty()) 472 TypeSig.push_back(IIT_Done); 473 else if (Int.IS.RetVTs.size() == 1 && 474 Int.IS.RetVTs[0] == MVT::isVoid) 475 TypeSig.push_back(IIT_Done); 476 else { 477 switch (Int.IS.RetVTs.size()) { 478 case 1: break; 479 case 2: TypeSig.push_back(IIT_STRUCT2); break; 480 case 3: TypeSig.push_back(IIT_STRUCT3); break; 481 case 4: TypeSig.push_back(IIT_STRUCT4); break; 482 case 5: TypeSig.push_back(IIT_STRUCT5); break; 483 case 6: TypeSig.push_back(IIT_STRUCT6); break; 484 case 7: TypeSig.push_back(IIT_STRUCT7); break; 485 case 8: TypeSig.push_back(IIT_STRUCT8); break; 486 case 9: TypeSig.push_back(IIT_STRUCT9); break; 487 default: llvm_unreachable("Unhandled case in struct"); 488 } 489 490 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) 491 EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig, 492 ArgMapping); 493 } 494 495 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) 496 EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig, 497 ArgMapping); 498 } 499 500 static void printIITEntry(raw_ostream &OS, unsigned char X) { 501 OS << (unsigned)X; 502 } 503 504 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints, 505 raw_ostream &OS) { 506 // If we can compute a 32-bit fixed encoding for this intrinsic, do so and 507 // capture it in this vector, otherwise store a ~0U. 508 std::vector<unsigned> FixedEncodings; 509 510 SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable; 511 512 std::vector<unsigned char> TypeSig; 513 514 // Compute the unique argument type info. 515 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 516 // Get the signature for the intrinsic. 517 TypeSig.clear(); 518 ComputeFixedEncoding(Ints[i], TypeSig); 519 520 // Check to see if we can encode it into a 32-bit word. We can only encode 521 // 8 nibbles into a 32-bit word. 522 if (TypeSig.size() <= 8) { 523 bool Failed = false; 524 unsigned Result = 0; 525 for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) { 526 // If we had an unencodable argument, bail out. 527 if (TypeSig[i] > 15) { 528 Failed = true; 529 break; 530 } 531 Result = (Result << 4) | TypeSig[e-i-1]; 532 } 533 534 // If this could be encoded into a 31-bit word, return it. 535 if (!Failed && (Result >> 31) == 0) { 536 FixedEncodings.push_back(Result); 537 continue; 538 } 539 } 540 541 // Otherwise, we're going to unique the sequence into the 542 // LongEncodingTable, and use its offset in the 32-bit table instead. 543 LongEncodingTable.add(TypeSig); 544 545 // This is a placehold that we'll replace after the table is laid out. 546 FixedEncodings.push_back(~0U); 547 } 548 549 LongEncodingTable.layout(); 550 551 OS << "// Global intrinsic function declaration type table.\n"; 552 OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n"; 553 554 OS << "static const unsigned IIT_Table[] = {\n "; 555 556 for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) { 557 if ((i & 7) == 7) 558 OS << "\n "; 559 560 // If the entry fit in the table, just emit it. 561 if (FixedEncodings[i] != ~0U) { 562 OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", "; 563 continue; 564 } 565 566 TypeSig.clear(); 567 ComputeFixedEncoding(Ints[i], TypeSig); 568 569 570 // Otherwise, emit the offset into the long encoding table. We emit it this 571 // way so that it is easier to read the offset in the .def file. 572 OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", "; 573 } 574 575 OS << "0\n};\n\n"; 576 577 // Emit the shared table of register lists. 578 OS << "static const unsigned char IIT_LongEncodingTable[] = {\n"; 579 if (!LongEncodingTable.empty()) 580 LongEncodingTable.emit(OS, printIITEntry); 581 OS << " 255\n};\n\n"; 582 583 OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL 584 } 585 586 namespace { 587 struct AttributeComparator { 588 bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { 589 // Sort throwing intrinsics after non-throwing intrinsics. 590 if (L->canThrow != R->canThrow) 591 return R->canThrow; 592 593 if (L->isNoDuplicate != R->isNoDuplicate) 594 return R->isNoDuplicate; 595 596 if (L->isNoMerge != R->isNoMerge) 597 return R->isNoMerge; 598 599 if (L->isNoReturn != R->isNoReturn) 600 return R->isNoReturn; 601 602 if (L->isNoSync != R->isNoSync) 603 return R->isNoSync; 604 605 if (L->isNoFree != R->isNoFree) 606 return R->isNoFree; 607 608 if (L->isWillReturn != R->isWillReturn) 609 return R->isWillReturn; 610 611 if (L->isCold != R->isCold) 612 return R->isCold; 613 614 if (L->isConvergent != R->isConvergent) 615 return R->isConvergent; 616 617 if (L->isSpeculatable != R->isSpeculatable) 618 return R->isSpeculatable; 619 620 if (L->hasSideEffects != R->hasSideEffects) 621 return R->hasSideEffects; 622 623 // Try to order by readonly/readnone attribute. 624 CodeGenIntrinsic::ModRefBehavior LK = L->ModRef; 625 CodeGenIntrinsic::ModRefBehavior RK = R->ModRef; 626 if (LK != RK) return (LK > RK); 627 // Order by argument attributes. 628 // This is reliable because each side is already sorted internally. 629 return (L->ArgumentAttributes < R->ArgumentAttributes); 630 } 631 }; 632 } // End anonymous namespace 633 634 /// EmitAttributes - This emits the Intrinsic::getAttributes method. 635 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints, 636 raw_ostream &OS) { 637 OS << "// Add parameter attributes that are not common to all intrinsics.\n"; 638 OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; 639 OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n"; 640 641 // Compute the maximum number of attribute arguments and the map 642 typedef std::map<const CodeGenIntrinsic*, unsigned, 643 AttributeComparator> UniqAttrMapTy; 644 UniqAttrMapTy UniqAttributes; 645 unsigned maxArgAttrs = 0; 646 unsigned AttrNum = 0; 647 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 648 const CodeGenIntrinsic &intrinsic = Ints[i]; 649 maxArgAttrs = 650 std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); 651 unsigned &N = UniqAttributes[&intrinsic]; 652 if (N) continue; 653 N = ++AttrNum; 654 assert(N < 65536 && "Too many unique attributes for table!"); 655 } 656 657 // Emit an array of AttributeList. Most intrinsics will have at least one 658 // entry, for the function itself (index ~1), which is usually nounwind. 659 OS << " static const uint16_t IntrinsicsToAttributesMap[] = {\n"; 660 661 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 662 const CodeGenIntrinsic &intrinsic = Ints[i]; 663 664 OS << " " << UniqAttributes[&intrinsic] << ", // " 665 << intrinsic.Name << "\n"; 666 } 667 OS << " };\n\n"; 668 669 OS << " AttributeList AS[" << maxArgAttrs + 1 << "];\n"; 670 OS << " unsigned NumAttrs = 0;\n"; 671 OS << " if (id != 0) {\n"; 672 OS << " switch(IntrinsicsToAttributesMap[id - 1]) {\n"; 673 OS << " default: llvm_unreachable(\"Invalid attribute number\");\n"; 674 for (auto UniqAttribute : UniqAttributes) { 675 OS << " case " << UniqAttribute.second << ": {\n"; 676 677 const CodeGenIntrinsic &Intrinsic = *(UniqAttribute.first); 678 679 // Keep track of the number of attributes we're writing out. 680 unsigned numAttrs = 0; 681 682 // The argument attributes are alreadys sorted by argument index. 683 unsigned Ai = 0, Ae = Intrinsic.ArgumentAttributes.size(); 684 if (Ae) { 685 while (Ai != Ae) { 686 unsigned AttrIdx = Intrinsic.ArgumentAttributes[Ai].Index; 687 688 OS << " const Attribute::AttrKind AttrParam" << AttrIdx << "[]= {"; 689 ListSeparator LS(","); 690 691 bool AllValuesAreZero = true; 692 SmallVector<uint64_t, 8> Values; 693 do { 694 switch (Intrinsic.ArgumentAttributes[Ai].Kind) { 695 case CodeGenIntrinsic::NoCapture: 696 OS << LS << "Attribute::NoCapture"; 697 break; 698 case CodeGenIntrinsic::NoAlias: 699 OS << LS << "Attribute::NoAlias"; 700 break; 701 case CodeGenIntrinsic::NoUndef: 702 OS << LS << "Attribute::NoUndef"; 703 break; 704 case CodeGenIntrinsic::Returned: 705 OS << LS << "Attribute::Returned"; 706 break; 707 case CodeGenIntrinsic::ReadOnly: 708 OS << LS << "Attribute::ReadOnly"; 709 break; 710 case CodeGenIntrinsic::WriteOnly: 711 OS << LS << "Attribute::WriteOnly"; 712 break; 713 case CodeGenIntrinsic::ReadNone: 714 OS << LS << "Attribute::ReadNone"; 715 break; 716 case CodeGenIntrinsic::ImmArg: 717 OS << LS << "Attribute::ImmArg"; 718 break; 719 case CodeGenIntrinsic::Alignment: 720 OS << LS << "Attribute::Alignment"; 721 break; 722 } 723 uint64_t V = Intrinsic.ArgumentAttributes[Ai].Value; 724 Values.push_back(V); 725 AllValuesAreZero &= (V == 0); 726 727 ++Ai; 728 } while (Ai != Ae && Intrinsic.ArgumentAttributes[Ai].Index == AttrIdx); 729 OS << "};\n"; 730 731 // Generate attribute value array if not all attribute values are zero. 732 if (!AllValuesAreZero) { 733 OS << " const uint64_t AttrValParam" << AttrIdx << "[]= {"; 734 ListSeparator LSV(","); 735 for (const auto V : Values) 736 OS << LSV << V; 737 OS << "};\n"; 738 } 739 740 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " 741 << AttrIdx << ", AttrParam" << AttrIdx; 742 if (!AllValuesAreZero) 743 OS << ", AttrValParam" << AttrIdx; 744 OS << ");\n"; 745 } 746 } 747 748 if (!Intrinsic.canThrow || 749 (Intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem && 750 !Intrinsic.hasSideEffects) || 751 Intrinsic.isNoReturn || Intrinsic.isNoSync || Intrinsic.isNoFree || 752 Intrinsic.isWillReturn || Intrinsic.isCold || Intrinsic.isNoDuplicate || 753 Intrinsic.isNoMerge || Intrinsic.isConvergent || 754 Intrinsic.isSpeculatable) { 755 OS << " const Attribute::AttrKind Atts[] = {"; 756 ListSeparator LS(","); 757 if (!Intrinsic.canThrow) 758 OS << LS << "Attribute::NoUnwind"; 759 if (Intrinsic.isNoReturn) 760 OS << LS << "Attribute::NoReturn"; 761 if (Intrinsic.isNoSync) 762 OS << LS << "Attribute::NoSync"; 763 if (Intrinsic.isNoFree) 764 OS << LS << "Attribute::NoFree"; 765 if (Intrinsic.isWillReturn) 766 OS << LS << "Attribute::WillReturn"; 767 if (Intrinsic.isCold) 768 OS << LS << "Attribute::Cold"; 769 if (Intrinsic.isNoDuplicate) 770 OS << LS << "Attribute::NoDuplicate"; 771 if (Intrinsic.isNoMerge) 772 OS << LS << "Attribute::NoMerge"; 773 if (Intrinsic.isConvergent) 774 OS << LS << "Attribute::Convergent"; 775 if (Intrinsic.isSpeculatable) 776 OS << LS << "Attribute::Speculatable"; 777 778 switch (Intrinsic.ModRef) { 779 case CodeGenIntrinsic::NoMem: 780 if (Intrinsic.hasSideEffects) 781 break; 782 OS << LS; 783 OS << "Attribute::ReadNone"; 784 break; 785 case CodeGenIntrinsic::ReadArgMem: 786 OS << LS; 787 OS << "Attribute::ReadOnly,"; 788 OS << "Attribute::ArgMemOnly"; 789 break; 790 case CodeGenIntrinsic::ReadMem: 791 OS << LS; 792 OS << "Attribute::ReadOnly"; 793 break; 794 case CodeGenIntrinsic::ReadInaccessibleMem: 795 OS << LS; 796 OS << "Attribute::ReadOnly,"; 797 OS << "Attribute::InaccessibleMemOnly"; 798 break; 799 case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem: 800 OS << LS; 801 OS << "Attribute::ReadOnly,"; 802 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 803 break; 804 case CodeGenIntrinsic::WriteArgMem: 805 OS << LS; 806 OS << "Attribute::WriteOnly,"; 807 OS << "Attribute::ArgMemOnly"; 808 break; 809 case CodeGenIntrinsic::WriteMem: 810 OS << LS; 811 OS << "Attribute::WriteOnly"; 812 break; 813 case CodeGenIntrinsic::WriteInaccessibleMem: 814 OS << LS; 815 OS << "Attribute::WriteOnly,"; 816 OS << "Attribute::InaccessibleMemOnly"; 817 break; 818 case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem: 819 OS << LS; 820 OS << "Attribute::WriteOnly,"; 821 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 822 break; 823 case CodeGenIntrinsic::ReadWriteArgMem: 824 OS << LS; 825 OS << "Attribute::ArgMemOnly"; 826 break; 827 case CodeGenIntrinsic::ReadWriteInaccessibleMem: 828 OS << LS; 829 OS << "Attribute::InaccessibleMemOnly"; 830 break; 831 case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem: 832 OS << LS; 833 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 834 break; 835 case CodeGenIntrinsic::ReadWriteMem: 836 break; 837 } 838 OS << "};\n"; 839 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " 840 << "AttributeList::FunctionIndex, Atts);\n"; 841 } 842 843 if (numAttrs) { 844 OS << " NumAttrs = " << numAttrs << ";\n"; 845 OS << " break;\n"; 846 OS << " }\n"; 847 } else { 848 OS << " return AttributeList();\n"; 849 OS << " }\n"; 850 } 851 } 852 853 OS << " }\n"; 854 OS << " }\n"; 855 OS << " return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n"; 856 OS << "}\n"; 857 OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; 858 } 859 860 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap( 861 const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) { 862 StringRef CompilerName = (IsGCC ? "GCC" : "MS"); 863 typedef std::map<std::string, std::map<std::string, std::string>> BIMTy; 864 BIMTy BuiltinMap; 865 StringToOffsetTable Table; 866 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 867 const std::string &BuiltinName = 868 IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName; 869 if (!BuiltinName.empty()) { 870 // Get the map for this target prefix. 871 std::map<std::string, std::string> &BIM = 872 BuiltinMap[Ints[i].TargetPrefix]; 873 874 if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second) 875 PrintFatalError(Ints[i].TheDef->getLoc(), 876 "Intrinsic '" + Ints[i].TheDef->getName() + 877 "': duplicate " + CompilerName + " builtin name!"); 878 Table.GetOrAddStringOffset(BuiltinName); 879 } 880 } 881 882 OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n"; 883 OS << "// This is used by the C front-end. The builtin name is passed\n"; 884 OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; 885 OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; 886 OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n"; 887 888 OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName 889 << "Builtin(const char " 890 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n"; 891 892 if (Table.Empty()) { 893 OS << " return Intrinsic::not_intrinsic;\n"; 894 OS << "}\n"; 895 OS << "#endif\n\n"; 896 return; 897 } 898 899 OS << " static const char BuiltinNames[] = {\n"; 900 Table.EmitCharArray(OS); 901 OS << " };\n\n"; 902 903 OS << " struct BuiltinEntry {\n"; 904 OS << " Intrinsic::ID IntrinID;\n"; 905 OS << " unsigned StrTabOffset;\n"; 906 OS << " const char *getName() const {\n"; 907 OS << " return &BuiltinNames[StrTabOffset];\n"; 908 OS << " }\n"; 909 OS << " bool operator<(StringRef RHS) const {\n"; 910 OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n"; 911 OS << " }\n"; 912 OS << " };\n"; 913 914 OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; 915 916 // Note: this could emit significantly better code if we cared. 917 for (auto &I : BuiltinMap) { 918 OS << " "; 919 if (!I.first.empty()) 920 OS << "if (TargetPrefix == \"" << I.first << "\") "; 921 else 922 OS << "/* Target Independent Builtins */ "; 923 OS << "{\n"; 924 925 // Emit the comparisons for this target prefix. 926 OS << " static const BuiltinEntry " << I.first << "Names[] = {\n"; 927 for (const auto &P : I.second) { 928 OS << " {Intrinsic::" << P.second << ", " 929 << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n"; 930 } 931 OS << " };\n"; 932 OS << " auto I = std::lower_bound(std::begin(" << I.first << "Names),\n"; 933 OS << " std::end(" << I.first << "Names),\n"; 934 OS << " BuiltinNameStr);\n"; 935 OS << " if (I != std::end(" << I.first << "Names) &&\n"; 936 OS << " I->getName() == BuiltinNameStr)\n"; 937 OS << " return I->IntrinID;\n"; 938 OS << " }\n"; 939 } 940 OS << " return "; 941 OS << "Intrinsic::not_intrinsic;\n"; 942 OS << "}\n"; 943 OS << "#endif\n\n"; 944 } 945 946 void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) { 947 IntrinsicEmitter(RK).run(OS, /*Enums=*/true); 948 } 949 950 void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) { 951 IntrinsicEmitter(RK).run(OS, /*Enums=*/false); 952 } 953