1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits information about intrinsic functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenIntrinsics.h" 14 #include "CodeGenTarget.h" 15 #include "SequenceToOffsetTable.h" 16 #include "TableGenBackends.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Support/CommandLine.h" 19 #include "llvm/TableGen/Error.h" 20 #include "llvm/TableGen/Record.h" 21 #include "llvm/TableGen/StringMatcher.h" 22 #include "llvm/TableGen/StringToOffsetTable.h" 23 #include "llvm/TableGen/TableGenBackend.h" 24 #include <algorithm> 25 using namespace llvm; 26 27 cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums"); 28 cl::opt<std::string> 29 IntrinsicPrefix("intrinsic-prefix", 30 cl::desc("Generate intrinsics with this target prefix"), 31 cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat)); 32 33 namespace { 34 class IntrinsicEmitter { 35 RecordKeeper &Records; 36 37 public: 38 IntrinsicEmitter(RecordKeeper &R) : Records(R) {} 39 40 void run(raw_ostream &OS, bool Enums); 41 42 void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 43 void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 44 void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints, 45 raw_ostream &OS); 46 void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints, 47 raw_ostream &OS); 48 void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 49 void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 50 void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC, 51 raw_ostream &OS); 52 }; 53 } // End anonymous namespace 54 55 //===----------------------------------------------------------------------===// 56 // IntrinsicEmitter Implementation 57 //===----------------------------------------------------------------------===// 58 59 void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) { 60 emitSourceFileHeader("Intrinsic Function Source Fragment", OS); 61 62 CodeGenIntrinsicTable Ints(Records); 63 64 if (Enums) { 65 // Emit the enum information. 66 EmitEnumInfo(Ints, OS); 67 } else { 68 // Emit the target metadata. 69 EmitTargetInfo(Ints, OS); 70 71 // Emit the intrinsic ID -> name table. 72 EmitIntrinsicToNameTable(Ints, OS); 73 74 // Emit the intrinsic ID -> overload table. 75 EmitIntrinsicToOverloadTable(Ints, OS); 76 77 // Emit the intrinsic declaration generator. 78 EmitGenerator(Ints, OS); 79 80 // Emit the intrinsic parameter attributes. 81 EmitAttributes(Ints, OS); 82 83 // Emit code to translate GCC builtins into LLVM intrinsics. 84 EmitIntrinsicToBuiltinMap(Ints, true, OS); 85 86 // Emit code to translate MS builtins into LLVM intrinsics. 87 EmitIntrinsicToBuiltinMap(Ints, false, OS); 88 } 89 } 90 91 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints, 92 raw_ostream &OS) { 93 // Find the TargetSet for which to generate enums. There will be an initial 94 // set with an empty target prefix which will include target independent 95 // intrinsics like dbg.value. 96 const CodeGenIntrinsicTable::TargetSet *Set = nullptr; 97 for (const auto &Target : Ints.Targets) { 98 if (Target.Name == IntrinsicPrefix) { 99 Set = &Target; 100 break; 101 } 102 } 103 if (!Set) { 104 std::vector<std::string> KnownTargets; 105 for (const auto &Target : Ints.Targets) 106 if (!Target.Name.empty()) 107 KnownTargets.push_back(Target.Name); 108 PrintFatalError("tried to generate intrinsics for unknown target " + 109 IntrinsicPrefix + 110 "\nKnown targets are: " + join(KnownTargets, ", ") + "\n"); 111 } 112 113 // Generate a complete header for target specific intrinsics. 114 if (!IntrinsicPrefix.empty()) { 115 std::string UpperPrefix = StringRef(IntrinsicPrefix).upper(); 116 OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n"; 117 OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n"; 118 OS << "namespace llvm {\n"; 119 OS << "namespace Intrinsic {\n"; 120 OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n"; 121 } 122 123 OS << "// Enum values for intrinsics\n"; 124 for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) { 125 OS << " " << Ints[i].EnumName; 126 127 // Assign a value to the first intrinsic in this target set so that all 128 // intrinsic ids are distinct. 129 if (i == Set->Offset) 130 OS << " = " << (Set->Offset + 1); 131 132 OS << ", "; 133 if (Ints[i].EnumName.size() < 40) 134 OS.indent(40 - Ints[i].EnumName.size()); 135 OS << " // " << Ints[i].Name << "\n"; 136 } 137 138 // Emit num_intrinsics into the target neutral enum. 139 if (IntrinsicPrefix.empty()) { 140 OS << " num_intrinsics = " << (Ints.size() + 1) << "\n"; 141 } else { 142 OS << "}; // enum\n"; 143 OS << "} // namespace Intrinsic\n"; 144 OS << "} // namespace llvm\n\n"; 145 OS << "#endif\n"; 146 } 147 } 148 149 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints, 150 raw_ostream &OS) { 151 OS << "// Target mapping\n"; 152 OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n"; 153 OS << "struct IntrinsicTargetInfo {\n" 154 << " llvm::StringLiteral Name;\n" 155 << " size_t Offset;\n" 156 << " size_t Count;\n" 157 << "};\n"; 158 OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n"; 159 for (auto Target : Ints.Targets) 160 OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset 161 << ", " << Target.Count << "},\n"; 162 OS << "};\n"; 163 OS << "#endif\n\n"; 164 } 165 166 void IntrinsicEmitter::EmitIntrinsicToNameTable( 167 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { 168 OS << "// Intrinsic ID to name table\n"; 169 OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; 170 OS << " // Note that entry #0 is the invalid intrinsic!\n"; 171 for (unsigned i = 0, e = Ints.size(); i != e; ++i) 172 OS << " \"" << Ints[i].Name << "\",\n"; 173 OS << "#endif\n\n"; 174 } 175 176 void IntrinsicEmitter::EmitIntrinsicToOverloadTable( 177 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { 178 OS << "// Intrinsic ID to overload bitset\n"; 179 OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; 180 OS << "static const uint8_t OTable[] = {\n"; 181 OS << " 0"; 182 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 183 // Add one to the index so we emit a null bit for the invalid #0 intrinsic. 184 if ((i+1)%8 == 0) 185 OS << ",\n 0"; 186 if (Ints[i].isOverloaded) 187 OS << " | (1<<" << (i+1)%8 << ')'; 188 } 189 OS << "\n};\n\n"; 190 // OTable contains a true bit at the position if the intrinsic is overloaded. 191 OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n"; 192 OS << "#endif\n\n"; 193 } 194 195 196 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp! 197 enum IIT_Info { 198 // Common values should be encoded with 0-15. 199 IIT_Done = 0, 200 IIT_I1 = 1, 201 IIT_I8 = 2, 202 IIT_I16 = 3, 203 IIT_I32 = 4, 204 IIT_I64 = 5, 205 IIT_F16 = 6, 206 IIT_F32 = 7, 207 IIT_F64 = 8, 208 IIT_V2 = 9, 209 IIT_V4 = 10, 210 IIT_V8 = 11, 211 IIT_V16 = 12, 212 IIT_V32 = 13, 213 IIT_PTR = 14, 214 IIT_ARG = 15, 215 216 // Values from 16+ are only encodable with the inefficient encoding. 217 IIT_V64 = 16, 218 IIT_MMX = 17, 219 IIT_TOKEN = 18, 220 IIT_METADATA = 19, 221 IIT_EMPTYSTRUCT = 20, 222 IIT_STRUCT2 = 21, 223 IIT_STRUCT3 = 22, 224 IIT_STRUCT4 = 23, 225 IIT_STRUCT5 = 24, 226 IIT_EXTEND_ARG = 25, 227 IIT_TRUNC_ARG = 26, 228 IIT_ANYPTR = 27, 229 IIT_V1 = 28, 230 IIT_VARARG = 29, 231 IIT_HALF_VEC_ARG = 30, 232 IIT_SAME_VEC_WIDTH_ARG = 31, 233 IIT_PTR_TO_ARG = 32, 234 IIT_PTR_TO_ELT = 33, 235 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 236 IIT_I128 = 35, 237 IIT_V512 = 36, 238 IIT_V1024 = 37, 239 IIT_STRUCT6 = 38, 240 IIT_STRUCT7 = 39, 241 IIT_STRUCT8 = 40, 242 IIT_F128 = 41, 243 IIT_VEC_ELEMENT = 42, 244 IIT_SCALABLE_VEC = 43, 245 IIT_SUBDIVIDE2_ARG = 44, 246 IIT_SUBDIVIDE4_ARG = 45, 247 IIT_VEC_OF_BITCASTS_TO_INT = 46, 248 IIT_V128 = 47, 249 IIT_BF16 = 48, 250 IIT_STRUCT9 = 49, 251 IIT_V256 = 50, 252 IIT_AMX = 51 253 }; 254 255 static void EncodeFixedValueType(MVT::SimpleValueType VT, 256 std::vector<unsigned char> &Sig) { 257 if (MVT(VT).isInteger()) { 258 unsigned BitWidth = MVT(VT).getFixedSizeInBits(); 259 switch (BitWidth) { 260 default: PrintFatalError("unhandled integer type width in intrinsic!"); 261 case 1: return Sig.push_back(IIT_I1); 262 case 8: return Sig.push_back(IIT_I8); 263 case 16: return Sig.push_back(IIT_I16); 264 case 32: return Sig.push_back(IIT_I32); 265 case 64: return Sig.push_back(IIT_I64); 266 case 128: return Sig.push_back(IIT_I128); 267 } 268 } 269 270 switch (VT) { 271 default: PrintFatalError("unhandled MVT in intrinsic!"); 272 case MVT::f16: return Sig.push_back(IIT_F16); 273 case MVT::bf16: return Sig.push_back(IIT_BF16); 274 case MVT::f32: return Sig.push_back(IIT_F32); 275 case MVT::f64: return Sig.push_back(IIT_F64); 276 case MVT::f128: return Sig.push_back(IIT_F128); 277 case MVT::token: return Sig.push_back(IIT_TOKEN); 278 case MVT::Metadata: return Sig.push_back(IIT_METADATA); 279 case MVT::x86mmx: return Sig.push_back(IIT_MMX); 280 case MVT::x86amx: return Sig.push_back(IIT_AMX); 281 // MVT::OtherVT is used to mean the empty struct type here. 282 case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT); 283 // MVT::isVoid is used to represent varargs here. 284 case MVT::isVoid: return Sig.push_back(IIT_VARARG); 285 } 286 } 287 288 #if defined(_MSC_VER) && !defined(__clang__) 289 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function. 290 #endif 291 292 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes, 293 unsigned &NextArgCode, 294 std::vector<unsigned char> &Sig, 295 ArrayRef<unsigned char> Mapping) { 296 297 if (R->isSubClassOf("LLVMMatchType")) { 298 unsigned Number = Mapping[R->getValueAsInt("Number")]; 299 assert(Number < ArgCodes.size() && "Invalid matching number!"); 300 if (R->isSubClassOf("LLVMExtendedType")) 301 Sig.push_back(IIT_EXTEND_ARG); 302 else if (R->isSubClassOf("LLVMTruncatedType")) 303 Sig.push_back(IIT_TRUNC_ARG); 304 else if (R->isSubClassOf("LLVMHalfElementsVectorType")) 305 Sig.push_back(IIT_HALF_VEC_ARG); 306 else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) { 307 Sig.push_back(IIT_SAME_VEC_WIDTH_ARG); 308 Sig.push_back((Number << 3) | ArgCodes[Number]); 309 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy")); 310 EncodeFixedValueType(VT, Sig); 311 return; 312 } 313 else if (R->isSubClassOf("LLVMPointerTo")) 314 Sig.push_back(IIT_PTR_TO_ARG); 315 else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) { 316 Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT); 317 // Encode overloaded ArgNo 318 Sig.push_back(NextArgCode++); 319 // Encode LLVMMatchType<Number> ArgNo 320 Sig.push_back(Number); 321 return; 322 } else if (R->isSubClassOf("LLVMPointerToElt")) 323 Sig.push_back(IIT_PTR_TO_ELT); 324 else if (R->isSubClassOf("LLVMVectorElementType")) 325 Sig.push_back(IIT_VEC_ELEMENT); 326 else if (R->isSubClassOf("LLVMSubdivide2VectorType")) 327 Sig.push_back(IIT_SUBDIVIDE2_ARG); 328 else if (R->isSubClassOf("LLVMSubdivide4VectorType")) 329 Sig.push_back(IIT_SUBDIVIDE4_ARG); 330 else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt")) 331 Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT); 332 else 333 Sig.push_back(IIT_ARG); 334 return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/); 335 } 336 337 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT")); 338 339 unsigned Tmp = 0; 340 switch (VT) { 341 default: break; 342 case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH; 343 case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH; 344 case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH; 345 case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH; 346 case MVT::Any: { 347 // If this is an "any" valuetype, then the type is the type of the next 348 // type in the list specified to getIntrinsic(). 349 Sig.push_back(IIT_ARG); 350 351 // Figure out what arg # this is consuming, and remember what kind it was. 352 assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp && 353 "Invalid or no ArgCode associated with overloaded VT!"); 354 unsigned ArgNo = NextArgCode++; 355 356 // Encode what sort of argument it must be in the low 3 bits of the ArgNo. 357 return Sig.push_back((ArgNo << 3) | Tmp); 358 } 359 360 case MVT::iPTR: { 361 unsigned AddrSpace = 0; 362 if (R->isSubClassOf("LLVMQualPointerType")) { 363 AddrSpace = R->getValueAsInt("AddrSpace"); 364 assert(AddrSpace < 256 && "Address space exceeds 255"); 365 } 366 if (AddrSpace) { 367 Sig.push_back(IIT_ANYPTR); 368 Sig.push_back(AddrSpace); 369 } else { 370 Sig.push_back(IIT_PTR); 371 } 372 return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig, 373 Mapping); 374 } 375 } 376 377 if (MVT(VT).isVector()) { 378 MVT VVT = VT; 379 if (VVT.isScalableVector()) 380 Sig.push_back(IIT_SCALABLE_VEC); 381 switch (VVT.getVectorMinNumElements()) { 382 default: PrintFatalError("unhandled vector type width in intrinsic!"); 383 case 1: Sig.push_back(IIT_V1); break; 384 case 2: Sig.push_back(IIT_V2); break; 385 case 4: Sig.push_back(IIT_V4); break; 386 case 8: Sig.push_back(IIT_V8); break; 387 case 16: Sig.push_back(IIT_V16); break; 388 case 32: Sig.push_back(IIT_V32); break; 389 case 64: Sig.push_back(IIT_V64); break; 390 case 128: Sig.push_back(IIT_V128); break; 391 case 256: Sig.push_back(IIT_V256); break; 392 case 512: Sig.push_back(IIT_V512); break; 393 case 1024: Sig.push_back(IIT_V1024); break; 394 } 395 396 return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig); 397 } 398 399 EncodeFixedValueType(VT, Sig); 400 } 401 402 static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes, 403 unsigned int &NumInserted, 404 SmallVectorImpl<unsigned char> &Mapping) { 405 if (R->isSubClassOf("LLVMMatchType")) { 406 if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) { 407 ArgCodes.push_back(3 /*vAny*/); 408 ++NumInserted; 409 } 410 return; 411 } 412 413 unsigned Tmp = 0; 414 switch (getValueType(R->getValueAsDef("VT"))) { 415 default: break; 416 case MVT::iPTR: 417 UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping); 418 break; 419 case MVT::iPTRAny: 420 ++Tmp; 421 LLVM_FALLTHROUGH; 422 case MVT::vAny: 423 ++Tmp; 424 LLVM_FALLTHROUGH; 425 case MVT::fAny: 426 ++Tmp; 427 LLVM_FALLTHROUGH; 428 case MVT::iAny: 429 ++Tmp; 430 LLVM_FALLTHROUGH; 431 case MVT::Any: 432 unsigned OriginalIdx = ArgCodes.size() - NumInserted; 433 assert(OriginalIdx >= Mapping.size()); 434 Mapping.resize(OriginalIdx+1); 435 Mapping[OriginalIdx] = ArgCodes.size(); 436 ArgCodes.push_back(Tmp); 437 break; 438 } 439 } 440 441 #if defined(_MSC_VER) && !defined(__clang__) 442 #pragma optimize("",on) 443 #endif 444 445 /// ComputeFixedEncoding - If we can encode the type signature for this 446 /// intrinsic into 32 bits, return it. If not, return ~0U. 447 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int, 448 std::vector<unsigned char> &TypeSig) { 449 std::vector<unsigned char> ArgCodes; 450 451 // Add codes for any overloaded result VTs. 452 unsigned int NumInserted = 0; 453 SmallVector<unsigned char, 8> ArgMapping; 454 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) 455 UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping); 456 457 // Add codes for any overloaded operand VTs. 458 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) 459 UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping); 460 461 unsigned NextArgCode = 0; 462 if (Int.IS.RetVTs.empty()) 463 TypeSig.push_back(IIT_Done); 464 else if (Int.IS.RetVTs.size() == 1 && 465 Int.IS.RetVTs[0] == MVT::isVoid) 466 TypeSig.push_back(IIT_Done); 467 else { 468 switch (Int.IS.RetVTs.size()) { 469 case 1: break; 470 case 2: TypeSig.push_back(IIT_STRUCT2); break; 471 case 3: TypeSig.push_back(IIT_STRUCT3); break; 472 case 4: TypeSig.push_back(IIT_STRUCT4); break; 473 case 5: TypeSig.push_back(IIT_STRUCT5); break; 474 case 6: TypeSig.push_back(IIT_STRUCT6); break; 475 case 7: TypeSig.push_back(IIT_STRUCT7); break; 476 case 8: TypeSig.push_back(IIT_STRUCT8); break; 477 case 9: TypeSig.push_back(IIT_STRUCT9); break; 478 default: llvm_unreachable("Unhandled case in struct"); 479 } 480 481 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) 482 EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig, 483 ArgMapping); 484 } 485 486 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) 487 EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig, 488 ArgMapping); 489 } 490 491 static void printIITEntry(raw_ostream &OS, unsigned char X) { 492 OS << (unsigned)X; 493 } 494 495 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints, 496 raw_ostream &OS) { 497 // If we can compute a 32-bit fixed encoding for this intrinsic, do so and 498 // capture it in this vector, otherwise store a ~0U. 499 std::vector<unsigned> FixedEncodings; 500 501 SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable; 502 503 std::vector<unsigned char> TypeSig; 504 505 // Compute the unique argument type info. 506 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 507 // Get the signature for the intrinsic. 508 TypeSig.clear(); 509 ComputeFixedEncoding(Ints[i], TypeSig); 510 511 // Check to see if we can encode it into a 32-bit word. We can only encode 512 // 8 nibbles into a 32-bit word. 513 if (TypeSig.size() <= 8) { 514 bool Failed = false; 515 unsigned Result = 0; 516 for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) { 517 // If we had an unencodable argument, bail out. 518 if (TypeSig[i] > 15) { 519 Failed = true; 520 break; 521 } 522 Result = (Result << 4) | TypeSig[e-i-1]; 523 } 524 525 // If this could be encoded into a 31-bit word, return it. 526 if (!Failed && (Result >> 31) == 0) { 527 FixedEncodings.push_back(Result); 528 continue; 529 } 530 } 531 532 // Otherwise, we're going to unique the sequence into the 533 // LongEncodingTable, and use its offset in the 32-bit table instead. 534 LongEncodingTable.add(TypeSig); 535 536 // This is a placehold that we'll replace after the table is laid out. 537 FixedEncodings.push_back(~0U); 538 } 539 540 LongEncodingTable.layout(); 541 542 OS << "// Global intrinsic function declaration type table.\n"; 543 OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n"; 544 545 OS << "static const unsigned IIT_Table[] = {\n "; 546 547 for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) { 548 if ((i & 7) == 7) 549 OS << "\n "; 550 551 // If the entry fit in the table, just emit it. 552 if (FixedEncodings[i] != ~0U) { 553 OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", "; 554 continue; 555 } 556 557 TypeSig.clear(); 558 ComputeFixedEncoding(Ints[i], TypeSig); 559 560 561 // Otherwise, emit the offset into the long encoding table. We emit it this 562 // way so that it is easier to read the offset in the .def file. 563 OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", "; 564 } 565 566 OS << "0\n};\n\n"; 567 568 // Emit the shared table of register lists. 569 OS << "static const unsigned char IIT_LongEncodingTable[] = {\n"; 570 if (!LongEncodingTable.empty()) 571 LongEncodingTable.emit(OS, printIITEntry); 572 OS << " 255\n};\n\n"; 573 574 OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL 575 } 576 577 namespace { 578 struct AttributeComparator { 579 bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { 580 // Sort throwing intrinsics after non-throwing intrinsics. 581 if (L->canThrow != R->canThrow) 582 return R->canThrow; 583 584 if (L->isNoDuplicate != R->isNoDuplicate) 585 return R->isNoDuplicate; 586 587 if (L->isNoMerge != R->isNoMerge) 588 return R->isNoMerge; 589 590 if (L->isNoReturn != R->isNoReturn) 591 return R->isNoReturn; 592 593 if (L->isNoSync != R->isNoSync) 594 return R->isNoSync; 595 596 if (L->isNoFree != R->isNoFree) 597 return R->isNoFree; 598 599 if (L->isWillReturn != R->isWillReturn) 600 return R->isWillReturn; 601 602 if (L->isCold != R->isCold) 603 return R->isCold; 604 605 if (L->isConvergent != R->isConvergent) 606 return R->isConvergent; 607 608 if (L->isSpeculatable != R->isSpeculatable) 609 return R->isSpeculatable; 610 611 if (L->hasSideEffects != R->hasSideEffects) 612 return R->hasSideEffects; 613 614 // Try to order by readonly/readnone attribute. 615 CodeGenIntrinsic::ModRefBehavior LK = L->ModRef; 616 CodeGenIntrinsic::ModRefBehavior RK = R->ModRef; 617 if (LK != RK) return (LK > RK); 618 // Order by argument attributes. 619 // This is reliable because each side is already sorted internally. 620 return (L->ArgumentAttributes < R->ArgumentAttributes); 621 } 622 }; 623 } // End anonymous namespace 624 625 /// EmitAttributes - This emits the Intrinsic::getAttributes method. 626 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints, 627 raw_ostream &OS) { 628 OS << "// Add parameter attributes that are not common to all intrinsics.\n"; 629 OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; 630 OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n"; 631 632 // Compute the maximum number of attribute arguments and the map 633 typedef std::map<const CodeGenIntrinsic*, unsigned, 634 AttributeComparator> UniqAttrMapTy; 635 UniqAttrMapTy UniqAttributes; 636 unsigned maxArgAttrs = 0; 637 unsigned AttrNum = 0; 638 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 639 const CodeGenIntrinsic &intrinsic = Ints[i]; 640 maxArgAttrs = 641 std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); 642 unsigned &N = UniqAttributes[&intrinsic]; 643 if (N) continue; 644 N = ++AttrNum; 645 assert(N < 65536 && "Too many unique attributes for table!"); 646 } 647 648 // Emit an array of AttributeList. Most intrinsics will have at least one 649 // entry, for the function itself (index ~1), which is usually nounwind. 650 OS << " static const uint16_t IntrinsicsToAttributesMap[] = {\n"; 651 652 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 653 const CodeGenIntrinsic &intrinsic = Ints[i]; 654 655 OS << " " << UniqAttributes[&intrinsic] << ", // " 656 << intrinsic.Name << "\n"; 657 } 658 OS << " };\n\n"; 659 660 OS << " AttributeList AS[" << maxArgAttrs + 1 << "];\n"; 661 OS << " unsigned NumAttrs = 0;\n"; 662 OS << " if (id != 0) {\n"; 663 OS << " switch(IntrinsicsToAttributesMap[id - 1]) {\n"; 664 OS << " default: llvm_unreachable(\"Invalid attribute number\");\n"; 665 for (auto UniqAttribute : UniqAttributes) { 666 OS << " case " << UniqAttribute.second << ": {\n"; 667 668 const CodeGenIntrinsic &Intrinsic = *(UniqAttribute.first); 669 670 // Keep track of the number of attributes we're writing out. 671 unsigned numAttrs = 0; 672 673 // The argument attributes are alreadys sorted by argument index. 674 unsigned Ai = 0, Ae = Intrinsic.ArgumentAttributes.size(); 675 if (Ae) { 676 while (Ai != Ae) { 677 unsigned AttrIdx = Intrinsic.ArgumentAttributes[Ai].Index; 678 679 OS << " const Attribute::AttrKind AttrParam" << AttrIdx << "[]= {"; 680 ListSeparator LS(","); 681 682 bool AllValuesAreZero = true; 683 SmallVector<uint64_t, 8> Values; 684 do { 685 switch (Intrinsic.ArgumentAttributes[Ai].Kind) { 686 case CodeGenIntrinsic::NoCapture: 687 OS << LS << "Attribute::NoCapture"; 688 break; 689 case CodeGenIntrinsic::NoAlias: 690 OS << LS << "Attribute::NoAlias"; 691 break; 692 case CodeGenIntrinsic::NoUndef: 693 OS << LS << "Attribute::NoUndef"; 694 break; 695 case CodeGenIntrinsic::Returned: 696 OS << LS << "Attribute::Returned"; 697 break; 698 case CodeGenIntrinsic::ReadOnly: 699 OS << LS << "Attribute::ReadOnly"; 700 break; 701 case CodeGenIntrinsic::WriteOnly: 702 OS << LS << "Attribute::WriteOnly"; 703 break; 704 case CodeGenIntrinsic::ReadNone: 705 OS << LS << "Attribute::ReadNone"; 706 break; 707 case CodeGenIntrinsic::ImmArg: 708 OS << LS << "Attribute::ImmArg"; 709 break; 710 case CodeGenIntrinsic::Alignment: 711 OS << LS << "Attribute::Alignment"; 712 break; 713 } 714 uint64_t V = Intrinsic.ArgumentAttributes[Ai].Value; 715 Values.push_back(V); 716 AllValuesAreZero &= (V == 0); 717 718 ++Ai; 719 } while (Ai != Ae && Intrinsic.ArgumentAttributes[Ai].Index == AttrIdx); 720 OS << "};\n"; 721 722 // Generate attribute value array if not all attribute values are zero. 723 if (!AllValuesAreZero) { 724 OS << " const uint64_t AttrValParam" << AttrIdx << "[]= {"; 725 ListSeparator LSV(","); 726 for (const auto V : Values) 727 OS << LSV << V; 728 OS << "};\n"; 729 } 730 731 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " 732 << AttrIdx << ", AttrParam" << AttrIdx; 733 if (!AllValuesAreZero) 734 OS << ", AttrValParam" << AttrIdx; 735 OS << ");\n"; 736 } 737 } 738 739 if (!Intrinsic.canThrow || 740 (Intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem && 741 !Intrinsic.hasSideEffects) || 742 Intrinsic.isNoReturn || Intrinsic.isNoSync || Intrinsic.isNoFree || 743 Intrinsic.isWillReturn || Intrinsic.isCold || Intrinsic.isNoDuplicate || 744 Intrinsic.isNoMerge || Intrinsic.isConvergent || 745 Intrinsic.isSpeculatable) { 746 OS << " const Attribute::AttrKind Atts[] = {"; 747 ListSeparator LS(","); 748 if (!Intrinsic.canThrow) 749 OS << LS << "Attribute::NoUnwind"; 750 if (Intrinsic.isNoReturn) 751 OS << LS << "Attribute::NoReturn"; 752 if (Intrinsic.isNoSync) 753 OS << LS << "Attribute::NoSync"; 754 if (Intrinsic.isNoFree) 755 OS << LS << "Attribute::NoFree"; 756 if (Intrinsic.isWillReturn) 757 OS << LS << "Attribute::WillReturn"; 758 if (Intrinsic.isCold) 759 OS << LS << "Attribute::Cold"; 760 if (Intrinsic.isNoDuplicate) 761 OS << LS << "Attribute::NoDuplicate"; 762 if (Intrinsic.isNoMerge) 763 OS << LS << "Attribute::NoMerge"; 764 if (Intrinsic.isConvergent) 765 OS << LS << "Attribute::Convergent"; 766 if (Intrinsic.isSpeculatable) 767 OS << LS << "Attribute::Speculatable"; 768 769 switch (Intrinsic.ModRef) { 770 case CodeGenIntrinsic::NoMem: 771 if (Intrinsic.hasSideEffects) 772 break; 773 OS << LS; 774 OS << "Attribute::ReadNone"; 775 break; 776 case CodeGenIntrinsic::ReadArgMem: 777 OS << LS; 778 OS << "Attribute::ReadOnly,"; 779 OS << "Attribute::ArgMemOnly"; 780 break; 781 case CodeGenIntrinsic::ReadMem: 782 OS << LS; 783 OS << "Attribute::ReadOnly"; 784 break; 785 case CodeGenIntrinsic::ReadInaccessibleMem: 786 OS << LS; 787 OS << "Attribute::ReadOnly,"; 788 OS << "Attribute::InaccessibleMemOnly"; 789 break; 790 case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem: 791 OS << LS; 792 OS << "Attribute::ReadOnly,"; 793 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 794 break; 795 case CodeGenIntrinsic::WriteArgMem: 796 OS << LS; 797 OS << "Attribute::WriteOnly,"; 798 OS << "Attribute::ArgMemOnly"; 799 break; 800 case CodeGenIntrinsic::WriteMem: 801 OS << LS; 802 OS << "Attribute::WriteOnly"; 803 break; 804 case CodeGenIntrinsic::WriteInaccessibleMem: 805 OS << LS; 806 OS << "Attribute::WriteOnly,"; 807 OS << "Attribute::InaccessibleMemOnly"; 808 break; 809 case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem: 810 OS << LS; 811 OS << "Attribute::WriteOnly,"; 812 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 813 break; 814 case CodeGenIntrinsic::ReadWriteArgMem: 815 OS << LS; 816 OS << "Attribute::ArgMemOnly"; 817 break; 818 case CodeGenIntrinsic::ReadWriteInaccessibleMem: 819 OS << LS; 820 OS << "Attribute::InaccessibleMemOnly"; 821 break; 822 case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem: 823 OS << LS; 824 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 825 break; 826 case CodeGenIntrinsic::ReadWriteMem: 827 break; 828 } 829 OS << "};\n"; 830 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " 831 << "AttributeList::FunctionIndex, Atts);\n"; 832 } 833 834 if (numAttrs) { 835 OS << " NumAttrs = " << numAttrs << ";\n"; 836 OS << " break;\n"; 837 OS << " }\n"; 838 } else { 839 OS << " return AttributeList();\n"; 840 OS << " }\n"; 841 } 842 } 843 844 OS << " }\n"; 845 OS << " }\n"; 846 OS << " return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n"; 847 OS << "}\n"; 848 OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; 849 } 850 851 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap( 852 const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) { 853 StringRef CompilerName = (IsGCC ? "GCC" : "MS"); 854 typedef std::map<std::string, std::map<std::string, std::string>> BIMTy; 855 BIMTy BuiltinMap; 856 StringToOffsetTable Table; 857 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 858 const std::string &BuiltinName = 859 IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName; 860 if (!BuiltinName.empty()) { 861 // Get the map for this target prefix. 862 std::map<std::string, std::string> &BIM = 863 BuiltinMap[Ints[i].TargetPrefix]; 864 865 if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second) 866 PrintFatalError(Ints[i].TheDef->getLoc(), 867 "Intrinsic '" + Ints[i].TheDef->getName() + 868 "': duplicate " + CompilerName + " builtin name!"); 869 Table.GetOrAddStringOffset(BuiltinName); 870 } 871 } 872 873 OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n"; 874 OS << "// This is used by the C front-end. The builtin name is passed\n"; 875 OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; 876 OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; 877 OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n"; 878 879 OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName 880 << "Builtin(const char " 881 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n"; 882 883 if (Table.Empty()) { 884 OS << " return Intrinsic::not_intrinsic;\n"; 885 OS << "}\n"; 886 OS << "#endif\n\n"; 887 return; 888 } 889 890 OS << " static const char BuiltinNames[] = {\n"; 891 Table.EmitCharArray(OS); 892 OS << " };\n\n"; 893 894 OS << " struct BuiltinEntry {\n"; 895 OS << " Intrinsic::ID IntrinID;\n"; 896 OS << " unsigned StrTabOffset;\n"; 897 OS << " const char *getName() const {\n"; 898 OS << " return &BuiltinNames[StrTabOffset];\n"; 899 OS << " }\n"; 900 OS << " bool operator<(StringRef RHS) const {\n"; 901 OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n"; 902 OS << " }\n"; 903 OS << " };\n"; 904 905 OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; 906 907 // Note: this could emit significantly better code if we cared. 908 for (auto &I : BuiltinMap) { 909 OS << " "; 910 if (!I.first.empty()) 911 OS << "if (TargetPrefix == \"" << I.first << "\") "; 912 else 913 OS << "/* Target Independent Builtins */ "; 914 OS << "{\n"; 915 916 // Emit the comparisons for this target prefix. 917 OS << " static const BuiltinEntry " << I.first << "Names[] = {\n"; 918 for (const auto &P : I.second) { 919 OS << " {Intrinsic::" << P.second << ", " 920 << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n"; 921 } 922 OS << " };\n"; 923 OS << " auto I = std::lower_bound(std::begin(" << I.first << "Names),\n"; 924 OS << " std::end(" << I.first << "Names),\n"; 925 OS << " BuiltinNameStr);\n"; 926 OS << " if (I != std::end(" << I.first << "Names) &&\n"; 927 OS << " I->getName() == BuiltinNameStr)\n"; 928 OS << " return I->IntrinID;\n"; 929 OS << " }\n"; 930 } 931 OS << " return "; 932 OS << "Intrinsic::not_intrinsic;\n"; 933 OS << "}\n"; 934 OS << "#endif\n\n"; 935 } 936 937 void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) { 938 IntrinsicEmitter(RK).run(OS, /*Enums=*/true); 939 } 940 941 void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) { 942 IntrinsicEmitter(RK).run(OS, /*Enums=*/false); 943 } 944