1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits information about intrinsic functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenIntrinsics.h" 14 #include "CodeGenTarget.h" 15 #include "SequenceToOffsetTable.h" 16 #include "TableGenBackends.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Support/CommandLine.h" 19 #include "llvm/TableGen/Error.h" 20 #include "llvm/TableGen/Record.h" 21 #include "llvm/TableGen/StringMatcher.h" 22 #include "llvm/TableGen/StringToOffsetTable.h" 23 #include "llvm/TableGen/TableGenBackend.h" 24 #include <algorithm> 25 using namespace llvm; 26 27 cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums"); 28 cl::opt<std::string> 29 IntrinsicPrefix("intrinsic-prefix", 30 cl::desc("Generate intrinsics with this target prefix"), 31 cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat)); 32 33 namespace { 34 class IntrinsicEmitter { 35 RecordKeeper &Records; 36 37 public: 38 IntrinsicEmitter(RecordKeeper &R) : Records(R) {} 39 40 void run(raw_ostream &OS, bool Enums); 41 42 void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 43 void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 44 void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints, 45 raw_ostream &OS); 46 void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints, 47 raw_ostream &OS); 48 void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 49 void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); 50 void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC, 51 raw_ostream &OS); 52 }; 53 } // End anonymous namespace 54 55 //===----------------------------------------------------------------------===// 56 // IntrinsicEmitter Implementation 57 //===----------------------------------------------------------------------===// 58 59 void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) { 60 emitSourceFileHeader("Intrinsic Function Source Fragment", OS); 61 62 CodeGenIntrinsicTable Ints(Records); 63 64 if (Enums) { 65 // Emit the enum information. 66 EmitEnumInfo(Ints, OS); 67 } else { 68 // Emit the target metadata. 69 EmitTargetInfo(Ints, OS); 70 71 // Emit the intrinsic ID -> name table. 72 EmitIntrinsicToNameTable(Ints, OS); 73 74 // Emit the intrinsic ID -> overload table. 75 EmitIntrinsicToOverloadTable(Ints, OS); 76 77 // Emit the intrinsic declaration generator. 78 EmitGenerator(Ints, OS); 79 80 // Emit the intrinsic parameter attributes. 81 EmitAttributes(Ints, OS); 82 83 // Emit code to translate GCC builtins into LLVM intrinsics. 84 EmitIntrinsicToBuiltinMap(Ints, true, OS); 85 86 // Emit code to translate MS builtins into LLVM intrinsics. 87 EmitIntrinsicToBuiltinMap(Ints, false, OS); 88 } 89 } 90 91 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints, 92 raw_ostream &OS) { 93 // Find the TargetSet for which to generate enums. There will be an initial 94 // set with an empty target prefix which will include target independent 95 // intrinsics like dbg.value. 96 const CodeGenIntrinsicTable::TargetSet *Set = nullptr; 97 for (const auto &Target : Ints.Targets) { 98 if (Target.Name == IntrinsicPrefix) { 99 Set = &Target; 100 break; 101 } 102 } 103 if (!Set) { 104 std::vector<std::string> KnownTargets; 105 for (const auto &Target : Ints.Targets) 106 if (!Target.Name.empty()) 107 KnownTargets.push_back(Target.Name); 108 PrintFatalError("tried to generate intrinsics for unknown target " + 109 IntrinsicPrefix + 110 "\nKnown targets are: " + join(KnownTargets, ", ") + "\n"); 111 } 112 113 // Generate a complete header for target specific intrinsics. 114 if (!IntrinsicPrefix.empty()) { 115 std::string UpperPrefix = StringRef(IntrinsicPrefix).upper(); 116 OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n"; 117 OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n"; 118 OS << "namespace llvm {\n"; 119 OS << "namespace Intrinsic {\n"; 120 OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n"; 121 } 122 123 OS << "// Enum values for intrinsics\n"; 124 for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) { 125 OS << " " << Ints[i].EnumName; 126 127 // Assign a value to the first intrinsic in this target set so that all 128 // intrinsic ids are distinct. 129 if (i == Set->Offset) 130 OS << " = " << (Set->Offset + 1); 131 132 OS << ", "; 133 if (Ints[i].EnumName.size() < 40) 134 OS.indent(40 - Ints[i].EnumName.size()); 135 OS << " // " << Ints[i].Name << "\n"; 136 } 137 138 // Emit num_intrinsics into the target neutral enum. 139 if (IntrinsicPrefix.empty()) { 140 OS << " num_intrinsics = " << (Ints.size() + 1) << "\n"; 141 } else { 142 OS << "}; // enum\n"; 143 OS << "} // namespace Intrinsic\n"; 144 OS << "} // namespace llvm\n\n"; 145 OS << "#endif\n"; 146 } 147 } 148 149 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints, 150 raw_ostream &OS) { 151 OS << "// Target mapping\n"; 152 OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n"; 153 OS << "struct IntrinsicTargetInfo {\n" 154 << " llvm::StringLiteral Name;\n" 155 << " size_t Offset;\n" 156 << " size_t Count;\n" 157 << "};\n"; 158 OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n"; 159 for (auto Target : Ints.Targets) 160 OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset 161 << ", " << Target.Count << "},\n"; 162 OS << "};\n"; 163 OS << "#endif\n\n"; 164 } 165 166 void IntrinsicEmitter::EmitIntrinsicToNameTable( 167 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { 168 OS << "// Intrinsic ID to name table\n"; 169 OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; 170 OS << " // Note that entry #0 is the invalid intrinsic!\n"; 171 for (unsigned i = 0, e = Ints.size(); i != e; ++i) 172 OS << " \"" << Ints[i].Name << "\",\n"; 173 OS << "#endif\n\n"; 174 } 175 176 void IntrinsicEmitter::EmitIntrinsicToOverloadTable( 177 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { 178 OS << "// Intrinsic ID to overload bitset\n"; 179 OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; 180 OS << "static const uint8_t OTable[] = {\n"; 181 OS << " 0"; 182 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 183 // Add one to the index so we emit a null bit for the invalid #0 intrinsic. 184 if ((i+1)%8 == 0) 185 OS << ",\n 0"; 186 if (Ints[i].isOverloaded) 187 OS << " | (1<<" << (i+1)%8 << ')'; 188 } 189 OS << "\n};\n\n"; 190 // OTable contains a true bit at the position if the intrinsic is overloaded. 191 OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n"; 192 OS << "#endif\n\n"; 193 } 194 195 196 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp! 197 enum IIT_Info { 198 // Common values should be encoded with 0-15. 199 IIT_Done = 0, 200 IIT_I1 = 1, 201 IIT_I8 = 2, 202 IIT_I16 = 3, 203 IIT_I32 = 4, 204 IIT_I64 = 5, 205 IIT_F16 = 6, 206 IIT_F32 = 7, 207 IIT_F64 = 8, 208 IIT_V2 = 9, 209 IIT_V4 = 10, 210 IIT_V8 = 11, 211 IIT_V16 = 12, 212 IIT_V32 = 13, 213 IIT_PTR = 14, 214 IIT_ARG = 15, 215 216 // Values from 16+ are only encodable with the inefficient encoding. 217 IIT_V64 = 16, 218 IIT_MMX = 17, 219 IIT_TOKEN = 18, 220 IIT_METADATA = 19, 221 IIT_EMPTYSTRUCT = 20, 222 IIT_STRUCT2 = 21, 223 IIT_STRUCT3 = 22, 224 IIT_STRUCT4 = 23, 225 IIT_STRUCT5 = 24, 226 IIT_EXTEND_ARG = 25, 227 IIT_TRUNC_ARG = 26, 228 IIT_ANYPTR = 27, 229 IIT_V1 = 28, 230 IIT_VARARG = 29, 231 IIT_HALF_VEC_ARG = 30, 232 IIT_SAME_VEC_WIDTH_ARG = 31, 233 IIT_PTR_TO_ARG = 32, 234 IIT_PTR_TO_ELT = 33, 235 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 236 IIT_I128 = 35, 237 IIT_V512 = 36, 238 IIT_V1024 = 37, 239 IIT_STRUCT6 = 38, 240 IIT_STRUCT7 = 39, 241 IIT_STRUCT8 = 40, 242 IIT_F128 = 41, 243 IIT_VEC_ELEMENT = 42, 244 IIT_SCALABLE_VEC = 43, 245 IIT_SUBDIVIDE2_ARG = 44, 246 IIT_SUBDIVIDE4_ARG = 45, 247 IIT_VEC_OF_BITCASTS_TO_INT = 46 248 }; 249 250 static void EncodeFixedValueType(MVT::SimpleValueType VT, 251 std::vector<unsigned char> &Sig) { 252 if (MVT(VT).isInteger()) { 253 unsigned BitWidth = MVT(VT).getSizeInBits(); 254 switch (BitWidth) { 255 default: PrintFatalError("unhandled integer type width in intrinsic!"); 256 case 1: return Sig.push_back(IIT_I1); 257 case 8: return Sig.push_back(IIT_I8); 258 case 16: return Sig.push_back(IIT_I16); 259 case 32: return Sig.push_back(IIT_I32); 260 case 64: return Sig.push_back(IIT_I64); 261 case 128: return Sig.push_back(IIT_I128); 262 } 263 } 264 265 switch (VT) { 266 default: PrintFatalError("unhandled MVT in intrinsic!"); 267 case MVT::f16: return Sig.push_back(IIT_F16); 268 case MVT::f32: return Sig.push_back(IIT_F32); 269 case MVT::f64: return Sig.push_back(IIT_F64); 270 case MVT::f128: return Sig.push_back(IIT_F128); 271 case MVT::token: return Sig.push_back(IIT_TOKEN); 272 case MVT::Metadata: return Sig.push_back(IIT_METADATA); 273 case MVT::x86mmx: return Sig.push_back(IIT_MMX); 274 // MVT::OtherVT is used to mean the empty struct type here. 275 case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT); 276 // MVT::isVoid is used to represent varargs here. 277 case MVT::isVoid: return Sig.push_back(IIT_VARARG); 278 } 279 } 280 281 #if defined(_MSC_VER) && !defined(__clang__) 282 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function. 283 #endif 284 285 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes, 286 unsigned &NextArgCode, 287 std::vector<unsigned char> &Sig, 288 ArrayRef<unsigned char> Mapping) { 289 290 if (R->isSubClassOf("LLVMMatchType")) { 291 unsigned Number = Mapping[R->getValueAsInt("Number")]; 292 assert(Number < ArgCodes.size() && "Invalid matching number!"); 293 if (R->isSubClassOf("LLVMExtendedType")) 294 Sig.push_back(IIT_EXTEND_ARG); 295 else if (R->isSubClassOf("LLVMTruncatedType")) 296 Sig.push_back(IIT_TRUNC_ARG); 297 else if (R->isSubClassOf("LLVMHalfElementsVectorType")) 298 Sig.push_back(IIT_HALF_VEC_ARG); 299 else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) { 300 Sig.push_back(IIT_SAME_VEC_WIDTH_ARG); 301 Sig.push_back((Number << 3) | ArgCodes[Number]); 302 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy")); 303 EncodeFixedValueType(VT, Sig); 304 return; 305 } 306 else if (R->isSubClassOf("LLVMPointerTo")) 307 Sig.push_back(IIT_PTR_TO_ARG); 308 else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) { 309 Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT); 310 // Encode overloaded ArgNo 311 Sig.push_back(NextArgCode++); 312 // Encode LLVMMatchType<Number> ArgNo 313 Sig.push_back(Number); 314 return; 315 } else if (R->isSubClassOf("LLVMPointerToElt")) 316 Sig.push_back(IIT_PTR_TO_ELT); 317 else if (R->isSubClassOf("LLVMVectorElementType")) 318 Sig.push_back(IIT_VEC_ELEMENT); 319 else if (R->isSubClassOf("LLVMSubdivide2VectorType")) 320 Sig.push_back(IIT_SUBDIVIDE2_ARG); 321 else if (R->isSubClassOf("LLVMSubdivide4VectorType")) 322 Sig.push_back(IIT_SUBDIVIDE4_ARG); 323 else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt")) 324 Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT); 325 else 326 Sig.push_back(IIT_ARG); 327 return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/); 328 } 329 330 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT")); 331 332 unsigned Tmp = 0; 333 switch (VT) { 334 default: break; 335 case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH; 336 case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH; 337 case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH; 338 case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH; 339 case MVT::Any: { 340 // If this is an "any" valuetype, then the type is the type of the next 341 // type in the list specified to getIntrinsic(). 342 Sig.push_back(IIT_ARG); 343 344 // Figure out what arg # this is consuming, and remember what kind it was. 345 assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp && 346 "Invalid or no ArgCode associated with overloaded VT!"); 347 unsigned ArgNo = NextArgCode++; 348 349 // Encode what sort of argument it must be in the low 3 bits of the ArgNo. 350 return Sig.push_back((ArgNo << 3) | Tmp); 351 } 352 353 case MVT::iPTR: { 354 unsigned AddrSpace = 0; 355 if (R->isSubClassOf("LLVMQualPointerType")) { 356 AddrSpace = R->getValueAsInt("AddrSpace"); 357 assert(AddrSpace < 256 && "Address space exceeds 255"); 358 } 359 if (AddrSpace) { 360 Sig.push_back(IIT_ANYPTR); 361 Sig.push_back(AddrSpace); 362 } else { 363 Sig.push_back(IIT_PTR); 364 } 365 return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig, 366 Mapping); 367 } 368 } 369 370 if (MVT(VT).isVector()) { 371 MVT VVT = VT; 372 if (VVT.isScalableVector()) 373 Sig.push_back(IIT_SCALABLE_VEC); 374 switch (VVT.getVectorNumElements()) { 375 default: PrintFatalError("unhandled vector type width in intrinsic!"); 376 case 1: Sig.push_back(IIT_V1); break; 377 case 2: Sig.push_back(IIT_V2); break; 378 case 4: Sig.push_back(IIT_V4); break; 379 case 8: Sig.push_back(IIT_V8); break; 380 case 16: Sig.push_back(IIT_V16); break; 381 case 32: Sig.push_back(IIT_V32); break; 382 case 64: Sig.push_back(IIT_V64); break; 383 case 512: Sig.push_back(IIT_V512); break; 384 case 1024: Sig.push_back(IIT_V1024); break; 385 } 386 387 return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig); 388 } 389 390 EncodeFixedValueType(VT, Sig); 391 } 392 393 static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes, 394 unsigned int &NumInserted, 395 SmallVectorImpl<unsigned char> &Mapping) { 396 if (R->isSubClassOf("LLVMMatchType")) { 397 if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) { 398 ArgCodes.push_back(3 /*vAny*/); 399 ++NumInserted; 400 } 401 return; 402 } 403 404 unsigned Tmp = 0; 405 switch (getValueType(R->getValueAsDef("VT"))) { 406 default: break; 407 case MVT::iPTR: 408 UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping); 409 break; 410 case MVT::iPTRAny: 411 ++Tmp; 412 LLVM_FALLTHROUGH; 413 case MVT::vAny: 414 ++Tmp; 415 LLVM_FALLTHROUGH; 416 case MVT::fAny: 417 ++Tmp; 418 LLVM_FALLTHROUGH; 419 case MVT::iAny: 420 ++Tmp; 421 LLVM_FALLTHROUGH; 422 case MVT::Any: 423 unsigned OriginalIdx = ArgCodes.size() - NumInserted; 424 assert(OriginalIdx >= Mapping.size()); 425 Mapping.resize(OriginalIdx+1); 426 Mapping[OriginalIdx] = ArgCodes.size(); 427 ArgCodes.push_back(Tmp); 428 break; 429 } 430 } 431 432 #if defined(_MSC_VER) && !defined(__clang__) 433 #pragma optimize("",on) 434 #endif 435 436 /// ComputeFixedEncoding - If we can encode the type signature for this 437 /// intrinsic into 32 bits, return it. If not, return ~0U. 438 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int, 439 std::vector<unsigned char> &TypeSig) { 440 std::vector<unsigned char> ArgCodes; 441 442 // Add codes for any overloaded result VTs. 443 unsigned int NumInserted = 0; 444 SmallVector<unsigned char, 8> ArgMapping; 445 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) 446 UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping); 447 448 // Add codes for any overloaded operand VTs. 449 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) 450 UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping); 451 452 unsigned NextArgCode = 0; 453 if (Int.IS.RetVTs.empty()) 454 TypeSig.push_back(IIT_Done); 455 else if (Int.IS.RetVTs.size() == 1 && 456 Int.IS.RetVTs[0] == MVT::isVoid) 457 TypeSig.push_back(IIT_Done); 458 else { 459 switch (Int.IS.RetVTs.size()) { 460 case 1: break; 461 case 2: TypeSig.push_back(IIT_STRUCT2); break; 462 case 3: TypeSig.push_back(IIT_STRUCT3); break; 463 case 4: TypeSig.push_back(IIT_STRUCT4); break; 464 case 5: TypeSig.push_back(IIT_STRUCT5); break; 465 case 6: TypeSig.push_back(IIT_STRUCT6); break; 466 case 7: TypeSig.push_back(IIT_STRUCT7); break; 467 case 8: TypeSig.push_back(IIT_STRUCT8); break; 468 default: llvm_unreachable("Unhandled case in struct"); 469 } 470 471 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) 472 EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig, 473 ArgMapping); 474 } 475 476 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) 477 EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig, 478 ArgMapping); 479 } 480 481 static void printIITEntry(raw_ostream &OS, unsigned char X) { 482 OS << (unsigned)X; 483 } 484 485 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints, 486 raw_ostream &OS) { 487 // If we can compute a 32-bit fixed encoding for this intrinsic, do so and 488 // capture it in this vector, otherwise store a ~0U. 489 std::vector<unsigned> FixedEncodings; 490 491 SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable; 492 493 std::vector<unsigned char> TypeSig; 494 495 // Compute the unique argument type info. 496 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 497 // Get the signature for the intrinsic. 498 TypeSig.clear(); 499 ComputeFixedEncoding(Ints[i], TypeSig); 500 501 // Check to see if we can encode it into a 32-bit word. We can only encode 502 // 8 nibbles into a 32-bit word. 503 if (TypeSig.size() <= 8) { 504 bool Failed = false; 505 unsigned Result = 0; 506 for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) { 507 // If we had an unencodable argument, bail out. 508 if (TypeSig[i] > 15) { 509 Failed = true; 510 break; 511 } 512 Result = (Result << 4) | TypeSig[e-i-1]; 513 } 514 515 // If this could be encoded into a 31-bit word, return it. 516 if (!Failed && (Result >> 31) == 0) { 517 FixedEncodings.push_back(Result); 518 continue; 519 } 520 } 521 522 // Otherwise, we're going to unique the sequence into the 523 // LongEncodingTable, and use its offset in the 32-bit table instead. 524 LongEncodingTable.add(TypeSig); 525 526 // This is a placehold that we'll replace after the table is laid out. 527 FixedEncodings.push_back(~0U); 528 } 529 530 LongEncodingTable.layout(); 531 532 OS << "// Global intrinsic function declaration type table.\n"; 533 OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n"; 534 535 OS << "static const unsigned IIT_Table[] = {\n "; 536 537 for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) { 538 if ((i & 7) == 7) 539 OS << "\n "; 540 541 // If the entry fit in the table, just emit it. 542 if (FixedEncodings[i] != ~0U) { 543 OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", "; 544 continue; 545 } 546 547 TypeSig.clear(); 548 ComputeFixedEncoding(Ints[i], TypeSig); 549 550 551 // Otherwise, emit the offset into the long encoding table. We emit it this 552 // way so that it is easier to read the offset in the .def file. 553 OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", "; 554 } 555 556 OS << "0\n};\n\n"; 557 558 // Emit the shared table of register lists. 559 OS << "static const unsigned char IIT_LongEncodingTable[] = {\n"; 560 if (!LongEncodingTable.empty()) 561 LongEncodingTable.emit(OS, printIITEntry); 562 OS << " 255\n};\n\n"; 563 564 OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL 565 } 566 567 namespace { 568 struct AttributeComparator { 569 bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { 570 // Sort throwing intrinsics after non-throwing intrinsics. 571 if (L->canThrow != R->canThrow) 572 return R->canThrow; 573 574 if (L->isNoDuplicate != R->isNoDuplicate) 575 return R->isNoDuplicate; 576 577 if (L->isNoReturn != R->isNoReturn) 578 return R->isNoReturn; 579 580 if (L->isWillReturn != R->isWillReturn) 581 return R->isWillReturn; 582 583 if (L->isCold != R->isCold) 584 return R->isCold; 585 586 if (L->isConvergent != R->isConvergent) 587 return R->isConvergent; 588 589 if (L->isSpeculatable != R->isSpeculatable) 590 return R->isSpeculatable; 591 592 if (L->hasSideEffects != R->hasSideEffects) 593 return R->hasSideEffects; 594 595 // Try to order by readonly/readnone attribute. 596 CodeGenIntrinsic::ModRefBehavior LK = L->ModRef; 597 CodeGenIntrinsic::ModRefBehavior RK = R->ModRef; 598 if (LK != RK) return (LK > RK); 599 // Order by argument attributes. 600 // This is reliable because each side is already sorted internally. 601 return (L->ArgumentAttributes < R->ArgumentAttributes); 602 } 603 }; 604 } // End anonymous namespace 605 606 /// EmitAttributes - This emits the Intrinsic::getAttributes method. 607 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints, 608 raw_ostream &OS) { 609 OS << "// Add parameter attributes that are not common to all intrinsics.\n"; 610 OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; 611 OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n"; 612 613 // Compute the maximum number of attribute arguments and the map 614 typedef std::map<const CodeGenIntrinsic*, unsigned, 615 AttributeComparator> UniqAttrMapTy; 616 UniqAttrMapTy UniqAttributes; 617 unsigned maxArgAttrs = 0; 618 unsigned AttrNum = 0; 619 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 620 const CodeGenIntrinsic &intrinsic = Ints[i]; 621 maxArgAttrs = 622 std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); 623 unsigned &N = UniqAttributes[&intrinsic]; 624 if (N) continue; 625 assert(AttrNum < 256 && "Too many unique attributes for table!"); 626 N = ++AttrNum; 627 } 628 629 // Emit an array of AttributeList. Most intrinsics will have at least one 630 // entry, for the function itself (index ~1), which is usually nounwind. 631 OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n"; 632 633 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 634 const CodeGenIntrinsic &intrinsic = Ints[i]; 635 636 OS << " " << UniqAttributes[&intrinsic] << ", // " 637 << intrinsic.Name << "\n"; 638 } 639 OS << " };\n\n"; 640 641 OS << " AttributeList AS[" << maxArgAttrs + 1 << "];\n"; 642 OS << " unsigned NumAttrs = 0;\n"; 643 OS << " if (id != 0) {\n"; 644 OS << " switch(IntrinsicsToAttributesMap[id - 1]) {\n"; 645 OS << " default: llvm_unreachable(\"Invalid attribute number\");\n"; 646 for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(), 647 E = UniqAttributes.end(); I != E; ++I) { 648 OS << " case " << I->second << ": {\n"; 649 650 const CodeGenIntrinsic &intrinsic = *(I->first); 651 652 // Keep track of the number of attributes we're writing out. 653 unsigned numAttrs = 0; 654 655 // The argument attributes are alreadys sorted by argument index. 656 unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size(); 657 if (ae) { 658 while (ai != ae) { 659 unsigned argNo = intrinsic.ArgumentAttributes[ai].first; 660 unsigned attrIdx = argNo + 1; // Must match AttributeList::FirstArgIndex 661 662 OS << " const Attribute::AttrKind AttrParam" << attrIdx << "[]= {"; 663 bool addComma = false; 664 665 do { 666 switch (intrinsic.ArgumentAttributes[ai].second) { 667 case CodeGenIntrinsic::NoCapture: 668 if (addComma) 669 OS << ","; 670 OS << "Attribute::NoCapture"; 671 addComma = true; 672 break; 673 case CodeGenIntrinsic::NoAlias: 674 if (addComma) 675 OS << ","; 676 OS << "Attribute::NoAlias"; 677 addComma = true; 678 break; 679 case CodeGenIntrinsic::Returned: 680 if (addComma) 681 OS << ","; 682 OS << "Attribute::Returned"; 683 addComma = true; 684 break; 685 case CodeGenIntrinsic::ReadOnly: 686 if (addComma) 687 OS << ","; 688 OS << "Attribute::ReadOnly"; 689 addComma = true; 690 break; 691 case CodeGenIntrinsic::WriteOnly: 692 if (addComma) 693 OS << ","; 694 OS << "Attribute::WriteOnly"; 695 addComma = true; 696 break; 697 case CodeGenIntrinsic::ReadNone: 698 if (addComma) 699 OS << ","; 700 OS << "Attribute::ReadNone"; 701 addComma = true; 702 break; 703 case CodeGenIntrinsic::ImmArg: 704 if (addComma) 705 OS << ','; 706 OS << "Attribute::ImmArg"; 707 addComma = true; 708 break; 709 } 710 711 ++ai; 712 } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo); 713 OS << "};\n"; 714 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " 715 << attrIdx << ", AttrParam" << attrIdx << ");\n"; 716 } 717 } 718 719 if (!intrinsic.canThrow || 720 (intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem && !intrinsic.hasSideEffects) || 721 intrinsic.isNoReturn || intrinsic.isWillReturn || intrinsic.isCold || 722 intrinsic.isNoDuplicate || intrinsic.isConvergent || 723 intrinsic.isSpeculatable) { 724 OS << " const Attribute::AttrKind Atts[] = {"; 725 bool addComma = false; 726 if (!intrinsic.canThrow) { 727 OS << "Attribute::NoUnwind"; 728 addComma = true; 729 } 730 if (intrinsic.isNoReturn) { 731 if (addComma) 732 OS << ","; 733 OS << "Attribute::NoReturn"; 734 addComma = true; 735 } 736 if (intrinsic.isWillReturn) { 737 if (addComma) 738 OS << ","; 739 OS << "Attribute::WillReturn"; 740 addComma = true; 741 } 742 if (intrinsic.isCold) { 743 if (addComma) 744 OS << ","; 745 OS << "Attribute::Cold"; 746 addComma = true; 747 } 748 if (intrinsic.isNoDuplicate) { 749 if (addComma) 750 OS << ","; 751 OS << "Attribute::NoDuplicate"; 752 addComma = true; 753 } 754 if (intrinsic.isConvergent) { 755 if (addComma) 756 OS << ","; 757 OS << "Attribute::Convergent"; 758 addComma = true; 759 } 760 if (intrinsic.isSpeculatable) { 761 if (addComma) 762 OS << ","; 763 OS << "Attribute::Speculatable"; 764 addComma = true; 765 } 766 767 switch (intrinsic.ModRef) { 768 case CodeGenIntrinsic::NoMem: 769 if (intrinsic.hasSideEffects) 770 break; 771 if (addComma) 772 OS << ","; 773 OS << "Attribute::ReadNone"; 774 break; 775 case CodeGenIntrinsic::ReadArgMem: 776 if (addComma) 777 OS << ","; 778 OS << "Attribute::ReadOnly,"; 779 OS << "Attribute::ArgMemOnly"; 780 break; 781 case CodeGenIntrinsic::ReadMem: 782 if (addComma) 783 OS << ","; 784 OS << "Attribute::ReadOnly"; 785 break; 786 case CodeGenIntrinsic::ReadInaccessibleMem: 787 if (addComma) 788 OS << ","; 789 OS << "Attribute::ReadOnly,"; 790 OS << "Attribute::InaccessibleMemOnly"; 791 break; 792 case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem: 793 if (addComma) 794 OS << ","; 795 OS << "Attribute::ReadOnly,"; 796 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 797 break; 798 case CodeGenIntrinsic::WriteArgMem: 799 if (addComma) 800 OS << ","; 801 OS << "Attribute::WriteOnly,"; 802 OS << "Attribute::ArgMemOnly"; 803 break; 804 case CodeGenIntrinsic::WriteMem: 805 if (addComma) 806 OS << ","; 807 OS << "Attribute::WriteOnly"; 808 break; 809 case CodeGenIntrinsic::WriteInaccessibleMem: 810 if (addComma) 811 OS << ","; 812 OS << "Attribute::WriteOnly,"; 813 OS << "Attribute::InaccessibleMemOnly"; 814 break; 815 case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem: 816 if (addComma) 817 OS << ","; 818 OS << "Attribute::WriteOnly,"; 819 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 820 break; 821 case CodeGenIntrinsic::ReadWriteArgMem: 822 if (addComma) 823 OS << ","; 824 OS << "Attribute::ArgMemOnly"; 825 break; 826 case CodeGenIntrinsic::ReadWriteInaccessibleMem: 827 if (addComma) 828 OS << ","; 829 OS << "Attribute::InaccessibleMemOnly"; 830 break; 831 case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem: 832 if (addComma) 833 OS << ","; 834 OS << "Attribute::InaccessibleMemOrArgMemOnly"; 835 break; 836 case CodeGenIntrinsic::ReadWriteMem: 837 break; 838 } 839 OS << "};\n"; 840 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " 841 << "AttributeList::FunctionIndex, Atts);\n"; 842 } 843 844 if (numAttrs) { 845 OS << " NumAttrs = " << numAttrs << ";\n"; 846 OS << " break;\n"; 847 OS << " }\n"; 848 } else { 849 OS << " return AttributeList();\n"; 850 OS << " }\n"; 851 } 852 } 853 854 OS << " }\n"; 855 OS << " }\n"; 856 OS << " return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n"; 857 OS << "}\n"; 858 OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; 859 } 860 861 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap( 862 const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) { 863 StringRef CompilerName = (IsGCC ? "GCC" : "MS"); 864 typedef std::map<std::string, std::map<std::string, std::string>> BIMTy; 865 BIMTy BuiltinMap; 866 StringToOffsetTable Table; 867 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 868 const std::string &BuiltinName = 869 IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName; 870 if (!BuiltinName.empty()) { 871 // Get the map for this target prefix. 872 std::map<std::string, std::string> &BIM = 873 BuiltinMap[Ints[i].TargetPrefix]; 874 875 if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second) 876 PrintFatalError(Ints[i].TheDef->getLoc(), 877 "Intrinsic '" + Ints[i].TheDef->getName() + 878 "': duplicate " + CompilerName + " builtin name!"); 879 Table.GetOrAddStringOffset(BuiltinName); 880 } 881 } 882 883 OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n"; 884 OS << "// This is used by the C front-end. The builtin name is passed\n"; 885 OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; 886 OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; 887 OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n"; 888 889 OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName 890 << "Builtin(const char " 891 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n"; 892 893 if (Table.Empty()) { 894 OS << " return Intrinsic::not_intrinsic;\n"; 895 OS << "}\n"; 896 OS << "#endif\n\n"; 897 return; 898 } 899 900 OS << " static const char BuiltinNames[] = {\n"; 901 Table.EmitCharArray(OS); 902 OS << " };\n\n"; 903 904 OS << " struct BuiltinEntry {\n"; 905 OS << " Intrinsic::ID IntrinID;\n"; 906 OS << " unsigned StrTabOffset;\n"; 907 OS << " const char *getName() const {\n"; 908 OS << " return &BuiltinNames[StrTabOffset];\n"; 909 OS << " }\n"; 910 OS << " bool operator<(StringRef RHS) const {\n"; 911 OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n"; 912 OS << " }\n"; 913 OS << " };\n"; 914 915 OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; 916 917 // Note: this could emit significantly better code if we cared. 918 for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){ 919 OS << " "; 920 if (!I->first.empty()) 921 OS << "if (TargetPrefix == \"" << I->first << "\") "; 922 else 923 OS << "/* Target Independent Builtins */ "; 924 OS << "{\n"; 925 926 // Emit the comparisons for this target prefix. 927 OS << " static const BuiltinEntry " << I->first << "Names[] = {\n"; 928 for (const auto &P : I->second) { 929 OS << " {Intrinsic::" << P.second << ", " 930 << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n"; 931 } 932 OS << " };\n"; 933 OS << " auto I = std::lower_bound(std::begin(" << I->first << "Names),\n"; 934 OS << " std::end(" << I->first << "Names),\n"; 935 OS << " BuiltinNameStr);\n"; 936 OS << " if (I != std::end(" << I->first << "Names) &&\n"; 937 OS << " I->getName() == BuiltinNameStr)\n"; 938 OS << " return I->IntrinID;\n"; 939 OS << " }\n"; 940 } 941 OS << " return "; 942 OS << "Intrinsic::not_intrinsic;\n"; 943 OS << "}\n"; 944 OS << "#endif\n\n"; 945 } 946 947 void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) { 948 IntrinsicEmitter(RK).run(OS, /*Enums=*/true); 949 } 950 951 void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) { 952 IntrinsicEmitter(RK).run(OS, /*Enums=*/false); 953 } 954