xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/IntrinsicEmitter.cpp (revision 04eeddc0aa8e0a417a16eaf9d7d095207f4a8623)
1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits information about intrinsic functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenIntrinsics.h"
14 #include "CodeGenTarget.h"
15 #include "SequenceToOffsetTable.h"
16 #include "TableGenBackends.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/TableGen/Error.h"
20 #include "llvm/TableGen/Record.h"
21 #include "llvm/TableGen/StringMatcher.h"
22 #include "llvm/TableGen/StringToOffsetTable.h"
23 #include "llvm/TableGen/TableGenBackend.h"
24 #include <algorithm>
25 using namespace llvm;
26 
27 cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums");
28 cl::opt<std::string>
29     IntrinsicPrefix("intrinsic-prefix",
30                     cl::desc("Generate intrinsics with this target prefix"),
31                     cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat));
32 
33 namespace {
34 class IntrinsicEmitter {
35   RecordKeeper &Records;
36 
37 public:
38   IntrinsicEmitter(RecordKeeper &R) : Records(R) {}
39 
40   void run(raw_ostream &OS, bool Enums);
41 
42   void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
43   void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
44   void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
45                                 raw_ostream &OS);
46   void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
47                                     raw_ostream &OS);
48   void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
49   void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
50   void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC,
51                                  raw_ostream &OS);
52 };
53 } // End anonymous namespace
54 
55 //===----------------------------------------------------------------------===//
56 // IntrinsicEmitter Implementation
57 //===----------------------------------------------------------------------===//
58 
59 void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
60   emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
61 
62   CodeGenIntrinsicTable Ints(Records);
63 
64   if (Enums) {
65     // Emit the enum information.
66     EmitEnumInfo(Ints, OS);
67   } else {
68     // Emit the target metadata.
69     EmitTargetInfo(Ints, OS);
70 
71     // Emit the intrinsic ID -> name table.
72     EmitIntrinsicToNameTable(Ints, OS);
73 
74     // Emit the intrinsic ID -> overload table.
75     EmitIntrinsicToOverloadTable(Ints, OS);
76 
77     // Emit the intrinsic declaration generator.
78     EmitGenerator(Ints, OS);
79 
80     // Emit the intrinsic parameter attributes.
81     EmitAttributes(Ints, OS);
82 
83     // Emit code to translate GCC builtins into LLVM intrinsics.
84     EmitIntrinsicToBuiltinMap(Ints, true, OS);
85 
86     // Emit code to translate MS builtins into LLVM intrinsics.
87     EmitIntrinsicToBuiltinMap(Ints, false, OS);
88   }
89 }
90 
91 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
92                                     raw_ostream &OS) {
93   // Find the TargetSet for which to generate enums. There will be an initial
94   // set with an empty target prefix which will include target independent
95   // intrinsics like dbg.value.
96   const CodeGenIntrinsicTable::TargetSet *Set = nullptr;
97   for (const auto &Target : Ints.Targets) {
98     if (Target.Name == IntrinsicPrefix) {
99       Set = &Target;
100       break;
101     }
102   }
103   if (!Set) {
104     std::vector<std::string> KnownTargets;
105     for (const auto &Target : Ints.Targets)
106       if (!Target.Name.empty())
107         KnownTargets.push_back(Target.Name);
108     PrintFatalError("tried to generate intrinsics for unknown target " +
109                     IntrinsicPrefix +
110                     "\nKnown targets are: " + join(KnownTargets, ", ") + "\n");
111   }
112 
113   // Generate a complete header for target specific intrinsics.
114   if (!IntrinsicPrefix.empty()) {
115     std::string UpperPrefix = StringRef(IntrinsicPrefix).upper();
116     OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n";
117     OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n";
118     OS << "namespace llvm {\n";
119     OS << "namespace Intrinsic {\n";
120     OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n";
121   }
122 
123   OS << "// Enum values for intrinsics\n";
124   for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) {
125     OS << "    " << Ints[i].EnumName;
126 
127     // Assign a value to the first intrinsic in this target set so that all
128     // intrinsic ids are distinct.
129     if (i == Set->Offset)
130       OS << " = " << (Set->Offset + 1);
131 
132     OS << ", ";
133     if (Ints[i].EnumName.size() < 40)
134       OS.indent(40 - Ints[i].EnumName.size());
135     OS << " // " << Ints[i].Name << "\n";
136   }
137 
138   // Emit num_intrinsics into the target neutral enum.
139   if (IntrinsicPrefix.empty()) {
140     OS << "    num_intrinsics = " << (Ints.size() + 1) << "\n";
141   } else {
142     OS << "}; // enum\n";
143     OS << "} // namespace Intrinsic\n";
144     OS << "} // namespace llvm\n\n";
145     OS << "#endif\n";
146   }
147 }
148 
149 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
150                                     raw_ostream &OS) {
151   OS << "// Target mapping\n";
152   OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
153   OS << "struct IntrinsicTargetInfo {\n"
154      << "  llvm::StringLiteral Name;\n"
155      << "  size_t Offset;\n"
156      << "  size_t Count;\n"
157      << "};\n";
158   OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
159   for (auto Target : Ints.Targets)
160     OS << "  {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
161        << ", " << Target.Count << "},\n";
162   OS << "};\n";
163   OS << "#endif\n\n";
164 }
165 
166 void IntrinsicEmitter::EmitIntrinsicToNameTable(
167     const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
168   OS << "// Intrinsic ID to name table\n";
169   OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
170   OS << "  // Note that entry #0 is the invalid intrinsic!\n";
171   for (unsigned i = 0, e = Ints.size(); i != e; ++i)
172     OS << "  \"" << Ints[i].Name << "\",\n";
173   OS << "#endif\n\n";
174 }
175 
176 void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
177     const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
178   OS << "// Intrinsic ID to overload bitset\n";
179   OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
180   OS << "static const uint8_t OTable[] = {\n";
181   OS << "  0";
182   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
183     // Add one to the index so we emit a null bit for the invalid #0 intrinsic.
184     if ((i+1)%8 == 0)
185       OS << ",\n  0";
186     if (Ints[i].isOverloaded)
187       OS << " | (1<<" << (i+1)%8 << ')';
188   }
189   OS << "\n};\n\n";
190   // OTable contains a true bit at the position if the intrinsic is overloaded.
191   OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
192   OS << "#endif\n\n";
193 }
194 
195 
196 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp!
197 enum IIT_Info {
198   // Common values should be encoded with 0-15.
199   IIT_Done = 0,
200   IIT_I1   = 1,
201   IIT_I8   = 2,
202   IIT_I16  = 3,
203   IIT_I32  = 4,
204   IIT_I64  = 5,
205   IIT_F16  = 6,
206   IIT_F32  = 7,
207   IIT_F64  = 8,
208   IIT_V2   = 9,
209   IIT_V4   = 10,
210   IIT_V8   = 11,
211   IIT_V16  = 12,
212   IIT_V32  = 13,
213   IIT_PTR  = 14,
214   IIT_ARG  = 15,
215 
216   // Values from 16+ are only encodable with the inefficient encoding.
217   IIT_V64  = 16,
218   IIT_MMX  = 17,
219   IIT_TOKEN = 18,
220   IIT_METADATA = 19,
221   IIT_EMPTYSTRUCT = 20,
222   IIT_STRUCT2 = 21,
223   IIT_STRUCT3 = 22,
224   IIT_STRUCT4 = 23,
225   IIT_STRUCT5 = 24,
226   IIT_EXTEND_ARG = 25,
227   IIT_TRUNC_ARG = 26,
228   IIT_ANYPTR = 27,
229   IIT_V1   = 28,
230   IIT_VARARG = 29,
231   IIT_HALF_VEC_ARG = 30,
232   IIT_SAME_VEC_WIDTH_ARG = 31,
233   IIT_PTR_TO_ARG = 32,
234   IIT_PTR_TO_ELT = 33,
235   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
236   IIT_I128 = 35,
237   IIT_V512 = 36,
238   IIT_V1024 = 37,
239   IIT_STRUCT6 = 38,
240   IIT_STRUCT7 = 39,
241   IIT_STRUCT8 = 40,
242   IIT_F128 = 41,
243   IIT_VEC_ELEMENT = 42,
244   IIT_SCALABLE_VEC = 43,
245   IIT_SUBDIVIDE2_ARG = 44,
246   IIT_SUBDIVIDE4_ARG = 45,
247   IIT_VEC_OF_BITCASTS_TO_INT = 46,
248   IIT_V128 = 47,
249   IIT_BF16 = 48,
250   IIT_STRUCT9 = 49,
251   IIT_V256 = 50,
252   IIT_AMX  = 51,
253   IIT_PPCF128 = 52,
254   IIT_V3 = 53,
255   IIT_EXTERNREF = 54,
256   IIT_FUNCREF = 55
257 };
258 
259 static void EncodeFixedValueType(MVT::SimpleValueType VT,
260                                  std::vector<unsigned char> &Sig) {
261   if (MVT(VT).isInteger()) {
262     unsigned BitWidth = MVT(VT).getFixedSizeInBits();
263     switch (BitWidth) {
264     default: PrintFatalError("unhandled integer type width in intrinsic!");
265     case 1: return Sig.push_back(IIT_I1);
266     case 8: return Sig.push_back(IIT_I8);
267     case 16: return Sig.push_back(IIT_I16);
268     case 32: return Sig.push_back(IIT_I32);
269     case 64: return Sig.push_back(IIT_I64);
270     case 128: return Sig.push_back(IIT_I128);
271     }
272   }
273 
274   switch (VT) {
275   default: PrintFatalError("unhandled MVT in intrinsic!");
276   case MVT::f16: return Sig.push_back(IIT_F16);
277   case MVT::bf16: return Sig.push_back(IIT_BF16);
278   case MVT::f32: return Sig.push_back(IIT_F32);
279   case MVT::f64: return Sig.push_back(IIT_F64);
280   case MVT::f128: return Sig.push_back(IIT_F128);
281   case MVT::ppcf128: return Sig.push_back(IIT_PPCF128);
282   case MVT::token: return Sig.push_back(IIT_TOKEN);
283   case MVT::Metadata: return Sig.push_back(IIT_METADATA);
284   case MVT::x86mmx: return Sig.push_back(IIT_MMX);
285   case MVT::x86amx: return Sig.push_back(IIT_AMX);
286   // MVT::OtherVT is used to mean the empty struct type here.
287   case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
288   // MVT::isVoid is used to represent varargs here.
289   case MVT::isVoid: return Sig.push_back(IIT_VARARG);
290   case MVT::externref:
291     return Sig.push_back(IIT_EXTERNREF);
292   case MVT::funcref:
293     return Sig.push_back(IIT_FUNCREF);
294   }
295 }
296 
297 #if defined(_MSC_VER) && !defined(__clang__)
298 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function.
299 #endif
300 
301 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
302                             unsigned &NextArgCode,
303                             std::vector<unsigned char> &Sig,
304                             ArrayRef<unsigned char> Mapping) {
305 
306   if (R->isSubClassOf("LLVMMatchType")) {
307     unsigned Number = Mapping[R->getValueAsInt("Number")];
308     assert(Number < ArgCodes.size() && "Invalid matching number!");
309     if (R->isSubClassOf("LLVMExtendedType"))
310       Sig.push_back(IIT_EXTEND_ARG);
311     else if (R->isSubClassOf("LLVMTruncatedType"))
312       Sig.push_back(IIT_TRUNC_ARG);
313     else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
314       Sig.push_back(IIT_HALF_VEC_ARG);
315     else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) {
316       Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
317       Sig.push_back((Number << 3) | ArgCodes[Number]);
318       MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
319       EncodeFixedValueType(VT, Sig);
320       return;
321     }
322     else if (R->isSubClassOf("LLVMPointerTo"))
323       Sig.push_back(IIT_PTR_TO_ARG);
324     else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
325       Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT);
326       // Encode overloaded ArgNo
327       Sig.push_back(NextArgCode++);
328       // Encode LLVMMatchType<Number> ArgNo
329       Sig.push_back(Number);
330       return;
331     } else if (R->isSubClassOf("LLVMPointerToElt"))
332       Sig.push_back(IIT_PTR_TO_ELT);
333     else if (R->isSubClassOf("LLVMVectorElementType"))
334       Sig.push_back(IIT_VEC_ELEMENT);
335     else if (R->isSubClassOf("LLVMSubdivide2VectorType"))
336       Sig.push_back(IIT_SUBDIVIDE2_ARG);
337     else if (R->isSubClassOf("LLVMSubdivide4VectorType"))
338       Sig.push_back(IIT_SUBDIVIDE4_ARG);
339     else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt"))
340       Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT);
341     else
342       Sig.push_back(IIT_ARG);
343     return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/);
344   }
345 
346   MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
347 
348   unsigned Tmp = 0;
349   switch (VT) {
350   default: break;
351   case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH;
352   case MVT::vAny: ++Tmp;    LLVM_FALLTHROUGH;
353   case MVT::fAny: ++Tmp;    LLVM_FALLTHROUGH;
354   case MVT::iAny: ++Tmp;    LLVM_FALLTHROUGH;
355   case MVT::Any: {
356     // If this is an "any" valuetype, then the type is the type of the next
357     // type in the list specified to getIntrinsic().
358     Sig.push_back(IIT_ARG);
359 
360     // Figure out what arg # this is consuming, and remember what kind it was.
361     assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp &&
362            "Invalid or no ArgCode associated with overloaded VT!");
363     unsigned ArgNo = NextArgCode++;
364 
365     // Encode what sort of argument it must be in the low 3 bits of the ArgNo.
366     return Sig.push_back((ArgNo << 3) | Tmp);
367   }
368 
369   case MVT::iPTR: {
370     unsigned AddrSpace = 0;
371     if (R->isSubClassOf("LLVMQualPointerType")) {
372       AddrSpace = R->getValueAsInt("AddrSpace");
373       assert(AddrSpace < 256 && "Address space exceeds 255");
374     }
375     if (AddrSpace) {
376       Sig.push_back(IIT_ANYPTR);
377       Sig.push_back(AddrSpace);
378     } else {
379       Sig.push_back(IIT_PTR);
380     }
381     return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig,
382                            Mapping);
383   }
384   }
385 
386   if (MVT(VT).isVector()) {
387     MVT VVT = VT;
388     if (VVT.isScalableVector())
389       Sig.push_back(IIT_SCALABLE_VEC);
390     switch (VVT.getVectorMinNumElements()) {
391     default: PrintFatalError("unhandled vector type width in intrinsic!");
392     case 1: Sig.push_back(IIT_V1); break;
393     case 2: Sig.push_back(IIT_V2); break;
394     case 3: Sig.push_back(IIT_V3); break;
395     case 4: Sig.push_back(IIT_V4); break;
396     case 8: Sig.push_back(IIT_V8); break;
397     case 16: Sig.push_back(IIT_V16); break;
398     case 32: Sig.push_back(IIT_V32); break;
399     case 64: Sig.push_back(IIT_V64); break;
400     case 128: Sig.push_back(IIT_V128); break;
401     case 256: Sig.push_back(IIT_V256); break;
402     case 512: Sig.push_back(IIT_V512); break;
403     case 1024: Sig.push_back(IIT_V1024); break;
404     }
405 
406     return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
407   }
408 
409   EncodeFixedValueType(VT, Sig);
410 }
411 
412 static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes,
413                            unsigned int &NumInserted,
414                            SmallVectorImpl<unsigned char> &Mapping) {
415   if (R->isSubClassOf("LLVMMatchType")) {
416     if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
417       ArgCodes.push_back(3 /*vAny*/);
418       ++NumInserted;
419     }
420     return;
421   }
422 
423   unsigned Tmp = 0;
424   switch (getValueType(R->getValueAsDef("VT"))) {
425   default: break;
426   case MVT::iPTR:
427     UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping);
428     break;
429   case MVT::iPTRAny:
430     ++Tmp;
431     LLVM_FALLTHROUGH;
432   case MVT::vAny:
433     ++Tmp;
434     LLVM_FALLTHROUGH;
435   case MVT::fAny:
436     ++Tmp;
437     LLVM_FALLTHROUGH;
438   case MVT::iAny:
439     ++Tmp;
440     LLVM_FALLTHROUGH;
441   case MVT::Any:
442     unsigned OriginalIdx = ArgCodes.size() - NumInserted;
443     assert(OriginalIdx >= Mapping.size());
444     Mapping.resize(OriginalIdx+1);
445     Mapping[OriginalIdx] = ArgCodes.size();
446     ArgCodes.push_back(Tmp);
447     break;
448   }
449 }
450 
451 #if defined(_MSC_VER) && !defined(__clang__)
452 #pragma optimize("",on)
453 #endif
454 
455 /// ComputeFixedEncoding - If we can encode the type signature for this
456 /// intrinsic into 32 bits, return it.  If not, return ~0U.
457 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
458                                  std::vector<unsigned char> &TypeSig) {
459   std::vector<unsigned char> ArgCodes;
460 
461   // Add codes for any overloaded result VTs.
462   unsigned int NumInserted = 0;
463   SmallVector<unsigned char, 8> ArgMapping;
464   for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
465     UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
466 
467   // Add codes for any overloaded operand VTs.
468   for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
469     UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
470 
471   unsigned NextArgCode = 0;
472   if (Int.IS.RetVTs.empty())
473     TypeSig.push_back(IIT_Done);
474   else if (Int.IS.RetVTs.size() == 1 &&
475            Int.IS.RetVTs[0] == MVT::isVoid)
476     TypeSig.push_back(IIT_Done);
477   else {
478     switch (Int.IS.RetVTs.size()) {
479       case 1: break;
480       case 2: TypeSig.push_back(IIT_STRUCT2); break;
481       case 3: TypeSig.push_back(IIT_STRUCT3); break;
482       case 4: TypeSig.push_back(IIT_STRUCT4); break;
483       case 5: TypeSig.push_back(IIT_STRUCT5); break;
484       case 6: TypeSig.push_back(IIT_STRUCT6); break;
485       case 7: TypeSig.push_back(IIT_STRUCT7); break;
486       case 8: TypeSig.push_back(IIT_STRUCT8); break;
487       case 9: TypeSig.push_back(IIT_STRUCT9); break;
488       default: llvm_unreachable("Unhandled case in struct");
489     }
490 
491     for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
492       EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
493                       ArgMapping);
494   }
495 
496   for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
497     EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
498                     ArgMapping);
499 }
500 
501 static void printIITEntry(raw_ostream &OS, unsigned char X) {
502   OS << (unsigned)X;
503 }
504 
505 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
506                                      raw_ostream &OS) {
507   // If we can compute a 32-bit fixed encoding for this intrinsic, do so and
508   // capture it in this vector, otherwise store a ~0U.
509   std::vector<unsigned> FixedEncodings;
510 
511   SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
512 
513   std::vector<unsigned char> TypeSig;
514 
515   // Compute the unique argument type info.
516   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
517     // Get the signature for the intrinsic.
518     TypeSig.clear();
519     ComputeFixedEncoding(Ints[i], TypeSig);
520 
521     // Check to see if we can encode it into a 32-bit word.  We can only encode
522     // 8 nibbles into a 32-bit word.
523     if (TypeSig.size() <= 8) {
524       bool Failed = false;
525       unsigned Result = 0;
526       for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
527         // If we had an unencodable argument, bail out.
528         if (TypeSig[i] > 15) {
529           Failed = true;
530           break;
531         }
532         Result = (Result << 4) | TypeSig[e-i-1];
533       }
534 
535       // If this could be encoded into a 31-bit word, return it.
536       if (!Failed && (Result >> 31) == 0) {
537         FixedEncodings.push_back(Result);
538         continue;
539       }
540     }
541 
542     // Otherwise, we're going to unique the sequence into the
543     // LongEncodingTable, and use its offset in the 32-bit table instead.
544     LongEncodingTable.add(TypeSig);
545 
546     // This is a placehold that we'll replace after the table is laid out.
547     FixedEncodings.push_back(~0U);
548   }
549 
550   LongEncodingTable.layout();
551 
552   OS << "// Global intrinsic function declaration type table.\n";
553   OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
554 
555   OS << "static const unsigned IIT_Table[] = {\n  ";
556 
557   for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
558     if ((i & 7) == 7)
559       OS << "\n  ";
560 
561     // If the entry fit in the table, just emit it.
562     if (FixedEncodings[i] != ~0U) {
563       OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
564       continue;
565     }
566 
567     TypeSig.clear();
568     ComputeFixedEncoding(Ints[i], TypeSig);
569 
570 
571     // Otherwise, emit the offset into the long encoding table.  We emit it this
572     // way so that it is easier to read the offset in the .def file.
573     OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
574   }
575 
576   OS << "0\n};\n\n";
577 
578   // Emit the shared table of register lists.
579   OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
580   if (!LongEncodingTable.empty())
581     LongEncodingTable.emit(OS, printIITEntry);
582   OS << "  255\n};\n\n";
583 
584   OS << "#endif\n\n";  // End of GET_INTRINSIC_GENERATOR_GLOBAL
585 }
586 
587 namespace {
588 struct AttributeComparator {
589   bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
590     // Sort throwing intrinsics after non-throwing intrinsics.
591     if (L->canThrow != R->canThrow)
592       return R->canThrow;
593 
594     if (L->isNoDuplicate != R->isNoDuplicate)
595       return R->isNoDuplicate;
596 
597     if (L->isNoMerge != R->isNoMerge)
598       return R->isNoMerge;
599 
600     if (L->isNoReturn != R->isNoReturn)
601       return R->isNoReturn;
602 
603     if (L->isNoSync != R->isNoSync)
604       return R->isNoSync;
605 
606     if (L->isNoFree != R->isNoFree)
607       return R->isNoFree;
608 
609     if (L->isWillReturn != R->isWillReturn)
610       return R->isWillReturn;
611 
612     if (L->isCold != R->isCold)
613       return R->isCold;
614 
615     if (L->isConvergent != R->isConvergent)
616       return R->isConvergent;
617 
618     if (L->isSpeculatable != R->isSpeculatable)
619       return R->isSpeculatable;
620 
621     if (L->hasSideEffects != R->hasSideEffects)
622       return R->hasSideEffects;
623 
624     // Try to order by readonly/readnone attribute.
625     CodeGenIntrinsic::ModRefBehavior LK = L->ModRef;
626     CodeGenIntrinsic::ModRefBehavior RK = R->ModRef;
627     if (LK != RK) return (LK > RK);
628     // Order by argument attributes.
629     // This is reliable because each side is already sorted internally.
630     return (L->ArgumentAttributes < R->ArgumentAttributes);
631   }
632 };
633 } // End anonymous namespace
634 
635 /// EmitAttributes - This emits the Intrinsic::getAttributes method.
636 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
637                                       raw_ostream &OS) {
638   OS << "// Add parameter attributes that are not common to all intrinsics.\n";
639   OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
640   OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
641 
642   // Compute the maximum number of attribute arguments and the map
643   typedef std::map<const CodeGenIntrinsic*, unsigned,
644                    AttributeComparator> UniqAttrMapTy;
645   UniqAttrMapTy UniqAttributes;
646   unsigned maxArgAttrs = 0;
647   unsigned AttrNum = 0;
648   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
649     const CodeGenIntrinsic &intrinsic = Ints[i];
650     maxArgAttrs =
651       std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
652     unsigned &N = UniqAttributes[&intrinsic];
653     if (N) continue;
654     N = ++AttrNum;
655     assert(N < 65536 && "Too many unique attributes for table!");
656   }
657 
658   // Emit an array of AttributeList.  Most intrinsics will have at least one
659   // entry, for the function itself (index ~1), which is usually nounwind.
660   OS << "  static const uint16_t IntrinsicsToAttributesMap[] = {\n";
661 
662   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
663     const CodeGenIntrinsic &intrinsic = Ints[i];
664 
665     OS << "    " << UniqAttributes[&intrinsic] << ", // "
666        << intrinsic.Name << "\n";
667   }
668   OS << "  };\n\n";
669 
670   OS << "  AttributeList AS[" << maxArgAttrs + 1 << "];\n";
671   OS << "  unsigned NumAttrs = 0;\n";
672   OS << "  if (id != 0) {\n";
673   OS << "    switch(IntrinsicsToAttributesMap[id - 1]) {\n";
674   OS << "    default: llvm_unreachable(\"Invalid attribute number\");\n";
675   for (auto UniqAttribute : UniqAttributes) {
676     OS << "    case " << UniqAttribute.second << ": {\n";
677 
678     const CodeGenIntrinsic &Intrinsic = *(UniqAttribute.first);
679 
680     // Keep track of the number of attributes we're writing out.
681     unsigned numAttrs = 0;
682 
683     // The argument attributes are alreadys sorted by argument index.
684     unsigned Ai = 0, Ae = Intrinsic.ArgumentAttributes.size();
685     if (Ae) {
686       while (Ai != Ae) {
687         unsigned AttrIdx = Intrinsic.ArgumentAttributes[Ai].Index;
688 
689         OS << "      const Attribute::AttrKind AttrParam" << AttrIdx << "[]= {";
690         ListSeparator LS(",");
691 
692         bool AllValuesAreZero = true;
693         SmallVector<uint64_t, 8> Values;
694         do {
695           switch (Intrinsic.ArgumentAttributes[Ai].Kind) {
696           case CodeGenIntrinsic::NoCapture:
697             OS << LS << "Attribute::NoCapture";
698             break;
699           case CodeGenIntrinsic::NoAlias:
700             OS << LS << "Attribute::NoAlias";
701             break;
702           case CodeGenIntrinsic::NoUndef:
703             OS << LS << "Attribute::NoUndef";
704             break;
705           case CodeGenIntrinsic::Returned:
706             OS << LS << "Attribute::Returned";
707             break;
708           case CodeGenIntrinsic::ReadOnly:
709             OS << LS << "Attribute::ReadOnly";
710             break;
711           case CodeGenIntrinsic::WriteOnly:
712             OS << LS << "Attribute::WriteOnly";
713             break;
714           case CodeGenIntrinsic::ReadNone:
715             OS << LS << "Attribute::ReadNone";
716             break;
717           case CodeGenIntrinsic::ImmArg:
718             OS << LS << "Attribute::ImmArg";
719             break;
720           case CodeGenIntrinsic::Alignment:
721             OS << LS << "Attribute::Alignment";
722             break;
723           }
724           uint64_t V = Intrinsic.ArgumentAttributes[Ai].Value;
725           Values.push_back(V);
726           AllValuesAreZero &= (V == 0);
727 
728           ++Ai;
729         } while (Ai != Ae && Intrinsic.ArgumentAttributes[Ai].Index == AttrIdx);
730         OS << "};\n";
731 
732         // Generate attribute value array if not all attribute values are zero.
733         if (!AllValuesAreZero) {
734           OS << "      const uint64_t AttrValParam" << AttrIdx << "[]= {";
735           ListSeparator LSV(",");
736           for (const auto V : Values)
737             OS << LSV << V;
738           OS << "};\n";
739         }
740 
741         OS << "      AS[" << numAttrs++ << "] = AttributeList::get(C, "
742            << AttrIdx << ", AttrParam" << AttrIdx;
743         if (!AllValuesAreZero)
744           OS << ", AttrValParam" << AttrIdx;
745         OS << ");\n";
746       }
747     }
748 
749     if (!Intrinsic.canThrow ||
750         (Intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem &&
751          !Intrinsic.hasSideEffects) ||
752         Intrinsic.isNoReturn || Intrinsic.isNoSync || Intrinsic.isNoFree ||
753         Intrinsic.isWillReturn || Intrinsic.isCold || Intrinsic.isNoDuplicate ||
754         Intrinsic.isNoMerge || Intrinsic.isConvergent ||
755         Intrinsic.isSpeculatable) {
756       OS << "      const Attribute::AttrKind Atts[] = {";
757       ListSeparator LS(",");
758       if (!Intrinsic.canThrow)
759         OS << LS << "Attribute::NoUnwind";
760       if (Intrinsic.isNoReturn)
761         OS << LS << "Attribute::NoReturn";
762       if (Intrinsic.isNoSync)
763         OS << LS << "Attribute::NoSync";
764       if (Intrinsic.isNoFree)
765         OS << LS << "Attribute::NoFree";
766       if (Intrinsic.isWillReturn)
767         OS << LS << "Attribute::WillReturn";
768       if (Intrinsic.isCold)
769         OS << LS << "Attribute::Cold";
770       if (Intrinsic.isNoDuplicate)
771         OS << LS << "Attribute::NoDuplicate";
772       if (Intrinsic.isNoMerge)
773         OS << LS << "Attribute::NoMerge";
774       if (Intrinsic.isConvergent)
775         OS << LS << "Attribute::Convergent";
776       if (Intrinsic.isSpeculatable)
777         OS << LS << "Attribute::Speculatable";
778 
779       switch (Intrinsic.ModRef) {
780       case CodeGenIntrinsic::NoMem:
781         if (Intrinsic.hasSideEffects)
782           break;
783         OS << LS;
784         OS << "Attribute::ReadNone";
785         break;
786       case CodeGenIntrinsic::ReadArgMem:
787         OS << LS;
788         OS << "Attribute::ReadOnly,";
789         OS << "Attribute::ArgMemOnly";
790         break;
791       case CodeGenIntrinsic::ReadMem:
792         OS << LS;
793         OS << "Attribute::ReadOnly";
794         break;
795       case CodeGenIntrinsic::ReadInaccessibleMem:
796         OS << LS;
797         OS << "Attribute::ReadOnly,";
798         OS << "Attribute::InaccessibleMemOnly";
799         break;
800       case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem:
801         OS << LS;
802         OS << "Attribute::ReadOnly,";
803         OS << "Attribute::InaccessibleMemOrArgMemOnly";
804         break;
805       case CodeGenIntrinsic::WriteArgMem:
806         OS << LS;
807         OS << "Attribute::WriteOnly,";
808         OS << "Attribute::ArgMemOnly";
809         break;
810       case CodeGenIntrinsic::WriteMem:
811         OS << LS;
812         OS << "Attribute::WriteOnly";
813         break;
814       case CodeGenIntrinsic::WriteInaccessibleMem:
815         OS << LS;
816         OS << "Attribute::WriteOnly,";
817         OS << "Attribute::InaccessibleMemOnly";
818         break;
819       case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem:
820         OS << LS;
821         OS << "Attribute::WriteOnly,";
822         OS << "Attribute::InaccessibleMemOrArgMemOnly";
823         break;
824       case CodeGenIntrinsic::ReadWriteArgMem:
825         OS << LS;
826         OS << "Attribute::ArgMemOnly";
827         break;
828       case CodeGenIntrinsic::ReadWriteInaccessibleMem:
829         OS << LS;
830         OS << "Attribute::InaccessibleMemOnly";
831         break;
832       case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem:
833         OS << LS;
834         OS << "Attribute::InaccessibleMemOrArgMemOnly";
835         break;
836       case CodeGenIntrinsic::ReadWriteMem:
837         break;
838       }
839       OS << "};\n";
840       OS << "      AS[" << numAttrs++ << "] = AttributeList::get(C, "
841          << "AttributeList::FunctionIndex, Atts);\n";
842     }
843 
844     if (numAttrs) {
845       OS << "      NumAttrs = " << numAttrs << ";\n";
846       OS << "      break;\n";
847       OS << "      }\n";
848     } else {
849       OS << "      return AttributeList();\n";
850       OS << "      }\n";
851     }
852   }
853 
854   OS << "    }\n";
855   OS << "  }\n";
856   OS << "  return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n";
857   OS << "}\n";
858   OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
859 }
860 
861 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
862     const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) {
863   StringRef CompilerName = (IsGCC ? "GCC" : "MS");
864   typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
865   BIMTy BuiltinMap;
866   StringToOffsetTable Table;
867   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
868     const std::string &BuiltinName =
869         IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName;
870     if (!BuiltinName.empty()) {
871       // Get the map for this target prefix.
872       std::map<std::string, std::string> &BIM =
873           BuiltinMap[Ints[i].TargetPrefix];
874 
875       if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
876         PrintFatalError(Ints[i].TheDef->getLoc(),
877                         "Intrinsic '" + Ints[i].TheDef->getName() +
878                             "': duplicate " + CompilerName + " builtin name!");
879       Table.GetOrAddStringOffset(BuiltinName);
880     }
881   }
882 
883   OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
884   OS << "// This is used by the C front-end.  The builtin name is passed\n";
885   OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
886   OS << "// in as TargetPrefix.  The result is assigned to 'IntrinsicID'.\n";
887   OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n";
888 
889   OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
890      << "Builtin(const char "
891      << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
892 
893   if (Table.Empty()) {
894     OS << "  return Intrinsic::not_intrinsic;\n";
895     OS << "}\n";
896     OS << "#endif\n\n";
897     return;
898   }
899 
900   OS << "  static const char BuiltinNames[] = {\n";
901   Table.EmitCharArray(OS);
902   OS << "  };\n\n";
903 
904   OS << "  struct BuiltinEntry {\n";
905   OS << "    Intrinsic::ID IntrinID;\n";
906   OS << "    unsigned StrTabOffset;\n";
907   OS << "    const char *getName() const {\n";
908   OS << "      return &BuiltinNames[StrTabOffset];\n";
909   OS << "    }\n";
910   OS << "    bool operator<(StringRef RHS) const {\n";
911   OS << "      return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
912   OS << "    }\n";
913   OS << "  };\n";
914 
915   OS << "  StringRef TargetPrefix(TargetPrefixStr);\n\n";
916 
917   // Note: this could emit significantly better code if we cared.
918   for (auto &I : BuiltinMap) {
919     OS << "  ";
920     if (!I.first.empty())
921       OS << "if (TargetPrefix == \"" << I.first << "\") ";
922     else
923       OS << "/* Target Independent Builtins */ ";
924     OS << "{\n";
925 
926     // Emit the comparisons for this target prefix.
927     OS << "    static const BuiltinEntry " << I.first << "Names[] = {\n";
928     for (const auto &P : I.second) {
929       OS << "      {Intrinsic::" << P.second << ", "
930          << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
931     }
932     OS << "    };\n";
933     OS << "    auto I = std::lower_bound(std::begin(" << I.first << "Names),\n";
934     OS << "                              std::end(" << I.first << "Names),\n";
935     OS << "                              BuiltinNameStr);\n";
936     OS << "    if (I != std::end(" << I.first << "Names) &&\n";
937     OS << "        I->getName() == BuiltinNameStr)\n";
938     OS << "      return I->IntrinID;\n";
939     OS << "  }\n";
940   }
941   OS << "  return ";
942   OS << "Intrinsic::not_intrinsic;\n";
943   OS << "}\n";
944   OS << "#endif\n\n";
945 }
946 
947 void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) {
948   IntrinsicEmitter(RK).run(OS, /*Enums=*/true);
949 }
950 
951 void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) {
952   IntrinsicEmitter(RK).run(OS, /*Enums=*/false);
953 }
954