1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This tablegen backend emits code for use by the GlobalISel instruction 11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td. 12 /// 13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen 14 /// backend, filters out the ones that are unsupported, maps 15 /// SelectionDAG-specific constructs to their GlobalISel counterpart 16 /// (when applicable: MVT to LLT; SDNode to generic Instruction). 17 /// 18 /// Not all patterns are supported: pass the tablegen invocation 19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped, 20 /// as well as why. 21 /// 22 /// The generated file defines a single method: 23 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const; 24 /// intended to be used in InstructionSelector::select as the first-step 25 /// selector for the patterns that don't require complex C++. 26 /// 27 /// FIXME: We'll probably want to eventually define a base 28 /// "TargetGenInstructionSelector" class. 29 /// 30 //===----------------------------------------------------------------------===// 31 32 #include "CodeGenDAGPatterns.h" 33 #include "SubtargetFeatureInfo.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/SmallSet.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/Support/CodeGenCoverage.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/LowLevelTypeImpl.h" 41 #include "llvm/Support/MachineValueType.h" 42 #include "llvm/Support/ScopedPrinter.h" 43 #include "llvm/TableGen/Error.h" 44 #include "llvm/TableGen/Record.h" 45 #include "llvm/TableGen/TableGenBackend.h" 46 #include <numeric> 47 #include <string> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "gisel-emitter" 51 52 STATISTIC(NumPatternTotal, "Total number of patterns"); 53 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG"); 54 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped"); 55 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information"); 56 STATISTIC(NumPatternEmitted, "Number of patterns emitted"); 57 58 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel"); 59 60 static cl::opt<bool> WarnOnSkippedPatterns( 61 "warn-on-skipped-patterns", 62 cl::desc("Explain why a pattern was skipped for inclusion " 63 "in the GlobalISel selector"), 64 cl::init(false), cl::cat(GlobalISelEmitterCat)); 65 66 static cl::opt<bool> GenerateCoverage( 67 "instrument-gisel-coverage", 68 cl::desc("Generate coverage instrumentation for GlobalISel"), 69 cl::init(false), cl::cat(GlobalISelEmitterCat)); 70 71 static cl::opt<std::string> UseCoverageFile( 72 "gisel-coverage-file", cl::init(""), 73 cl::desc("Specify file to retrieve coverage information from"), 74 cl::cat(GlobalISelEmitterCat)); 75 76 static cl::opt<bool> OptimizeMatchTable( 77 "optimize-match-table", 78 cl::desc("Generate an optimized version of the match table"), 79 cl::init(true), cl::cat(GlobalISelEmitterCat)); 80 81 namespace { 82 //===- Helper functions ---------------------------------------------------===// 83 84 /// Get the name of the enum value used to number the predicate function. 85 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) { 86 if (Predicate.hasGISelPredicateCode()) 87 return "GIPFP_MI_" + Predicate.getFnName(); 88 return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" + 89 Predicate.getFnName(); 90 } 91 92 /// Get the opcode used to check this predicate. 93 std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) { 94 return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate"; 95 } 96 97 /// This class stands in for LLT wherever we want to tablegen-erate an 98 /// equivalent at compiler run-time. 99 class LLTCodeGen { 100 private: 101 LLT Ty; 102 103 public: 104 LLTCodeGen() = default; 105 LLTCodeGen(const LLT &Ty) : Ty(Ty) {} 106 107 std::string getCxxEnumValue() const { 108 std::string Str; 109 raw_string_ostream OS(Str); 110 111 emitCxxEnumValue(OS); 112 return OS.str(); 113 } 114 115 void emitCxxEnumValue(raw_ostream &OS) const { 116 if (Ty.isScalar()) { 117 OS << "GILLT_s" << Ty.getSizeInBits(); 118 return; 119 } 120 if (Ty.isVector()) { 121 OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits(); 122 return; 123 } 124 if (Ty.isPointer()) { 125 OS << "GILLT_p" << Ty.getAddressSpace(); 126 if (Ty.getSizeInBits() > 0) 127 OS << "s" << Ty.getSizeInBits(); 128 return; 129 } 130 llvm_unreachable("Unhandled LLT"); 131 } 132 133 void emitCxxConstructorCall(raw_ostream &OS) const { 134 if (Ty.isScalar()) { 135 OS << "LLT::scalar(" << Ty.getSizeInBits() << ")"; 136 return; 137 } 138 if (Ty.isVector()) { 139 OS << "LLT::vector(" << Ty.getNumElements() << ", " 140 << Ty.getScalarSizeInBits() << ")"; 141 return; 142 } 143 if (Ty.isPointer() && Ty.getSizeInBits() > 0) { 144 OS << "LLT::pointer(" << Ty.getAddressSpace() << ", " 145 << Ty.getSizeInBits() << ")"; 146 return; 147 } 148 llvm_unreachable("Unhandled LLT"); 149 } 150 151 const LLT &get() const { return Ty; } 152 153 /// This ordering is used for std::unique() and llvm::sort(). There's no 154 /// particular logic behind the order but either A < B or B < A must be 155 /// true if A != B. 156 bool operator<(const LLTCodeGen &Other) const { 157 if (Ty.isValid() != Other.Ty.isValid()) 158 return Ty.isValid() < Other.Ty.isValid(); 159 if (!Ty.isValid()) 160 return false; 161 162 if (Ty.isVector() != Other.Ty.isVector()) 163 return Ty.isVector() < Other.Ty.isVector(); 164 if (Ty.isScalar() != Other.Ty.isScalar()) 165 return Ty.isScalar() < Other.Ty.isScalar(); 166 if (Ty.isPointer() != Other.Ty.isPointer()) 167 return Ty.isPointer() < Other.Ty.isPointer(); 168 169 if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace()) 170 return Ty.getAddressSpace() < Other.Ty.getAddressSpace(); 171 172 if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements()) 173 return Ty.getNumElements() < Other.Ty.getNumElements(); 174 175 return Ty.getSizeInBits() < Other.Ty.getSizeInBits(); 176 } 177 178 bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; } 179 }; 180 181 // Track all types that are used so we can emit the corresponding enum. 182 std::set<LLTCodeGen> KnownTypes; 183 184 class InstructionMatcher; 185 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for 186 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...). 187 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) { 188 MVT VT(SVT); 189 190 if (VT.isVector() && VT.getVectorNumElements() != 1) 191 return LLTCodeGen( 192 LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits())); 193 194 if (VT.isInteger() || VT.isFloatingPoint()) 195 return LLTCodeGen(LLT::scalar(VT.getSizeInBits())); 196 return None; 197 } 198 199 static std::string explainPredicates(const TreePatternNode *N) { 200 std::string Explanation = ""; 201 StringRef Separator = ""; 202 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 203 const TreePredicateFn &P = Call.Fn; 204 Explanation += 205 (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str(); 206 Separator = ", "; 207 208 if (P.isAlwaysTrue()) 209 Explanation += " always-true"; 210 if (P.isImmediatePattern()) 211 Explanation += " immediate"; 212 213 if (P.isUnindexed()) 214 Explanation += " unindexed"; 215 216 if (P.isNonExtLoad()) 217 Explanation += " non-extload"; 218 if (P.isAnyExtLoad()) 219 Explanation += " extload"; 220 if (P.isSignExtLoad()) 221 Explanation += " sextload"; 222 if (P.isZeroExtLoad()) 223 Explanation += " zextload"; 224 225 if (P.isNonTruncStore()) 226 Explanation += " non-truncstore"; 227 if (P.isTruncStore()) 228 Explanation += " truncstore"; 229 230 if (Record *VT = P.getMemoryVT()) 231 Explanation += (" MemVT=" + VT->getName()).str(); 232 if (Record *VT = P.getScalarMemoryVT()) 233 Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str(); 234 235 if (ListInit *AddrSpaces = P.getAddressSpaces()) { 236 raw_string_ostream OS(Explanation); 237 OS << " AddressSpaces=["; 238 239 StringRef AddrSpaceSeparator; 240 for (Init *Val : AddrSpaces->getValues()) { 241 IntInit *IntVal = dyn_cast<IntInit>(Val); 242 if (!IntVal) 243 continue; 244 245 OS << AddrSpaceSeparator << IntVal->getValue(); 246 AddrSpaceSeparator = ", "; 247 } 248 249 OS << ']'; 250 } 251 252 int64_t MinAlign = P.getMinAlignment(); 253 if (MinAlign > 0) 254 Explanation += " MinAlign=" + utostr(MinAlign); 255 256 if (P.isAtomicOrderingMonotonic()) 257 Explanation += " monotonic"; 258 if (P.isAtomicOrderingAcquire()) 259 Explanation += " acquire"; 260 if (P.isAtomicOrderingRelease()) 261 Explanation += " release"; 262 if (P.isAtomicOrderingAcquireRelease()) 263 Explanation += " acq_rel"; 264 if (P.isAtomicOrderingSequentiallyConsistent()) 265 Explanation += " seq_cst"; 266 if (P.isAtomicOrderingAcquireOrStronger()) 267 Explanation += " >=acquire"; 268 if (P.isAtomicOrderingWeakerThanAcquire()) 269 Explanation += " <acquire"; 270 if (P.isAtomicOrderingReleaseOrStronger()) 271 Explanation += " >=release"; 272 if (P.isAtomicOrderingWeakerThanRelease()) 273 Explanation += " <release"; 274 } 275 return Explanation; 276 } 277 278 std::string explainOperator(Record *Operator) { 279 if (Operator->isSubClassOf("SDNode")) 280 return (" (" + Operator->getValueAsString("Opcode") + ")").str(); 281 282 if (Operator->isSubClassOf("Intrinsic")) 283 return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str(); 284 285 if (Operator->isSubClassOf("ComplexPattern")) 286 return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() + 287 ")") 288 .str(); 289 290 if (Operator->isSubClassOf("SDNodeXForm")) 291 return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() + 292 ")") 293 .str(); 294 295 return (" (Operator " + Operator->getName() + " not understood)").str(); 296 } 297 298 /// Helper function to let the emitter report skip reason error messages. 299 static Error failedImport(const Twine &Reason) { 300 return make_error<StringError>(Reason, inconvertibleErrorCode()); 301 } 302 303 static Error isTrivialOperatorNode(const TreePatternNode *N) { 304 std::string Explanation = ""; 305 std::string Separator = ""; 306 307 bool HasUnsupportedPredicate = false; 308 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 309 const TreePredicateFn &Predicate = Call.Fn; 310 311 if (Predicate.isAlwaysTrue()) 312 continue; 313 314 if (Predicate.isImmediatePattern()) 315 continue; 316 317 if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() || 318 Predicate.isSignExtLoad() || Predicate.isZeroExtLoad()) 319 continue; 320 321 if (Predicate.isNonTruncStore() || Predicate.isTruncStore()) 322 continue; 323 324 if (Predicate.isLoad() && Predicate.getMemoryVT()) 325 continue; 326 327 if (Predicate.isLoad() || Predicate.isStore()) { 328 if (Predicate.isUnindexed()) 329 continue; 330 } 331 332 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 333 const ListInit *AddrSpaces = Predicate.getAddressSpaces(); 334 if (AddrSpaces && !AddrSpaces->empty()) 335 continue; 336 337 if (Predicate.getMinAlignment() > 0) 338 continue; 339 } 340 341 if (Predicate.isAtomic() && Predicate.getMemoryVT()) 342 continue; 343 344 if (Predicate.isAtomic() && 345 (Predicate.isAtomicOrderingMonotonic() || 346 Predicate.isAtomicOrderingAcquire() || 347 Predicate.isAtomicOrderingRelease() || 348 Predicate.isAtomicOrderingAcquireRelease() || 349 Predicate.isAtomicOrderingSequentiallyConsistent() || 350 Predicate.isAtomicOrderingAcquireOrStronger() || 351 Predicate.isAtomicOrderingWeakerThanAcquire() || 352 Predicate.isAtomicOrderingReleaseOrStronger() || 353 Predicate.isAtomicOrderingWeakerThanRelease())) 354 continue; 355 356 if (Predicate.hasGISelPredicateCode()) 357 continue; 358 359 HasUnsupportedPredicate = true; 360 Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")"; 361 Separator = ", "; 362 Explanation += (Separator + "first-failing:" + 363 Predicate.getOrigPatFragRecord()->getRecord()->getName()) 364 .str(); 365 break; 366 } 367 368 if (!HasUnsupportedPredicate) 369 return Error::success(); 370 371 return failedImport(Explanation); 372 } 373 374 static Record *getInitValueAsRegClass(Init *V) { 375 if (DefInit *VDefInit = dyn_cast<DefInit>(V)) { 376 if (VDefInit->getDef()->isSubClassOf("RegisterOperand")) 377 return VDefInit->getDef()->getValueAsDef("RegClass"); 378 if (VDefInit->getDef()->isSubClassOf("RegisterClass")) 379 return VDefInit->getDef(); 380 } 381 return nullptr; 382 } 383 384 std::string 385 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 386 std::string Name = "GIFBS"; 387 for (const auto &Feature : FeatureBitset) 388 Name += ("_" + Feature->getName()).str(); 389 return Name; 390 } 391 392 //===- MatchTable Helpers -------------------------------------------------===// 393 394 class MatchTable; 395 396 /// A record to be stored in a MatchTable. 397 /// 398 /// This class represents any and all output that may be required to emit the 399 /// MatchTable. Instances are most often configured to represent an opcode or 400 /// value that will be emitted to the table with some formatting but it can also 401 /// represent commas, comments, and other formatting instructions. 402 struct MatchTableRecord { 403 enum RecordFlagsBits { 404 MTRF_None = 0x0, 405 /// Causes EmitStr to be formatted as comment when emitted. 406 MTRF_Comment = 0x1, 407 /// Causes the record value to be followed by a comma when emitted. 408 MTRF_CommaFollows = 0x2, 409 /// Causes the record value to be followed by a line break when emitted. 410 MTRF_LineBreakFollows = 0x4, 411 /// Indicates that the record defines a label and causes an additional 412 /// comment to be emitted containing the index of the label. 413 MTRF_Label = 0x8, 414 /// Causes the record to be emitted as the index of the label specified by 415 /// LabelID along with a comment indicating where that label is. 416 MTRF_JumpTarget = 0x10, 417 /// Causes the formatter to add a level of indentation before emitting the 418 /// record. 419 MTRF_Indent = 0x20, 420 /// Causes the formatter to remove a level of indentation after emitting the 421 /// record. 422 MTRF_Outdent = 0x40, 423 }; 424 425 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to 426 /// reference or define. 427 unsigned LabelID; 428 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a 429 /// value, a label name. 430 std::string EmitStr; 431 432 private: 433 /// The number of MatchTable elements described by this record. Comments are 0 434 /// while values are typically 1. Values >1 may occur when we need to emit 435 /// values that exceed the size of a MatchTable element. 436 unsigned NumElements; 437 438 public: 439 /// A bitfield of RecordFlagsBits flags. 440 unsigned Flags; 441 442 /// The actual run-time value, if known 443 int64_t RawValue; 444 445 MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr, 446 unsigned NumElements, unsigned Flags, 447 int64_t RawValue = std::numeric_limits<int64_t>::min()) 448 : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u), 449 EmitStr(EmitStr), NumElements(NumElements), Flags(Flags), 450 RawValue(RawValue) { 451 assert((!LabelID_.hasValue() || LabelID != ~0u) && 452 "This value is reserved for non-labels"); 453 } 454 MatchTableRecord(const MatchTableRecord &Other) = default; 455 MatchTableRecord(MatchTableRecord &&Other) = default; 456 457 /// Useful if a Match Table Record gets optimized out 458 void turnIntoComment() { 459 Flags |= MTRF_Comment; 460 Flags &= ~MTRF_CommaFollows; 461 NumElements = 0; 462 } 463 464 /// For Jump Table generation purposes 465 bool operator<(const MatchTableRecord &Other) const { 466 return RawValue < Other.RawValue; 467 } 468 int64_t getRawValue() const { return RawValue; } 469 470 void emit(raw_ostream &OS, bool LineBreakNextAfterThis, 471 const MatchTable &Table) const; 472 unsigned size() const { return NumElements; } 473 }; 474 475 class Matcher; 476 477 /// Holds the contents of a generated MatchTable to enable formatting and the 478 /// necessary index tracking needed to support GIM_Try. 479 class MatchTable { 480 /// An unique identifier for the table. The generated table will be named 481 /// MatchTable${ID}. 482 unsigned ID; 483 /// The records that make up the table. Also includes comments describing the 484 /// values being emitted and line breaks to format it. 485 std::vector<MatchTableRecord> Contents; 486 /// The currently defined labels. 487 DenseMap<unsigned, unsigned> LabelMap; 488 /// Tracks the sum of MatchTableRecord::NumElements as the table is built. 489 unsigned CurrentSize = 0; 490 /// A unique identifier for a MatchTable label. 491 unsigned CurrentLabelID = 0; 492 /// Determines if the table should be instrumented for rule coverage tracking. 493 bool IsWithCoverage; 494 495 public: 496 static MatchTableRecord LineBreak; 497 static MatchTableRecord Comment(StringRef Comment) { 498 return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment); 499 } 500 static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) { 501 unsigned ExtraFlags = 0; 502 if (IndentAdjust > 0) 503 ExtraFlags |= MatchTableRecord::MTRF_Indent; 504 if (IndentAdjust < 0) 505 ExtraFlags |= MatchTableRecord::MTRF_Outdent; 506 507 return MatchTableRecord(None, Opcode, 1, 508 MatchTableRecord::MTRF_CommaFollows | ExtraFlags); 509 } 510 static MatchTableRecord NamedValue(StringRef NamedValue) { 511 return MatchTableRecord(None, NamedValue, 1, 512 MatchTableRecord::MTRF_CommaFollows); 513 } 514 static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) { 515 return MatchTableRecord(None, NamedValue, 1, 516 MatchTableRecord::MTRF_CommaFollows, RawValue); 517 } 518 static MatchTableRecord NamedValue(StringRef Namespace, 519 StringRef NamedValue) { 520 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, 521 MatchTableRecord::MTRF_CommaFollows); 522 } 523 static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue, 524 int64_t RawValue) { 525 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, 526 MatchTableRecord::MTRF_CommaFollows, RawValue); 527 } 528 static MatchTableRecord IntValue(int64_t IntValue) { 529 return MatchTableRecord(None, llvm::to_string(IntValue), 1, 530 MatchTableRecord::MTRF_CommaFollows); 531 } 532 static MatchTableRecord Label(unsigned LabelID) { 533 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0, 534 MatchTableRecord::MTRF_Label | 535 MatchTableRecord::MTRF_Comment | 536 MatchTableRecord::MTRF_LineBreakFollows); 537 } 538 static MatchTableRecord JumpTarget(unsigned LabelID) { 539 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1, 540 MatchTableRecord::MTRF_JumpTarget | 541 MatchTableRecord::MTRF_Comment | 542 MatchTableRecord::MTRF_CommaFollows); 543 } 544 545 static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage); 546 547 MatchTable(bool WithCoverage, unsigned ID = 0) 548 : ID(ID), IsWithCoverage(WithCoverage) {} 549 550 bool isWithCoverage() const { return IsWithCoverage; } 551 552 void push_back(const MatchTableRecord &Value) { 553 if (Value.Flags & MatchTableRecord::MTRF_Label) 554 defineLabel(Value.LabelID); 555 Contents.push_back(Value); 556 CurrentSize += Value.size(); 557 } 558 559 unsigned allocateLabelID() { return CurrentLabelID++; } 560 561 void defineLabel(unsigned LabelID) { 562 LabelMap.insert(std::make_pair(LabelID, CurrentSize)); 563 } 564 565 unsigned getLabelIndex(unsigned LabelID) const { 566 const auto I = LabelMap.find(LabelID); 567 assert(I != LabelMap.end() && "Use of undeclared label"); 568 return I->second; 569 } 570 571 void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; } 572 573 void emitDeclaration(raw_ostream &OS) const { 574 unsigned Indentation = 4; 575 OS << " constexpr static int64_t MatchTable" << ID << "[] = {"; 576 LineBreak.emit(OS, true, *this); 577 OS << std::string(Indentation, ' '); 578 579 for (auto I = Contents.begin(), E = Contents.end(); I != E; 580 ++I) { 581 bool LineBreakIsNext = false; 582 const auto &NextI = std::next(I); 583 584 if (NextI != E) { 585 if (NextI->EmitStr == "" && 586 NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows) 587 LineBreakIsNext = true; 588 } 589 590 if (I->Flags & MatchTableRecord::MTRF_Indent) 591 Indentation += 2; 592 593 I->emit(OS, LineBreakIsNext, *this); 594 if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows) 595 OS << std::string(Indentation, ' '); 596 597 if (I->Flags & MatchTableRecord::MTRF_Outdent) 598 Indentation -= 2; 599 } 600 OS << "};\n"; 601 } 602 }; 603 604 MatchTableRecord MatchTable::LineBreak = { 605 None, "" /* Emit String */, 0 /* Elements */, 606 MatchTableRecord::MTRF_LineBreakFollows}; 607 608 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis, 609 const MatchTable &Table) const { 610 bool UseLineComment = 611 LineBreakIsNextAfterThis || (Flags & MTRF_LineBreakFollows); 612 if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows)) 613 UseLineComment = false; 614 615 if (Flags & MTRF_Comment) 616 OS << (UseLineComment ? "// " : "/*"); 617 618 OS << EmitStr; 619 if (Flags & MTRF_Label) 620 OS << ": @" << Table.getLabelIndex(LabelID); 621 622 if ((Flags & MTRF_Comment) && !UseLineComment) 623 OS << "*/"; 624 625 if (Flags & MTRF_JumpTarget) { 626 if (Flags & MTRF_Comment) 627 OS << " "; 628 OS << Table.getLabelIndex(LabelID); 629 } 630 631 if (Flags & MTRF_CommaFollows) { 632 OS << ","; 633 if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows)) 634 OS << " "; 635 } 636 637 if (Flags & MTRF_LineBreakFollows) 638 OS << "\n"; 639 } 640 641 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) { 642 Table.push_back(Value); 643 return Table; 644 } 645 646 //===- Matchers -----------------------------------------------------------===// 647 648 class OperandMatcher; 649 class MatchAction; 650 class PredicateMatcher; 651 class RuleMatcher; 652 653 class Matcher { 654 public: 655 virtual ~Matcher() = default; 656 virtual void optimize() {} 657 virtual void emit(MatchTable &Table) = 0; 658 659 virtual bool hasFirstCondition() const = 0; 660 virtual const PredicateMatcher &getFirstCondition() const = 0; 661 virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0; 662 }; 663 664 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules, 665 bool WithCoverage) { 666 MatchTable Table(WithCoverage); 667 for (Matcher *Rule : Rules) 668 Rule->emit(Table); 669 670 return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; 671 } 672 673 class GroupMatcher final : public Matcher { 674 /// Conditions that form a common prefix of all the matchers contained. 675 SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions; 676 677 /// All the nested matchers, sharing a common prefix. 678 std::vector<Matcher *> Matchers; 679 680 /// An owning collection for any auxiliary matchers created while optimizing 681 /// nested matchers contained. 682 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 683 684 public: 685 /// Add a matcher to the collection of nested matchers if it meets the 686 /// requirements, and return true. If it doesn't, do nothing and return false. 687 /// 688 /// Expected to preserve its argument, so it could be moved out later on. 689 bool addMatcher(Matcher &Candidate); 690 691 /// Mark the matcher as fully-built and ensure any invariants expected by both 692 /// optimize() and emit(...) methods. Generally, both sequences of calls 693 /// are expected to lead to a sensible result: 694 /// 695 /// addMatcher(...)*; finalize(); optimize(); emit(...); and 696 /// addMatcher(...)*; finalize(); emit(...); 697 /// 698 /// or generally 699 /// 700 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }* 701 /// 702 /// Multiple calls to optimize() are expected to be handled gracefully, though 703 /// optimize() is not expected to be idempotent. Multiple calls to finalize() 704 /// aren't generally supported. emit(...) is expected to be non-mutating and 705 /// producing the exact same results upon repeated calls. 706 /// 707 /// addMatcher() calls after the finalize() call are not supported. 708 /// 709 /// finalize() and optimize() are both allowed to mutate the contained 710 /// matchers, so moving them out after finalize() is not supported. 711 void finalize(); 712 void optimize() override; 713 void emit(MatchTable &Table) override; 714 715 /// Could be used to move out the matchers added previously, unless finalize() 716 /// has been already called. If any of the matchers are moved out, the group 717 /// becomes safe to destroy, but not safe to re-use for anything else. 718 iterator_range<std::vector<Matcher *>::iterator> matchers() { 719 return make_range(Matchers.begin(), Matchers.end()); 720 } 721 size_t size() const { return Matchers.size(); } 722 bool empty() const { return Matchers.empty(); } 723 724 std::unique_ptr<PredicateMatcher> popFirstCondition() override { 725 assert(!Conditions.empty() && 726 "Trying to pop a condition from a condition-less group"); 727 std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front()); 728 Conditions.erase(Conditions.begin()); 729 return P; 730 } 731 const PredicateMatcher &getFirstCondition() const override { 732 assert(!Conditions.empty() && 733 "Trying to get a condition from a condition-less group"); 734 return *Conditions.front(); 735 } 736 bool hasFirstCondition() const override { return !Conditions.empty(); } 737 738 private: 739 /// See if a candidate matcher could be added to this group solely by 740 /// analyzing its first condition. 741 bool candidateConditionMatches(const PredicateMatcher &Predicate) const; 742 }; 743 744 class SwitchMatcher : public Matcher { 745 /// All the nested matchers, representing distinct switch-cases. The first 746 /// conditions (as Matcher::getFirstCondition() reports) of all the nested 747 /// matchers must share the same type and path to a value they check, in other 748 /// words, be isIdenticalDownToValue, but have different values they check 749 /// against. 750 std::vector<Matcher *> Matchers; 751 752 /// The representative condition, with a type and a path (InsnVarID and OpIdx 753 /// in most cases) shared by all the matchers contained. 754 std::unique_ptr<PredicateMatcher> Condition = nullptr; 755 756 /// Temporary set used to check that the case values don't repeat within the 757 /// same switch. 758 std::set<MatchTableRecord> Values; 759 760 /// An owning collection for any auxiliary matchers created while optimizing 761 /// nested matchers contained. 762 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 763 764 public: 765 bool addMatcher(Matcher &Candidate); 766 767 void finalize(); 768 void emit(MatchTable &Table) override; 769 770 iterator_range<std::vector<Matcher *>::iterator> matchers() { 771 return make_range(Matchers.begin(), Matchers.end()); 772 } 773 size_t size() const { return Matchers.size(); } 774 bool empty() const { return Matchers.empty(); } 775 776 std::unique_ptr<PredicateMatcher> popFirstCondition() override { 777 // SwitchMatcher doesn't have a common first condition for its cases, as all 778 // the cases only share a kind of a value (a type and a path to it) they 779 // match, but deliberately differ in the actual value they match. 780 llvm_unreachable("Trying to pop a condition from a condition-less group"); 781 } 782 const PredicateMatcher &getFirstCondition() const override { 783 llvm_unreachable("Trying to pop a condition from a condition-less group"); 784 } 785 bool hasFirstCondition() const override { return false; } 786 787 private: 788 /// See if the predicate type has a Switch-implementation for it. 789 static bool isSupportedPredicateType(const PredicateMatcher &Predicate); 790 791 bool candidateConditionMatches(const PredicateMatcher &Predicate) const; 792 793 /// emit()-helper 794 static void emitPredicateSpecificOpcodes(const PredicateMatcher &P, 795 MatchTable &Table); 796 }; 797 798 /// Generates code to check that a match rule matches. 799 class RuleMatcher : public Matcher { 800 public: 801 using ActionList = std::list<std::unique_ptr<MatchAction>>; 802 using action_iterator = ActionList::iterator; 803 804 protected: 805 /// A list of matchers that all need to succeed for the current rule to match. 806 /// FIXME: This currently supports a single match position but could be 807 /// extended to support multiple positions to support div/rem fusion or 808 /// load-multiple instructions. 809 using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ; 810 MatchersTy Matchers; 811 812 /// A list of actions that need to be taken when all predicates in this rule 813 /// have succeeded. 814 ActionList Actions; 815 816 using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>; 817 818 /// A map of instruction matchers to the local variables 819 DefinedInsnVariablesMap InsnVariableIDs; 820 821 using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>; 822 823 // The set of instruction matchers that have not yet been claimed for mutation 824 // by a BuildMI. 825 MutatableInsnSet MutatableInsns; 826 827 /// A map of named operands defined by the matchers that may be referenced by 828 /// the renderers. 829 StringMap<OperandMatcher *> DefinedOperands; 830 831 /// A map of anonymous physical register operands defined by the matchers that 832 /// may be referenced by the renderers. 833 DenseMap<Record *, OperandMatcher *> PhysRegOperands; 834 835 /// ID for the next instruction variable defined with implicitlyDefineInsnVar() 836 unsigned NextInsnVarID; 837 838 /// ID for the next output instruction allocated with allocateOutputInsnID() 839 unsigned NextOutputInsnID; 840 841 /// ID for the next temporary register ID allocated with allocateTempRegID() 842 unsigned NextTempRegID; 843 844 std::vector<Record *> RequiredFeatures; 845 std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers; 846 847 ArrayRef<SMLoc> SrcLoc; 848 849 typedef std::tuple<Record *, unsigned, unsigned> 850 DefinedComplexPatternSubOperand; 851 typedef StringMap<DefinedComplexPatternSubOperand> 852 DefinedComplexPatternSubOperandMap; 853 /// A map of Symbolic Names to ComplexPattern sub-operands. 854 DefinedComplexPatternSubOperandMap ComplexSubOperands; 855 856 uint64_t RuleID; 857 static uint64_t NextRuleID; 858 859 public: 860 RuleMatcher(ArrayRef<SMLoc> SrcLoc) 861 : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(), 862 DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0), 863 NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(), 864 RuleID(NextRuleID++) {} 865 RuleMatcher(RuleMatcher &&Other) = default; 866 RuleMatcher &operator=(RuleMatcher &&Other) = default; 867 868 uint64_t getRuleID() const { return RuleID; } 869 870 InstructionMatcher &addInstructionMatcher(StringRef SymbolicName); 871 void addRequiredFeature(Record *Feature); 872 const std::vector<Record *> &getRequiredFeatures() const; 873 874 template <class Kind, class... Args> Kind &addAction(Args &&... args); 875 template <class Kind, class... Args> 876 action_iterator insertAction(action_iterator InsertPt, Args &&... args); 877 878 /// Define an instruction without emitting any code to do so. 879 unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher); 880 881 unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const; 882 DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const { 883 return InsnVariableIDs.begin(); 884 } 885 DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const { 886 return InsnVariableIDs.end(); 887 } 888 iterator_range<typename DefinedInsnVariablesMap::const_iterator> 889 defined_insn_vars() const { 890 return make_range(defined_insn_vars_begin(), defined_insn_vars_end()); 891 } 892 893 MutatableInsnSet::const_iterator mutatable_insns_begin() const { 894 return MutatableInsns.begin(); 895 } 896 MutatableInsnSet::const_iterator mutatable_insns_end() const { 897 return MutatableInsns.end(); 898 } 899 iterator_range<typename MutatableInsnSet::const_iterator> 900 mutatable_insns() const { 901 return make_range(mutatable_insns_begin(), mutatable_insns_end()); 902 } 903 void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) { 904 bool R = MutatableInsns.erase(InsnMatcher); 905 assert(R && "Reserving a mutatable insn that isn't available"); 906 (void)R; 907 } 908 909 action_iterator actions_begin() { return Actions.begin(); } 910 action_iterator actions_end() { return Actions.end(); } 911 iterator_range<action_iterator> actions() { 912 return make_range(actions_begin(), actions_end()); 913 } 914 915 void defineOperand(StringRef SymbolicName, OperandMatcher &OM); 916 917 void definePhysRegOperand(Record *Reg, OperandMatcher &OM); 918 919 Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern, 920 unsigned RendererID, unsigned SubOperandID) { 921 if (ComplexSubOperands.count(SymbolicName)) 922 return failedImport( 923 "Complex suboperand referenced more than once (Operand: " + 924 SymbolicName + ")"); 925 926 ComplexSubOperands[SymbolicName] = 927 std::make_tuple(ComplexPattern, RendererID, SubOperandID); 928 929 return Error::success(); 930 } 931 932 Optional<DefinedComplexPatternSubOperand> 933 getComplexSubOperand(StringRef SymbolicName) const { 934 const auto &I = ComplexSubOperands.find(SymbolicName); 935 if (I == ComplexSubOperands.end()) 936 return None; 937 return I->second; 938 } 939 940 InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const; 941 const OperandMatcher &getOperandMatcher(StringRef Name) const; 942 const OperandMatcher &getPhysRegOperandMatcher(Record *) const; 943 944 void optimize() override; 945 void emit(MatchTable &Table) override; 946 947 /// Compare the priority of this object and B. 948 /// 949 /// Returns true if this object is more important than B. 950 bool isHigherPriorityThan(const RuleMatcher &B) const; 951 952 /// Report the maximum number of temporary operands needed by the rule 953 /// matcher. 954 unsigned countRendererFns() const; 955 956 std::unique_ptr<PredicateMatcher> popFirstCondition() override; 957 const PredicateMatcher &getFirstCondition() const override; 958 LLTCodeGen getFirstConditionAsRootType(); 959 bool hasFirstCondition() const override; 960 unsigned getNumOperands() const; 961 StringRef getOpcode() const; 962 963 // FIXME: Remove this as soon as possible 964 InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); } 965 966 unsigned allocateOutputInsnID() { return NextOutputInsnID++; } 967 unsigned allocateTempRegID() { return NextTempRegID++; } 968 969 iterator_range<MatchersTy::iterator> insnmatchers() { 970 return make_range(Matchers.begin(), Matchers.end()); 971 } 972 bool insnmatchers_empty() const { return Matchers.empty(); } 973 void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); } 974 }; 975 976 uint64_t RuleMatcher::NextRuleID = 0; 977 978 using action_iterator = RuleMatcher::action_iterator; 979 980 template <class PredicateTy> class PredicateListMatcher { 981 private: 982 /// Template instantiations should specialize this to return a string to use 983 /// for the comment emitted when there are no predicates. 984 std::string getNoPredicateComment() const; 985 986 protected: 987 using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>; 988 PredicatesTy Predicates; 989 990 /// Track if the list of predicates was manipulated by one of the optimization 991 /// methods. 992 bool Optimized = false; 993 994 public: 995 /// Construct a new predicate and add it to the matcher. 996 template <class Kind, class... Args> 997 Optional<Kind *> addPredicate(Args &&... args); 998 999 typename PredicatesTy::iterator predicates_begin() { 1000 return Predicates.begin(); 1001 } 1002 typename PredicatesTy::iterator predicates_end() { 1003 return Predicates.end(); 1004 } 1005 iterator_range<typename PredicatesTy::iterator> predicates() { 1006 return make_range(predicates_begin(), predicates_end()); 1007 } 1008 typename PredicatesTy::size_type predicates_size() const { 1009 return Predicates.size(); 1010 } 1011 bool predicates_empty() const { return Predicates.empty(); } 1012 1013 std::unique_ptr<PredicateTy> predicates_pop_front() { 1014 std::unique_ptr<PredicateTy> Front = std::move(Predicates.front()); 1015 Predicates.pop_front(); 1016 Optimized = true; 1017 return Front; 1018 } 1019 1020 void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) { 1021 Predicates.push_front(std::move(Predicate)); 1022 } 1023 1024 void eraseNullPredicates() { 1025 const auto NewEnd = 1026 std::stable_partition(Predicates.begin(), Predicates.end(), 1027 std::logical_not<std::unique_ptr<PredicateTy>>()); 1028 if (NewEnd != Predicates.begin()) { 1029 Predicates.erase(Predicates.begin(), NewEnd); 1030 Optimized = true; 1031 } 1032 } 1033 1034 /// Emit MatchTable opcodes that tests whether all the predicates are met. 1035 template <class... Args> 1036 void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) { 1037 if (Predicates.empty() && !Optimized) { 1038 Table << MatchTable::Comment(getNoPredicateComment()) 1039 << MatchTable::LineBreak; 1040 return; 1041 } 1042 1043 for (const auto &Predicate : predicates()) 1044 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...); 1045 } 1046 1047 /// Provide a function to avoid emitting certain predicates. This is used to 1048 /// defer some predicate checks until after others 1049 using PredicateFilterFunc = std::function<bool(const PredicateTy&)>; 1050 1051 /// Emit MatchTable opcodes for predicates which satisfy \p 1052 /// ShouldEmitPredicate. This should be called multiple times to ensure all 1053 /// predicates are eventually added to the match table. 1054 template <class... Args> 1055 void emitFilteredPredicateListOpcodes(PredicateFilterFunc ShouldEmitPredicate, 1056 MatchTable &Table, Args &&... args) { 1057 if (Predicates.empty() && !Optimized) { 1058 Table << MatchTable::Comment(getNoPredicateComment()) 1059 << MatchTable::LineBreak; 1060 return; 1061 } 1062 1063 for (const auto &Predicate : predicates()) { 1064 if (ShouldEmitPredicate(*Predicate)) 1065 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...); 1066 } 1067 } 1068 }; 1069 1070 class PredicateMatcher { 1071 public: 1072 /// This enum is used for RTTI and also defines the priority that is given to 1073 /// the predicate when generating the matcher code. Kinds with higher priority 1074 /// must be tested first. 1075 /// 1076 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter 1077 /// but OPM_Int must have priority over OPM_RegBank since constant integers 1078 /// are represented by a virtual register defined by a G_CONSTANT instruction. 1079 /// 1080 /// Note: The relative priority between IPM_ and OPM_ does not matter, they 1081 /// are currently not compared between each other. 1082 enum PredicateKind { 1083 IPM_Opcode, 1084 IPM_NumOperands, 1085 IPM_ImmPredicate, 1086 IPM_Imm, 1087 IPM_AtomicOrderingMMO, 1088 IPM_MemoryLLTSize, 1089 IPM_MemoryVsLLTSize, 1090 IPM_MemoryAddressSpace, 1091 IPM_MemoryAlignment, 1092 IPM_GenericPredicate, 1093 OPM_SameOperand, 1094 OPM_ComplexPattern, 1095 OPM_IntrinsicID, 1096 OPM_CmpPredicate, 1097 OPM_Instruction, 1098 OPM_Int, 1099 OPM_LiteralInt, 1100 OPM_LLT, 1101 OPM_PointerToAny, 1102 OPM_RegBank, 1103 OPM_MBB, 1104 }; 1105 1106 protected: 1107 PredicateKind Kind; 1108 unsigned InsnVarID; 1109 unsigned OpIdx; 1110 1111 public: 1112 PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0) 1113 : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {} 1114 1115 unsigned getInsnVarID() const { return InsnVarID; } 1116 unsigned getOpIdx() const { return OpIdx; } 1117 1118 virtual ~PredicateMatcher() = default; 1119 /// Emit MatchTable opcodes that check the predicate for the given operand. 1120 virtual void emitPredicateOpcodes(MatchTable &Table, 1121 RuleMatcher &Rule) const = 0; 1122 1123 PredicateKind getKind() const { return Kind; } 1124 1125 bool dependsOnOperands() const { 1126 // Custom predicates really depend on the context pattern of the 1127 // instruction, not just the individual instruction. This therefore 1128 // implicitly depends on all other pattern constraints. 1129 return Kind == IPM_GenericPredicate; 1130 } 1131 1132 virtual bool isIdentical(const PredicateMatcher &B) const { 1133 return B.getKind() == getKind() && InsnVarID == B.InsnVarID && 1134 OpIdx == B.OpIdx; 1135 } 1136 1137 virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const { 1138 return hasValue() && PredicateMatcher::isIdentical(B); 1139 } 1140 1141 virtual MatchTableRecord getValue() const { 1142 assert(hasValue() && "Can not get a value of a value-less predicate!"); 1143 llvm_unreachable("Not implemented yet"); 1144 } 1145 virtual bool hasValue() const { return false; } 1146 1147 /// Report the maximum number of temporary operands needed by the predicate 1148 /// matcher. 1149 virtual unsigned countRendererFns() const { return 0; } 1150 }; 1151 1152 /// Generates code to check a predicate of an operand. 1153 /// 1154 /// Typical predicates include: 1155 /// * Operand is a particular register. 1156 /// * Operand is assigned a particular register bank. 1157 /// * Operand is an MBB. 1158 class OperandPredicateMatcher : public PredicateMatcher { 1159 public: 1160 OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID, 1161 unsigned OpIdx) 1162 : PredicateMatcher(Kind, InsnVarID, OpIdx) {} 1163 virtual ~OperandPredicateMatcher() {} 1164 1165 /// Compare the priority of this object and B. 1166 /// 1167 /// Returns true if this object is more important than B. 1168 virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const; 1169 }; 1170 1171 template <> 1172 std::string 1173 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const { 1174 return "No operand predicates"; 1175 } 1176 1177 /// Generates code to check that a register operand is defined by the same exact 1178 /// one as another. 1179 class SameOperandMatcher : public OperandPredicateMatcher { 1180 std::string MatchingName; 1181 1182 public: 1183 SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName) 1184 : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx), 1185 MatchingName(MatchingName) {} 1186 1187 static bool classof(const PredicateMatcher *P) { 1188 return P->getKind() == OPM_SameOperand; 1189 } 1190 1191 void emitPredicateOpcodes(MatchTable &Table, 1192 RuleMatcher &Rule) const override; 1193 1194 bool isIdentical(const PredicateMatcher &B) const override { 1195 return OperandPredicateMatcher::isIdentical(B) && 1196 MatchingName == cast<SameOperandMatcher>(&B)->MatchingName; 1197 } 1198 }; 1199 1200 /// Generates code to check that an operand is a particular LLT. 1201 class LLTOperandMatcher : public OperandPredicateMatcher { 1202 protected: 1203 LLTCodeGen Ty; 1204 1205 public: 1206 static std::map<LLTCodeGen, unsigned> TypeIDValues; 1207 1208 static void initTypeIDValuesMap() { 1209 TypeIDValues.clear(); 1210 1211 unsigned ID = 0; 1212 for (const LLTCodeGen &LLTy : KnownTypes) 1213 TypeIDValues[LLTy] = ID++; 1214 } 1215 1216 LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty) 1217 : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) { 1218 KnownTypes.insert(Ty); 1219 } 1220 1221 static bool classof(const PredicateMatcher *P) { 1222 return P->getKind() == OPM_LLT; 1223 } 1224 bool isIdentical(const PredicateMatcher &B) const override { 1225 return OperandPredicateMatcher::isIdentical(B) && 1226 Ty == cast<LLTOperandMatcher>(&B)->Ty; 1227 } 1228 MatchTableRecord getValue() const override { 1229 const auto VI = TypeIDValues.find(Ty); 1230 if (VI == TypeIDValues.end()) 1231 return MatchTable::NamedValue(getTy().getCxxEnumValue()); 1232 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second); 1233 } 1234 bool hasValue() const override { 1235 if (TypeIDValues.size() != KnownTypes.size()) 1236 initTypeIDValuesMap(); 1237 return TypeIDValues.count(Ty); 1238 } 1239 1240 LLTCodeGen getTy() const { return Ty; } 1241 1242 void emitPredicateOpcodes(MatchTable &Table, 1243 RuleMatcher &Rule) const override { 1244 Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI") 1245 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1246 << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type") 1247 << getValue() << MatchTable::LineBreak; 1248 } 1249 }; 1250 1251 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues; 1252 1253 /// Generates code to check that an operand is a pointer to any address space. 1254 /// 1255 /// In SelectionDAG, the types did not describe pointers or address spaces. As a 1256 /// result, iN is used to describe a pointer of N bits to any address space and 1257 /// PatFrag predicates are typically used to constrain the address space. There's 1258 /// no reliable means to derive the missing type information from the pattern so 1259 /// imported rules must test the components of a pointer separately. 1260 /// 1261 /// If SizeInBits is zero, then the pointer size will be obtained from the 1262 /// subtarget. 1263 class PointerToAnyOperandMatcher : public OperandPredicateMatcher { 1264 protected: 1265 unsigned SizeInBits; 1266 1267 public: 1268 PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1269 unsigned SizeInBits) 1270 : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx), 1271 SizeInBits(SizeInBits) {} 1272 1273 static bool classof(const OperandPredicateMatcher *P) { 1274 return P->getKind() == OPM_PointerToAny; 1275 } 1276 1277 void emitPredicateOpcodes(MatchTable &Table, 1278 RuleMatcher &Rule) const override { 1279 Table << MatchTable::Opcode("GIM_CheckPointerToAny") 1280 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1281 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1282 << MatchTable::Comment("SizeInBits") 1283 << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak; 1284 } 1285 }; 1286 1287 /// Generates code to check that an operand is a particular target constant. 1288 class ComplexPatternOperandMatcher : public OperandPredicateMatcher { 1289 protected: 1290 const OperandMatcher &Operand; 1291 const Record &TheDef; 1292 1293 unsigned getAllocatedTemporariesBaseID() const; 1294 1295 public: 1296 bool isIdentical(const PredicateMatcher &B) const override { return false; } 1297 1298 ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1299 const OperandMatcher &Operand, 1300 const Record &TheDef) 1301 : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx), 1302 Operand(Operand), TheDef(TheDef) {} 1303 1304 static bool classof(const PredicateMatcher *P) { 1305 return P->getKind() == OPM_ComplexPattern; 1306 } 1307 1308 void emitPredicateOpcodes(MatchTable &Table, 1309 RuleMatcher &Rule) const override { 1310 unsigned ID = getAllocatedTemporariesBaseID(); 1311 Table << MatchTable::Opcode("GIM_CheckComplexPattern") 1312 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1313 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1314 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID) 1315 << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str()) 1316 << MatchTable::LineBreak; 1317 } 1318 1319 unsigned countRendererFns() const override { 1320 return 1; 1321 } 1322 }; 1323 1324 /// Generates code to check that an operand is in a particular register bank. 1325 class RegisterBankOperandMatcher : public OperandPredicateMatcher { 1326 protected: 1327 const CodeGenRegisterClass &RC; 1328 1329 public: 1330 RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1331 const CodeGenRegisterClass &RC) 1332 : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {} 1333 1334 bool isIdentical(const PredicateMatcher &B) const override { 1335 return OperandPredicateMatcher::isIdentical(B) && 1336 RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef(); 1337 } 1338 1339 static bool classof(const PredicateMatcher *P) { 1340 return P->getKind() == OPM_RegBank; 1341 } 1342 1343 void emitPredicateOpcodes(MatchTable &Table, 1344 RuleMatcher &Rule) const override { 1345 Table << MatchTable::Opcode("GIM_CheckRegBankForClass") 1346 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1347 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1348 << MatchTable::Comment("RC") 1349 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") 1350 << MatchTable::LineBreak; 1351 } 1352 }; 1353 1354 /// Generates code to check that an operand is a basic block. 1355 class MBBOperandMatcher : public OperandPredicateMatcher { 1356 public: 1357 MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx) 1358 : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {} 1359 1360 static bool classof(const PredicateMatcher *P) { 1361 return P->getKind() == OPM_MBB; 1362 } 1363 1364 void emitPredicateOpcodes(MatchTable &Table, 1365 RuleMatcher &Rule) const override { 1366 Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI") 1367 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1368 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; 1369 } 1370 }; 1371 1372 class ImmOperandMatcher : public OperandPredicateMatcher { 1373 public: 1374 ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx) 1375 : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {} 1376 1377 static bool classof(const PredicateMatcher *P) { 1378 return P->getKind() == IPM_Imm; 1379 } 1380 1381 void emitPredicateOpcodes(MatchTable &Table, 1382 RuleMatcher &Rule) const override { 1383 Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI") 1384 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1385 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; 1386 } 1387 }; 1388 1389 /// Generates code to check that an operand is a G_CONSTANT with a particular 1390 /// int. 1391 class ConstantIntOperandMatcher : public OperandPredicateMatcher { 1392 protected: 1393 int64_t Value; 1394 1395 public: 1396 ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) 1397 : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {} 1398 1399 bool isIdentical(const PredicateMatcher &B) const override { 1400 return OperandPredicateMatcher::isIdentical(B) && 1401 Value == cast<ConstantIntOperandMatcher>(&B)->Value; 1402 } 1403 1404 static bool classof(const PredicateMatcher *P) { 1405 return P->getKind() == OPM_Int; 1406 } 1407 1408 void emitPredicateOpcodes(MatchTable &Table, 1409 RuleMatcher &Rule) const override { 1410 Table << MatchTable::Opcode("GIM_CheckConstantInt") 1411 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1412 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1413 << MatchTable::IntValue(Value) << MatchTable::LineBreak; 1414 } 1415 }; 1416 1417 /// Generates code to check that an operand is a raw int (where MO.isImm() or 1418 /// MO.isCImm() is true). 1419 class LiteralIntOperandMatcher : public OperandPredicateMatcher { 1420 protected: 1421 int64_t Value; 1422 1423 public: 1424 LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) 1425 : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx), 1426 Value(Value) {} 1427 1428 bool isIdentical(const PredicateMatcher &B) const override { 1429 return OperandPredicateMatcher::isIdentical(B) && 1430 Value == cast<LiteralIntOperandMatcher>(&B)->Value; 1431 } 1432 1433 static bool classof(const PredicateMatcher *P) { 1434 return P->getKind() == OPM_LiteralInt; 1435 } 1436 1437 void emitPredicateOpcodes(MatchTable &Table, 1438 RuleMatcher &Rule) const override { 1439 Table << MatchTable::Opcode("GIM_CheckLiteralInt") 1440 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1441 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1442 << MatchTable::IntValue(Value) << MatchTable::LineBreak; 1443 } 1444 }; 1445 1446 /// Generates code to check that an operand is an CmpInst predicate 1447 class CmpPredicateOperandMatcher : public OperandPredicateMatcher { 1448 protected: 1449 std::string PredName; 1450 1451 public: 1452 CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1453 std::string P) 1454 : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {} 1455 1456 bool isIdentical(const PredicateMatcher &B) const override { 1457 return OperandPredicateMatcher::isIdentical(B) && 1458 PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName; 1459 } 1460 1461 static bool classof(const PredicateMatcher *P) { 1462 return P->getKind() == OPM_CmpPredicate; 1463 } 1464 1465 void emitPredicateOpcodes(MatchTable &Table, 1466 RuleMatcher &Rule) const override { 1467 Table << MatchTable::Opcode("GIM_CheckCmpPredicate") 1468 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1469 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1470 << MatchTable::Comment("Predicate") 1471 << MatchTable::NamedValue("CmpInst", PredName) 1472 << MatchTable::LineBreak; 1473 } 1474 }; 1475 1476 /// Generates code to check that an operand is an intrinsic ID. 1477 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher { 1478 protected: 1479 const CodeGenIntrinsic *II; 1480 1481 public: 1482 IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1483 const CodeGenIntrinsic *II) 1484 : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {} 1485 1486 bool isIdentical(const PredicateMatcher &B) const override { 1487 return OperandPredicateMatcher::isIdentical(B) && 1488 II == cast<IntrinsicIDOperandMatcher>(&B)->II; 1489 } 1490 1491 static bool classof(const PredicateMatcher *P) { 1492 return P->getKind() == OPM_IntrinsicID; 1493 } 1494 1495 void emitPredicateOpcodes(MatchTable &Table, 1496 RuleMatcher &Rule) const override { 1497 Table << MatchTable::Opcode("GIM_CheckIntrinsicID") 1498 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1499 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1500 << MatchTable::NamedValue("Intrinsic::" + II->EnumName) 1501 << MatchTable::LineBreak; 1502 } 1503 }; 1504 1505 /// Generates code to check that a set of predicates match for a particular 1506 /// operand. 1507 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> { 1508 protected: 1509 InstructionMatcher &Insn; 1510 unsigned OpIdx; 1511 std::string SymbolicName; 1512 1513 /// The index of the first temporary variable allocated to this operand. The 1514 /// number of allocated temporaries can be found with 1515 /// countRendererFns(). 1516 unsigned AllocatedTemporariesBaseID; 1517 1518 public: 1519 OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx, 1520 const std::string &SymbolicName, 1521 unsigned AllocatedTemporariesBaseID) 1522 : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName), 1523 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {} 1524 1525 bool hasSymbolicName() const { return !SymbolicName.empty(); } 1526 const StringRef getSymbolicName() const { return SymbolicName; } 1527 void setSymbolicName(StringRef Name) { 1528 assert(SymbolicName.empty() && "Operand already has a symbolic name"); 1529 SymbolicName = std::string(Name); 1530 } 1531 1532 /// Construct a new operand predicate and add it to the matcher. 1533 template <class Kind, class... Args> 1534 Optional<Kind *> addPredicate(Args &&... args) { 1535 if (isSameAsAnotherOperand()) 1536 return None; 1537 Predicates.emplace_back(std::make_unique<Kind>( 1538 getInsnVarID(), getOpIdx(), std::forward<Args>(args)...)); 1539 return static_cast<Kind *>(Predicates.back().get()); 1540 } 1541 1542 unsigned getOpIdx() const { return OpIdx; } 1543 unsigned getInsnVarID() const; 1544 1545 std::string getOperandExpr(unsigned InsnVarID) const { 1546 return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" + 1547 llvm::to_string(OpIdx) + ")"; 1548 } 1549 1550 InstructionMatcher &getInstructionMatcher() const { return Insn; } 1551 1552 Error addTypeCheckPredicate(const TypeSetByHwMode &VTy, 1553 bool OperandIsAPointer); 1554 1555 /// Emit MatchTable opcodes that test whether the instruction named in 1556 /// InsnVarID matches all the predicates and all the operands. 1557 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { 1558 if (!Optimized) { 1559 std::string Comment; 1560 raw_string_ostream CommentOS(Comment); 1561 CommentOS << "MIs[" << getInsnVarID() << "] "; 1562 if (SymbolicName.empty()) 1563 CommentOS << "Operand " << OpIdx; 1564 else 1565 CommentOS << SymbolicName; 1566 Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak; 1567 } 1568 1569 emitPredicateListOpcodes(Table, Rule); 1570 } 1571 1572 /// Compare the priority of this object and B. 1573 /// 1574 /// Returns true if this object is more important than B. 1575 bool isHigherPriorityThan(OperandMatcher &B) { 1576 // Operand matchers involving more predicates have higher priority. 1577 if (predicates_size() > B.predicates_size()) 1578 return true; 1579 if (predicates_size() < B.predicates_size()) 1580 return false; 1581 1582 // This assumes that predicates are added in a consistent order. 1583 for (auto &&Predicate : zip(predicates(), B.predicates())) { 1584 if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate))) 1585 return true; 1586 if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate))) 1587 return false; 1588 } 1589 1590 return false; 1591 }; 1592 1593 /// Report the maximum number of temporary operands needed by the operand 1594 /// matcher. 1595 unsigned countRendererFns() { 1596 return std::accumulate( 1597 predicates().begin(), predicates().end(), 0, 1598 [](unsigned A, 1599 const std::unique_ptr<OperandPredicateMatcher> &Predicate) { 1600 return A + Predicate->countRendererFns(); 1601 }); 1602 } 1603 1604 unsigned getAllocatedTemporariesBaseID() const { 1605 return AllocatedTemporariesBaseID; 1606 } 1607 1608 bool isSameAsAnotherOperand() { 1609 for (const auto &Predicate : predicates()) 1610 if (isa<SameOperandMatcher>(Predicate)) 1611 return true; 1612 return false; 1613 } 1614 }; 1615 1616 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy, 1617 bool OperandIsAPointer) { 1618 if (!VTy.isMachineValueType()) 1619 return failedImport("unsupported typeset"); 1620 1621 if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) { 1622 addPredicate<PointerToAnyOperandMatcher>(0); 1623 return Error::success(); 1624 } 1625 1626 auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy); 1627 if (!OpTyOrNone) 1628 return failedImport("unsupported type"); 1629 1630 if (OperandIsAPointer) 1631 addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits()); 1632 else if (VTy.isPointer()) 1633 addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(), 1634 OpTyOrNone->get().getSizeInBits())); 1635 else 1636 addPredicate<LLTOperandMatcher>(*OpTyOrNone); 1637 return Error::success(); 1638 } 1639 1640 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const { 1641 return Operand.getAllocatedTemporariesBaseID(); 1642 } 1643 1644 /// Generates code to check a predicate on an instruction. 1645 /// 1646 /// Typical predicates include: 1647 /// * The opcode of the instruction is a particular value. 1648 /// * The nsw/nuw flag is/isn't set. 1649 class InstructionPredicateMatcher : public PredicateMatcher { 1650 public: 1651 InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID) 1652 : PredicateMatcher(Kind, InsnVarID) {} 1653 virtual ~InstructionPredicateMatcher() {} 1654 1655 /// Compare the priority of this object and B. 1656 /// 1657 /// Returns true if this object is more important than B. 1658 virtual bool 1659 isHigherPriorityThan(const InstructionPredicateMatcher &B) const { 1660 return Kind < B.Kind; 1661 }; 1662 }; 1663 1664 template <> 1665 std::string 1666 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const { 1667 return "No instruction predicates"; 1668 } 1669 1670 /// Generates code to check the opcode of an instruction. 1671 class InstructionOpcodeMatcher : public InstructionPredicateMatcher { 1672 protected: 1673 const CodeGenInstruction *I; 1674 1675 static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues; 1676 1677 public: 1678 static void initOpcodeValuesMap(const CodeGenTarget &Target) { 1679 OpcodeValues.clear(); 1680 1681 unsigned OpcodeValue = 0; 1682 for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue()) 1683 OpcodeValues[I] = OpcodeValue++; 1684 } 1685 1686 InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I) 1687 : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {} 1688 1689 static bool classof(const PredicateMatcher *P) { 1690 return P->getKind() == IPM_Opcode; 1691 } 1692 1693 bool isIdentical(const PredicateMatcher &B) const override { 1694 return InstructionPredicateMatcher::isIdentical(B) && 1695 I == cast<InstructionOpcodeMatcher>(&B)->I; 1696 } 1697 MatchTableRecord getValue() const override { 1698 const auto VI = OpcodeValues.find(I); 1699 if (VI != OpcodeValues.end()) 1700 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(), 1701 VI->second); 1702 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName()); 1703 } 1704 bool hasValue() const override { return OpcodeValues.count(I); } 1705 1706 void emitPredicateOpcodes(MatchTable &Table, 1707 RuleMatcher &Rule) const override { 1708 Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI") 1709 << MatchTable::IntValue(InsnVarID) << getValue() 1710 << MatchTable::LineBreak; 1711 } 1712 1713 /// Compare the priority of this object and B. 1714 /// 1715 /// Returns true if this object is more important than B. 1716 bool 1717 isHigherPriorityThan(const InstructionPredicateMatcher &B) const override { 1718 if (InstructionPredicateMatcher::isHigherPriorityThan(B)) 1719 return true; 1720 if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this)) 1721 return false; 1722 1723 // Prioritize opcodes for cosmetic reasons in the generated source. Although 1724 // this is cosmetic at the moment, we may want to drive a similar ordering 1725 // using instruction frequency information to improve compile time. 1726 if (const InstructionOpcodeMatcher *BO = 1727 dyn_cast<InstructionOpcodeMatcher>(&B)) 1728 return I->TheDef->getName() < BO->I->TheDef->getName(); 1729 1730 return false; 1731 }; 1732 1733 bool isConstantInstruction() const { 1734 return I->TheDef->getName() == "G_CONSTANT"; 1735 } 1736 1737 StringRef getOpcode() const { return I->TheDef->getName(); } 1738 bool isVariadicNumOperands() const { return I->Operands.isVariadic; } 1739 1740 StringRef getOperandType(unsigned OpIdx) const { 1741 return I->Operands[OpIdx].OperandType; 1742 } 1743 }; 1744 1745 DenseMap<const CodeGenInstruction *, unsigned> 1746 InstructionOpcodeMatcher::OpcodeValues; 1747 1748 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher { 1749 unsigned NumOperands = 0; 1750 1751 public: 1752 InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands) 1753 : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID), 1754 NumOperands(NumOperands) {} 1755 1756 static bool classof(const PredicateMatcher *P) { 1757 return P->getKind() == IPM_NumOperands; 1758 } 1759 1760 bool isIdentical(const PredicateMatcher &B) const override { 1761 return InstructionPredicateMatcher::isIdentical(B) && 1762 NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands; 1763 } 1764 1765 void emitPredicateOpcodes(MatchTable &Table, 1766 RuleMatcher &Rule) const override { 1767 Table << MatchTable::Opcode("GIM_CheckNumOperands") 1768 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1769 << MatchTable::Comment("Expected") 1770 << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak; 1771 } 1772 }; 1773 1774 /// Generates code to check that this instruction is a constant whose value 1775 /// meets an immediate predicate. 1776 /// 1777 /// Immediates are slightly odd since they are typically used like an operand 1778 /// but are represented as an operator internally. We typically write simm8:$src 1779 /// in a tablegen pattern, but this is just syntactic sugar for 1780 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes 1781 /// that will be matched and the predicate (which is attached to the imm 1782 /// operator) that will be tested. In SelectionDAG this describes a 1783 /// ConstantSDNode whose internal value will be tested using the simm8 predicate. 1784 /// 1785 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In 1786 /// this representation, the immediate could be tested with an 1787 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a 1788 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but 1789 /// there are two implementation issues with producing that matcher 1790 /// configuration from the SelectionDAG pattern: 1791 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that 1792 /// were we to sink the immediate predicate to the operand we would have to 1793 /// have two partial implementations of PatFrag support, one for immediates 1794 /// and one for non-immediates. 1795 /// * At the point we handle the predicate, the OperandMatcher hasn't been 1796 /// created yet. If we were to sink the predicate to the OperandMatcher we 1797 /// would also have to complicate (or duplicate) the code that descends and 1798 /// creates matchers for the subtree. 1799 /// Overall, it's simpler to handle it in the place it was found. 1800 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher { 1801 protected: 1802 TreePredicateFn Predicate; 1803 1804 public: 1805 InstructionImmPredicateMatcher(unsigned InsnVarID, 1806 const TreePredicateFn &Predicate) 1807 : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID), 1808 Predicate(Predicate) {} 1809 1810 bool isIdentical(const PredicateMatcher &B) const override { 1811 return InstructionPredicateMatcher::isIdentical(B) && 1812 Predicate.getOrigPatFragRecord() == 1813 cast<InstructionImmPredicateMatcher>(&B) 1814 ->Predicate.getOrigPatFragRecord(); 1815 } 1816 1817 static bool classof(const PredicateMatcher *P) { 1818 return P->getKind() == IPM_ImmPredicate; 1819 } 1820 1821 void emitPredicateOpcodes(MatchTable &Table, 1822 RuleMatcher &Rule) const override { 1823 Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate)) 1824 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1825 << MatchTable::Comment("Predicate") 1826 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 1827 << MatchTable::LineBreak; 1828 } 1829 }; 1830 1831 /// Generates code to check that a memory instruction has a atomic ordering 1832 /// MachineMemoryOperand. 1833 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher { 1834 public: 1835 enum AOComparator { 1836 AO_Exactly, 1837 AO_OrStronger, 1838 AO_WeakerThan, 1839 }; 1840 1841 protected: 1842 StringRef Order; 1843 AOComparator Comparator; 1844 1845 public: 1846 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order, 1847 AOComparator Comparator = AO_Exactly) 1848 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID), 1849 Order(Order), Comparator(Comparator) {} 1850 1851 static bool classof(const PredicateMatcher *P) { 1852 return P->getKind() == IPM_AtomicOrderingMMO; 1853 } 1854 1855 bool isIdentical(const PredicateMatcher &B) const override { 1856 if (!InstructionPredicateMatcher::isIdentical(B)) 1857 return false; 1858 const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B); 1859 return Order == R.Order && Comparator == R.Comparator; 1860 } 1861 1862 void emitPredicateOpcodes(MatchTable &Table, 1863 RuleMatcher &Rule) const override { 1864 StringRef Opcode = "GIM_CheckAtomicOrdering"; 1865 1866 if (Comparator == AO_OrStronger) 1867 Opcode = "GIM_CheckAtomicOrderingOrStrongerThan"; 1868 if (Comparator == AO_WeakerThan) 1869 Opcode = "GIM_CheckAtomicOrderingWeakerThan"; 1870 1871 Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI") 1872 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order") 1873 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str()) 1874 << MatchTable::LineBreak; 1875 } 1876 }; 1877 1878 /// Generates code to check that the size of an MMO is exactly N bytes. 1879 class MemorySizePredicateMatcher : public InstructionPredicateMatcher { 1880 protected: 1881 unsigned MMOIdx; 1882 uint64_t Size; 1883 1884 public: 1885 MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size) 1886 : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID), 1887 MMOIdx(MMOIdx), Size(Size) {} 1888 1889 static bool classof(const PredicateMatcher *P) { 1890 return P->getKind() == IPM_MemoryLLTSize; 1891 } 1892 bool isIdentical(const PredicateMatcher &B) const override { 1893 return InstructionPredicateMatcher::isIdentical(B) && 1894 MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx && 1895 Size == cast<MemorySizePredicateMatcher>(&B)->Size; 1896 } 1897 1898 void emitPredicateOpcodes(MatchTable &Table, 1899 RuleMatcher &Rule) const override { 1900 Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo") 1901 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1902 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 1903 << MatchTable::Comment("Size") << MatchTable::IntValue(Size) 1904 << MatchTable::LineBreak; 1905 } 1906 }; 1907 1908 class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher { 1909 protected: 1910 unsigned MMOIdx; 1911 SmallVector<unsigned, 4> AddrSpaces; 1912 1913 public: 1914 MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 1915 ArrayRef<unsigned> AddrSpaces) 1916 : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID), 1917 MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {} 1918 1919 static bool classof(const PredicateMatcher *P) { 1920 return P->getKind() == IPM_MemoryAddressSpace; 1921 } 1922 bool isIdentical(const PredicateMatcher &B) const override { 1923 if (!InstructionPredicateMatcher::isIdentical(B)) 1924 return false; 1925 auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B); 1926 return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces; 1927 } 1928 1929 void emitPredicateOpcodes(MatchTable &Table, 1930 RuleMatcher &Rule) const override { 1931 Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace") 1932 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1933 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 1934 // Encode number of address spaces to expect. 1935 << MatchTable::Comment("NumAddrSpace") 1936 << MatchTable::IntValue(AddrSpaces.size()); 1937 for (unsigned AS : AddrSpaces) 1938 Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS); 1939 1940 Table << MatchTable::LineBreak; 1941 } 1942 }; 1943 1944 class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher { 1945 protected: 1946 unsigned MMOIdx; 1947 int MinAlign; 1948 1949 public: 1950 MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 1951 int MinAlign) 1952 : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID), 1953 MMOIdx(MMOIdx), MinAlign(MinAlign) { 1954 assert(MinAlign > 0); 1955 } 1956 1957 static bool classof(const PredicateMatcher *P) { 1958 return P->getKind() == IPM_MemoryAlignment; 1959 } 1960 1961 bool isIdentical(const PredicateMatcher &B) const override { 1962 if (!InstructionPredicateMatcher::isIdentical(B)) 1963 return false; 1964 auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B); 1965 return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign; 1966 } 1967 1968 void emitPredicateOpcodes(MatchTable &Table, 1969 RuleMatcher &Rule) const override { 1970 Table << MatchTable::Opcode("GIM_CheckMemoryAlignment") 1971 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1972 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 1973 << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign) 1974 << MatchTable::LineBreak; 1975 } 1976 }; 1977 1978 /// Generates code to check that the size of an MMO is less-than, equal-to, or 1979 /// greater than a given LLT. 1980 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher { 1981 public: 1982 enum RelationKind { 1983 GreaterThan, 1984 EqualTo, 1985 LessThan, 1986 }; 1987 1988 protected: 1989 unsigned MMOIdx; 1990 RelationKind Relation; 1991 unsigned OpIdx; 1992 1993 public: 1994 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 1995 enum RelationKind Relation, 1996 unsigned OpIdx) 1997 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID), 1998 MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {} 1999 2000 static bool classof(const PredicateMatcher *P) { 2001 return P->getKind() == IPM_MemoryVsLLTSize; 2002 } 2003 bool isIdentical(const PredicateMatcher &B) const override { 2004 return InstructionPredicateMatcher::isIdentical(B) && 2005 MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx && 2006 Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation && 2007 OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx; 2008 } 2009 2010 void emitPredicateOpcodes(MatchTable &Table, 2011 RuleMatcher &Rule) const override { 2012 Table << MatchTable::Opcode(Relation == EqualTo 2013 ? "GIM_CheckMemorySizeEqualToLLT" 2014 : Relation == GreaterThan 2015 ? "GIM_CheckMemorySizeGreaterThanLLT" 2016 : "GIM_CheckMemorySizeLessThanLLT") 2017 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2018 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2019 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) 2020 << MatchTable::LineBreak; 2021 } 2022 }; 2023 2024 /// Generates code to check an arbitrary C++ instruction predicate. 2025 class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher { 2026 protected: 2027 TreePredicateFn Predicate; 2028 2029 public: 2030 GenericInstructionPredicateMatcher(unsigned InsnVarID, 2031 TreePredicateFn Predicate) 2032 : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID), 2033 Predicate(Predicate) {} 2034 2035 static bool classof(const InstructionPredicateMatcher *P) { 2036 return P->getKind() == IPM_GenericPredicate; 2037 } 2038 bool isIdentical(const PredicateMatcher &B) const override { 2039 return InstructionPredicateMatcher::isIdentical(B) && 2040 Predicate == 2041 static_cast<const GenericInstructionPredicateMatcher &>(B) 2042 .Predicate; 2043 } 2044 void emitPredicateOpcodes(MatchTable &Table, 2045 RuleMatcher &Rule) const override { 2046 Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate") 2047 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2048 << MatchTable::Comment("FnId") 2049 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 2050 << MatchTable::LineBreak; 2051 } 2052 }; 2053 2054 /// Generates code to check that a set of predicates and operands match for a 2055 /// particular instruction. 2056 /// 2057 /// Typical predicates include: 2058 /// * Has a specific opcode. 2059 /// * Has an nsw/nuw flag or doesn't. 2060 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> { 2061 protected: 2062 typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec; 2063 2064 RuleMatcher &Rule; 2065 2066 /// The operands to match. All rendered operands must be present even if the 2067 /// condition is always true. 2068 OperandVec Operands; 2069 bool NumOperandsCheck = true; 2070 2071 std::string SymbolicName; 2072 unsigned InsnVarID; 2073 2074 /// PhysRegInputs - List list has an entry for each explicitly specified 2075 /// physreg input to the pattern. The first elt is the Register node, the 2076 /// second is the recorded slot number the input pattern match saved it in. 2077 SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs; 2078 2079 public: 2080 InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName) 2081 : Rule(Rule), SymbolicName(SymbolicName) { 2082 // We create a new instruction matcher. 2083 // Get a new ID for that instruction. 2084 InsnVarID = Rule.implicitlyDefineInsnVar(*this); 2085 } 2086 2087 /// Construct a new instruction predicate and add it to the matcher. 2088 template <class Kind, class... Args> 2089 Optional<Kind *> addPredicate(Args &&... args) { 2090 Predicates.emplace_back( 2091 std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...)); 2092 return static_cast<Kind *>(Predicates.back().get()); 2093 } 2094 2095 RuleMatcher &getRuleMatcher() const { return Rule; } 2096 2097 unsigned getInsnVarID() const { return InsnVarID; } 2098 2099 /// Add an operand to the matcher. 2100 OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName, 2101 unsigned AllocatedTemporariesBaseID) { 2102 Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName, 2103 AllocatedTemporariesBaseID)); 2104 if (!SymbolicName.empty()) 2105 Rule.defineOperand(SymbolicName, *Operands.back()); 2106 2107 return *Operands.back(); 2108 } 2109 2110 OperandMatcher &getOperand(unsigned OpIdx) { 2111 auto I = std::find_if(Operands.begin(), Operands.end(), 2112 [&OpIdx](const std::unique_ptr<OperandMatcher> &X) { 2113 return X->getOpIdx() == OpIdx; 2114 }); 2115 if (I != Operands.end()) 2116 return **I; 2117 llvm_unreachable("Failed to lookup operand"); 2118 } 2119 2120 OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx, 2121 unsigned TempOpIdx) { 2122 assert(SymbolicName.empty()); 2123 OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx); 2124 Operands.emplace_back(OM); 2125 Rule.definePhysRegOperand(Reg, *OM); 2126 PhysRegInputs.emplace_back(Reg, OpIdx); 2127 return *OM; 2128 } 2129 2130 ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const { 2131 return PhysRegInputs; 2132 } 2133 2134 StringRef getSymbolicName() const { return SymbolicName; } 2135 unsigned getNumOperands() const { return Operands.size(); } 2136 OperandVec::iterator operands_begin() { return Operands.begin(); } 2137 OperandVec::iterator operands_end() { return Operands.end(); } 2138 iterator_range<OperandVec::iterator> operands() { 2139 return make_range(operands_begin(), operands_end()); 2140 } 2141 OperandVec::const_iterator operands_begin() const { return Operands.begin(); } 2142 OperandVec::const_iterator operands_end() const { return Operands.end(); } 2143 iterator_range<OperandVec::const_iterator> operands() const { 2144 return make_range(operands_begin(), operands_end()); 2145 } 2146 bool operands_empty() const { return Operands.empty(); } 2147 2148 void pop_front() { Operands.erase(Operands.begin()); } 2149 2150 void optimize(); 2151 2152 /// Emit MatchTable opcodes that test whether the instruction named in 2153 /// InsnVarName matches all the predicates and all the operands. 2154 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { 2155 if (NumOperandsCheck) 2156 InstructionNumOperandsMatcher(InsnVarID, getNumOperands()) 2157 .emitPredicateOpcodes(Table, Rule); 2158 2159 // First emit all instruction level predicates need to be verified before we 2160 // can verify operands. 2161 emitFilteredPredicateListOpcodes( 2162 [](const PredicateMatcher &P) { 2163 return !P.dependsOnOperands(); 2164 }, Table, Rule); 2165 2166 // Emit all operand constraints. 2167 for (const auto &Operand : Operands) 2168 Operand->emitPredicateOpcodes(Table, Rule); 2169 2170 // All of the tablegen defined predicates should now be matched. Now emit 2171 // any custom predicates that rely on all generated checks. 2172 emitFilteredPredicateListOpcodes( 2173 [](const PredicateMatcher &P) { 2174 return P.dependsOnOperands(); 2175 }, Table, Rule); 2176 } 2177 2178 /// Compare the priority of this object and B. 2179 /// 2180 /// Returns true if this object is more important than B. 2181 bool isHigherPriorityThan(InstructionMatcher &B) { 2182 // Instruction matchers involving more operands have higher priority. 2183 if (Operands.size() > B.Operands.size()) 2184 return true; 2185 if (Operands.size() < B.Operands.size()) 2186 return false; 2187 2188 for (auto &&P : zip(predicates(), B.predicates())) { 2189 auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get()); 2190 auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get()); 2191 if (L->isHigherPriorityThan(*R)) 2192 return true; 2193 if (R->isHigherPriorityThan(*L)) 2194 return false; 2195 } 2196 2197 for (auto Operand : zip(Operands, B.Operands)) { 2198 if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand))) 2199 return true; 2200 if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand))) 2201 return false; 2202 } 2203 2204 return false; 2205 }; 2206 2207 /// Report the maximum number of temporary operands needed by the instruction 2208 /// matcher. 2209 unsigned countRendererFns() { 2210 return std::accumulate( 2211 predicates().begin(), predicates().end(), 0, 2212 [](unsigned A, 2213 const std::unique_ptr<PredicateMatcher> &Predicate) { 2214 return A + Predicate->countRendererFns(); 2215 }) + 2216 std::accumulate( 2217 Operands.begin(), Operands.end(), 0, 2218 [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) { 2219 return A + Operand->countRendererFns(); 2220 }); 2221 } 2222 2223 InstructionOpcodeMatcher &getOpcodeMatcher() { 2224 for (auto &P : predicates()) 2225 if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get())) 2226 return *OpMatcher; 2227 llvm_unreachable("Didn't find an opcode matcher"); 2228 } 2229 2230 bool isConstantInstruction() { 2231 return getOpcodeMatcher().isConstantInstruction(); 2232 } 2233 2234 StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); } 2235 }; 2236 2237 StringRef RuleMatcher::getOpcode() const { 2238 return Matchers.front()->getOpcode(); 2239 } 2240 2241 unsigned RuleMatcher::getNumOperands() const { 2242 return Matchers.front()->getNumOperands(); 2243 } 2244 2245 LLTCodeGen RuleMatcher::getFirstConditionAsRootType() { 2246 InstructionMatcher &InsnMatcher = *Matchers.front(); 2247 if (!InsnMatcher.predicates_empty()) 2248 if (const auto *TM = 2249 dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin())) 2250 if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0) 2251 return TM->getTy(); 2252 return {}; 2253 } 2254 2255 /// Generates code to check that the operand is a register defined by an 2256 /// instruction that matches the given instruction matcher. 2257 /// 2258 /// For example, the pattern: 2259 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3)) 2260 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match 2261 /// the: 2262 /// (G_ADD $src1, $src2) 2263 /// subpattern. 2264 class InstructionOperandMatcher : public OperandPredicateMatcher { 2265 protected: 2266 std::unique_ptr<InstructionMatcher> InsnMatcher; 2267 2268 public: 2269 InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 2270 RuleMatcher &Rule, StringRef SymbolicName) 2271 : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx), 2272 InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {} 2273 2274 static bool classof(const PredicateMatcher *P) { 2275 return P->getKind() == OPM_Instruction; 2276 } 2277 2278 InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; } 2279 2280 void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const { 2281 const unsigned NewInsnVarID = InsnMatcher->getInsnVarID(); 2282 Table << MatchTable::Opcode("GIM_RecordInsn") 2283 << MatchTable::Comment("DefineMI") 2284 << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI") 2285 << MatchTable::IntValue(getInsnVarID()) 2286 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx()) 2287 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]") 2288 << MatchTable::LineBreak; 2289 } 2290 2291 void emitPredicateOpcodes(MatchTable &Table, 2292 RuleMatcher &Rule) const override { 2293 emitCaptureOpcodes(Table, Rule); 2294 InsnMatcher->emitPredicateOpcodes(Table, Rule); 2295 } 2296 2297 bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override { 2298 if (OperandPredicateMatcher::isHigherPriorityThan(B)) 2299 return true; 2300 if (B.OperandPredicateMatcher::isHigherPriorityThan(*this)) 2301 return false; 2302 2303 if (const InstructionOperandMatcher *BP = 2304 dyn_cast<InstructionOperandMatcher>(&B)) 2305 if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher)) 2306 return true; 2307 return false; 2308 } 2309 }; 2310 2311 void InstructionMatcher::optimize() { 2312 SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash; 2313 const auto &OpcMatcher = getOpcodeMatcher(); 2314 2315 Stash.push_back(predicates_pop_front()); 2316 if (Stash.back().get() == &OpcMatcher) { 2317 if (NumOperandsCheck && OpcMatcher.isVariadicNumOperands()) 2318 Stash.emplace_back( 2319 new InstructionNumOperandsMatcher(InsnVarID, getNumOperands())); 2320 NumOperandsCheck = false; 2321 2322 for (auto &OM : Operands) 2323 for (auto &OP : OM->predicates()) 2324 if (isa<IntrinsicIDOperandMatcher>(OP)) { 2325 Stash.push_back(std::move(OP)); 2326 OM->eraseNullPredicates(); 2327 break; 2328 } 2329 } 2330 2331 if (InsnVarID > 0) { 2332 assert(!Operands.empty() && "Nested instruction is expected to def a vreg"); 2333 for (auto &OP : Operands[0]->predicates()) 2334 OP.reset(); 2335 Operands[0]->eraseNullPredicates(); 2336 } 2337 for (auto &OM : Operands) { 2338 for (auto &OP : OM->predicates()) 2339 if (isa<LLTOperandMatcher>(OP)) 2340 Stash.push_back(std::move(OP)); 2341 OM->eraseNullPredicates(); 2342 } 2343 while (!Stash.empty()) 2344 prependPredicate(Stash.pop_back_val()); 2345 } 2346 2347 //===- Actions ------------------------------------------------------------===// 2348 class OperandRenderer { 2349 public: 2350 enum RendererKind { 2351 OR_Copy, 2352 OR_CopyOrAddZeroReg, 2353 OR_CopySubReg, 2354 OR_CopyPhysReg, 2355 OR_CopyConstantAsImm, 2356 OR_CopyFConstantAsFPImm, 2357 OR_Imm, 2358 OR_SubRegIndex, 2359 OR_Register, 2360 OR_TempRegister, 2361 OR_ComplexPattern, 2362 OR_Custom, 2363 OR_CustomOperand 2364 }; 2365 2366 protected: 2367 RendererKind Kind; 2368 2369 public: 2370 OperandRenderer(RendererKind Kind) : Kind(Kind) {} 2371 virtual ~OperandRenderer() {} 2372 2373 RendererKind getKind() const { return Kind; } 2374 2375 virtual void emitRenderOpcodes(MatchTable &Table, 2376 RuleMatcher &Rule) const = 0; 2377 }; 2378 2379 /// A CopyRenderer emits code to copy a single operand from an existing 2380 /// instruction to the one being built. 2381 class CopyRenderer : public OperandRenderer { 2382 protected: 2383 unsigned NewInsnID; 2384 /// The name of the operand. 2385 const StringRef SymbolicName; 2386 2387 public: 2388 CopyRenderer(unsigned NewInsnID, StringRef SymbolicName) 2389 : OperandRenderer(OR_Copy), NewInsnID(NewInsnID), 2390 SymbolicName(SymbolicName) { 2391 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); 2392 } 2393 2394 static bool classof(const OperandRenderer *R) { 2395 return R->getKind() == OR_Copy; 2396 } 2397 2398 const StringRef getSymbolicName() const { return SymbolicName; } 2399 2400 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2401 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2402 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2403 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") 2404 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") 2405 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2406 << MatchTable::IntValue(Operand.getOpIdx()) 2407 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2408 } 2409 }; 2410 2411 /// A CopyRenderer emits code to copy a virtual register to a specific physical 2412 /// register. 2413 class CopyPhysRegRenderer : public OperandRenderer { 2414 protected: 2415 unsigned NewInsnID; 2416 Record *PhysReg; 2417 2418 public: 2419 CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg) 2420 : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID), 2421 PhysReg(Reg) { 2422 assert(PhysReg); 2423 } 2424 2425 static bool classof(const OperandRenderer *R) { 2426 return R->getKind() == OR_CopyPhysReg; 2427 } 2428 2429 Record *getPhysReg() const { return PhysReg; } 2430 2431 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2432 const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg); 2433 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2434 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") 2435 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") 2436 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2437 << MatchTable::IntValue(Operand.getOpIdx()) 2438 << MatchTable::Comment(PhysReg->getName()) 2439 << MatchTable::LineBreak; 2440 } 2441 }; 2442 2443 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an 2444 /// existing instruction to the one being built. If the operand turns out to be 2445 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register. 2446 class CopyOrAddZeroRegRenderer : public OperandRenderer { 2447 protected: 2448 unsigned NewInsnID; 2449 /// The name of the operand. 2450 const StringRef SymbolicName; 2451 const Record *ZeroRegisterDef; 2452 2453 public: 2454 CopyOrAddZeroRegRenderer(unsigned NewInsnID, 2455 StringRef SymbolicName, Record *ZeroRegisterDef) 2456 : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID), 2457 SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) { 2458 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); 2459 } 2460 2461 static bool classof(const OperandRenderer *R) { 2462 return R->getKind() == OR_CopyOrAddZeroReg; 2463 } 2464 2465 const StringRef getSymbolicName() const { return SymbolicName; } 2466 2467 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2468 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2469 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2470 Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg") 2471 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2472 << MatchTable::Comment("OldInsnID") 2473 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2474 << MatchTable::IntValue(Operand.getOpIdx()) 2475 << MatchTable::NamedValue( 2476 (ZeroRegisterDef->getValue("Namespace") 2477 ? ZeroRegisterDef->getValueAsString("Namespace") 2478 : ""), 2479 ZeroRegisterDef->getName()) 2480 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2481 } 2482 }; 2483 2484 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to 2485 /// an extended immediate operand. 2486 class CopyConstantAsImmRenderer : public OperandRenderer { 2487 protected: 2488 unsigned NewInsnID; 2489 /// The name of the operand. 2490 const std::string SymbolicName; 2491 bool Signed; 2492 2493 public: 2494 CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName) 2495 : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID), 2496 SymbolicName(SymbolicName), Signed(true) {} 2497 2498 static bool classof(const OperandRenderer *R) { 2499 return R->getKind() == OR_CopyConstantAsImm; 2500 } 2501 2502 const StringRef getSymbolicName() const { return SymbolicName; } 2503 2504 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2505 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2506 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2507 Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm" 2508 : "GIR_CopyConstantAsUImm") 2509 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2510 << MatchTable::Comment("OldInsnID") 2511 << MatchTable::IntValue(OldInsnVarID) 2512 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2513 } 2514 }; 2515 2516 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT 2517 /// instruction to an extended immediate operand. 2518 class CopyFConstantAsFPImmRenderer : public OperandRenderer { 2519 protected: 2520 unsigned NewInsnID; 2521 /// The name of the operand. 2522 const std::string SymbolicName; 2523 2524 public: 2525 CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName) 2526 : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID), 2527 SymbolicName(SymbolicName) {} 2528 2529 static bool classof(const OperandRenderer *R) { 2530 return R->getKind() == OR_CopyFConstantAsFPImm; 2531 } 2532 2533 const StringRef getSymbolicName() const { return SymbolicName; } 2534 2535 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2536 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2537 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2538 Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm") 2539 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2540 << MatchTable::Comment("OldInsnID") 2541 << MatchTable::IntValue(OldInsnVarID) 2542 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2543 } 2544 }; 2545 2546 /// A CopySubRegRenderer emits code to copy a single register operand from an 2547 /// existing instruction to the one being built and indicate that only a 2548 /// subregister should be copied. 2549 class CopySubRegRenderer : public OperandRenderer { 2550 protected: 2551 unsigned NewInsnID; 2552 /// The name of the operand. 2553 const StringRef SymbolicName; 2554 /// The subregister to extract. 2555 const CodeGenSubRegIndex *SubReg; 2556 2557 public: 2558 CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName, 2559 const CodeGenSubRegIndex *SubReg) 2560 : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID), 2561 SymbolicName(SymbolicName), SubReg(SubReg) {} 2562 2563 static bool classof(const OperandRenderer *R) { 2564 return R->getKind() == OR_CopySubReg; 2565 } 2566 2567 const StringRef getSymbolicName() const { return SymbolicName; } 2568 2569 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2570 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2571 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2572 Table << MatchTable::Opcode("GIR_CopySubReg") 2573 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2574 << MatchTable::Comment("OldInsnID") 2575 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2576 << MatchTable::IntValue(Operand.getOpIdx()) 2577 << MatchTable::Comment("SubRegIdx") 2578 << MatchTable::IntValue(SubReg->EnumValue) 2579 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2580 } 2581 }; 2582 2583 /// Adds a specific physical register to the instruction being built. 2584 /// This is typically useful for WZR/XZR on AArch64. 2585 class AddRegisterRenderer : public OperandRenderer { 2586 protected: 2587 unsigned InsnID; 2588 const Record *RegisterDef; 2589 bool IsDef; 2590 2591 public: 2592 AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef, 2593 bool IsDef = false) 2594 : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef), 2595 IsDef(IsDef) {} 2596 2597 static bool classof(const OperandRenderer *R) { 2598 return R->getKind() == OR_Register; 2599 } 2600 2601 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2602 Table << MatchTable::Opcode("GIR_AddRegister") 2603 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2604 << MatchTable::NamedValue( 2605 (RegisterDef->getValue("Namespace") 2606 ? RegisterDef->getValueAsString("Namespace") 2607 : ""), 2608 RegisterDef->getName()) 2609 << MatchTable::Comment("AddRegisterRegFlags"); 2610 2611 // TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are 2612 // really needed for a physical register reference. We can pack the 2613 // register and flags in a single field. 2614 if (IsDef) 2615 Table << MatchTable::NamedValue("RegState::Define"); 2616 else 2617 Table << MatchTable::IntValue(0); 2618 Table << MatchTable::LineBreak; 2619 } 2620 }; 2621 2622 /// Adds a specific temporary virtual register to the instruction being built. 2623 /// This is used to chain instructions together when emitting multiple 2624 /// instructions. 2625 class TempRegRenderer : public OperandRenderer { 2626 protected: 2627 unsigned InsnID; 2628 unsigned TempRegID; 2629 const CodeGenSubRegIndex *SubRegIdx; 2630 bool IsDef; 2631 2632 public: 2633 TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false, 2634 const CodeGenSubRegIndex *SubReg = nullptr) 2635 : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID), 2636 SubRegIdx(SubReg), IsDef(IsDef) {} 2637 2638 static bool classof(const OperandRenderer *R) { 2639 return R->getKind() == OR_TempRegister; 2640 } 2641 2642 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2643 if (SubRegIdx) { 2644 assert(!IsDef); 2645 Table << MatchTable::Opcode("GIR_AddTempSubRegister"); 2646 } else 2647 Table << MatchTable::Opcode("GIR_AddTempRegister"); 2648 2649 Table << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2650 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) 2651 << MatchTable::Comment("TempRegFlags"); 2652 2653 if (IsDef) 2654 Table << MatchTable::NamedValue("RegState::Define"); 2655 else 2656 Table << MatchTable::IntValue(0); 2657 2658 if (SubRegIdx) 2659 Table << MatchTable::NamedValue(SubRegIdx->getQualifiedName()); 2660 Table << MatchTable::LineBreak; 2661 } 2662 }; 2663 2664 /// Adds a specific immediate to the instruction being built. 2665 class ImmRenderer : public OperandRenderer { 2666 protected: 2667 unsigned InsnID; 2668 int64_t Imm; 2669 2670 public: 2671 ImmRenderer(unsigned InsnID, int64_t Imm) 2672 : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {} 2673 2674 static bool classof(const OperandRenderer *R) { 2675 return R->getKind() == OR_Imm; 2676 } 2677 2678 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2679 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") 2680 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm") 2681 << MatchTable::IntValue(Imm) << MatchTable::LineBreak; 2682 } 2683 }; 2684 2685 /// Adds an enum value for a subreg index to the instruction being built. 2686 class SubRegIndexRenderer : public OperandRenderer { 2687 protected: 2688 unsigned InsnID; 2689 const CodeGenSubRegIndex *SubRegIdx; 2690 2691 public: 2692 SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI) 2693 : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {} 2694 2695 static bool classof(const OperandRenderer *R) { 2696 return R->getKind() == OR_SubRegIndex; 2697 } 2698 2699 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2700 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") 2701 << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex") 2702 << MatchTable::IntValue(SubRegIdx->EnumValue) 2703 << MatchTable::LineBreak; 2704 } 2705 }; 2706 2707 /// Adds operands by calling a renderer function supplied by the ComplexPattern 2708 /// matcher function. 2709 class RenderComplexPatternOperand : public OperandRenderer { 2710 private: 2711 unsigned InsnID; 2712 const Record &TheDef; 2713 /// The name of the operand. 2714 const StringRef SymbolicName; 2715 /// The renderer number. This must be unique within a rule since it's used to 2716 /// identify a temporary variable to hold the renderer function. 2717 unsigned RendererID; 2718 /// When provided, this is the suboperand of the ComplexPattern operand to 2719 /// render. Otherwise all the suboperands will be rendered. 2720 Optional<unsigned> SubOperand; 2721 2722 unsigned getNumOperands() const { 2723 return TheDef.getValueAsDag("Operands")->getNumArgs(); 2724 } 2725 2726 public: 2727 RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef, 2728 StringRef SymbolicName, unsigned RendererID, 2729 Optional<unsigned> SubOperand = None) 2730 : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef), 2731 SymbolicName(SymbolicName), RendererID(RendererID), 2732 SubOperand(SubOperand) {} 2733 2734 static bool classof(const OperandRenderer *R) { 2735 return R->getKind() == OR_ComplexPattern; 2736 } 2737 2738 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2739 Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer" 2740 : "GIR_ComplexRenderer") 2741 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2742 << MatchTable::Comment("RendererID") 2743 << MatchTable::IntValue(RendererID); 2744 if (SubOperand.hasValue()) 2745 Table << MatchTable::Comment("SubOperand") 2746 << MatchTable::IntValue(SubOperand.getValue()); 2747 Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2748 } 2749 }; 2750 2751 class CustomRenderer : public OperandRenderer { 2752 protected: 2753 unsigned InsnID; 2754 const Record &Renderer; 2755 /// The name of the operand. 2756 const std::string SymbolicName; 2757 2758 public: 2759 CustomRenderer(unsigned InsnID, const Record &Renderer, 2760 StringRef SymbolicName) 2761 : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer), 2762 SymbolicName(SymbolicName) {} 2763 2764 static bool classof(const OperandRenderer *R) { 2765 return R->getKind() == OR_Custom; 2766 } 2767 2768 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2769 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2770 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2771 Table << MatchTable::Opcode("GIR_CustomRenderer") 2772 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2773 << MatchTable::Comment("OldInsnID") 2774 << MatchTable::IntValue(OldInsnVarID) 2775 << MatchTable::Comment("Renderer") 2776 << MatchTable::NamedValue( 2777 "GICR_" + Renderer.getValueAsString("RendererFn").str()) 2778 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2779 } 2780 }; 2781 2782 class CustomOperandRenderer : public OperandRenderer { 2783 protected: 2784 unsigned InsnID; 2785 const Record &Renderer; 2786 /// The name of the operand. 2787 const std::string SymbolicName; 2788 2789 public: 2790 CustomOperandRenderer(unsigned InsnID, const Record &Renderer, 2791 StringRef SymbolicName) 2792 : OperandRenderer(OR_CustomOperand), InsnID(InsnID), Renderer(Renderer), 2793 SymbolicName(SymbolicName) {} 2794 2795 static bool classof(const OperandRenderer *R) { 2796 return R->getKind() == OR_CustomOperand; 2797 } 2798 2799 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2800 const OperandMatcher &OpdMatcher = Rule.getOperandMatcher(SymbolicName); 2801 Table << MatchTable::Opcode("GIR_CustomOperandRenderer") 2802 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2803 << MatchTable::Comment("OldInsnID") 2804 << MatchTable::IntValue(OpdMatcher.getInsnVarID()) 2805 << MatchTable::Comment("OpIdx") 2806 << MatchTable::IntValue(OpdMatcher.getOpIdx()) 2807 << MatchTable::Comment("OperandRenderer") 2808 << MatchTable::NamedValue( 2809 "GICR_" + Renderer.getValueAsString("RendererFn").str()) 2810 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2811 } 2812 }; 2813 2814 /// An action taken when all Matcher predicates succeeded for a parent rule. 2815 /// 2816 /// Typical actions include: 2817 /// * Changing the opcode of an instruction. 2818 /// * Adding an operand to an instruction. 2819 class MatchAction { 2820 public: 2821 virtual ~MatchAction() {} 2822 2823 /// Emit the MatchTable opcodes to implement the action. 2824 virtual void emitActionOpcodes(MatchTable &Table, 2825 RuleMatcher &Rule) const = 0; 2826 }; 2827 2828 /// Generates a comment describing the matched rule being acted upon. 2829 class DebugCommentAction : public MatchAction { 2830 private: 2831 std::string S; 2832 2833 public: 2834 DebugCommentAction(StringRef S) : S(std::string(S)) {} 2835 2836 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2837 Table << MatchTable::Comment(S) << MatchTable::LineBreak; 2838 } 2839 }; 2840 2841 /// Generates code to build an instruction or mutate an existing instruction 2842 /// into the desired instruction when this is possible. 2843 class BuildMIAction : public MatchAction { 2844 private: 2845 unsigned InsnID; 2846 const CodeGenInstruction *I; 2847 InstructionMatcher *Matched; 2848 std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers; 2849 2850 /// True if the instruction can be built solely by mutating the opcode. 2851 bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const { 2852 if (!Insn) 2853 return false; 2854 2855 if (OperandRenderers.size() != Insn->getNumOperands()) 2856 return false; 2857 2858 for (const auto &Renderer : enumerate(OperandRenderers)) { 2859 if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) { 2860 const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName()); 2861 if (Insn != &OM.getInstructionMatcher() || 2862 OM.getOpIdx() != Renderer.index()) 2863 return false; 2864 } else 2865 return false; 2866 } 2867 2868 return true; 2869 } 2870 2871 public: 2872 BuildMIAction(unsigned InsnID, const CodeGenInstruction *I) 2873 : InsnID(InsnID), I(I), Matched(nullptr) {} 2874 2875 unsigned getInsnID() const { return InsnID; } 2876 const CodeGenInstruction *getCGI() const { return I; } 2877 2878 void chooseInsnToMutate(RuleMatcher &Rule) { 2879 for (auto *MutateCandidate : Rule.mutatable_insns()) { 2880 if (canMutate(Rule, MutateCandidate)) { 2881 // Take the first one we're offered that we're able to mutate. 2882 Rule.reserveInsnMatcherForMutation(MutateCandidate); 2883 Matched = MutateCandidate; 2884 return; 2885 } 2886 } 2887 } 2888 2889 template <class Kind, class... Args> 2890 Kind &addRenderer(Args&&... args) { 2891 OperandRenderers.emplace_back( 2892 std::make_unique<Kind>(InsnID, std::forward<Args>(args)...)); 2893 return *static_cast<Kind *>(OperandRenderers.back().get()); 2894 } 2895 2896 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2897 if (Matched) { 2898 assert(canMutate(Rule, Matched) && 2899 "Arranged to mutate an insn that isn't mutatable"); 2900 2901 unsigned RecycleInsnID = Rule.getInsnVarID(*Matched); 2902 Table << MatchTable::Opcode("GIR_MutateOpcode") 2903 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2904 << MatchTable::Comment("RecycleInsnID") 2905 << MatchTable::IntValue(RecycleInsnID) 2906 << MatchTable::Comment("Opcode") 2907 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) 2908 << MatchTable::LineBreak; 2909 2910 if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) { 2911 for (auto Def : I->ImplicitDefs) { 2912 auto Namespace = Def->getValue("Namespace") 2913 ? Def->getValueAsString("Namespace") 2914 : ""; 2915 Table << MatchTable::Opcode("GIR_AddImplicitDef") 2916 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2917 << MatchTable::NamedValue(Namespace, Def->getName()) 2918 << MatchTable::LineBreak; 2919 } 2920 for (auto Use : I->ImplicitUses) { 2921 auto Namespace = Use->getValue("Namespace") 2922 ? Use->getValueAsString("Namespace") 2923 : ""; 2924 Table << MatchTable::Opcode("GIR_AddImplicitUse") 2925 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2926 << MatchTable::NamedValue(Namespace, Use->getName()) 2927 << MatchTable::LineBreak; 2928 } 2929 } 2930 return; 2931 } 2932 2933 // TODO: Simple permutation looks like it could be almost as common as 2934 // mutation due to commutative operations. 2935 2936 Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID") 2937 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode") 2938 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) 2939 << MatchTable::LineBreak; 2940 for (const auto &Renderer : OperandRenderers) 2941 Renderer->emitRenderOpcodes(Table, Rule); 2942 2943 if (I->mayLoad || I->mayStore) { 2944 Table << MatchTable::Opcode("GIR_MergeMemOperands") 2945 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2946 << MatchTable::Comment("MergeInsnID's"); 2947 // Emit the ID's for all the instructions that are matched by this rule. 2948 // TODO: Limit this to matched instructions that mayLoad/mayStore or have 2949 // some other means of having a memoperand. Also limit this to 2950 // emitted instructions that expect to have a memoperand too. For 2951 // example, (G_SEXT (G_LOAD x)) that results in separate load and 2952 // sign-extend instructions shouldn't put the memoperand on the 2953 // sign-extend since it has no effect there. 2954 std::vector<unsigned> MergeInsnIDs; 2955 for (const auto &IDMatcherPair : Rule.defined_insn_vars()) 2956 MergeInsnIDs.push_back(IDMatcherPair.second); 2957 llvm::sort(MergeInsnIDs); 2958 for (const auto &MergeInsnID : MergeInsnIDs) 2959 Table << MatchTable::IntValue(MergeInsnID); 2960 Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList") 2961 << MatchTable::LineBreak; 2962 } 2963 2964 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do 2965 // better for combines. Particularly when there are multiple match 2966 // roots. 2967 if (InsnID == 0) 2968 Table << MatchTable::Opcode("GIR_EraseFromParent") 2969 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2970 << MatchTable::LineBreak; 2971 } 2972 }; 2973 2974 /// Generates code to constrain the operands of an output instruction to the 2975 /// register classes specified by the definition of that instruction. 2976 class ConstrainOperandsToDefinitionAction : public MatchAction { 2977 unsigned InsnID; 2978 2979 public: 2980 ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {} 2981 2982 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2983 Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands") 2984 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2985 << MatchTable::LineBreak; 2986 } 2987 }; 2988 2989 /// Generates code to constrain the specified operand of an output instruction 2990 /// to the specified register class. 2991 class ConstrainOperandToRegClassAction : public MatchAction { 2992 unsigned InsnID; 2993 unsigned OpIdx; 2994 const CodeGenRegisterClass &RC; 2995 2996 public: 2997 ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx, 2998 const CodeGenRegisterClass &RC) 2999 : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {} 3000 3001 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3002 Table << MatchTable::Opcode("GIR_ConstrainOperandRC") 3003 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3004 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 3005 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") 3006 << MatchTable::LineBreak; 3007 } 3008 }; 3009 3010 /// Generates code to create a temporary register which can be used to chain 3011 /// instructions together. 3012 class MakeTempRegisterAction : public MatchAction { 3013 private: 3014 LLTCodeGen Ty; 3015 unsigned TempRegID; 3016 3017 public: 3018 MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID) 3019 : Ty(Ty), TempRegID(TempRegID) { 3020 KnownTypes.insert(Ty); 3021 } 3022 3023 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3024 Table << MatchTable::Opcode("GIR_MakeTempReg") 3025 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) 3026 << MatchTable::Comment("TypeID") 3027 << MatchTable::NamedValue(Ty.getCxxEnumValue()) 3028 << MatchTable::LineBreak; 3029 } 3030 }; 3031 3032 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) { 3033 Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName)); 3034 MutatableInsns.insert(Matchers.back().get()); 3035 return *Matchers.back(); 3036 } 3037 3038 void RuleMatcher::addRequiredFeature(Record *Feature) { 3039 RequiredFeatures.push_back(Feature); 3040 } 3041 3042 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const { 3043 return RequiredFeatures; 3044 } 3045 3046 // Emplaces an action of the specified Kind at the end of the action list. 3047 // 3048 // Returns a reference to the newly created action. 3049 // 3050 // Like std::vector::emplace_back(), may invalidate all iterators if the new 3051 // size exceeds the capacity. Otherwise, only invalidates the past-the-end 3052 // iterator. 3053 template <class Kind, class... Args> 3054 Kind &RuleMatcher::addAction(Args &&... args) { 3055 Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...)); 3056 return *static_cast<Kind *>(Actions.back().get()); 3057 } 3058 3059 // Emplaces an action of the specified Kind before the given insertion point. 3060 // 3061 // Returns an iterator pointing at the newly created instruction. 3062 // 3063 // Like std::vector::insert(), may invalidate all iterators if the new size 3064 // exceeds the capacity. Otherwise, only invalidates the iterators from the 3065 // insertion point onwards. 3066 template <class Kind, class... Args> 3067 action_iterator RuleMatcher::insertAction(action_iterator InsertPt, 3068 Args &&... args) { 3069 return Actions.emplace(InsertPt, 3070 std::make_unique<Kind>(std::forward<Args>(args)...)); 3071 } 3072 3073 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) { 3074 unsigned NewInsnVarID = NextInsnVarID++; 3075 InsnVariableIDs[&Matcher] = NewInsnVarID; 3076 return NewInsnVarID; 3077 } 3078 3079 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const { 3080 const auto &I = InsnVariableIDs.find(&InsnMatcher); 3081 if (I != InsnVariableIDs.end()) 3082 return I->second; 3083 llvm_unreachable("Matched Insn was not captured in a local variable"); 3084 } 3085 3086 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) { 3087 if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) { 3088 DefinedOperands[SymbolicName] = &OM; 3089 return; 3090 } 3091 3092 // If the operand is already defined, then we must ensure both references in 3093 // the matcher have the exact same node. 3094 OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName()); 3095 } 3096 3097 void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) { 3098 if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) { 3099 PhysRegOperands[Reg] = &OM; 3100 return; 3101 } 3102 } 3103 3104 InstructionMatcher & 3105 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const { 3106 for (const auto &I : InsnVariableIDs) 3107 if (I.first->getSymbolicName() == SymbolicName) 3108 return *I.first; 3109 llvm_unreachable( 3110 ("Failed to lookup instruction " + SymbolicName).str().c_str()); 3111 } 3112 3113 const OperandMatcher & 3114 RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const { 3115 const auto &I = PhysRegOperands.find(Reg); 3116 3117 if (I == PhysRegOperands.end()) { 3118 PrintFatalError(SrcLoc, "Register " + Reg->getName() + 3119 " was not declared in matcher"); 3120 } 3121 3122 return *I->second; 3123 } 3124 3125 const OperandMatcher & 3126 RuleMatcher::getOperandMatcher(StringRef Name) const { 3127 const auto &I = DefinedOperands.find(Name); 3128 3129 if (I == DefinedOperands.end()) 3130 PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher"); 3131 3132 return *I->second; 3133 } 3134 3135 void RuleMatcher::emit(MatchTable &Table) { 3136 if (Matchers.empty()) 3137 llvm_unreachable("Unexpected empty matcher!"); 3138 3139 // The representation supports rules that require multiple roots such as: 3140 // %ptr(p0) = ... 3141 // %elt0(s32) = G_LOAD %ptr 3142 // %1(p0) = G_ADD %ptr, 4 3143 // %elt1(s32) = G_LOAD p0 %1 3144 // which could be usefully folded into: 3145 // %ptr(p0) = ... 3146 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr 3147 // on some targets but we don't need to make use of that yet. 3148 assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet"); 3149 3150 unsigned LabelID = Table.allocateLabelID(); 3151 Table << MatchTable::Opcode("GIM_Try", +1) 3152 << MatchTable::Comment("On fail goto") 3153 << MatchTable::JumpTarget(LabelID) 3154 << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str()) 3155 << MatchTable::LineBreak; 3156 3157 if (!RequiredFeatures.empty()) { 3158 Table << MatchTable::Opcode("GIM_CheckFeatures") 3159 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures)) 3160 << MatchTable::LineBreak; 3161 } 3162 3163 Matchers.front()->emitPredicateOpcodes(Table, *this); 3164 3165 // We must also check if it's safe to fold the matched instructions. 3166 if (InsnVariableIDs.size() >= 2) { 3167 // Invert the map to create stable ordering (by var names) 3168 SmallVector<unsigned, 2> InsnIDs; 3169 for (const auto &Pair : InsnVariableIDs) { 3170 // Skip the root node since it isn't moving anywhere. Everything else is 3171 // sinking to meet it. 3172 if (Pair.first == Matchers.front().get()) 3173 continue; 3174 3175 InsnIDs.push_back(Pair.second); 3176 } 3177 llvm::sort(InsnIDs); 3178 3179 for (const auto &InsnID : InsnIDs) { 3180 // Reject the difficult cases until we have a more accurate check. 3181 Table << MatchTable::Opcode("GIM_CheckIsSafeToFold") 3182 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3183 << MatchTable::LineBreak; 3184 3185 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or 3186 // account for unsafe cases. 3187 // 3188 // Example: 3189 // MI1--> %0 = ... 3190 // %1 = ... %0 3191 // MI0--> %2 = ... %0 3192 // It's not safe to erase MI1. We currently handle this by not 3193 // erasing %0 (even when it's dead). 3194 // 3195 // Example: 3196 // MI1--> %0 = load volatile @a 3197 // %1 = load volatile @a 3198 // MI0--> %2 = ... %0 3199 // It's not safe to sink %0's def past %1. We currently handle 3200 // this by rejecting all loads. 3201 // 3202 // Example: 3203 // MI1--> %0 = load @a 3204 // %1 = store @a 3205 // MI0--> %2 = ... %0 3206 // It's not safe to sink %0's def past %1. We currently handle 3207 // this by rejecting all loads. 3208 // 3209 // Example: 3210 // G_CONDBR %cond, @BB1 3211 // BB0: 3212 // MI1--> %0 = load @a 3213 // G_BR @BB1 3214 // BB1: 3215 // MI0--> %2 = ... %0 3216 // It's not always safe to sink %0 across control flow. In this 3217 // case it may introduce a memory fault. We currentl handle this 3218 // by rejecting all loads. 3219 } 3220 } 3221 3222 for (const auto &PM : EpilogueMatchers) 3223 PM->emitPredicateOpcodes(Table, *this); 3224 3225 for (const auto &MA : Actions) 3226 MA->emitActionOpcodes(Table, *this); 3227 3228 if (Table.isWithCoverage()) 3229 Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID) 3230 << MatchTable::LineBreak; 3231 else 3232 Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str()) 3233 << MatchTable::LineBreak; 3234 3235 Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak 3236 << MatchTable::Label(LabelID); 3237 ++NumPatternEmitted; 3238 } 3239 3240 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const { 3241 // Rules involving more match roots have higher priority. 3242 if (Matchers.size() > B.Matchers.size()) 3243 return true; 3244 if (Matchers.size() < B.Matchers.size()) 3245 return false; 3246 3247 for (auto Matcher : zip(Matchers, B.Matchers)) { 3248 if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher))) 3249 return true; 3250 if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher))) 3251 return false; 3252 } 3253 3254 return false; 3255 } 3256 3257 unsigned RuleMatcher::countRendererFns() const { 3258 return std::accumulate( 3259 Matchers.begin(), Matchers.end(), 0, 3260 [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) { 3261 return A + Matcher->countRendererFns(); 3262 }); 3263 } 3264 3265 bool OperandPredicateMatcher::isHigherPriorityThan( 3266 const OperandPredicateMatcher &B) const { 3267 // Generally speaking, an instruction is more important than an Int or a 3268 // LiteralInt because it can cover more nodes but theres an exception to 3269 // this. G_CONSTANT's are less important than either of those two because they 3270 // are more permissive. 3271 3272 const InstructionOperandMatcher *AOM = 3273 dyn_cast<InstructionOperandMatcher>(this); 3274 const InstructionOperandMatcher *BOM = 3275 dyn_cast<InstructionOperandMatcher>(&B); 3276 bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction(); 3277 bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction(); 3278 3279 if (AOM && BOM) { 3280 // The relative priorities between a G_CONSTANT and any other instruction 3281 // don't actually matter but this code is needed to ensure a strict weak 3282 // ordering. This is particularly important on Windows where the rules will 3283 // be incorrectly sorted without it. 3284 if (AIsConstantInsn != BIsConstantInsn) 3285 return AIsConstantInsn < BIsConstantInsn; 3286 return false; 3287 } 3288 3289 if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt)) 3290 return false; 3291 if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt)) 3292 return true; 3293 3294 return Kind < B.Kind; 3295 } 3296 3297 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table, 3298 RuleMatcher &Rule) const { 3299 const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName); 3300 unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher()); 3301 assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID()); 3302 3303 Table << MatchTable::Opcode("GIM_CheckIsSameOperand") 3304 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 3305 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) 3306 << MatchTable::Comment("OtherMI") 3307 << MatchTable::IntValue(OtherInsnVarID) 3308 << MatchTable::Comment("OtherOpIdx") 3309 << MatchTable::IntValue(OtherOM.getOpIdx()) 3310 << MatchTable::LineBreak; 3311 } 3312 3313 //===- GlobalISelEmitter class --------------------------------------------===// 3314 3315 static Expected<LLTCodeGen> getInstResultType(const TreePatternNode *Dst) { 3316 ArrayRef<TypeSetByHwMode> ChildTypes = Dst->getExtTypes(); 3317 if (ChildTypes.size() != 1) 3318 return failedImport("Dst pattern child has multiple results"); 3319 3320 Optional<LLTCodeGen> MaybeOpTy; 3321 if (ChildTypes.front().isMachineValueType()) { 3322 MaybeOpTy = 3323 MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); 3324 } 3325 3326 if (!MaybeOpTy) 3327 return failedImport("Dst operand has an unsupported type"); 3328 return *MaybeOpTy; 3329 } 3330 3331 class GlobalISelEmitter { 3332 public: 3333 explicit GlobalISelEmitter(RecordKeeper &RK); 3334 void run(raw_ostream &OS); 3335 3336 private: 3337 const RecordKeeper &RK; 3338 const CodeGenDAGPatterns CGP; 3339 const CodeGenTarget &Target; 3340 CodeGenRegBank &CGRegs; 3341 3342 /// Keep track of the equivalence between SDNodes and Instruction by mapping 3343 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to 3344 /// check for attributes on the relation such as CheckMMOIsNonAtomic. 3345 /// This is defined using 'GINodeEquiv' in the target description. 3346 DenseMap<Record *, Record *> NodeEquivs; 3347 3348 /// Keep track of the equivalence between ComplexPattern's and 3349 /// GIComplexOperandMatcher. Map entries are specified by subclassing 3350 /// GIComplexPatternEquiv. 3351 DenseMap<const Record *, const Record *> ComplexPatternEquivs; 3352 3353 /// Keep track of the equivalence between SDNodeXForm's and 3354 /// GICustomOperandRenderer. Map entries are specified by subclassing 3355 /// GISDNodeXFormEquiv. 3356 DenseMap<const Record *, const Record *> SDNodeXFormEquivs; 3357 3358 /// Keep track of Scores of PatternsToMatch similar to how the DAG does. 3359 /// This adds compatibility for RuleMatchers to use this for ordering rules. 3360 DenseMap<uint64_t, int> RuleMatcherScores; 3361 3362 // Map of predicates to their subtarget features. 3363 SubtargetFeatureInfoMap SubtargetFeatures; 3364 3365 // Rule coverage information. 3366 Optional<CodeGenCoverage> RuleCoverage; 3367 3368 void gatherOpcodeValues(); 3369 void gatherTypeIDValues(); 3370 void gatherNodeEquivs(); 3371 3372 Record *findNodeEquiv(Record *N) const; 3373 const CodeGenInstruction *getEquivNode(Record &Equiv, 3374 const TreePatternNode *N) const; 3375 3376 Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates); 3377 Expected<InstructionMatcher &> 3378 createAndImportSelDAGMatcher(RuleMatcher &Rule, 3379 InstructionMatcher &InsnMatcher, 3380 const TreePatternNode *Src, unsigned &TempOpIdx); 3381 Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R, 3382 unsigned &TempOpIdx) const; 3383 Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3384 const TreePatternNode *SrcChild, 3385 bool OperandIsAPointer, bool OperandIsImmArg, 3386 unsigned OpIdx, unsigned &TempOpIdx); 3387 3388 Expected<BuildMIAction &> createAndImportInstructionRenderer( 3389 RuleMatcher &M, InstructionMatcher &InsnMatcher, 3390 const TreePatternNode *Src, const TreePatternNode *Dst); 3391 Expected<action_iterator> createAndImportSubInstructionRenderer( 3392 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, 3393 unsigned TempReg); 3394 Expected<action_iterator> 3395 createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M, 3396 const TreePatternNode *Dst); 3397 void importExplicitDefRenderers(BuildMIAction &DstMIBuilder); 3398 3399 Expected<action_iterator> 3400 importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M, 3401 BuildMIAction &DstMIBuilder, 3402 const llvm::TreePatternNode *Dst); 3403 Expected<action_iterator> 3404 importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule, 3405 BuildMIAction &DstMIBuilder, 3406 TreePatternNode *DstChild); 3407 Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M, 3408 BuildMIAction &DstMIBuilder, 3409 DagInit *DefaultOps) const; 3410 Error 3411 importImplicitDefRenderers(BuildMIAction &DstMIBuilder, 3412 const std::vector<Record *> &ImplicitDefs) const; 3413 3414 void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName, 3415 StringRef TypeIdentifier, StringRef ArgType, 3416 StringRef ArgName, StringRef AdditionalDeclarations, 3417 std::function<bool(const Record *R)> Filter); 3418 void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier, 3419 StringRef ArgType, 3420 std::function<bool(const Record *R)> Filter); 3421 void emitMIPredicateFns(raw_ostream &OS); 3422 3423 /// Analyze pattern \p P, returning a matcher for it if possible. 3424 /// Otherwise, return an Error explaining why we don't support it. 3425 Expected<RuleMatcher> runOnPattern(const PatternToMatch &P); 3426 3427 void declareSubtargetFeature(Record *Predicate); 3428 3429 MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize, 3430 bool WithCoverage); 3431 3432 /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned 3433 /// CodeGenRegisterClass will support the CodeGenRegisterClass of 3434 /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode. 3435 /// If no register class is found, return None. 3436 Optional<const CodeGenRegisterClass *> 3437 inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty, 3438 TreePatternNode *SuperRegNode, 3439 TreePatternNode *SubRegIdxNode); 3440 Optional<CodeGenSubRegIndex *> 3441 inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode); 3442 3443 /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode. 3444 /// Return None if no such class exists. 3445 Optional<const CodeGenRegisterClass *> 3446 inferSuperRegisterClass(const TypeSetByHwMode &Ty, 3447 TreePatternNode *SubRegIdxNode); 3448 3449 /// Return the CodeGenRegisterClass associated with \p Leaf if it has one. 3450 Optional<const CodeGenRegisterClass *> 3451 getRegClassFromLeaf(TreePatternNode *Leaf); 3452 3453 /// Return a CodeGenRegisterClass for \p N if one can be found. Return None 3454 /// otherwise. 3455 Optional<const CodeGenRegisterClass *> 3456 inferRegClassFromPattern(TreePatternNode *N); 3457 3458 public: 3459 /// Takes a sequence of \p Rules and group them based on the predicates 3460 /// they share. \p MatcherStorage is used as a memory container 3461 /// for the group that are created as part of this process. 3462 /// 3463 /// What this optimization does looks like if GroupT = GroupMatcher: 3464 /// Output without optimization: 3465 /// \verbatim 3466 /// # R1 3467 /// # predicate A 3468 /// # predicate B 3469 /// ... 3470 /// # R2 3471 /// # predicate A // <-- effectively this is going to be checked twice. 3472 /// // Once in R1 and once in R2. 3473 /// # predicate C 3474 /// \endverbatim 3475 /// Output with optimization: 3476 /// \verbatim 3477 /// # Group1_2 3478 /// # predicate A // <-- Check is now shared. 3479 /// # R1 3480 /// # predicate B 3481 /// # R2 3482 /// # predicate C 3483 /// \endverbatim 3484 template <class GroupT> 3485 static std::vector<Matcher *> optimizeRules( 3486 ArrayRef<Matcher *> Rules, 3487 std::vector<std::unique_ptr<Matcher>> &MatcherStorage); 3488 }; 3489 3490 void GlobalISelEmitter::gatherOpcodeValues() { 3491 InstructionOpcodeMatcher::initOpcodeValuesMap(Target); 3492 } 3493 3494 void GlobalISelEmitter::gatherTypeIDValues() { 3495 LLTOperandMatcher::initTypeIDValuesMap(); 3496 } 3497 3498 void GlobalISelEmitter::gatherNodeEquivs() { 3499 assert(NodeEquivs.empty()); 3500 for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv")) 3501 NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv; 3502 3503 assert(ComplexPatternEquivs.empty()); 3504 for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) { 3505 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); 3506 if (!SelDAGEquiv) 3507 continue; 3508 ComplexPatternEquivs[SelDAGEquiv] = Equiv; 3509 } 3510 3511 assert(SDNodeXFormEquivs.empty()); 3512 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) { 3513 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); 3514 if (!SelDAGEquiv) 3515 continue; 3516 SDNodeXFormEquivs[SelDAGEquiv] = Equiv; 3517 } 3518 } 3519 3520 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const { 3521 return NodeEquivs.lookup(N); 3522 } 3523 3524 const CodeGenInstruction * 3525 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const { 3526 if (N->getNumChildren() >= 1) { 3527 // setcc operation maps to two different G_* instructions based on the type. 3528 if (!Equiv.isValueUnset("IfFloatingPoint") && 3529 MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint()) 3530 return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint")); 3531 } 3532 3533 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 3534 const TreePredicateFn &Predicate = Call.Fn; 3535 if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() && 3536 Predicate.isSignExtLoad()) 3537 return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend")); 3538 if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() && 3539 Predicate.isZeroExtLoad()) 3540 return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend")); 3541 } 3542 3543 return &Target.getInstruction(Equiv.getValueAsDef("I")); 3544 } 3545 3546 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK) 3547 : RK(RK), CGP(RK), Target(CGP.getTargetInfo()), 3548 CGRegs(Target.getRegBank()) {} 3549 3550 //===- Emitter ------------------------------------------------------------===// 3551 3552 Error 3553 GlobalISelEmitter::importRulePredicates(RuleMatcher &M, 3554 ArrayRef<Predicate> Predicates) { 3555 for (const Predicate &P : Predicates) { 3556 if (!P.Def || P.getCondString().empty()) 3557 continue; 3558 declareSubtargetFeature(P.Def); 3559 M.addRequiredFeature(P.Def); 3560 } 3561 3562 return Error::success(); 3563 } 3564 3565 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher( 3566 RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3567 const TreePatternNode *Src, unsigned &TempOpIdx) { 3568 Record *SrcGIEquivOrNull = nullptr; 3569 const CodeGenInstruction *SrcGIOrNull = nullptr; 3570 3571 // Start with the defined operands (i.e., the results of the root operator). 3572 if (Src->getExtTypes().size() > 1) 3573 return failedImport("Src pattern has multiple results"); 3574 3575 if (Src->isLeaf()) { 3576 Init *SrcInit = Src->getLeafValue(); 3577 if (isa<IntInit>(SrcInit)) { 3578 InsnMatcher.addPredicate<InstructionOpcodeMatcher>( 3579 &Target.getInstruction(RK.getDef("G_CONSTANT"))); 3580 } else 3581 return failedImport( 3582 "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); 3583 } else { 3584 SrcGIEquivOrNull = findNodeEquiv(Src->getOperator()); 3585 if (!SrcGIEquivOrNull) 3586 return failedImport("Pattern operator lacks an equivalent Instruction" + 3587 explainOperator(Src->getOperator())); 3588 SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src); 3589 3590 // The operators look good: match the opcode 3591 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull); 3592 } 3593 3594 unsigned OpIdx = 0; 3595 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { 3596 // Results don't have a name unless they are the root node. The caller will 3597 // set the name if appropriate. 3598 OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); 3599 if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */)) 3600 return failedImport(toString(std::move(Error)) + 3601 " for result of Src pattern operator"); 3602 } 3603 3604 for (const TreePredicateCall &Call : Src->getPredicateCalls()) { 3605 const TreePredicateFn &Predicate = Call.Fn; 3606 if (Predicate.isAlwaysTrue()) 3607 continue; 3608 3609 if (Predicate.isImmediatePattern()) { 3610 InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate); 3611 continue; 3612 } 3613 3614 // An address space check is needed in all contexts if there is one. 3615 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 3616 if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) { 3617 SmallVector<unsigned, 4> ParsedAddrSpaces; 3618 3619 for (Init *Val : AddrSpaces->getValues()) { 3620 IntInit *IntVal = dyn_cast<IntInit>(Val); 3621 if (!IntVal) 3622 return failedImport("Address space is not an integer"); 3623 ParsedAddrSpaces.push_back(IntVal->getValue()); 3624 } 3625 3626 if (!ParsedAddrSpaces.empty()) { 3627 InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>( 3628 0, ParsedAddrSpaces); 3629 } 3630 } 3631 3632 int64_t MinAlign = Predicate.getMinAlignment(); 3633 if (MinAlign > 0) 3634 InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign); 3635 } 3636 3637 // G_LOAD is used for both non-extending and any-extending loads. 3638 if (Predicate.isLoad() && Predicate.isNonExtLoad()) { 3639 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3640 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); 3641 continue; 3642 } 3643 if (Predicate.isLoad() && Predicate.isAnyExtLoad()) { 3644 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3645 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); 3646 continue; 3647 } 3648 3649 if (Predicate.isStore()) { 3650 if (Predicate.isTruncStore()) { 3651 // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size. 3652 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3653 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); 3654 continue; 3655 } 3656 if (Predicate.isNonTruncStore()) { 3657 // We need to check the sizes match here otherwise we could incorrectly 3658 // match truncating stores with non-truncating ones. 3659 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3660 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); 3661 } 3662 } 3663 3664 // No check required. We already did it by swapping the opcode. 3665 if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") && 3666 Predicate.isSignExtLoad()) 3667 continue; 3668 3669 // No check required. We already did it by swapping the opcode. 3670 if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") && 3671 Predicate.isZeroExtLoad()) 3672 continue; 3673 3674 // No check required. G_STORE by itself is a non-extending store. 3675 if (Predicate.isNonTruncStore()) 3676 continue; 3677 3678 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 3679 if (Predicate.getMemoryVT() != nullptr) { 3680 Optional<LLTCodeGen> MemTyOrNone = 3681 MVTToLLT(getValueType(Predicate.getMemoryVT())); 3682 3683 if (!MemTyOrNone) 3684 return failedImport("MemVT could not be converted to LLT"); 3685 3686 // MMO's work in bytes so we must take care of unusual types like i1 3687 // don't round down. 3688 unsigned MemSizeInBits = 3689 llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8); 3690 3691 InsnMatcher.addPredicate<MemorySizePredicateMatcher>( 3692 0, MemSizeInBits / 8); 3693 continue; 3694 } 3695 } 3696 3697 if (Predicate.isLoad() || Predicate.isStore()) { 3698 // No check required. A G_LOAD/G_STORE is an unindexed load. 3699 if (Predicate.isUnindexed()) 3700 continue; 3701 } 3702 3703 if (Predicate.isAtomic()) { 3704 if (Predicate.isAtomicOrderingMonotonic()) { 3705 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3706 "Monotonic"); 3707 continue; 3708 } 3709 if (Predicate.isAtomicOrderingAcquire()) { 3710 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire"); 3711 continue; 3712 } 3713 if (Predicate.isAtomicOrderingRelease()) { 3714 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release"); 3715 continue; 3716 } 3717 if (Predicate.isAtomicOrderingAcquireRelease()) { 3718 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3719 "AcquireRelease"); 3720 continue; 3721 } 3722 if (Predicate.isAtomicOrderingSequentiallyConsistent()) { 3723 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3724 "SequentiallyConsistent"); 3725 continue; 3726 } 3727 3728 if (Predicate.isAtomicOrderingAcquireOrStronger()) { 3729 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3730 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3731 continue; 3732 } 3733 if (Predicate.isAtomicOrderingWeakerThanAcquire()) { 3734 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3735 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); 3736 continue; 3737 } 3738 3739 if (Predicate.isAtomicOrderingReleaseOrStronger()) { 3740 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3741 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3742 continue; 3743 } 3744 if (Predicate.isAtomicOrderingWeakerThanRelease()) { 3745 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3746 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); 3747 continue; 3748 } 3749 } 3750 3751 if (Predicate.hasGISelPredicateCode()) { 3752 InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate); 3753 continue; 3754 } 3755 3756 return failedImport("Src pattern child has predicate (" + 3757 explainPredicates(Src) + ")"); 3758 } 3759 if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic")) 3760 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic"); 3761 else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) { 3762 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3763 "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3764 } 3765 3766 if (Src->isLeaf()) { 3767 Init *SrcInit = Src->getLeafValue(); 3768 if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) { 3769 OperandMatcher &OM = 3770 InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx); 3771 OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue()); 3772 } else 3773 return failedImport( 3774 "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); 3775 } else { 3776 assert(SrcGIOrNull && 3777 "Expected to have already found an equivalent Instruction"); 3778 if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" || 3779 SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") { 3780 // imm/fpimm still have operands but we don't need to do anything with it 3781 // here since we don't support ImmLeaf predicates yet. However, we still 3782 // need to note the hidden operand to get GIM_CheckNumOperands correct. 3783 InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); 3784 return InsnMatcher; 3785 } 3786 3787 // Special case because the operand order is changed from setcc. The 3788 // predicate operand needs to be swapped from the last operand to the first 3789 // source. 3790 3791 unsigned NumChildren = Src->getNumChildren(); 3792 bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP"; 3793 3794 if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") { 3795 TreePatternNode *SrcChild = Src->getChild(NumChildren - 1); 3796 if (SrcChild->isLeaf()) { 3797 DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue()); 3798 Record *CCDef = DI ? DI->getDef() : nullptr; 3799 if (!CCDef || !CCDef->isSubClassOf("CondCode")) 3800 return failedImport("Unable to handle CondCode"); 3801 3802 OperandMatcher &OM = 3803 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); 3804 StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") : 3805 CCDef->getValueAsString("ICmpPredicate"); 3806 3807 if (!PredType.empty()) { 3808 OM.addPredicate<CmpPredicateOperandMatcher>(std::string(PredType)); 3809 // Process the other 2 operands normally. 3810 --NumChildren; 3811 } 3812 } 3813 } 3814 3815 // Match the used operands (i.e. the children of the operator). 3816 bool IsIntrinsic = 3817 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" || 3818 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS"; 3819 const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP); 3820 if (IsIntrinsic && !II) 3821 return failedImport("Expected IntInit containing intrinsic ID)"); 3822 3823 for (unsigned i = 0; i != NumChildren; ++i) { 3824 TreePatternNode *SrcChild = Src->getChild(i); 3825 3826 // We need to determine the meaning of a literal integer based on the 3827 // context. If this is a field required to be an immediate (such as an 3828 // immarg intrinsic argument), the required predicates are different than 3829 // a constant which may be materialized in a register. If we have an 3830 // argument that is required to be an immediate, we should not emit an LLT 3831 // type check, and should not be looking for a G_CONSTANT defined 3832 // register. 3833 bool OperandIsImmArg = SrcGIOrNull->isOperandImmArg(i); 3834 3835 // SelectionDAG allows pointers to be represented with iN since it doesn't 3836 // distinguish between pointers and integers but they are different types in GlobalISel. 3837 // Coerce integers to pointers to address space 0 if the context indicates a pointer. 3838 // 3839 bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i); 3840 3841 if (IsIntrinsic) { 3842 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately 3843 // following the defs is an intrinsic ID. 3844 if (i == 0) { 3845 OperandMatcher &OM = 3846 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); 3847 OM.addPredicate<IntrinsicIDOperandMatcher>(II); 3848 continue; 3849 } 3850 3851 // We have to check intrinsics for llvm_anyptr_ty and immarg parameters. 3852 // 3853 // Note that we have to look at the i-1th parameter, because we don't 3854 // have the intrinsic ID in the intrinsic's parameter list. 3855 OperandIsAPointer |= II->isParamAPointer(i - 1); 3856 OperandIsImmArg |= II->isParamImmArg(i - 1); 3857 } 3858 3859 if (auto Error = 3860 importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer, 3861 OperandIsImmArg, OpIdx++, TempOpIdx)) 3862 return std::move(Error); 3863 } 3864 } 3865 3866 return InsnMatcher; 3867 } 3868 3869 Error GlobalISelEmitter::importComplexPatternOperandMatcher( 3870 OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const { 3871 const auto &ComplexPattern = ComplexPatternEquivs.find(R); 3872 if (ComplexPattern == ComplexPatternEquivs.end()) 3873 return failedImport("SelectionDAG ComplexPattern (" + R->getName() + 3874 ") not mapped to GlobalISel"); 3875 3876 OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second); 3877 TempOpIdx++; 3878 return Error::success(); 3879 } 3880 3881 // Get the name to use for a pattern operand. For an anonymous physical register 3882 // input, this should use the register name. 3883 static StringRef getSrcChildName(const TreePatternNode *SrcChild, 3884 Record *&PhysReg) { 3885 StringRef SrcChildName = SrcChild->getName(); 3886 if (SrcChildName.empty() && SrcChild->isLeaf()) { 3887 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { 3888 auto *ChildRec = ChildDefInit->getDef(); 3889 if (ChildRec->isSubClassOf("Register")) { 3890 SrcChildName = ChildRec->getName(); 3891 PhysReg = ChildRec; 3892 } 3893 } 3894 } 3895 3896 return SrcChildName; 3897 } 3898 3899 Error GlobalISelEmitter::importChildMatcher( 3900 RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3901 const TreePatternNode *SrcChild, bool OperandIsAPointer, 3902 bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) { 3903 3904 Record *PhysReg = nullptr; 3905 StringRef SrcChildName = getSrcChildName(SrcChild, PhysReg); 3906 3907 OperandMatcher &OM = 3908 PhysReg 3909 ? InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx) 3910 : InsnMatcher.addOperand(OpIdx, std::string(SrcChildName), TempOpIdx); 3911 if (OM.isSameAsAnotherOperand()) 3912 return Error::success(); 3913 3914 ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes(); 3915 if (ChildTypes.size() != 1) 3916 return failedImport("Src pattern child has multiple results"); 3917 3918 // Check MBB's before the type check since they are not a known type. 3919 if (!SrcChild->isLeaf()) { 3920 if (SrcChild->getOperator()->isSubClassOf("SDNode")) { 3921 auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator()); 3922 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { 3923 OM.addPredicate<MBBOperandMatcher>(); 3924 return Error::success(); 3925 } 3926 if (SrcChild->getOperator()->getName() == "timm") { 3927 OM.addPredicate<ImmOperandMatcher>(); 3928 return Error::success(); 3929 } 3930 } 3931 } 3932 3933 // Immediate arguments have no meaningful type to check as they don't have 3934 // registers. 3935 if (!OperandIsImmArg) { 3936 if (auto Error = 3937 OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer)) 3938 return failedImport(toString(std::move(Error)) + " for Src operand (" + 3939 to_string(*SrcChild) + ")"); 3940 } 3941 3942 // Check for nested instructions. 3943 if (!SrcChild->isLeaf()) { 3944 if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) { 3945 // When a ComplexPattern is used as an operator, it should do the same 3946 // thing as when used as a leaf. However, the children of the operator 3947 // name the sub-operands that make up the complex operand and we must 3948 // prepare to reference them in the renderer too. 3949 unsigned RendererID = TempOpIdx; 3950 if (auto Error = importComplexPatternOperandMatcher( 3951 OM, SrcChild->getOperator(), TempOpIdx)) 3952 return Error; 3953 3954 for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) { 3955 auto *SubOperand = SrcChild->getChild(i); 3956 if (!SubOperand->getName().empty()) { 3957 if (auto Error = Rule.defineComplexSubOperand(SubOperand->getName(), 3958 SrcChild->getOperator(), 3959 RendererID, i)) 3960 return Error; 3961 } 3962 } 3963 3964 return Error::success(); 3965 } 3966 3967 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( 3968 InsnMatcher.getRuleMatcher(), SrcChild->getName()); 3969 if (!MaybeInsnOperand.hasValue()) { 3970 // This isn't strictly true. If the user were to provide exactly the same 3971 // matchers as the original operand then we could allow it. However, it's 3972 // simpler to not permit the redundant specification. 3973 return failedImport("Nested instruction cannot be the same as another operand"); 3974 } 3975 3976 // Map the node to a gMIR instruction. 3977 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; 3978 auto InsnMatcherOrError = createAndImportSelDAGMatcher( 3979 Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx); 3980 if (auto Error = InsnMatcherOrError.takeError()) 3981 return Error; 3982 3983 return Error::success(); 3984 } 3985 3986 if (SrcChild->hasAnyPredicate()) 3987 return failedImport("Src pattern child has unsupported predicate"); 3988 3989 // Check for constant immediates. 3990 if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) { 3991 if (OperandIsImmArg) { 3992 // Checks for argument directly in operand list 3993 OM.addPredicate<LiteralIntOperandMatcher>(ChildInt->getValue()); 3994 } else { 3995 // Checks for materialized constant 3996 OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue()); 3997 } 3998 return Error::success(); 3999 } 4000 4001 // Check for def's like register classes or ComplexPattern's. 4002 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { 4003 auto *ChildRec = ChildDefInit->getDef(); 4004 4005 // Check for register classes. 4006 if (ChildRec->isSubClassOf("RegisterClass") || 4007 ChildRec->isSubClassOf("RegisterOperand")) { 4008 OM.addPredicate<RegisterBankOperandMatcher>( 4009 Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit))); 4010 return Error::success(); 4011 } 4012 4013 if (ChildRec->isSubClassOf("Register")) { 4014 // This just be emitted as a copy to the specific register. 4015 ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode(); 4016 const CodeGenRegisterClass *RC 4017 = CGRegs.getMinimalPhysRegClass(ChildRec, &VT); 4018 if (!RC) { 4019 return failedImport( 4020 "Could not determine physical register class of pattern source"); 4021 } 4022 4023 OM.addPredicate<RegisterBankOperandMatcher>(*RC); 4024 return Error::success(); 4025 } 4026 4027 // Check for ValueType. 4028 if (ChildRec->isSubClassOf("ValueType")) { 4029 // We already added a type check as standard practice so this doesn't need 4030 // to do anything. 4031 return Error::success(); 4032 } 4033 4034 // Check for ComplexPattern's. 4035 if (ChildRec->isSubClassOf("ComplexPattern")) 4036 return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx); 4037 4038 if (ChildRec->isSubClassOf("ImmLeaf")) { 4039 return failedImport( 4040 "Src pattern child def is an unsupported tablegen class (ImmLeaf)"); 4041 } 4042 4043 // Place holder for SRCVALUE nodes. Nothing to do here. 4044 if (ChildRec->getName() == "srcvalue") 4045 return Error::success(); 4046 4047 return failedImport( 4048 "Src pattern child def is an unsupported tablegen class"); 4049 } 4050 4051 return failedImport("Src pattern child is an unsupported kind"); 4052 } 4053 4054 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer( 4055 action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder, 4056 TreePatternNode *DstChild) { 4057 4058 const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName()); 4059 if (SubOperand.hasValue()) { 4060 DstMIBuilder.addRenderer<RenderComplexPatternOperand>( 4061 *std::get<0>(*SubOperand), DstChild->getName(), 4062 std::get<1>(*SubOperand), std::get<2>(*SubOperand)); 4063 return InsertPt; 4064 } 4065 4066 if (!DstChild->isLeaf()) { 4067 if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) { 4068 auto Child = DstChild->getChild(0); 4069 auto I = SDNodeXFormEquivs.find(DstChild->getOperator()); 4070 if (I != SDNodeXFormEquivs.end()) { 4071 Record *XFormOpc = DstChild->getOperator()->getValueAsDef("Opcode"); 4072 if (XFormOpc->getName() == "timm") { 4073 // If this is a TargetConstant, there won't be a corresponding 4074 // instruction to transform. Instead, this will refer directly to an 4075 // operand in an instruction's operand list. 4076 DstMIBuilder.addRenderer<CustomOperandRenderer>(*I->second, 4077 Child->getName()); 4078 } else { 4079 DstMIBuilder.addRenderer<CustomRenderer>(*I->second, 4080 Child->getName()); 4081 } 4082 4083 return InsertPt; 4084 } 4085 return failedImport("SDNodeXForm " + Child->getName() + 4086 " has no custom renderer"); 4087 } 4088 4089 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't 4090 // inline, but in MI it's just another operand. 4091 if (DstChild->getOperator()->isSubClassOf("SDNode")) { 4092 auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator()); 4093 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { 4094 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4095 return InsertPt; 4096 } 4097 } 4098 4099 // Similarly, imm is an operator in TreePatternNode's view but must be 4100 // rendered as operands. 4101 // FIXME: The target should be able to choose sign-extended when appropriate 4102 // (e.g. on Mips). 4103 if (DstChild->getOperator()->getName() == "timm") { 4104 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4105 return InsertPt; 4106 } else if (DstChild->getOperator()->getName() == "imm") { 4107 DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName()); 4108 return InsertPt; 4109 } else if (DstChild->getOperator()->getName() == "fpimm") { 4110 DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>( 4111 DstChild->getName()); 4112 return InsertPt; 4113 } 4114 4115 if (DstChild->getOperator()->isSubClassOf("Instruction")) { 4116 auto OpTy = getInstResultType(DstChild); 4117 if (!OpTy) 4118 return OpTy.takeError(); 4119 4120 unsigned TempRegID = Rule.allocateTempRegID(); 4121 InsertPt = Rule.insertAction<MakeTempRegisterAction>( 4122 InsertPt, *OpTy, TempRegID); 4123 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4124 4125 auto InsertPtOrError = createAndImportSubInstructionRenderer( 4126 ++InsertPt, Rule, DstChild, TempRegID); 4127 if (auto Error = InsertPtOrError.takeError()) 4128 return std::move(Error); 4129 return InsertPtOrError.get(); 4130 } 4131 4132 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild)); 4133 } 4134 4135 // It could be a specific immediate in which case we should just check for 4136 // that immediate. 4137 if (const IntInit *ChildIntInit = 4138 dyn_cast<IntInit>(DstChild->getLeafValue())) { 4139 DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue()); 4140 return InsertPt; 4141 } 4142 4143 // Otherwise, we're looking for a bog-standard RegisterClass operand. 4144 if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) { 4145 auto *ChildRec = ChildDefInit->getDef(); 4146 4147 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes(); 4148 if (ChildTypes.size() != 1) 4149 return failedImport("Dst pattern child has multiple results"); 4150 4151 Optional<LLTCodeGen> OpTyOrNone = None; 4152 if (ChildTypes.front().isMachineValueType()) 4153 OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); 4154 if (!OpTyOrNone) 4155 return failedImport("Dst operand has an unsupported type"); 4156 4157 if (ChildRec->isSubClassOf("Register")) { 4158 DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec); 4159 return InsertPt; 4160 } 4161 4162 if (ChildRec->isSubClassOf("RegisterClass") || 4163 ChildRec->isSubClassOf("RegisterOperand") || 4164 ChildRec->isSubClassOf("ValueType")) { 4165 if (ChildRec->isSubClassOf("RegisterOperand") && 4166 !ChildRec->isValueUnset("GIZeroRegister")) { 4167 DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>( 4168 DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister")); 4169 return InsertPt; 4170 } 4171 4172 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4173 return InsertPt; 4174 } 4175 4176 if (ChildRec->isSubClassOf("SubRegIndex")) { 4177 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec); 4178 DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue); 4179 return InsertPt; 4180 } 4181 4182 if (ChildRec->isSubClassOf("ComplexPattern")) { 4183 const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec); 4184 if (ComplexPattern == ComplexPatternEquivs.end()) 4185 return failedImport( 4186 "SelectionDAG ComplexPattern not mapped to GlobalISel"); 4187 4188 const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName()); 4189 DstMIBuilder.addRenderer<RenderComplexPatternOperand>( 4190 *ComplexPattern->second, DstChild->getName(), 4191 OM.getAllocatedTemporariesBaseID()); 4192 return InsertPt; 4193 } 4194 4195 return failedImport( 4196 "Dst pattern child def is an unsupported tablegen class"); 4197 } 4198 4199 return failedImport("Dst pattern child is an unsupported kind"); 4200 } 4201 4202 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer( 4203 RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src, 4204 const TreePatternNode *Dst) { 4205 auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst); 4206 if (auto Error = InsertPtOrError.takeError()) 4207 return std::move(Error); 4208 4209 action_iterator InsertPt = InsertPtOrError.get(); 4210 BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get()); 4211 4212 for (auto PhysInput : InsnMatcher.getPhysRegInputs()) { 4213 InsertPt = M.insertAction<BuildMIAction>( 4214 InsertPt, M.allocateOutputInsnID(), 4215 &Target.getInstruction(RK.getDef("COPY"))); 4216 BuildMIAction &CopyToPhysRegMIBuilder = 4217 *static_cast<BuildMIAction *>(InsertPt->get()); 4218 CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(PhysInput.first, 4219 true); 4220 CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first); 4221 } 4222 4223 importExplicitDefRenderers(DstMIBuilder); 4224 4225 if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst) 4226 .takeError()) 4227 return std::move(Error); 4228 4229 return DstMIBuilder; 4230 } 4231 4232 Expected<action_iterator> 4233 GlobalISelEmitter::createAndImportSubInstructionRenderer( 4234 const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, 4235 unsigned TempRegID) { 4236 auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst); 4237 4238 // TODO: Assert there's exactly one result. 4239 4240 if (auto Error = InsertPtOrError.takeError()) 4241 return std::move(Error); 4242 4243 BuildMIAction &DstMIBuilder = 4244 *static_cast<BuildMIAction *>(InsertPtOrError.get()->get()); 4245 4246 // Assign the result to TempReg. 4247 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true); 4248 4249 InsertPtOrError = 4250 importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst); 4251 if (auto Error = InsertPtOrError.takeError()) 4252 return std::move(Error); 4253 4254 // We need to make sure that when we import an INSERT_SUBREG as a 4255 // subinstruction that it ends up being constrained to the correct super 4256 // register and subregister classes. 4257 auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName(); 4258 if (OpName == "INSERT_SUBREG") { 4259 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4260 if (!SubClass) 4261 return failedImport( 4262 "Cannot infer register class from INSERT_SUBREG operand #1"); 4263 Optional<const CodeGenRegisterClass *> SuperClass = 4264 inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0), 4265 Dst->getChild(2)); 4266 if (!SuperClass) 4267 return failedImport( 4268 "Cannot infer register class for INSERT_SUBREG operand #0"); 4269 // The destination and the super register source of an INSERT_SUBREG must 4270 // be the same register class. 4271 M.insertAction<ConstrainOperandToRegClassAction>( 4272 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4273 M.insertAction<ConstrainOperandToRegClassAction>( 4274 InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass); 4275 M.insertAction<ConstrainOperandToRegClassAction>( 4276 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); 4277 return InsertPtOrError.get(); 4278 } 4279 4280 if (OpName == "EXTRACT_SUBREG") { 4281 // EXTRACT_SUBREG selects into a subregister COPY but unlike most 4282 // instructions, the result register class is controlled by the 4283 // subregisters of the operand. As a result, we must constrain the result 4284 // class rather than check that it's already the right one. 4285 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 4286 if (!SuperClass) 4287 return failedImport( 4288 "Cannot infer register class from EXTRACT_SUBREG operand #0"); 4289 4290 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); 4291 if (!SubIdx) 4292 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4293 4294 const auto SrcRCDstRCPair = 4295 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 4296 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4297 M.insertAction<ConstrainOperandToRegClassAction>( 4298 InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second); 4299 M.insertAction<ConstrainOperandToRegClassAction>( 4300 InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first); 4301 4302 // We're done with this pattern! It's eligible for GISel emission; return 4303 // it. 4304 return InsertPtOrError.get(); 4305 } 4306 4307 // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a 4308 // subinstruction. 4309 if (OpName == "SUBREG_TO_REG") { 4310 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4311 if (!SubClass) 4312 return failedImport( 4313 "Cannot infer register class from SUBREG_TO_REG child #1"); 4314 auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0), 4315 Dst->getChild(2)); 4316 if (!SuperClass) 4317 return failedImport( 4318 "Cannot infer register class for SUBREG_TO_REG operand #0"); 4319 M.insertAction<ConstrainOperandToRegClassAction>( 4320 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4321 M.insertAction<ConstrainOperandToRegClassAction>( 4322 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); 4323 return InsertPtOrError.get(); 4324 } 4325 4326 if (OpName == "REG_SEQUENCE") { 4327 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 4328 M.insertAction<ConstrainOperandToRegClassAction>( 4329 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4330 4331 unsigned Num = Dst->getNumChildren(); 4332 for (unsigned I = 1; I != Num; I += 2) { 4333 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 4334 4335 auto SubIdx = inferSubRegIndexForNode(SubRegChild); 4336 if (!SubIdx) 4337 return failedImport("REG_SEQUENCE child is not a subreg index"); 4338 4339 const auto SrcRCDstRCPair = 4340 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 4341 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4342 M.insertAction<ConstrainOperandToRegClassAction>( 4343 InsertPt, DstMIBuilder.getInsnID(), I, *SrcRCDstRCPair->second); 4344 } 4345 4346 return InsertPtOrError.get(); 4347 } 4348 4349 M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt, 4350 DstMIBuilder.getInsnID()); 4351 return InsertPtOrError.get(); 4352 } 4353 4354 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer( 4355 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) { 4356 Record *DstOp = Dst->getOperator(); 4357 if (!DstOp->isSubClassOf("Instruction")) { 4358 if (DstOp->isSubClassOf("ValueType")) 4359 return failedImport( 4360 "Pattern operator isn't an instruction (it's a ValueType)"); 4361 return failedImport("Pattern operator isn't an instruction"); 4362 } 4363 CodeGenInstruction *DstI = &Target.getInstruction(DstOp); 4364 4365 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction 4366 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy. 4367 StringRef Name = DstI->TheDef->getName(); 4368 if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG") 4369 DstI = &Target.getInstruction(RK.getDef("COPY")); 4370 4371 return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(), 4372 DstI); 4373 } 4374 4375 void GlobalISelEmitter::importExplicitDefRenderers( 4376 BuildMIAction &DstMIBuilder) { 4377 const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); 4378 for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) { 4379 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I]; 4380 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name); 4381 } 4382 } 4383 4384 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers( 4385 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4386 const llvm::TreePatternNode *Dst) { 4387 const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); 4388 CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator()); 4389 4390 StringRef Name = OrigDstI->TheDef->getName(); 4391 unsigned ExpectedDstINumUses = Dst->getNumChildren(); 4392 4393 // EXTRACT_SUBREG needs to use a subregister COPY. 4394 if (Name == "EXTRACT_SUBREG") { 4395 DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 4396 if (!SubRegInit) 4397 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4398 4399 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4400 TreePatternNode *ValChild = Dst->getChild(0); 4401 if (!ValChild->isLeaf()) { 4402 // We really have to handle the source instruction, and then insert a 4403 // copy from the subregister. 4404 auto ExtractSrcTy = getInstResultType(ValChild); 4405 if (!ExtractSrcTy) 4406 return ExtractSrcTy.takeError(); 4407 4408 unsigned TempRegID = M.allocateTempRegID(); 4409 InsertPt = M.insertAction<MakeTempRegisterAction>( 4410 InsertPt, *ExtractSrcTy, TempRegID); 4411 4412 auto InsertPtOrError = createAndImportSubInstructionRenderer( 4413 ++InsertPt, M, ValChild, TempRegID); 4414 if (auto Error = InsertPtOrError.takeError()) 4415 return std::move(Error); 4416 4417 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, false, SubIdx); 4418 return InsertPt; 4419 } 4420 4421 // If this is a source operand, this is just a subregister copy. 4422 Record *RCDef = getInitValueAsRegClass(ValChild->getLeafValue()); 4423 if (!RCDef) 4424 return failedImport("EXTRACT_SUBREG child #0 could not " 4425 "be coerced to a register class"); 4426 4427 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef); 4428 4429 const auto SrcRCDstRCPair = 4430 RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx); 4431 if (SrcRCDstRCPair.hasValue()) { 4432 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4433 if (SrcRCDstRCPair->first != RC) 4434 return failedImport("EXTRACT_SUBREG requires an additional COPY"); 4435 } 4436 4437 DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(), 4438 SubIdx); 4439 return InsertPt; 4440 } 4441 4442 if (Name == "REG_SEQUENCE") { 4443 if (!Dst->getChild(0)->isLeaf()) 4444 return failedImport("REG_SEQUENCE child #0 is not a leaf"); 4445 4446 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 4447 if (!RCDef) 4448 return failedImport("REG_SEQUENCE child #0 could not " 4449 "be coerced to a register class"); 4450 4451 if ((ExpectedDstINumUses - 1) % 2 != 0) 4452 return failedImport("Malformed REG_SEQUENCE"); 4453 4454 for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) { 4455 TreePatternNode *ValChild = Dst->getChild(I); 4456 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 4457 4458 if (DefInit *SubRegInit = 4459 dyn_cast<DefInit>(SubRegChild->getLeafValue())) { 4460 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4461 4462 auto InsertPtOrError = 4463 importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild); 4464 if (auto Error = InsertPtOrError.takeError()) 4465 return std::move(Error); 4466 InsertPt = InsertPtOrError.get(); 4467 DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx); 4468 } 4469 } 4470 4471 return InsertPt; 4472 } 4473 4474 // Render the explicit uses. 4475 unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs; 4476 if (Name == "COPY_TO_REGCLASS") { 4477 DstINumUses--; // Ignore the class constraint. 4478 ExpectedDstINumUses--; 4479 } 4480 4481 // NumResults - This is the number of results produced by the instruction in 4482 // the "outs" list. 4483 unsigned NumResults = OrigDstI->Operands.NumDefs; 4484 4485 // Number of operands we know the output instruction must have. If it is 4486 // variadic, we could have more operands. 4487 unsigned NumFixedOperands = DstI->Operands.size(); 4488 4489 // Loop over all of the fixed operands of the instruction pattern, emitting 4490 // code to fill them all in. The node 'N' usually has number children equal to 4491 // the number of input operands of the instruction. However, in cases where 4492 // there are predicate operands for an instruction, we need to fill in the 4493 // 'execute always' values. Match up the node operands to the instruction 4494 // operands to do this. 4495 unsigned Child = 0; 4496 4497 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the 4498 // number of operands at the end of the list which have default values. 4499 // Those can come from the pattern if it provides enough arguments, or be 4500 // filled in with the default if the pattern hasn't provided them. But any 4501 // operand with a default value _before_ the last mandatory one will be 4502 // filled in with their defaults unconditionally. 4503 unsigned NonOverridableOperands = NumFixedOperands; 4504 while (NonOverridableOperands > NumResults && 4505 CGP.operandHasDefault(DstI->Operands[NonOverridableOperands - 1].Rec)) 4506 --NonOverridableOperands; 4507 4508 unsigned NumDefaultOps = 0; 4509 for (unsigned I = 0; I != DstINumUses; ++I) { 4510 unsigned InstOpNo = DstI->Operands.NumDefs + I; 4511 4512 // Determine what to emit for this operand. 4513 Record *OperandNode = DstI->Operands[InstOpNo].Rec; 4514 4515 // If the operand has default values, introduce them now. 4516 if (CGP.operandHasDefault(OperandNode) && 4517 (InstOpNo < NonOverridableOperands || Child >= Dst->getNumChildren())) { 4518 // This is a predicate or optional def operand which the pattern has not 4519 // overridden, or which we aren't letting it override; emit the 'default 4520 // ops' operands. 4521 4522 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[InstOpNo]; 4523 DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps"); 4524 if (auto Error = importDefaultOperandRenderers( 4525 InsertPt, M, DstMIBuilder, DefaultOps)) 4526 return std::move(Error); 4527 ++NumDefaultOps; 4528 continue; 4529 } 4530 4531 auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder, 4532 Dst->getChild(Child)); 4533 if (auto Error = InsertPtOrError.takeError()) 4534 return std::move(Error); 4535 InsertPt = InsertPtOrError.get(); 4536 ++Child; 4537 } 4538 4539 if (NumDefaultOps + ExpectedDstINumUses != DstINumUses) 4540 return failedImport("Expected " + llvm::to_string(DstINumUses) + 4541 " used operands but found " + 4542 llvm::to_string(ExpectedDstINumUses) + 4543 " explicit ones and " + llvm::to_string(NumDefaultOps) + 4544 " default ones"); 4545 4546 return InsertPt; 4547 } 4548 4549 Error GlobalISelEmitter::importDefaultOperandRenderers( 4550 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4551 DagInit *DefaultOps) const { 4552 for (const auto *DefaultOp : DefaultOps->getArgs()) { 4553 Optional<LLTCodeGen> OpTyOrNone = None; 4554 4555 // Look through ValueType operators. 4556 if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) { 4557 if (const DefInit *DefaultDagOperator = 4558 dyn_cast<DefInit>(DefaultDagOp->getOperator())) { 4559 if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) { 4560 OpTyOrNone = MVTToLLT(getValueType( 4561 DefaultDagOperator->getDef())); 4562 DefaultOp = DefaultDagOp->getArg(0); 4563 } 4564 } 4565 } 4566 4567 if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) { 4568 auto Def = DefaultDefOp->getDef(); 4569 if (Def->getName() == "undef_tied_input") { 4570 unsigned TempRegID = M.allocateTempRegID(); 4571 M.insertAction<MakeTempRegisterAction>( 4572 InsertPt, OpTyOrNone.getValue(), TempRegID); 4573 InsertPt = M.insertAction<BuildMIAction>( 4574 InsertPt, M.allocateOutputInsnID(), 4575 &Target.getInstruction(RK.getDef("IMPLICIT_DEF"))); 4576 BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>( 4577 InsertPt->get()); 4578 IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4579 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4580 } else { 4581 DstMIBuilder.addRenderer<AddRegisterRenderer>(Def); 4582 } 4583 continue; 4584 } 4585 4586 if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) { 4587 DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue()); 4588 continue; 4589 } 4590 4591 return failedImport("Could not add default op"); 4592 } 4593 4594 return Error::success(); 4595 } 4596 4597 Error GlobalISelEmitter::importImplicitDefRenderers( 4598 BuildMIAction &DstMIBuilder, 4599 const std::vector<Record *> &ImplicitDefs) const { 4600 if (!ImplicitDefs.empty()) 4601 return failedImport("Pattern defines a physical register"); 4602 return Error::success(); 4603 } 4604 4605 Optional<const CodeGenRegisterClass *> 4606 GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) { 4607 assert(Leaf && "Expected node?"); 4608 assert(Leaf->isLeaf() && "Expected leaf?"); 4609 Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue()); 4610 if (!RCRec) 4611 return None; 4612 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec); 4613 if (!RC) 4614 return None; 4615 return RC; 4616 } 4617 4618 Optional<const CodeGenRegisterClass *> 4619 GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) { 4620 if (!N) 4621 return None; 4622 4623 if (N->isLeaf()) 4624 return getRegClassFromLeaf(N); 4625 4626 // We don't have a leaf node, so we have to try and infer something. Check 4627 // that we have an instruction that we an infer something from. 4628 4629 // Only handle things that produce a single type. 4630 if (N->getNumTypes() != 1) 4631 return None; 4632 Record *OpRec = N->getOperator(); 4633 4634 // We only want instructions. 4635 if (!OpRec->isSubClassOf("Instruction")) 4636 return None; 4637 4638 // Don't want to try and infer things when there could potentially be more 4639 // than one candidate register class. 4640 auto &Inst = Target.getInstruction(OpRec); 4641 if (Inst.Operands.NumDefs > 1) 4642 return None; 4643 4644 // Handle any special-case instructions which we can safely infer register 4645 // classes from. 4646 StringRef InstName = Inst.TheDef->getName(); 4647 bool IsRegSequence = InstName == "REG_SEQUENCE"; 4648 if (IsRegSequence || InstName == "COPY_TO_REGCLASS") { 4649 // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It 4650 // has the desired register class as the first child. 4651 TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1); 4652 if (!RCChild->isLeaf()) 4653 return None; 4654 return getRegClassFromLeaf(RCChild); 4655 } 4656 4657 // Handle destination record types that we can safely infer a register class 4658 // from. 4659 const auto &DstIOperand = Inst.Operands[0]; 4660 Record *DstIOpRec = DstIOperand.Rec; 4661 if (DstIOpRec->isSubClassOf("RegisterOperand")) { 4662 DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); 4663 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); 4664 return &RC; 4665 } 4666 4667 if (DstIOpRec->isSubClassOf("RegisterClass")) { 4668 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); 4669 return &RC; 4670 } 4671 4672 return None; 4673 } 4674 4675 Optional<const CodeGenRegisterClass *> 4676 GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty, 4677 TreePatternNode *SubRegIdxNode) { 4678 assert(SubRegIdxNode && "Expected subregister index node!"); 4679 // We need a ValueTypeByHwMode for getSuperRegForSubReg. 4680 if (!Ty.isValueTypeByHwMode(false)) 4681 return None; 4682 if (!SubRegIdxNode->isLeaf()) 4683 return None; 4684 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); 4685 if (!SubRegInit) 4686 return None; 4687 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4688 4689 // Use the information we found above to find a minimal register class which 4690 // supports the subregister and type we want. 4691 auto RC = 4692 Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx); 4693 if (!RC) 4694 return None; 4695 return *RC; 4696 } 4697 4698 Optional<const CodeGenRegisterClass *> 4699 GlobalISelEmitter::inferSuperRegisterClassForNode( 4700 const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode, 4701 TreePatternNode *SubRegIdxNode) { 4702 assert(SuperRegNode && "Expected super register node!"); 4703 // Check if we already have a defined register class for the super register 4704 // node. If we do, then we should preserve that rather than inferring anything 4705 // from the subregister index node. We can assume that whoever wrote the 4706 // pattern in the first place made sure that the super register and 4707 // subregister are compatible. 4708 if (Optional<const CodeGenRegisterClass *> SuperRegisterClass = 4709 inferRegClassFromPattern(SuperRegNode)) 4710 return *SuperRegisterClass; 4711 return inferSuperRegisterClass(Ty, SubRegIdxNode); 4712 } 4713 4714 Optional<CodeGenSubRegIndex *> 4715 GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) { 4716 if (!SubRegIdxNode->isLeaf()) 4717 return None; 4718 4719 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); 4720 if (!SubRegInit) 4721 return None; 4722 return CGRegs.getSubRegIdx(SubRegInit->getDef()); 4723 } 4724 4725 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) { 4726 // Keep track of the matchers and actions to emit. 4727 int Score = P.getPatternComplexity(CGP); 4728 RuleMatcher M(P.getSrcRecord()->getLoc()); 4729 RuleMatcherScores[M.getRuleID()] = Score; 4730 M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) + 4731 " => " + 4732 llvm::to_string(*P.getDstPattern())); 4733 4734 if (auto Error = importRulePredicates(M, P.getPredicates())) 4735 return std::move(Error); 4736 4737 // Next, analyze the pattern operators. 4738 TreePatternNode *Src = P.getSrcPattern(); 4739 TreePatternNode *Dst = P.getDstPattern(); 4740 4741 // If the root of either pattern isn't a simple operator, ignore it. 4742 if (auto Err = isTrivialOperatorNode(Dst)) 4743 return failedImport("Dst pattern root isn't a trivial operator (" + 4744 toString(std::move(Err)) + ")"); 4745 if (auto Err = isTrivialOperatorNode(Src)) 4746 return failedImport("Src pattern root isn't a trivial operator (" + 4747 toString(std::move(Err)) + ")"); 4748 4749 // The different predicates and matchers created during 4750 // addInstructionMatcher use the RuleMatcher M to set up their 4751 // instruction ID (InsnVarID) that are going to be used when 4752 // M is going to be emitted. 4753 // However, the code doing the emission still relies on the IDs 4754 // returned during that process by the RuleMatcher when issuing 4755 // the recordInsn opcodes. 4756 // Because of that: 4757 // 1. The order in which we created the predicates 4758 // and such must be the same as the order in which we emit them, 4759 // and 4760 // 2. We need to reset the generation of the IDs in M somewhere between 4761 // addInstructionMatcher and emit 4762 // 4763 // FIXME: Long term, we don't want to have to rely on this implicit 4764 // naming being the same. One possible solution would be to have 4765 // explicit operator for operation capture and reference those. 4766 // The plus side is that it would expose opportunities to share 4767 // the capture accross rules. The downside is that it would 4768 // introduce a dependency between predicates (captures must happen 4769 // before their first use.) 4770 InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName()); 4771 unsigned TempOpIdx = 0; 4772 auto InsnMatcherOrError = 4773 createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx); 4774 if (auto Error = InsnMatcherOrError.takeError()) 4775 return std::move(Error); 4776 InstructionMatcher &InsnMatcher = InsnMatcherOrError.get(); 4777 4778 if (Dst->isLeaf()) { 4779 Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue()); 4780 4781 const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef); 4782 if (RCDef) { 4783 // We need to replace the def and all its uses with the specified 4784 // operand. However, we must also insert COPY's wherever needed. 4785 // For now, emit a copy and let the register allocator clean up. 4786 auto &DstI = Target.getInstruction(RK.getDef("COPY")); 4787 const auto &DstIOperand = DstI.Operands[0]; 4788 4789 OperandMatcher &OM0 = InsnMatcher.getOperand(0); 4790 OM0.setSymbolicName(DstIOperand.Name); 4791 M.defineOperand(OM0.getSymbolicName(), OM0); 4792 OM0.addPredicate<RegisterBankOperandMatcher>(RC); 4793 4794 auto &DstMIBuilder = 4795 M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI); 4796 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name); 4797 DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName()); 4798 M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC); 4799 4800 // We're done with this pattern! It's eligible for GISel emission; return 4801 // it. 4802 ++NumPatternImported; 4803 return std::move(M); 4804 } 4805 4806 return failedImport("Dst pattern root isn't a known leaf"); 4807 } 4808 4809 // Start with the defined operands (i.e., the results of the root operator). 4810 Record *DstOp = Dst->getOperator(); 4811 if (!DstOp->isSubClassOf("Instruction")) 4812 return failedImport("Pattern operator isn't an instruction"); 4813 4814 auto &DstI = Target.getInstruction(DstOp); 4815 StringRef DstIName = DstI.TheDef->getName(); 4816 4817 if (DstI.Operands.NumDefs != Src->getExtTypes().size()) 4818 return failedImport("Src pattern results and dst MI defs are different (" + 4819 to_string(Src->getExtTypes().size()) + " def(s) vs " + 4820 to_string(DstI.Operands.NumDefs) + " def(s))"); 4821 4822 // The root of the match also has constraints on the register bank so that it 4823 // matches the result instruction. 4824 unsigned OpIdx = 0; 4825 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { 4826 (void)VTy; 4827 4828 const auto &DstIOperand = DstI.Operands[OpIdx]; 4829 Record *DstIOpRec = DstIOperand.Rec; 4830 if (DstIName == "COPY_TO_REGCLASS") { 4831 DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); 4832 4833 if (DstIOpRec == nullptr) 4834 return failedImport( 4835 "COPY_TO_REGCLASS operand #1 isn't a register class"); 4836 } else if (DstIName == "REG_SEQUENCE") { 4837 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 4838 if (DstIOpRec == nullptr) 4839 return failedImport("REG_SEQUENCE operand #0 isn't a register class"); 4840 } else if (DstIName == "EXTRACT_SUBREG") { 4841 auto InferredClass = inferRegClassFromPattern(Dst->getChild(0)); 4842 if (!InferredClass) 4843 return failedImport("Could not infer class for EXTRACT_SUBREG operand #0"); 4844 4845 // We can assume that a subregister is in the same bank as it's super 4846 // register. 4847 DstIOpRec = (*InferredClass)->getDef(); 4848 } else if (DstIName == "INSERT_SUBREG") { 4849 auto MaybeSuperClass = inferSuperRegisterClassForNode( 4850 VTy, Dst->getChild(0), Dst->getChild(2)); 4851 if (!MaybeSuperClass) 4852 return failedImport( 4853 "Cannot infer register class for INSERT_SUBREG operand #0"); 4854 // Move to the next pattern here, because the register class we found 4855 // doesn't necessarily have a record associated with it. So, we can't 4856 // set DstIOpRec using this. 4857 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 4858 OM.setSymbolicName(DstIOperand.Name); 4859 M.defineOperand(OM.getSymbolicName(), OM); 4860 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass); 4861 ++OpIdx; 4862 continue; 4863 } else if (DstIName == "SUBREG_TO_REG") { 4864 auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2)); 4865 if (!MaybeRegClass) 4866 return failedImport( 4867 "Cannot infer register class for SUBREG_TO_REG operand #0"); 4868 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 4869 OM.setSymbolicName(DstIOperand.Name); 4870 M.defineOperand(OM.getSymbolicName(), OM); 4871 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass); 4872 ++OpIdx; 4873 continue; 4874 } else if (DstIOpRec->isSubClassOf("RegisterOperand")) 4875 DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); 4876 else if (!DstIOpRec->isSubClassOf("RegisterClass")) 4877 return failedImport("Dst MI def isn't a register class" + 4878 to_string(*Dst)); 4879 4880 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 4881 OM.setSymbolicName(DstIOperand.Name); 4882 M.defineOperand(OM.getSymbolicName(), OM); 4883 OM.addPredicate<RegisterBankOperandMatcher>( 4884 Target.getRegisterClass(DstIOpRec)); 4885 ++OpIdx; 4886 } 4887 4888 auto DstMIBuilderOrError = 4889 createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst); 4890 if (auto Error = DstMIBuilderOrError.takeError()) 4891 return std::move(Error); 4892 BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get(); 4893 4894 // Render the implicit defs. 4895 // These are only added to the root of the result. 4896 if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs())) 4897 return std::move(Error); 4898 4899 DstMIBuilder.chooseInsnToMutate(M); 4900 4901 // Constrain the registers to classes. This is normally derived from the 4902 // emitted instruction but a few instructions require special handling. 4903 if (DstIName == "COPY_TO_REGCLASS") { 4904 // COPY_TO_REGCLASS does not provide operand constraints itself but the 4905 // result is constrained to the class given by the second child. 4906 Record *DstIOpRec = 4907 getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); 4908 4909 if (DstIOpRec == nullptr) 4910 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class"); 4911 4912 M.addAction<ConstrainOperandToRegClassAction>( 4913 0, 0, Target.getRegisterClass(DstIOpRec)); 4914 4915 // We're done with this pattern! It's eligible for GISel emission; return 4916 // it. 4917 ++NumPatternImported; 4918 return std::move(M); 4919 } 4920 4921 if (DstIName == "EXTRACT_SUBREG") { 4922 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 4923 if (!SuperClass) 4924 return failedImport( 4925 "Cannot infer register class from EXTRACT_SUBREG operand #0"); 4926 4927 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); 4928 if (!SubIdx) 4929 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4930 4931 // It would be nice to leave this constraint implicit but we're required 4932 // to pick a register class so constrain the result to a register class 4933 // that can hold the correct MVT. 4934 // 4935 // FIXME: This may introduce an extra copy if the chosen class doesn't 4936 // actually contain the subregisters. 4937 assert(Src->getExtTypes().size() == 1 && 4938 "Expected Src of EXTRACT_SUBREG to have one result type"); 4939 4940 const auto SrcRCDstRCPair = 4941 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 4942 if (!SrcRCDstRCPair) { 4943 return failedImport("subreg index is incompatible " 4944 "with inferred reg class"); 4945 } 4946 4947 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4948 M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second); 4949 M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first); 4950 4951 // We're done with this pattern! It's eligible for GISel emission; return 4952 // it. 4953 ++NumPatternImported; 4954 return std::move(M); 4955 } 4956 4957 if (DstIName == "INSERT_SUBREG") { 4958 assert(Src->getExtTypes().size() == 1 && 4959 "Expected Src of INSERT_SUBREG to have one result type"); 4960 // We need to constrain the destination, a super regsister source, and a 4961 // subregister source. 4962 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4963 if (!SubClass) 4964 return failedImport( 4965 "Cannot infer register class from INSERT_SUBREG operand #1"); 4966 auto SuperClass = inferSuperRegisterClassForNode( 4967 Src->getExtType(0), Dst->getChild(0), Dst->getChild(2)); 4968 if (!SuperClass) 4969 return failedImport( 4970 "Cannot infer register class for INSERT_SUBREG operand #0"); 4971 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 4972 M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass); 4973 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); 4974 ++NumPatternImported; 4975 return std::move(M); 4976 } 4977 4978 if (DstIName == "SUBREG_TO_REG") { 4979 // We need to constrain the destination and subregister source. 4980 assert(Src->getExtTypes().size() == 1 && 4981 "Expected Src of SUBREG_TO_REG to have one result type"); 4982 4983 // Attempt to infer the subregister source from the first child. If it has 4984 // an explicitly given register class, we'll use that. Otherwise, we will 4985 // fail. 4986 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4987 if (!SubClass) 4988 return failedImport( 4989 "Cannot infer register class from SUBREG_TO_REG child #1"); 4990 // We don't have a child to look at that might have a super register node. 4991 auto SuperClass = 4992 inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2)); 4993 if (!SuperClass) 4994 return failedImport( 4995 "Cannot infer register class for SUBREG_TO_REG operand #0"); 4996 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 4997 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); 4998 ++NumPatternImported; 4999 return std::move(M); 5000 } 5001 5002 if (DstIName == "REG_SEQUENCE") { 5003 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 5004 5005 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 5006 5007 unsigned Num = Dst->getNumChildren(); 5008 for (unsigned I = 1; I != Num; I += 2) { 5009 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 5010 5011 auto SubIdx = inferSubRegIndexForNode(SubRegChild); 5012 if (!SubIdx) 5013 return failedImport("REG_SEQUENCE child is not a subreg index"); 5014 5015 const auto SrcRCDstRCPair = 5016 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 5017 5018 M.addAction<ConstrainOperandToRegClassAction>(0, I, 5019 *SrcRCDstRCPair->second); 5020 } 5021 5022 ++NumPatternImported; 5023 return std::move(M); 5024 } 5025 5026 M.addAction<ConstrainOperandsToDefinitionAction>(0); 5027 5028 // We're done with this pattern! It's eligible for GISel emission; return it. 5029 ++NumPatternImported; 5030 return std::move(M); 5031 } 5032 5033 // Emit imm predicate table and an enum to reference them with. 5034 // The 'Predicate_' part of the name is redundant but eliminating it is more 5035 // trouble than it's worth. 5036 void GlobalISelEmitter::emitCxxPredicateFns( 5037 raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier, 5038 StringRef ArgType, StringRef ArgName, StringRef AdditionalDeclarations, 5039 std::function<bool(const Record *R)> Filter) { 5040 std::vector<const Record *> MatchedRecords; 5041 const auto &Defs = RK.getAllDerivedDefinitions("PatFrag"); 5042 std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords), 5043 [&](Record *Record) { 5044 return !Record->getValueAsString(CodeFieldName).empty() && 5045 Filter(Record); 5046 }); 5047 5048 if (!MatchedRecords.empty()) { 5049 OS << "// PatFrag predicates.\n" 5050 << "enum {\n"; 5051 std::string EnumeratorSeparator = 5052 (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str(); 5053 for (const auto *Record : MatchedRecords) { 5054 OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName() 5055 << EnumeratorSeparator; 5056 EnumeratorSeparator = ",\n"; 5057 } 5058 OS << "};\n"; 5059 } 5060 5061 OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName 5062 << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " " 5063 << ArgName << ") const {\n" 5064 << AdditionalDeclarations; 5065 if (!AdditionalDeclarations.empty()) 5066 OS << "\n"; 5067 if (!MatchedRecords.empty()) 5068 OS << " switch (PredicateID) {\n"; 5069 for (const auto *Record : MatchedRecords) { 5070 OS << " case GIPFP_" << TypeIdentifier << "_Predicate_" 5071 << Record->getName() << ": {\n" 5072 << " " << Record->getValueAsString(CodeFieldName) << "\n" 5073 << " llvm_unreachable(\"" << CodeFieldName 5074 << " should have returned\");\n" 5075 << " return false;\n" 5076 << " }\n"; 5077 } 5078 if (!MatchedRecords.empty()) 5079 OS << " }\n"; 5080 OS << " llvm_unreachable(\"Unknown predicate\");\n" 5081 << " return false;\n" 5082 << "}\n"; 5083 } 5084 5085 void GlobalISelEmitter::emitImmPredicateFns( 5086 raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType, 5087 std::function<bool(const Record *R)> Filter) { 5088 return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType, 5089 "Imm", "", Filter); 5090 } 5091 5092 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) { 5093 return emitCxxPredicateFns( 5094 OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI", 5095 " const MachineFunction &MF = *MI.getParent()->getParent();\n" 5096 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n" 5097 " (void)MRI;", 5098 [](const Record *R) { return true; }); 5099 } 5100 5101 template <class GroupT> 5102 std::vector<Matcher *> GlobalISelEmitter::optimizeRules( 5103 ArrayRef<Matcher *> Rules, 5104 std::vector<std::unique_ptr<Matcher>> &MatcherStorage) { 5105 5106 std::vector<Matcher *> OptRules; 5107 std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>(); 5108 assert(CurrentGroup->empty() && "Newly created group isn't empty!"); 5109 unsigned NumGroups = 0; 5110 5111 auto ProcessCurrentGroup = [&]() { 5112 if (CurrentGroup->empty()) 5113 // An empty group is good to be reused: 5114 return; 5115 5116 // If the group isn't large enough to provide any benefit, move all the 5117 // added rules out of it and make sure to re-create the group to properly 5118 // re-initialize it: 5119 if (CurrentGroup->size() < 2) 5120 for (Matcher *M : CurrentGroup->matchers()) 5121 OptRules.push_back(M); 5122 else { 5123 CurrentGroup->finalize(); 5124 OptRules.push_back(CurrentGroup.get()); 5125 MatcherStorage.emplace_back(std::move(CurrentGroup)); 5126 ++NumGroups; 5127 } 5128 CurrentGroup = std::make_unique<GroupT>(); 5129 }; 5130 for (Matcher *Rule : Rules) { 5131 // Greedily add as many matchers as possible to the current group: 5132 if (CurrentGroup->addMatcher(*Rule)) 5133 continue; 5134 5135 ProcessCurrentGroup(); 5136 assert(CurrentGroup->empty() && "A group wasn't properly re-initialized"); 5137 5138 // Try to add the pending matcher to a newly created empty group: 5139 if (!CurrentGroup->addMatcher(*Rule)) 5140 // If we couldn't add the matcher to an empty group, that group type 5141 // doesn't support that kind of matchers at all, so just skip it: 5142 OptRules.push_back(Rule); 5143 } 5144 ProcessCurrentGroup(); 5145 5146 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n"); 5147 assert(CurrentGroup->empty() && "The last group wasn't properly processed"); 5148 return OptRules; 5149 } 5150 5151 MatchTable 5152 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules, 5153 bool Optimize, bool WithCoverage) { 5154 std::vector<Matcher *> InputRules; 5155 for (Matcher &Rule : Rules) 5156 InputRules.push_back(&Rule); 5157 5158 if (!Optimize) 5159 return MatchTable::buildTable(InputRules, WithCoverage); 5160 5161 unsigned CurrentOrdering = 0; 5162 StringMap<unsigned> OpcodeOrder; 5163 for (RuleMatcher &Rule : Rules) { 5164 const StringRef Opcode = Rule.getOpcode(); 5165 assert(!Opcode.empty() && "Didn't expect an undefined opcode"); 5166 if (OpcodeOrder.count(Opcode) == 0) 5167 OpcodeOrder[Opcode] = CurrentOrdering++; 5168 } 5169 5170 std::stable_sort(InputRules.begin(), InputRules.end(), 5171 [&OpcodeOrder](const Matcher *A, const Matcher *B) { 5172 auto *L = static_cast<const RuleMatcher *>(A); 5173 auto *R = static_cast<const RuleMatcher *>(B); 5174 return std::make_tuple(OpcodeOrder[L->getOpcode()], 5175 L->getNumOperands()) < 5176 std::make_tuple(OpcodeOrder[R->getOpcode()], 5177 R->getNumOperands()); 5178 }); 5179 5180 for (Matcher *Rule : InputRules) 5181 Rule->optimize(); 5182 5183 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 5184 std::vector<Matcher *> OptRules = 5185 optimizeRules<GroupMatcher>(InputRules, MatcherStorage); 5186 5187 for (Matcher *Rule : OptRules) 5188 Rule->optimize(); 5189 5190 OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage); 5191 5192 return MatchTable::buildTable(OptRules, WithCoverage); 5193 } 5194 5195 void GroupMatcher::optimize() { 5196 // Make sure we only sort by a specific predicate within a range of rules that 5197 // all have that predicate checked against a specific value (not a wildcard): 5198 auto F = Matchers.begin(); 5199 auto T = F; 5200 auto E = Matchers.end(); 5201 while (T != E) { 5202 while (T != E) { 5203 auto *R = static_cast<RuleMatcher *>(*T); 5204 if (!R->getFirstConditionAsRootType().get().isValid()) 5205 break; 5206 ++T; 5207 } 5208 std::stable_sort(F, T, [](Matcher *A, Matcher *B) { 5209 auto *L = static_cast<RuleMatcher *>(A); 5210 auto *R = static_cast<RuleMatcher *>(B); 5211 return L->getFirstConditionAsRootType() < 5212 R->getFirstConditionAsRootType(); 5213 }); 5214 if (T != E) 5215 F = ++T; 5216 } 5217 GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage) 5218 .swap(Matchers); 5219 GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage) 5220 .swap(Matchers); 5221 } 5222 5223 void GlobalISelEmitter::run(raw_ostream &OS) { 5224 if (!UseCoverageFile.empty()) { 5225 RuleCoverage = CodeGenCoverage(); 5226 auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile); 5227 if (!RuleCoverageBufOrErr) { 5228 PrintWarning(SMLoc(), "Missing rule coverage data"); 5229 RuleCoverage = None; 5230 } else { 5231 if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) { 5232 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data"); 5233 RuleCoverage = None; 5234 } 5235 } 5236 } 5237 5238 // Track the run-time opcode values 5239 gatherOpcodeValues(); 5240 // Track the run-time LLT ID values 5241 gatherTypeIDValues(); 5242 5243 // Track the GINodeEquiv definitions. 5244 gatherNodeEquivs(); 5245 5246 emitSourceFileHeader(("Global Instruction Selector for the " + 5247 Target.getName() + " target").str(), OS); 5248 std::vector<RuleMatcher> Rules; 5249 // Look through the SelectionDAG patterns we found, possibly emitting some. 5250 for (const PatternToMatch &Pat : CGP.ptms()) { 5251 ++NumPatternTotal; 5252 5253 auto MatcherOrErr = runOnPattern(Pat); 5254 5255 // The pattern analysis can fail, indicating an unsupported pattern. 5256 // Report that if we've been asked to do so. 5257 if (auto Err = MatcherOrErr.takeError()) { 5258 if (WarnOnSkippedPatterns) { 5259 PrintWarning(Pat.getSrcRecord()->getLoc(), 5260 "Skipped pattern: " + toString(std::move(Err))); 5261 } else { 5262 consumeError(std::move(Err)); 5263 } 5264 ++NumPatternImportsSkipped; 5265 continue; 5266 } 5267 5268 if (RuleCoverage) { 5269 if (RuleCoverage->isCovered(MatcherOrErr->getRuleID())) 5270 ++NumPatternsTested; 5271 else 5272 PrintWarning(Pat.getSrcRecord()->getLoc(), 5273 "Pattern is not covered by a test"); 5274 } 5275 Rules.push_back(std::move(MatcherOrErr.get())); 5276 } 5277 5278 // Comparison function to order records by name. 5279 auto orderByName = [](const Record *A, const Record *B) { 5280 return A->getName() < B->getName(); 5281 }; 5282 5283 std::vector<Record *> ComplexPredicates = 5284 RK.getAllDerivedDefinitions("GIComplexOperandMatcher"); 5285 llvm::sort(ComplexPredicates, orderByName); 5286 5287 std::vector<Record *> CustomRendererFns = 5288 RK.getAllDerivedDefinitions("GICustomOperandRenderer"); 5289 llvm::sort(CustomRendererFns, orderByName); 5290 5291 unsigned MaxTemporaries = 0; 5292 for (const auto &Rule : Rules) 5293 MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns()); 5294 5295 OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n" 5296 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size() 5297 << ";\n" 5298 << "using PredicateBitset = " 5299 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n" 5300 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n"; 5301 5302 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n" 5303 << " mutable MatcherState State;\n" 5304 << " typedef " 5305 "ComplexRendererFns(" 5306 << Target.getName() 5307 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n" 5308 5309 << " typedef void(" << Target.getName() 5310 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const " 5311 "MachineInstr&, int) " 5312 "const;\n" 5313 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, " 5314 "CustomRendererFn> " 5315 "ISelInfo;\n"; 5316 OS << " static " << Target.getName() 5317 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n" 5318 << " static " << Target.getName() 5319 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n" 5320 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const " 5321 "override;\n" 5322 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) " 5323 "const override;\n" 5324 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat " 5325 "&Imm) const override;\n" 5326 << " const int64_t *getMatchTable() const override;\n" 5327 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI) " 5328 "const override;\n" 5329 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n"; 5330 5331 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n" 5332 << ", State(" << MaxTemporaries << "),\n" 5333 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets" 5334 << ", ComplexPredicateFns, CustomRenderers)\n" 5335 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n"; 5336 5337 OS << "#ifdef GET_GLOBALISEL_IMPL\n"; 5338 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures, 5339 OS); 5340 5341 // Separate subtarget features by how often they must be recomputed. 5342 SubtargetFeatureInfoMap ModuleFeatures; 5343 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), 5344 std::inserter(ModuleFeatures, ModuleFeatures.end()), 5345 [](const SubtargetFeatureInfoMap::value_type &X) { 5346 return !X.second.mustRecomputePerFunction(); 5347 }); 5348 SubtargetFeatureInfoMap FunctionFeatures; 5349 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), 5350 std::inserter(FunctionFeatures, FunctionFeatures.end()), 5351 [](const SubtargetFeatureInfoMap::value_type &X) { 5352 return X.second.mustRecomputePerFunction(); 5353 }); 5354 5355 SubtargetFeatureInfo::emitComputeAvailableFeatures( 5356 Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures", 5357 ModuleFeatures, OS); 5358 5359 5360 OS << "void " << Target.getName() << "InstructionSelector" 5361 "::setupGeneratedPerFunctionState(MachineFunction &MF) {\n" 5362 " AvailableFunctionFeatures = computeAvailableFunctionFeatures(" 5363 "(const " << Target.getName() << "Subtarget*)&MF.getSubtarget(), &MF);\n" 5364 "}\n"; 5365 5366 if (Target.getName() == "X86" || Target.getName() == "AArch64") { 5367 // TODO: Implement PGSO. 5368 OS << "static bool shouldOptForSize(const MachineFunction *MF) {\n"; 5369 OS << " return MF->getFunction().hasOptSize();\n"; 5370 OS << "}\n\n"; 5371 } 5372 5373 SubtargetFeatureInfo::emitComputeAvailableFeatures( 5374 Target.getName(), "InstructionSelector", 5375 "computeAvailableFunctionFeatures", FunctionFeatures, OS, 5376 "const MachineFunction *MF"); 5377 5378 // Emit a table containing the LLT objects needed by the matcher and an enum 5379 // for the matcher to reference them with. 5380 std::vector<LLTCodeGen> TypeObjects; 5381 for (const auto &Ty : KnownTypes) 5382 TypeObjects.push_back(Ty); 5383 llvm::sort(TypeObjects); 5384 OS << "// LLT Objects.\n" 5385 << "enum {\n"; 5386 for (const auto &TypeObject : TypeObjects) { 5387 OS << " "; 5388 TypeObject.emitCxxEnumValue(OS); 5389 OS << ",\n"; 5390 } 5391 OS << "};\n"; 5392 OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n" 5393 << "const static LLT TypeObjects[] = {\n"; 5394 for (const auto &TypeObject : TypeObjects) { 5395 OS << " "; 5396 TypeObject.emitCxxConstructorCall(OS); 5397 OS << ",\n"; 5398 } 5399 OS << "};\n\n"; 5400 5401 // Emit a table containing the PredicateBitsets objects needed by the matcher 5402 // and an enum for the matcher to reference them with. 5403 std::vector<std::vector<Record *>> FeatureBitsets; 5404 for (auto &Rule : Rules) 5405 FeatureBitsets.push_back(Rule.getRequiredFeatures()); 5406 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 5407 const std::vector<Record *> &B) { 5408 if (A.size() < B.size()) 5409 return true; 5410 if (A.size() > B.size()) 5411 return false; 5412 for (auto Pair : zip(A, B)) { 5413 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 5414 return true; 5415 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 5416 return false; 5417 } 5418 return false; 5419 }); 5420 FeatureBitsets.erase( 5421 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 5422 FeatureBitsets.end()); 5423 OS << "// Feature bitsets.\n" 5424 << "enum {\n" 5425 << " GIFBS_Invalid,\n"; 5426 for (const auto &FeatureBitset : FeatureBitsets) { 5427 if (FeatureBitset.empty()) 5428 continue; 5429 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 5430 } 5431 OS << "};\n" 5432 << "const static PredicateBitset FeatureBitsets[] {\n" 5433 << " {}, // GIFBS_Invalid\n"; 5434 for (const auto &FeatureBitset : FeatureBitsets) { 5435 if (FeatureBitset.empty()) 5436 continue; 5437 OS << " {"; 5438 for (const auto &Feature : FeatureBitset) { 5439 const auto &I = SubtargetFeatures.find(Feature); 5440 assert(I != SubtargetFeatures.end() && "Didn't import predicate?"); 5441 OS << I->second.getEnumBitName() << ", "; 5442 } 5443 OS << "},\n"; 5444 } 5445 OS << "};\n\n"; 5446 5447 // Emit complex predicate table and an enum to reference them with. 5448 OS << "// ComplexPattern predicates.\n" 5449 << "enum {\n" 5450 << " GICP_Invalid,\n"; 5451 for (const auto &Record : ComplexPredicates) 5452 OS << " GICP_" << Record->getName() << ",\n"; 5453 OS << "};\n" 5454 << "// See constructor for table contents\n\n"; 5455 5456 emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) { 5457 bool Unset; 5458 return !R->getValueAsBitOrUnset("IsAPFloat", Unset) && 5459 !R->getValueAsBit("IsAPInt"); 5460 }); 5461 emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) { 5462 bool Unset; 5463 return R->getValueAsBitOrUnset("IsAPFloat", Unset); 5464 }); 5465 emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) { 5466 return R->getValueAsBit("IsAPInt"); 5467 }); 5468 emitMIPredicateFns(OS); 5469 OS << "\n"; 5470 5471 OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n" 5472 << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n" 5473 << " nullptr, // GICP_Invalid\n"; 5474 for (const auto &Record : ComplexPredicates) 5475 OS << " &" << Target.getName() 5476 << "InstructionSelector::" << Record->getValueAsString("MatcherFn") 5477 << ", // " << Record->getName() << "\n"; 5478 OS << "};\n\n"; 5479 5480 OS << "// Custom renderers.\n" 5481 << "enum {\n" 5482 << " GICR_Invalid,\n"; 5483 for (const auto &Record : CustomRendererFns) 5484 OS << " GICR_" << Record->getValueAsString("RendererFn") << ", \n"; 5485 OS << "};\n"; 5486 5487 OS << Target.getName() << "InstructionSelector::CustomRendererFn\n" 5488 << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n" 5489 << " nullptr, // GICR_Invalid\n"; 5490 for (const auto &Record : CustomRendererFns) 5491 OS << " &" << Target.getName() 5492 << "InstructionSelector::" << Record->getValueAsString("RendererFn") 5493 << ", // " << Record->getName() << "\n"; 5494 OS << "};\n\n"; 5495 5496 llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) { 5497 int ScoreA = RuleMatcherScores[A.getRuleID()]; 5498 int ScoreB = RuleMatcherScores[B.getRuleID()]; 5499 if (ScoreA > ScoreB) 5500 return true; 5501 if (ScoreB > ScoreA) 5502 return false; 5503 if (A.isHigherPriorityThan(B)) { 5504 assert(!B.isHigherPriorityThan(A) && "Cannot be more important " 5505 "and less important at " 5506 "the same time"); 5507 return true; 5508 } 5509 return false; 5510 }); 5511 5512 OS << "bool " << Target.getName() 5513 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage " 5514 "&CoverageInfo) const {\n" 5515 << " MachineFunction &MF = *I.getParent()->getParent();\n" 5516 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n" 5517 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n" 5518 << " NewMIVector OutMIs;\n" 5519 << " State.MIs.clear();\n" 5520 << " State.MIs.push_back(&I);\n\n" 5521 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo" 5522 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures" 5523 << ", CoverageInfo)) {\n" 5524 << " return true;\n" 5525 << " }\n\n" 5526 << " return false;\n" 5527 << "}\n\n"; 5528 5529 const MatchTable Table = 5530 buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage); 5531 OS << "const int64_t *" << Target.getName() 5532 << "InstructionSelector::getMatchTable() const {\n"; 5533 Table.emitDeclaration(OS); 5534 OS << " return "; 5535 Table.emitUse(OS); 5536 OS << ";\n}\n"; 5537 OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n"; 5538 5539 OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n" 5540 << "PredicateBitset AvailableModuleFeatures;\n" 5541 << "mutable PredicateBitset AvailableFunctionFeatures;\n" 5542 << "PredicateBitset getAvailableFeatures() const {\n" 5543 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n" 5544 << "}\n" 5545 << "PredicateBitset\n" 5546 << "computeAvailableModuleFeatures(const " << Target.getName() 5547 << "Subtarget *Subtarget) const;\n" 5548 << "PredicateBitset\n" 5549 << "computeAvailableFunctionFeatures(const " << Target.getName() 5550 << "Subtarget *Subtarget,\n" 5551 << " const MachineFunction *MF) const;\n" 5552 << "void setupGeneratedPerFunctionState(MachineFunction &MF) override;\n" 5553 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n"; 5554 5555 OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n" 5556 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n" 5557 << "AvailableFunctionFeatures()\n" 5558 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n"; 5559 } 5560 5561 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) { 5562 if (SubtargetFeatures.count(Predicate) == 0) 5563 SubtargetFeatures.emplace( 5564 Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size())); 5565 } 5566 5567 void RuleMatcher::optimize() { 5568 for (auto &Item : InsnVariableIDs) { 5569 InstructionMatcher &InsnMatcher = *Item.first; 5570 for (auto &OM : InsnMatcher.operands()) { 5571 // Complex Patterns are usually expensive and they relatively rarely fail 5572 // on their own: more often we end up throwing away all the work done by a 5573 // matching part of a complex pattern because some other part of the 5574 // enclosing pattern didn't match. All of this makes it beneficial to 5575 // delay complex patterns until the very end of the rule matching, 5576 // especially for targets having lots of complex patterns. 5577 for (auto &OP : OM->predicates()) 5578 if (isa<ComplexPatternOperandMatcher>(OP)) 5579 EpilogueMatchers.emplace_back(std::move(OP)); 5580 OM->eraseNullPredicates(); 5581 } 5582 InsnMatcher.optimize(); 5583 } 5584 llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L, 5585 const std::unique_ptr<PredicateMatcher> &R) { 5586 return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) < 5587 std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx()); 5588 }); 5589 } 5590 5591 bool RuleMatcher::hasFirstCondition() const { 5592 if (insnmatchers_empty()) 5593 return false; 5594 InstructionMatcher &Matcher = insnmatchers_front(); 5595 if (!Matcher.predicates_empty()) 5596 return true; 5597 for (auto &OM : Matcher.operands()) 5598 for (auto &OP : OM->predicates()) 5599 if (!isa<InstructionOperandMatcher>(OP)) 5600 return true; 5601 return false; 5602 } 5603 5604 const PredicateMatcher &RuleMatcher::getFirstCondition() const { 5605 assert(!insnmatchers_empty() && 5606 "Trying to get a condition from an empty RuleMatcher"); 5607 5608 InstructionMatcher &Matcher = insnmatchers_front(); 5609 if (!Matcher.predicates_empty()) 5610 return **Matcher.predicates_begin(); 5611 // If there is no more predicate on the instruction itself, look at its 5612 // operands. 5613 for (auto &OM : Matcher.operands()) 5614 for (auto &OP : OM->predicates()) 5615 if (!isa<InstructionOperandMatcher>(OP)) 5616 return *OP; 5617 5618 llvm_unreachable("Trying to get a condition from an InstructionMatcher with " 5619 "no conditions"); 5620 } 5621 5622 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() { 5623 assert(!insnmatchers_empty() && 5624 "Trying to pop a condition from an empty RuleMatcher"); 5625 5626 InstructionMatcher &Matcher = insnmatchers_front(); 5627 if (!Matcher.predicates_empty()) 5628 return Matcher.predicates_pop_front(); 5629 // If there is no more predicate on the instruction itself, look at its 5630 // operands. 5631 for (auto &OM : Matcher.operands()) 5632 for (auto &OP : OM->predicates()) 5633 if (!isa<InstructionOperandMatcher>(OP)) { 5634 std::unique_ptr<PredicateMatcher> Result = std::move(OP); 5635 OM->eraseNullPredicates(); 5636 return Result; 5637 } 5638 5639 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with " 5640 "no conditions"); 5641 } 5642 5643 bool GroupMatcher::candidateConditionMatches( 5644 const PredicateMatcher &Predicate) const { 5645 5646 if (empty()) { 5647 // Sharing predicates for nested instructions is not supported yet as we 5648 // currently don't hoist the GIM_RecordInsn's properly, therefore we can 5649 // only work on the original root instruction (InsnVarID == 0): 5650 if (Predicate.getInsnVarID() != 0) 5651 return false; 5652 // ... otherwise an empty group can handle any predicate with no specific 5653 // requirements: 5654 return true; 5655 } 5656 5657 const Matcher &Representative = **Matchers.begin(); 5658 const auto &RepresentativeCondition = Representative.getFirstCondition(); 5659 // ... if not empty, the group can only accomodate matchers with the exact 5660 // same first condition: 5661 return Predicate.isIdentical(RepresentativeCondition); 5662 } 5663 5664 bool GroupMatcher::addMatcher(Matcher &Candidate) { 5665 if (!Candidate.hasFirstCondition()) 5666 return false; 5667 5668 const PredicateMatcher &Predicate = Candidate.getFirstCondition(); 5669 if (!candidateConditionMatches(Predicate)) 5670 return false; 5671 5672 Matchers.push_back(&Candidate); 5673 return true; 5674 } 5675 5676 void GroupMatcher::finalize() { 5677 assert(Conditions.empty() && "Already finalized?"); 5678 if (empty()) 5679 return; 5680 5681 Matcher &FirstRule = **Matchers.begin(); 5682 for (;;) { 5683 // All the checks are expected to succeed during the first iteration: 5684 for (const auto &Rule : Matchers) 5685 if (!Rule->hasFirstCondition()) 5686 return; 5687 const auto &FirstCondition = FirstRule.getFirstCondition(); 5688 for (unsigned I = 1, E = Matchers.size(); I < E; ++I) 5689 if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition)) 5690 return; 5691 5692 Conditions.push_back(FirstRule.popFirstCondition()); 5693 for (unsigned I = 1, E = Matchers.size(); I < E; ++I) 5694 Matchers[I]->popFirstCondition(); 5695 } 5696 } 5697 5698 void GroupMatcher::emit(MatchTable &Table) { 5699 unsigned LabelID = ~0U; 5700 if (!Conditions.empty()) { 5701 LabelID = Table.allocateLabelID(); 5702 Table << MatchTable::Opcode("GIM_Try", +1) 5703 << MatchTable::Comment("On fail goto") 5704 << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak; 5705 } 5706 for (auto &Condition : Conditions) 5707 Condition->emitPredicateOpcodes( 5708 Table, *static_cast<RuleMatcher *>(*Matchers.begin())); 5709 5710 for (const auto &M : Matchers) 5711 M->emit(Table); 5712 5713 // Exit the group 5714 if (!Conditions.empty()) 5715 Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak 5716 << MatchTable::Label(LabelID); 5717 } 5718 5719 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) { 5720 return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P); 5721 } 5722 5723 bool SwitchMatcher::candidateConditionMatches( 5724 const PredicateMatcher &Predicate) const { 5725 5726 if (empty()) { 5727 // Sharing predicates for nested instructions is not supported yet as we 5728 // currently don't hoist the GIM_RecordInsn's properly, therefore we can 5729 // only work on the original root instruction (InsnVarID == 0): 5730 if (Predicate.getInsnVarID() != 0) 5731 return false; 5732 // ... while an attempt to add even a root matcher to an empty SwitchMatcher 5733 // could fail as not all the types of conditions are supported: 5734 if (!isSupportedPredicateType(Predicate)) 5735 return false; 5736 // ... or the condition might not have a proper implementation of 5737 // getValue() / isIdenticalDownToValue() yet: 5738 if (!Predicate.hasValue()) 5739 return false; 5740 // ... otherwise an empty Switch can accomodate the condition with no 5741 // further requirements: 5742 return true; 5743 } 5744 5745 const Matcher &CaseRepresentative = **Matchers.begin(); 5746 const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition(); 5747 // Switch-cases must share the same kind of condition and path to the value it 5748 // checks: 5749 if (!Predicate.isIdenticalDownToValue(RepresentativeCondition)) 5750 return false; 5751 5752 const auto Value = Predicate.getValue(); 5753 // ... but be unique with respect to the actual value they check: 5754 return Values.count(Value) == 0; 5755 } 5756 5757 bool SwitchMatcher::addMatcher(Matcher &Candidate) { 5758 if (!Candidate.hasFirstCondition()) 5759 return false; 5760 5761 const PredicateMatcher &Predicate = Candidate.getFirstCondition(); 5762 if (!candidateConditionMatches(Predicate)) 5763 return false; 5764 const auto Value = Predicate.getValue(); 5765 Values.insert(Value); 5766 5767 Matchers.push_back(&Candidate); 5768 return true; 5769 } 5770 5771 void SwitchMatcher::finalize() { 5772 assert(Condition == nullptr && "Already finalized"); 5773 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); 5774 if (empty()) 5775 return; 5776 5777 std::stable_sort(Matchers.begin(), Matchers.end(), 5778 [](const Matcher *L, const Matcher *R) { 5779 return L->getFirstCondition().getValue() < 5780 R->getFirstCondition().getValue(); 5781 }); 5782 Condition = Matchers[0]->popFirstCondition(); 5783 for (unsigned I = 1, E = Values.size(); I < E; ++I) 5784 Matchers[I]->popFirstCondition(); 5785 } 5786 5787 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P, 5788 MatchTable &Table) { 5789 assert(isSupportedPredicateType(P) && "Predicate type is not supported"); 5790 5791 if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) { 5792 Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI") 5793 << MatchTable::IntValue(Condition->getInsnVarID()); 5794 return; 5795 } 5796 if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) { 5797 Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI") 5798 << MatchTable::IntValue(Condition->getInsnVarID()) 5799 << MatchTable::Comment("Op") 5800 << MatchTable::IntValue(Condition->getOpIdx()); 5801 return; 5802 } 5803 5804 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a " 5805 "predicate type that is claimed to be supported"); 5806 } 5807 5808 void SwitchMatcher::emit(MatchTable &Table) { 5809 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); 5810 if (empty()) 5811 return; 5812 assert(Condition != nullptr && 5813 "Broken SwitchMatcher, hasn't been finalized?"); 5814 5815 std::vector<unsigned> LabelIDs(Values.size()); 5816 std::generate(LabelIDs.begin(), LabelIDs.end(), 5817 [&Table]() { return Table.allocateLabelID(); }); 5818 const unsigned Default = Table.allocateLabelID(); 5819 5820 const int64_t LowerBound = Values.begin()->getRawValue(); 5821 const int64_t UpperBound = Values.rbegin()->getRawValue() + 1; 5822 5823 emitPredicateSpecificOpcodes(*Condition, Table); 5824 5825 Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound) 5826 << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")") 5827 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default); 5828 5829 int64_t J = LowerBound; 5830 auto VI = Values.begin(); 5831 for (unsigned I = 0, E = Values.size(); I < E; ++I) { 5832 auto V = *VI++; 5833 while (J++ < V.getRawValue()) 5834 Table << MatchTable::IntValue(0); 5835 V.turnIntoComment(); 5836 Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]); 5837 } 5838 Table << MatchTable::LineBreak; 5839 5840 for (unsigned I = 0, E = Values.size(); I < E; ++I) { 5841 Table << MatchTable::Label(LabelIDs[I]); 5842 Matchers[I]->emit(Table); 5843 Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; 5844 } 5845 Table << MatchTable::Label(Default); 5846 } 5847 5848 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); } 5849 5850 } // end anonymous namespace 5851 5852 //===----------------------------------------------------------------------===// 5853 5854 namespace llvm { 5855 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) { 5856 GlobalISelEmitter(RK).run(OS); 5857 } 5858 } // End llvm namespace 5859