xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/GlobalISelEmitter.cpp (revision da759cfa320d5076b075d15ff3f00ab3ba5634fd)
1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This tablegen backend emits code for use by the GlobalISel instruction
11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
12 ///
13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
14 /// backend, filters out the ones that are unsupported, maps
15 /// SelectionDAG-specific constructs to their GlobalISel counterpart
16 /// (when applicable: MVT to LLT;  SDNode to generic Instruction).
17 ///
18 /// Not all patterns are supported: pass the tablegen invocation
19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
20 /// as well as why.
21 ///
22 /// The generated file defines a single method:
23 ///     bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
24 /// intended to be used in InstructionSelector::select as the first-step
25 /// selector for the patterns that don't require complex C++.
26 ///
27 /// FIXME: We'll probably want to eventually define a base
28 /// "TargetGenInstructionSelector" class.
29 ///
30 //===----------------------------------------------------------------------===//
31 
32 #include "CodeGenDAGPatterns.h"
33 #include "SubtargetFeatureInfo.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Support/CodeGenCoverage.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/LowLevelTypeImpl.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include "llvm/Support/ScopedPrinter.h"
43 #include "llvm/TableGen/Error.h"
44 #include "llvm/TableGen/Record.h"
45 #include "llvm/TableGen/TableGenBackend.h"
46 #include <numeric>
47 #include <string>
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "gisel-emitter"
51 
52 STATISTIC(NumPatternTotal, "Total number of patterns");
53 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
54 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
55 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
56 STATISTIC(NumPatternEmitted, "Number of patterns emitted");
57 
58 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
59 
60 static cl::opt<bool> WarnOnSkippedPatterns(
61     "warn-on-skipped-patterns",
62     cl::desc("Explain why a pattern was skipped for inclusion "
63              "in the GlobalISel selector"),
64     cl::init(false), cl::cat(GlobalISelEmitterCat));
65 
66 static cl::opt<bool> GenerateCoverage(
67     "instrument-gisel-coverage",
68     cl::desc("Generate coverage instrumentation for GlobalISel"),
69     cl::init(false), cl::cat(GlobalISelEmitterCat));
70 
71 static cl::opt<std::string> UseCoverageFile(
72     "gisel-coverage-file", cl::init(""),
73     cl::desc("Specify file to retrieve coverage information from"),
74     cl::cat(GlobalISelEmitterCat));
75 
76 static cl::opt<bool> OptimizeMatchTable(
77     "optimize-match-table",
78     cl::desc("Generate an optimized version of the match table"),
79     cl::init(true), cl::cat(GlobalISelEmitterCat));
80 
81 namespace {
82 //===- Helper functions ---------------------------------------------------===//
83 
84 /// Get the name of the enum value used to number the predicate function.
85 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
86   if (Predicate.hasGISelPredicateCode())
87     return "GIPFP_MI_" + Predicate.getFnName();
88   return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
89          Predicate.getFnName();
90 }
91 
92 /// Get the opcode used to check this predicate.
93 std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) {
94   return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
95 }
96 
97 /// This class stands in for LLT wherever we want to tablegen-erate an
98 /// equivalent at compiler run-time.
99 class LLTCodeGen {
100 private:
101   LLT Ty;
102 
103 public:
104   LLTCodeGen() = default;
105   LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
106 
107   std::string getCxxEnumValue() const {
108     std::string Str;
109     raw_string_ostream OS(Str);
110 
111     emitCxxEnumValue(OS);
112     return OS.str();
113   }
114 
115   void emitCxxEnumValue(raw_ostream &OS) const {
116     if (Ty.isScalar()) {
117       OS << "GILLT_s" << Ty.getSizeInBits();
118       return;
119     }
120     if (Ty.isVector()) {
121       OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
122       return;
123     }
124     if (Ty.isPointer()) {
125       OS << "GILLT_p" << Ty.getAddressSpace();
126       if (Ty.getSizeInBits() > 0)
127         OS << "s" << Ty.getSizeInBits();
128       return;
129     }
130     llvm_unreachable("Unhandled LLT");
131   }
132 
133   void emitCxxConstructorCall(raw_ostream &OS) const {
134     if (Ty.isScalar()) {
135       OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
136       return;
137     }
138     if (Ty.isVector()) {
139       OS << "LLT::vector(" << Ty.getNumElements() << ", "
140          << Ty.getScalarSizeInBits() << ")";
141       return;
142     }
143     if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
144       OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
145          << Ty.getSizeInBits() << ")";
146       return;
147     }
148     llvm_unreachable("Unhandled LLT");
149   }
150 
151   const LLT &get() const { return Ty; }
152 
153   /// This ordering is used for std::unique() and llvm::sort(). There's no
154   /// particular logic behind the order but either A < B or B < A must be
155   /// true if A != B.
156   bool operator<(const LLTCodeGen &Other) const {
157     if (Ty.isValid() != Other.Ty.isValid())
158       return Ty.isValid() < Other.Ty.isValid();
159     if (!Ty.isValid())
160       return false;
161 
162     if (Ty.isVector() != Other.Ty.isVector())
163       return Ty.isVector() < Other.Ty.isVector();
164     if (Ty.isScalar() != Other.Ty.isScalar())
165       return Ty.isScalar() < Other.Ty.isScalar();
166     if (Ty.isPointer() != Other.Ty.isPointer())
167       return Ty.isPointer() < Other.Ty.isPointer();
168 
169     if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
170       return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
171 
172     if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
173       return Ty.getNumElements() < Other.Ty.getNumElements();
174 
175     return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
176   }
177 
178   bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
179 };
180 
181 // Track all types that are used so we can emit the corresponding enum.
182 std::set<LLTCodeGen> KnownTypes;
183 
184 class InstructionMatcher;
185 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
186 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
187 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
188   MVT VT(SVT);
189 
190   if (VT.isVector() && VT.getVectorNumElements() != 1)
191     return LLTCodeGen(
192         LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
193 
194   if (VT.isInteger() || VT.isFloatingPoint())
195     return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
196   return None;
197 }
198 
199 static std::string explainPredicates(const TreePatternNode *N) {
200   std::string Explanation = "";
201   StringRef Separator = "";
202   for (const TreePredicateCall &Call : N->getPredicateCalls()) {
203     const TreePredicateFn &P = Call.Fn;
204     Explanation +=
205         (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
206     Separator = ", ";
207 
208     if (P.isAlwaysTrue())
209       Explanation += " always-true";
210     if (P.isImmediatePattern())
211       Explanation += " immediate";
212 
213     if (P.isUnindexed())
214       Explanation += " unindexed";
215 
216     if (P.isNonExtLoad())
217       Explanation += " non-extload";
218     if (P.isAnyExtLoad())
219       Explanation += " extload";
220     if (P.isSignExtLoad())
221       Explanation += " sextload";
222     if (P.isZeroExtLoad())
223       Explanation += " zextload";
224 
225     if (P.isNonTruncStore())
226       Explanation += " non-truncstore";
227     if (P.isTruncStore())
228       Explanation += " truncstore";
229 
230     if (Record *VT = P.getMemoryVT())
231       Explanation += (" MemVT=" + VT->getName()).str();
232     if (Record *VT = P.getScalarMemoryVT())
233       Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
234 
235     if (ListInit *AddrSpaces = P.getAddressSpaces()) {
236       raw_string_ostream OS(Explanation);
237       OS << " AddressSpaces=[";
238 
239       StringRef AddrSpaceSeparator;
240       for (Init *Val : AddrSpaces->getValues()) {
241         IntInit *IntVal = dyn_cast<IntInit>(Val);
242         if (!IntVal)
243           continue;
244 
245         OS << AddrSpaceSeparator << IntVal->getValue();
246         AddrSpaceSeparator = ", ";
247       }
248 
249       OS << ']';
250     }
251 
252     int64_t MinAlign = P.getMinAlignment();
253     if (MinAlign > 0)
254       Explanation += " MinAlign=" + utostr(MinAlign);
255 
256     if (P.isAtomicOrderingMonotonic())
257       Explanation += " monotonic";
258     if (P.isAtomicOrderingAcquire())
259       Explanation += " acquire";
260     if (P.isAtomicOrderingRelease())
261       Explanation += " release";
262     if (P.isAtomicOrderingAcquireRelease())
263       Explanation += " acq_rel";
264     if (P.isAtomicOrderingSequentiallyConsistent())
265       Explanation += " seq_cst";
266     if (P.isAtomicOrderingAcquireOrStronger())
267       Explanation += " >=acquire";
268     if (P.isAtomicOrderingWeakerThanAcquire())
269       Explanation += " <acquire";
270     if (P.isAtomicOrderingReleaseOrStronger())
271       Explanation += " >=release";
272     if (P.isAtomicOrderingWeakerThanRelease())
273       Explanation += " <release";
274   }
275   return Explanation;
276 }
277 
278 std::string explainOperator(Record *Operator) {
279   if (Operator->isSubClassOf("SDNode"))
280     return (" (" + Operator->getValueAsString("Opcode") + ")").str();
281 
282   if (Operator->isSubClassOf("Intrinsic"))
283     return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
284 
285   if (Operator->isSubClassOf("ComplexPattern"))
286     return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
287             ")")
288         .str();
289 
290   if (Operator->isSubClassOf("SDNodeXForm"))
291     return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
292             ")")
293         .str();
294 
295   return (" (Operator " + Operator->getName() + " not understood)").str();
296 }
297 
298 /// Helper function to let the emitter report skip reason error messages.
299 static Error failedImport(const Twine &Reason) {
300   return make_error<StringError>(Reason, inconvertibleErrorCode());
301 }
302 
303 static Error isTrivialOperatorNode(const TreePatternNode *N) {
304   std::string Explanation = "";
305   std::string Separator = "";
306 
307   bool HasUnsupportedPredicate = false;
308   for (const TreePredicateCall &Call : N->getPredicateCalls()) {
309     const TreePredicateFn &Predicate = Call.Fn;
310 
311     if (Predicate.isAlwaysTrue())
312       continue;
313 
314     if (Predicate.isImmediatePattern())
315       continue;
316 
317     if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
318         Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
319       continue;
320 
321     if (Predicate.isNonTruncStore() || Predicate.isTruncStore())
322       continue;
323 
324     if (Predicate.isLoad() && Predicate.getMemoryVT())
325       continue;
326 
327     if (Predicate.isLoad() || Predicate.isStore()) {
328       if (Predicate.isUnindexed())
329         continue;
330     }
331 
332     if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
333       const ListInit *AddrSpaces = Predicate.getAddressSpaces();
334       if (AddrSpaces && !AddrSpaces->empty())
335         continue;
336 
337       if (Predicate.getMinAlignment() > 0)
338         continue;
339     }
340 
341     if (Predicate.isAtomic() && Predicate.getMemoryVT())
342       continue;
343 
344     if (Predicate.isAtomic() &&
345         (Predicate.isAtomicOrderingMonotonic() ||
346          Predicate.isAtomicOrderingAcquire() ||
347          Predicate.isAtomicOrderingRelease() ||
348          Predicate.isAtomicOrderingAcquireRelease() ||
349          Predicate.isAtomicOrderingSequentiallyConsistent() ||
350          Predicate.isAtomicOrderingAcquireOrStronger() ||
351          Predicate.isAtomicOrderingWeakerThanAcquire() ||
352          Predicate.isAtomicOrderingReleaseOrStronger() ||
353          Predicate.isAtomicOrderingWeakerThanRelease()))
354       continue;
355 
356     if (Predicate.hasGISelPredicateCode())
357       continue;
358 
359     HasUnsupportedPredicate = true;
360     Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
361     Separator = ", ";
362     Explanation += (Separator + "first-failing:" +
363                     Predicate.getOrigPatFragRecord()->getRecord()->getName())
364                        .str();
365     break;
366   }
367 
368   if (!HasUnsupportedPredicate)
369     return Error::success();
370 
371   return failedImport(Explanation);
372 }
373 
374 static Record *getInitValueAsRegClass(Init *V) {
375   if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
376     if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
377       return VDefInit->getDef()->getValueAsDef("RegClass");
378     if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
379       return VDefInit->getDef();
380   }
381   return nullptr;
382 }
383 
384 std::string
385 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
386   std::string Name = "GIFBS";
387   for (const auto &Feature : FeatureBitset)
388     Name += ("_" + Feature->getName()).str();
389   return Name;
390 }
391 
392 //===- MatchTable Helpers -------------------------------------------------===//
393 
394 class MatchTable;
395 
396 /// A record to be stored in a MatchTable.
397 ///
398 /// This class represents any and all output that may be required to emit the
399 /// MatchTable. Instances  are most often configured to represent an opcode or
400 /// value that will be emitted to the table with some formatting but it can also
401 /// represent commas, comments, and other formatting instructions.
402 struct MatchTableRecord {
403   enum RecordFlagsBits {
404     MTRF_None = 0x0,
405     /// Causes EmitStr to be formatted as comment when emitted.
406     MTRF_Comment = 0x1,
407     /// Causes the record value to be followed by a comma when emitted.
408     MTRF_CommaFollows = 0x2,
409     /// Causes the record value to be followed by a line break when emitted.
410     MTRF_LineBreakFollows = 0x4,
411     /// Indicates that the record defines a label and causes an additional
412     /// comment to be emitted containing the index of the label.
413     MTRF_Label = 0x8,
414     /// Causes the record to be emitted as the index of the label specified by
415     /// LabelID along with a comment indicating where that label is.
416     MTRF_JumpTarget = 0x10,
417     /// Causes the formatter to add a level of indentation before emitting the
418     /// record.
419     MTRF_Indent = 0x20,
420     /// Causes the formatter to remove a level of indentation after emitting the
421     /// record.
422     MTRF_Outdent = 0x40,
423   };
424 
425   /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
426   /// reference or define.
427   unsigned LabelID;
428   /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
429   /// value, a label name.
430   std::string EmitStr;
431 
432 private:
433   /// The number of MatchTable elements described by this record. Comments are 0
434   /// while values are typically 1. Values >1 may occur when we need to emit
435   /// values that exceed the size of a MatchTable element.
436   unsigned NumElements;
437 
438 public:
439   /// A bitfield of RecordFlagsBits flags.
440   unsigned Flags;
441 
442   /// The actual run-time value, if known
443   int64_t RawValue;
444 
445   MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
446                    unsigned NumElements, unsigned Flags,
447                    int64_t RawValue = std::numeric_limits<int64_t>::min())
448       : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u),
449         EmitStr(EmitStr), NumElements(NumElements), Flags(Flags),
450         RawValue(RawValue) {
451 
452     assert((!LabelID_.hasValue() || LabelID != ~0u) &&
453            "This value is reserved for non-labels");
454   }
455   MatchTableRecord(const MatchTableRecord &Other) = default;
456   MatchTableRecord(MatchTableRecord &&Other) = default;
457 
458   /// Useful if a Match Table Record gets optimized out
459   void turnIntoComment() {
460     Flags |= MTRF_Comment;
461     Flags &= ~MTRF_CommaFollows;
462     NumElements = 0;
463   }
464 
465   /// For Jump Table generation purposes
466   bool operator<(const MatchTableRecord &Other) const {
467     return RawValue < Other.RawValue;
468   }
469   int64_t getRawValue() const { return RawValue; }
470 
471   void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
472             const MatchTable &Table) const;
473   unsigned size() const { return NumElements; }
474 };
475 
476 class Matcher;
477 
478 /// Holds the contents of a generated MatchTable to enable formatting and the
479 /// necessary index tracking needed to support GIM_Try.
480 class MatchTable {
481   /// An unique identifier for the table. The generated table will be named
482   /// MatchTable${ID}.
483   unsigned ID;
484   /// The records that make up the table. Also includes comments describing the
485   /// values being emitted and line breaks to format it.
486   std::vector<MatchTableRecord> Contents;
487   /// The currently defined labels.
488   DenseMap<unsigned, unsigned> LabelMap;
489   /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
490   unsigned CurrentSize = 0;
491   /// A unique identifier for a MatchTable label.
492   unsigned CurrentLabelID = 0;
493   /// Determines if the table should be instrumented for rule coverage tracking.
494   bool IsWithCoverage;
495 
496 public:
497   static MatchTableRecord LineBreak;
498   static MatchTableRecord Comment(StringRef Comment) {
499     return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
500   }
501   static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
502     unsigned ExtraFlags = 0;
503     if (IndentAdjust > 0)
504       ExtraFlags |= MatchTableRecord::MTRF_Indent;
505     if (IndentAdjust < 0)
506       ExtraFlags |= MatchTableRecord::MTRF_Outdent;
507 
508     return MatchTableRecord(None, Opcode, 1,
509                             MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
510   }
511   static MatchTableRecord NamedValue(StringRef NamedValue) {
512     return MatchTableRecord(None, NamedValue, 1,
513                             MatchTableRecord::MTRF_CommaFollows);
514   }
515   static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
516     return MatchTableRecord(None, NamedValue, 1,
517                             MatchTableRecord::MTRF_CommaFollows, RawValue);
518   }
519   static MatchTableRecord NamedValue(StringRef Namespace,
520                                      StringRef NamedValue) {
521     return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
522                             MatchTableRecord::MTRF_CommaFollows);
523   }
524   static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
525                                      int64_t RawValue) {
526     return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
527                             MatchTableRecord::MTRF_CommaFollows, RawValue);
528   }
529   static MatchTableRecord IntValue(int64_t IntValue) {
530     return MatchTableRecord(None, llvm::to_string(IntValue), 1,
531                             MatchTableRecord::MTRF_CommaFollows);
532   }
533   static MatchTableRecord Label(unsigned LabelID) {
534     return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
535                             MatchTableRecord::MTRF_Label |
536                                 MatchTableRecord::MTRF_Comment |
537                                 MatchTableRecord::MTRF_LineBreakFollows);
538   }
539   static MatchTableRecord JumpTarget(unsigned LabelID) {
540     return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
541                             MatchTableRecord::MTRF_JumpTarget |
542                                 MatchTableRecord::MTRF_Comment |
543                                 MatchTableRecord::MTRF_CommaFollows);
544   }
545 
546   static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
547 
548   MatchTable(bool WithCoverage, unsigned ID = 0)
549       : ID(ID), IsWithCoverage(WithCoverage) {}
550 
551   bool isWithCoverage() const { return IsWithCoverage; }
552 
553   void push_back(const MatchTableRecord &Value) {
554     if (Value.Flags & MatchTableRecord::MTRF_Label)
555       defineLabel(Value.LabelID);
556     Contents.push_back(Value);
557     CurrentSize += Value.size();
558   }
559 
560   unsigned allocateLabelID() { return CurrentLabelID++; }
561 
562   void defineLabel(unsigned LabelID) {
563     LabelMap.insert(std::make_pair(LabelID, CurrentSize));
564   }
565 
566   unsigned getLabelIndex(unsigned LabelID) const {
567     const auto I = LabelMap.find(LabelID);
568     assert(I != LabelMap.end() && "Use of undeclared label");
569     return I->second;
570   }
571 
572   void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
573 
574   void emitDeclaration(raw_ostream &OS) const {
575     unsigned Indentation = 4;
576     OS << "  constexpr static int64_t MatchTable" << ID << "[] = {";
577     LineBreak.emit(OS, true, *this);
578     OS << std::string(Indentation, ' ');
579 
580     for (auto I = Contents.begin(), E = Contents.end(); I != E;
581          ++I) {
582       bool LineBreakIsNext = false;
583       const auto &NextI = std::next(I);
584 
585       if (NextI != E) {
586         if (NextI->EmitStr == "" &&
587             NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
588           LineBreakIsNext = true;
589       }
590 
591       if (I->Flags & MatchTableRecord::MTRF_Indent)
592         Indentation += 2;
593 
594       I->emit(OS, LineBreakIsNext, *this);
595       if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
596         OS << std::string(Indentation, ' ');
597 
598       if (I->Flags & MatchTableRecord::MTRF_Outdent)
599         Indentation -= 2;
600     }
601     OS << "};\n";
602   }
603 };
604 
605 MatchTableRecord MatchTable::LineBreak = {
606     None, "" /* Emit String */, 0 /* Elements */,
607     MatchTableRecord::MTRF_LineBreakFollows};
608 
609 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
610                             const MatchTable &Table) const {
611   bool UseLineComment =
612       LineBreakIsNextAfterThis || (Flags & MTRF_LineBreakFollows);
613   if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
614     UseLineComment = false;
615 
616   if (Flags & MTRF_Comment)
617     OS << (UseLineComment ? "// " : "/*");
618 
619   OS << EmitStr;
620   if (Flags & MTRF_Label)
621     OS << ": @" << Table.getLabelIndex(LabelID);
622 
623   if ((Flags & MTRF_Comment) && !UseLineComment)
624     OS << "*/";
625 
626   if (Flags & MTRF_JumpTarget) {
627     if (Flags & MTRF_Comment)
628       OS << " ";
629     OS << Table.getLabelIndex(LabelID);
630   }
631 
632   if (Flags & MTRF_CommaFollows) {
633     OS << ",";
634     if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
635       OS << " ";
636   }
637 
638   if (Flags & MTRF_LineBreakFollows)
639     OS << "\n";
640 }
641 
642 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
643   Table.push_back(Value);
644   return Table;
645 }
646 
647 //===- Matchers -----------------------------------------------------------===//
648 
649 class OperandMatcher;
650 class MatchAction;
651 class PredicateMatcher;
652 class RuleMatcher;
653 
654 class Matcher {
655 public:
656   virtual ~Matcher() = default;
657   virtual void optimize() {}
658   virtual void emit(MatchTable &Table) = 0;
659 
660   virtual bool hasFirstCondition() const = 0;
661   virtual const PredicateMatcher &getFirstCondition() const = 0;
662   virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
663 };
664 
665 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
666                                   bool WithCoverage) {
667   MatchTable Table(WithCoverage);
668   for (Matcher *Rule : Rules)
669     Rule->emit(Table);
670 
671   return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
672 }
673 
674 class GroupMatcher final : public Matcher {
675   /// Conditions that form a common prefix of all the matchers contained.
676   SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
677 
678   /// All the nested matchers, sharing a common prefix.
679   std::vector<Matcher *> Matchers;
680 
681   /// An owning collection for any auxiliary matchers created while optimizing
682   /// nested matchers contained.
683   std::vector<std::unique_ptr<Matcher>> MatcherStorage;
684 
685 public:
686   /// Add a matcher to the collection of nested matchers if it meets the
687   /// requirements, and return true. If it doesn't, do nothing and return false.
688   ///
689   /// Expected to preserve its argument, so it could be moved out later on.
690   bool addMatcher(Matcher &Candidate);
691 
692   /// Mark the matcher as fully-built and ensure any invariants expected by both
693   /// optimize() and emit(...) methods. Generally, both sequences of calls
694   /// are expected to lead to a sensible result:
695   ///
696   /// addMatcher(...)*; finalize(); optimize(); emit(...); and
697   /// addMatcher(...)*; finalize(); emit(...);
698   ///
699   /// or generally
700   ///
701   /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
702   ///
703   /// Multiple calls to optimize() are expected to be handled gracefully, though
704   /// optimize() is not expected to be idempotent. Multiple calls to finalize()
705   /// aren't generally supported. emit(...) is expected to be non-mutating and
706   /// producing the exact same results upon repeated calls.
707   ///
708   /// addMatcher() calls after the finalize() call are not supported.
709   ///
710   /// finalize() and optimize() are both allowed to mutate the contained
711   /// matchers, so moving them out after finalize() is not supported.
712   void finalize();
713   void optimize() override;
714   void emit(MatchTable &Table) override;
715 
716   /// Could be used to move out the matchers added previously, unless finalize()
717   /// has been already called. If any of the matchers are moved out, the group
718   /// becomes safe to destroy, but not safe to re-use for anything else.
719   iterator_range<std::vector<Matcher *>::iterator> matchers() {
720     return make_range(Matchers.begin(), Matchers.end());
721   }
722   size_t size() const { return Matchers.size(); }
723   bool empty() const { return Matchers.empty(); }
724 
725   std::unique_ptr<PredicateMatcher> popFirstCondition() override {
726     assert(!Conditions.empty() &&
727            "Trying to pop a condition from a condition-less group");
728     std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
729     Conditions.erase(Conditions.begin());
730     return P;
731   }
732   const PredicateMatcher &getFirstCondition() const override {
733     assert(!Conditions.empty() &&
734            "Trying to get a condition from a condition-less group");
735     return *Conditions.front();
736   }
737   bool hasFirstCondition() const override { return !Conditions.empty(); }
738 
739 private:
740   /// See if a candidate matcher could be added to this group solely by
741   /// analyzing its first condition.
742   bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
743 };
744 
745 class SwitchMatcher : public Matcher {
746   /// All the nested matchers, representing distinct switch-cases. The first
747   /// conditions (as Matcher::getFirstCondition() reports) of all the nested
748   /// matchers must share the same type and path to a value they check, in other
749   /// words, be isIdenticalDownToValue, but have different values they check
750   /// against.
751   std::vector<Matcher *> Matchers;
752 
753   /// The representative condition, with a type and a path (InsnVarID and OpIdx
754   /// in most cases)  shared by all the matchers contained.
755   std::unique_ptr<PredicateMatcher> Condition = nullptr;
756 
757   /// Temporary set used to check that the case values don't repeat within the
758   /// same switch.
759   std::set<MatchTableRecord> Values;
760 
761   /// An owning collection for any auxiliary matchers created while optimizing
762   /// nested matchers contained.
763   std::vector<std::unique_ptr<Matcher>> MatcherStorage;
764 
765 public:
766   bool addMatcher(Matcher &Candidate);
767 
768   void finalize();
769   void emit(MatchTable &Table) override;
770 
771   iterator_range<std::vector<Matcher *>::iterator> matchers() {
772     return make_range(Matchers.begin(), Matchers.end());
773   }
774   size_t size() const { return Matchers.size(); }
775   bool empty() const { return Matchers.empty(); }
776 
777   std::unique_ptr<PredicateMatcher> popFirstCondition() override {
778     // SwitchMatcher doesn't have a common first condition for its cases, as all
779     // the cases only share a kind of a value (a type and a path to it) they
780     // match, but deliberately differ in the actual value they match.
781     llvm_unreachable("Trying to pop a condition from a condition-less group");
782   }
783   const PredicateMatcher &getFirstCondition() const override {
784     llvm_unreachable("Trying to pop a condition from a condition-less group");
785   }
786   bool hasFirstCondition() const override { return false; }
787 
788 private:
789   /// See if the predicate type has a Switch-implementation for it.
790   static bool isSupportedPredicateType(const PredicateMatcher &Predicate);
791 
792   bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
793 
794   /// emit()-helper
795   static void emitPredicateSpecificOpcodes(const PredicateMatcher &P,
796                                            MatchTable &Table);
797 };
798 
799 /// Generates code to check that a match rule matches.
800 class RuleMatcher : public Matcher {
801 public:
802   using ActionList = std::list<std::unique_ptr<MatchAction>>;
803   using action_iterator = ActionList::iterator;
804 
805 protected:
806   /// A list of matchers that all need to succeed for the current rule to match.
807   /// FIXME: This currently supports a single match position but could be
808   /// extended to support multiple positions to support div/rem fusion or
809   /// load-multiple instructions.
810   using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
811   MatchersTy Matchers;
812 
813   /// A list of actions that need to be taken when all predicates in this rule
814   /// have succeeded.
815   ActionList Actions;
816 
817   using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
818 
819   /// A map of instruction matchers to the local variables
820   DefinedInsnVariablesMap InsnVariableIDs;
821 
822   using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
823 
824   // The set of instruction matchers that have not yet been claimed for mutation
825   // by a BuildMI.
826   MutatableInsnSet MutatableInsns;
827 
828   /// A map of named operands defined by the matchers that may be referenced by
829   /// the renderers.
830   StringMap<OperandMatcher *> DefinedOperands;
831 
832   /// A map of anonymous physical register operands defined by the matchers that
833   /// may be referenced by the renderers.
834   DenseMap<Record *, OperandMatcher *> PhysRegOperands;
835 
836   /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
837   unsigned NextInsnVarID;
838 
839   /// ID for the next output instruction allocated with allocateOutputInsnID()
840   unsigned NextOutputInsnID;
841 
842   /// ID for the next temporary register ID allocated with allocateTempRegID()
843   unsigned NextTempRegID;
844 
845   std::vector<Record *> RequiredFeatures;
846   std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
847 
848   ArrayRef<SMLoc> SrcLoc;
849 
850   typedef std::tuple<Record *, unsigned, unsigned>
851       DefinedComplexPatternSubOperand;
852   typedef StringMap<DefinedComplexPatternSubOperand>
853       DefinedComplexPatternSubOperandMap;
854   /// A map of Symbolic Names to ComplexPattern sub-operands.
855   DefinedComplexPatternSubOperandMap ComplexSubOperands;
856 
857   uint64_t RuleID;
858   static uint64_t NextRuleID;
859 
860 public:
861   RuleMatcher(ArrayRef<SMLoc> SrcLoc)
862       : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
863         DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
864         NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
865         RuleID(NextRuleID++) {}
866   RuleMatcher(RuleMatcher &&Other) = default;
867   RuleMatcher &operator=(RuleMatcher &&Other) = default;
868 
869   uint64_t getRuleID() const { return RuleID; }
870 
871   InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
872   void addRequiredFeature(Record *Feature);
873   const std::vector<Record *> &getRequiredFeatures() const;
874 
875   template <class Kind, class... Args> Kind &addAction(Args &&... args);
876   template <class Kind, class... Args>
877   action_iterator insertAction(action_iterator InsertPt, Args &&... args);
878 
879   /// Define an instruction without emitting any code to do so.
880   unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
881 
882   unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
883   DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
884     return InsnVariableIDs.begin();
885   }
886   DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
887     return InsnVariableIDs.end();
888   }
889   iterator_range<typename DefinedInsnVariablesMap::const_iterator>
890   defined_insn_vars() const {
891     return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
892   }
893 
894   MutatableInsnSet::const_iterator mutatable_insns_begin() const {
895     return MutatableInsns.begin();
896   }
897   MutatableInsnSet::const_iterator mutatable_insns_end() const {
898     return MutatableInsns.end();
899   }
900   iterator_range<typename MutatableInsnSet::const_iterator>
901   mutatable_insns() const {
902     return make_range(mutatable_insns_begin(), mutatable_insns_end());
903   }
904   void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
905     bool R = MutatableInsns.erase(InsnMatcher);
906     assert(R && "Reserving a mutatable insn that isn't available");
907     (void)R;
908   }
909 
910   action_iterator actions_begin() { return Actions.begin(); }
911   action_iterator actions_end() { return Actions.end(); }
912   iterator_range<action_iterator> actions() {
913     return make_range(actions_begin(), actions_end());
914   }
915 
916   void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
917 
918   void definePhysRegOperand(Record *Reg, OperandMatcher &OM);
919 
920   Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
921                                 unsigned RendererID, unsigned SubOperandID) {
922     if (ComplexSubOperands.count(SymbolicName))
923       return failedImport(
924           "Complex suboperand referenced more than once (Operand: " +
925           SymbolicName + ")");
926 
927     ComplexSubOperands[SymbolicName] =
928         std::make_tuple(ComplexPattern, RendererID, SubOperandID);
929 
930     return Error::success();
931   }
932 
933   Optional<DefinedComplexPatternSubOperand>
934   getComplexSubOperand(StringRef SymbolicName) const {
935     const auto &I = ComplexSubOperands.find(SymbolicName);
936     if (I == ComplexSubOperands.end())
937       return None;
938     return I->second;
939   }
940 
941   InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
942   const OperandMatcher &getOperandMatcher(StringRef Name) const;
943   const OperandMatcher &getPhysRegOperandMatcher(Record *) const;
944 
945   void optimize() override;
946   void emit(MatchTable &Table) override;
947 
948   /// Compare the priority of this object and B.
949   ///
950   /// Returns true if this object is more important than B.
951   bool isHigherPriorityThan(const RuleMatcher &B) const;
952 
953   /// Report the maximum number of temporary operands needed by the rule
954   /// matcher.
955   unsigned countRendererFns() const;
956 
957   std::unique_ptr<PredicateMatcher> popFirstCondition() override;
958   const PredicateMatcher &getFirstCondition() const override;
959   LLTCodeGen getFirstConditionAsRootType();
960   bool hasFirstCondition() const override;
961   unsigned getNumOperands() const;
962   StringRef getOpcode() const;
963 
964   // FIXME: Remove this as soon as possible
965   InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
966 
967   unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
968   unsigned allocateTempRegID() { return NextTempRegID++; }
969 
970   iterator_range<MatchersTy::iterator> insnmatchers() {
971     return make_range(Matchers.begin(), Matchers.end());
972   }
973   bool insnmatchers_empty() const { return Matchers.empty(); }
974   void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
975 };
976 
977 uint64_t RuleMatcher::NextRuleID = 0;
978 
979 using action_iterator = RuleMatcher::action_iterator;
980 
981 template <class PredicateTy> class PredicateListMatcher {
982 private:
983   /// Template instantiations should specialize this to return a string to use
984   /// for the comment emitted when there are no predicates.
985   std::string getNoPredicateComment() const;
986 
987 protected:
988   using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
989   PredicatesTy Predicates;
990 
991   /// Track if the list of predicates was manipulated by one of the optimization
992   /// methods.
993   bool Optimized = false;
994 
995 public:
996   /// Construct a new predicate and add it to the matcher.
997   template <class Kind, class... Args>
998   Optional<Kind *> addPredicate(Args &&... args);
999 
1000   typename PredicatesTy::iterator predicates_begin() {
1001     return Predicates.begin();
1002   }
1003   typename PredicatesTy::iterator predicates_end() {
1004     return Predicates.end();
1005   }
1006   iterator_range<typename PredicatesTy::iterator> predicates() {
1007     return make_range(predicates_begin(), predicates_end());
1008   }
1009   typename PredicatesTy::size_type predicates_size() const {
1010     return Predicates.size();
1011   }
1012   bool predicates_empty() const { return Predicates.empty(); }
1013 
1014   std::unique_ptr<PredicateTy> predicates_pop_front() {
1015     std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
1016     Predicates.pop_front();
1017     Optimized = true;
1018     return Front;
1019   }
1020 
1021   void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
1022     Predicates.push_front(std::move(Predicate));
1023   }
1024 
1025   void eraseNullPredicates() {
1026     const auto NewEnd =
1027         std::stable_partition(Predicates.begin(), Predicates.end(),
1028                               std::logical_not<std::unique_ptr<PredicateTy>>());
1029     if (NewEnd != Predicates.begin()) {
1030       Predicates.erase(Predicates.begin(), NewEnd);
1031       Optimized = true;
1032     }
1033   }
1034 
1035   /// Emit MatchTable opcodes that tests whether all the predicates are met.
1036   template <class... Args>
1037   void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
1038     if (Predicates.empty() && !Optimized) {
1039       Table << MatchTable::Comment(getNoPredicateComment())
1040             << MatchTable::LineBreak;
1041       return;
1042     }
1043 
1044     for (const auto &Predicate : predicates())
1045       Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
1046   }
1047 };
1048 
1049 class PredicateMatcher {
1050 public:
1051   /// This enum is used for RTTI and also defines the priority that is given to
1052   /// the predicate when generating the matcher code. Kinds with higher priority
1053   /// must be tested first.
1054   ///
1055   /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
1056   /// but OPM_Int must have priority over OPM_RegBank since constant integers
1057   /// are represented by a virtual register defined by a G_CONSTANT instruction.
1058   ///
1059   /// Note: The relative priority between IPM_ and OPM_ does not matter, they
1060   /// are currently not compared between each other.
1061   enum PredicateKind {
1062     IPM_Opcode,
1063     IPM_NumOperands,
1064     IPM_ImmPredicate,
1065     IPM_Imm,
1066     IPM_AtomicOrderingMMO,
1067     IPM_MemoryLLTSize,
1068     IPM_MemoryVsLLTSize,
1069     IPM_MemoryAddressSpace,
1070     IPM_MemoryAlignment,
1071     IPM_GenericPredicate,
1072     OPM_SameOperand,
1073     OPM_ComplexPattern,
1074     OPM_IntrinsicID,
1075     OPM_CmpPredicate,
1076     OPM_Instruction,
1077     OPM_Int,
1078     OPM_LiteralInt,
1079     OPM_LLT,
1080     OPM_PointerToAny,
1081     OPM_RegBank,
1082     OPM_MBB,
1083   };
1084 
1085 protected:
1086   PredicateKind Kind;
1087   unsigned InsnVarID;
1088   unsigned OpIdx;
1089 
1090 public:
1091   PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
1092       : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
1093 
1094   unsigned getInsnVarID() const { return InsnVarID; }
1095   unsigned getOpIdx() const { return OpIdx; }
1096 
1097   virtual ~PredicateMatcher() = default;
1098   /// Emit MatchTable opcodes that check the predicate for the given operand.
1099   virtual void emitPredicateOpcodes(MatchTable &Table,
1100                                     RuleMatcher &Rule) const = 0;
1101 
1102   PredicateKind getKind() const { return Kind; }
1103 
1104   virtual bool isIdentical(const PredicateMatcher &B) const {
1105     return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
1106            OpIdx == B.OpIdx;
1107   }
1108 
1109   virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
1110     return hasValue() && PredicateMatcher::isIdentical(B);
1111   }
1112 
1113   virtual MatchTableRecord getValue() const {
1114     assert(hasValue() && "Can not get a value of a value-less predicate!");
1115     llvm_unreachable("Not implemented yet");
1116   }
1117   virtual bool hasValue() const { return false; }
1118 
1119   /// Report the maximum number of temporary operands needed by the predicate
1120   /// matcher.
1121   virtual unsigned countRendererFns() const { return 0; }
1122 };
1123 
1124 /// Generates code to check a predicate of an operand.
1125 ///
1126 /// Typical predicates include:
1127 /// * Operand is a particular register.
1128 /// * Operand is assigned a particular register bank.
1129 /// * Operand is an MBB.
1130 class OperandPredicateMatcher : public PredicateMatcher {
1131 public:
1132   OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
1133                           unsigned OpIdx)
1134       : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
1135   virtual ~OperandPredicateMatcher() {}
1136 
1137   /// Compare the priority of this object and B.
1138   ///
1139   /// Returns true if this object is more important than B.
1140   virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
1141 };
1142 
1143 template <>
1144 std::string
1145 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
1146   return "No operand predicates";
1147 }
1148 
1149 /// Generates code to check that a register operand is defined by the same exact
1150 /// one as another.
1151 class SameOperandMatcher : public OperandPredicateMatcher {
1152   std::string MatchingName;
1153 
1154 public:
1155   SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
1156       : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
1157         MatchingName(MatchingName) {}
1158 
1159   static bool classof(const PredicateMatcher *P) {
1160     return P->getKind() == OPM_SameOperand;
1161   }
1162 
1163   void emitPredicateOpcodes(MatchTable &Table,
1164                             RuleMatcher &Rule) const override;
1165 
1166   bool isIdentical(const PredicateMatcher &B) const override {
1167     return OperandPredicateMatcher::isIdentical(B) &&
1168            MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
1169   }
1170 };
1171 
1172 /// Generates code to check that an operand is a particular LLT.
1173 class LLTOperandMatcher : public OperandPredicateMatcher {
1174 protected:
1175   LLTCodeGen Ty;
1176 
1177 public:
1178   static std::map<LLTCodeGen, unsigned> TypeIDValues;
1179 
1180   static void initTypeIDValuesMap() {
1181     TypeIDValues.clear();
1182 
1183     unsigned ID = 0;
1184     for (const LLTCodeGen &LLTy : KnownTypes)
1185       TypeIDValues[LLTy] = ID++;
1186   }
1187 
1188   LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
1189       : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
1190     KnownTypes.insert(Ty);
1191   }
1192 
1193   static bool classof(const PredicateMatcher *P) {
1194     return P->getKind() == OPM_LLT;
1195   }
1196   bool isIdentical(const PredicateMatcher &B) const override {
1197     return OperandPredicateMatcher::isIdentical(B) &&
1198            Ty == cast<LLTOperandMatcher>(&B)->Ty;
1199   }
1200   MatchTableRecord getValue() const override {
1201     const auto VI = TypeIDValues.find(Ty);
1202     if (VI == TypeIDValues.end())
1203       return MatchTable::NamedValue(getTy().getCxxEnumValue());
1204     return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
1205   }
1206   bool hasValue() const override {
1207     if (TypeIDValues.size() != KnownTypes.size())
1208       initTypeIDValuesMap();
1209     return TypeIDValues.count(Ty);
1210   }
1211 
1212   LLTCodeGen getTy() const { return Ty; }
1213 
1214   void emitPredicateOpcodes(MatchTable &Table,
1215                             RuleMatcher &Rule) const override {
1216     Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
1217           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1218           << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
1219           << getValue() << MatchTable::LineBreak;
1220   }
1221 };
1222 
1223 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
1224 
1225 /// Generates code to check that an operand is a pointer to any address space.
1226 ///
1227 /// In SelectionDAG, the types did not describe pointers or address spaces. As a
1228 /// result, iN is used to describe a pointer of N bits to any address space and
1229 /// PatFrag predicates are typically used to constrain the address space. There's
1230 /// no reliable means to derive the missing type information from the pattern so
1231 /// imported rules must test the components of a pointer separately.
1232 ///
1233 /// If SizeInBits is zero, then the pointer size will be obtained from the
1234 /// subtarget.
1235 class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
1236 protected:
1237   unsigned SizeInBits;
1238 
1239 public:
1240   PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1241                              unsigned SizeInBits)
1242       : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
1243         SizeInBits(SizeInBits) {}
1244 
1245   static bool classof(const OperandPredicateMatcher *P) {
1246     return P->getKind() == OPM_PointerToAny;
1247   }
1248 
1249   void emitPredicateOpcodes(MatchTable &Table,
1250                             RuleMatcher &Rule) const override {
1251     Table << MatchTable::Opcode("GIM_CheckPointerToAny")
1252           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1253           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1254           << MatchTable::Comment("SizeInBits")
1255           << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
1256   }
1257 };
1258 
1259 /// Generates code to check that an operand is a particular target constant.
1260 class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
1261 protected:
1262   const OperandMatcher &Operand;
1263   const Record &TheDef;
1264 
1265   unsigned getAllocatedTemporariesBaseID() const;
1266 
1267 public:
1268   bool isIdentical(const PredicateMatcher &B) const override { return false; }
1269 
1270   ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1271                                const OperandMatcher &Operand,
1272                                const Record &TheDef)
1273       : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
1274         Operand(Operand), TheDef(TheDef) {}
1275 
1276   static bool classof(const PredicateMatcher *P) {
1277     return P->getKind() == OPM_ComplexPattern;
1278   }
1279 
1280   void emitPredicateOpcodes(MatchTable &Table,
1281                             RuleMatcher &Rule) const override {
1282     unsigned ID = getAllocatedTemporariesBaseID();
1283     Table << MatchTable::Opcode("GIM_CheckComplexPattern")
1284           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1285           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1286           << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
1287           << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
1288           << MatchTable::LineBreak;
1289   }
1290 
1291   unsigned countRendererFns() const override {
1292     return 1;
1293   }
1294 };
1295 
1296 /// Generates code to check that an operand is in a particular register bank.
1297 class RegisterBankOperandMatcher : public OperandPredicateMatcher {
1298 protected:
1299   const CodeGenRegisterClass &RC;
1300 
1301 public:
1302   RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1303                              const CodeGenRegisterClass &RC)
1304       : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
1305 
1306   bool isIdentical(const PredicateMatcher &B) const override {
1307     return OperandPredicateMatcher::isIdentical(B) &&
1308            RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
1309   }
1310 
1311   static bool classof(const PredicateMatcher *P) {
1312     return P->getKind() == OPM_RegBank;
1313   }
1314 
1315   void emitPredicateOpcodes(MatchTable &Table,
1316                             RuleMatcher &Rule) const override {
1317     Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
1318           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1319           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1320           << MatchTable::Comment("RC")
1321           << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
1322           << MatchTable::LineBreak;
1323   }
1324 };
1325 
1326 /// Generates code to check that an operand is a basic block.
1327 class MBBOperandMatcher : public OperandPredicateMatcher {
1328 public:
1329   MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
1330       : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
1331 
1332   static bool classof(const PredicateMatcher *P) {
1333     return P->getKind() == OPM_MBB;
1334   }
1335 
1336   void emitPredicateOpcodes(MatchTable &Table,
1337                             RuleMatcher &Rule) const override {
1338     Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
1339           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1340           << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
1341   }
1342 };
1343 
1344 class ImmOperandMatcher : public OperandPredicateMatcher {
1345 public:
1346   ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
1347       : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {}
1348 
1349   static bool classof(const PredicateMatcher *P) {
1350     return P->getKind() == IPM_Imm;
1351   }
1352 
1353   void emitPredicateOpcodes(MatchTable &Table,
1354                             RuleMatcher &Rule) const override {
1355     Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI")
1356           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1357           << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
1358   }
1359 };
1360 
1361 /// Generates code to check that an operand is a G_CONSTANT with a particular
1362 /// int.
1363 class ConstantIntOperandMatcher : public OperandPredicateMatcher {
1364 protected:
1365   int64_t Value;
1366 
1367 public:
1368   ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1369       : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
1370 
1371   bool isIdentical(const PredicateMatcher &B) const override {
1372     return OperandPredicateMatcher::isIdentical(B) &&
1373            Value == cast<ConstantIntOperandMatcher>(&B)->Value;
1374   }
1375 
1376   static bool classof(const PredicateMatcher *P) {
1377     return P->getKind() == OPM_Int;
1378   }
1379 
1380   void emitPredicateOpcodes(MatchTable &Table,
1381                             RuleMatcher &Rule) const override {
1382     Table << MatchTable::Opcode("GIM_CheckConstantInt")
1383           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1384           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1385           << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1386   }
1387 };
1388 
1389 /// Generates code to check that an operand is a raw int (where MO.isImm() or
1390 /// MO.isCImm() is true).
1391 class LiteralIntOperandMatcher : public OperandPredicateMatcher {
1392 protected:
1393   int64_t Value;
1394 
1395 public:
1396   LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1397       : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
1398         Value(Value) {}
1399 
1400   bool isIdentical(const PredicateMatcher &B) const override {
1401     return OperandPredicateMatcher::isIdentical(B) &&
1402            Value == cast<LiteralIntOperandMatcher>(&B)->Value;
1403   }
1404 
1405   static bool classof(const PredicateMatcher *P) {
1406     return P->getKind() == OPM_LiteralInt;
1407   }
1408 
1409   void emitPredicateOpcodes(MatchTable &Table,
1410                             RuleMatcher &Rule) const override {
1411     Table << MatchTable::Opcode("GIM_CheckLiteralInt")
1412           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1413           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1414           << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1415   }
1416 };
1417 
1418 /// Generates code to check that an operand is an CmpInst predicate
1419 class CmpPredicateOperandMatcher : public OperandPredicateMatcher {
1420 protected:
1421   std::string PredName;
1422 
1423 public:
1424   CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1425                              std::string P)
1426     : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {}
1427 
1428   bool isIdentical(const PredicateMatcher &B) const override {
1429     return OperandPredicateMatcher::isIdentical(B) &&
1430            PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName;
1431   }
1432 
1433   static bool classof(const PredicateMatcher *P) {
1434     return P->getKind() == OPM_CmpPredicate;
1435   }
1436 
1437   void emitPredicateOpcodes(MatchTable &Table,
1438                             RuleMatcher &Rule) const override {
1439     Table << MatchTable::Opcode("GIM_CheckCmpPredicate")
1440           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1441           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1442           << MatchTable::Comment("Predicate")
1443           << MatchTable::NamedValue("CmpInst", PredName)
1444           << MatchTable::LineBreak;
1445   }
1446 };
1447 
1448 /// Generates code to check that an operand is an intrinsic ID.
1449 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
1450 protected:
1451   const CodeGenIntrinsic *II;
1452 
1453 public:
1454   IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1455                             const CodeGenIntrinsic *II)
1456       : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
1457 
1458   bool isIdentical(const PredicateMatcher &B) const override {
1459     return OperandPredicateMatcher::isIdentical(B) &&
1460            II == cast<IntrinsicIDOperandMatcher>(&B)->II;
1461   }
1462 
1463   static bool classof(const PredicateMatcher *P) {
1464     return P->getKind() == OPM_IntrinsicID;
1465   }
1466 
1467   void emitPredicateOpcodes(MatchTable &Table,
1468                             RuleMatcher &Rule) const override {
1469     Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
1470           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1471           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1472           << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
1473           << MatchTable::LineBreak;
1474   }
1475 };
1476 
1477 /// Generates code to check that a set of predicates match for a particular
1478 /// operand.
1479 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
1480 protected:
1481   InstructionMatcher &Insn;
1482   unsigned OpIdx;
1483   std::string SymbolicName;
1484 
1485   /// The index of the first temporary variable allocated to this operand. The
1486   /// number of allocated temporaries can be found with
1487   /// countRendererFns().
1488   unsigned AllocatedTemporariesBaseID;
1489 
1490 public:
1491   OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
1492                  const std::string &SymbolicName,
1493                  unsigned AllocatedTemporariesBaseID)
1494       : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
1495         AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
1496 
1497   bool hasSymbolicName() const { return !SymbolicName.empty(); }
1498   const StringRef getSymbolicName() const { return SymbolicName; }
1499   void setSymbolicName(StringRef Name) {
1500     assert(SymbolicName.empty() && "Operand already has a symbolic name");
1501     SymbolicName = Name;
1502   }
1503 
1504   /// Construct a new operand predicate and add it to the matcher.
1505   template <class Kind, class... Args>
1506   Optional<Kind *> addPredicate(Args &&... args) {
1507     if (isSameAsAnotherOperand())
1508       return None;
1509     Predicates.emplace_back(std::make_unique<Kind>(
1510         getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
1511     return static_cast<Kind *>(Predicates.back().get());
1512   }
1513 
1514   unsigned getOpIdx() const { return OpIdx; }
1515   unsigned getInsnVarID() const;
1516 
1517   std::string getOperandExpr(unsigned InsnVarID) const {
1518     return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
1519            llvm::to_string(OpIdx) + ")";
1520   }
1521 
1522   InstructionMatcher &getInstructionMatcher() const { return Insn; }
1523 
1524   Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1525                               bool OperandIsAPointer);
1526 
1527   /// Emit MatchTable opcodes that test whether the instruction named in
1528   /// InsnVarID matches all the predicates and all the operands.
1529   void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
1530     if (!Optimized) {
1531       std::string Comment;
1532       raw_string_ostream CommentOS(Comment);
1533       CommentOS << "MIs[" << getInsnVarID() << "] ";
1534       if (SymbolicName.empty())
1535         CommentOS << "Operand " << OpIdx;
1536       else
1537         CommentOS << SymbolicName;
1538       Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
1539     }
1540 
1541     emitPredicateListOpcodes(Table, Rule);
1542   }
1543 
1544   /// Compare the priority of this object and B.
1545   ///
1546   /// Returns true if this object is more important than B.
1547   bool isHigherPriorityThan(OperandMatcher &B) {
1548     // Operand matchers involving more predicates have higher priority.
1549     if (predicates_size() > B.predicates_size())
1550       return true;
1551     if (predicates_size() < B.predicates_size())
1552       return false;
1553 
1554     // This assumes that predicates are added in a consistent order.
1555     for (auto &&Predicate : zip(predicates(), B.predicates())) {
1556       if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
1557         return true;
1558       if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
1559         return false;
1560     }
1561 
1562     return false;
1563   };
1564 
1565   /// Report the maximum number of temporary operands needed by the operand
1566   /// matcher.
1567   unsigned countRendererFns() {
1568     return std::accumulate(
1569         predicates().begin(), predicates().end(), 0,
1570         [](unsigned A,
1571            const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
1572           return A + Predicate->countRendererFns();
1573         });
1574   }
1575 
1576   unsigned getAllocatedTemporariesBaseID() const {
1577     return AllocatedTemporariesBaseID;
1578   }
1579 
1580   bool isSameAsAnotherOperand() {
1581     for (const auto &Predicate : predicates())
1582       if (isa<SameOperandMatcher>(Predicate))
1583         return true;
1584     return false;
1585   }
1586 };
1587 
1588 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1589                                             bool OperandIsAPointer) {
1590   if (!VTy.isMachineValueType())
1591     return failedImport("unsupported typeset");
1592 
1593   if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
1594     addPredicate<PointerToAnyOperandMatcher>(0);
1595     return Error::success();
1596   }
1597 
1598   auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
1599   if (!OpTyOrNone)
1600     return failedImport("unsupported type");
1601 
1602   if (OperandIsAPointer)
1603     addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
1604   else if (VTy.isPointer())
1605     addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(),
1606                                                  OpTyOrNone->get().getSizeInBits()));
1607   else
1608     addPredicate<LLTOperandMatcher>(*OpTyOrNone);
1609   return Error::success();
1610 }
1611 
1612 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
1613   return Operand.getAllocatedTemporariesBaseID();
1614 }
1615 
1616 /// Generates code to check a predicate on an instruction.
1617 ///
1618 /// Typical predicates include:
1619 /// * The opcode of the instruction is a particular value.
1620 /// * The nsw/nuw flag is/isn't set.
1621 class InstructionPredicateMatcher : public PredicateMatcher {
1622 public:
1623   InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
1624       : PredicateMatcher(Kind, InsnVarID) {}
1625   virtual ~InstructionPredicateMatcher() {}
1626 
1627   /// Compare the priority of this object and B.
1628   ///
1629   /// Returns true if this object is more important than B.
1630   virtual bool
1631   isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
1632     return Kind < B.Kind;
1633   };
1634 };
1635 
1636 template <>
1637 std::string
1638 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
1639   return "No instruction predicates";
1640 }
1641 
1642 /// Generates code to check the opcode of an instruction.
1643 class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
1644 protected:
1645   const CodeGenInstruction *I;
1646 
1647   static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
1648 
1649 public:
1650   static void initOpcodeValuesMap(const CodeGenTarget &Target) {
1651     OpcodeValues.clear();
1652 
1653     unsigned OpcodeValue = 0;
1654     for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
1655       OpcodeValues[I] = OpcodeValue++;
1656   }
1657 
1658   InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I)
1659       : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {}
1660 
1661   static bool classof(const PredicateMatcher *P) {
1662     return P->getKind() == IPM_Opcode;
1663   }
1664 
1665   bool isIdentical(const PredicateMatcher &B) const override {
1666     return InstructionPredicateMatcher::isIdentical(B) &&
1667            I == cast<InstructionOpcodeMatcher>(&B)->I;
1668   }
1669   MatchTableRecord getValue() const override {
1670     const auto VI = OpcodeValues.find(I);
1671     if (VI != OpcodeValues.end())
1672       return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
1673                                     VI->second);
1674     return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
1675   }
1676   bool hasValue() const override { return OpcodeValues.count(I); }
1677 
1678   void emitPredicateOpcodes(MatchTable &Table,
1679                             RuleMatcher &Rule) const override {
1680     Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
1681           << MatchTable::IntValue(InsnVarID) << getValue()
1682           << MatchTable::LineBreak;
1683   }
1684 
1685   /// Compare the priority of this object and B.
1686   ///
1687   /// Returns true if this object is more important than B.
1688   bool
1689   isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
1690     if (InstructionPredicateMatcher::isHigherPriorityThan(B))
1691       return true;
1692     if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
1693       return false;
1694 
1695     // Prioritize opcodes for cosmetic reasons in the generated source. Although
1696     // this is cosmetic at the moment, we may want to drive a similar ordering
1697     // using instruction frequency information to improve compile time.
1698     if (const InstructionOpcodeMatcher *BO =
1699             dyn_cast<InstructionOpcodeMatcher>(&B))
1700       return I->TheDef->getName() < BO->I->TheDef->getName();
1701 
1702     return false;
1703   };
1704 
1705   bool isConstantInstruction() const {
1706     return I->TheDef->getName() == "G_CONSTANT";
1707   }
1708 
1709   StringRef getOpcode() const { return I->TheDef->getName(); }
1710   bool isVariadicNumOperands() const { return I->Operands.isVariadic; }
1711 
1712   StringRef getOperandType(unsigned OpIdx) const {
1713     return I->Operands[OpIdx].OperandType;
1714   }
1715 };
1716 
1717 DenseMap<const CodeGenInstruction *, unsigned>
1718     InstructionOpcodeMatcher::OpcodeValues;
1719 
1720 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
1721   unsigned NumOperands = 0;
1722 
1723 public:
1724   InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
1725       : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
1726         NumOperands(NumOperands) {}
1727 
1728   static bool classof(const PredicateMatcher *P) {
1729     return P->getKind() == IPM_NumOperands;
1730   }
1731 
1732   bool isIdentical(const PredicateMatcher &B) const override {
1733     return InstructionPredicateMatcher::isIdentical(B) &&
1734            NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
1735   }
1736 
1737   void emitPredicateOpcodes(MatchTable &Table,
1738                             RuleMatcher &Rule) const override {
1739     Table << MatchTable::Opcode("GIM_CheckNumOperands")
1740           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1741           << MatchTable::Comment("Expected")
1742           << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
1743   }
1744 };
1745 
1746 /// Generates code to check that this instruction is a constant whose value
1747 /// meets an immediate predicate.
1748 ///
1749 /// Immediates are slightly odd since they are typically used like an operand
1750 /// but are represented as an operator internally. We typically write simm8:$src
1751 /// in a tablegen pattern, but this is just syntactic sugar for
1752 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
1753 /// that will be matched and the predicate (which is attached to the imm
1754 /// operator) that will be tested. In SelectionDAG this describes a
1755 /// ConstantSDNode whose internal value will be tested using the simm8 predicate.
1756 ///
1757 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
1758 /// this representation, the immediate could be tested with an
1759 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
1760 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but
1761 /// there are two implementation issues with producing that matcher
1762 /// configuration from the SelectionDAG pattern:
1763 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
1764 ///   were we to sink the immediate predicate to the operand we would have to
1765 ///   have two partial implementations of PatFrag support, one for immediates
1766 ///   and one for non-immediates.
1767 /// * At the point we handle the predicate, the OperandMatcher hasn't been
1768 ///   created yet. If we were to sink the predicate to the OperandMatcher we
1769 ///   would also have to complicate (or duplicate) the code that descends and
1770 ///   creates matchers for the subtree.
1771 /// Overall, it's simpler to handle it in the place it was found.
1772 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
1773 protected:
1774   TreePredicateFn Predicate;
1775 
1776 public:
1777   InstructionImmPredicateMatcher(unsigned InsnVarID,
1778                                  const TreePredicateFn &Predicate)
1779       : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
1780         Predicate(Predicate) {}
1781 
1782   bool isIdentical(const PredicateMatcher &B) const override {
1783     return InstructionPredicateMatcher::isIdentical(B) &&
1784            Predicate.getOrigPatFragRecord() ==
1785                cast<InstructionImmPredicateMatcher>(&B)
1786                    ->Predicate.getOrigPatFragRecord();
1787   }
1788 
1789   static bool classof(const PredicateMatcher *P) {
1790     return P->getKind() == IPM_ImmPredicate;
1791   }
1792 
1793   void emitPredicateOpcodes(MatchTable &Table,
1794                             RuleMatcher &Rule) const override {
1795     Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate))
1796           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1797           << MatchTable::Comment("Predicate")
1798           << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1799           << MatchTable::LineBreak;
1800   }
1801 };
1802 
1803 /// Generates code to check that a memory instruction has a atomic ordering
1804 /// MachineMemoryOperand.
1805 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
1806 public:
1807   enum AOComparator {
1808     AO_Exactly,
1809     AO_OrStronger,
1810     AO_WeakerThan,
1811   };
1812 
1813 protected:
1814   StringRef Order;
1815   AOComparator Comparator;
1816 
1817 public:
1818   AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
1819                                     AOComparator Comparator = AO_Exactly)
1820       : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
1821         Order(Order), Comparator(Comparator) {}
1822 
1823   static bool classof(const PredicateMatcher *P) {
1824     return P->getKind() == IPM_AtomicOrderingMMO;
1825   }
1826 
1827   bool isIdentical(const PredicateMatcher &B) const override {
1828     if (!InstructionPredicateMatcher::isIdentical(B))
1829       return false;
1830     const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
1831     return Order == R.Order && Comparator == R.Comparator;
1832   }
1833 
1834   void emitPredicateOpcodes(MatchTable &Table,
1835                             RuleMatcher &Rule) const override {
1836     StringRef Opcode = "GIM_CheckAtomicOrdering";
1837 
1838     if (Comparator == AO_OrStronger)
1839       Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
1840     if (Comparator == AO_WeakerThan)
1841       Opcode = "GIM_CheckAtomicOrderingWeakerThan";
1842 
1843     Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
1844           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
1845           << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
1846           << MatchTable::LineBreak;
1847   }
1848 };
1849 
1850 /// Generates code to check that the size of an MMO is exactly N bytes.
1851 class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
1852 protected:
1853   unsigned MMOIdx;
1854   uint64_t Size;
1855 
1856 public:
1857   MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
1858       : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
1859         MMOIdx(MMOIdx), Size(Size) {}
1860 
1861   static bool classof(const PredicateMatcher *P) {
1862     return P->getKind() == IPM_MemoryLLTSize;
1863   }
1864   bool isIdentical(const PredicateMatcher &B) const override {
1865     return InstructionPredicateMatcher::isIdentical(B) &&
1866            MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
1867            Size == cast<MemorySizePredicateMatcher>(&B)->Size;
1868   }
1869 
1870   void emitPredicateOpcodes(MatchTable &Table,
1871                             RuleMatcher &Rule) const override {
1872     Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
1873           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1874           << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1875           << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
1876           << MatchTable::LineBreak;
1877   }
1878 };
1879 
1880 class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher {
1881 protected:
1882   unsigned MMOIdx;
1883   SmallVector<unsigned, 4> AddrSpaces;
1884 
1885 public:
1886   MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
1887                                      ArrayRef<unsigned> AddrSpaces)
1888       : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID),
1889         MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {}
1890 
1891   static bool classof(const PredicateMatcher *P) {
1892     return P->getKind() == IPM_MemoryAddressSpace;
1893   }
1894   bool isIdentical(const PredicateMatcher &B) const override {
1895     if (!InstructionPredicateMatcher::isIdentical(B))
1896       return false;
1897     auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B);
1898     return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces;
1899   }
1900 
1901   void emitPredicateOpcodes(MatchTable &Table,
1902                             RuleMatcher &Rule) const override {
1903     Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace")
1904           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1905           << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1906         // Encode number of address spaces to expect.
1907           << MatchTable::Comment("NumAddrSpace")
1908           << MatchTable::IntValue(AddrSpaces.size());
1909     for (unsigned AS : AddrSpaces)
1910       Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS);
1911 
1912     Table << MatchTable::LineBreak;
1913   }
1914 };
1915 
1916 class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher {
1917 protected:
1918   unsigned MMOIdx;
1919   int MinAlign;
1920 
1921 public:
1922   MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
1923                                   int MinAlign)
1924       : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID),
1925         MMOIdx(MMOIdx), MinAlign(MinAlign) {
1926     assert(MinAlign > 0);
1927   }
1928 
1929   static bool classof(const PredicateMatcher *P) {
1930     return P->getKind() == IPM_MemoryAlignment;
1931   }
1932 
1933   bool isIdentical(const PredicateMatcher &B) const override {
1934     if (!InstructionPredicateMatcher::isIdentical(B))
1935       return false;
1936     auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B);
1937     return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign;
1938   }
1939 
1940   void emitPredicateOpcodes(MatchTable &Table,
1941                             RuleMatcher &Rule) const override {
1942     Table << MatchTable::Opcode("GIM_CheckMemoryAlignment")
1943           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1944           << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1945           << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign)
1946           << MatchTable::LineBreak;
1947   }
1948 };
1949 
1950 /// Generates code to check that the size of an MMO is less-than, equal-to, or
1951 /// greater than a given LLT.
1952 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
1953 public:
1954   enum RelationKind {
1955     GreaterThan,
1956     EqualTo,
1957     LessThan,
1958   };
1959 
1960 protected:
1961   unsigned MMOIdx;
1962   RelationKind Relation;
1963   unsigned OpIdx;
1964 
1965 public:
1966   MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
1967                                   enum RelationKind Relation,
1968                                   unsigned OpIdx)
1969       : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
1970         MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
1971 
1972   static bool classof(const PredicateMatcher *P) {
1973     return P->getKind() == IPM_MemoryVsLLTSize;
1974   }
1975   bool isIdentical(const PredicateMatcher &B) const override {
1976     return InstructionPredicateMatcher::isIdentical(B) &&
1977            MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
1978            Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
1979            OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
1980   }
1981 
1982   void emitPredicateOpcodes(MatchTable &Table,
1983                             RuleMatcher &Rule) const override {
1984     Table << MatchTable::Opcode(Relation == EqualTo
1985                                     ? "GIM_CheckMemorySizeEqualToLLT"
1986                                     : Relation == GreaterThan
1987                                           ? "GIM_CheckMemorySizeGreaterThanLLT"
1988                                           : "GIM_CheckMemorySizeLessThanLLT")
1989           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1990           << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1991           << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
1992           << MatchTable::LineBreak;
1993   }
1994 };
1995 
1996 /// Generates code to check an arbitrary C++ instruction predicate.
1997 class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher {
1998 protected:
1999   TreePredicateFn Predicate;
2000 
2001 public:
2002   GenericInstructionPredicateMatcher(unsigned InsnVarID,
2003                                      TreePredicateFn Predicate)
2004       : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID),
2005         Predicate(Predicate) {}
2006 
2007   static bool classof(const InstructionPredicateMatcher *P) {
2008     return P->getKind() == IPM_GenericPredicate;
2009   }
2010   bool isIdentical(const PredicateMatcher &B) const override {
2011     return InstructionPredicateMatcher::isIdentical(B) &&
2012            Predicate ==
2013                static_cast<const GenericInstructionPredicateMatcher &>(B)
2014                    .Predicate;
2015   }
2016   void emitPredicateOpcodes(MatchTable &Table,
2017                             RuleMatcher &Rule) const override {
2018     Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
2019           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2020           << MatchTable::Comment("FnId")
2021           << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
2022           << MatchTable::LineBreak;
2023   }
2024 };
2025 
2026 /// Generates code to check that a set of predicates and operands match for a
2027 /// particular instruction.
2028 ///
2029 /// Typical predicates include:
2030 /// * Has a specific opcode.
2031 /// * Has an nsw/nuw flag or doesn't.
2032 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
2033 protected:
2034   typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
2035 
2036   RuleMatcher &Rule;
2037 
2038   /// The operands to match. All rendered operands must be present even if the
2039   /// condition is always true.
2040   OperandVec Operands;
2041   bool NumOperandsCheck = true;
2042 
2043   std::string SymbolicName;
2044   unsigned InsnVarID;
2045 
2046   /// PhysRegInputs - List list has an entry for each explicitly specified
2047   /// physreg input to the pattern.  The first elt is the Register node, the
2048   /// second is the recorded slot number the input pattern match saved it in.
2049   SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs;
2050 
2051 public:
2052   InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName)
2053       : Rule(Rule), SymbolicName(SymbolicName) {
2054     // We create a new instruction matcher.
2055     // Get a new ID for that instruction.
2056     InsnVarID = Rule.implicitlyDefineInsnVar(*this);
2057   }
2058 
2059   /// Construct a new instruction predicate and add it to the matcher.
2060   template <class Kind, class... Args>
2061   Optional<Kind *> addPredicate(Args &&... args) {
2062     Predicates.emplace_back(
2063         std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
2064     return static_cast<Kind *>(Predicates.back().get());
2065   }
2066 
2067   RuleMatcher &getRuleMatcher() const { return Rule; }
2068 
2069   unsigned getInsnVarID() const { return InsnVarID; }
2070 
2071   /// Add an operand to the matcher.
2072   OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
2073                              unsigned AllocatedTemporariesBaseID) {
2074     Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
2075                                              AllocatedTemporariesBaseID));
2076     if (!SymbolicName.empty())
2077       Rule.defineOperand(SymbolicName, *Operands.back());
2078 
2079     return *Operands.back();
2080   }
2081 
2082   OperandMatcher &getOperand(unsigned OpIdx) {
2083     auto I = std::find_if(Operands.begin(), Operands.end(),
2084                           [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
2085                             return X->getOpIdx() == OpIdx;
2086                           });
2087     if (I != Operands.end())
2088       return **I;
2089     llvm_unreachable("Failed to lookup operand");
2090   }
2091 
2092   OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx,
2093                                   unsigned TempOpIdx) {
2094     assert(SymbolicName.empty());
2095     OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx);
2096     Operands.emplace_back(OM);
2097     Rule.definePhysRegOperand(Reg, *OM);
2098     PhysRegInputs.emplace_back(Reg, OpIdx);
2099     return *OM;
2100   }
2101 
2102   ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const {
2103     return PhysRegInputs;
2104   }
2105 
2106   StringRef getSymbolicName() const { return SymbolicName; }
2107   unsigned getNumOperands() const { return Operands.size(); }
2108   OperandVec::iterator operands_begin() { return Operands.begin(); }
2109   OperandVec::iterator operands_end() { return Operands.end(); }
2110   iterator_range<OperandVec::iterator> operands() {
2111     return make_range(operands_begin(), operands_end());
2112   }
2113   OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
2114   OperandVec::const_iterator operands_end() const { return Operands.end(); }
2115   iterator_range<OperandVec::const_iterator> operands() const {
2116     return make_range(operands_begin(), operands_end());
2117   }
2118   bool operands_empty() const { return Operands.empty(); }
2119 
2120   void pop_front() { Operands.erase(Operands.begin()); }
2121 
2122   void optimize();
2123 
2124   /// Emit MatchTable opcodes that test whether the instruction named in
2125   /// InsnVarName matches all the predicates and all the operands.
2126   void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
2127     if (NumOperandsCheck)
2128       InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
2129           .emitPredicateOpcodes(Table, Rule);
2130 
2131     emitPredicateListOpcodes(Table, Rule);
2132 
2133     for (const auto &Operand : Operands)
2134       Operand->emitPredicateOpcodes(Table, Rule);
2135   }
2136 
2137   /// Compare the priority of this object and B.
2138   ///
2139   /// Returns true if this object is more important than B.
2140   bool isHigherPriorityThan(InstructionMatcher &B) {
2141     // Instruction matchers involving more operands have higher priority.
2142     if (Operands.size() > B.Operands.size())
2143       return true;
2144     if (Operands.size() < B.Operands.size())
2145       return false;
2146 
2147     for (auto &&P : zip(predicates(), B.predicates())) {
2148       auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
2149       auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
2150       if (L->isHigherPriorityThan(*R))
2151         return true;
2152       if (R->isHigherPriorityThan(*L))
2153         return false;
2154     }
2155 
2156     for (auto Operand : zip(Operands, B.Operands)) {
2157       if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
2158         return true;
2159       if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
2160         return false;
2161     }
2162 
2163     return false;
2164   };
2165 
2166   /// Report the maximum number of temporary operands needed by the instruction
2167   /// matcher.
2168   unsigned countRendererFns() {
2169     return std::accumulate(
2170                predicates().begin(), predicates().end(), 0,
2171                [](unsigned A,
2172                   const std::unique_ptr<PredicateMatcher> &Predicate) {
2173                  return A + Predicate->countRendererFns();
2174                }) +
2175            std::accumulate(
2176                Operands.begin(), Operands.end(), 0,
2177                [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
2178                  return A + Operand->countRendererFns();
2179                });
2180   }
2181 
2182   InstructionOpcodeMatcher &getOpcodeMatcher() {
2183     for (auto &P : predicates())
2184       if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
2185         return *OpMatcher;
2186     llvm_unreachable("Didn't find an opcode matcher");
2187   }
2188 
2189   bool isConstantInstruction() {
2190     return getOpcodeMatcher().isConstantInstruction();
2191   }
2192 
2193   StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
2194 };
2195 
2196 StringRef RuleMatcher::getOpcode() const {
2197   return Matchers.front()->getOpcode();
2198 }
2199 
2200 unsigned RuleMatcher::getNumOperands() const {
2201   return Matchers.front()->getNumOperands();
2202 }
2203 
2204 LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
2205   InstructionMatcher &InsnMatcher = *Matchers.front();
2206   if (!InsnMatcher.predicates_empty())
2207     if (const auto *TM =
2208             dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
2209       if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
2210         return TM->getTy();
2211   return {};
2212 }
2213 
2214 /// Generates code to check that the operand is a register defined by an
2215 /// instruction that matches the given instruction matcher.
2216 ///
2217 /// For example, the pattern:
2218 ///   (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
2219 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
2220 /// the:
2221 ///   (G_ADD $src1, $src2)
2222 /// subpattern.
2223 class InstructionOperandMatcher : public OperandPredicateMatcher {
2224 protected:
2225   std::unique_ptr<InstructionMatcher> InsnMatcher;
2226 
2227 public:
2228   InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
2229                             RuleMatcher &Rule, StringRef SymbolicName)
2230       : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
2231         InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {}
2232 
2233   static bool classof(const PredicateMatcher *P) {
2234     return P->getKind() == OPM_Instruction;
2235   }
2236 
2237   InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
2238 
2239   void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
2240     const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
2241     Table << MatchTable::Opcode("GIM_RecordInsn")
2242           << MatchTable::Comment("DefineMI")
2243           << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
2244           << MatchTable::IntValue(getInsnVarID())
2245           << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
2246           << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
2247           << MatchTable::LineBreak;
2248   }
2249 
2250   void emitPredicateOpcodes(MatchTable &Table,
2251                             RuleMatcher &Rule) const override {
2252     emitCaptureOpcodes(Table, Rule);
2253     InsnMatcher->emitPredicateOpcodes(Table, Rule);
2254   }
2255 
2256   bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
2257     if (OperandPredicateMatcher::isHigherPriorityThan(B))
2258       return true;
2259     if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
2260       return false;
2261 
2262     if (const InstructionOperandMatcher *BP =
2263             dyn_cast<InstructionOperandMatcher>(&B))
2264       if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
2265         return true;
2266     return false;
2267   }
2268 };
2269 
2270 void InstructionMatcher::optimize() {
2271   SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
2272   const auto &OpcMatcher = getOpcodeMatcher();
2273 
2274   Stash.push_back(predicates_pop_front());
2275   if (Stash.back().get() == &OpcMatcher) {
2276     if (NumOperandsCheck && OpcMatcher.isVariadicNumOperands())
2277       Stash.emplace_back(
2278           new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
2279     NumOperandsCheck = false;
2280 
2281     for (auto &OM : Operands)
2282       for (auto &OP : OM->predicates())
2283         if (isa<IntrinsicIDOperandMatcher>(OP)) {
2284           Stash.push_back(std::move(OP));
2285           OM->eraseNullPredicates();
2286           break;
2287         }
2288   }
2289 
2290   if (InsnVarID > 0) {
2291     assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
2292     for (auto &OP : Operands[0]->predicates())
2293       OP.reset();
2294     Operands[0]->eraseNullPredicates();
2295   }
2296   for (auto &OM : Operands) {
2297     for (auto &OP : OM->predicates())
2298       if (isa<LLTOperandMatcher>(OP))
2299         Stash.push_back(std::move(OP));
2300     OM->eraseNullPredicates();
2301   }
2302   while (!Stash.empty())
2303     prependPredicate(Stash.pop_back_val());
2304 }
2305 
2306 //===- Actions ------------------------------------------------------------===//
2307 class OperandRenderer {
2308 public:
2309   enum RendererKind {
2310     OR_Copy,
2311     OR_CopyOrAddZeroReg,
2312     OR_CopySubReg,
2313     OR_CopyPhysReg,
2314     OR_CopyConstantAsImm,
2315     OR_CopyFConstantAsFPImm,
2316     OR_Imm,
2317     OR_SubRegIndex,
2318     OR_Register,
2319     OR_TempRegister,
2320     OR_ComplexPattern,
2321     OR_Custom,
2322     OR_CustomOperand
2323   };
2324 
2325 protected:
2326   RendererKind Kind;
2327 
2328 public:
2329   OperandRenderer(RendererKind Kind) : Kind(Kind) {}
2330   virtual ~OperandRenderer() {}
2331 
2332   RendererKind getKind() const { return Kind; }
2333 
2334   virtual void emitRenderOpcodes(MatchTable &Table,
2335                                  RuleMatcher &Rule) const = 0;
2336 };
2337 
2338 /// A CopyRenderer emits code to copy a single operand from an existing
2339 /// instruction to the one being built.
2340 class CopyRenderer : public OperandRenderer {
2341 protected:
2342   unsigned NewInsnID;
2343   /// The name of the operand.
2344   const StringRef SymbolicName;
2345 
2346 public:
2347   CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
2348       : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
2349         SymbolicName(SymbolicName) {
2350     assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2351   }
2352 
2353   static bool classof(const OperandRenderer *R) {
2354     return R->getKind() == OR_Copy;
2355   }
2356 
2357   const StringRef getSymbolicName() const { return SymbolicName; }
2358 
2359   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2360     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2361     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2362     Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2363           << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
2364           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2365           << MatchTable::IntValue(Operand.getOpIdx())
2366           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2367   }
2368 };
2369 
2370 /// A CopyRenderer emits code to copy a virtual register to a specific physical
2371 /// register.
2372 class CopyPhysRegRenderer : public OperandRenderer {
2373 protected:
2374   unsigned NewInsnID;
2375   Record *PhysReg;
2376 
2377 public:
2378   CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg)
2379       : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID),
2380         PhysReg(Reg) {
2381     assert(PhysReg);
2382   }
2383 
2384   static bool classof(const OperandRenderer *R) {
2385     return R->getKind() == OR_CopyPhysReg;
2386   }
2387 
2388   Record *getPhysReg() const { return PhysReg; }
2389 
2390   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2391     const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg);
2392     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2393     Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2394           << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
2395           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2396           << MatchTable::IntValue(Operand.getOpIdx())
2397           << MatchTable::Comment(PhysReg->getName())
2398           << MatchTable::LineBreak;
2399   }
2400 };
2401 
2402 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
2403 /// existing instruction to the one being built. If the operand turns out to be
2404 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
2405 class CopyOrAddZeroRegRenderer : public OperandRenderer {
2406 protected:
2407   unsigned NewInsnID;
2408   /// The name of the operand.
2409   const StringRef SymbolicName;
2410   const Record *ZeroRegisterDef;
2411 
2412 public:
2413   CopyOrAddZeroRegRenderer(unsigned NewInsnID,
2414                            StringRef SymbolicName, Record *ZeroRegisterDef)
2415       : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
2416         SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
2417     assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2418   }
2419 
2420   static bool classof(const OperandRenderer *R) {
2421     return R->getKind() == OR_CopyOrAddZeroReg;
2422   }
2423 
2424   const StringRef getSymbolicName() const { return SymbolicName; }
2425 
2426   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2427     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2428     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2429     Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
2430           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2431           << MatchTable::Comment("OldInsnID")
2432           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2433           << MatchTable::IntValue(Operand.getOpIdx())
2434           << MatchTable::NamedValue(
2435                  (ZeroRegisterDef->getValue("Namespace")
2436                       ? ZeroRegisterDef->getValueAsString("Namespace")
2437                       : ""),
2438                  ZeroRegisterDef->getName())
2439           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2440   }
2441 };
2442 
2443 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
2444 /// an extended immediate operand.
2445 class CopyConstantAsImmRenderer : public OperandRenderer {
2446 protected:
2447   unsigned NewInsnID;
2448   /// The name of the operand.
2449   const std::string SymbolicName;
2450   bool Signed;
2451 
2452 public:
2453   CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2454       : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
2455         SymbolicName(SymbolicName), Signed(true) {}
2456 
2457   static bool classof(const OperandRenderer *R) {
2458     return R->getKind() == OR_CopyConstantAsImm;
2459   }
2460 
2461   const StringRef getSymbolicName() const { return SymbolicName; }
2462 
2463   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2464     InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2465     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2466     Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
2467                                        : "GIR_CopyConstantAsUImm")
2468           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2469           << MatchTable::Comment("OldInsnID")
2470           << MatchTable::IntValue(OldInsnVarID)
2471           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2472   }
2473 };
2474 
2475 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
2476 /// instruction to an extended immediate operand.
2477 class CopyFConstantAsFPImmRenderer : public OperandRenderer {
2478 protected:
2479   unsigned NewInsnID;
2480   /// The name of the operand.
2481   const std::string SymbolicName;
2482 
2483 public:
2484   CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2485       : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
2486         SymbolicName(SymbolicName) {}
2487 
2488   static bool classof(const OperandRenderer *R) {
2489     return R->getKind() == OR_CopyFConstantAsFPImm;
2490   }
2491 
2492   const StringRef getSymbolicName() const { return SymbolicName; }
2493 
2494   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2495     InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2496     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2497     Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
2498           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2499           << MatchTable::Comment("OldInsnID")
2500           << MatchTable::IntValue(OldInsnVarID)
2501           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2502   }
2503 };
2504 
2505 /// A CopySubRegRenderer emits code to copy a single register operand from an
2506 /// existing instruction to the one being built and indicate that only a
2507 /// subregister should be copied.
2508 class CopySubRegRenderer : public OperandRenderer {
2509 protected:
2510   unsigned NewInsnID;
2511   /// The name of the operand.
2512   const StringRef SymbolicName;
2513   /// The subregister to extract.
2514   const CodeGenSubRegIndex *SubReg;
2515 
2516 public:
2517   CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
2518                      const CodeGenSubRegIndex *SubReg)
2519       : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
2520         SymbolicName(SymbolicName), SubReg(SubReg) {}
2521 
2522   static bool classof(const OperandRenderer *R) {
2523     return R->getKind() == OR_CopySubReg;
2524   }
2525 
2526   const StringRef getSymbolicName() const { return SymbolicName; }
2527 
2528   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2529     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2530     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2531     Table << MatchTable::Opcode("GIR_CopySubReg")
2532           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2533           << MatchTable::Comment("OldInsnID")
2534           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2535           << MatchTable::IntValue(Operand.getOpIdx())
2536           << MatchTable::Comment("SubRegIdx")
2537           << MatchTable::IntValue(SubReg->EnumValue)
2538           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2539   }
2540 };
2541 
2542 /// Adds a specific physical register to the instruction being built.
2543 /// This is typically useful for WZR/XZR on AArch64.
2544 class AddRegisterRenderer : public OperandRenderer {
2545 protected:
2546   unsigned InsnID;
2547   const Record *RegisterDef;
2548   bool IsDef;
2549 
2550 public:
2551   AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef,
2552                       bool IsDef = false)
2553       : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef),
2554         IsDef(IsDef) {}
2555 
2556   static bool classof(const OperandRenderer *R) {
2557     return R->getKind() == OR_Register;
2558   }
2559 
2560   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2561     Table << MatchTable::Opcode("GIR_AddRegister")
2562           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2563           << MatchTable::NamedValue(
2564                  (RegisterDef->getValue("Namespace")
2565                       ? RegisterDef->getValueAsString("Namespace")
2566                       : ""),
2567                  RegisterDef->getName())
2568           << MatchTable::Comment("AddRegisterRegFlags");
2569 
2570     // TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are
2571     // really needed for a physical register reference. We can pack the
2572     // register and flags in a single field.
2573     if (IsDef)
2574       Table << MatchTable::NamedValue("RegState::Define");
2575     else
2576       Table << MatchTable::IntValue(0);
2577     Table << MatchTable::LineBreak;
2578   }
2579 };
2580 
2581 /// Adds a specific temporary virtual register to the instruction being built.
2582 /// This is used to chain instructions together when emitting multiple
2583 /// instructions.
2584 class TempRegRenderer : public OperandRenderer {
2585 protected:
2586   unsigned InsnID;
2587   unsigned TempRegID;
2588   bool IsDef;
2589 
2590 public:
2591   TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false)
2592       : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
2593         IsDef(IsDef) {}
2594 
2595   static bool classof(const OperandRenderer *R) {
2596     return R->getKind() == OR_TempRegister;
2597   }
2598 
2599   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2600     Table << MatchTable::Opcode("GIR_AddTempRegister")
2601           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2602           << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2603           << MatchTable::Comment("TempRegFlags");
2604     if (IsDef)
2605       Table << MatchTable::NamedValue("RegState::Define");
2606     else
2607       Table << MatchTable::IntValue(0);
2608     Table << MatchTable::LineBreak;
2609   }
2610 };
2611 
2612 /// Adds a specific immediate to the instruction being built.
2613 class ImmRenderer : public OperandRenderer {
2614 protected:
2615   unsigned InsnID;
2616   int64_t Imm;
2617 
2618 public:
2619   ImmRenderer(unsigned InsnID, int64_t Imm)
2620       : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
2621 
2622   static bool classof(const OperandRenderer *R) {
2623     return R->getKind() == OR_Imm;
2624   }
2625 
2626   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2627     Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2628           << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
2629           << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
2630   }
2631 };
2632 
2633 /// Adds an enum value for a subreg index to the instruction being built.
2634 class SubRegIndexRenderer : public OperandRenderer {
2635 protected:
2636   unsigned InsnID;
2637   const CodeGenSubRegIndex *SubRegIdx;
2638 
2639 public:
2640   SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI)
2641       : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {}
2642 
2643   static bool classof(const OperandRenderer *R) {
2644     return R->getKind() == OR_SubRegIndex;
2645   }
2646 
2647   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2648     Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2649           << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex")
2650           << MatchTable::IntValue(SubRegIdx->EnumValue)
2651           << MatchTable::LineBreak;
2652   }
2653 };
2654 
2655 /// Adds operands by calling a renderer function supplied by the ComplexPattern
2656 /// matcher function.
2657 class RenderComplexPatternOperand : public OperandRenderer {
2658 private:
2659   unsigned InsnID;
2660   const Record &TheDef;
2661   /// The name of the operand.
2662   const StringRef SymbolicName;
2663   /// The renderer number. This must be unique within a rule since it's used to
2664   /// identify a temporary variable to hold the renderer function.
2665   unsigned RendererID;
2666   /// When provided, this is the suboperand of the ComplexPattern operand to
2667   /// render. Otherwise all the suboperands will be rendered.
2668   Optional<unsigned> SubOperand;
2669 
2670   unsigned getNumOperands() const {
2671     return TheDef.getValueAsDag("Operands")->getNumArgs();
2672   }
2673 
2674 public:
2675   RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
2676                               StringRef SymbolicName, unsigned RendererID,
2677                               Optional<unsigned> SubOperand = None)
2678       : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
2679         SymbolicName(SymbolicName), RendererID(RendererID),
2680         SubOperand(SubOperand) {}
2681 
2682   static bool classof(const OperandRenderer *R) {
2683     return R->getKind() == OR_ComplexPattern;
2684   }
2685 
2686   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2687     Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
2688                                                       : "GIR_ComplexRenderer")
2689           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2690           << MatchTable::Comment("RendererID")
2691           << MatchTable::IntValue(RendererID);
2692     if (SubOperand.hasValue())
2693       Table << MatchTable::Comment("SubOperand")
2694             << MatchTable::IntValue(SubOperand.getValue());
2695     Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2696   }
2697 };
2698 
2699 class CustomRenderer : public OperandRenderer {
2700 protected:
2701   unsigned InsnID;
2702   const Record &Renderer;
2703   /// The name of the operand.
2704   const std::string SymbolicName;
2705 
2706 public:
2707   CustomRenderer(unsigned InsnID, const Record &Renderer,
2708                  StringRef SymbolicName)
2709       : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
2710         SymbolicName(SymbolicName) {}
2711 
2712   static bool classof(const OperandRenderer *R) {
2713     return R->getKind() == OR_Custom;
2714   }
2715 
2716   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2717     InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2718     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2719     Table << MatchTable::Opcode("GIR_CustomRenderer")
2720           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2721           << MatchTable::Comment("OldInsnID")
2722           << MatchTable::IntValue(OldInsnVarID)
2723           << MatchTable::Comment("Renderer")
2724           << MatchTable::NamedValue(
2725                  "GICR_" + Renderer.getValueAsString("RendererFn").str())
2726           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2727   }
2728 };
2729 
2730 class CustomOperandRenderer : public OperandRenderer {
2731 protected:
2732   unsigned InsnID;
2733   const Record &Renderer;
2734   /// The name of the operand.
2735   const std::string SymbolicName;
2736 
2737 public:
2738   CustomOperandRenderer(unsigned InsnID, const Record &Renderer,
2739                         StringRef SymbolicName)
2740       : OperandRenderer(OR_CustomOperand), InsnID(InsnID), Renderer(Renderer),
2741         SymbolicName(SymbolicName) {}
2742 
2743   static bool classof(const OperandRenderer *R) {
2744     return R->getKind() == OR_CustomOperand;
2745   }
2746 
2747   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2748     const OperandMatcher &OpdMatcher = Rule.getOperandMatcher(SymbolicName);
2749     Table << MatchTable::Opcode("GIR_CustomOperandRenderer")
2750           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2751           << MatchTable::Comment("OldInsnID")
2752           << MatchTable::IntValue(OpdMatcher.getInsnVarID())
2753           << MatchTable::Comment("OpIdx")
2754           << MatchTable::IntValue(OpdMatcher.getOpIdx())
2755           << MatchTable::Comment("OperandRenderer")
2756           << MatchTable::NamedValue(
2757             "GICR_" + Renderer.getValueAsString("RendererFn").str())
2758           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2759   }
2760 };
2761 
2762 /// An action taken when all Matcher predicates succeeded for a parent rule.
2763 ///
2764 /// Typical actions include:
2765 /// * Changing the opcode of an instruction.
2766 /// * Adding an operand to an instruction.
2767 class MatchAction {
2768 public:
2769   virtual ~MatchAction() {}
2770 
2771   /// Emit the MatchTable opcodes to implement the action.
2772   virtual void emitActionOpcodes(MatchTable &Table,
2773                                  RuleMatcher &Rule) const = 0;
2774 };
2775 
2776 /// Generates a comment describing the matched rule being acted upon.
2777 class DebugCommentAction : public MatchAction {
2778 private:
2779   std::string S;
2780 
2781 public:
2782   DebugCommentAction(StringRef S) : S(S) {}
2783 
2784   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2785     Table << MatchTable::Comment(S) << MatchTable::LineBreak;
2786   }
2787 };
2788 
2789 /// Generates code to build an instruction or mutate an existing instruction
2790 /// into the desired instruction when this is possible.
2791 class BuildMIAction : public MatchAction {
2792 private:
2793   unsigned InsnID;
2794   const CodeGenInstruction *I;
2795   InstructionMatcher *Matched;
2796   std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
2797 
2798   /// True if the instruction can be built solely by mutating the opcode.
2799   bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
2800     if (!Insn)
2801       return false;
2802 
2803     if (OperandRenderers.size() != Insn->getNumOperands())
2804       return false;
2805 
2806     for (const auto &Renderer : enumerate(OperandRenderers)) {
2807       if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
2808         const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
2809         if (Insn != &OM.getInstructionMatcher() ||
2810             OM.getOpIdx() != Renderer.index())
2811           return false;
2812       } else
2813         return false;
2814     }
2815 
2816     return true;
2817   }
2818 
2819 public:
2820   BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
2821       : InsnID(InsnID), I(I), Matched(nullptr) {}
2822 
2823   unsigned getInsnID() const { return InsnID; }
2824   const CodeGenInstruction *getCGI() const { return I; }
2825 
2826   void chooseInsnToMutate(RuleMatcher &Rule) {
2827     for (auto *MutateCandidate : Rule.mutatable_insns()) {
2828       if (canMutate(Rule, MutateCandidate)) {
2829         // Take the first one we're offered that we're able to mutate.
2830         Rule.reserveInsnMatcherForMutation(MutateCandidate);
2831         Matched = MutateCandidate;
2832         return;
2833       }
2834     }
2835   }
2836 
2837   template <class Kind, class... Args>
2838   Kind &addRenderer(Args&&... args) {
2839     OperandRenderers.emplace_back(
2840         std::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
2841     return *static_cast<Kind *>(OperandRenderers.back().get());
2842   }
2843 
2844   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2845     if (Matched) {
2846       assert(canMutate(Rule, Matched) &&
2847              "Arranged to mutate an insn that isn't mutatable");
2848 
2849       unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
2850       Table << MatchTable::Opcode("GIR_MutateOpcode")
2851             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2852             << MatchTable::Comment("RecycleInsnID")
2853             << MatchTable::IntValue(RecycleInsnID)
2854             << MatchTable::Comment("Opcode")
2855             << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
2856             << MatchTable::LineBreak;
2857 
2858       if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
2859         for (auto Def : I->ImplicitDefs) {
2860           auto Namespace = Def->getValue("Namespace")
2861                                ? Def->getValueAsString("Namespace")
2862                                : "";
2863           Table << MatchTable::Opcode("GIR_AddImplicitDef")
2864                 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2865                 << MatchTable::NamedValue(Namespace, Def->getName())
2866                 << MatchTable::LineBreak;
2867         }
2868         for (auto Use : I->ImplicitUses) {
2869           auto Namespace = Use->getValue("Namespace")
2870                                ? Use->getValueAsString("Namespace")
2871                                : "";
2872           Table << MatchTable::Opcode("GIR_AddImplicitUse")
2873                 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2874                 << MatchTable::NamedValue(Namespace, Use->getName())
2875                 << MatchTable::LineBreak;
2876         }
2877       }
2878       return;
2879     }
2880 
2881     // TODO: Simple permutation looks like it could be almost as common as
2882     //       mutation due to commutative operations.
2883 
2884     Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
2885           << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
2886           << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
2887           << MatchTable::LineBreak;
2888     for (const auto &Renderer : OperandRenderers)
2889       Renderer->emitRenderOpcodes(Table, Rule);
2890 
2891     if (I->mayLoad || I->mayStore) {
2892       Table << MatchTable::Opcode("GIR_MergeMemOperands")
2893             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2894             << MatchTable::Comment("MergeInsnID's");
2895       // Emit the ID's for all the instructions that are matched by this rule.
2896       // TODO: Limit this to matched instructions that mayLoad/mayStore or have
2897       //       some other means of having a memoperand. Also limit this to
2898       //       emitted instructions that expect to have a memoperand too. For
2899       //       example, (G_SEXT (G_LOAD x)) that results in separate load and
2900       //       sign-extend instructions shouldn't put the memoperand on the
2901       //       sign-extend since it has no effect there.
2902       std::vector<unsigned> MergeInsnIDs;
2903       for (const auto &IDMatcherPair : Rule.defined_insn_vars())
2904         MergeInsnIDs.push_back(IDMatcherPair.second);
2905       llvm::sort(MergeInsnIDs);
2906       for (const auto &MergeInsnID : MergeInsnIDs)
2907         Table << MatchTable::IntValue(MergeInsnID);
2908       Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
2909             << MatchTable::LineBreak;
2910     }
2911 
2912     // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
2913     //        better for combines. Particularly when there are multiple match
2914     //        roots.
2915     if (InsnID == 0)
2916       Table << MatchTable::Opcode("GIR_EraseFromParent")
2917             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2918             << MatchTable::LineBreak;
2919   }
2920 };
2921 
2922 /// Generates code to constrain the operands of an output instruction to the
2923 /// register classes specified by the definition of that instruction.
2924 class ConstrainOperandsToDefinitionAction : public MatchAction {
2925   unsigned InsnID;
2926 
2927 public:
2928   ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
2929 
2930   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2931     Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
2932           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2933           << MatchTable::LineBreak;
2934   }
2935 };
2936 
2937 /// Generates code to constrain the specified operand of an output instruction
2938 /// to the specified register class.
2939 class ConstrainOperandToRegClassAction : public MatchAction {
2940   unsigned InsnID;
2941   unsigned OpIdx;
2942   const CodeGenRegisterClass &RC;
2943 
2944 public:
2945   ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
2946                                    const CodeGenRegisterClass &RC)
2947       : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
2948 
2949   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2950     Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
2951           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2952           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
2953           << MatchTable::Comment("RC " + RC.getName())
2954           << MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak;
2955   }
2956 };
2957 
2958 /// Generates code to create a temporary register which can be used to chain
2959 /// instructions together.
2960 class MakeTempRegisterAction : public MatchAction {
2961 private:
2962   LLTCodeGen Ty;
2963   unsigned TempRegID;
2964 
2965 public:
2966   MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
2967       : Ty(Ty), TempRegID(TempRegID) {
2968     KnownTypes.insert(Ty);
2969   }
2970 
2971   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2972     Table << MatchTable::Opcode("GIR_MakeTempReg")
2973           << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2974           << MatchTable::Comment("TypeID")
2975           << MatchTable::NamedValue(Ty.getCxxEnumValue())
2976           << MatchTable::LineBreak;
2977   }
2978 };
2979 
2980 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
2981   Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
2982   MutatableInsns.insert(Matchers.back().get());
2983   return *Matchers.back();
2984 }
2985 
2986 void RuleMatcher::addRequiredFeature(Record *Feature) {
2987   RequiredFeatures.push_back(Feature);
2988 }
2989 
2990 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
2991   return RequiredFeatures;
2992 }
2993 
2994 // Emplaces an action of the specified Kind at the end of the action list.
2995 //
2996 // Returns a reference to the newly created action.
2997 //
2998 // Like std::vector::emplace_back(), may invalidate all iterators if the new
2999 // size exceeds the capacity. Otherwise, only invalidates the past-the-end
3000 // iterator.
3001 template <class Kind, class... Args>
3002 Kind &RuleMatcher::addAction(Args &&... args) {
3003   Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...));
3004   return *static_cast<Kind *>(Actions.back().get());
3005 }
3006 
3007 // Emplaces an action of the specified Kind before the given insertion point.
3008 //
3009 // Returns an iterator pointing at the newly created instruction.
3010 //
3011 // Like std::vector::insert(), may invalidate all iterators if the new size
3012 // exceeds the capacity. Otherwise, only invalidates the iterators from the
3013 // insertion point onwards.
3014 template <class Kind, class... Args>
3015 action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
3016                                           Args &&... args) {
3017   return Actions.emplace(InsertPt,
3018                          std::make_unique<Kind>(std::forward<Args>(args)...));
3019 }
3020 
3021 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
3022   unsigned NewInsnVarID = NextInsnVarID++;
3023   InsnVariableIDs[&Matcher] = NewInsnVarID;
3024   return NewInsnVarID;
3025 }
3026 
3027 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
3028   const auto &I = InsnVariableIDs.find(&InsnMatcher);
3029   if (I != InsnVariableIDs.end())
3030     return I->second;
3031   llvm_unreachable("Matched Insn was not captured in a local variable");
3032 }
3033 
3034 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
3035   if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
3036     DefinedOperands[SymbolicName] = &OM;
3037     return;
3038   }
3039 
3040   // If the operand is already defined, then we must ensure both references in
3041   // the matcher have the exact same node.
3042   OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
3043 }
3044 
3045 void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) {
3046   if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) {
3047     PhysRegOperands[Reg] = &OM;
3048     return;
3049   }
3050 }
3051 
3052 InstructionMatcher &
3053 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
3054   for (const auto &I : InsnVariableIDs)
3055     if (I.first->getSymbolicName() == SymbolicName)
3056       return *I.first;
3057   llvm_unreachable(
3058       ("Failed to lookup instruction " + SymbolicName).str().c_str());
3059 }
3060 
3061 const OperandMatcher &
3062 RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const {
3063   const auto &I = PhysRegOperands.find(Reg);
3064 
3065   if (I == PhysRegOperands.end()) {
3066     PrintFatalError(SrcLoc, "Register " + Reg->getName() +
3067                     " was not declared in matcher");
3068   }
3069 
3070   return *I->second;
3071 }
3072 
3073 const OperandMatcher &
3074 RuleMatcher::getOperandMatcher(StringRef Name) const {
3075   const auto &I = DefinedOperands.find(Name);
3076 
3077   if (I == DefinedOperands.end())
3078     PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
3079 
3080   return *I->second;
3081 }
3082 
3083 void RuleMatcher::emit(MatchTable &Table) {
3084   if (Matchers.empty())
3085     llvm_unreachable("Unexpected empty matcher!");
3086 
3087   // The representation supports rules that require multiple roots such as:
3088   //    %ptr(p0) = ...
3089   //    %elt0(s32) = G_LOAD %ptr
3090   //    %1(p0) = G_ADD %ptr, 4
3091   //    %elt1(s32) = G_LOAD p0 %1
3092   // which could be usefully folded into:
3093   //    %ptr(p0) = ...
3094   //    %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
3095   // on some targets but we don't need to make use of that yet.
3096   assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
3097 
3098   unsigned LabelID = Table.allocateLabelID();
3099   Table << MatchTable::Opcode("GIM_Try", +1)
3100         << MatchTable::Comment("On fail goto")
3101         << MatchTable::JumpTarget(LabelID)
3102         << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
3103         << MatchTable::LineBreak;
3104 
3105   if (!RequiredFeatures.empty()) {
3106     Table << MatchTable::Opcode("GIM_CheckFeatures")
3107           << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
3108           << MatchTable::LineBreak;
3109   }
3110 
3111   Matchers.front()->emitPredicateOpcodes(Table, *this);
3112 
3113   // We must also check if it's safe to fold the matched instructions.
3114   if (InsnVariableIDs.size() >= 2) {
3115     // Invert the map to create stable ordering (by var names)
3116     SmallVector<unsigned, 2> InsnIDs;
3117     for (const auto &Pair : InsnVariableIDs) {
3118       // Skip the root node since it isn't moving anywhere. Everything else is
3119       // sinking to meet it.
3120       if (Pair.first == Matchers.front().get())
3121         continue;
3122 
3123       InsnIDs.push_back(Pair.second);
3124     }
3125     llvm::sort(InsnIDs);
3126 
3127     for (const auto &InsnID : InsnIDs) {
3128       // Reject the difficult cases until we have a more accurate check.
3129       Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
3130             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3131             << MatchTable::LineBreak;
3132 
3133       // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
3134       //        account for unsafe cases.
3135       //
3136       //        Example:
3137       //          MI1--> %0 = ...
3138       //                 %1 = ... %0
3139       //          MI0--> %2 = ... %0
3140       //          It's not safe to erase MI1. We currently handle this by not
3141       //          erasing %0 (even when it's dead).
3142       //
3143       //        Example:
3144       //          MI1--> %0 = load volatile @a
3145       //                 %1 = load volatile @a
3146       //          MI0--> %2 = ... %0
3147       //          It's not safe to sink %0's def past %1. We currently handle
3148       //          this by rejecting all loads.
3149       //
3150       //        Example:
3151       //          MI1--> %0 = load @a
3152       //                 %1 = store @a
3153       //          MI0--> %2 = ... %0
3154       //          It's not safe to sink %0's def past %1. We currently handle
3155       //          this by rejecting all loads.
3156       //
3157       //        Example:
3158       //                   G_CONDBR %cond, @BB1
3159       //                 BB0:
3160       //          MI1-->   %0 = load @a
3161       //                   G_BR @BB1
3162       //                 BB1:
3163       //          MI0-->   %2 = ... %0
3164       //          It's not always safe to sink %0 across control flow. In this
3165       //          case it may introduce a memory fault. We currentl handle this
3166       //          by rejecting all loads.
3167     }
3168   }
3169 
3170   for (const auto &PM : EpilogueMatchers)
3171     PM->emitPredicateOpcodes(Table, *this);
3172 
3173   for (const auto &MA : Actions)
3174     MA->emitActionOpcodes(Table, *this);
3175 
3176   if (Table.isWithCoverage())
3177     Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
3178           << MatchTable::LineBreak;
3179   else
3180     Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
3181           << MatchTable::LineBreak;
3182 
3183   Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
3184         << MatchTable::Label(LabelID);
3185   ++NumPatternEmitted;
3186 }
3187 
3188 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
3189   // Rules involving more match roots have higher priority.
3190   if (Matchers.size() > B.Matchers.size())
3191     return true;
3192   if (Matchers.size() < B.Matchers.size())
3193     return false;
3194 
3195   for (auto Matcher : zip(Matchers, B.Matchers)) {
3196     if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
3197       return true;
3198     if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
3199       return false;
3200   }
3201 
3202   return false;
3203 }
3204 
3205 unsigned RuleMatcher::countRendererFns() const {
3206   return std::accumulate(
3207       Matchers.begin(), Matchers.end(), 0,
3208       [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
3209         return A + Matcher->countRendererFns();
3210       });
3211 }
3212 
3213 bool OperandPredicateMatcher::isHigherPriorityThan(
3214     const OperandPredicateMatcher &B) const {
3215   // Generally speaking, an instruction is more important than an Int or a
3216   // LiteralInt because it can cover more nodes but theres an exception to
3217   // this. G_CONSTANT's are less important than either of those two because they
3218   // are more permissive.
3219 
3220   const InstructionOperandMatcher *AOM =
3221       dyn_cast<InstructionOperandMatcher>(this);
3222   const InstructionOperandMatcher *BOM =
3223       dyn_cast<InstructionOperandMatcher>(&B);
3224   bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
3225   bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
3226 
3227   if (AOM && BOM) {
3228     // The relative priorities between a G_CONSTANT and any other instruction
3229     // don't actually matter but this code is needed to ensure a strict weak
3230     // ordering. This is particularly important on Windows where the rules will
3231     // be incorrectly sorted without it.
3232     if (AIsConstantInsn != BIsConstantInsn)
3233       return AIsConstantInsn < BIsConstantInsn;
3234     return false;
3235   }
3236 
3237   if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
3238     return false;
3239   if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
3240     return true;
3241 
3242   return Kind < B.Kind;
3243 }
3244 
3245 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
3246                                               RuleMatcher &Rule) const {
3247   const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
3248   unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
3249   assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());
3250 
3251   Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
3252         << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
3253         << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
3254         << MatchTable::Comment("OtherMI")
3255         << MatchTable::IntValue(OtherInsnVarID)
3256         << MatchTable::Comment("OtherOpIdx")
3257         << MatchTable::IntValue(OtherOM.getOpIdx())
3258         << MatchTable::LineBreak;
3259 }
3260 
3261 //===- GlobalISelEmitter class --------------------------------------------===//
3262 
3263 class GlobalISelEmitter {
3264 public:
3265   explicit GlobalISelEmitter(RecordKeeper &RK);
3266   void run(raw_ostream &OS);
3267 
3268 private:
3269   const RecordKeeper &RK;
3270   const CodeGenDAGPatterns CGP;
3271   const CodeGenTarget &Target;
3272   CodeGenRegBank CGRegs;
3273 
3274   /// Keep track of the equivalence between SDNodes and Instruction by mapping
3275   /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
3276   /// check for attributes on the relation such as CheckMMOIsNonAtomic.
3277   /// This is defined using 'GINodeEquiv' in the target description.
3278   DenseMap<Record *, Record *> NodeEquivs;
3279 
3280   /// Keep track of the equivalence between ComplexPattern's and
3281   /// GIComplexOperandMatcher. Map entries are specified by subclassing
3282   /// GIComplexPatternEquiv.
3283   DenseMap<const Record *, const Record *> ComplexPatternEquivs;
3284 
3285   /// Keep track of the equivalence between SDNodeXForm's and
3286   /// GICustomOperandRenderer. Map entries are specified by subclassing
3287   /// GISDNodeXFormEquiv.
3288   DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
3289 
3290   /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
3291   /// This adds compatibility for RuleMatchers to use this for ordering rules.
3292   DenseMap<uint64_t, int> RuleMatcherScores;
3293 
3294   // Map of predicates to their subtarget features.
3295   SubtargetFeatureInfoMap SubtargetFeatures;
3296 
3297   // Rule coverage information.
3298   Optional<CodeGenCoverage> RuleCoverage;
3299 
3300   void gatherOpcodeValues();
3301   void gatherTypeIDValues();
3302   void gatherNodeEquivs();
3303 
3304   Record *findNodeEquiv(Record *N) const;
3305   const CodeGenInstruction *getEquivNode(Record &Equiv,
3306                                          const TreePatternNode *N) const;
3307 
3308   Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates);
3309   Expected<InstructionMatcher &>
3310   createAndImportSelDAGMatcher(RuleMatcher &Rule,
3311                                InstructionMatcher &InsnMatcher,
3312                                const TreePatternNode *Src, unsigned &TempOpIdx);
3313   Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
3314                                            unsigned &TempOpIdx) const;
3315   Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3316                            const TreePatternNode *SrcChild,
3317                            bool OperandIsAPointer, bool OperandIsImmArg,
3318                            unsigned OpIdx, unsigned &TempOpIdx);
3319 
3320   Expected<BuildMIAction &> createAndImportInstructionRenderer(
3321       RuleMatcher &M, InstructionMatcher &InsnMatcher,
3322       const TreePatternNode *Src, const TreePatternNode *Dst);
3323   Expected<action_iterator> createAndImportSubInstructionRenderer(
3324       action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
3325       unsigned TempReg);
3326   Expected<action_iterator>
3327   createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
3328                             const TreePatternNode *Dst);
3329   void importExplicitDefRenderers(BuildMIAction &DstMIBuilder);
3330 
3331   Expected<action_iterator>
3332   importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
3333                              BuildMIAction &DstMIBuilder,
3334                              const llvm::TreePatternNode *Dst);
3335   Expected<action_iterator>
3336   importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
3337                             BuildMIAction &DstMIBuilder,
3338                             TreePatternNode *DstChild);
3339   Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M,
3340                                       BuildMIAction &DstMIBuilder,
3341                                       DagInit *DefaultOps) const;
3342   Error
3343   importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
3344                              const std::vector<Record *> &ImplicitDefs) const;
3345 
3346   void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName,
3347                            StringRef TypeIdentifier, StringRef ArgType,
3348                            StringRef ArgName, StringRef AdditionalDeclarations,
3349                            std::function<bool(const Record *R)> Filter);
3350   void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier,
3351                            StringRef ArgType,
3352                            std::function<bool(const Record *R)> Filter);
3353   void emitMIPredicateFns(raw_ostream &OS);
3354 
3355   /// Analyze pattern \p P, returning a matcher for it if possible.
3356   /// Otherwise, return an Error explaining why we don't support it.
3357   Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
3358 
3359   void declareSubtargetFeature(Record *Predicate);
3360 
3361   MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
3362                              bool WithCoverage);
3363 
3364   /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned
3365   /// CodeGenRegisterClass will support the CodeGenRegisterClass of
3366   /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode.
3367   /// If no register class is found, return None.
3368   Optional<const CodeGenRegisterClass *>
3369   inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty,
3370                                  TreePatternNode *SuperRegNode,
3371                                  TreePatternNode *SubRegIdxNode);
3372   Optional<CodeGenSubRegIndex *>
3373   inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode);
3374 
3375   /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode.
3376   /// Return None if no such class exists.
3377   Optional<const CodeGenRegisterClass *>
3378   inferSuperRegisterClass(const TypeSetByHwMode &Ty,
3379                           TreePatternNode *SubRegIdxNode);
3380 
3381   /// Return the CodeGenRegisterClass associated with \p Leaf if it has one.
3382   Optional<const CodeGenRegisterClass *>
3383   getRegClassFromLeaf(TreePatternNode *Leaf);
3384 
3385   /// Return a CodeGenRegisterClass for \p N if one can be found. Return None
3386   /// otherwise.
3387   Optional<const CodeGenRegisterClass *>
3388   inferRegClassFromPattern(TreePatternNode *N);
3389 
3390 public:
3391   /// Takes a sequence of \p Rules and group them based on the predicates
3392   /// they share. \p MatcherStorage is used as a memory container
3393   /// for the group that are created as part of this process.
3394   ///
3395   /// What this optimization does looks like if GroupT = GroupMatcher:
3396   /// Output without optimization:
3397   /// \verbatim
3398   /// # R1
3399   ///  # predicate A
3400   ///  # predicate B
3401   ///  ...
3402   /// # R2
3403   ///  # predicate A // <-- effectively this is going to be checked twice.
3404   ///                //     Once in R1 and once in R2.
3405   ///  # predicate C
3406   /// \endverbatim
3407   /// Output with optimization:
3408   /// \verbatim
3409   /// # Group1_2
3410   ///  # predicate A // <-- Check is now shared.
3411   ///  # R1
3412   ///   # predicate B
3413   ///  # R2
3414   ///   # predicate C
3415   /// \endverbatim
3416   template <class GroupT>
3417   static std::vector<Matcher *> optimizeRules(
3418       ArrayRef<Matcher *> Rules,
3419       std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
3420 };
3421 
3422 void GlobalISelEmitter::gatherOpcodeValues() {
3423   InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
3424 }
3425 
3426 void GlobalISelEmitter::gatherTypeIDValues() {
3427   LLTOperandMatcher::initTypeIDValuesMap();
3428 }
3429 
3430 void GlobalISelEmitter::gatherNodeEquivs() {
3431   assert(NodeEquivs.empty());
3432   for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
3433     NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
3434 
3435   assert(ComplexPatternEquivs.empty());
3436   for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
3437     Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3438     if (!SelDAGEquiv)
3439       continue;
3440     ComplexPatternEquivs[SelDAGEquiv] = Equiv;
3441  }
3442 
3443  assert(SDNodeXFormEquivs.empty());
3444  for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
3445    Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3446    if (!SelDAGEquiv)
3447      continue;
3448    SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
3449  }
3450 }
3451 
3452 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
3453   return NodeEquivs.lookup(N);
3454 }
3455 
3456 const CodeGenInstruction *
3457 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
3458   if (N->getNumChildren() >= 1) {
3459     // setcc operation maps to two different G_* instructions based on the type.
3460     if (!Equiv.isValueUnset("IfFloatingPoint") &&
3461         MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint())
3462       return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint"));
3463   }
3464 
3465   for (const TreePredicateCall &Call : N->getPredicateCalls()) {
3466     const TreePredicateFn &Predicate = Call.Fn;
3467     if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() &&
3468         Predicate.isSignExtLoad())
3469       return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
3470     if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() &&
3471         Predicate.isZeroExtLoad())
3472       return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
3473   }
3474 
3475   return &Target.getInstruction(Equiv.getValueAsDef("I"));
3476 }
3477 
3478 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
3479     : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
3480       CGRegs(RK, Target.getHwModes()) {}
3481 
3482 //===- Emitter ------------------------------------------------------------===//
3483 
3484 Error
3485 GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
3486                                         ArrayRef<Predicate> Predicates) {
3487   for (const Predicate &P : Predicates) {
3488     if (!P.Def || P.getCondString().empty())
3489       continue;
3490     declareSubtargetFeature(P.Def);
3491     M.addRequiredFeature(P.Def);
3492   }
3493 
3494   return Error::success();
3495 }
3496 
3497 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
3498     RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3499     const TreePatternNode *Src, unsigned &TempOpIdx) {
3500   Record *SrcGIEquivOrNull = nullptr;
3501   const CodeGenInstruction *SrcGIOrNull = nullptr;
3502 
3503   // Start with the defined operands (i.e., the results of the root operator).
3504   if (Src->getExtTypes().size() > 1)
3505     return failedImport("Src pattern has multiple results");
3506 
3507   if (Src->isLeaf()) {
3508     Init *SrcInit = Src->getLeafValue();
3509     if (isa<IntInit>(SrcInit)) {
3510       InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
3511           &Target.getInstruction(RK.getDef("G_CONSTANT")));
3512     } else
3513       return failedImport(
3514           "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3515   } else {
3516     SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
3517     if (!SrcGIEquivOrNull)
3518       return failedImport("Pattern operator lacks an equivalent Instruction" +
3519                           explainOperator(Src->getOperator()));
3520     SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
3521 
3522     // The operators look good: match the opcode
3523     InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
3524   }
3525 
3526   unsigned OpIdx = 0;
3527   for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
3528     // Results don't have a name unless they are the root node. The caller will
3529     // set the name if appropriate.
3530     OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
3531     if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
3532       return failedImport(toString(std::move(Error)) +
3533                           " for result of Src pattern operator");
3534   }
3535 
3536   for (const TreePredicateCall &Call : Src->getPredicateCalls()) {
3537     const TreePredicateFn &Predicate = Call.Fn;
3538     if (Predicate.isAlwaysTrue())
3539       continue;
3540 
3541     if (Predicate.isImmediatePattern()) {
3542       InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
3543       continue;
3544     }
3545 
3546     // An address space check is needed in all contexts if there is one.
3547     if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
3548       if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) {
3549         SmallVector<unsigned, 4> ParsedAddrSpaces;
3550 
3551         for (Init *Val : AddrSpaces->getValues()) {
3552           IntInit *IntVal = dyn_cast<IntInit>(Val);
3553           if (!IntVal)
3554             return failedImport("Address space is not an integer");
3555           ParsedAddrSpaces.push_back(IntVal->getValue());
3556         }
3557 
3558         if (!ParsedAddrSpaces.empty()) {
3559           InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>(
3560             0, ParsedAddrSpaces);
3561         }
3562       }
3563 
3564       int64_t MinAlign = Predicate.getMinAlignment();
3565       if (MinAlign > 0)
3566         InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign);
3567     }
3568 
3569     // G_LOAD is used for both non-extending and any-extending loads.
3570     if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
3571       InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3572           0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3573       continue;
3574     }
3575     if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
3576       InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3577           0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3578       continue;
3579     }
3580 
3581     if (Predicate.isStore()) {
3582       if (Predicate.isTruncStore()) {
3583         // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size.
3584         InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3585             0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3586         continue;
3587       }
3588       if (Predicate.isNonTruncStore()) {
3589         // We need to check the sizes match here otherwise we could incorrectly
3590         // match truncating stores with non-truncating ones.
3591         InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3592             0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3593       }
3594     }
3595 
3596     // No check required. We already did it by swapping the opcode.
3597     if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
3598         Predicate.isSignExtLoad())
3599       continue;
3600 
3601     // No check required. We already did it by swapping the opcode.
3602     if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
3603         Predicate.isZeroExtLoad())
3604       continue;
3605 
3606     // No check required. G_STORE by itself is a non-extending store.
3607     if (Predicate.isNonTruncStore())
3608       continue;
3609 
3610     if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
3611       if (Predicate.getMemoryVT() != nullptr) {
3612         Optional<LLTCodeGen> MemTyOrNone =
3613             MVTToLLT(getValueType(Predicate.getMemoryVT()));
3614 
3615         if (!MemTyOrNone)
3616           return failedImport("MemVT could not be converted to LLT");
3617 
3618         // MMO's work in bytes so we must take care of unusual types like i1
3619         // don't round down.
3620         unsigned MemSizeInBits =
3621             llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8);
3622 
3623         InsnMatcher.addPredicate<MemorySizePredicateMatcher>(
3624             0, MemSizeInBits / 8);
3625         continue;
3626       }
3627     }
3628 
3629     if (Predicate.isLoad() || Predicate.isStore()) {
3630       // No check required. A G_LOAD/G_STORE is an unindexed load.
3631       if (Predicate.isUnindexed())
3632         continue;
3633     }
3634 
3635     if (Predicate.isAtomic()) {
3636       if (Predicate.isAtomicOrderingMonotonic()) {
3637         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3638             "Monotonic");
3639         continue;
3640       }
3641       if (Predicate.isAtomicOrderingAcquire()) {
3642         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
3643         continue;
3644       }
3645       if (Predicate.isAtomicOrderingRelease()) {
3646         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
3647         continue;
3648       }
3649       if (Predicate.isAtomicOrderingAcquireRelease()) {
3650         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3651             "AcquireRelease");
3652         continue;
3653       }
3654       if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
3655         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3656             "SequentiallyConsistent");
3657         continue;
3658       }
3659 
3660       if (Predicate.isAtomicOrderingAcquireOrStronger()) {
3661         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3662             "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3663         continue;
3664       }
3665       if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
3666         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3667             "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3668         continue;
3669       }
3670 
3671       if (Predicate.isAtomicOrderingReleaseOrStronger()) {
3672         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3673             "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3674         continue;
3675       }
3676       if (Predicate.isAtomicOrderingWeakerThanRelease()) {
3677         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3678             "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3679         continue;
3680       }
3681     }
3682 
3683     if (Predicate.hasGISelPredicateCode()) {
3684       InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate);
3685       continue;
3686     }
3687 
3688     return failedImport("Src pattern child has predicate (" +
3689                         explainPredicates(Src) + ")");
3690   }
3691   if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
3692     InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
3693   else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) {
3694     InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3695       "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3696   }
3697 
3698   if (Src->isLeaf()) {
3699     Init *SrcInit = Src->getLeafValue();
3700     if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
3701       OperandMatcher &OM =
3702           InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
3703       OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
3704     } else
3705       return failedImport(
3706           "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3707   } else {
3708     assert(SrcGIOrNull &&
3709            "Expected to have already found an equivalent Instruction");
3710     if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
3711         SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
3712       // imm/fpimm still have operands but we don't need to do anything with it
3713       // here since we don't support ImmLeaf predicates yet. However, we still
3714       // need to note the hidden operand to get GIM_CheckNumOperands correct.
3715       InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
3716       return InsnMatcher;
3717     }
3718 
3719     // Special case because the operand order is changed from setcc. The
3720     // predicate operand needs to be swapped from the last operand to the first
3721     // source.
3722 
3723     unsigned NumChildren = Src->getNumChildren();
3724     bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP";
3725 
3726     if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") {
3727       TreePatternNode *SrcChild = Src->getChild(NumChildren - 1);
3728       if (SrcChild->isLeaf()) {
3729         DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue());
3730         Record *CCDef = DI ? DI->getDef() : nullptr;
3731         if (!CCDef || !CCDef->isSubClassOf("CondCode"))
3732           return failedImport("Unable to handle CondCode");
3733 
3734         OperandMatcher &OM =
3735           InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
3736         StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") :
3737                                       CCDef->getValueAsString("ICmpPredicate");
3738 
3739         if (!PredType.empty()) {
3740           OM.addPredicate<CmpPredicateOperandMatcher>(PredType);
3741           // Process the other 2 operands normally.
3742           --NumChildren;
3743         }
3744       }
3745     }
3746 
3747     // Match the used operands (i.e. the children of the operator).
3748     bool IsIntrinsic =
3749         SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
3750         SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS";
3751     const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP);
3752     if (IsIntrinsic && !II)
3753       return failedImport("Expected IntInit containing intrinsic ID)");
3754 
3755     for (unsigned i = 0; i != NumChildren; ++i) {
3756       TreePatternNode *SrcChild = Src->getChild(i);
3757 
3758       // We need to determine the meaning of a literal integer based on the
3759       // context. If this is a field required to be an immediate (such as an
3760       // immarg intrinsic argument), the required predicates are different than
3761       // a constant which may be materialized in a register. If we have an
3762       // argument that is required to be an immediate, we should not emit an LLT
3763       // type check, and should not be looking for a G_CONSTANT defined
3764       // register.
3765       bool OperandIsImmArg = SrcGIOrNull->isOperandImmArg(i);
3766 
3767       // SelectionDAG allows pointers to be represented with iN since it doesn't
3768       // distinguish between pointers and integers but they are different types in GlobalISel.
3769       // Coerce integers to pointers to address space 0 if the context indicates a pointer.
3770       //
3771       bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
3772 
3773       if (IsIntrinsic) {
3774         // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
3775         // following the defs is an intrinsic ID.
3776         if (i == 0) {
3777           OperandMatcher &OM =
3778               InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
3779           OM.addPredicate<IntrinsicIDOperandMatcher>(II);
3780           continue;
3781         }
3782 
3783         // We have to check intrinsics for llvm_anyptr_ty and immarg parameters.
3784         //
3785         // Note that we have to look at the i-1th parameter, because we don't
3786         // have the intrinsic ID in the intrinsic's parameter list.
3787         OperandIsAPointer |= II->isParamAPointer(i - 1);
3788         OperandIsImmArg |= II->isParamImmArg(i - 1);
3789       }
3790 
3791       if (auto Error =
3792               importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
3793                                  OperandIsImmArg, OpIdx++, TempOpIdx))
3794         return std::move(Error);
3795     }
3796   }
3797 
3798   return InsnMatcher;
3799 }
3800 
3801 Error GlobalISelEmitter::importComplexPatternOperandMatcher(
3802     OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
3803   const auto &ComplexPattern = ComplexPatternEquivs.find(R);
3804   if (ComplexPattern == ComplexPatternEquivs.end())
3805     return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
3806                         ") not mapped to GlobalISel");
3807 
3808   OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
3809   TempOpIdx++;
3810   return Error::success();
3811 }
3812 
3813 // Get the name to use for a pattern operand. For an anonymous physical register
3814 // input, this should use the register name.
3815 static StringRef getSrcChildName(const TreePatternNode *SrcChild,
3816                                  Record *&PhysReg) {
3817   StringRef SrcChildName = SrcChild->getName();
3818   if (SrcChildName.empty() && SrcChild->isLeaf()) {
3819     if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
3820       auto *ChildRec = ChildDefInit->getDef();
3821       if (ChildRec->isSubClassOf("Register")) {
3822         SrcChildName = ChildRec->getName();
3823         PhysReg = ChildRec;
3824       }
3825     }
3826   }
3827 
3828   return SrcChildName;
3829 }
3830 
3831 Error GlobalISelEmitter::importChildMatcher(
3832     RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3833     const TreePatternNode *SrcChild, bool OperandIsAPointer,
3834     bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) {
3835 
3836   Record *PhysReg = nullptr;
3837   StringRef SrcChildName = getSrcChildName(SrcChild, PhysReg);
3838 
3839   OperandMatcher &OM = PhysReg ?
3840     InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx) :
3841     InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx);
3842   if (OM.isSameAsAnotherOperand())
3843     return Error::success();
3844 
3845   ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
3846   if (ChildTypes.size() != 1)
3847     return failedImport("Src pattern child has multiple results");
3848 
3849   // Check MBB's before the type check since they are not a known type.
3850   if (!SrcChild->isLeaf()) {
3851     if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
3852       auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
3853       if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
3854         OM.addPredicate<MBBOperandMatcher>();
3855         return Error::success();
3856       }
3857       if (SrcChild->getOperator()->getName() == "timm") {
3858         OM.addPredicate<ImmOperandMatcher>();
3859         return Error::success();
3860       }
3861     }
3862   }
3863 
3864   // Immediate arguments have no meaningful type to check as they don't have
3865   // registers.
3866   if (!OperandIsImmArg) {
3867     if (auto Error =
3868             OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
3869       return failedImport(toString(std::move(Error)) + " for Src operand (" +
3870                           to_string(*SrcChild) + ")");
3871   }
3872 
3873   // Check for nested instructions.
3874   if (!SrcChild->isLeaf()) {
3875     if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
3876       // When a ComplexPattern is used as an operator, it should do the same
3877       // thing as when used as a leaf. However, the children of the operator
3878       // name the sub-operands that make up the complex operand and we must
3879       // prepare to reference them in the renderer too.
3880       unsigned RendererID = TempOpIdx;
3881       if (auto Error = importComplexPatternOperandMatcher(
3882               OM, SrcChild->getOperator(), TempOpIdx))
3883         return Error;
3884 
3885       for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
3886         auto *SubOperand = SrcChild->getChild(i);
3887         if (!SubOperand->getName().empty()) {
3888           if (auto Error = Rule.defineComplexSubOperand(SubOperand->getName(),
3889                                                         SrcChild->getOperator(),
3890                                                         RendererID, i))
3891             return Error;
3892         }
3893       }
3894 
3895       return Error::success();
3896     }
3897 
3898     auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
3899         InsnMatcher.getRuleMatcher(), SrcChild->getName());
3900     if (!MaybeInsnOperand.hasValue()) {
3901       // This isn't strictly true. If the user were to provide exactly the same
3902       // matchers as the original operand then we could allow it. However, it's
3903       // simpler to not permit the redundant specification.
3904       return failedImport("Nested instruction cannot be the same as another operand");
3905     }
3906 
3907     // Map the node to a gMIR instruction.
3908     InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
3909     auto InsnMatcherOrError = createAndImportSelDAGMatcher(
3910         Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
3911     if (auto Error = InsnMatcherOrError.takeError())
3912       return Error;
3913 
3914     return Error::success();
3915   }
3916 
3917   if (SrcChild->hasAnyPredicate())
3918     return failedImport("Src pattern child has unsupported predicate");
3919 
3920   // Check for constant immediates.
3921   if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
3922     if (OperandIsImmArg) {
3923       // Checks for argument directly in operand list
3924       OM.addPredicate<LiteralIntOperandMatcher>(ChildInt->getValue());
3925     } else {
3926       // Checks for materialized constant
3927       OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
3928     }
3929     return Error::success();
3930   }
3931 
3932   // Check for def's like register classes or ComplexPattern's.
3933   if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
3934     auto *ChildRec = ChildDefInit->getDef();
3935 
3936     // Check for register classes.
3937     if (ChildRec->isSubClassOf("RegisterClass") ||
3938         ChildRec->isSubClassOf("RegisterOperand")) {
3939       OM.addPredicate<RegisterBankOperandMatcher>(
3940           Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
3941       return Error::success();
3942     }
3943 
3944     if (ChildRec->isSubClassOf("Register")) {
3945       // This just be emitted as a copy to the specific register.
3946       ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode();
3947       const CodeGenRegisterClass *RC
3948         = CGRegs.getMinimalPhysRegClass(ChildRec, &VT);
3949       if (!RC) {
3950         return failedImport(
3951           "Could not determine physical register class of pattern source");
3952       }
3953 
3954       OM.addPredicate<RegisterBankOperandMatcher>(*RC);
3955       return Error::success();
3956     }
3957 
3958     // Check for ValueType.
3959     if (ChildRec->isSubClassOf("ValueType")) {
3960       // We already added a type check as standard practice so this doesn't need
3961       // to do anything.
3962       return Error::success();
3963     }
3964 
3965     // Check for ComplexPattern's.
3966     if (ChildRec->isSubClassOf("ComplexPattern"))
3967       return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
3968 
3969     if (ChildRec->isSubClassOf("ImmLeaf")) {
3970       return failedImport(
3971           "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
3972     }
3973 
3974     return failedImport(
3975         "Src pattern child def is an unsupported tablegen class");
3976   }
3977 
3978   return failedImport("Src pattern child is an unsupported kind");
3979 }
3980 
3981 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
3982     action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
3983     TreePatternNode *DstChild) {
3984 
3985   const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
3986   if (SubOperand.hasValue()) {
3987     DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
3988         *std::get<0>(*SubOperand), DstChild->getName(),
3989         std::get<1>(*SubOperand), std::get<2>(*SubOperand));
3990     return InsertPt;
3991   }
3992 
3993   if (!DstChild->isLeaf()) {
3994     if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
3995       auto Child = DstChild->getChild(0);
3996       auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
3997       if (I != SDNodeXFormEquivs.end()) {
3998         Record *XFormOpc = DstChild->getOperator()->getValueAsDef("Opcode");
3999         if (XFormOpc->getName() == "timm") {
4000           // If this is a TargetConstant, there won't be a corresponding
4001           // instruction to transform. Instead, this will refer directly to an
4002           // operand in an instruction's operand list.
4003           DstMIBuilder.addRenderer<CustomOperandRenderer>(*I->second,
4004                                                           Child->getName());
4005         } else {
4006           DstMIBuilder.addRenderer<CustomRenderer>(*I->second,
4007                                                    Child->getName());
4008         }
4009 
4010         return InsertPt;
4011       }
4012       return failedImport("SDNodeXForm " + Child->getName() +
4013                           " has no custom renderer");
4014     }
4015 
4016     // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
4017     // inline, but in MI it's just another operand.
4018     if (DstChild->getOperator()->isSubClassOf("SDNode")) {
4019       auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
4020       if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
4021         DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
4022         return InsertPt;
4023       }
4024     }
4025 
4026     // Similarly, imm is an operator in TreePatternNode's view but must be
4027     // rendered as operands.
4028     // FIXME: The target should be able to choose sign-extended when appropriate
4029     //        (e.g. on Mips).
4030     if (DstChild->getOperator()->getName() == "timm") {
4031       DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
4032       return InsertPt;
4033     } else if (DstChild->getOperator()->getName() == "imm") {
4034       DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
4035       return InsertPt;
4036     } else if (DstChild->getOperator()->getName() == "fpimm") {
4037       DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
4038           DstChild->getName());
4039       return InsertPt;
4040     }
4041 
4042     if (DstChild->getOperator()->isSubClassOf("Instruction")) {
4043       ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
4044       if (ChildTypes.size() != 1)
4045         return failedImport("Dst pattern child has multiple results");
4046 
4047       Optional<LLTCodeGen> OpTyOrNone = None;
4048       if (ChildTypes.front().isMachineValueType())
4049         OpTyOrNone =
4050             MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
4051       if (!OpTyOrNone)
4052         return failedImport("Dst operand has an unsupported type");
4053 
4054       unsigned TempRegID = Rule.allocateTempRegID();
4055       InsertPt = Rule.insertAction<MakeTempRegisterAction>(
4056           InsertPt, OpTyOrNone.getValue(), TempRegID);
4057       DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4058 
4059       auto InsertPtOrError = createAndImportSubInstructionRenderer(
4060           ++InsertPt, Rule, DstChild, TempRegID);
4061       if (auto Error = InsertPtOrError.takeError())
4062         return std::move(Error);
4063       return InsertPtOrError.get();
4064     }
4065 
4066     return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
4067   }
4068 
4069   // It could be a specific immediate in which case we should just check for
4070   // that immediate.
4071   if (const IntInit *ChildIntInit =
4072           dyn_cast<IntInit>(DstChild->getLeafValue())) {
4073     DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
4074     return InsertPt;
4075   }
4076 
4077   // Otherwise, we're looking for a bog-standard RegisterClass operand.
4078   if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
4079     auto *ChildRec = ChildDefInit->getDef();
4080 
4081     ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
4082     if (ChildTypes.size() != 1)
4083       return failedImport("Dst pattern child has multiple results");
4084 
4085     Optional<LLTCodeGen> OpTyOrNone = None;
4086     if (ChildTypes.front().isMachineValueType())
4087       OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
4088     if (!OpTyOrNone)
4089       return failedImport("Dst operand has an unsupported type");
4090 
4091     if (ChildRec->isSubClassOf("Register")) {
4092       DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
4093       return InsertPt;
4094     }
4095 
4096     if (ChildRec->isSubClassOf("RegisterClass") ||
4097         ChildRec->isSubClassOf("RegisterOperand") ||
4098         ChildRec->isSubClassOf("ValueType")) {
4099       if (ChildRec->isSubClassOf("RegisterOperand") &&
4100           !ChildRec->isValueUnset("GIZeroRegister")) {
4101         DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
4102             DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
4103         return InsertPt;
4104       }
4105 
4106       DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
4107       return InsertPt;
4108     }
4109 
4110     if (ChildRec->isSubClassOf("SubRegIndex")) {
4111       CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec);
4112       DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue);
4113       return InsertPt;
4114     }
4115 
4116     if (ChildRec->isSubClassOf("ComplexPattern")) {
4117       const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
4118       if (ComplexPattern == ComplexPatternEquivs.end())
4119         return failedImport(
4120             "SelectionDAG ComplexPattern not mapped to GlobalISel");
4121 
4122       const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
4123       DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
4124           *ComplexPattern->second, DstChild->getName(),
4125           OM.getAllocatedTemporariesBaseID());
4126       return InsertPt;
4127     }
4128 
4129     return failedImport(
4130         "Dst pattern child def is an unsupported tablegen class");
4131   }
4132 
4133   return failedImport("Dst pattern child is an unsupported kind");
4134 }
4135 
4136 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
4137     RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src,
4138     const TreePatternNode *Dst) {
4139   auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
4140   if (auto Error = InsertPtOrError.takeError())
4141     return std::move(Error);
4142 
4143   action_iterator InsertPt = InsertPtOrError.get();
4144   BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
4145 
4146   for (auto PhysInput : InsnMatcher.getPhysRegInputs()) {
4147     InsertPt = M.insertAction<BuildMIAction>(
4148         InsertPt, M.allocateOutputInsnID(),
4149         &Target.getInstruction(RK.getDef("COPY")));
4150     BuildMIAction &CopyToPhysRegMIBuilder =
4151         *static_cast<BuildMIAction *>(InsertPt->get());
4152     CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(PhysInput.first,
4153                                                             true);
4154     CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first);
4155   }
4156 
4157   importExplicitDefRenderers(DstMIBuilder);
4158 
4159   if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
4160                        .takeError())
4161     return std::move(Error);
4162 
4163   return DstMIBuilder;
4164 }
4165 
4166 Expected<action_iterator>
4167 GlobalISelEmitter::createAndImportSubInstructionRenderer(
4168     const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
4169     unsigned TempRegID) {
4170   auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
4171 
4172   // TODO: Assert there's exactly one result.
4173 
4174   if (auto Error = InsertPtOrError.takeError())
4175     return std::move(Error);
4176 
4177   BuildMIAction &DstMIBuilder =
4178       *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
4179 
4180   // Assign the result to TempReg.
4181   DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
4182 
4183   InsertPtOrError =
4184       importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
4185   if (auto Error = InsertPtOrError.takeError())
4186     return std::move(Error);
4187 
4188   // We need to make sure that when we import an INSERT_SUBREG as a
4189   // subinstruction that it ends up being constrained to the correct super
4190   // register and subregister classes.
4191   auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName();
4192   if (OpName == "INSERT_SUBREG") {
4193     auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
4194     if (!SubClass)
4195       return failedImport(
4196           "Cannot infer register class from INSERT_SUBREG operand #1");
4197     Optional<const CodeGenRegisterClass *> SuperClass =
4198         inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0),
4199                                        Dst->getChild(2));
4200     if (!SuperClass)
4201       return failedImport(
4202           "Cannot infer register class for INSERT_SUBREG operand #0");
4203     // The destination and the super register source of an INSERT_SUBREG must
4204     // be the same register class.
4205     M.insertAction<ConstrainOperandToRegClassAction>(
4206         InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
4207     M.insertAction<ConstrainOperandToRegClassAction>(
4208         InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass);
4209     M.insertAction<ConstrainOperandToRegClassAction>(
4210         InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
4211     return InsertPtOrError.get();
4212   }
4213 
4214   if (OpName == "EXTRACT_SUBREG") {
4215     // EXTRACT_SUBREG selects into a subregister COPY but unlike most
4216     // instructions, the result register class is controlled by the
4217     // subregisters of the operand. As a result, we must constrain the result
4218     // class rather than check that it's already the right one.
4219     auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
4220     if (!SuperClass)
4221       return failedImport(
4222         "Cannot infer register class from EXTRACT_SUBREG operand #0");
4223 
4224     auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
4225     if (!SubIdx)
4226       return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4227 
4228     const auto &SrcRCDstRCPair =
4229       (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
4230     assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4231     M.insertAction<ConstrainOperandToRegClassAction>(
4232       InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second);
4233     M.insertAction<ConstrainOperandToRegClassAction>(
4234       InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first);
4235 
4236     // We're done with this pattern!  It's eligible for GISel emission; return
4237     // it.
4238     return InsertPtOrError.get();
4239   }
4240 
4241   // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a
4242   // subinstruction.
4243   if (OpName == "SUBREG_TO_REG") {
4244     auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
4245     if (!SubClass)
4246       return failedImport(
4247         "Cannot infer register class from SUBREG_TO_REG child #1");
4248     auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0),
4249                                               Dst->getChild(2));
4250     if (!SuperClass)
4251       return failedImport(
4252         "Cannot infer register class for SUBREG_TO_REG operand #0");
4253     M.insertAction<ConstrainOperandToRegClassAction>(
4254       InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
4255     M.insertAction<ConstrainOperandToRegClassAction>(
4256       InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
4257     return InsertPtOrError.get();
4258   }
4259 
4260   M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
4261                                                       DstMIBuilder.getInsnID());
4262   return InsertPtOrError.get();
4263 }
4264 
4265 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
4266     action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
4267   Record *DstOp = Dst->getOperator();
4268   if (!DstOp->isSubClassOf("Instruction")) {
4269     if (DstOp->isSubClassOf("ValueType"))
4270       return failedImport(
4271           "Pattern operator isn't an instruction (it's a ValueType)");
4272     return failedImport("Pattern operator isn't an instruction");
4273   }
4274   CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
4275 
4276   // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
4277   // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
4278   StringRef Name = DstI->TheDef->getName();
4279   if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG")
4280     DstI = &Target.getInstruction(RK.getDef("COPY"));
4281 
4282   return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
4283                                        DstI);
4284 }
4285 
4286 void GlobalISelEmitter::importExplicitDefRenderers(
4287     BuildMIAction &DstMIBuilder) {
4288   const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
4289   for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) {
4290     const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I];
4291     DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
4292   }
4293 }
4294 
4295 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
4296     action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
4297     const llvm::TreePatternNode *Dst) {
4298   const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
4299   CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
4300 
4301   StringRef Name = OrigDstI->TheDef->getName();
4302   unsigned ExpectedDstINumUses = Dst->getNumChildren();
4303 
4304   // EXTRACT_SUBREG needs to use a subregister COPY.
4305   if (Name == "EXTRACT_SUBREG") {
4306     if (!Dst->getChild(0)->isLeaf())
4307       return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
4308 
4309     if (DefInit *SubRegInit =
4310             dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) {
4311       Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4312       if (!RCDef)
4313         return failedImport("EXTRACT_SUBREG child #0 could not "
4314                             "be coerced to a register class");
4315 
4316       CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
4317       CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4318 
4319       const auto &SrcRCDstRCPair =
4320           RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
4321       if (SrcRCDstRCPair.hasValue()) {
4322         assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4323         if (SrcRCDstRCPair->first != RC)
4324           return failedImport("EXTRACT_SUBREG requires an additional COPY");
4325       }
4326 
4327       DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
4328                                                    SubIdx);
4329       return InsertPt;
4330     }
4331 
4332     return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4333   }
4334 
4335   if (Name == "REG_SEQUENCE") {
4336     if (!Dst->getChild(0)->isLeaf())
4337       return failedImport("REG_SEQUENCE child #0 is not a leaf");
4338 
4339     Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4340     if (!RCDef)
4341       return failedImport("REG_SEQUENCE child #0 could not "
4342                           "be coerced to a register class");
4343 
4344     if ((ExpectedDstINumUses - 1) % 2 != 0)
4345       return failedImport("Malformed REG_SEQUENCE");
4346 
4347     for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) {
4348       TreePatternNode *ValChild = Dst->getChild(I);
4349       TreePatternNode *SubRegChild = Dst->getChild(I + 1);
4350 
4351       if (DefInit *SubRegInit =
4352               dyn_cast<DefInit>(SubRegChild->getLeafValue())) {
4353         CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4354 
4355         auto InsertPtOrError =
4356             importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild);
4357         if (auto Error = InsertPtOrError.takeError())
4358           return std::move(Error);
4359         InsertPt = InsertPtOrError.get();
4360         DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx);
4361       }
4362     }
4363 
4364     return InsertPt;
4365   }
4366 
4367   // Render the explicit uses.
4368   unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
4369   if (Name == "COPY_TO_REGCLASS") {
4370     DstINumUses--; // Ignore the class constraint.
4371     ExpectedDstINumUses--;
4372   }
4373 
4374   // NumResults - This is the number of results produced by the instruction in
4375   // the "outs" list.
4376   unsigned NumResults = OrigDstI->Operands.NumDefs;
4377 
4378   // Number of operands we know the output instruction must have. If it is
4379   // variadic, we could have more operands.
4380   unsigned NumFixedOperands = DstI->Operands.size();
4381 
4382   // Loop over all of the fixed operands of the instruction pattern, emitting
4383   // code to fill them all in. The node 'N' usually has number children equal to
4384   // the number of input operands of the instruction.  However, in cases where
4385   // there are predicate operands for an instruction, we need to fill in the
4386   // 'execute always' values. Match up the node operands to the instruction
4387   // operands to do this.
4388   unsigned Child = 0;
4389 
4390   // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
4391   // number of operands at the end of the list which have default values.
4392   // Those can come from the pattern if it provides enough arguments, or be
4393   // filled in with the default if the pattern hasn't provided them. But any
4394   // operand with a default value _before_ the last mandatory one will be
4395   // filled in with their defaults unconditionally.
4396   unsigned NonOverridableOperands = NumFixedOperands;
4397   while (NonOverridableOperands > NumResults &&
4398          CGP.operandHasDefault(DstI->Operands[NonOverridableOperands - 1].Rec))
4399     --NonOverridableOperands;
4400 
4401   unsigned NumDefaultOps = 0;
4402   for (unsigned I = 0; I != DstINumUses; ++I) {
4403     unsigned InstOpNo = DstI->Operands.NumDefs + I;
4404 
4405     // Determine what to emit for this operand.
4406     Record *OperandNode = DstI->Operands[InstOpNo].Rec;
4407 
4408     // If the operand has default values, introduce them now.
4409     if (CGP.operandHasDefault(OperandNode) &&
4410         (InstOpNo < NonOverridableOperands || Child >= Dst->getNumChildren())) {
4411       // This is a predicate or optional def operand which the pattern has not
4412       // overridden, or which we aren't letting it override; emit the 'default
4413       // ops' operands.
4414 
4415       const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[InstOpNo];
4416       DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
4417       if (auto Error = importDefaultOperandRenderers(
4418             InsertPt, M, DstMIBuilder, DefaultOps))
4419         return std::move(Error);
4420       ++NumDefaultOps;
4421       continue;
4422     }
4423 
4424     auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
4425                                                      Dst->getChild(Child));
4426     if (auto Error = InsertPtOrError.takeError())
4427       return std::move(Error);
4428     InsertPt = InsertPtOrError.get();
4429     ++Child;
4430   }
4431 
4432   if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
4433     return failedImport("Expected " + llvm::to_string(DstINumUses) +
4434                         " used operands but found " +
4435                         llvm::to_string(ExpectedDstINumUses) +
4436                         " explicit ones and " + llvm::to_string(NumDefaultOps) +
4437                         " default ones");
4438 
4439   return InsertPt;
4440 }
4441 
4442 Error GlobalISelEmitter::importDefaultOperandRenderers(
4443     action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
4444     DagInit *DefaultOps) const {
4445   for (const auto *DefaultOp : DefaultOps->getArgs()) {
4446     Optional<LLTCodeGen> OpTyOrNone = None;
4447 
4448     // Look through ValueType operators.
4449     if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
4450       if (const DefInit *DefaultDagOperator =
4451               dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
4452         if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) {
4453           OpTyOrNone = MVTToLLT(getValueType(
4454                                   DefaultDagOperator->getDef()));
4455           DefaultOp = DefaultDagOp->getArg(0);
4456         }
4457       }
4458     }
4459 
4460     if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
4461       auto Def = DefaultDefOp->getDef();
4462       if (Def->getName() == "undef_tied_input") {
4463         unsigned TempRegID = M.allocateTempRegID();
4464         M.insertAction<MakeTempRegisterAction>(
4465           InsertPt, OpTyOrNone.getValue(), TempRegID);
4466         InsertPt = M.insertAction<BuildMIAction>(
4467           InsertPt, M.allocateOutputInsnID(),
4468           &Target.getInstruction(RK.getDef("IMPLICIT_DEF")));
4469         BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>(
4470           InsertPt->get());
4471         IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4472         DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4473       } else {
4474         DstMIBuilder.addRenderer<AddRegisterRenderer>(Def);
4475       }
4476       continue;
4477     }
4478 
4479     if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
4480       DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
4481       continue;
4482     }
4483 
4484     return failedImport("Could not add default op");
4485   }
4486 
4487   return Error::success();
4488 }
4489 
4490 Error GlobalISelEmitter::importImplicitDefRenderers(
4491     BuildMIAction &DstMIBuilder,
4492     const std::vector<Record *> &ImplicitDefs) const {
4493   if (!ImplicitDefs.empty())
4494     return failedImport("Pattern defines a physical register");
4495   return Error::success();
4496 }
4497 
4498 Optional<const CodeGenRegisterClass *>
4499 GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) {
4500   assert(Leaf && "Expected node?");
4501   assert(Leaf->isLeaf() && "Expected leaf?");
4502   Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue());
4503   if (!RCRec)
4504     return None;
4505   CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec);
4506   if (!RC)
4507     return None;
4508   return RC;
4509 }
4510 
4511 Optional<const CodeGenRegisterClass *>
4512 GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) {
4513   if (!N)
4514     return None;
4515 
4516   if (N->isLeaf())
4517     return getRegClassFromLeaf(N);
4518 
4519   // We don't have a leaf node, so we have to try and infer something. Check
4520   // that we have an instruction that we an infer something from.
4521 
4522   // Only handle things that produce a single type.
4523   if (N->getNumTypes() != 1)
4524     return None;
4525   Record *OpRec = N->getOperator();
4526 
4527   // We only want instructions.
4528   if (!OpRec->isSubClassOf("Instruction"))
4529     return None;
4530 
4531   // Don't want to try and infer things when there could potentially be more
4532   // than one candidate register class.
4533   auto &Inst = Target.getInstruction(OpRec);
4534   if (Inst.Operands.NumDefs > 1)
4535     return None;
4536 
4537   // Handle any special-case instructions which we can safely infer register
4538   // classes from.
4539   StringRef InstName = Inst.TheDef->getName();
4540   bool IsRegSequence = InstName == "REG_SEQUENCE";
4541   if (IsRegSequence || InstName == "COPY_TO_REGCLASS") {
4542     // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It
4543     // has the desired register class as the first child.
4544     TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1);
4545     if (!RCChild->isLeaf())
4546       return None;
4547     return getRegClassFromLeaf(RCChild);
4548   }
4549 
4550   // Handle destination record types that we can safely infer a register class
4551   // from.
4552   const auto &DstIOperand = Inst.Operands[0];
4553   Record *DstIOpRec = DstIOperand.Rec;
4554   if (DstIOpRec->isSubClassOf("RegisterOperand")) {
4555     DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
4556     const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
4557     return &RC;
4558   }
4559 
4560   if (DstIOpRec->isSubClassOf("RegisterClass")) {
4561     const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
4562     return &RC;
4563   }
4564 
4565   return None;
4566 }
4567 
4568 Optional<const CodeGenRegisterClass *>
4569 GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty,
4570                                            TreePatternNode *SubRegIdxNode) {
4571   assert(SubRegIdxNode && "Expected subregister index node!");
4572   // We need a ValueTypeByHwMode for getSuperRegForSubReg.
4573   if (!Ty.isValueTypeByHwMode(false))
4574     return None;
4575   if (!SubRegIdxNode->isLeaf())
4576     return None;
4577   DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
4578   if (!SubRegInit)
4579     return None;
4580   CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4581 
4582   // Use the information we found above to find a minimal register class which
4583   // supports the subregister and type we want.
4584   auto RC =
4585       Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx);
4586   if (!RC)
4587     return None;
4588   return *RC;
4589 }
4590 
4591 Optional<const CodeGenRegisterClass *>
4592 GlobalISelEmitter::inferSuperRegisterClassForNode(
4593     const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode,
4594     TreePatternNode *SubRegIdxNode) {
4595   assert(SuperRegNode && "Expected super register node!");
4596   // Check if we already have a defined register class for the super register
4597   // node. If we do, then we should preserve that rather than inferring anything
4598   // from the subregister index node. We can assume that whoever wrote the
4599   // pattern in the first place made sure that the super register and
4600   // subregister are compatible.
4601   if (Optional<const CodeGenRegisterClass *> SuperRegisterClass =
4602           inferRegClassFromPattern(SuperRegNode))
4603     return *SuperRegisterClass;
4604   return inferSuperRegisterClass(Ty, SubRegIdxNode);
4605 }
4606 
4607 Optional<CodeGenSubRegIndex *>
4608 GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) {
4609   if (!SubRegIdxNode->isLeaf())
4610     return None;
4611 
4612   DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
4613   if (!SubRegInit)
4614     return None;
4615   return CGRegs.getSubRegIdx(SubRegInit->getDef());
4616 }
4617 
4618 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
4619   // Keep track of the matchers and actions to emit.
4620   int Score = P.getPatternComplexity(CGP);
4621   RuleMatcher M(P.getSrcRecord()->getLoc());
4622   RuleMatcherScores[M.getRuleID()] = Score;
4623   M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
4624                                   "  =>  " +
4625                                   llvm::to_string(*P.getDstPattern()));
4626 
4627   if (auto Error = importRulePredicates(M, P.getPredicates()))
4628     return std::move(Error);
4629 
4630   // Next, analyze the pattern operators.
4631   TreePatternNode *Src = P.getSrcPattern();
4632   TreePatternNode *Dst = P.getDstPattern();
4633 
4634   // If the root of either pattern isn't a simple operator, ignore it.
4635   if (auto Err = isTrivialOperatorNode(Dst))
4636     return failedImport("Dst pattern root isn't a trivial operator (" +
4637                         toString(std::move(Err)) + ")");
4638   if (auto Err = isTrivialOperatorNode(Src))
4639     return failedImport("Src pattern root isn't a trivial operator (" +
4640                         toString(std::move(Err)) + ")");
4641 
4642   // The different predicates and matchers created during
4643   // addInstructionMatcher use the RuleMatcher M to set up their
4644   // instruction ID (InsnVarID) that are going to be used when
4645   // M is going to be emitted.
4646   // However, the code doing the emission still relies on the IDs
4647   // returned during that process by the RuleMatcher when issuing
4648   // the recordInsn opcodes.
4649   // Because of that:
4650   // 1. The order in which we created the predicates
4651   //    and such must be the same as the order in which we emit them,
4652   //    and
4653   // 2. We need to reset the generation of the IDs in M somewhere between
4654   //    addInstructionMatcher and emit
4655   //
4656   // FIXME: Long term, we don't want to have to rely on this implicit
4657   // naming being the same. One possible solution would be to have
4658   // explicit operator for operation capture and reference those.
4659   // The plus side is that it would expose opportunities to share
4660   // the capture accross rules. The downside is that it would
4661   // introduce a dependency between predicates (captures must happen
4662   // before their first use.)
4663   InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
4664   unsigned TempOpIdx = 0;
4665   auto InsnMatcherOrError =
4666       createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
4667   if (auto Error = InsnMatcherOrError.takeError())
4668     return std::move(Error);
4669   InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
4670 
4671   if (Dst->isLeaf()) {
4672     Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
4673 
4674     const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
4675     if (RCDef) {
4676       // We need to replace the def and all its uses with the specified
4677       // operand. However, we must also insert COPY's wherever needed.
4678       // For now, emit a copy and let the register allocator clean up.
4679       auto &DstI = Target.getInstruction(RK.getDef("COPY"));
4680       const auto &DstIOperand = DstI.Operands[0];
4681 
4682       OperandMatcher &OM0 = InsnMatcher.getOperand(0);
4683       OM0.setSymbolicName(DstIOperand.Name);
4684       M.defineOperand(OM0.getSymbolicName(), OM0);
4685       OM0.addPredicate<RegisterBankOperandMatcher>(RC);
4686 
4687       auto &DstMIBuilder =
4688           M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
4689       DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
4690       DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
4691       M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
4692 
4693       // We're done with this pattern!  It's eligible for GISel emission; return
4694       // it.
4695       ++NumPatternImported;
4696       return std::move(M);
4697     }
4698 
4699     return failedImport("Dst pattern root isn't a known leaf");
4700   }
4701 
4702   // Start with the defined operands (i.e., the results of the root operator).
4703   Record *DstOp = Dst->getOperator();
4704   if (!DstOp->isSubClassOf("Instruction"))
4705     return failedImport("Pattern operator isn't an instruction");
4706 
4707   auto &DstI = Target.getInstruction(DstOp);
4708   StringRef DstIName = DstI.TheDef->getName();
4709 
4710   if (DstI.Operands.NumDefs != Src->getExtTypes().size())
4711     return failedImport("Src pattern results and dst MI defs are different (" +
4712                         to_string(Src->getExtTypes().size()) + " def(s) vs " +
4713                         to_string(DstI.Operands.NumDefs) + " def(s))");
4714 
4715   // The root of the match also has constraints on the register bank so that it
4716   // matches the result instruction.
4717   unsigned OpIdx = 0;
4718   for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
4719     (void)VTy;
4720 
4721     const auto &DstIOperand = DstI.Operands[OpIdx];
4722     Record *DstIOpRec = DstIOperand.Rec;
4723     if (DstIName == "COPY_TO_REGCLASS") {
4724       DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
4725 
4726       if (DstIOpRec == nullptr)
4727         return failedImport(
4728             "COPY_TO_REGCLASS operand #1 isn't a register class");
4729     } else if (DstIName == "REG_SEQUENCE") {
4730       DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4731       if (DstIOpRec == nullptr)
4732         return failedImport("REG_SEQUENCE operand #0 isn't a register class");
4733     } else if (DstIName == "EXTRACT_SUBREG") {
4734       if (!Dst->getChild(0)->isLeaf())
4735         return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
4736 
4737       // We can assume that a subregister is in the same bank as it's super
4738       // register.
4739       DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4740 
4741       if (DstIOpRec == nullptr)
4742         return failedImport("EXTRACT_SUBREG operand #0 isn't a register class");
4743     } else if (DstIName == "INSERT_SUBREG") {
4744       auto MaybeSuperClass = inferSuperRegisterClassForNode(
4745           VTy, Dst->getChild(0), Dst->getChild(2));
4746       if (!MaybeSuperClass)
4747         return failedImport(
4748             "Cannot infer register class for INSERT_SUBREG operand #0");
4749       // Move to the next pattern here, because the register class we found
4750       // doesn't necessarily have a record associated with it. So, we can't
4751       // set DstIOpRec using this.
4752       OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
4753       OM.setSymbolicName(DstIOperand.Name);
4754       M.defineOperand(OM.getSymbolicName(), OM);
4755       OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass);
4756       ++OpIdx;
4757       continue;
4758     } else if (DstIName == "SUBREG_TO_REG") {
4759       auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2));
4760       if (!MaybeRegClass)
4761         return failedImport(
4762             "Cannot infer register class for SUBREG_TO_REG operand #0");
4763       OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
4764       OM.setSymbolicName(DstIOperand.Name);
4765       M.defineOperand(OM.getSymbolicName(), OM);
4766       OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass);
4767       ++OpIdx;
4768       continue;
4769     } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
4770       DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
4771     else if (!DstIOpRec->isSubClassOf("RegisterClass"))
4772       return failedImport("Dst MI def isn't a register class" +
4773                           to_string(*Dst));
4774 
4775     OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
4776     OM.setSymbolicName(DstIOperand.Name);
4777     M.defineOperand(OM.getSymbolicName(), OM);
4778     OM.addPredicate<RegisterBankOperandMatcher>(
4779         Target.getRegisterClass(DstIOpRec));
4780     ++OpIdx;
4781   }
4782 
4783   auto DstMIBuilderOrError =
4784       createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst);
4785   if (auto Error = DstMIBuilderOrError.takeError())
4786     return std::move(Error);
4787   BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
4788 
4789   // Render the implicit defs.
4790   // These are only added to the root of the result.
4791   if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
4792     return std::move(Error);
4793 
4794   DstMIBuilder.chooseInsnToMutate(M);
4795 
4796   // Constrain the registers to classes. This is normally derived from the
4797   // emitted instruction but a few instructions require special handling.
4798   if (DstIName == "COPY_TO_REGCLASS") {
4799     // COPY_TO_REGCLASS does not provide operand constraints itself but the
4800     // result is constrained to the class given by the second child.
4801     Record *DstIOpRec =
4802         getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
4803 
4804     if (DstIOpRec == nullptr)
4805       return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
4806 
4807     M.addAction<ConstrainOperandToRegClassAction>(
4808         0, 0, Target.getRegisterClass(DstIOpRec));
4809 
4810     // We're done with this pattern!  It's eligible for GISel emission; return
4811     // it.
4812     ++NumPatternImported;
4813     return std::move(M);
4814   }
4815 
4816   if (DstIName == "EXTRACT_SUBREG") {
4817     auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
4818     if (!SuperClass)
4819       return failedImport(
4820         "Cannot infer register class from EXTRACT_SUBREG operand #0");
4821 
4822     auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
4823     if (!SubIdx)
4824       return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4825 
4826     // It would be nice to leave this constraint implicit but we're required
4827     // to pick a register class so constrain the result to a register class
4828     // that can hold the correct MVT.
4829     //
4830     // FIXME: This may introduce an extra copy if the chosen class doesn't
4831     //        actually contain the subregisters.
4832     assert(Src->getExtTypes().size() == 1 &&
4833              "Expected Src of EXTRACT_SUBREG to have one result type");
4834 
4835     const auto &SrcRCDstRCPair =
4836       (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
4837     assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4838     M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
4839     M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
4840 
4841     // We're done with this pattern!  It's eligible for GISel emission; return
4842     // it.
4843     ++NumPatternImported;
4844     return std::move(M);
4845   }
4846 
4847   if (DstIName == "INSERT_SUBREG") {
4848     assert(Src->getExtTypes().size() == 1 &&
4849            "Expected Src of INSERT_SUBREG to have one result type");
4850     // We need to constrain the destination, a super regsister source, and a
4851     // subregister source.
4852     auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
4853     if (!SubClass)
4854       return failedImport(
4855           "Cannot infer register class from INSERT_SUBREG operand #1");
4856     auto SuperClass = inferSuperRegisterClassForNode(
4857         Src->getExtType(0), Dst->getChild(0), Dst->getChild(2));
4858     if (!SuperClass)
4859       return failedImport(
4860           "Cannot infer register class for INSERT_SUBREG operand #0");
4861     M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
4862     M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass);
4863     M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
4864     ++NumPatternImported;
4865     return std::move(M);
4866   }
4867 
4868   if (DstIName == "SUBREG_TO_REG") {
4869     // We need to constrain the destination and subregister source.
4870     assert(Src->getExtTypes().size() == 1 &&
4871            "Expected Src of SUBREG_TO_REG to have one result type");
4872 
4873     // Attempt to infer the subregister source from the first child. If it has
4874     // an explicitly given register class, we'll use that. Otherwise, we will
4875     // fail.
4876     auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
4877     if (!SubClass)
4878       return failedImport(
4879           "Cannot infer register class from SUBREG_TO_REG child #1");
4880     // We don't have a child to look at that might have a super register node.
4881     auto SuperClass =
4882         inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2));
4883     if (!SuperClass)
4884       return failedImport(
4885           "Cannot infer register class for SUBREG_TO_REG operand #0");
4886     M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
4887     M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
4888     ++NumPatternImported;
4889     return std::move(M);
4890   }
4891 
4892   M.addAction<ConstrainOperandsToDefinitionAction>(0);
4893 
4894   // We're done with this pattern!  It's eligible for GISel emission; return it.
4895   ++NumPatternImported;
4896   return std::move(M);
4897 }
4898 
4899 // Emit imm predicate table and an enum to reference them with.
4900 // The 'Predicate_' part of the name is redundant but eliminating it is more
4901 // trouble than it's worth.
4902 void GlobalISelEmitter::emitCxxPredicateFns(
4903     raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier,
4904     StringRef ArgType, StringRef ArgName, StringRef AdditionalDeclarations,
4905     std::function<bool(const Record *R)> Filter) {
4906   std::vector<const Record *> MatchedRecords;
4907   const auto &Defs = RK.getAllDerivedDefinitions("PatFrag");
4908   std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
4909                [&](Record *Record) {
4910                  return !Record->getValueAsString(CodeFieldName).empty() &&
4911                         Filter(Record);
4912                });
4913 
4914   if (!MatchedRecords.empty()) {
4915     OS << "// PatFrag predicates.\n"
4916        << "enum {\n";
4917     std::string EnumeratorSeparator =
4918         (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
4919     for (const auto *Record : MatchedRecords) {
4920       OS << "  GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
4921          << EnumeratorSeparator;
4922       EnumeratorSeparator = ",\n";
4923     }
4924     OS << "};\n";
4925   }
4926 
4927   OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName
4928      << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " "
4929      << ArgName << ") const {\n"
4930      << AdditionalDeclarations;
4931   if (!AdditionalDeclarations.empty())
4932     OS << "\n";
4933   if (!MatchedRecords.empty())
4934     OS << "  switch (PredicateID) {\n";
4935   for (const auto *Record : MatchedRecords) {
4936     OS << "  case GIPFP_" << TypeIdentifier << "_Predicate_"
4937        << Record->getName() << ": {\n"
4938        << "    " << Record->getValueAsString(CodeFieldName) << "\n"
4939        << "    llvm_unreachable(\"" << CodeFieldName
4940        << " should have returned\");\n"
4941        << "    return false;\n"
4942        << "  }\n";
4943   }
4944   if (!MatchedRecords.empty())
4945     OS << "  }\n";
4946   OS << "  llvm_unreachable(\"Unknown predicate\");\n"
4947      << "  return false;\n"
4948      << "}\n";
4949 }
4950 
4951 void GlobalISelEmitter::emitImmPredicateFns(
4952     raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType,
4953     std::function<bool(const Record *R)> Filter) {
4954   return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType,
4955                              "Imm", "", Filter);
4956 }
4957 
4958 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) {
4959   return emitCxxPredicateFns(
4960       OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
4961       "  const MachineFunction &MF = *MI.getParent()->getParent();\n"
4962       "  const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
4963       "  (void)MRI;",
4964       [](const Record *R) { return true; });
4965 }
4966 
4967 template <class GroupT>
4968 std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
4969     ArrayRef<Matcher *> Rules,
4970     std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
4971 
4972   std::vector<Matcher *> OptRules;
4973   std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>();
4974   assert(CurrentGroup->empty() && "Newly created group isn't empty!");
4975   unsigned NumGroups = 0;
4976 
4977   auto ProcessCurrentGroup = [&]() {
4978     if (CurrentGroup->empty())
4979       // An empty group is good to be reused:
4980       return;
4981 
4982     // If the group isn't large enough to provide any benefit, move all the
4983     // added rules out of it and make sure to re-create the group to properly
4984     // re-initialize it:
4985     if (CurrentGroup->size() < 2)
4986       for (Matcher *M : CurrentGroup->matchers())
4987         OptRules.push_back(M);
4988     else {
4989       CurrentGroup->finalize();
4990       OptRules.push_back(CurrentGroup.get());
4991       MatcherStorage.emplace_back(std::move(CurrentGroup));
4992       ++NumGroups;
4993     }
4994     CurrentGroup = std::make_unique<GroupT>();
4995   };
4996   for (Matcher *Rule : Rules) {
4997     // Greedily add as many matchers as possible to the current group:
4998     if (CurrentGroup->addMatcher(*Rule))
4999       continue;
5000 
5001     ProcessCurrentGroup();
5002     assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");
5003 
5004     // Try to add the pending matcher to a newly created empty group:
5005     if (!CurrentGroup->addMatcher(*Rule))
5006       // If we couldn't add the matcher to an empty group, that group type
5007       // doesn't support that kind of matchers at all, so just skip it:
5008       OptRules.push_back(Rule);
5009   }
5010   ProcessCurrentGroup();
5011 
5012   LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
5013   assert(CurrentGroup->empty() && "The last group wasn't properly processed");
5014   return OptRules;
5015 }
5016 
5017 MatchTable
5018 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
5019                                    bool Optimize, bool WithCoverage) {
5020   std::vector<Matcher *> InputRules;
5021   for (Matcher &Rule : Rules)
5022     InputRules.push_back(&Rule);
5023 
5024   if (!Optimize)
5025     return MatchTable::buildTable(InputRules, WithCoverage);
5026 
5027   unsigned CurrentOrdering = 0;
5028   StringMap<unsigned> OpcodeOrder;
5029   for (RuleMatcher &Rule : Rules) {
5030     const StringRef Opcode = Rule.getOpcode();
5031     assert(!Opcode.empty() && "Didn't expect an undefined opcode");
5032     if (OpcodeOrder.count(Opcode) == 0)
5033       OpcodeOrder[Opcode] = CurrentOrdering++;
5034   }
5035 
5036   std::stable_sort(InputRules.begin(), InputRules.end(),
5037                    [&OpcodeOrder](const Matcher *A, const Matcher *B) {
5038                      auto *L = static_cast<const RuleMatcher *>(A);
5039                      auto *R = static_cast<const RuleMatcher *>(B);
5040                      return std::make_tuple(OpcodeOrder[L->getOpcode()],
5041                                             L->getNumOperands()) <
5042                             std::make_tuple(OpcodeOrder[R->getOpcode()],
5043                                             R->getNumOperands());
5044                    });
5045 
5046   for (Matcher *Rule : InputRules)
5047     Rule->optimize();
5048 
5049   std::vector<std::unique_ptr<Matcher>> MatcherStorage;
5050   std::vector<Matcher *> OptRules =
5051       optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
5052 
5053   for (Matcher *Rule : OptRules)
5054     Rule->optimize();
5055 
5056   OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);
5057 
5058   return MatchTable::buildTable(OptRules, WithCoverage);
5059 }
5060 
5061 void GroupMatcher::optimize() {
5062   // Make sure we only sort by a specific predicate within a range of rules that
5063   // all have that predicate checked against a specific value (not a wildcard):
5064   auto F = Matchers.begin();
5065   auto T = F;
5066   auto E = Matchers.end();
5067   while (T != E) {
5068     while (T != E) {
5069       auto *R = static_cast<RuleMatcher *>(*T);
5070       if (!R->getFirstConditionAsRootType().get().isValid())
5071         break;
5072       ++T;
5073     }
5074     std::stable_sort(F, T, [](Matcher *A, Matcher *B) {
5075       auto *L = static_cast<RuleMatcher *>(A);
5076       auto *R = static_cast<RuleMatcher *>(B);
5077       return L->getFirstConditionAsRootType() <
5078              R->getFirstConditionAsRootType();
5079     });
5080     if (T != E)
5081       F = ++T;
5082   }
5083   GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage)
5084       .swap(Matchers);
5085   GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage)
5086       .swap(Matchers);
5087 }
5088 
5089 void GlobalISelEmitter::run(raw_ostream &OS) {
5090   if (!UseCoverageFile.empty()) {
5091     RuleCoverage = CodeGenCoverage();
5092     auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
5093     if (!RuleCoverageBufOrErr) {
5094       PrintWarning(SMLoc(), "Missing rule coverage data");
5095       RuleCoverage = None;
5096     } else {
5097       if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
5098         PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
5099         RuleCoverage = None;
5100       }
5101     }
5102   }
5103 
5104   // Track the run-time opcode values
5105   gatherOpcodeValues();
5106   // Track the run-time LLT ID values
5107   gatherTypeIDValues();
5108 
5109   // Track the GINodeEquiv definitions.
5110   gatherNodeEquivs();
5111 
5112   emitSourceFileHeader(("Global Instruction Selector for the " +
5113                        Target.getName() + " target").str(), OS);
5114   std::vector<RuleMatcher> Rules;
5115   // Look through the SelectionDAG patterns we found, possibly emitting some.
5116   for (const PatternToMatch &Pat : CGP.ptms()) {
5117     ++NumPatternTotal;
5118 
5119     auto MatcherOrErr = runOnPattern(Pat);
5120 
5121     // The pattern analysis can fail, indicating an unsupported pattern.
5122     // Report that if we've been asked to do so.
5123     if (auto Err = MatcherOrErr.takeError()) {
5124       if (WarnOnSkippedPatterns) {
5125         PrintWarning(Pat.getSrcRecord()->getLoc(),
5126                      "Skipped pattern: " + toString(std::move(Err)));
5127       } else {
5128         consumeError(std::move(Err));
5129       }
5130       ++NumPatternImportsSkipped;
5131       continue;
5132     }
5133 
5134     if (RuleCoverage) {
5135       if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
5136         ++NumPatternsTested;
5137       else
5138         PrintWarning(Pat.getSrcRecord()->getLoc(),
5139                      "Pattern is not covered by a test");
5140     }
5141     Rules.push_back(std::move(MatcherOrErr.get()));
5142   }
5143 
5144   // Comparison function to order records by name.
5145   auto orderByName = [](const Record *A, const Record *B) {
5146     return A->getName() < B->getName();
5147   };
5148 
5149   std::vector<Record *> ComplexPredicates =
5150       RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
5151   llvm::sort(ComplexPredicates, orderByName);
5152 
5153   std::vector<Record *> CustomRendererFns =
5154       RK.getAllDerivedDefinitions("GICustomOperandRenderer");
5155   llvm::sort(CustomRendererFns, orderByName);
5156 
5157   unsigned MaxTemporaries = 0;
5158   for (const auto &Rule : Rules)
5159     MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
5160 
5161   OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
5162      << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
5163      << ";\n"
5164      << "using PredicateBitset = "
5165         "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
5166      << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
5167 
5168   OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
5169      << "  mutable MatcherState State;\n"
5170      << "  typedef "
5171         "ComplexRendererFns("
5172      << Target.getName()
5173      << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
5174 
5175      << "  typedef void(" << Target.getName()
5176      << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
5177         "MachineInstr&, int) "
5178         "const;\n"
5179      << "  const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
5180         "CustomRendererFn> "
5181         "ISelInfo;\n";
5182   OS << "  static " << Target.getName()
5183      << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
5184      << "  static " << Target.getName()
5185      << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
5186      << "  bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
5187         "override;\n"
5188      << "  bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
5189         "const override;\n"
5190      << "  bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
5191         "&Imm) const override;\n"
5192      << "  const int64_t *getMatchTable() const override;\n"
5193      << "  bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI) "
5194         "const override;\n"
5195      << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
5196 
5197   OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
5198      << ", State(" << MaxTemporaries << "),\n"
5199      << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
5200      << ", ComplexPredicateFns, CustomRenderers)\n"
5201      << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
5202 
5203   OS << "#ifdef GET_GLOBALISEL_IMPL\n";
5204   SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
5205                                                            OS);
5206 
5207   // Separate subtarget features by how often they must be recomputed.
5208   SubtargetFeatureInfoMap ModuleFeatures;
5209   std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
5210                std::inserter(ModuleFeatures, ModuleFeatures.end()),
5211                [](const SubtargetFeatureInfoMap::value_type &X) {
5212                  return !X.second.mustRecomputePerFunction();
5213                });
5214   SubtargetFeatureInfoMap FunctionFeatures;
5215   std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
5216                std::inserter(FunctionFeatures, FunctionFeatures.end()),
5217                [](const SubtargetFeatureInfoMap::value_type &X) {
5218                  return X.second.mustRecomputePerFunction();
5219                });
5220 
5221   SubtargetFeatureInfo::emitComputeAvailableFeatures(
5222     Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
5223       ModuleFeatures, OS);
5224 
5225 
5226   OS << "void " << Target.getName() << "InstructionSelector"
5227     "::setupGeneratedPerFunctionState(MachineFunction &MF) {\n"
5228     "  AvailableFunctionFeatures = computeAvailableFunctionFeatures("
5229     "(const " << Target.getName() << "Subtarget*)&MF.getSubtarget(), &MF);\n"
5230     "}\n";
5231 
5232   if (Target.getName() == "X86" || Target.getName() == "AArch64") {
5233     // TODO: Implement PGSO.
5234     OS << "static bool shouldOptForSize(const MachineFunction *MF) {\n";
5235     OS << "    return MF->getFunction().hasOptSize();\n";
5236     OS << "}\n\n";
5237   }
5238 
5239   SubtargetFeatureInfo::emitComputeAvailableFeatures(
5240       Target.getName(), "InstructionSelector",
5241       "computeAvailableFunctionFeatures", FunctionFeatures, OS,
5242       "const MachineFunction *MF");
5243 
5244   // Emit a table containing the LLT objects needed by the matcher and an enum
5245   // for the matcher to reference them with.
5246   std::vector<LLTCodeGen> TypeObjects;
5247   for (const auto &Ty : KnownTypes)
5248     TypeObjects.push_back(Ty);
5249   llvm::sort(TypeObjects);
5250   OS << "// LLT Objects.\n"
5251      << "enum {\n";
5252   for (const auto &TypeObject : TypeObjects) {
5253     OS << "  ";
5254     TypeObject.emitCxxEnumValue(OS);
5255     OS << ",\n";
5256   }
5257   OS << "};\n";
5258   OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
5259      << "const static LLT TypeObjects[] = {\n";
5260   for (const auto &TypeObject : TypeObjects) {
5261     OS << "  ";
5262     TypeObject.emitCxxConstructorCall(OS);
5263     OS << ",\n";
5264   }
5265   OS << "};\n\n";
5266 
5267   // Emit a table containing the PredicateBitsets objects needed by the matcher
5268   // and an enum for the matcher to reference them with.
5269   std::vector<std::vector<Record *>> FeatureBitsets;
5270   for (auto &Rule : Rules)
5271     FeatureBitsets.push_back(Rule.getRequiredFeatures());
5272   llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
5273                                  const std::vector<Record *> &B) {
5274     if (A.size() < B.size())
5275       return true;
5276     if (A.size() > B.size())
5277       return false;
5278     for (auto Pair : zip(A, B)) {
5279       if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
5280         return true;
5281       if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
5282         return false;
5283     }
5284     return false;
5285   });
5286   FeatureBitsets.erase(
5287       std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
5288       FeatureBitsets.end());
5289   OS << "// Feature bitsets.\n"
5290      << "enum {\n"
5291      << "  GIFBS_Invalid,\n";
5292   for (const auto &FeatureBitset : FeatureBitsets) {
5293     if (FeatureBitset.empty())
5294       continue;
5295     OS << "  " << getNameForFeatureBitset(FeatureBitset) << ",\n";
5296   }
5297   OS << "};\n"
5298      << "const static PredicateBitset FeatureBitsets[] {\n"
5299      << "  {}, // GIFBS_Invalid\n";
5300   for (const auto &FeatureBitset : FeatureBitsets) {
5301     if (FeatureBitset.empty())
5302       continue;
5303     OS << "  {";
5304     for (const auto &Feature : FeatureBitset) {
5305       const auto &I = SubtargetFeatures.find(Feature);
5306       assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
5307       OS << I->second.getEnumBitName() << ", ";
5308     }
5309     OS << "},\n";
5310   }
5311   OS << "};\n\n";
5312 
5313   // Emit complex predicate table and an enum to reference them with.
5314   OS << "// ComplexPattern predicates.\n"
5315      << "enum {\n"
5316      << "  GICP_Invalid,\n";
5317   for (const auto &Record : ComplexPredicates)
5318     OS << "  GICP_" << Record->getName() << ",\n";
5319   OS << "};\n"
5320      << "// See constructor for table contents\n\n";
5321 
5322   emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) {
5323     bool Unset;
5324     return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
5325            !R->getValueAsBit("IsAPInt");
5326   });
5327   emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) {
5328     bool Unset;
5329     return R->getValueAsBitOrUnset("IsAPFloat", Unset);
5330   });
5331   emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) {
5332     return R->getValueAsBit("IsAPInt");
5333   });
5334   emitMIPredicateFns(OS);
5335   OS << "\n";
5336 
5337   OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
5338      << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
5339      << "  nullptr, // GICP_Invalid\n";
5340   for (const auto &Record : ComplexPredicates)
5341     OS << "  &" << Target.getName()
5342        << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
5343        << ", // " << Record->getName() << "\n";
5344   OS << "};\n\n";
5345 
5346   OS << "// Custom renderers.\n"
5347      << "enum {\n"
5348      << "  GICR_Invalid,\n";
5349   for (const auto &Record : CustomRendererFns)
5350     OS << "  GICR_" << Record->getValueAsString("RendererFn") << ", \n";
5351   OS << "};\n";
5352 
5353   OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
5354      << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
5355      << "  nullptr, // GICR_Invalid\n";
5356   for (const auto &Record : CustomRendererFns)
5357     OS << "  &" << Target.getName()
5358        << "InstructionSelector::" << Record->getValueAsString("RendererFn")
5359        << ", // " << Record->getName() << "\n";
5360   OS << "};\n\n";
5361 
5362   llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) {
5363     int ScoreA = RuleMatcherScores[A.getRuleID()];
5364     int ScoreB = RuleMatcherScores[B.getRuleID()];
5365     if (ScoreA > ScoreB)
5366       return true;
5367     if (ScoreB > ScoreA)
5368       return false;
5369     if (A.isHigherPriorityThan(B)) {
5370       assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
5371                                            "and less important at "
5372                                            "the same time");
5373       return true;
5374     }
5375     return false;
5376   });
5377 
5378   OS << "bool " << Target.getName()
5379      << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
5380         "&CoverageInfo) const {\n"
5381      << "  MachineFunction &MF = *I.getParent()->getParent();\n"
5382      << "  MachineRegisterInfo &MRI = MF.getRegInfo();\n"
5383      << "  const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
5384      << "  NewMIVector OutMIs;\n"
5385      << "  State.MIs.clear();\n"
5386      << "  State.MIs.push_back(&I);\n\n"
5387      << "  if (executeMatchTable(*this, OutMIs, State, ISelInfo"
5388      << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
5389      << ", CoverageInfo)) {\n"
5390      << "    return true;\n"
5391      << "  }\n\n"
5392      << "  return false;\n"
5393      << "}\n\n";
5394 
5395   const MatchTable Table =
5396       buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
5397   OS << "const int64_t *" << Target.getName()
5398      << "InstructionSelector::getMatchTable() const {\n";
5399   Table.emitDeclaration(OS);
5400   OS << "  return ";
5401   Table.emitUse(OS);
5402   OS << ";\n}\n";
5403   OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
5404 
5405   OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
5406      << "PredicateBitset AvailableModuleFeatures;\n"
5407      << "mutable PredicateBitset AvailableFunctionFeatures;\n"
5408      << "PredicateBitset getAvailableFeatures() const {\n"
5409      << "  return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
5410      << "}\n"
5411      << "PredicateBitset\n"
5412      << "computeAvailableModuleFeatures(const " << Target.getName()
5413      << "Subtarget *Subtarget) const;\n"
5414      << "PredicateBitset\n"
5415      << "computeAvailableFunctionFeatures(const " << Target.getName()
5416      << "Subtarget *Subtarget,\n"
5417      << "                                 const MachineFunction *MF) const;\n"
5418      << "void setupGeneratedPerFunctionState(MachineFunction &MF) override;\n"
5419      << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
5420 
5421   OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
5422      << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
5423      << "AvailableFunctionFeatures()\n"
5424      << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
5425 }
5426 
5427 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
5428   if (SubtargetFeatures.count(Predicate) == 0)
5429     SubtargetFeatures.emplace(
5430         Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
5431 }
5432 
5433 void RuleMatcher::optimize() {
5434   for (auto &Item : InsnVariableIDs) {
5435     InstructionMatcher &InsnMatcher = *Item.first;
5436     for (auto &OM : InsnMatcher.operands()) {
5437       // Complex Patterns are usually expensive and they relatively rarely fail
5438       // on their own: more often we end up throwing away all the work done by a
5439       // matching part of a complex pattern because some other part of the
5440       // enclosing pattern didn't match. All of this makes it beneficial to
5441       // delay complex patterns until the very end of the rule matching,
5442       // especially for targets having lots of complex patterns.
5443       for (auto &OP : OM->predicates())
5444         if (isa<ComplexPatternOperandMatcher>(OP))
5445           EpilogueMatchers.emplace_back(std::move(OP));
5446       OM->eraseNullPredicates();
5447     }
5448     InsnMatcher.optimize();
5449   }
5450   llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L,
5451                                   const std::unique_ptr<PredicateMatcher> &R) {
5452     return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
5453            std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
5454   });
5455 }
5456 
5457 bool RuleMatcher::hasFirstCondition() const {
5458   if (insnmatchers_empty())
5459     return false;
5460   InstructionMatcher &Matcher = insnmatchers_front();
5461   if (!Matcher.predicates_empty())
5462     return true;
5463   for (auto &OM : Matcher.operands())
5464     for (auto &OP : OM->predicates())
5465       if (!isa<InstructionOperandMatcher>(OP))
5466         return true;
5467   return false;
5468 }
5469 
5470 const PredicateMatcher &RuleMatcher::getFirstCondition() const {
5471   assert(!insnmatchers_empty() &&
5472          "Trying to get a condition from an empty RuleMatcher");
5473 
5474   InstructionMatcher &Matcher = insnmatchers_front();
5475   if (!Matcher.predicates_empty())
5476     return **Matcher.predicates_begin();
5477   // If there is no more predicate on the instruction itself, look at its
5478   // operands.
5479   for (auto &OM : Matcher.operands())
5480     for (auto &OP : OM->predicates())
5481       if (!isa<InstructionOperandMatcher>(OP))
5482         return *OP;
5483 
5484   llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
5485                    "no conditions");
5486 }
5487 
5488 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
5489   assert(!insnmatchers_empty() &&
5490          "Trying to pop a condition from an empty RuleMatcher");
5491 
5492   InstructionMatcher &Matcher = insnmatchers_front();
5493   if (!Matcher.predicates_empty())
5494     return Matcher.predicates_pop_front();
5495   // If there is no more predicate on the instruction itself, look at its
5496   // operands.
5497   for (auto &OM : Matcher.operands())
5498     for (auto &OP : OM->predicates())
5499       if (!isa<InstructionOperandMatcher>(OP)) {
5500         std::unique_ptr<PredicateMatcher> Result = std::move(OP);
5501         OM->eraseNullPredicates();
5502         return Result;
5503       }
5504 
5505   llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
5506                    "no conditions");
5507 }
5508 
5509 bool GroupMatcher::candidateConditionMatches(
5510     const PredicateMatcher &Predicate) const {
5511 
5512   if (empty()) {
5513     // Sharing predicates for nested instructions is not supported yet as we
5514     // currently don't hoist the GIM_RecordInsn's properly, therefore we can
5515     // only work on the original root instruction (InsnVarID == 0):
5516     if (Predicate.getInsnVarID() != 0)
5517       return false;
5518     // ... otherwise an empty group can handle any predicate with no specific
5519     // requirements:
5520     return true;
5521   }
5522 
5523   const Matcher &Representative = **Matchers.begin();
5524   const auto &RepresentativeCondition = Representative.getFirstCondition();
5525   // ... if not empty, the group can only accomodate matchers with the exact
5526   // same first condition:
5527   return Predicate.isIdentical(RepresentativeCondition);
5528 }
5529 
5530 bool GroupMatcher::addMatcher(Matcher &Candidate) {
5531   if (!Candidate.hasFirstCondition())
5532     return false;
5533 
5534   const PredicateMatcher &Predicate = Candidate.getFirstCondition();
5535   if (!candidateConditionMatches(Predicate))
5536     return false;
5537 
5538   Matchers.push_back(&Candidate);
5539   return true;
5540 }
5541 
5542 void GroupMatcher::finalize() {
5543   assert(Conditions.empty() && "Already finalized?");
5544   if (empty())
5545     return;
5546 
5547   Matcher &FirstRule = **Matchers.begin();
5548   for (;;) {
5549     // All the checks are expected to succeed during the first iteration:
5550     for (const auto &Rule : Matchers)
5551       if (!Rule->hasFirstCondition())
5552         return;
5553     const auto &FirstCondition = FirstRule.getFirstCondition();
5554     for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
5555       if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition))
5556         return;
5557 
5558     Conditions.push_back(FirstRule.popFirstCondition());
5559     for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
5560       Matchers[I]->popFirstCondition();
5561   }
5562 }
5563 
5564 void GroupMatcher::emit(MatchTable &Table) {
5565   unsigned LabelID = ~0U;
5566   if (!Conditions.empty()) {
5567     LabelID = Table.allocateLabelID();
5568     Table << MatchTable::Opcode("GIM_Try", +1)
5569           << MatchTable::Comment("On fail goto")
5570           << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
5571   }
5572   for (auto &Condition : Conditions)
5573     Condition->emitPredicateOpcodes(
5574         Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
5575 
5576   for (const auto &M : Matchers)
5577     M->emit(Table);
5578 
5579   // Exit the group
5580   if (!Conditions.empty())
5581     Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
5582           << MatchTable::Label(LabelID);
5583 }
5584 
5585 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) {
5586   return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P);
5587 }
5588 
5589 bool SwitchMatcher::candidateConditionMatches(
5590     const PredicateMatcher &Predicate) const {
5591 
5592   if (empty()) {
5593     // Sharing predicates for nested instructions is not supported yet as we
5594     // currently don't hoist the GIM_RecordInsn's properly, therefore we can
5595     // only work on the original root instruction (InsnVarID == 0):
5596     if (Predicate.getInsnVarID() != 0)
5597       return false;
5598     // ... while an attempt to add even a root matcher to an empty SwitchMatcher
5599     // could fail as not all the types of conditions are supported:
5600     if (!isSupportedPredicateType(Predicate))
5601       return false;
5602     // ... or the condition might not have a proper implementation of
5603     // getValue() / isIdenticalDownToValue() yet:
5604     if (!Predicate.hasValue())
5605       return false;
5606     // ... otherwise an empty Switch can accomodate the condition with no
5607     // further requirements:
5608     return true;
5609   }
5610 
5611   const Matcher &CaseRepresentative = **Matchers.begin();
5612   const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition();
5613   // Switch-cases must share the same kind of condition and path to the value it
5614   // checks:
5615   if (!Predicate.isIdenticalDownToValue(RepresentativeCondition))
5616     return false;
5617 
5618   const auto Value = Predicate.getValue();
5619   // ... but be unique with respect to the actual value they check:
5620   return Values.count(Value) == 0;
5621 }
5622 
5623 bool SwitchMatcher::addMatcher(Matcher &Candidate) {
5624   if (!Candidate.hasFirstCondition())
5625     return false;
5626 
5627   const PredicateMatcher &Predicate = Candidate.getFirstCondition();
5628   if (!candidateConditionMatches(Predicate))
5629     return false;
5630   const auto Value = Predicate.getValue();
5631   Values.insert(Value);
5632 
5633   Matchers.push_back(&Candidate);
5634   return true;
5635 }
5636 
5637 void SwitchMatcher::finalize() {
5638   assert(Condition == nullptr && "Already finalized");
5639   assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
5640   if (empty())
5641     return;
5642 
5643   std::stable_sort(Matchers.begin(), Matchers.end(),
5644                    [](const Matcher *L, const Matcher *R) {
5645                      return L->getFirstCondition().getValue() <
5646                             R->getFirstCondition().getValue();
5647                    });
5648   Condition = Matchers[0]->popFirstCondition();
5649   for (unsigned I = 1, E = Values.size(); I < E; ++I)
5650     Matchers[I]->popFirstCondition();
5651 }
5652 
5653 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P,
5654                                                  MatchTable &Table) {
5655   assert(isSupportedPredicateType(P) && "Predicate type is not supported");
5656 
5657   if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) {
5658     Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
5659           << MatchTable::IntValue(Condition->getInsnVarID());
5660     return;
5661   }
5662   if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) {
5663     Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
5664           << MatchTable::IntValue(Condition->getInsnVarID())
5665           << MatchTable::Comment("Op")
5666           << MatchTable::IntValue(Condition->getOpIdx());
5667     return;
5668   }
5669 
5670   llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
5671                    "predicate type that is claimed to be supported");
5672 }
5673 
5674 void SwitchMatcher::emit(MatchTable &Table) {
5675   assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
5676   if (empty())
5677     return;
5678   assert(Condition != nullptr &&
5679          "Broken SwitchMatcher, hasn't been finalized?");
5680 
5681   std::vector<unsigned> LabelIDs(Values.size());
5682   std::generate(LabelIDs.begin(), LabelIDs.end(),
5683                 [&Table]() { return Table.allocateLabelID(); });
5684   const unsigned Default = Table.allocateLabelID();
5685 
5686   const int64_t LowerBound = Values.begin()->getRawValue();
5687   const int64_t UpperBound = Values.rbegin()->getRawValue() + 1;
5688 
5689   emitPredicateSpecificOpcodes(*Condition, Table);
5690 
5691   Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound)
5692         << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")")
5693         << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default);
5694 
5695   int64_t J = LowerBound;
5696   auto VI = Values.begin();
5697   for (unsigned I = 0, E = Values.size(); I < E; ++I) {
5698     auto V = *VI++;
5699     while (J++ < V.getRawValue())
5700       Table << MatchTable::IntValue(0);
5701     V.turnIntoComment();
5702     Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]);
5703   }
5704   Table << MatchTable::LineBreak;
5705 
5706   for (unsigned I = 0, E = Values.size(); I < E; ++I) {
5707     Table << MatchTable::Label(LabelIDs[I]);
5708     Matchers[I]->emit(Table);
5709     Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
5710   }
5711   Table << MatchTable::Label(Default);
5712 }
5713 
5714 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
5715 
5716 } // end anonymous namespace
5717 
5718 //===----------------------------------------------------------------------===//
5719 
5720 namespace llvm {
5721 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
5722   GlobalISelEmitter(RK).run(OS);
5723 }
5724 } // End llvm namespace
5725