xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/IntrinsicEmitter.cpp (revision b0d29bc47dba79f6f38e67eabadfb4b32ffd9390)
1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits information about intrinsic functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenIntrinsics.h"
14 #include "CodeGenTarget.h"
15 #include "SequenceToOffsetTable.h"
16 #include "TableGenBackends.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/TableGen/Error.h"
20 #include "llvm/TableGen/Record.h"
21 #include "llvm/TableGen/StringMatcher.h"
22 #include "llvm/TableGen/StringToOffsetTable.h"
23 #include "llvm/TableGen/TableGenBackend.h"
24 #include <algorithm>
25 using namespace llvm;
26 
27 cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums");
28 cl::opt<std::string>
29     IntrinsicPrefix("intrinsic-prefix",
30                     cl::desc("Generate intrinsics with this target prefix"),
31                     cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat));
32 
33 namespace {
34 class IntrinsicEmitter {
35   RecordKeeper &Records;
36 
37 public:
38   IntrinsicEmitter(RecordKeeper &R) : Records(R) {}
39 
40   void run(raw_ostream &OS, bool Enums);
41 
42   void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
43   void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
44   void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
45                                 raw_ostream &OS);
46   void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
47                                     raw_ostream &OS);
48   void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
49   void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
50   void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC,
51                                  raw_ostream &OS);
52 };
53 } // End anonymous namespace
54 
55 //===----------------------------------------------------------------------===//
56 // IntrinsicEmitter Implementation
57 //===----------------------------------------------------------------------===//
58 
59 void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
60   emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
61 
62   CodeGenIntrinsicTable Ints(Records);
63 
64   if (Enums) {
65     // Emit the enum information.
66     EmitEnumInfo(Ints, OS);
67   } else {
68     // Emit the target metadata.
69     EmitTargetInfo(Ints, OS);
70 
71     // Emit the intrinsic ID -> name table.
72     EmitIntrinsicToNameTable(Ints, OS);
73 
74     // Emit the intrinsic ID -> overload table.
75     EmitIntrinsicToOverloadTable(Ints, OS);
76 
77     // Emit the intrinsic declaration generator.
78     EmitGenerator(Ints, OS);
79 
80     // Emit the intrinsic parameter attributes.
81     EmitAttributes(Ints, OS);
82 
83     // Emit code to translate GCC builtins into LLVM intrinsics.
84     EmitIntrinsicToBuiltinMap(Ints, true, OS);
85 
86     // Emit code to translate MS builtins into LLVM intrinsics.
87     EmitIntrinsicToBuiltinMap(Ints, false, OS);
88   }
89 }
90 
91 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
92                                     raw_ostream &OS) {
93   // Find the TargetSet for which to generate enums. There will be an initial
94   // set with an empty target prefix which will include target independent
95   // intrinsics like dbg.value.
96   const CodeGenIntrinsicTable::TargetSet *Set = nullptr;
97   for (const auto &Target : Ints.Targets) {
98     if (Target.Name == IntrinsicPrefix) {
99       Set = &Target;
100       break;
101     }
102   }
103   if (!Set) {
104     std::vector<std::string> KnownTargets;
105     for (const auto &Target : Ints.Targets)
106       if (!Target.Name.empty())
107         KnownTargets.push_back(Target.Name);
108     PrintFatalError("tried to generate intrinsics for unknown target " +
109                     IntrinsicPrefix +
110                     "\nKnown targets are: " + join(KnownTargets, ", ") + "\n");
111   }
112 
113   // Generate a complete header for target specific intrinsics.
114   if (!IntrinsicPrefix.empty()) {
115     std::string UpperPrefix = StringRef(IntrinsicPrefix).upper();
116     OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n";
117     OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n";
118     OS << "namespace llvm {\n";
119     OS << "namespace Intrinsic {\n";
120     OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n";
121   }
122 
123   OS << "// Enum values for intrinsics\n";
124   for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) {
125     OS << "    " << Ints[i].EnumName;
126 
127     // Assign a value to the first intrinsic in this target set so that all
128     // intrinsic ids are distinct.
129     if (i == Set->Offset)
130       OS << " = " << (Set->Offset + 1);
131 
132     OS << ", ";
133     if (Ints[i].EnumName.size() < 40)
134       OS.indent(40 - Ints[i].EnumName.size());
135     OS << " // " << Ints[i].Name << "\n";
136   }
137 
138   // Emit num_intrinsics into the target neutral enum.
139   if (IntrinsicPrefix.empty()) {
140     OS << "    num_intrinsics = " << (Ints.size() + 1) << "\n";
141   } else {
142     OS << "}; // enum\n";
143     OS << "} // namespace Intrinsic\n";
144     OS << "} // namespace llvm\n\n";
145     OS << "#endif\n";
146   }
147 }
148 
149 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
150                                     raw_ostream &OS) {
151   OS << "// Target mapping\n";
152   OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
153   OS << "struct IntrinsicTargetInfo {\n"
154      << "  llvm::StringLiteral Name;\n"
155      << "  size_t Offset;\n"
156      << "  size_t Count;\n"
157      << "};\n";
158   OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
159   for (auto Target : Ints.Targets)
160     OS << "  {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
161        << ", " << Target.Count << "},\n";
162   OS << "};\n";
163   OS << "#endif\n\n";
164 }
165 
166 void IntrinsicEmitter::EmitIntrinsicToNameTable(
167     const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
168   OS << "// Intrinsic ID to name table\n";
169   OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
170   OS << "  // Note that entry #0 is the invalid intrinsic!\n";
171   for (unsigned i = 0, e = Ints.size(); i != e; ++i)
172     OS << "  \"" << Ints[i].Name << "\",\n";
173   OS << "#endif\n\n";
174 }
175 
176 void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
177     const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
178   OS << "// Intrinsic ID to overload bitset\n";
179   OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
180   OS << "static const uint8_t OTable[] = {\n";
181   OS << "  0";
182   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
183     // Add one to the index so we emit a null bit for the invalid #0 intrinsic.
184     if ((i+1)%8 == 0)
185       OS << ",\n  0";
186     if (Ints[i].isOverloaded)
187       OS << " | (1<<" << (i+1)%8 << ')';
188   }
189   OS << "\n};\n\n";
190   // OTable contains a true bit at the position if the intrinsic is overloaded.
191   OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
192   OS << "#endif\n\n";
193 }
194 
195 
196 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp!
197 enum IIT_Info {
198   // Common values should be encoded with 0-15.
199   IIT_Done = 0,
200   IIT_I1   = 1,
201   IIT_I8   = 2,
202   IIT_I16  = 3,
203   IIT_I32  = 4,
204   IIT_I64  = 5,
205   IIT_F16  = 6,
206   IIT_F32  = 7,
207   IIT_F64  = 8,
208   IIT_V2   = 9,
209   IIT_V4   = 10,
210   IIT_V8   = 11,
211   IIT_V16  = 12,
212   IIT_V32  = 13,
213   IIT_PTR  = 14,
214   IIT_ARG  = 15,
215 
216   // Values from 16+ are only encodable with the inefficient encoding.
217   IIT_V64  = 16,
218   IIT_MMX  = 17,
219   IIT_TOKEN = 18,
220   IIT_METADATA = 19,
221   IIT_EMPTYSTRUCT = 20,
222   IIT_STRUCT2 = 21,
223   IIT_STRUCT3 = 22,
224   IIT_STRUCT4 = 23,
225   IIT_STRUCT5 = 24,
226   IIT_EXTEND_ARG = 25,
227   IIT_TRUNC_ARG = 26,
228   IIT_ANYPTR = 27,
229   IIT_V1   = 28,
230   IIT_VARARG = 29,
231   IIT_HALF_VEC_ARG = 30,
232   IIT_SAME_VEC_WIDTH_ARG = 31,
233   IIT_PTR_TO_ARG = 32,
234   IIT_PTR_TO_ELT = 33,
235   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
236   IIT_I128 = 35,
237   IIT_V512 = 36,
238   IIT_V1024 = 37,
239   IIT_STRUCT6 = 38,
240   IIT_STRUCT7 = 39,
241   IIT_STRUCT8 = 40,
242   IIT_F128 = 41,
243   IIT_VEC_ELEMENT = 42,
244   IIT_SCALABLE_VEC = 43,
245   IIT_SUBDIVIDE2_ARG = 44,
246   IIT_SUBDIVIDE4_ARG = 45,
247   IIT_VEC_OF_BITCASTS_TO_INT = 46
248 };
249 
250 static void EncodeFixedValueType(MVT::SimpleValueType VT,
251                                  std::vector<unsigned char> &Sig) {
252   if (MVT(VT).isInteger()) {
253     unsigned BitWidth = MVT(VT).getSizeInBits();
254     switch (BitWidth) {
255     default: PrintFatalError("unhandled integer type width in intrinsic!");
256     case 1: return Sig.push_back(IIT_I1);
257     case 8: return Sig.push_back(IIT_I8);
258     case 16: return Sig.push_back(IIT_I16);
259     case 32: return Sig.push_back(IIT_I32);
260     case 64: return Sig.push_back(IIT_I64);
261     case 128: return Sig.push_back(IIT_I128);
262     }
263   }
264 
265   switch (VT) {
266   default: PrintFatalError("unhandled MVT in intrinsic!");
267   case MVT::f16: return Sig.push_back(IIT_F16);
268   case MVT::f32: return Sig.push_back(IIT_F32);
269   case MVT::f64: return Sig.push_back(IIT_F64);
270   case MVT::f128: return Sig.push_back(IIT_F128);
271   case MVT::token: return Sig.push_back(IIT_TOKEN);
272   case MVT::Metadata: return Sig.push_back(IIT_METADATA);
273   case MVT::x86mmx: return Sig.push_back(IIT_MMX);
274   // MVT::OtherVT is used to mean the empty struct type here.
275   case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
276   // MVT::isVoid is used to represent varargs here.
277   case MVT::isVoid: return Sig.push_back(IIT_VARARG);
278   }
279 }
280 
281 #if defined(_MSC_VER) && !defined(__clang__)
282 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function.
283 #endif
284 
285 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
286                             unsigned &NextArgCode,
287                             std::vector<unsigned char> &Sig,
288                             ArrayRef<unsigned char> Mapping) {
289 
290   if (R->isSubClassOf("LLVMMatchType")) {
291     unsigned Number = Mapping[R->getValueAsInt("Number")];
292     assert(Number < ArgCodes.size() && "Invalid matching number!");
293     if (R->isSubClassOf("LLVMExtendedType"))
294       Sig.push_back(IIT_EXTEND_ARG);
295     else if (R->isSubClassOf("LLVMTruncatedType"))
296       Sig.push_back(IIT_TRUNC_ARG);
297     else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
298       Sig.push_back(IIT_HALF_VEC_ARG);
299     else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) {
300       Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
301       Sig.push_back((Number << 3) | ArgCodes[Number]);
302       MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
303       EncodeFixedValueType(VT, Sig);
304       return;
305     }
306     else if (R->isSubClassOf("LLVMPointerTo"))
307       Sig.push_back(IIT_PTR_TO_ARG);
308     else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
309       Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT);
310       // Encode overloaded ArgNo
311       Sig.push_back(NextArgCode++);
312       // Encode LLVMMatchType<Number> ArgNo
313       Sig.push_back(Number);
314       return;
315     } else if (R->isSubClassOf("LLVMPointerToElt"))
316       Sig.push_back(IIT_PTR_TO_ELT);
317     else if (R->isSubClassOf("LLVMVectorElementType"))
318       Sig.push_back(IIT_VEC_ELEMENT);
319     else if (R->isSubClassOf("LLVMSubdivide2VectorType"))
320       Sig.push_back(IIT_SUBDIVIDE2_ARG);
321     else if (R->isSubClassOf("LLVMSubdivide4VectorType"))
322       Sig.push_back(IIT_SUBDIVIDE4_ARG);
323     else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt"))
324       Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT);
325     else
326       Sig.push_back(IIT_ARG);
327     return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/);
328   }
329 
330   MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
331 
332   unsigned Tmp = 0;
333   switch (VT) {
334   default: break;
335   case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH;
336   case MVT::vAny: ++Tmp;    LLVM_FALLTHROUGH;
337   case MVT::fAny: ++Tmp;    LLVM_FALLTHROUGH;
338   case MVT::iAny: ++Tmp;    LLVM_FALLTHROUGH;
339   case MVT::Any: {
340     // If this is an "any" valuetype, then the type is the type of the next
341     // type in the list specified to getIntrinsic().
342     Sig.push_back(IIT_ARG);
343 
344     // Figure out what arg # this is consuming, and remember what kind it was.
345     assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp &&
346            "Invalid or no ArgCode associated with overloaded VT!");
347     unsigned ArgNo = NextArgCode++;
348 
349     // Encode what sort of argument it must be in the low 3 bits of the ArgNo.
350     return Sig.push_back((ArgNo << 3) | Tmp);
351   }
352 
353   case MVT::iPTR: {
354     unsigned AddrSpace = 0;
355     if (R->isSubClassOf("LLVMQualPointerType")) {
356       AddrSpace = R->getValueAsInt("AddrSpace");
357       assert(AddrSpace < 256 && "Address space exceeds 255");
358     }
359     if (AddrSpace) {
360       Sig.push_back(IIT_ANYPTR);
361       Sig.push_back(AddrSpace);
362     } else {
363       Sig.push_back(IIT_PTR);
364     }
365     return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig,
366                            Mapping);
367   }
368   }
369 
370   if (MVT(VT).isVector()) {
371     MVT VVT = VT;
372     if (VVT.isScalableVector())
373       Sig.push_back(IIT_SCALABLE_VEC);
374     switch (VVT.getVectorNumElements()) {
375     default: PrintFatalError("unhandled vector type width in intrinsic!");
376     case 1: Sig.push_back(IIT_V1); break;
377     case 2: Sig.push_back(IIT_V2); break;
378     case 4: Sig.push_back(IIT_V4); break;
379     case 8: Sig.push_back(IIT_V8); break;
380     case 16: Sig.push_back(IIT_V16); break;
381     case 32: Sig.push_back(IIT_V32); break;
382     case 64: Sig.push_back(IIT_V64); break;
383     case 512: Sig.push_back(IIT_V512); break;
384     case 1024: Sig.push_back(IIT_V1024); break;
385     }
386 
387     return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
388   }
389 
390   EncodeFixedValueType(VT, Sig);
391 }
392 
393 static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes,
394                            unsigned int &NumInserted,
395                            SmallVectorImpl<unsigned char> &Mapping) {
396   if (R->isSubClassOf("LLVMMatchType")) {
397     if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
398       ArgCodes.push_back(3 /*vAny*/);
399       ++NumInserted;
400     }
401     return;
402   }
403 
404   unsigned Tmp = 0;
405   switch (getValueType(R->getValueAsDef("VT"))) {
406   default: break;
407   case MVT::iPTR:
408     UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping);
409     break;
410   case MVT::iPTRAny:
411     ++Tmp;
412     LLVM_FALLTHROUGH;
413   case MVT::vAny:
414     ++Tmp;
415     LLVM_FALLTHROUGH;
416   case MVT::fAny:
417     ++Tmp;
418     LLVM_FALLTHROUGH;
419   case MVT::iAny:
420     ++Tmp;
421     LLVM_FALLTHROUGH;
422   case MVT::Any:
423     unsigned OriginalIdx = ArgCodes.size() - NumInserted;
424     assert(OriginalIdx >= Mapping.size());
425     Mapping.resize(OriginalIdx+1);
426     Mapping[OriginalIdx] = ArgCodes.size();
427     ArgCodes.push_back(Tmp);
428     break;
429   }
430 }
431 
432 #if defined(_MSC_VER) && !defined(__clang__)
433 #pragma optimize("",on)
434 #endif
435 
436 /// ComputeFixedEncoding - If we can encode the type signature for this
437 /// intrinsic into 32 bits, return it.  If not, return ~0U.
438 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
439                                  std::vector<unsigned char> &TypeSig) {
440   std::vector<unsigned char> ArgCodes;
441 
442   // Add codes for any overloaded result VTs.
443   unsigned int NumInserted = 0;
444   SmallVector<unsigned char, 8> ArgMapping;
445   for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
446     UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
447 
448   // Add codes for any overloaded operand VTs.
449   for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
450     UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
451 
452   unsigned NextArgCode = 0;
453   if (Int.IS.RetVTs.empty())
454     TypeSig.push_back(IIT_Done);
455   else if (Int.IS.RetVTs.size() == 1 &&
456            Int.IS.RetVTs[0] == MVT::isVoid)
457     TypeSig.push_back(IIT_Done);
458   else {
459     switch (Int.IS.RetVTs.size()) {
460       case 1: break;
461       case 2: TypeSig.push_back(IIT_STRUCT2); break;
462       case 3: TypeSig.push_back(IIT_STRUCT3); break;
463       case 4: TypeSig.push_back(IIT_STRUCT4); break;
464       case 5: TypeSig.push_back(IIT_STRUCT5); break;
465       case 6: TypeSig.push_back(IIT_STRUCT6); break;
466       case 7: TypeSig.push_back(IIT_STRUCT7); break;
467       case 8: TypeSig.push_back(IIT_STRUCT8); break;
468       default: llvm_unreachable("Unhandled case in struct");
469     }
470 
471     for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
472       EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
473                       ArgMapping);
474   }
475 
476   for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
477     EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
478                     ArgMapping);
479 }
480 
481 static void printIITEntry(raw_ostream &OS, unsigned char X) {
482   OS << (unsigned)X;
483 }
484 
485 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
486                                      raw_ostream &OS) {
487   // If we can compute a 32-bit fixed encoding for this intrinsic, do so and
488   // capture it in this vector, otherwise store a ~0U.
489   std::vector<unsigned> FixedEncodings;
490 
491   SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
492 
493   std::vector<unsigned char> TypeSig;
494 
495   // Compute the unique argument type info.
496   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
497     // Get the signature for the intrinsic.
498     TypeSig.clear();
499     ComputeFixedEncoding(Ints[i], TypeSig);
500 
501     // Check to see if we can encode it into a 32-bit word.  We can only encode
502     // 8 nibbles into a 32-bit word.
503     if (TypeSig.size() <= 8) {
504       bool Failed = false;
505       unsigned Result = 0;
506       for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
507         // If we had an unencodable argument, bail out.
508         if (TypeSig[i] > 15) {
509           Failed = true;
510           break;
511         }
512         Result = (Result << 4) | TypeSig[e-i-1];
513       }
514 
515       // If this could be encoded into a 31-bit word, return it.
516       if (!Failed && (Result >> 31) == 0) {
517         FixedEncodings.push_back(Result);
518         continue;
519       }
520     }
521 
522     // Otherwise, we're going to unique the sequence into the
523     // LongEncodingTable, and use its offset in the 32-bit table instead.
524     LongEncodingTable.add(TypeSig);
525 
526     // This is a placehold that we'll replace after the table is laid out.
527     FixedEncodings.push_back(~0U);
528   }
529 
530   LongEncodingTable.layout();
531 
532   OS << "// Global intrinsic function declaration type table.\n";
533   OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
534 
535   OS << "static const unsigned IIT_Table[] = {\n  ";
536 
537   for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
538     if ((i & 7) == 7)
539       OS << "\n  ";
540 
541     // If the entry fit in the table, just emit it.
542     if (FixedEncodings[i] != ~0U) {
543       OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
544       continue;
545     }
546 
547     TypeSig.clear();
548     ComputeFixedEncoding(Ints[i], TypeSig);
549 
550 
551     // Otherwise, emit the offset into the long encoding table.  We emit it this
552     // way so that it is easier to read the offset in the .def file.
553     OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
554   }
555 
556   OS << "0\n};\n\n";
557 
558   // Emit the shared table of register lists.
559   OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
560   if (!LongEncodingTable.empty())
561     LongEncodingTable.emit(OS, printIITEntry);
562   OS << "  255\n};\n\n";
563 
564   OS << "#endif\n\n";  // End of GET_INTRINSIC_GENERATOR_GLOBAL
565 }
566 
567 namespace {
568 struct AttributeComparator {
569   bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
570     // Sort throwing intrinsics after non-throwing intrinsics.
571     if (L->canThrow != R->canThrow)
572       return R->canThrow;
573 
574     if (L->isNoDuplicate != R->isNoDuplicate)
575       return R->isNoDuplicate;
576 
577     if (L->isNoReturn != R->isNoReturn)
578       return R->isNoReturn;
579 
580     if (L->isWillReturn != R->isWillReturn)
581       return R->isWillReturn;
582 
583     if (L->isCold != R->isCold)
584       return R->isCold;
585 
586     if (L->isConvergent != R->isConvergent)
587       return R->isConvergent;
588 
589     if (L->isSpeculatable != R->isSpeculatable)
590       return R->isSpeculatable;
591 
592     if (L->hasSideEffects != R->hasSideEffects)
593       return R->hasSideEffects;
594 
595     // Try to order by readonly/readnone attribute.
596     CodeGenIntrinsic::ModRefBehavior LK = L->ModRef;
597     CodeGenIntrinsic::ModRefBehavior RK = R->ModRef;
598     if (LK != RK) return (LK > RK);
599     // Order by argument attributes.
600     // This is reliable because each side is already sorted internally.
601     return (L->ArgumentAttributes < R->ArgumentAttributes);
602   }
603 };
604 } // End anonymous namespace
605 
606 /// EmitAttributes - This emits the Intrinsic::getAttributes method.
607 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
608                                       raw_ostream &OS) {
609   OS << "// Add parameter attributes that are not common to all intrinsics.\n";
610   OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
611   OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
612 
613   // Compute the maximum number of attribute arguments and the map
614   typedef std::map<const CodeGenIntrinsic*, unsigned,
615                    AttributeComparator> UniqAttrMapTy;
616   UniqAttrMapTy UniqAttributes;
617   unsigned maxArgAttrs = 0;
618   unsigned AttrNum = 0;
619   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
620     const CodeGenIntrinsic &intrinsic = Ints[i];
621     maxArgAttrs =
622       std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
623     unsigned &N = UniqAttributes[&intrinsic];
624     if (N) continue;
625     assert(AttrNum < 256 && "Too many unique attributes for table!");
626     N = ++AttrNum;
627   }
628 
629   // Emit an array of AttributeList.  Most intrinsics will have at least one
630   // entry, for the function itself (index ~1), which is usually nounwind.
631   OS << "  static const uint8_t IntrinsicsToAttributesMap[] = {\n";
632 
633   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
634     const CodeGenIntrinsic &intrinsic = Ints[i];
635 
636     OS << "    " << UniqAttributes[&intrinsic] << ", // "
637        << intrinsic.Name << "\n";
638   }
639   OS << "  };\n\n";
640 
641   OS << "  AttributeList AS[" << maxArgAttrs + 1 << "];\n";
642   OS << "  unsigned NumAttrs = 0;\n";
643   OS << "  if (id != 0) {\n";
644   OS << "    switch(IntrinsicsToAttributesMap[id - 1]) {\n";
645   OS << "    default: llvm_unreachable(\"Invalid attribute number\");\n";
646   for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
647        E = UniqAttributes.end(); I != E; ++I) {
648     OS << "    case " << I->second << ": {\n";
649 
650     const CodeGenIntrinsic &intrinsic = *(I->first);
651 
652     // Keep track of the number of attributes we're writing out.
653     unsigned numAttrs = 0;
654 
655     // The argument attributes are alreadys sorted by argument index.
656     unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size();
657     if (ae) {
658       while (ai != ae) {
659         unsigned argNo = intrinsic.ArgumentAttributes[ai].first;
660         unsigned attrIdx = argNo + 1; // Must match AttributeList::FirstArgIndex
661 
662         OS << "      const Attribute::AttrKind AttrParam" << attrIdx << "[]= {";
663         bool addComma = false;
664 
665         do {
666           switch (intrinsic.ArgumentAttributes[ai].second) {
667           case CodeGenIntrinsic::NoCapture:
668             if (addComma)
669               OS << ",";
670             OS << "Attribute::NoCapture";
671             addComma = true;
672             break;
673           case CodeGenIntrinsic::NoAlias:
674             if (addComma)
675               OS << ",";
676             OS << "Attribute::NoAlias";
677             addComma = true;
678             break;
679           case CodeGenIntrinsic::Returned:
680             if (addComma)
681               OS << ",";
682             OS << "Attribute::Returned";
683             addComma = true;
684             break;
685           case CodeGenIntrinsic::ReadOnly:
686             if (addComma)
687               OS << ",";
688             OS << "Attribute::ReadOnly";
689             addComma = true;
690             break;
691           case CodeGenIntrinsic::WriteOnly:
692             if (addComma)
693               OS << ",";
694             OS << "Attribute::WriteOnly";
695             addComma = true;
696             break;
697           case CodeGenIntrinsic::ReadNone:
698             if (addComma)
699               OS << ",";
700             OS << "Attribute::ReadNone";
701             addComma = true;
702             break;
703           case CodeGenIntrinsic::ImmArg:
704             if (addComma)
705               OS << ',';
706             OS << "Attribute::ImmArg";
707             addComma = true;
708             break;
709           }
710 
711           ++ai;
712         } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo);
713         OS << "};\n";
714         OS << "      AS[" << numAttrs++ << "] = AttributeList::get(C, "
715            << attrIdx << ", AttrParam" << attrIdx << ");\n";
716       }
717     }
718 
719     if (!intrinsic.canThrow ||
720         (intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem && !intrinsic.hasSideEffects) ||
721         intrinsic.isNoReturn || intrinsic.isWillReturn || intrinsic.isCold ||
722         intrinsic.isNoDuplicate || intrinsic.isConvergent ||
723         intrinsic.isSpeculatable) {
724       OS << "      const Attribute::AttrKind Atts[] = {";
725       bool addComma = false;
726       if (!intrinsic.canThrow) {
727         OS << "Attribute::NoUnwind";
728         addComma = true;
729       }
730       if (intrinsic.isNoReturn) {
731         if (addComma)
732           OS << ",";
733         OS << "Attribute::NoReturn";
734         addComma = true;
735       }
736       if (intrinsic.isWillReturn) {
737         if (addComma)
738           OS << ",";
739         OS << "Attribute::WillReturn";
740         addComma = true;
741       }
742       if (intrinsic.isCold) {
743         if (addComma)
744           OS << ",";
745         OS << "Attribute::Cold";
746         addComma = true;
747       }
748       if (intrinsic.isNoDuplicate) {
749         if (addComma)
750           OS << ",";
751         OS << "Attribute::NoDuplicate";
752         addComma = true;
753       }
754       if (intrinsic.isConvergent) {
755         if (addComma)
756           OS << ",";
757         OS << "Attribute::Convergent";
758         addComma = true;
759       }
760       if (intrinsic.isSpeculatable) {
761         if (addComma)
762           OS << ",";
763         OS << "Attribute::Speculatable";
764         addComma = true;
765       }
766 
767       switch (intrinsic.ModRef) {
768       case CodeGenIntrinsic::NoMem:
769         if (intrinsic.hasSideEffects)
770           break;
771         if (addComma)
772           OS << ",";
773         OS << "Attribute::ReadNone";
774         break;
775       case CodeGenIntrinsic::ReadArgMem:
776         if (addComma)
777           OS << ",";
778         OS << "Attribute::ReadOnly,";
779         OS << "Attribute::ArgMemOnly";
780         break;
781       case CodeGenIntrinsic::ReadMem:
782         if (addComma)
783           OS << ",";
784         OS << "Attribute::ReadOnly";
785         break;
786       case CodeGenIntrinsic::ReadInaccessibleMem:
787         if (addComma)
788           OS << ",";
789         OS << "Attribute::ReadOnly,";
790         OS << "Attribute::InaccessibleMemOnly";
791         break;
792       case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem:
793         if (addComma)
794           OS << ",";
795         OS << "Attribute::ReadOnly,";
796         OS << "Attribute::InaccessibleMemOrArgMemOnly";
797         break;
798       case CodeGenIntrinsic::WriteArgMem:
799         if (addComma)
800           OS << ",";
801         OS << "Attribute::WriteOnly,";
802         OS << "Attribute::ArgMemOnly";
803         break;
804       case CodeGenIntrinsic::WriteMem:
805         if (addComma)
806           OS << ",";
807         OS << "Attribute::WriteOnly";
808         break;
809       case CodeGenIntrinsic::WriteInaccessibleMem:
810         if (addComma)
811           OS << ",";
812         OS << "Attribute::WriteOnly,";
813         OS << "Attribute::InaccessibleMemOnly";
814         break;
815       case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem:
816         if (addComma)
817           OS << ",";
818         OS << "Attribute::WriteOnly,";
819         OS << "Attribute::InaccessibleMemOrArgMemOnly";
820         break;
821       case CodeGenIntrinsic::ReadWriteArgMem:
822         if (addComma)
823           OS << ",";
824         OS << "Attribute::ArgMemOnly";
825         break;
826       case CodeGenIntrinsic::ReadWriteInaccessibleMem:
827         if (addComma)
828           OS << ",";
829         OS << "Attribute::InaccessibleMemOnly";
830         break;
831       case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem:
832         if (addComma)
833           OS << ",";
834         OS << "Attribute::InaccessibleMemOrArgMemOnly";
835         break;
836       case CodeGenIntrinsic::ReadWriteMem:
837         break;
838       }
839       OS << "};\n";
840       OS << "      AS[" << numAttrs++ << "] = AttributeList::get(C, "
841          << "AttributeList::FunctionIndex, Atts);\n";
842     }
843 
844     if (numAttrs) {
845       OS << "      NumAttrs = " << numAttrs << ";\n";
846       OS << "      break;\n";
847       OS << "      }\n";
848     } else {
849       OS << "      return AttributeList();\n";
850       OS << "      }\n";
851     }
852   }
853 
854   OS << "    }\n";
855   OS << "  }\n";
856   OS << "  return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n";
857   OS << "}\n";
858   OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
859 }
860 
861 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
862     const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) {
863   StringRef CompilerName = (IsGCC ? "GCC" : "MS");
864   typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
865   BIMTy BuiltinMap;
866   StringToOffsetTable Table;
867   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
868     const std::string &BuiltinName =
869         IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName;
870     if (!BuiltinName.empty()) {
871       // Get the map for this target prefix.
872       std::map<std::string, std::string> &BIM =
873           BuiltinMap[Ints[i].TargetPrefix];
874 
875       if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
876         PrintFatalError(Ints[i].TheDef->getLoc(),
877                         "Intrinsic '" + Ints[i].TheDef->getName() +
878                             "': duplicate " + CompilerName + " builtin name!");
879       Table.GetOrAddStringOffset(BuiltinName);
880     }
881   }
882 
883   OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
884   OS << "// This is used by the C front-end.  The builtin name is passed\n";
885   OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
886   OS << "// in as TargetPrefix.  The result is assigned to 'IntrinsicID'.\n";
887   OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n";
888 
889   OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
890      << "Builtin(const char "
891      << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
892 
893   if (Table.Empty()) {
894     OS << "  return Intrinsic::not_intrinsic;\n";
895     OS << "}\n";
896     OS << "#endif\n\n";
897     return;
898   }
899 
900   OS << "  static const char BuiltinNames[] = {\n";
901   Table.EmitCharArray(OS);
902   OS << "  };\n\n";
903 
904   OS << "  struct BuiltinEntry {\n";
905   OS << "    Intrinsic::ID IntrinID;\n";
906   OS << "    unsigned StrTabOffset;\n";
907   OS << "    const char *getName() const {\n";
908   OS << "      return &BuiltinNames[StrTabOffset];\n";
909   OS << "    }\n";
910   OS << "    bool operator<(StringRef RHS) const {\n";
911   OS << "      return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
912   OS << "    }\n";
913   OS << "  };\n";
914 
915   OS << "  StringRef TargetPrefix(TargetPrefixStr);\n\n";
916 
917   // Note: this could emit significantly better code if we cared.
918   for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
919     OS << "  ";
920     if (!I->first.empty())
921       OS << "if (TargetPrefix == \"" << I->first << "\") ";
922     else
923       OS << "/* Target Independent Builtins */ ";
924     OS << "{\n";
925 
926     // Emit the comparisons for this target prefix.
927     OS << "    static const BuiltinEntry " << I->first << "Names[] = {\n";
928     for (const auto &P : I->second) {
929       OS << "      {Intrinsic::" << P.second << ", "
930          << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
931     }
932     OS << "    };\n";
933     OS << "    auto I = std::lower_bound(std::begin(" << I->first << "Names),\n";
934     OS << "                              std::end(" << I->first << "Names),\n";
935     OS << "                              BuiltinNameStr);\n";
936     OS << "    if (I != std::end(" << I->first << "Names) &&\n";
937     OS << "        I->getName() == BuiltinNameStr)\n";
938     OS << "      return I->IntrinID;\n";
939     OS << "  }\n";
940   }
941   OS << "  return ";
942   OS << "Intrinsic::not_intrinsic;\n";
943   OS << "}\n";
944   OS << "#endif\n\n";
945 }
946 
947 void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) {
948   IntrinsicEmitter(RK).run(OS, /*Enums=*/true);
949 }
950 
951 void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) {
952   IntrinsicEmitter(RK).run(OS, /*Enums=*/false);
953 }
954