1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This tablegen backend emits code for use by the GlobalISel instruction 11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td. 12 /// 13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen 14 /// backend, filters out the ones that are unsupported, maps 15 /// SelectionDAG-specific constructs to their GlobalISel counterpart 16 /// (when applicable: MVT to LLT; SDNode to generic Instruction). 17 /// 18 /// Not all patterns are supported: pass the tablegen invocation 19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped, 20 /// as well as why. 21 /// 22 /// The generated file defines a single method: 23 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const; 24 /// intended to be used in InstructionSelector::select as the first-step 25 /// selector for the patterns that don't require complex C++. 26 /// 27 /// FIXME: We'll probably want to eventually define a base 28 /// "TargetGenInstructionSelector" class. 29 /// 30 //===----------------------------------------------------------------------===// 31 32 #include "CodeGenDAGPatterns.h" 33 #include "SubtargetFeatureInfo.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/SmallSet.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/Support/CodeGenCoverage.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/LowLevelTypeImpl.h" 41 #include "llvm/Support/MachineValueType.h" 42 #include "llvm/Support/ScopedPrinter.h" 43 #include "llvm/TableGen/Error.h" 44 #include "llvm/TableGen/Record.h" 45 #include "llvm/TableGen/TableGenBackend.h" 46 #include <numeric> 47 #include <string> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "gisel-emitter" 51 52 STATISTIC(NumPatternTotal, "Total number of patterns"); 53 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG"); 54 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped"); 55 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information"); 56 STATISTIC(NumPatternEmitted, "Number of patterns emitted"); 57 58 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel"); 59 60 static cl::opt<bool> WarnOnSkippedPatterns( 61 "warn-on-skipped-patterns", 62 cl::desc("Explain why a pattern was skipped for inclusion " 63 "in the GlobalISel selector"), 64 cl::init(false), cl::cat(GlobalISelEmitterCat)); 65 66 static cl::opt<bool> GenerateCoverage( 67 "instrument-gisel-coverage", 68 cl::desc("Generate coverage instrumentation for GlobalISel"), 69 cl::init(false), cl::cat(GlobalISelEmitterCat)); 70 71 static cl::opt<std::string> UseCoverageFile( 72 "gisel-coverage-file", cl::init(""), 73 cl::desc("Specify file to retrieve coverage information from"), 74 cl::cat(GlobalISelEmitterCat)); 75 76 static cl::opt<bool> OptimizeMatchTable( 77 "optimize-match-table", 78 cl::desc("Generate an optimized version of the match table"), 79 cl::init(true), cl::cat(GlobalISelEmitterCat)); 80 81 namespace { 82 //===- Helper functions ---------------------------------------------------===// 83 84 /// Get the name of the enum value used to number the predicate function. 85 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) { 86 if (Predicate.hasGISelPredicateCode()) 87 return "GIPFP_MI_" + Predicate.getFnName(); 88 return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" + 89 Predicate.getFnName(); 90 } 91 92 /// Get the opcode used to check this predicate. 93 std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) { 94 return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate"; 95 } 96 97 /// This class stands in for LLT wherever we want to tablegen-erate an 98 /// equivalent at compiler run-time. 99 class LLTCodeGen { 100 private: 101 LLT Ty; 102 103 public: 104 LLTCodeGen() = default; 105 LLTCodeGen(const LLT &Ty) : Ty(Ty) {} 106 107 std::string getCxxEnumValue() const { 108 std::string Str; 109 raw_string_ostream OS(Str); 110 111 emitCxxEnumValue(OS); 112 return OS.str(); 113 } 114 115 void emitCxxEnumValue(raw_ostream &OS) const { 116 if (Ty.isScalar()) { 117 OS << "GILLT_s" << Ty.getSizeInBits(); 118 return; 119 } 120 if (Ty.isVector()) { 121 OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits(); 122 return; 123 } 124 if (Ty.isPointer()) { 125 OS << "GILLT_p" << Ty.getAddressSpace(); 126 if (Ty.getSizeInBits() > 0) 127 OS << "s" << Ty.getSizeInBits(); 128 return; 129 } 130 llvm_unreachable("Unhandled LLT"); 131 } 132 133 void emitCxxConstructorCall(raw_ostream &OS) const { 134 if (Ty.isScalar()) { 135 OS << "LLT::scalar(" << Ty.getSizeInBits() << ")"; 136 return; 137 } 138 if (Ty.isVector()) { 139 OS << "LLT::vector(" << Ty.getNumElements() << ", " 140 << Ty.getScalarSizeInBits() << ")"; 141 return; 142 } 143 if (Ty.isPointer() && Ty.getSizeInBits() > 0) { 144 OS << "LLT::pointer(" << Ty.getAddressSpace() << ", " 145 << Ty.getSizeInBits() << ")"; 146 return; 147 } 148 llvm_unreachable("Unhandled LLT"); 149 } 150 151 const LLT &get() const { return Ty; } 152 153 /// This ordering is used for std::unique() and llvm::sort(). There's no 154 /// particular logic behind the order but either A < B or B < A must be 155 /// true if A != B. 156 bool operator<(const LLTCodeGen &Other) const { 157 if (Ty.isValid() != Other.Ty.isValid()) 158 return Ty.isValid() < Other.Ty.isValid(); 159 if (!Ty.isValid()) 160 return false; 161 162 if (Ty.isVector() != Other.Ty.isVector()) 163 return Ty.isVector() < Other.Ty.isVector(); 164 if (Ty.isScalar() != Other.Ty.isScalar()) 165 return Ty.isScalar() < Other.Ty.isScalar(); 166 if (Ty.isPointer() != Other.Ty.isPointer()) 167 return Ty.isPointer() < Other.Ty.isPointer(); 168 169 if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace()) 170 return Ty.getAddressSpace() < Other.Ty.getAddressSpace(); 171 172 if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements()) 173 return Ty.getNumElements() < Other.Ty.getNumElements(); 174 175 return Ty.getSizeInBits() < Other.Ty.getSizeInBits(); 176 } 177 178 bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; } 179 }; 180 181 // Track all types that are used so we can emit the corresponding enum. 182 std::set<LLTCodeGen> KnownTypes; 183 184 class InstructionMatcher; 185 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for 186 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...). 187 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) { 188 MVT VT(SVT); 189 190 if (VT.isVector() && VT.getVectorNumElements() != 1) 191 return LLTCodeGen( 192 LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits())); 193 194 if (VT.isInteger() || VT.isFloatingPoint()) 195 return LLTCodeGen(LLT::scalar(VT.getSizeInBits())); 196 return None; 197 } 198 199 static std::string explainPredicates(const TreePatternNode *N) { 200 std::string Explanation = ""; 201 StringRef Separator = ""; 202 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 203 const TreePredicateFn &P = Call.Fn; 204 Explanation += 205 (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str(); 206 Separator = ", "; 207 208 if (P.isAlwaysTrue()) 209 Explanation += " always-true"; 210 if (P.isImmediatePattern()) 211 Explanation += " immediate"; 212 213 if (P.isUnindexed()) 214 Explanation += " unindexed"; 215 216 if (P.isNonExtLoad()) 217 Explanation += " non-extload"; 218 if (P.isAnyExtLoad()) 219 Explanation += " extload"; 220 if (P.isSignExtLoad()) 221 Explanation += " sextload"; 222 if (P.isZeroExtLoad()) 223 Explanation += " zextload"; 224 225 if (P.isNonTruncStore()) 226 Explanation += " non-truncstore"; 227 if (P.isTruncStore()) 228 Explanation += " truncstore"; 229 230 if (Record *VT = P.getMemoryVT()) 231 Explanation += (" MemVT=" + VT->getName()).str(); 232 if (Record *VT = P.getScalarMemoryVT()) 233 Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str(); 234 235 if (ListInit *AddrSpaces = P.getAddressSpaces()) { 236 raw_string_ostream OS(Explanation); 237 OS << " AddressSpaces=["; 238 239 StringRef AddrSpaceSeparator; 240 for (Init *Val : AddrSpaces->getValues()) { 241 IntInit *IntVal = dyn_cast<IntInit>(Val); 242 if (!IntVal) 243 continue; 244 245 OS << AddrSpaceSeparator << IntVal->getValue(); 246 AddrSpaceSeparator = ", "; 247 } 248 249 OS << ']'; 250 } 251 252 int64_t MinAlign = P.getMinAlignment(); 253 if (MinAlign > 0) 254 Explanation += " MinAlign=" + utostr(MinAlign); 255 256 if (P.isAtomicOrderingMonotonic()) 257 Explanation += " monotonic"; 258 if (P.isAtomicOrderingAcquire()) 259 Explanation += " acquire"; 260 if (P.isAtomicOrderingRelease()) 261 Explanation += " release"; 262 if (P.isAtomicOrderingAcquireRelease()) 263 Explanation += " acq_rel"; 264 if (P.isAtomicOrderingSequentiallyConsistent()) 265 Explanation += " seq_cst"; 266 if (P.isAtomicOrderingAcquireOrStronger()) 267 Explanation += " >=acquire"; 268 if (P.isAtomicOrderingWeakerThanAcquire()) 269 Explanation += " <acquire"; 270 if (P.isAtomicOrderingReleaseOrStronger()) 271 Explanation += " >=release"; 272 if (P.isAtomicOrderingWeakerThanRelease()) 273 Explanation += " <release"; 274 } 275 return Explanation; 276 } 277 278 std::string explainOperator(Record *Operator) { 279 if (Operator->isSubClassOf("SDNode")) 280 return (" (" + Operator->getValueAsString("Opcode") + ")").str(); 281 282 if (Operator->isSubClassOf("Intrinsic")) 283 return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str(); 284 285 if (Operator->isSubClassOf("ComplexPattern")) 286 return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() + 287 ")") 288 .str(); 289 290 if (Operator->isSubClassOf("SDNodeXForm")) 291 return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() + 292 ")") 293 .str(); 294 295 return (" (Operator " + Operator->getName() + " not understood)").str(); 296 } 297 298 /// Helper function to let the emitter report skip reason error messages. 299 static Error failedImport(const Twine &Reason) { 300 return make_error<StringError>(Reason, inconvertibleErrorCode()); 301 } 302 303 static Error isTrivialOperatorNode(const TreePatternNode *N) { 304 std::string Explanation = ""; 305 std::string Separator = ""; 306 307 bool HasUnsupportedPredicate = false; 308 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 309 const TreePredicateFn &Predicate = Call.Fn; 310 311 if (Predicate.isAlwaysTrue()) 312 continue; 313 314 if (Predicate.isImmediatePattern()) 315 continue; 316 317 if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() || 318 Predicate.isSignExtLoad() || Predicate.isZeroExtLoad()) 319 continue; 320 321 if (Predicate.isNonTruncStore() || Predicate.isTruncStore()) 322 continue; 323 324 if (Predicate.isLoad() && Predicate.getMemoryVT()) 325 continue; 326 327 if (Predicate.isLoad() || Predicate.isStore()) { 328 if (Predicate.isUnindexed()) 329 continue; 330 } 331 332 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 333 const ListInit *AddrSpaces = Predicate.getAddressSpaces(); 334 if (AddrSpaces && !AddrSpaces->empty()) 335 continue; 336 337 if (Predicate.getMinAlignment() > 0) 338 continue; 339 } 340 341 if (Predicate.isAtomic() && Predicate.getMemoryVT()) 342 continue; 343 344 if (Predicate.isAtomic() && 345 (Predicate.isAtomicOrderingMonotonic() || 346 Predicate.isAtomicOrderingAcquire() || 347 Predicate.isAtomicOrderingRelease() || 348 Predicate.isAtomicOrderingAcquireRelease() || 349 Predicate.isAtomicOrderingSequentiallyConsistent() || 350 Predicate.isAtomicOrderingAcquireOrStronger() || 351 Predicate.isAtomicOrderingWeakerThanAcquire() || 352 Predicate.isAtomicOrderingReleaseOrStronger() || 353 Predicate.isAtomicOrderingWeakerThanRelease())) 354 continue; 355 356 if (Predicate.hasGISelPredicateCode()) 357 continue; 358 359 HasUnsupportedPredicate = true; 360 Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")"; 361 Separator = ", "; 362 Explanation += (Separator + "first-failing:" + 363 Predicate.getOrigPatFragRecord()->getRecord()->getName()) 364 .str(); 365 break; 366 } 367 368 if (!HasUnsupportedPredicate) 369 return Error::success(); 370 371 return failedImport(Explanation); 372 } 373 374 static Record *getInitValueAsRegClass(Init *V) { 375 if (DefInit *VDefInit = dyn_cast<DefInit>(V)) { 376 if (VDefInit->getDef()->isSubClassOf("RegisterOperand")) 377 return VDefInit->getDef()->getValueAsDef("RegClass"); 378 if (VDefInit->getDef()->isSubClassOf("RegisterClass")) 379 return VDefInit->getDef(); 380 } 381 return nullptr; 382 } 383 384 std::string 385 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 386 std::string Name = "GIFBS"; 387 for (const auto &Feature : FeatureBitset) 388 Name += ("_" + Feature->getName()).str(); 389 return Name; 390 } 391 392 //===- MatchTable Helpers -------------------------------------------------===// 393 394 class MatchTable; 395 396 /// A record to be stored in a MatchTable. 397 /// 398 /// This class represents any and all output that may be required to emit the 399 /// MatchTable. Instances are most often configured to represent an opcode or 400 /// value that will be emitted to the table with some formatting but it can also 401 /// represent commas, comments, and other formatting instructions. 402 struct MatchTableRecord { 403 enum RecordFlagsBits { 404 MTRF_None = 0x0, 405 /// Causes EmitStr to be formatted as comment when emitted. 406 MTRF_Comment = 0x1, 407 /// Causes the record value to be followed by a comma when emitted. 408 MTRF_CommaFollows = 0x2, 409 /// Causes the record value to be followed by a line break when emitted. 410 MTRF_LineBreakFollows = 0x4, 411 /// Indicates that the record defines a label and causes an additional 412 /// comment to be emitted containing the index of the label. 413 MTRF_Label = 0x8, 414 /// Causes the record to be emitted as the index of the label specified by 415 /// LabelID along with a comment indicating where that label is. 416 MTRF_JumpTarget = 0x10, 417 /// Causes the formatter to add a level of indentation before emitting the 418 /// record. 419 MTRF_Indent = 0x20, 420 /// Causes the formatter to remove a level of indentation after emitting the 421 /// record. 422 MTRF_Outdent = 0x40, 423 }; 424 425 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to 426 /// reference or define. 427 unsigned LabelID; 428 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a 429 /// value, a label name. 430 std::string EmitStr; 431 432 private: 433 /// The number of MatchTable elements described by this record. Comments are 0 434 /// while values are typically 1. Values >1 may occur when we need to emit 435 /// values that exceed the size of a MatchTable element. 436 unsigned NumElements; 437 438 public: 439 /// A bitfield of RecordFlagsBits flags. 440 unsigned Flags; 441 442 /// The actual run-time value, if known 443 int64_t RawValue; 444 445 MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr, 446 unsigned NumElements, unsigned Flags, 447 int64_t RawValue = std::numeric_limits<int64_t>::min()) 448 : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u), 449 EmitStr(EmitStr), NumElements(NumElements), Flags(Flags), 450 RawValue(RawValue) { 451 452 assert((!LabelID_.hasValue() || LabelID != ~0u) && 453 "This value is reserved for non-labels"); 454 } 455 MatchTableRecord(const MatchTableRecord &Other) = default; 456 MatchTableRecord(MatchTableRecord &&Other) = default; 457 458 /// Useful if a Match Table Record gets optimized out 459 void turnIntoComment() { 460 Flags |= MTRF_Comment; 461 Flags &= ~MTRF_CommaFollows; 462 NumElements = 0; 463 } 464 465 /// For Jump Table generation purposes 466 bool operator<(const MatchTableRecord &Other) const { 467 return RawValue < Other.RawValue; 468 } 469 int64_t getRawValue() const { return RawValue; } 470 471 void emit(raw_ostream &OS, bool LineBreakNextAfterThis, 472 const MatchTable &Table) const; 473 unsigned size() const { return NumElements; } 474 }; 475 476 class Matcher; 477 478 /// Holds the contents of a generated MatchTable to enable formatting and the 479 /// necessary index tracking needed to support GIM_Try. 480 class MatchTable { 481 /// An unique identifier for the table. The generated table will be named 482 /// MatchTable${ID}. 483 unsigned ID; 484 /// The records that make up the table. Also includes comments describing the 485 /// values being emitted and line breaks to format it. 486 std::vector<MatchTableRecord> Contents; 487 /// The currently defined labels. 488 DenseMap<unsigned, unsigned> LabelMap; 489 /// Tracks the sum of MatchTableRecord::NumElements as the table is built. 490 unsigned CurrentSize = 0; 491 /// A unique identifier for a MatchTable label. 492 unsigned CurrentLabelID = 0; 493 /// Determines if the table should be instrumented for rule coverage tracking. 494 bool IsWithCoverage; 495 496 public: 497 static MatchTableRecord LineBreak; 498 static MatchTableRecord Comment(StringRef Comment) { 499 return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment); 500 } 501 static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) { 502 unsigned ExtraFlags = 0; 503 if (IndentAdjust > 0) 504 ExtraFlags |= MatchTableRecord::MTRF_Indent; 505 if (IndentAdjust < 0) 506 ExtraFlags |= MatchTableRecord::MTRF_Outdent; 507 508 return MatchTableRecord(None, Opcode, 1, 509 MatchTableRecord::MTRF_CommaFollows | ExtraFlags); 510 } 511 static MatchTableRecord NamedValue(StringRef NamedValue) { 512 return MatchTableRecord(None, NamedValue, 1, 513 MatchTableRecord::MTRF_CommaFollows); 514 } 515 static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) { 516 return MatchTableRecord(None, NamedValue, 1, 517 MatchTableRecord::MTRF_CommaFollows, RawValue); 518 } 519 static MatchTableRecord NamedValue(StringRef Namespace, 520 StringRef NamedValue) { 521 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, 522 MatchTableRecord::MTRF_CommaFollows); 523 } 524 static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue, 525 int64_t RawValue) { 526 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, 527 MatchTableRecord::MTRF_CommaFollows, RawValue); 528 } 529 static MatchTableRecord IntValue(int64_t IntValue) { 530 return MatchTableRecord(None, llvm::to_string(IntValue), 1, 531 MatchTableRecord::MTRF_CommaFollows); 532 } 533 static MatchTableRecord Label(unsigned LabelID) { 534 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0, 535 MatchTableRecord::MTRF_Label | 536 MatchTableRecord::MTRF_Comment | 537 MatchTableRecord::MTRF_LineBreakFollows); 538 } 539 static MatchTableRecord JumpTarget(unsigned LabelID) { 540 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1, 541 MatchTableRecord::MTRF_JumpTarget | 542 MatchTableRecord::MTRF_Comment | 543 MatchTableRecord::MTRF_CommaFollows); 544 } 545 546 static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage); 547 548 MatchTable(bool WithCoverage, unsigned ID = 0) 549 : ID(ID), IsWithCoverage(WithCoverage) {} 550 551 bool isWithCoverage() const { return IsWithCoverage; } 552 553 void push_back(const MatchTableRecord &Value) { 554 if (Value.Flags & MatchTableRecord::MTRF_Label) 555 defineLabel(Value.LabelID); 556 Contents.push_back(Value); 557 CurrentSize += Value.size(); 558 } 559 560 unsigned allocateLabelID() { return CurrentLabelID++; } 561 562 void defineLabel(unsigned LabelID) { 563 LabelMap.insert(std::make_pair(LabelID, CurrentSize)); 564 } 565 566 unsigned getLabelIndex(unsigned LabelID) const { 567 const auto I = LabelMap.find(LabelID); 568 assert(I != LabelMap.end() && "Use of undeclared label"); 569 return I->second; 570 } 571 572 void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; } 573 574 void emitDeclaration(raw_ostream &OS) const { 575 unsigned Indentation = 4; 576 OS << " constexpr static int64_t MatchTable" << ID << "[] = {"; 577 LineBreak.emit(OS, true, *this); 578 OS << std::string(Indentation, ' '); 579 580 for (auto I = Contents.begin(), E = Contents.end(); I != E; 581 ++I) { 582 bool LineBreakIsNext = false; 583 const auto &NextI = std::next(I); 584 585 if (NextI != E) { 586 if (NextI->EmitStr == "" && 587 NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows) 588 LineBreakIsNext = true; 589 } 590 591 if (I->Flags & MatchTableRecord::MTRF_Indent) 592 Indentation += 2; 593 594 I->emit(OS, LineBreakIsNext, *this); 595 if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows) 596 OS << std::string(Indentation, ' '); 597 598 if (I->Flags & MatchTableRecord::MTRF_Outdent) 599 Indentation -= 2; 600 } 601 OS << "};\n"; 602 } 603 }; 604 605 MatchTableRecord MatchTable::LineBreak = { 606 None, "" /* Emit String */, 0 /* Elements */, 607 MatchTableRecord::MTRF_LineBreakFollows}; 608 609 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis, 610 const MatchTable &Table) const { 611 bool UseLineComment = 612 LineBreakIsNextAfterThis || (Flags & MTRF_LineBreakFollows); 613 if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows)) 614 UseLineComment = false; 615 616 if (Flags & MTRF_Comment) 617 OS << (UseLineComment ? "// " : "/*"); 618 619 OS << EmitStr; 620 if (Flags & MTRF_Label) 621 OS << ": @" << Table.getLabelIndex(LabelID); 622 623 if ((Flags & MTRF_Comment) && !UseLineComment) 624 OS << "*/"; 625 626 if (Flags & MTRF_JumpTarget) { 627 if (Flags & MTRF_Comment) 628 OS << " "; 629 OS << Table.getLabelIndex(LabelID); 630 } 631 632 if (Flags & MTRF_CommaFollows) { 633 OS << ","; 634 if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows)) 635 OS << " "; 636 } 637 638 if (Flags & MTRF_LineBreakFollows) 639 OS << "\n"; 640 } 641 642 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) { 643 Table.push_back(Value); 644 return Table; 645 } 646 647 //===- Matchers -----------------------------------------------------------===// 648 649 class OperandMatcher; 650 class MatchAction; 651 class PredicateMatcher; 652 class RuleMatcher; 653 654 class Matcher { 655 public: 656 virtual ~Matcher() = default; 657 virtual void optimize() {} 658 virtual void emit(MatchTable &Table) = 0; 659 660 virtual bool hasFirstCondition() const = 0; 661 virtual const PredicateMatcher &getFirstCondition() const = 0; 662 virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0; 663 }; 664 665 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules, 666 bool WithCoverage) { 667 MatchTable Table(WithCoverage); 668 for (Matcher *Rule : Rules) 669 Rule->emit(Table); 670 671 return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; 672 } 673 674 class GroupMatcher final : public Matcher { 675 /// Conditions that form a common prefix of all the matchers contained. 676 SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions; 677 678 /// All the nested matchers, sharing a common prefix. 679 std::vector<Matcher *> Matchers; 680 681 /// An owning collection for any auxiliary matchers created while optimizing 682 /// nested matchers contained. 683 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 684 685 public: 686 /// Add a matcher to the collection of nested matchers if it meets the 687 /// requirements, and return true. If it doesn't, do nothing and return false. 688 /// 689 /// Expected to preserve its argument, so it could be moved out later on. 690 bool addMatcher(Matcher &Candidate); 691 692 /// Mark the matcher as fully-built and ensure any invariants expected by both 693 /// optimize() and emit(...) methods. Generally, both sequences of calls 694 /// are expected to lead to a sensible result: 695 /// 696 /// addMatcher(...)*; finalize(); optimize(); emit(...); and 697 /// addMatcher(...)*; finalize(); emit(...); 698 /// 699 /// or generally 700 /// 701 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }* 702 /// 703 /// Multiple calls to optimize() are expected to be handled gracefully, though 704 /// optimize() is not expected to be idempotent. Multiple calls to finalize() 705 /// aren't generally supported. emit(...) is expected to be non-mutating and 706 /// producing the exact same results upon repeated calls. 707 /// 708 /// addMatcher() calls after the finalize() call are not supported. 709 /// 710 /// finalize() and optimize() are both allowed to mutate the contained 711 /// matchers, so moving them out after finalize() is not supported. 712 void finalize(); 713 void optimize() override; 714 void emit(MatchTable &Table) override; 715 716 /// Could be used to move out the matchers added previously, unless finalize() 717 /// has been already called. If any of the matchers are moved out, the group 718 /// becomes safe to destroy, but not safe to re-use for anything else. 719 iterator_range<std::vector<Matcher *>::iterator> matchers() { 720 return make_range(Matchers.begin(), Matchers.end()); 721 } 722 size_t size() const { return Matchers.size(); } 723 bool empty() const { return Matchers.empty(); } 724 725 std::unique_ptr<PredicateMatcher> popFirstCondition() override { 726 assert(!Conditions.empty() && 727 "Trying to pop a condition from a condition-less group"); 728 std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front()); 729 Conditions.erase(Conditions.begin()); 730 return P; 731 } 732 const PredicateMatcher &getFirstCondition() const override { 733 assert(!Conditions.empty() && 734 "Trying to get a condition from a condition-less group"); 735 return *Conditions.front(); 736 } 737 bool hasFirstCondition() const override { return !Conditions.empty(); } 738 739 private: 740 /// See if a candidate matcher could be added to this group solely by 741 /// analyzing its first condition. 742 bool candidateConditionMatches(const PredicateMatcher &Predicate) const; 743 }; 744 745 class SwitchMatcher : public Matcher { 746 /// All the nested matchers, representing distinct switch-cases. The first 747 /// conditions (as Matcher::getFirstCondition() reports) of all the nested 748 /// matchers must share the same type and path to a value they check, in other 749 /// words, be isIdenticalDownToValue, but have different values they check 750 /// against. 751 std::vector<Matcher *> Matchers; 752 753 /// The representative condition, with a type and a path (InsnVarID and OpIdx 754 /// in most cases) shared by all the matchers contained. 755 std::unique_ptr<PredicateMatcher> Condition = nullptr; 756 757 /// Temporary set used to check that the case values don't repeat within the 758 /// same switch. 759 std::set<MatchTableRecord> Values; 760 761 /// An owning collection for any auxiliary matchers created while optimizing 762 /// nested matchers contained. 763 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 764 765 public: 766 bool addMatcher(Matcher &Candidate); 767 768 void finalize(); 769 void emit(MatchTable &Table) override; 770 771 iterator_range<std::vector<Matcher *>::iterator> matchers() { 772 return make_range(Matchers.begin(), Matchers.end()); 773 } 774 size_t size() const { return Matchers.size(); } 775 bool empty() const { return Matchers.empty(); } 776 777 std::unique_ptr<PredicateMatcher> popFirstCondition() override { 778 // SwitchMatcher doesn't have a common first condition for its cases, as all 779 // the cases only share a kind of a value (a type and a path to it) they 780 // match, but deliberately differ in the actual value they match. 781 llvm_unreachable("Trying to pop a condition from a condition-less group"); 782 } 783 const PredicateMatcher &getFirstCondition() const override { 784 llvm_unreachable("Trying to pop a condition from a condition-less group"); 785 } 786 bool hasFirstCondition() const override { return false; } 787 788 private: 789 /// See if the predicate type has a Switch-implementation for it. 790 static bool isSupportedPredicateType(const PredicateMatcher &Predicate); 791 792 bool candidateConditionMatches(const PredicateMatcher &Predicate) const; 793 794 /// emit()-helper 795 static void emitPredicateSpecificOpcodes(const PredicateMatcher &P, 796 MatchTable &Table); 797 }; 798 799 /// Generates code to check that a match rule matches. 800 class RuleMatcher : public Matcher { 801 public: 802 using ActionList = std::list<std::unique_ptr<MatchAction>>; 803 using action_iterator = ActionList::iterator; 804 805 protected: 806 /// A list of matchers that all need to succeed for the current rule to match. 807 /// FIXME: This currently supports a single match position but could be 808 /// extended to support multiple positions to support div/rem fusion or 809 /// load-multiple instructions. 810 using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ; 811 MatchersTy Matchers; 812 813 /// A list of actions that need to be taken when all predicates in this rule 814 /// have succeeded. 815 ActionList Actions; 816 817 using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>; 818 819 /// A map of instruction matchers to the local variables 820 DefinedInsnVariablesMap InsnVariableIDs; 821 822 using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>; 823 824 // The set of instruction matchers that have not yet been claimed for mutation 825 // by a BuildMI. 826 MutatableInsnSet MutatableInsns; 827 828 /// A map of named operands defined by the matchers that may be referenced by 829 /// the renderers. 830 StringMap<OperandMatcher *> DefinedOperands; 831 832 /// A map of anonymous physical register operands defined by the matchers that 833 /// may be referenced by the renderers. 834 DenseMap<Record *, OperandMatcher *> PhysRegOperands; 835 836 /// ID for the next instruction variable defined with implicitlyDefineInsnVar() 837 unsigned NextInsnVarID; 838 839 /// ID for the next output instruction allocated with allocateOutputInsnID() 840 unsigned NextOutputInsnID; 841 842 /// ID for the next temporary register ID allocated with allocateTempRegID() 843 unsigned NextTempRegID; 844 845 std::vector<Record *> RequiredFeatures; 846 std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers; 847 848 ArrayRef<SMLoc> SrcLoc; 849 850 typedef std::tuple<Record *, unsigned, unsigned> 851 DefinedComplexPatternSubOperand; 852 typedef StringMap<DefinedComplexPatternSubOperand> 853 DefinedComplexPatternSubOperandMap; 854 /// A map of Symbolic Names to ComplexPattern sub-operands. 855 DefinedComplexPatternSubOperandMap ComplexSubOperands; 856 857 uint64_t RuleID; 858 static uint64_t NextRuleID; 859 860 public: 861 RuleMatcher(ArrayRef<SMLoc> SrcLoc) 862 : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(), 863 DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0), 864 NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(), 865 RuleID(NextRuleID++) {} 866 RuleMatcher(RuleMatcher &&Other) = default; 867 RuleMatcher &operator=(RuleMatcher &&Other) = default; 868 869 uint64_t getRuleID() const { return RuleID; } 870 871 InstructionMatcher &addInstructionMatcher(StringRef SymbolicName); 872 void addRequiredFeature(Record *Feature); 873 const std::vector<Record *> &getRequiredFeatures() const; 874 875 template <class Kind, class... Args> Kind &addAction(Args &&... args); 876 template <class Kind, class... Args> 877 action_iterator insertAction(action_iterator InsertPt, Args &&... args); 878 879 /// Define an instruction without emitting any code to do so. 880 unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher); 881 882 unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const; 883 DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const { 884 return InsnVariableIDs.begin(); 885 } 886 DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const { 887 return InsnVariableIDs.end(); 888 } 889 iterator_range<typename DefinedInsnVariablesMap::const_iterator> 890 defined_insn_vars() const { 891 return make_range(defined_insn_vars_begin(), defined_insn_vars_end()); 892 } 893 894 MutatableInsnSet::const_iterator mutatable_insns_begin() const { 895 return MutatableInsns.begin(); 896 } 897 MutatableInsnSet::const_iterator mutatable_insns_end() const { 898 return MutatableInsns.end(); 899 } 900 iterator_range<typename MutatableInsnSet::const_iterator> 901 mutatable_insns() const { 902 return make_range(mutatable_insns_begin(), mutatable_insns_end()); 903 } 904 void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) { 905 bool R = MutatableInsns.erase(InsnMatcher); 906 assert(R && "Reserving a mutatable insn that isn't available"); 907 (void)R; 908 } 909 910 action_iterator actions_begin() { return Actions.begin(); } 911 action_iterator actions_end() { return Actions.end(); } 912 iterator_range<action_iterator> actions() { 913 return make_range(actions_begin(), actions_end()); 914 } 915 916 void defineOperand(StringRef SymbolicName, OperandMatcher &OM); 917 918 void definePhysRegOperand(Record *Reg, OperandMatcher &OM); 919 920 Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern, 921 unsigned RendererID, unsigned SubOperandID) { 922 if (ComplexSubOperands.count(SymbolicName)) 923 return failedImport( 924 "Complex suboperand referenced more than once (Operand: " + 925 SymbolicName + ")"); 926 927 ComplexSubOperands[SymbolicName] = 928 std::make_tuple(ComplexPattern, RendererID, SubOperandID); 929 930 return Error::success(); 931 } 932 933 Optional<DefinedComplexPatternSubOperand> 934 getComplexSubOperand(StringRef SymbolicName) const { 935 const auto &I = ComplexSubOperands.find(SymbolicName); 936 if (I == ComplexSubOperands.end()) 937 return None; 938 return I->second; 939 } 940 941 InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const; 942 const OperandMatcher &getOperandMatcher(StringRef Name) const; 943 const OperandMatcher &getPhysRegOperandMatcher(Record *) const; 944 945 void optimize() override; 946 void emit(MatchTable &Table) override; 947 948 /// Compare the priority of this object and B. 949 /// 950 /// Returns true if this object is more important than B. 951 bool isHigherPriorityThan(const RuleMatcher &B) const; 952 953 /// Report the maximum number of temporary operands needed by the rule 954 /// matcher. 955 unsigned countRendererFns() const; 956 957 std::unique_ptr<PredicateMatcher> popFirstCondition() override; 958 const PredicateMatcher &getFirstCondition() const override; 959 LLTCodeGen getFirstConditionAsRootType(); 960 bool hasFirstCondition() const override; 961 unsigned getNumOperands() const; 962 StringRef getOpcode() const; 963 964 // FIXME: Remove this as soon as possible 965 InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); } 966 967 unsigned allocateOutputInsnID() { return NextOutputInsnID++; } 968 unsigned allocateTempRegID() { return NextTempRegID++; } 969 970 iterator_range<MatchersTy::iterator> insnmatchers() { 971 return make_range(Matchers.begin(), Matchers.end()); 972 } 973 bool insnmatchers_empty() const { return Matchers.empty(); } 974 void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); } 975 }; 976 977 uint64_t RuleMatcher::NextRuleID = 0; 978 979 using action_iterator = RuleMatcher::action_iterator; 980 981 template <class PredicateTy> class PredicateListMatcher { 982 private: 983 /// Template instantiations should specialize this to return a string to use 984 /// for the comment emitted when there are no predicates. 985 std::string getNoPredicateComment() const; 986 987 protected: 988 using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>; 989 PredicatesTy Predicates; 990 991 /// Track if the list of predicates was manipulated by one of the optimization 992 /// methods. 993 bool Optimized = false; 994 995 public: 996 /// Construct a new predicate and add it to the matcher. 997 template <class Kind, class... Args> 998 Optional<Kind *> addPredicate(Args &&... args); 999 1000 typename PredicatesTy::iterator predicates_begin() { 1001 return Predicates.begin(); 1002 } 1003 typename PredicatesTy::iterator predicates_end() { 1004 return Predicates.end(); 1005 } 1006 iterator_range<typename PredicatesTy::iterator> predicates() { 1007 return make_range(predicates_begin(), predicates_end()); 1008 } 1009 typename PredicatesTy::size_type predicates_size() const { 1010 return Predicates.size(); 1011 } 1012 bool predicates_empty() const { return Predicates.empty(); } 1013 1014 std::unique_ptr<PredicateTy> predicates_pop_front() { 1015 std::unique_ptr<PredicateTy> Front = std::move(Predicates.front()); 1016 Predicates.pop_front(); 1017 Optimized = true; 1018 return Front; 1019 } 1020 1021 void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) { 1022 Predicates.push_front(std::move(Predicate)); 1023 } 1024 1025 void eraseNullPredicates() { 1026 const auto NewEnd = 1027 std::stable_partition(Predicates.begin(), Predicates.end(), 1028 std::logical_not<std::unique_ptr<PredicateTy>>()); 1029 if (NewEnd != Predicates.begin()) { 1030 Predicates.erase(Predicates.begin(), NewEnd); 1031 Optimized = true; 1032 } 1033 } 1034 1035 /// Emit MatchTable opcodes that tests whether all the predicates are met. 1036 template <class... Args> 1037 void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) { 1038 if (Predicates.empty() && !Optimized) { 1039 Table << MatchTable::Comment(getNoPredicateComment()) 1040 << MatchTable::LineBreak; 1041 return; 1042 } 1043 1044 for (const auto &Predicate : predicates()) 1045 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...); 1046 } 1047 }; 1048 1049 class PredicateMatcher { 1050 public: 1051 /// This enum is used for RTTI and also defines the priority that is given to 1052 /// the predicate when generating the matcher code. Kinds with higher priority 1053 /// must be tested first. 1054 /// 1055 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter 1056 /// but OPM_Int must have priority over OPM_RegBank since constant integers 1057 /// are represented by a virtual register defined by a G_CONSTANT instruction. 1058 /// 1059 /// Note: The relative priority between IPM_ and OPM_ does not matter, they 1060 /// are currently not compared between each other. 1061 enum PredicateKind { 1062 IPM_Opcode, 1063 IPM_NumOperands, 1064 IPM_ImmPredicate, 1065 IPM_Imm, 1066 IPM_AtomicOrderingMMO, 1067 IPM_MemoryLLTSize, 1068 IPM_MemoryVsLLTSize, 1069 IPM_MemoryAddressSpace, 1070 IPM_MemoryAlignment, 1071 IPM_GenericPredicate, 1072 OPM_SameOperand, 1073 OPM_ComplexPattern, 1074 OPM_IntrinsicID, 1075 OPM_CmpPredicate, 1076 OPM_Instruction, 1077 OPM_Int, 1078 OPM_LiteralInt, 1079 OPM_LLT, 1080 OPM_PointerToAny, 1081 OPM_RegBank, 1082 OPM_MBB, 1083 }; 1084 1085 protected: 1086 PredicateKind Kind; 1087 unsigned InsnVarID; 1088 unsigned OpIdx; 1089 1090 public: 1091 PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0) 1092 : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {} 1093 1094 unsigned getInsnVarID() const { return InsnVarID; } 1095 unsigned getOpIdx() const { return OpIdx; } 1096 1097 virtual ~PredicateMatcher() = default; 1098 /// Emit MatchTable opcodes that check the predicate for the given operand. 1099 virtual void emitPredicateOpcodes(MatchTable &Table, 1100 RuleMatcher &Rule) const = 0; 1101 1102 PredicateKind getKind() const { return Kind; } 1103 1104 virtual bool isIdentical(const PredicateMatcher &B) const { 1105 return B.getKind() == getKind() && InsnVarID == B.InsnVarID && 1106 OpIdx == B.OpIdx; 1107 } 1108 1109 virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const { 1110 return hasValue() && PredicateMatcher::isIdentical(B); 1111 } 1112 1113 virtual MatchTableRecord getValue() const { 1114 assert(hasValue() && "Can not get a value of a value-less predicate!"); 1115 llvm_unreachable("Not implemented yet"); 1116 } 1117 virtual bool hasValue() const { return false; } 1118 1119 /// Report the maximum number of temporary operands needed by the predicate 1120 /// matcher. 1121 virtual unsigned countRendererFns() const { return 0; } 1122 }; 1123 1124 /// Generates code to check a predicate of an operand. 1125 /// 1126 /// Typical predicates include: 1127 /// * Operand is a particular register. 1128 /// * Operand is assigned a particular register bank. 1129 /// * Operand is an MBB. 1130 class OperandPredicateMatcher : public PredicateMatcher { 1131 public: 1132 OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID, 1133 unsigned OpIdx) 1134 : PredicateMatcher(Kind, InsnVarID, OpIdx) {} 1135 virtual ~OperandPredicateMatcher() {} 1136 1137 /// Compare the priority of this object and B. 1138 /// 1139 /// Returns true if this object is more important than B. 1140 virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const; 1141 }; 1142 1143 template <> 1144 std::string 1145 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const { 1146 return "No operand predicates"; 1147 } 1148 1149 /// Generates code to check that a register operand is defined by the same exact 1150 /// one as another. 1151 class SameOperandMatcher : public OperandPredicateMatcher { 1152 std::string MatchingName; 1153 1154 public: 1155 SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName) 1156 : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx), 1157 MatchingName(MatchingName) {} 1158 1159 static bool classof(const PredicateMatcher *P) { 1160 return P->getKind() == OPM_SameOperand; 1161 } 1162 1163 void emitPredicateOpcodes(MatchTable &Table, 1164 RuleMatcher &Rule) const override; 1165 1166 bool isIdentical(const PredicateMatcher &B) const override { 1167 return OperandPredicateMatcher::isIdentical(B) && 1168 MatchingName == cast<SameOperandMatcher>(&B)->MatchingName; 1169 } 1170 }; 1171 1172 /// Generates code to check that an operand is a particular LLT. 1173 class LLTOperandMatcher : public OperandPredicateMatcher { 1174 protected: 1175 LLTCodeGen Ty; 1176 1177 public: 1178 static std::map<LLTCodeGen, unsigned> TypeIDValues; 1179 1180 static void initTypeIDValuesMap() { 1181 TypeIDValues.clear(); 1182 1183 unsigned ID = 0; 1184 for (const LLTCodeGen &LLTy : KnownTypes) 1185 TypeIDValues[LLTy] = ID++; 1186 } 1187 1188 LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty) 1189 : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) { 1190 KnownTypes.insert(Ty); 1191 } 1192 1193 static bool classof(const PredicateMatcher *P) { 1194 return P->getKind() == OPM_LLT; 1195 } 1196 bool isIdentical(const PredicateMatcher &B) const override { 1197 return OperandPredicateMatcher::isIdentical(B) && 1198 Ty == cast<LLTOperandMatcher>(&B)->Ty; 1199 } 1200 MatchTableRecord getValue() const override { 1201 const auto VI = TypeIDValues.find(Ty); 1202 if (VI == TypeIDValues.end()) 1203 return MatchTable::NamedValue(getTy().getCxxEnumValue()); 1204 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second); 1205 } 1206 bool hasValue() const override { 1207 if (TypeIDValues.size() != KnownTypes.size()) 1208 initTypeIDValuesMap(); 1209 return TypeIDValues.count(Ty); 1210 } 1211 1212 LLTCodeGen getTy() const { return Ty; } 1213 1214 void emitPredicateOpcodes(MatchTable &Table, 1215 RuleMatcher &Rule) const override { 1216 Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI") 1217 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1218 << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type") 1219 << getValue() << MatchTable::LineBreak; 1220 } 1221 }; 1222 1223 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues; 1224 1225 /// Generates code to check that an operand is a pointer to any address space. 1226 /// 1227 /// In SelectionDAG, the types did not describe pointers or address spaces. As a 1228 /// result, iN is used to describe a pointer of N bits to any address space and 1229 /// PatFrag predicates are typically used to constrain the address space. There's 1230 /// no reliable means to derive the missing type information from the pattern so 1231 /// imported rules must test the components of a pointer separately. 1232 /// 1233 /// If SizeInBits is zero, then the pointer size will be obtained from the 1234 /// subtarget. 1235 class PointerToAnyOperandMatcher : public OperandPredicateMatcher { 1236 protected: 1237 unsigned SizeInBits; 1238 1239 public: 1240 PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1241 unsigned SizeInBits) 1242 : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx), 1243 SizeInBits(SizeInBits) {} 1244 1245 static bool classof(const OperandPredicateMatcher *P) { 1246 return P->getKind() == OPM_PointerToAny; 1247 } 1248 1249 void emitPredicateOpcodes(MatchTable &Table, 1250 RuleMatcher &Rule) const override { 1251 Table << MatchTable::Opcode("GIM_CheckPointerToAny") 1252 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1253 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1254 << MatchTable::Comment("SizeInBits") 1255 << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak; 1256 } 1257 }; 1258 1259 /// Generates code to check that an operand is a particular target constant. 1260 class ComplexPatternOperandMatcher : public OperandPredicateMatcher { 1261 protected: 1262 const OperandMatcher &Operand; 1263 const Record &TheDef; 1264 1265 unsigned getAllocatedTemporariesBaseID() const; 1266 1267 public: 1268 bool isIdentical(const PredicateMatcher &B) const override { return false; } 1269 1270 ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1271 const OperandMatcher &Operand, 1272 const Record &TheDef) 1273 : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx), 1274 Operand(Operand), TheDef(TheDef) {} 1275 1276 static bool classof(const PredicateMatcher *P) { 1277 return P->getKind() == OPM_ComplexPattern; 1278 } 1279 1280 void emitPredicateOpcodes(MatchTable &Table, 1281 RuleMatcher &Rule) const override { 1282 unsigned ID = getAllocatedTemporariesBaseID(); 1283 Table << MatchTable::Opcode("GIM_CheckComplexPattern") 1284 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1285 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1286 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID) 1287 << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str()) 1288 << MatchTable::LineBreak; 1289 } 1290 1291 unsigned countRendererFns() const override { 1292 return 1; 1293 } 1294 }; 1295 1296 /// Generates code to check that an operand is in a particular register bank. 1297 class RegisterBankOperandMatcher : public OperandPredicateMatcher { 1298 protected: 1299 const CodeGenRegisterClass &RC; 1300 1301 public: 1302 RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1303 const CodeGenRegisterClass &RC) 1304 : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {} 1305 1306 bool isIdentical(const PredicateMatcher &B) const override { 1307 return OperandPredicateMatcher::isIdentical(B) && 1308 RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef(); 1309 } 1310 1311 static bool classof(const PredicateMatcher *P) { 1312 return P->getKind() == OPM_RegBank; 1313 } 1314 1315 void emitPredicateOpcodes(MatchTable &Table, 1316 RuleMatcher &Rule) const override { 1317 Table << MatchTable::Opcode("GIM_CheckRegBankForClass") 1318 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1319 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1320 << MatchTable::Comment("RC") 1321 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") 1322 << MatchTable::LineBreak; 1323 } 1324 }; 1325 1326 /// Generates code to check that an operand is a basic block. 1327 class MBBOperandMatcher : public OperandPredicateMatcher { 1328 public: 1329 MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx) 1330 : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {} 1331 1332 static bool classof(const PredicateMatcher *P) { 1333 return P->getKind() == OPM_MBB; 1334 } 1335 1336 void emitPredicateOpcodes(MatchTable &Table, 1337 RuleMatcher &Rule) const override { 1338 Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI") 1339 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1340 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; 1341 } 1342 }; 1343 1344 class ImmOperandMatcher : public OperandPredicateMatcher { 1345 public: 1346 ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx) 1347 : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {} 1348 1349 static bool classof(const PredicateMatcher *P) { 1350 return P->getKind() == IPM_Imm; 1351 } 1352 1353 void emitPredicateOpcodes(MatchTable &Table, 1354 RuleMatcher &Rule) const override { 1355 Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI") 1356 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1357 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; 1358 } 1359 }; 1360 1361 /// Generates code to check that an operand is a G_CONSTANT with a particular 1362 /// int. 1363 class ConstantIntOperandMatcher : public OperandPredicateMatcher { 1364 protected: 1365 int64_t Value; 1366 1367 public: 1368 ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) 1369 : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {} 1370 1371 bool isIdentical(const PredicateMatcher &B) const override { 1372 return OperandPredicateMatcher::isIdentical(B) && 1373 Value == cast<ConstantIntOperandMatcher>(&B)->Value; 1374 } 1375 1376 static bool classof(const PredicateMatcher *P) { 1377 return P->getKind() == OPM_Int; 1378 } 1379 1380 void emitPredicateOpcodes(MatchTable &Table, 1381 RuleMatcher &Rule) const override { 1382 Table << MatchTable::Opcode("GIM_CheckConstantInt") 1383 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1384 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1385 << MatchTable::IntValue(Value) << MatchTable::LineBreak; 1386 } 1387 }; 1388 1389 /// Generates code to check that an operand is a raw int (where MO.isImm() or 1390 /// MO.isCImm() is true). 1391 class LiteralIntOperandMatcher : public OperandPredicateMatcher { 1392 protected: 1393 int64_t Value; 1394 1395 public: 1396 LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) 1397 : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx), 1398 Value(Value) {} 1399 1400 bool isIdentical(const PredicateMatcher &B) const override { 1401 return OperandPredicateMatcher::isIdentical(B) && 1402 Value == cast<LiteralIntOperandMatcher>(&B)->Value; 1403 } 1404 1405 static bool classof(const PredicateMatcher *P) { 1406 return P->getKind() == OPM_LiteralInt; 1407 } 1408 1409 void emitPredicateOpcodes(MatchTable &Table, 1410 RuleMatcher &Rule) const override { 1411 Table << MatchTable::Opcode("GIM_CheckLiteralInt") 1412 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1413 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1414 << MatchTable::IntValue(Value) << MatchTable::LineBreak; 1415 } 1416 }; 1417 1418 /// Generates code to check that an operand is an CmpInst predicate 1419 class CmpPredicateOperandMatcher : public OperandPredicateMatcher { 1420 protected: 1421 std::string PredName; 1422 1423 public: 1424 CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1425 std::string P) 1426 : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {} 1427 1428 bool isIdentical(const PredicateMatcher &B) const override { 1429 return OperandPredicateMatcher::isIdentical(B) && 1430 PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName; 1431 } 1432 1433 static bool classof(const PredicateMatcher *P) { 1434 return P->getKind() == OPM_CmpPredicate; 1435 } 1436 1437 void emitPredicateOpcodes(MatchTable &Table, 1438 RuleMatcher &Rule) const override { 1439 Table << MatchTable::Opcode("GIM_CheckCmpPredicate") 1440 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1441 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1442 << MatchTable::Comment("Predicate") 1443 << MatchTable::NamedValue("CmpInst", PredName) 1444 << MatchTable::LineBreak; 1445 } 1446 }; 1447 1448 /// Generates code to check that an operand is an intrinsic ID. 1449 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher { 1450 protected: 1451 const CodeGenIntrinsic *II; 1452 1453 public: 1454 IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1455 const CodeGenIntrinsic *II) 1456 : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {} 1457 1458 bool isIdentical(const PredicateMatcher &B) const override { 1459 return OperandPredicateMatcher::isIdentical(B) && 1460 II == cast<IntrinsicIDOperandMatcher>(&B)->II; 1461 } 1462 1463 static bool classof(const PredicateMatcher *P) { 1464 return P->getKind() == OPM_IntrinsicID; 1465 } 1466 1467 void emitPredicateOpcodes(MatchTable &Table, 1468 RuleMatcher &Rule) const override { 1469 Table << MatchTable::Opcode("GIM_CheckIntrinsicID") 1470 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1471 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1472 << MatchTable::NamedValue("Intrinsic::" + II->EnumName) 1473 << MatchTable::LineBreak; 1474 } 1475 }; 1476 1477 /// Generates code to check that a set of predicates match for a particular 1478 /// operand. 1479 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> { 1480 protected: 1481 InstructionMatcher &Insn; 1482 unsigned OpIdx; 1483 std::string SymbolicName; 1484 1485 /// The index of the first temporary variable allocated to this operand. The 1486 /// number of allocated temporaries can be found with 1487 /// countRendererFns(). 1488 unsigned AllocatedTemporariesBaseID; 1489 1490 public: 1491 OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx, 1492 const std::string &SymbolicName, 1493 unsigned AllocatedTemporariesBaseID) 1494 : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName), 1495 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {} 1496 1497 bool hasSymbolicName() const { return !SymbolicName.empty(); } 1498 const StringRef getSymbolicName() const { return SymbolicName; } 1499 void setSymbolicName(StringRef Name) { 1500 assert(SymbolicName.empty() && "Operand already has a symbolic name"); 1501 SymbolicName = Name; 1502 } 1503 1504 /// Construct a new operand predicate and add it to the matcher. 1505 template <class Kind, class... Args> 1506 Optional<Kind *> addPredicate(Args &&... args) { 1507 if (isSameAsAnotherOperand()) 1508 return None; 1509 Predicates.emplace_back(std::make_unique<Kind>( 1510 getInsnVarID(), getOpIdx(), std::forward<Args>(args)...)); 1511 return static_cast<Kind *>(Predicates.back().get()); 1512 } 1513 1514 unsigned getOpIdx() const { return OpIdx; } 1515 unsigned getInsnVarID() const; 1516 1517 std::string getOperandExpr(unsigned InsnVarID) const { 1518 return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" + 1519 llvm::to_string(OpIdx) + ")"; 1520 } 1521 1522 InstructionMatcher &getInstructionMatcher() const { return Insn; } 1523 1524 Error addTypeCheckPredicate(const TypeSetByHwMode &VTy, 1525 bool OperandIsAPointer); 1526 1527 /// Emit MatchTable opcodes that test whether the instruction named in 1528 /// InsnVarID matches all the predicates and all the operands. 1529 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { 1530 if (!Optimized) { 1531 std::string Comment; 1532 raw_string_ostream CommentOS(Comment); 1533 CommentOS << "MIs[" << getInsnVarID() << "] "; 1534 if (SymbolicName.empty()) 1535 CommentOS << "Operand " << OpIdx; 1536 else 1537 CommentOS << SymbolicName; 1538 Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak; 1539 } 1540 1541 emitPredicateListOpcodes(Table, Rule); 1542 } 1543 1544 /// Compare the priority of this object and B. 1545 /// 1546 /// Returns true if this object is more important than B. 1547 bool isHigherPriorityThan(OperandMatcher &B) { 1548 // Operand matchers involving more predicates have higher priority. 1549 if (predicates_size() > B.predicates_size()) 1550 return true; 1551 if (predicates_size() < B.predicates_size()) 1552 return false; 1553 1554 // This assumes that predicates are added in a consistent order. 1555 for (auto &&Predicate : zip(predicates(), B.predicates())) { 1556 if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate))) 1557 return true; 1558 if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate))) 1559 return false; 1560 } 1561 1562 return false; 1563 }; 1564 1565 /// Report the maximum number of temporary operands needed by the operand 1566 /// matcher. 1567 unsigned countRendererFns() { 1568 return std::accumulate( 1569 predicates().begin(), predicates().end(), 0, 1570 [](unsigned A, 1571 const std::unique_ptr<OperandPredicateMatcher> &Predicate) { 1572 return A + Predicate->countRendererFns(); 1573 }); 1574 } 1575 1576 unsigned getAllocatedTemporariesBaseID() const { 1577 return AllocatedTemporariesBaseID; 1578 } 1579 1580 bool isSameAsAnotherOperand() { 1581 for (const auto &Predicate : predicates()) 1582 if (isa<SameOperandMatcher>(Predicate)) 1583 return true; 1584 return false; 1585 } 1586 }; 1587 1588 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy, 1589 bool OperandIsAPointer) { 1590 if (!VTy.isMachineValueType()) 1591 return failedImport("unsupported typeset"); 1592 1593 if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) { 1594 addPredicate<PointerToAnyOperandMatcher>(0); 1595 return Error::success(); 1596 } 1597 1598 auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy); 1599 if (!OpTyOrNone) 1600 return failedImport("unsupported type"); 1601 1602 if (OperandIsAPointer) 1603 addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits()); 1604 else if (VTy.isPointer()) 1605 addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(), 1606 OpTyOrNone->get().getSizeInBits())); 1607 else 1608 addPredicate<LLTOperandMatcher>(*OpTyOrNone); 1609 return Error::success(); 1610 } 1611 1612 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const { 1613 return Operand.getAllocatedTemporariesBaseID(); 1614 } 1615 1616 /// Generates code to check a predicate on an instruction. 1617 /// 1618 /// Typical predicates include: 1619 /// * The opcode of the instruction is a particular value. 1620 /// * The nsw/nuw flag is/isn't set. 1621 class InstructionPredicateMatcher : public PredicateMatcher { 1622 public: 1623 InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID) 1624 : PredicateMatcher(Kind, InsnVarID) {} 1625 virtual ~InstructionPredicateMatcher() {} 1626 1627 /// Compare the priority of this object and B. 1628 /// 1629 /// Returns true if this object is more important than B. 1630 virtual bool 1631 isHigherPriorityThan(const InstructionPredicateMatcher &B) const { 1632 return Kind < B.Kind; 1633 }; 1634 }; 1635 1636 template <> 1637 std::string 1638 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const { 1639 return "No instruction predicates"; 1640 } 1641 1642 /// Generates code to check the opcode of an instruction. 1643 class InstructionOpcodeMatcher : public InstructionPredicateMatcher { 1644 protected: 1645 const CodeGenInstruction *I; 1646 1647 static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues; 1648 1649 public: 1650 static void initOpcodeValuesMap(const CodeGenTarget &Target) { 1651 OpcodeValues.clear(); 1652 1653 unsigned OpcodeValue = 0; 1654 for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue()) 1655 OpcodeValues[I] = OpcodeValue++; 1656 } 1657 1658 InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I) 1659 : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {} 1660 1661 static bool classof(const PredicateMatcher *P) { 1662 return P->getKind() == IPM_Opcode; 1663 } 1664 1665 bool isIdentical(const PredicateMatcher &B) const override { 1666 return InstructionPredicateMatcher::isIdentical(B) && 1667 I == cast<InstructionOpcodeMatcher>(&B)->I; 1668 } 1669 MatchTableRecord getValue() const override { 1670 const auto VI = OpcodeValues.find(I); 1671 if (VI != OpcodeValues.end()) 1672 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(), 1673 VI->second); 1674 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName()); 1675 } 1676 bool hasValue() const override { return OpcodeValues.count(I); } 1677 1678 void emitPredicateOpcodes(MatchTable &Table, 1679 RuleMatcher &Rule) const override { 1680 Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI") 1681 << MatchTable::IntValue(InsnVarID) << getValue() 1682 << MatchTable::LineBreak; 1683 } 1684 1685 /// Compare the priority of this object and B. 1686 /// 1687 /// Returns true if this object is more important than B. 1688 bool 1689 isHigherPriorityThan(const InstructionPredicateMatcher &B) const override { 1690 if (InstructionPredicateMatcher::isHigherPriorityThan(B)) 1691 return true; 1692 if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this)) 1693 return false; 1694 1695 // Prioritize opcodes for cosmetic reasons in the generated source. Although 1696 // this is cosmetic at the moment, we may want to drive a similar ordering 1697 // using instruction frequency information to improve compile time. 1698 if (const InstructionOpcodeMatcher *BO = 1699 dyn_cast<InstructionOpcodeMatcher>(&B)) 1700 return I->TheDef->getName() < BO->I->TheDef->getName(); 1701 1702 return false; 1703 }; 1704 1705 bool isConstantInstruction() const { 1706 return I->TheDef->getName() == "G_CONSTANT"; 1707 } 1708 1709 StringRef getOpcode() const { return I->TheDef->getName(); } 1710 bool isVariadicNumOperands() const { return I->Operands.isVariadic; } 1711 1712 StringRef getOperandType(unsigned OpIdx) const { 1713 return I->Operands[OpIdx].OperandType; 1714 } 1715 }; 1716 1717 DenseMap<const CodeGenInstruction *, unsigned> 1718 InstructionOpcodeMatcher::OpcodeValues; 1719 1720 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher { 1721 unsigned NumOperands = 0; 1722 1723 public: 1724 InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands) 1725 : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID), 1726 NumOperands(NumOperands) {} 1727 1728 static bool classof(const PredicateMatcher *P) { 1729 return P->getKind() == IPM_NumOperands; 1730 } 1731 1732 bool isIdentical(const PredicateMatcher &B) const override { 1733 return InstructionPredicateMatcher::isIdentical(B) && 1734 NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands; 1735 } 1736 1737 void emitPredicateOpcodes(MatchTable &Table, 1738 RuleMatcher &Rule) const override { 1739 Table << MatchTable::Opcode("GIM_CheckNumOperands") 1740 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1741 << MatchTable::Comment("Expected") 1742 << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak; 1743 } 1744 }; 1745 1746 /// Generates code to check that this instruction is a constant whose value 1747 /// meets an immediate predicate. 1748 /// 1749 /// Immediates are slightly odd since they are typically used like an operand 1750 /// but are represented as an operator internally. We typically write simm8:$src 1751 /// in a tablegen pattern, but this is just syntactic sugar for 1752 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes 1753 /// that will be matched and the predicate (which is attached to the imm 1754 /// operator) that will be tested. In SelectionDAG this describes a 1755 /// ConstantSDNode whose internal value will be tested using the simm8 predicate. 1756 /// 1757 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In 1758 /// this representation, the immediate could be tested with an 1759 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a 1760 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but 1761 /// there are two implementation issues with producing that matcher 1762 /// configuration from the SelectionDAG pattern: 1763 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that 1764 /// were we to sink the immediate predicate to the operand we would have to 1765 /// have two partial implementations of PatFrag support, one for immediates 1766 /// and one for non-immediates. 1767 /// * At the point we handle the predicate, the OperandMatcher hasn't been 1768 /// created yet. If we were to sink the predicate to the OperandMatcher we 1769 /// would also have to complicate (or duplicate) the code that descends and 1770 /// creates matchers for the subtree. 1771 /// Overall, it's simpler to handle it in the place it was found. 1772 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher { 1773 protected: 1774 TreePredicateFn Predicate; 1775 1776 public: 1777 InstructionImmPredicateMatcher(unsigned InsnVarID, 1778 const TreePredicateFn &Predicate) 1779 : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID), 1780 Predicate(Predicate) {} 1781 1782 bool isIdentical(const PredicateMatcher &B) const override { 1783 return InstructionPredicateMatcher::isIdentical(B) && 1784 Predicate.getOrigPatFragRecord() == 1785 cast<InstructionImmPredicateMatcher>(&B) 1786 ->Predicate.getOrigPatFragRecord(); 1787 } 1788 1789 static bool classof(const PredicateMatcher *P) { 1790 return P->getKind() == IPM_ImmPredicate; 1791 } 1792 1793 void emitPredicateOpcodes(MatchTable &Table, 1794 RuleMatcher &Rule) const override { 1795 Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate)) 1796 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1797 << MatchTable::Comment("Predicate") 1798 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 1799 << MatchTable::LineBreak; 1800 } 1801 }; 1802 1803 /// Generates code to check that a memory instruction has a atomic ordering 1804 /// MachineMemoryOperand. 1805 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher { 1806 public: 1807 enum AOComparator { 1808 AO_Exactly, 1809 AO_OrStronger, 1810 AO_WeakerThan, 1811 }; 1812 1813 protected: 1814 StringRef Order; 1815 AOComparator Comparator; 1816 1817 public: 1818 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order, 1819 AOComparator Comparator = AO_Exactly) 1820 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID), 1821 Order(Order), Comparator(Comparator) {} 1822 1823 static bool classof(const PredicateMatcher *P) { 1824 return P->getKind() == IPM_AtomicOrderingMMO; 1825 } 1826 1827 bool isIdentical(const PredicateMatcher &B) const override { 1828 if (!InstructionPredicateMatcher::isIdentical(B)) 1829 return false; 1830 const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B); 1831 return Order == R.Order && Comparator == R.Comparator; 1832 } 1833 1834 void emitPredicateOpcodes(MatchTable &Table, 1835 RuleMatcher &Rule) const override { 1836 StringRef Opcode = "GIM_CheckAtomicOrdering"; 1837 1838 if (Comparator == AO_OrStronger) 1839 Opcode = "GIM_CheckAtomicOrderingOrStrongerThan"; 1840 if (Comparator == AO_WeakerThan) 1841 Opcode = "GIM_CheckAtomicOrderingWeakerThan"; 1842 1843 Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI") 1844 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order") 1845 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str()) 1846 << MatchTable::LineBreak; 1847 } 1848 }; 1849 1850 /// Generates code to check that the size of an MMO is exactly N bytes. 1851 class MemorySizePredicateMatcher : public InstructionPredicateMatcher { 1852 protected: 1853 unsigned MMOIdx; 1854 uint64_t Size; 1855 1856 public: 1857 MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size) 1858 : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID), 1859 MMOIdx(MMOIdx), Size(Size) {} 1860 1861 static bool classof(const PredicateMatcher *P) { 1862 return P->getKind() == IPM_MemoryLLTSize; 1863 } 1864 bool isIdentical(const PredicateMatcher &B) const override { 1865 return InstructionPredicateMatcher::isIdentical(B) && 1866 MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx && 1867 Size == cast<MemorySizePredicateMatcher>(&B)->Size; 1868 } 1869 1870 void emitPredicateOpcodes(MatchTable &Table, 1871 RuleMatcher &Rule) const override { 1872 Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo") 1873 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1874 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 1875 << MatchTable::Comment("Size") << MatchTable::IntValue(Size) 1876 << MatchTable::LineBreak; 1877 } 1878 }; 1879 1880 class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher { 1881 protected: 1882 unsigned MMOIdx; 1883 SmallVector<unsigned, 4> AddrSpaces; 1884 1885 public: 1886 MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 1887 ArrayRef<unsigned> AddrSpaces) 1888 : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID), 1889 MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {} 1890 1891 static bool classof(const PredicateMatcher *P) { 1892 return P->getKind() == IPM_MemoryAddressSpace; 1893 } 1894 bool isIdentical(const PredicateMatcher &B) const override { 1895 if (!InstructionPredicateMatcher::isIdentical(B)) 1896 return false; 1897 auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B); 1898 return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces; 1899 } 1900 1901 void emitPredicateOpcodes(MatchTable &Table, 1902 RuleMatcher &Rule) const override { 1903 Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace") 1904 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1905 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 1906 // Encode number of address spaces to expect. 1907 << MatchTable::Comment("NumAddrSpace") 1908 << MatchTable::IntValue(AddrSpaces.size()); 1909 for (unsigned AS : AddrSpaces) 1910 Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS); 1911 1912 Table << MatchTable::LineBreak; 1913 } 1914 }; 1915 1916 class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher { 1917 protected: 1918 unsigned MMOIdx; 1919 int MinAlign; 1920 1921 public: 1922 MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 1923 int MinAlign) 1924 : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID), 1925 MMOIdx(MMOIdx), MinAlign(MinAlign) { 1926 assert(MinAlign > 0); 1927 } 1928 1929 static bool classof(const PredicateMatcher *P) { 1930 return P->getKind() == IPM_MemoryAlignment; 1931 } 1932 1933 bool isIdentical(const PredicateMatcher &B) const override { 1934 if (!InstructionPredicateMatcher::isIdentical(B)) 1935 return false; 1936 auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B); 1937 return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign; 1938 } 1939 1940 void emitPredicateOpcodes(MatchTable &Table, 1941 RuleMatcher &Rule) const override { 1942 Table << MatchTable::Opcode("GIM_CheckMemoryAlignment") 1943 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1944 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 1945 << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign) 1946 << MatchTable::LineBreak; 1947 } 1948 }; 1949 1950 /// Generates code to check that the size of an MMO is less-than, equal-to, or 1951 /// greater than a given LLT. 1952 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher { 1953 public: 1954 enum RelationKind { 1955 GreaterThan, 1956 EqualTo, 1957 LessThan, 1958 }; 1959 1960 protected: 1961 unsigned MMOIdx; 1962 RelationKind Relation; 1963 unsigned OpIdx; 1964 1965 public: 1966 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 1967 enum RelationKind Relation, 1968 unsigned OpIdx) 1969 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID), 1970 MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {} 1971 1972 static bool classof(const PredicateMatcher *P) { 1973 return P->getKind() == IPM_MemoryVsLLTSize; 1974 } 1975 bool isIdentical(const PredicateMatcher &B) const override { 1976 return InstructionPredicateMatcher::isIdentical(B) && 1977 MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx && 1978 Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation && 1979 OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx; 1980 } 1981 1982 void emitPredicateOpcodes(MatchTable &Table, 1983 RuleMatcher &Rule) const override { 1984 Table << MatchTable::Opcode(Relation == EqualTo 1985 ? "GIM_CheckMemorySizeEqualToLLT" 1986 : Relation == GreaterThan 1987 ? "GIM_CheckMemorySizeGreaterThanLLT" 1988 : "GIM_CheckMemorySizeLessThanLLT") 1989 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1990 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 1991 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) 1992 << MatchTable::LineBreak; 1993 } 1994 }; 1995 1996 /// Generates code to check an arbitrary C++ instruction predicate. 1997 class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher { 1998 protected: 1999 TreePredicateFn Predicate; 2000 2001 public: 2002 GenericInstructionPredicateMatcher(unsigned InsnVarID, 2003 TreePredicateFn Predicate) 2004 : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID), 2005 Predicate(Predicate) {} 2006 2007 static bool classof(const InstructionPredicateMatcher *P) { 2008 return P->getKind() == IPM_GenericPredicate; 2009 } 2010 bool isIdentical(const PredicateMatcher &B) const override { 2011 return InstructionPredicateMatcher::isIdentical(B) && 2012 Predicate == 2013 static_cast<const GenericInstructionPredicateMatcher &>(B) 2014 .Predicate; 2015 } 2016 void emitPredicateOpcodes(MatchTable &Table, 2017 RuleMatcher &Rule) const override { 2018 Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate") 2019 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2020 << MatchTable::Comment("FnId") 2021 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 2022 << MatchTable::LineBreak; 2023 } 2024 }; 2025 2026 /// Generates code to check that a set of predicates and operands match for a 2027 /// particular instruction. 2028 /// 2029 /// Typical predicates include: 2030 /// * Has a specific opcode. 2031 /// * Has an nsw/nuw flag or doesn't. 2032 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> { 2033 protected: 2034 typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec; 2035 2036 RuleMatcher &Rule; 2037 2038 /// The operands to match. All rendered operands must be present even if the 2039 /// condition is always true. 2040 OperandVec Operands; 2041 bool NumOperandsCheck = true; 2042 2043 std::string SymbolicName; 2044 unsigned InsnVarID; 2045 2046 /// PhysRegInputs - List list has an entry for each explicitly specified 2047 /// physreg input to the pattern. The first elt is the Register node, the 2048 /// second is the recorded slot number the input pattern match saved it in. 2049 SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs; 2050 2051 public: 2052 InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName) 2053 : Rule(Rule), SymbolicName(SymbolicName) { 2054 // We create a new instruction matcher. 2055 // Get a new ID for that instruction. 2056 InsnVarID = Rule.implicitlyDefineInsnVar(*this); 2057 } 2058 2059 /// Construct a new instruction predicate and add it to the matcher. 2060 template <class Kind, class... Args> 2061 Optional<Kind *> addPredicate(Args &&... args) { 2062 Predicates.emplace_back( 2063 std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...)); 2064 return static_cast<Kind *>(Predicates.back().get()); 2065 } 2066 2067 RuleMatcher &getRuleMatcher() const { return Rule; } 2068 2069 unsigned getInsnVarID() const { return InsnVarID; } 2070 2071 /// Add an operand to the matcher. 2072 OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName, 2073 unsigned AllocatedTemporariesBaseID) { 2074 Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName, 2075 AllocatedTemporariesBaseID)); 2076 if (!SymbolicName.empty()) 2077 Rule.defineOperand(SymbolicName, *Operands.back()); 2078 2079 return *Operands.back(); 2080 } 2081 2082 OperandMatcher &getOperand(unsigned OpIdx) { 2083 auto I = std::find_if(Operands.begin(), Operands.end(), 2084 [&OpIdx](const std::unique_ptr<OperandMatcher> &X) { 2085 return X->getOpIdx() == OpIdx; 2086 }); 2087 if (I != Operands.end()) 2088 return **I; 2089 llvm_unreachable("Failed to lookup operand"); 2090 } 2091 2092 OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx, 2093 unsigned TempOpIdx) { 2094 assert(SymbolicName.empty()); 2095 OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx); 2096 Operands.emplace_back(OM); 2097 Rule.definePhysRegOperand(Reg, *OM); 2098 PhysRegInputs.emplace_back(Reg, OpIdx); 2099 return *OM; 2100 } 2101 2102 ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const { 2103 return PhysRegInputs; 2104 } 2105 2106 StringRef getSymbolicName() const { return SymbolicName; } 2107 unsigned getNumOperands() const { return Operands.size(); } 2108 OperandVec::iterator operands_begin() { return Operands.begin(); } 2109 OperandVec::iterator operands_end() { return Operands.end(); } 2110 iterator_range<OperandVec::iterator> operands() { 2111 return make_range(operands_begin(), operands_end()); 2112 } 2113 OperandVec::const_iterator operands_begin() const { return Operands.begin(); } 2114 OperandVec::const_iterator operands_end() const { return Operands.end(); } 2115 iterator_range<OperandVec::const_iterator> operands() const { 2116 return make_range(operands_begin(), operands_end()); 2117 } 2118 bool operands_empty() const { return Operands.empty(); } 2119 2120 void pop_front() { Operands.erase(Operands.begin()); } 2121 2122 void optimize(); 2123 2124 /// Emit MatchTable opcodes that test whether the instruction named in 2125 /// InsnVarName matches all the predicates and all the operands. 2126 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { 2127 if (NumOperandsCheck) 2128 InstructionNumOperandsMatcher(InsnVarID, getNumOperands()) 2129 .emitPredicateOpcodes(Table, Rule); 2130 2131 emitPredicateListOpcodes(Table, Rule); 2132 2133 for (const auto &Operand : Operands) 2134 Operand->emitPredicateOpcodes(Table, Rule); 2135 } 2136 2137 /// Compare the priority of this object and B. 2138 /// 2139 /// Returns true if this object is more important than B. 2140 bool isHigherPriorityThan(InstructionMatcher &B) { 2141 // Instruction matchers involving more operands have higher priority. 2142 if (Operands.size() > B.Operands.size()) 2143 return true; 2144 if (Operands.size() < B.Operands.size()) 2145 return false; 2146 2147 for (auto &&P : zip(predicates(), B.predicates())) { 2148 auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get()); 2149 auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get()); 2150 if (L->isHigherPriorityThan(*R)) 2151 return true; 2152 if (R->isHigherPriorityThan(*L)) 2153 return false; 2154 } 2155 2156 for (auto Operand : zip(Operands, B.Operands)) { 2157 if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand))) 2158 return true; 2159 if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand))) 2160 return false; 2161 } 2162 2163 return false; 2164 }; 2165 2166 /// Report the maximum number of temporary operands needed by the instruction 2167 /// matcher. 2168 unsigned countRendererFns() { 2169 return std::accumulate( 2170 predicates().begin(), predicates().end(), 0, 2171 [](unsigned A, 2172 const std::unique_ptr<PredicateMatcher> &Predicate) { 2173 return A + Predicate->countRendererFns(); 2174 }) + 2175 std::accumulate( 2176 Operands.begin(), Operands.end(), 0, 2177 [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) { 2178 return A + Operand->countRendererFns(); 2179 }); 2180 } 2181 2182 InstructionOpcodeMatcher &getOpcodeMatcher() { 2183 for (auto &P : predicates()) 2184 if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get())) 2185 return *OpMatcher; 2186 llvm_unreachable("Didn't find an opcode matcher"); 2187 } 2188 2189 bool isConstantInstruction() { 2190 return getOpcodeMatcher().isConstantInstruction(); 2191 } 2192 2193 StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); } 2194 }; 2195 2196 StringRef RuleMatcher::getOpcode() const { 2197 return Matchers.front()->getOpcode(); 2198 } 2199 2200 unsigned RuleMatcher::getNumOperands() const { 2201 return Matchers.front()->getNumOperands(); 2202 } 2203 2204 LLTCodeGen RuleMatcher::getFirstConditionAsRootType() { 2205 InstructionMatcher &InsnMatcher = *Matchers.front(); 2206 if (!InsnMatcher.predicates_empty()) 2207 if (const auto *TM = 2208 dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin())) 2209 if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0) 2210 return TM->getTy(); 2211 return {}; 2212 } 2213 2214 /// Generates code to check that the operand is a register defined by an 2215 /// instruction that matches the given instruction matcher. 2216 /// 2217 /// For example, the pattern: 2218 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3)) 2219 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match 2220 /// the: 2221 /// (G_ADD $src1, $src2) 2222 /// subpattern. 2223 class InstructionOperandMatcher : public OperandPredicateMatcher { 2224 protected: 2225 std::unique_ptr<InstructionMatcher> InsnMatcher; 2226 2227 public: 2228 InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 2229 RuleMatcher &Rule, StringRef SymbolicName) 2230 : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx), 2231 InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {} 2232 2233 static bool classof(const PredicateMatcher *P) { 2234 return P->getKind() == OPM_Instruction; 2235 } 2236 2237 InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; } 2238 2239 void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const { 2240 const unsigned NewInsnVarID = InsnMatcher->getInsnVarID(); 2241 Table << MatchTable::Opcode("GIM_RecordInsn") 2242 << MatchTable::Comment("DefineMI") 2243 << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI") 2244 << MatchTable::IntValue(getInsnVarID()) 2245 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx()) 2246 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]") 2247 << MatchTable::LineBreak; 2248 } 2249 2250 void emitPredicateOpcodes(MatchTable &Table, 2251 RuleMatcher &Rule) const override { 2252 emitCaptureOpcodes(Table, Rule); 2253 InsnMatcher->emitPredicateOpcodes(Table, Rule); 2254 } 2255 2256 bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override { 2257 if (OperandPredicateMatcher::isHigherPriorityThan(B)) 2258 return true; 2259 if (B.OperandPredicateMatcher::isHigherPriorityThan(*this)) 2260 return false; 2261 2262 if (const InstructionOperandMatcher *BP = 2263 dyn_cast<InstructionOperandMatcher>(&B)) 2264 if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher)) 2265 return true; 2266 return false; 2267 } 2268 }; 2269 2270 void InstructionMatcher::optimize() { 2271 SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash; 2272 const auto &OpcMatcher = getOpcodeMatcher(); 2273 2274 Stash.push_back(predicates_pop_front()); 2275 if (Stash.back().get() == &OpcMatcher) { 2276 if (NumOperandsCheck && OpcMatcher.isVariadicNumOperands()) 2277 Stash.emplace_back( 2278 new InstructionNumOperandsMatcher(InsnVarID, getNumOperands())); 2279 NumOperandsCheck = false; 2280 2281 for (auto &OM : Operands) 2282 for (auto &OP : OM->predicates()) 2283 if (isa<IntrinsicIDOperandMatcher>(OP)) { 2284 Stash.push_back(std::move(OP)); 2285 OM->eraseNullPredicates(); 2286 break; 2287 } 2288 } 2289 2290 if (InsnVarID > 0) { 2291 assert(!Operands.empty() && "Nested instruction is expected to def a vreg"); 2292 for (auto &OP : Operands[0]->predicates()) 2293 OP.reset(); 2294 Operands[0]->eraseNullPredicates(); 2295 } 2296 for (auto &OM : Operands) { 2297 for (auto &OP : OM->predicates()) 2298 if (isa<LLTOperandMatcher>(OP)) 2299 Stash.push_back(std::move(OP)); 2300 OM->eraseNullPredicates(); 2301 } 2302 while (!Stash.empty()) 2303 prependPredicate(Stash.pop_back_val()); 2304 } 2305 2306 //===- Actions ------------------------------------------------------------===// 2307 class OperandRenderer { 2308 public: 2309 enum RendererKind { 2310 OR_Copy, 2311 OR_CopyOrAddZeroReg, 2312 OR_CopySubReg, 2313 OR_CopyPhysReg, 2314 OR_CopyConstantAsImm, 2315 OR_CopyFConstantAsFPImm, 2316 OR_Imm, 2317 OR_SubRegIndex, 2318 OR_Register, 2319 OR_TempRegister, 2320 OR_ComplexPattern, 2321 OR_Custom, 2322 OR_CustomOperand 2323 }; 2324 2325 protected: 2326 RendererKind Kind; 2327 2328 public: 2329 OperandRenderer(RendererKind Kind) : Kind(Kind) {} 2330 virtual ~OperandRenderer() {} 2331 2332 RendererKind getKind() const { return Kind; } 2333 2334 virtual void emitRenderOpcodes(MatchTable &Table, 2335 RuleMatcher &Rule) const = 0; 2336 }; 2337 2338 /// A CopyRenderer emits code to copy a single operand from an existing 2339 /// instruction to the one being built. 2340 class CopyRenderer : public OperandRenderer { 2341 protected: 2342 unsigned NewInsnID; 2343 /// The name of the operand. 2344 const StringRef SymbolicName; 2345 2346 public: 2347 CopyRenderer(unsigned NewInsnID, StringRef SymbolicName) 2348 : OperandRenderer(OR_Copy), NewInsnID(NewInsnID), 2349 SymbolicName(SymbolicName) { 2350 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); 2351 } 2352 2353 static bool classof(const OperandRenderer *R) { 2354 return R->getKind() == OR_Copy; 2355 } 2356 2357 const StringRef getSymbolicName() const { return SymbolicName; } 2358 2359 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2360 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2361 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2362 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") 2363 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") 2364 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2365 << MatchTable::IntValue(Operand.getOpIdx()) 2366 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2367 } 2368 }; 2369 2370 /// A CopyRenderer emits code to copy a virtual register to a specific physical 2371 /// register. 2372 class CopyPhysRegRenderer : public OperandRenderer { 2373 protected: 2374 unsigned NewInsnID; 2375 Record *PhysReg; 2376 2377 public: 2378 CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg) 2379 : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID), 2380 PhysReg(Reg) { 2381 assert(PhysReg); 2382 } 2383 2384 static bool classof(const OperandRenderer *R) { 2385 return R->getKind() == OR_CopyPhysReg; 2386 } 2387 2388 Record *getPhysReg() const { return PhysReg; } 2389 2390 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2391 const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg); 2392 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2393 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") 2394 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") 2395 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2396 << MatchTable::IntValue(Operand.getOpIdx()) 2397 << MatchTable::Comment(PhysReg->getName()) 2398 << MatchTable::LineBreak; 2399 } 2400 }; 2401 2402 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an 2403 /// existing instruction to the one being built. If the operand turns out to be 2404 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register. 2405 class CopyOrAddZeroRegRenderer : public OperandRenderer { 2406 protected: 2407 unsigned NewInsnID; 2408 /// The name of the operand. 2409 const StringRef SymbolicName; 2410 const Record *ZeroRegisterDef; 2411 2412 public: 2413 CopyOrAddZeroRegRenderer(unsigned NewInsnID, 2414 StringRef SymbolicName, Record *ZeroRegisterDef) 2415 : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID), 2416 SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) { 2417 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); 2418 } 2419 2420 static bool classof(const OperandRenderer *R) { 2421 return R->getKind() == OR_CopyOrAddZeroReg; 2422 } 2423 2424 const StringRef getSymbolicName() const { return SymbolicName; } 2425 2426 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2427 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2428 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2429 Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg") 2430 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2431 << MatchTable::Comment("OldInsnID") 2432 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2433 << MatchTable::IntValue(Operand.getOpIdx()) 2434 << MatchTable::NamedValue( 2435 (ZeroRegisterDef->getValue("Namespace") 2436 ? ZeroRegisterDef->getValueAsString("Namespace") 2437 : ""), 2438 ZeroRegisterDef->getName()) 2439 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2440 } 2441 }; 2442 2443 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to 2444 /// an extended immediate operand. 2445 class CopyConstantAsImmRenderer : public OperandRenderer { 2446 protected: 2447 unsigned NewInsnID; 2448 /// The name of the operand. 2449 const std::string SymbolicName; 2450 bool Signed; 2451 2452 public: 2453 CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName) 2454 : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID), 2455 SymbolicName(SymbolicName), Signed(true) {} 2456 2457 static bool classof(const OperandRenderer *R) { 2458 return R->getKind() == OR_CopyConstantAsImm; 2459 } 2460 2461 const StringRef getSymbolicName() const { return SymbolicName; } 2462 2463 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2464 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2465 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2466 Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm" 2467 : "GIR_CopyConstantAsUImm") 2468 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2469 << MatchTable::Comment("OldInsnID") 2470 << MatchTable::IntValue(OldInsnVarID) 2471 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2472 } 2473 }; 2474 2475 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT 2476 /// instruction to an extended immediate operand. 2477 class CopyFConstantAsFPImmRenderer : public OperandRenderer { 2478 protected: 2479 unsigned NewInsnID; 2480 /// The name of the operand. 2481 const std::string SymbolicName; 2482 2483 public: 2484 CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName) 2485 : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID), 2486 SymbolicName(SymbolicName) {} 2487 2488 static bool classof(const OperandRenderer *R) { 2489 return R->getKind() == OR_CopyFConstantAsFPImm; 2490 } 2491 2492 const StringRef getSymbolicName() const { return SymbolicName; } 2493 2494 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2495 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2496 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2497 Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm") 2498 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2499 << MatchTable::Comment("OldInsnID") 2500 << MatchTable::IntValue(OldInsnVarID) 2501 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2502 } 2503 }; 2504 2505 /// A CopySubRegRenderer emits code to copy a single register operand from an 2506 /// existing instruction to the one being built and indicate that only a 2507 /// subregister should be copied. 2508 class CopySubRegRenderer : public OperandRenderer { 2509 protected: 2510 unsigned NewInsnID; 2511 /// The name of the operand. 2512 const StringRef SymbolicName; 2513 /// The subregister to extract. 2514 const CodeGenSubRegIndex *SubReg; 2515 2516 public: 2517 CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName, 2518 const CodeGenSubRegIndex *SubReg) 2519 : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID), 2520 SymbolicName(SymbolicName), SubReg(SubReg) {} 2521 2522 static bool classof(const OperandRenderer *R) { 2523 return R->getKind() == OR_CopySubReg; 2524 } 2525 2526 const StringRef getSymbolicName() const { return SymbolicName; } 2527 2528 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2529 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2530 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2531 Table << MatchTable::Opcode("GIR_CopySubReg") 2532 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2533 << MatchTable::Comment("OldInsnID") 2534 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2535 << MatchTable::IntValue(Operand.getOpIdx()) 2536 << MatchTable::Comment("SubRegIdx") 2537 << MatchTable::IntValue(SubReg->EnumValue) 2538 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2539 } 2540 }; 2541 2542 /// Adds a specific physical register to the instruction being built. 2543 /// This is typically useful for WZR/XZR on AArch64. 2544 class AddRegisterRenderer : public OperandRenderer { 2545 protected: 2546 unsigned InsnID; 2547 const Record *RegisterDef; 2548 bool IsDef; 2549 2550 public: 2551 AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef, 2552 bool IsDef = false) 2553 : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef), 2554 IsDef(IsDef) {} 2555 2556 static bool classof(const OperandRenderer *R) { 2557 return R->getKind() == OR_Register; 2558 } 2559 2560 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2561 Table << MatchTable::Opcode("GIR_AddRegister") 2562 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2563 << MatchTable::NamedValue( 2564 (RegisterDef->getValue("Namespace") 2565 ? RegisterDef->getValueAsString("Namespace") 2566 : ""), 2567 RegisterDef->getName()) 2568 << MatchTable::Comment("AddRegisterRegFlags"); 2569 2570 // TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are 2571 // really needed for a physical register reference. We can pack the 2572 // register and flags in a single field. 2573 if (IsDef) 2574 Table << MatchTable::NamedValue("RegState::Define"); 2575 else 2576 Table << MatchTable::IntValue(0); 2577 Table << MatchTable::LineBreak; 2578 } 2579 }; 2580 2581 /// Adds a specific temporary virtual register to the instruction being built. 2582 /// This is used to chain instructions together when emitting multiple 2583 /// instructions. 2584 class TempRegRenderer : public OperandRenderer { 2585 protected: 2586 unsigned InsnID; 2587 unsigned TempRegID; 2588 bool IsDef; 2589 2590 public: 2591 TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false) 2592 : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID), 2593 IsDef(IsDef) {} 2594 2595 static bool classof(const OperandRenderer *R) { 2596 return R->getKind() == OR_TempRegister; 2597 } 2598 2599 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2600 Table << MatchTable::Opcode("GIR_AddTempRegister") 2601 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2602 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) 2603 << MatchTable::Comment("TempRegFlags"); 2604 if (IsDef) 2605 Table << MatchTable::NamedValue("RegState::Define"); 2606 else 2607 Table << MatchTable::IntValue(0); 2608 Table << MatchTable::LineBreak; 2609 } 2610 }; 2611 2612 /// Adds a specific immediate to the instruction being built. 2613 class ImmRenderer : public OperandRenderer { 2614 protected: 2615 unsigned InsnID; 2616 int64_t Imm; 2617 2618 public: 2619 ImmRenderer(unsigned InsnID, int64_t Imm) 2620 : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {} 2621 2622 static bool classof(const OperandRenderer *R) { 2623 return R->getKind() == OR_Imm; 2624 } 2625 2626 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2627 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") 2628 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm") 2629 << MatchTable::IntValue(Imm) << MatchTable::LineBreak; 2630 } 2631 }; 2632 2633 /// Adds an enum value for a subreg index to the instruction being built. 2634 class SubRegIndexRenderer : public OperandRenderer { 2635 protected: 2636 unsigned InsnID; 2637 const CodeGenSubRegIndex *SubRegIdx; 2638 2639 public: 2640 SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI) 2641 : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {} 2642 2643 static bool classof(const OperandRenderer *R) { 2644 return R->getKind() == OR_SubRegIndex; 2645 } 2646 2647 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2648 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") 2649 << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex") 2650 << MatchTable::IntValue(SubRegIdx->EnumValue) 2651 << MatchTable::LineBreak; 2652 } 2653 }; 2654 2655 /// Adds operands by calling a renderer function supplied by the ComplexPattern 2656 /// matcher function. 2657 class RenderComplexPatternOperand : public OperandRenderer { 2658 private: 2659 unsigned InsnID; 2660 const Record &TheDef; 2661 /// The name of the operand. 2662 const StringRef SymbolicName; 2663 /// The renderer number. This must be unique within a rule since it's used to 2664 /// identify a temporary variable to hold the renderer function. 2665 unsigned RendererID; 2666 /// When provided, this is the suboperand of the ComplexPattern operand to 2667 /// render. Otherwise all the suboperands will be rendered. 2668 Optional<unsigned> SubOperand; 2669 2670 unsigned getNumOperands() const { 2671 return TheDef.getValueAsDag("Operands")->getNumArgs(); 2672 } 2673 2674 public: 2675 RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef, 2676 StringRef SymbolicName, unsigned RendererID, 2677 Optional<unsigned> SubOperand = None) 2678 : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef), 2679 SymbolicName(SymbolicName), RendererID(RendererID), 2680 SubOperand(SubOperand) {} 2681 2682 static bool classof(const OperandRenderer *R) { 2683 return R->getKind() == OR_ComplexPattern; 2684 } 2685 2686 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2687 Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer" 2688 : "GIR_ComplexRenderer") 2689 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2690 << MatchTable::Comment("RendererID") 2691 << MatchTable::IntValue(RendererID); 2692 if (SubOperand.hasValue()) 2693 Table << MatchTable::Comment("SubOperand") 2694 << MatchTable::IntValue(SubOperand.getValue()); 2695 Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2696 } 2697 }; 2698 2699 class CustomRenderer : public OperandRenderer { 2700 protected: 2701 unsigned InsnID; 2702 const Record &Renderer; 2703 /// The name of the operand. 2704 const std::string SymbolicName; 2705 2706 public: 2707 CustomRenderer(unsigned InsnID, const Record &Renderer, 2708 StringRef SymbolicName) 2709 : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer), 2710 SymbolicName(SymbolicName) {} 2711 2712 static bool classof(const OperandRenderer *R) { 2713 return R->getKind() == OR_Custom; 2714 } 2715 2716 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2717 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2718 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2719 Table << MatchTable::Opcode("GIR_CustomRenderer") 2720 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2721 << MatchTable::Comment("OldInsnID") 2722 << MatchTable::IntValue(OldInsnVarID) 2723 << MatchTable::Comment("Renderer") 2724 << MatchTable::NamedValue( 2725 "GICR_" + Renderer.getValueAsString("RendererFn").str()) 2726 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2727 } 2728 }; 2729 2730 class CustomOperandRenderer : public OperandRenderer { 2731 protected: 2732 unsigned InsnID; 2733 const Record &Renderer; 2734 /// The name of the operand. 2735 const std::string SymbolicName; 2736 2737 public: 2738 CustomOperandRenderer(unsigned InsnID, const Record &Renderer, 2739 StringRef SymbolicName) 2740 : OperandRenderer(OR_CustomOperand), InsnID(InsnID), Renderer(Renderer), 2741 SymbolicName(SymbolicName) {} 2742 2743 static bool classof(const OperandRenderer *R) { 2744 return R->getKind() == OR_CustomOperand; 2745 } 2746 2747 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2748 const OperandMatcher &OpdMatcher = Rule.getOperandMatcher(SymbolicName); 2749 Table << MatchTable::Opcode("GIR_CustomOperandRenderer") 2750 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2751 << MatchTable::Comment("OldInsnID") 2752 << MatchTable::IntValue(OpdMatcher.getInsnVarID()) 2753 << MatchTable::Comment("OpIdx") 2754 << MatchTable::IntValue(OpdMatcher.getOpIdx()) 2755 << MatchTable::Comment("OperandRenderer") 2756 << MatchTable::NamedValue( 2757 "GICR_" + Renderer.getValueAsString("RendererFn").str()) 2758 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2759 } 2760 }; 2761 2762 /// An action taken when all Matcher predicates succeeded for a parent rule. 2763 /// 2764 /// Typical actions include: 2765 /// * Changing the opcode of an instruction. 2766 /// * Adding an operand to an instruction. 2767 class MatchAction { 2768 public: 2769 virtual ~MatchAction() {} 2770 2771 /// Emit the MatchTable opcodes to implement the action. 2772 virtual void emitActionOpcodes(MatchTable &Table, 2773 RuleMatcher &Rule) const = 0; 2774 }; 2775 2776 /// Generates a comment describing the matched rule being acted upon. 2777 class DebugCommentAction : public MatchAction { 2778 private: 2779 std::string S; 2780 2781 public: 2782 DebugCommentAction(StringRef S) : S(S) {} 2783 2784 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2785 Table << MatchTable::Comment(S) << MatchTable::LineBreak; 2786 } 2787 }; 2788 2789 /// Generates code to build an instruction or mutate an existing instruction 2790 /// into the desired instruction when this is possible. 2791 class BuildMIAction : public MatchAction { 2792 private: 2793 unsigned InsnID; 2794 const CodeGenInstruction *I; 2795 InstructionMatcher *Matched; 2796 std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers; 2797 2798 /// True if the instruction can be built solely by mutating the opcode. 2799 bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const { 2800 if (!Insn) 2801 return false; 2802 2803 if (OperandRenderers.size() != Insn->getNumOperands()) 2804 return false; 2805 2806 for (const auto &Renderer : enumerate(OperandRenderers)) { 2807 if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) { 2808 const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName()); 2809 if (Insn != &OM.getInstructionMatcher() || 2810 OM.getOpIdx() != Renderer.index()) 2811 return false; 2812 } else 2813 return false; 2814 } 2815 2816 return true; 2817 } 2818 2819 public: 2820 BuildMIAction(unsigned InsnID, const CodeGenInstruction *I) 2821 : InsnID(InsnID), I(I), Matched(nullptr) {} 2822 2823 unsigned getInsnID() const { return InsnID; } 2824 const CodeGenInstruction *getCGI() const { return I; } 2825 2826 void chooseInsnToMutate(RuleMatcher &Rule) { 2827 for (auto *MutateCandidate : Rule.mutatable_insns()) { 2828 if (canMutate(Rule, MutateCandidate)) { 2829 // Take the first one we're offered that we're able to mutate. 2830 Rule.reserveInsnMatcherForMutation(MutateCandidate); 2831 Matched = MutateCandidate; 2832 return; 2833 } 2834 } 2835 } 2836 2837 template <class Kind, class... Args> 2838 Kind &addRenderer(Args&&... args) { 2839 OperandRenderers.emplace_back( 2840 std::make_unique<Kind>(InsnID, std::forward<Args>(args)...)); 2841 return *static_cast<Kind *>(OperandRenderers.back().get()); 2842 } 2843 2844 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2845 if (Matched) { 2846 assert(canMutate(Rule, Matched) && 2847 "Arranged to mutate an insn that isn't mutatable"); 2848 2849 unsigned RecycleInsnID = Rule.getInsnVarID(*Matched); 2850 Table << MatchTable::Opcode("GIR_MutateOpcode") 2851 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2852 << MatchTable::Comment("RecycleInsnID") 2853 << MatchTable::IntValue(RecycleInsnID) 2854 << MatchTable::Comment("Opcode") 2855 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) 2856 << MatchTable::LineBreak; 2857 2858 if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) { 2859 for (auto Def : I->ImplicitDefs) { 2860 auto Namespace = Def->getValue("Namespace") 2861 ? Def->getValueAsString("Namespace") 2862 : ""; 2863 Table << MatchTable::Opcode("GIR_AddImplicitDef") 2864 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2865 << MatchTable::NamedValue(Namespace, Def->getName()) 2866 << MatchTable::LineBreak; 2867 } 2868 for (auto Use : I->ImplicitUses) { 2869 auto Namespace = Use->getValue("Namespace") 2870 ? Use->getValueAsString("Namespace") 2871 : ""; 2872 Table << MatchTable::Opcode("GIR_AddImplicitUse") 2873 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2874 << MatchTable::NamedValue(Namespace, Use->getName()) 2875 << MatchTable::LineBreak; 2876 } 2877 } 2878 return; 2879 } 2880 2881 // TODO: Simple permutation looks like it could be almost as common as 2882 // mutation due to commutative operations. 2883 2884 Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID") 2885 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode") 2886 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) 2887 << MatchTable::LineBreak; 2888 for (const auto &Renderer : OperandRenderers) 2889 Renderer->emitRenderOpcodes(Table, Rule); 2890 2891 if (I->mayLoad || I->mayStore) { 2892 Table << MatchTable::Opcode("GIR_MergeMemOperands") 2893 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2894 << MatchTable::Comment("MergeInsnID's"); 2895 // Emit the ID's for all the instructions that are matched by this rule. 2896 // TODO: Limit this to matched instructions that mayLoad/mayStore or have 2897 // some other means of having a memoperand. Also limit this to 2898 // emitted instructions that expect to have a memoperand too. For 2899 // example, (G_SEXT (G_LOAD x)) that results in separate load and 2900 // sign-extend instructions shouldn't put the memoperand on the 2901 // sign-extend since it has no effect there. 2902 std::vector<unsigned> MergeInsnIDs; 2903 for (const auto &IDMatcherPair : Rule.defined_insn_vars()) 2904 MergeInsnIDs.push_back(IDMatcherPair.second); 2905 llvm::sort(MergeInsnIDs); 2906 for (const auto &MergeInsnID : MergeInsnIDs) 2907 Table << MatchTable::IntValue(MergeInsnID); 2908 Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList") 2909 << MatchTable::LineBreak; 2910 } 2911 2912 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do 2913 // better for combines. Particularly when there are multiple match 2914 // roots. 2915 if (InsnID == 0) 2916 Table << MatchTable::Opcode("GIR_EraseFromParent") 2917 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2918 << MatchTable::LineBreak; 2919 } 2920 }; 2921 2922 /// Generates code to constrain the operands of an output instruction to the 2923 /// register classes specified by the definition of that instruction. 2924 class ConstrainOperandsToDefinitionAction : public MatchAction { 2925 unsigned InsnID; 2926 2927 public: 2928 ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {} 2929 2930 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2931 Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands") 2932 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2933 << MatchTable::LineBreak; 2934 } 2935 }; 2936 2937 /// Generates code to constrain the specified operand of an output instruction 2938 /// to the specified register class. 2939 class ConstrainOperandToRegClassAction : public MatchAction { 2940 unsigned InsnID; 2941 unsigned OpIdx; 2942 const CodeGenRegisterClass &RC; 2943 2944 public: 2945 ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx, 2946 const CodeGenRegisterClass &RC) 2947 : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {} 2948 2949 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2950 Table << MatchTable::Opcode("GIR_ConstrainOperandRC") 2951 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2952 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 2953 << MatchTable::Comment("RC " + RC.getName()) 2954 << MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak; 2955 } 2956 }; 2957 2958 /// Generates code to create a temporary register which can be used to chain 2959 /// instructions together. 2960 class MakeTempRegisterAction : public MatchAction { 2961 private: 2962 LLTCodeGen Ty; 2963 unsigned TempRegID; 2964 2965 public: 2966 MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID) 2967 : Ty(Ty), TempRegID(TempRegID) { 2968 KnownTypes.insert(Ty); 2969 } 2970 2971 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2972 Table << MatchTable::Opcode("GIR_MakeTempReg") 2973 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) 2974 << MatchTable::Comment("TypeID") 2975 << MatchTable::NamedValue(Ty.getCxxEnumValue()) 2976 << MatchTable::LineBreak; 2977 } 2978 }; 2979 2980 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) { 2981 Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName)); 2982 MutatableInsns.insert(Matchers.back().get()); 2983 return *Matchers.back(); 2984 } 2985 2986 void RuleMatcher::addRequiredFeature(Record *Feature) { 2987 RequiredFeatures.push_back(Feature); 2988 } 2989 2990 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const { 2991 return RequiredFeatures; 2992 } 2993 2994 // Emplaces an action of the specified Kind at the end of the action list. 2995 // 2996 // Returns a reference to the newly created action. 2997 // 2998 // Like std::vector::emplace_back(), may invalidate all iterators if the new 2999 // size exceeds the capacity. Otherwise, only invalidates the past-the-end 3000 // iterator. 3001 template <class Kind, class... Args> 3002 Kind &RuleMatcher::addAction(Args &&... args) { 3003 Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...)); 3004 return *static_cast<Kind *>(Actions.back().get()); 3005 } 3006 3007 // Emplaces an action of the specified Kind before the given insertion point. 3008 // 3009 // Returns an iterator pointing at the newly created instruction. 3010 // 3011 // Like std::vector::insert(), may invalidate all iterators if the new size 3012 // exceeds the capacity. Otherwise, only invalidates the iterators from the 3013 // insertion point onwards. 3014 template <class Kind, class... Args> 3015 action_iterator RuleMatcher::insertAction(action_iterator InsertPt, 3016 Args &&... args) { 3017 return Actions.emplace(InsertPt, 3018 std::make_unique<Kind>(std::forward<Args>(args)...)); 3019 } 3020 3021 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) { 3022 unsigned NewInsnVarID = NextInsnVarID++; 3023 InsnVariableIDs[&Matcher] = NewInsnVarID; 3024 return NewInsnVarID; 3025 } 3026 3027 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const { 3028 const auto &I = InsnVariableIDs.find(&InsnMatcher); 3029 if (I != InsnVariableIDs.end()) 3030 return I->second; 3031 llvm_unreachable("Matched Insn was not captured in a local variable"); 3032 } 3033 3034 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) { 3035 if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) { 3036 DefinedOperands[SymbolicName] = &OM; 3037 return; 3038 } 3039 3040 // If the operand is already defined, then we must ensure both references in 3041 // the matcher have the exact same node. 3042 OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName()); 3043 } 3044 3045 void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) { 3046 if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) { 3047 PhysRegOperands[Reg] = &OM; 3048 return; 3049 } 3050 } 3051 3052 InstructionMatcher & 3053 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const { 3054 for (const auto &I : InsnVariableIDs) 3055 if (I.first->getSymbolicName() == SymbolicName) 3056 return *I.first; 3057 llvm_unreachable( 3058 ("Failed to lookup instruction " + SymbolicName).str().c_str()); 3059 } 3060 3061 const OperandMatcher & 3062 RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const { 3063 const auto &I = PhysRegOperands.find(Reg); 3064 3065 if (I == PhysRegOperands.end()) { 3066 PrintFatalError(SrcLoc, "Register " + Reg->getName() + 3067 " was not declared in matcher"); 3068 } 3069 3070 return *I->second; 3071 } 3072 3073 const OperandMatcher & 3074 RuleMatcher::getOperandMatcher(StringRef Name) const { 3075 const auto &I = DefinedOperands.find(Name); 3076 3077 if (I == DefinedOperands.end()) 3078 PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher"); 3079 3080 return *I->second; 3081 } 3082 3083 void RuleMatcher::emit(MatchTable &Table) { 3084 if (Matchers.empty()) 3085 llvm_unreachable("Unexpected empty matcher!"); 3086 3087 // The representation supports rules that require multiple roots such as: 3088 // %ptr(p0) = ... 3089 // %elt0(s32) = G_LOAD %ptr 3090 // %1(p0) = G_ADD %ptr, 4 3091 // %elt1(s32) = G_LOAD p0 %1 3092 // which could be usefully folded into: 3093 // %ptr(p0) = ... 3094 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr 3095 // on some targets but we don't need to make use of that yet. 3096 assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet"); 3097 3098 unsigned LabelID = Table.allocateLabelID(); 3099 Table << MatchTable::Opcode("GIM_Try", +1) 3100 << MatchTable::Comment("On fail goto") 3101 << MatchTable::JumpTarget(LabelID) 3102 << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str()) 3103 << MatchTable::LineBreak; 3104 3105 if (!RequiredFeatures.empty()) { 3106 Table << MatchTable::Opcode("GIM_CheckFeatures") 3107 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures)) 3108 << MatchTable::LineBreak; 3109 } 3110 3111 Matchers.front()->emitPredicateOpcodes(Table, *this); 3112 3113 // We must also check if it's safe to fold the matched instructions. 3114 if (InsnVariableIDs.size() >= 2) { 3115 // Invert the map to create stable ordering (by var names) 3116 SmallVector<unsigned, 2> InsnIDs; 3117 for (const auto &Pair : InsnVariableIDs) { 3118 // Skip the root node since it isn't moving anywhere. Everything else is 3119 // sinking to meet it. 3120 if (Pair.first == Matchers.front().get()) 3121 continue; 3122 3123 InsnIDs.push_back(Pair.second); 3124 } 3125 llvm::sort(InsnIDs); 3126 3127 for (const auto &InsnID : InsnIDs) { 3128 // Reject the difficult cases until we have a more accurate check. 3129 Table << MatchTable::Opcode("GIM_CheckIsSafeToFold") 3130 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3131 << MatchTable::LineBreak; 3132 3133 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or 3134 // account for unsafe cases. 3135 // 3136 // Example: 3137 // MI1--> %0 = ... 3138 // %1 = ... %0 3139 // MI0--> %2 = ... %0 3140 // It's not safe to erase MI1. We currently handle this by not 3141 // erasing %0 (even when it's dead). 3142 // 3143 // Example: 3144 // MI1--> %0 = load volatile @a 3145 // %1 = load volatile @a 3146 // MI0--> %2 = ... %0 3147 // It's not safe to sink %0's def past %1. We currently handle 3148 // this by rejecting all loads. 3149 // 3150 // Example: 3151 // MI1--> %0 = load @a 3152 // %1 = store @a 3153 // MI0--> %2 = ... %0 3154 // It's not safe to sink %0's def past %1. We currently handle 3155 // this by rejecting all loads. 3156 // 3157 // Example: 3158 // G_CONDBR %cond, @BB1 3159 // BB0: 3160 // MI1--> %0 = load @a 3161 // G_BR @BB1 3162 // BB1: 3163 // MI0--> %2 = ... %0 3164 // It's not always safe to sink %0 across control flow. In this 3165 // case it may introduce a memory fault. We currentl handle this 3166 // by rejecting all loads. 3167 } 3168 } 3169 3170 for (const auto &PM : EpilogueMatchers) 3171 PM->emitPredicateOpcodes(Table, *this); 3172 3173 for (const auto &MA : Actions) 3174 MA->emitActionOpcodes(Table, *this); 3175 3176 if (Table.isWithCoverage()) 3177 Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID) 3178 << MatchTable::LineBreak; 3179 else 3180 Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str()) 3181 << MatchTable::LineBreak; 3182 3183 Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak 3184 << MatchTable::Label(LabelID); 3185 ++NumPatternEmitted; 3186 } 3187 3188 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const { 3189 // Rules involving more match roots have higher priority. 3190 if (Matchers.size() > B.Matchers.size()) 3191 return true; 3192 if (Matchers.size() < B.Matchers.size()) 3193 return false; 3194 3195 for (auto Matcher : zip(Matchers, B.Matchers)) { 3196 if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher))) 3197 return true; 3198 if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher))) 3199 return false; 3200 } 3201 3202 return false; 3203 } 3204 3205 unsigned RuleMatcher::countRendererFns() const { 3206 return std::accumulate( 3207 Matchers.begin(), Matchers.end(), 0, 3208 [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) { 3209 return A + Matcher->countRendererFns(); 3210 }); 3211 } 3212 3213 bool OperandPredicateMatcher::isHigherPriorityThan( 3214 const OperandPredicateMatcher &B) const { 3215 // Generally speaking, an instruction is more important than an Int or a 3216 // LiteralInt because it can cover more nodes but theres an exception to 3217 // this. G_CONSTANT's are less important than either of those two because they 3218 // are more permissive. 3219 3220 const InstructionOperandMatcher *AOM = 3221 dyn_cast<InstructionOperandMatcher>(this); 3222 const InstructionOperandMatcher *BOM = 3223 dyn_cast<InstructionOperandMatcher>(&B); 3224 bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction(); 3225 bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction(); 3226 3227 if (AOM && BOM) { 3228 // The relative priorities between a G_CONSTANT and any other instruction 3229 // don't actually matter but this code is needed to ensure a strict weak 3230 // ordering. This is particularly important on Windows where the rules will 3231 // be incorrectly sorted without it. 3232 if (AIsConstantInsn != BIsConstantInsn) 3233 return AIsConstantInsn < BIsConstantInsn; 3234 return false; 3235 } 3236 3237 if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt)) 3238 return false; 3239 if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt)) 3240 return true; 3241 3242 return Kind < B.Kind; 3243 } 3244 3245 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table, 3246 RuleMatcher &Rule) const { 3247 const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName); 3248 unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher()); 3249 assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID()); 3250 3251 Table << MatchTable::Opcode("GIM_CheckIsSameOperand") 3252 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 3253 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) 3254 << MatchTable::Comment("OtherMI") 3255 << MatchTable::IntValue(OtherInsnVarID) 3256 << MatchTable::Comment("OtherOpIdx") 3257 << MatchTable::IntValue(OtherOM.getOpIdx()) 3258 << MatchTable::LineBreak; 3259 } 3260 3261 //===- GlobalISelEmitter class --------------------------------------------===// 3262 3263 class GlobalISelEmitter { 3264 public: 3265 explicit GlobalISelEmitter(RecordKeeper &RK); 3266 void run(raw_ostream &OS); 3267 3268 private: 3269 const RecordKeeper &RK; 3270 const CodeGenDAGPatterns CGP; 3271 const CodeGenTarget &Target; 3272 CodeGenRegBank CGRegs; 3273 3274 /// Keep track of the equivalence between SDNodes and Instruction by mapping 3275 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to 3276 /// check for attributes on the relation such as CheckMMOIsNonAtomic. 3277 /// This is defined using 'GINodeEquiv' in the target description. 3278 DenseMap<Record *, Record *> NodeEquivs; 3279 3280 /// Keep track of the equivalence between ComplexPattern's and 3281 /// GIComplexOperandMatcher. Map entries are specified by subclassing 3282 /// GIComplexPatternEquiv. 3283 DenseMap<const Record *, const Record *> ComplexPatternEquivs; 3284 3285 /// Keep track of the equivalence between SDNodeXForm's and 3286 /// GICustomOperandRenderer. Map entries are specified by subclassing 3287 /// GISDNodeXFormEquiv. 3288 DenseMap<const Record *, const Record *> SDNodeXFormEquivs; 3289 3290 /// Keep track of Scores of PatternsToMatch similar to how the DAG does. 3291 /// This adds compatibility for RuleMatchers to use this for ordering rules. 3292 DenseMap<uint64_t, int> RuleMatcherScores; 3293 3294 // Map of predicates to their subtarget features. 3295 SubtargetFeatureInfoMap SubtargetFeatures; 3296 3297 // Rule coverage information. 3298 Optional<CodeGenCoverage> RuleCoverage; 3299 3300 void gatherOpcodeValues(); 3301 void gatherTypeIDValues(); 3302 void gatherNodeEquivs(); 3303 3304 Record *findNodeEquiv(Record *N) const; 3305 const CodeGenInstruction *getEquivNode(Record &Equiv, 3306 const TreePatternNode *N) const; 3307 3308 Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates); 3309 Expected<InstructionMatcher &> 3310 createAndImportSelDAGMatcher(RuleMatcher &Rule, 3311 InstructionMatcher &InsnMatcher, 3312 const TreePatternNode *Src, unsigned &TempOpIdx); 3313 Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R, 3314 unsigned &TempOpIdx) const; 3315 Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3316 const TreePatternNode *SrcChild, 3317 bool OperandIsAPointer, bool OperandIsImmArg, 3318 unsigned OpIdx, unsigned &TempOpIdx); 3319 3320 Expected<BuildMIAction &> createAndImportInstructionRenderer( 3321 RuleMatcher &M, InstructionMatcher &InsnMatcher, 3322 const TreePatternNode *Src, const TreePatternNode *Dst); 3323 Expected<action_iterator> createAndImportSubInstructionRenderer( 3324 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, 3325 unsigned TempReg); 3326 Expected<action_iterator> 3327 createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M, 3328 const TreePatternNode *Dst); 3329 void importExplicitDefRenderers(BuildMIAction &DstMIBuilder); 3330 3331 Expected<action_iterator> 3332 importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M, 3333 BuildMIAction &DstMIBuilder, 3334 const llvm::TreePatternNode *Dst); 3335 Expected<action_iterator> 3336 importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule, 3337 BuildMIAction &DstMIBuilder, 3338 TreePatternNode *DstChild); 3339 Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M, 3340 BuildMIAction &DstMIBuilder, 3341 DagInit *DefaultOps) const; 3342 Error 3343 importImplicitDefRenderers(BuildMIAction &DstMIBuilder, 3344 const std::vector<Record *> &ImplicitDefs) const; 3345 3346 void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName, 3347 StringRef TypeIdentifier, StringRef ArgType, 3348 StringRef ArgName, StringRef AdditionalDeclarations, 3349 std::function<bool(const Record *R)> Filter); 3350 void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier, 3351 StringRef ArgType, 3352 std::function<bool(const Record *R)> Filter); 3353 void emitMIPredicateFns(raw_ostream &OS); 3354 3355 /// Analyze pattern \p P, returning a matcher for it if possible. 3356 /// Otherwise, return an Error explaining why we don't support it. 3357 Expected<RuleMatcher> runOnPattern(const PatternToMatch &P); 3358 3359 void declareSubtargetFeature(Record *Predicate); 3360 3361 MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize, 3362 bool WithCoverage); 3363 3364 /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned 3365 /// CodeGenRegisterClass will support the CodeGenRegisterClass of 3366 /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode. 3367 /// If no register class is found, return None. 3368 Optional<const CodeGenRegisterClass *> 3369 inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty, 3370 TreePatternNode *SuperRegNode, 3371 TreePatternNode *SubRegIdxNode); 3372 Optional<CodeGenSubRegIndex *> 3373 inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode); 3374 3375 /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode. 3376 /// Return None if no such class exists. 3377 Optional<const CodeGenRegisterClass *> 3378 inferSuperRegisterClass(const TypeSetByHwMode &Ty, 3379 TreePatternNode *SubRegIdxNode); 3380 3381 /// Return the CodeGenRegisterClass associated with \p Leaf if it has one. 3382 Optional<const CodeGenRegisterClass *> 3383 getRegClassFromLeaf(TreePatternNode *Leaf); 3384 3385 /// Return a CodeGenRegisterClass for \p N if one can be found. Return None 3386 /// otherwise. 3387 Optional<const CodeGenRegisterClass *> 3388 inferRegClassFromPattern(TreePatternNode *N); 3389 3390 public: 3391 /// Takes a sequence of \p Rules and group them based on the predicates 3392 /// they share. \p MatcherStorage is used as a memory container 3393 /// for the group that are created as part of this process. 3394 /// 3395 /// What this optimization does looks like if GroupT = GroupMatcher: 3396 /// Output without optimization: 3397 /// \verbatim 3398 /// # R1 3399 /// # predicate A 3400 /// # predicate B 3401 /// ... 3402 /// # R2 3403 /// # predicate A // <-- effectively this is going to be checked twice. 3404 /// // Once in R1 and once in R2. 3405 /// # predicate C 3406 /// \endverbatim 3407 /// Output with optimization: 3408 /// \verbatim 3409 /// # Group1_2 3410 /// # predicate A // <-- Check is now shared. 3411 /// # R1 3412 /// # predicate B 3413 /// # R2 3414 /// # predicate C 3415 /// \endverbatim 3416 template <class GroupT> 3417 static std::vector<Matcher *> optimizeRules( 3418 ArrayRef<Matcher *> Rules, 3419 std::vector<std::unique_ptr<Matcher>> &MatcherStorage); 3420 }; 3421 3422 void GlobalISelEmitter::gatherOpcodeValues() { 3423 InstructionOpcodeMatcher::initOpcodeValuesMap(Target); 3424 } 3425 3426 void GlobalISelEmitter::gatherTypeIDValues() { 3427 LLTOperandMatcher::initTypeIDValuesMap(); 3428 } 3429 3430 void GlobalISelEmitter::gatherNodeEquivs() { 3431 assert(NodeEquivs.empty()); 3432 for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv")) 3433 NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv; 3434 3435 assert(ComplexPatternEquivs.empty()); 3436 for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) { 3437 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); 3438 if (!SelDAGEquiv) 3439 continue; 3440 ComplexPatternEquivs[SelDAGEquiv] = Equiv; 3441 } 3442 3443 assert(SDNodeXFormEquivs.empty()); 3444 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) { 3445 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); 3446 if (!SelDAGEquiv) 3447 continue; 3448 SDNodeXFormEquivs[SelDAGEquiv] = Equiv; 3449 } 3450 } 3451 3452 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const { 3453 return NodeEquivs.lookup(N); 3454 } 3455 3456 const CodeGenInstruction * 3457 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const { 3458 if (N->getNumChildren() >= 1) { 3459 // setcc operation maps to two different G_* instructions based on the type. 3460 if (!Equiv.isValueUnset("IfFloatingPoint") && 3461 MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint()) 3462 return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint")); 3463 } 3464 3465 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 3466 const TreePredicateFn &Predicate = Call.Fn; 3467 if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() && 3468 Predicate.isSignExtLoad()) 3469 return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend")); 3470 if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() && 3471 Predicate.isZeroExtLoad()) 3472 return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend")); 3473 } 3474 3475 return &Target.getInstruction(Equiv.getValueAsDef("I")); 3476 } 3477 3478 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK) 3479 : RK(RK), CGP(RK), Target(CGP.getTargetInfo()), 3480 CGRegs(RK, Target.getHwModes()) {} 3481 3482 //===- Emitter ------------------------------------------------------------===// 3483 3484 Error 3485 GlobalISelEmitter::importRulePredicates(RuleMatcher &M, 3486 ArrayRef<Predicate> Predicates) { 3487 for (const Predicate &P : Predicates) { 3488 if (!P.Def || P.getCondString().empty()) 3489 continue; 3490 declareSubtargetFeature(P.Def); 3491 M.addRequiredFeature(P.Def); 3492 } 3493 3494 return Error::success(); 3495 } 3496 3497 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher( 3498 RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3499 const TreePatternNode *Src, unsigned &TempOpIdx) { 3500 Record *SrcGIEquivOrNull = nullptr; 3501 const CodeGenInstruction *SrcGIOrNull = nullptr; 3502 3503 // Start with the defined operands (i.e., the results of the root operator). 3504 if (Src->getExtTypes().size() > 1) 3505 return failedImport("Src pattern has multiple results"); 3506 3507 if (Src->isLeaf()) { 3508 Init *SrcInit = Src->getLeafValue(); 3509 if (isa<IntInit>(SrcInit)) { 3510 InsnMatcher.addPredicate<InstructionOpcodeMatcher>( 3511 &Target.getInstruction(RK.getDef("G_CONSTANT"))); 3512 } else 3513 return failedImport( 3514 "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); 3515 } else { 3516 SrcGIEquivOrNull = findNodeEquiv(Src->getOperator()); 3517 if (!SrcGIEquivOrNull) 3518 return failedImport("Pattern operator lacks an equivalent Instruction" + 3519 explainOperator(Src->getOperator())); 3520 SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src); 3521 3522 // The operators look good: match the opcode 3523 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull); 3524 } 3525 3526 unsigned OpIdx = 0; 3527 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { 3528 // Results don't have a name unless they are the root node. The caller will 3529 // set the name if appropriate. 3530 OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); 3531 if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */)) 3532 return failedImport(toString(std::move(Error)) + 3533 " for result of Src pattern operator"); 3534 } 3535 3536 for (const TreePredicateCall &Call : Src->getPredicateCalls()) { 3537 const TreePredicateFn &Predicate = Call.Fn; 3538 if (Predicate.isAlwaysTrue()) 3539 continue; 3540 3541 if (Predicate.isImmediatePattern()) { 3542 InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate); 3543 continue; 3544 } 3545 3546 // An address space check is needed in all contexts if there is one. 3547 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 3548 if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) { 3549 SmallVector<unsigned, 4> ParsedAddrSpaces; 3550 3551 for (Init *Val : AddrSpaces->getValues()) { 3552 IntInit *IntVal = dyn_cast<IntInit>(Val); 3553 if (!IntVal) 3554 return failedImport("Address space is not an integer"); 3555 ParsedAddrSpaces.push_back(IntVal->getValue()); 3556 } 3557 3558 if (!ParsedAddrSpaces.empty()) { 3559 InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>( 3560 0, ParsedAddrSpaces); 3561 } 3562 } 3563 3564 int64_t MinAlign = Predicate.getMinAlignment(); 3565 if (MinAlign > 0) 3566 InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign); 3567 } 3568 3569 // G_LOAD is used for both non-extending and any-extending loads. 3570 if (Predicate.isLoad() && Predicate.isNonExtLoad()) { 3571 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3572 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); 3573 continue; 3574 } 3575 if (Predicate.isLoad() && Predicate.isAnyExtLoad()) { 3576 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3577 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); 3578 continue; 3579 } 3580 3581 if (Predicate.isStore()) { 3582 if (Predicate.isTruncStore()) { 3583 // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size. 3584 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3585 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); 3586 continue; 3587 } 3588 if (Predicate.isNonTruncStore()) { 3589 // We need to check the sizes match here otherwise we could incorrectly 3590 // match truncating stores with non-truncating ones. 3591 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3592 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); 3593 } 3594 } 3595 3596 // No check required. We already did it by swapping the opcode. 3597 if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") && 3598 Predicate.isSignExtLoad()) 3599 continue; 3600 3601 // No check required. We already did it by swapping the opcode. 3602 if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") && 3603 Predicate.isZeroExtLoad()) 3604 continue; 3605 3606 // No check required. G_STORE by itself is a non-extending store. 3607 if (Predicate.isNonTruncStore()) 3608 continue; 3609 3610 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 3611 if (Predicate.getMemoryVT() != nullptr) { 3612 Optional<LLTCodeGen> MemTyOrNone = 3613 MVTToLLT(getValueType(Predicate.getMemoryVT())); 3614 3615 if (!MemTyOrNone) 3616 return failedImport("MemVT could not be converted to LLT"); 3617 3618 // MMO's work in bytes so we must take care of unusual types like i1 3619 // don't round down. 3620 unsigned MemSizeInBits = 3621 llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8); 3622 3623 InsnMatcher.addPredicate<MemorySizePredicateMatcher>( 3624 0, MemSizeInBits / 8); 3625 continue; 3626 } 3627 } 3628 3629 if (Predicate.isLoad() || Predicate.isStore()) { 3630 // No check required. A G_LOAD/G_STORE is an unindexed load. 3631 if (Predicate.isUnindexed()) 3632 continue; 3633 } 3634 3635 if (Predicate.isAtomic()) { 3636 if (Predicate.isAtomicOrderingMonotonic()) { 3637 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3638 "Monotonic"); 3639 continue; 3640 } 3641 if (Predicate.isAtomicOrderingAcquire()) { 3642 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire"); 3643 continue; 3644 } 3645 if (Predicate.isAtomicOrderingRelease()) { 3646 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release"); 3647 continue; 3648 } 3649 if (Predicate.isAtomicOrderingAcquireRelease()) { 3650 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3651 "AcquireRelease"); 3652 continue; 3653 } 3654 if (Predicate.isAtomicOrderingSequentiallyConsistent()) { 3655 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3656 "SequentiallyConsistent"); 3657 continue; 3658 } 3659 3660 if (Predicate.isAtomicOrderingAcquireOrStronger()) { 3661 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3662 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3663 continue; 3664 } 3665 if (Predicate.isAtomicOrderingWeakerThanAcquire()) { 3666 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3667 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); 3668 continue; 3669 } 3670 3671 if (Predicate.isAtomicOrderingReleaseOrStronger()) { 3672 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3673 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3674 continue; 3675 } 3676 if (Predicate.isAtomicOrderingWeakerThanRelease()) { 3677 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3678 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); 3679 continue; 3680 } 3681 } 3682 3683 if (Predicate.hasGISelPredicateCode()) { 3684 InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate); 3685 continue; 3686 } 3687 3688 return failedImport("Src pattern child has predicate (" + 3689 explainPredicates(Src) + ")"); 3690 } 3691 if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic")) 3692 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic"); 3693 else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) { 3694 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3695 "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3696 } 3697 3698 if (Src->isLeaf()) { 3699 Init *SrcInit = Src->getLeafValue(); 3700 if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) { 3701 OperandMatcher &OM = 3702 InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx); 3703 OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue()); 3704 } else 3705 return failedImport( 3706 "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); 3707 } else { 3708 assert(SrcGIOrNull && 3709 "Expected to have already found an equivalent Instruction"); 3710 if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" || 3711 SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") { 3712 // imm/fpimm still have operands but we don't need to do anything with it 3713 // here since we don't support ImmLeaf predicates yet. However, we still 3714 // need to note the hidden operand to get GIM_CheckNumOperands correct. 3715 InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); 3716 return InsnMatcher; 3717 } 3718 3719 // Special case because the operand order is changed from setcc. The 3720 // predicate operand needs to be swapped from the last operand to the first 3721 // source. 3722 3723 unsigned NumChildren = Src->getNumChildren(); 3724 bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP"; 3725 3726 if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") { 3727 TreePatternNode *SrcChild = Src->getChild(NumChildren - 1); 3728 if (SrcChild->isLeaf()) { 3729 DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue()); 3730 Record *CCDef = DI ? DI->getDef() : nullptr; 3731 if (!CCDef || !CCDef->isSubClassOf("CondCode")) 3732 return failedImport("Unable to handle CondCode"); 3733 3734 OperandMatcher &OM = 3735 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); 3736 StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") : 3737 CCDef->getValueAsString("ICmpPredicate"); 3738 3739 if (!PredType.empty()) { 3740 OM.addPredicate<CmpPredicateOperandMatcher>(PredType); 3741 // Process the other 2 operands normally. 3742 --NumChildren; 3743 } 3744 } 3745 } 3746 3747 // Match the used operands (i.e. the children of the operator). 3748 bool IsIntrinsic = 3749 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" || 3750 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS"; 3751 const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP); 3752 if (IsIntrinsic && !II) 3753 return failedImport("Expected IntInit containing intrinsic ID)"); 3754 3755 for (unsigned i = 0; i != NumChildren; ++i) { 3756 TreePatternNode *SrcChild = Src->getChild(i); 3757 3758 // We need to determine the meaning of a literal integer based on the 3759 // context. If this is a field required to be an immediate (such as an 3760 // immarg intrinsic argument), the required predicates are different than 3761 // a constant which may be materialized in a register. If we have an 3762 // argument that is required to be an immediate, we should not emit an LLT 3763 // type check, and should not be looking for a G_CONSTANT defined 3764 // register. 3765 bool OperandIsImmArg = SrcGIOrNull->isOperandImmArg(i); 3766 3767 // SelectionDAG allows pointers to be represented with iN since it doesn't 3768 // distinguish between pointers and integers but they are different types in GlobalISel. 3769 // Coerce integers to pointers to address space 0 if the context indicates a pointer. 3770 // 3771 bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i); 3772 3773 if (IsIntrinsic) { 3774 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately 3775 // following the defs is an intrinsic ID. 3776 if (i == 0) { 3777 OperandMatcher &OM = 3778 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); 3779 OM.addPredicate<IntrinsicIDOperandMatcher>(II); 3780 continue; 3781 } 3782 3783 // We have to check intrinsics for llvm_anyptr_ty and immarg parameters. 3784 // 3785 // Note that we have to look at the i-1th parameter, because we don't 3786 // have the intrinsic ID in the intrinsic's parameter list. 3787 OperandIsAPointer |= II->isParamAPointer(i - 1); 3788 OperandIsImmArg |= II->isParamImmArg(i - 1); 3789 } 3790 3791 if (auto Error = 3792 importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer, 3793 OperandIsImmArg, OpIdx++, TempOpIdx)) 3794 return std::move(Error); 3795 } 3796 } 3797 3798 return InsnMatcher; 3799 } 3800 3801 Error GlobalISelEmitter::importComplexPatternOperandMatcher( 3802 OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const { 3803 const auto &ComplexPattern = ComplexPatternEquivs.find(R); 3804 if (ComplexPattern == ComplexPatternEquivs.end()) 3805 return failedImport("SelectionDAG ComplexPattern (" + R->getName() + 3806 ") not mapped to GlobalISel"); 3807 3808 OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second); 3809 TempOpIdx++; 3810 return Error::success(); 3811 } 3812 3813 // Get the name to use for a pattern operand. For an anonymous physical register 3814 // input, this should use the register name. 3815 static StringRef getSrcChildName(const TreePatternNode *SrcChild, 3816 Record *&PhysReg) { 3817 StringRef SrcChildName = SrcChild->getName(); 3818 if (SrcChildName.empty() && SrcChild->isLeaf()) { 3819 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { 3820 auto *ChildRec = ChildDefInit->getDef(); 3821 if (ChildRec->isSubClassOf("Register")) { 3822 SrcChildName = ChildRec->getName(); 3823 PhysReg = ChildRec; 3824 } 3825 } 3826 } 3827 3828 return SrcChildName; 3829 } 3830 3831 Error GlobalISelEmitter::importChildMatcher( 3832 RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3833 const TreePatternNode *SrcChild, bool OperandIsAPointer, 3834 bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) { 3835 3836 Record *PhysReg = nullptr; 3837 StringRef SrcChildName = getSrcChildName(SrcChild, PhysReg); 3838 3839 OperandMatcher &OM = PhysReg ? 3840 InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx) : 3841 InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx); 3842 if (OM.isSameAsAnotherOperand()) 3843 return Error::success(); 3844 3845 ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes(); 3846 if (ChildTypes.size() != 1) 3847 return failedImport("Src pattern child has multiple results"); 3848 3849 // Check MBB's before the type check since they are not a known type. 3850 if (!SrcChild->isLeaf()) { 3851 if (SrcChild->getOperator()->isSubClassOf("SDNode")) { 3852 auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator()); 3853 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { 3854 OM.addPredicate<MBBOperandMatcher>(); 3855 return Error::success(); 3856 } 3857 if (SrcChild->getOperator()->getName() == "timm") { 3858 OM.addPredicate<ImmOperandMatcher>(); 3859 return Error::success(); 3860 } 3861 } 3862 } 3863 3864 // Immediate arguments have no meaningful type to check as they don't have 3865 // registers. 3866 if (!OperandIsImmArg) { 3867 if (auto Error = 3868 OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer)) 3869 return failedImport(toString(std::move(Error)) + " for Src operand (" + 3870 to_string(*SrcChild) + ")"); 3871 } 3872 3873 // Check for nested instructions. 3874 if (!SrcChild->isLeaf()) { 3875 if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) { 3876 // When a ComplexPattern is used as an operator, it should do the same 3877 // thing as when used as a leaf. However, the children of the operator 3878 // name the sub-operands that make up the complex operand and we must 3879 // prepare to reference them in the renderer too. 3880 unsigned RendererID = TempOpIdx; 3881 if (auto Error = importComplexPatternOperandMatcher( 3882 OM, SrcChild->getOperator(), TempOpIdx)) 3883 return Error; 3884 3885 for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) { 3886 auto *SubOperand = SrcChild->getChild(i); 3887 if (!SubOperand->getName().empty()) { 3888 if (auto Error = Rule.defineComplexSubOperand(SubOperand->getName(), 3889 SrcChild->getOperator(), 3890 RendererID, i)) 3891 return Error; 3892 } 3893 } 3894 3895 return Error::success(); 3896 } 3897 3898 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( 3899 InsnMatcher.getRuleMatcher(), SrcChild->getName()); 3900 if (!MaybeInsnOperand.hasValue()) { 3901 // This isn't strictly true. If the user were to provide exactly the same 3902 // matchers as the original operand then we could allow it. However, it's 3903 // simpler to not permit the redundant specification. 3904 return failedImport("Nested instruction cannot be the same as another operand"); 3905 } 3906 3907 // Map the node to a gMIR instruction. 3908 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; 3909 auto InsnMatcherOrError = createAndImportSelDAGMatcher( 3910 Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx); 3911 if (auto Error = InsnMatcherOrError.takeError()) 3912 return Error; 3913 3914 return Error::success(); 3915 } 3916 3917 if (SrcChild->hasAnyPredicate()) 3918 return failedImport("Src pattern child has unsupported predicate"); 3919 3920 // Check for constant immediates. 3921 if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) { 3922 if (OperandIsImmArg) { 3923 // Checks for argument directly in operand list 3924 OM.addPredicate<LiteralIntOperandMatcher>(ChildInt->getValue()); 3925 } else { 3926 // Checks for materialized constant 3927 OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue()); 3928 } 3929 return Error::success(); 3930 } 3931 3932 // Check for def's like register classes or ComplexPattern's. 3933 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { 3934 auto *ChildRec = ChildDefInit->getDef(); 3935 3936 // Check for register classes. 3937 if (ChildRec->isSubClassOf("RegisterClass") || 3938 ChildRec->isSubClassOf("RegisterOperand")) { 3939 OM.addPredicate<RegisterBankOperandMatcher>( 3940 Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit))); 3941 return Error::success(); 3942 } 3943 3944 if (ChildRec->isSubClassOf("Register")) { 3945 // This just be emitted as a copy to the specific register. 3946 ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode(); 3947 const CodeGenRegisterClass *RC 3948 = CGRegs.getMinimalPhysRegClass(ChildRec, &VT); 3949 if (!RC) { 3950 return failedImport( 3951 "Could not determine physical register class of pattern source"); 3952 } 3953 3954 OM.addPredicate<RegisterBankOperandMatcher>(*RC); 3955 return Error::success(); 3956 } 3957 3958 // Check for ValueType. 3959 if (ChildRec->isSubClassOf("ValueType")) { 3960 // We already added a type check as standard practice so this doesn't need 3961 // to do anything. 3962 return Error::success(); 3963 } 3964 3965 // Check for ComplexPattern's. 3966 if (ChildRec->isSubClassOf("ComplexPattern")) 3967 return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx); 3968 3969 if (ChildRec->isSubClassOf("ImmLeaf")) { 3970 return failedImport( 3971 "Src pattern child def is an unsupported tablegen class (ImmLeaf)"); 3972 } 3973 3974 return failedImport( 3975 "Src pattern child def is an unsupported tablegen class"); 3976 } 3977 3978 return failedImport("Src pattern child is an unsupported kind"); 3979 } 3980 3981 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer( 3982 action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder, 3983 TreePatternNode *DstChild) { 3984 3985 const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName()); 3986 if (SubOperand.hasValue()) { 3987 DstMIBuilder.addRenderer<RenderComplexPatternOperand>( 3988 *std::get<0>(*SubOperand), DstChild->getName(), 3989 std::get<1>(*SubOperand), std::get<2>(*SubOperand)); 3990 return InsertPt; 3991 } 3992 3993 if (!DstChild->isLeaf()) { 3994 if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) { 3995 auto Child = DstChild->getChild(0); 3996 auto I = SDNodeXFormEquivs.find(DstChild->getOperator()); 3997 if (I != SDNodeXFormEquivs.end()) { 3998 Record *XFormOpc = DstChild->getOperator()->getValueAsDef("Opcode"); 3999 if (XFormOpc->getName() == "timm") { 4000 // If this is a TargetConstant, there won't be a corresponding 4001 // instruction to transform. Instead, this will refer directly to an 4002 // operand in an instruction's operand list. 4003 DstMIBuilder.addRenderer<CustomOperandRenderer>(*I->second, 4004 Child->getName()); 4005 } else { 4006 DstMIBuilder.addRenderer<CustomRenderer>(*I->second, 4007 Child->getName()); 4008 } 4009 4010 return InsertPt; 4011 } 4012 return failedImport("SDNodeXForm " + Child->getName() + 4013 " has no custom renderer"); 4014 } 4015 4016 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't 4017 // inline, but in MI it's just another operand. 4018 if (DstChild->getOperator()->isSubClassOf("SDNode")) { 4019 auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator()); 4020 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { 4021 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4022 return InsertPt; 4023 } 4024 } 4025 4026 // Similarly, imm is an operator in TreePatternNode's view but must be 4027 // rendered as operands. 4028 // FIXME: The target should be able to choose sign-extended when appropriate 4029 // (e.g. on Mips). 4030 if (DstChild->getOperator()->getName() == "timm") { 4031 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4032 return InsertPt; 4033 } else if (DstChild->getOperator()->getName() == "imm") { 4034 DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName()); 4035 return InsertPt; 4036 } else if (DstChild->getOperator()->getName() == "fpimm") { 4037 DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>( 4038 DstChild->getName()); 4039 return InsertPt; 4040 } 4041 4042 if (DstChild->getOperator()->isSubClassOf("Instruction")) { 4043 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes(); 4044 if (ChildTypes.size() != 1) 4045 return failedImport("Dst pattern child has multiple results"); 4046 4047 Optional<LLTCodeGen> OpTyOrNone = None; 4048 if (ChildTypes.front().isMachineValueType()) 4049 OpTyOrNone = 4050 MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); 4051 if (!OpTyOrNone) 4052 return failedImport("Dst operand has an unsupported type"); 4053 4054 unsigned TempRegID = Rule.allocateTempRegID(); 4055 InsertPt = Rule.insertAction<MakeTempRegisterAction>( 4056 InsertPt, OpTyOrNone.getValue(), TempRegID); 4057 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4058 4059 auto InsertPtOrError = createAndImportSubInstructionRenderer( 4060 ++InsertPt, Rule, DstChild, TempRegID); 4061 if (auto Error = InsertPtOrError.takeError()) 4062 return std::move(Error); 4063 return InsertPtOrError.get(); 4064 } 4065 4066 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild)); 4067 } 4068 4069 // It could be a specific immediate in which case we should just check for 4070 // that immediate. 4071 if (const IntInit *ChildIntInit = 4072 dyn_cast<IntInit>(DstChild->getLeafValue())) { 4073 DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue()); 4074 return InsertPt; 4075 } 4076 4077 // Otherwise, we're looking for a bog-standard RegisterClass operand. 4078 if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) { 4079 auto *ChildRec = ChildDefInit->getDef(); 4080 4081 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes(); 4082 if (ChildTypes.size() != 1) 4083 return failedImport("Dst pattern child has multiple results"); 4084 4085 Optional<LLTCodeGen> OpTyOrNone = None; 4086 if (ChildTypes.front().isMachineValueType()) 4087 OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); 4088 if (!OpTyOrNone) 4089 return failedImport("Dst operand has an unsupported type"); 4090 4091 if (ChildRec->isSubClassOf("Register")) { 4092 DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec); 4093 return InsertPt; 4094 } 4095 4096 if (ChildRec->isSubClassOf("RegisterClass") || 4097 ChildRec->isSubClassOf("RegisterOperand") || 4098 ChildRec->isSubClassOf("ValueType")) { 4099 if (ChildRec->isSubClassOf("RegisterOperand") && 4100 !ChildRec->isValueUnset("GIZeroRegister")) { 4101 DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>( 4102 DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister")); 4103 return InsertPt; 4104 } 4105 4106 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4107 return InsertPt; 4108 } 4109 4110 if (ChildRec->isSubClassOf("SubRegIndex")) { 4111 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec); 4112 DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue); 4113 return InsertPt; 4114 } 4115 4116 if (ChildRec->isSubClassOf("ComplexPattern")) { 4117 const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec); 4118 if (ComplexPattern == ComplexPatternEquivs.end()) 4119 return failedImport( 4120 "SelectionDAG ComplexPattern not mapped to GlobalISel"); 4121 4122 const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName()); 4123 DstMIBuilder.addRenderer<RenderComplexPatternOperand>( 4124 *ComplexPattern->second, DstChild->getName(), 4125 OM.getAllocatedTemporariesBaseID()); 4126 return InsertPt; 4127 } 4128 4129 return failedImport( 4130 "Dst pattern child def is an unsupported tablegen class"); 4131 } 4132 4133 return failedImport("Dst pattern child is an unsupported kind"); 4134 } 4135 4136 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer( 4137 RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src, 4138 const TreePatternNode *Dst) { 4139 auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst); 4140 if (auto Error = InsertPtOrError.takeError()) 4141 return std::move(Error); 4142 4143 action_iterator InsertPt = InsertPtOrError.get(); 4144 BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get()); 4145 4146 for (auto PhysInput : InsnMatcher.getPhysRegInputs()) { 4147 InsertPt = M.insertAction<BuildMIAction>( 4148 InsertPt, M.allocateOutputInsnID(), 4149 &Target.getInstruction(RK.getDef("COPY"))); 4150 BuildMIAction &CopyToPhysRegMIBuilder = 4151 *static_cast<BuildMIAction *>(InsertPt->get()); 4152 CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(PhysInput.first, 4153 true); 4154 CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first); 4155 } 4156 4157 importExplicitDefRenderers(DstMIBuilder); 4158 4159 if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst) 4160 .takeError()) 4161 return std::move(Error); 4162 4163 return DstMIBuilder; 4164 } 4165 4166 Expected<action_iterator> 4167 GlobalISelEmitter::createAndImportSubInstructionRenderer( 4168 const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, 4169 unsigned TempRegID) { 4170 auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst); 4171 4172 // TODO: Assert there's exactly one result. 4173 4174 if (auto Error = InsertPtOrError.takeError()) 4175 return std::move(Error); 4176 4177 BuildMIAction &DstMIBuilder = 4178 *static_cast<BuildMIAction *>(InsertPtOrError.get()->get()); 4179 4180 // Assign the result to TempReg. 4181 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true); 4182 4183 InsertPtOrError = 4184 importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst); 4185 if (auto Error = InsertPtOrError.takeError()) 4186 return std::move(Error); 4187 4188 // We need to make sure that when we import an INSERT_SUBREG as a 4189 // subinstruction that it ends up being constrained to the correct super 4190 // register and subregister classes. 4191 auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName(); 4192 if (OpName == "INSERT_SUBREG") { 4193 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4194 if (!SubClass) 4195 return failedImport( 4196 "Cannot infer register class from INSERT_SUBREG operand #1"); 4197 Optional<const CodeGenRegisterClass *> SuperClass = 4198 inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0), 4199 Dst->getChild(2)); 4200 if (!SuperClass) 4201 return failedImport( 4202 "Cannot infer register class for INSERT_SUBREG operand #0"); 4203 // The destination and the super register source of an INSERT_SUBREG must 4204 // be the same register class. 4205 M.insertAction<ConstrainOperandToRegClassAction>( 4206 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4207 M.insertAction<ConstrainOperandToRegClassAction>( 4208 InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass); 4209 M.insertAction<ConstrainOperandToRegClassAction>( 4210 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); 4211 return InsertPtOrError.get(); 4212 } 4213 4214 if (OpName == "EXTRACT_SUBREG") { 4215 // EXTRACT_SUBREG selects into a subregister COPY but unlike most 4216 // instructions, the result register class is controlled by the 4217 // subregisters of the operand. As a result, we must constrain the result 4218 // class rather than check that it's already the right one. 4219 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 4220 if (!SuperClass) 4221 return failedImport( 4222 "Cannot infer register class from EXTRACT_SUBREG operand #0"); 4223 4224 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); 4225 if (!SubIdx) 4226 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4227 4228 const auto &SrcRCDstRCPair = 4229 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 4230 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4231 M.insertAction<ConstrainOperandToRegClassAction>( 4232 InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second); 4233 M.insertAction<ConstrainOperandToRegClassAction>( 4234 InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first); 4235 4236 // We're done with this pattern! It's eligible for GISel emission; return 4237 // it. 4238 return InsertPtOrError.get(); 4239 } 4240 4241 // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a 4242 // subinstruction. 4243 if (OpName == "SUBREG_TO_REG") { 4244 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4245 if (!SubClass) 4246 return failedImport( 4247 "Cannot infer register class from SUBREG_TO_REG child #1"); 4248 auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0), 4249 Dst->getChild(2)); 4250 if (!SuperClass) 4251 return failedImport( 4252 "Cannot infer register class for SUBREG_TO_REG operand #0"); 4253 M.insertAction<ConstrainOperandToRegClassAction>( 4254 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4255 M.insertAction<ConstrainOperandToRegClassAction>( 4256 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); 4257 return InsertPtOrError.get(); 4258 } 4259 4260 M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt, 4261 DstMIBuilder.getInsnID()); 4262 return InsertPtOrError.get(); 4263 } 4264 4265 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer( 4266 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) { 4267 Record *DstOp = Dst->getOperator(); 4268 if (!DstOp->isSubClassOf("Instruction")) { 4269 if (DstOp->isSubClassOf("ValueType")) 4270 return failedImport( 4271 "Pattern operator isn't an instruction (it's a ValueType)"); 4272 return failedImport("Pattern operator isn't an instruction"); 4273 } 4274 CodeGenInstruction *DstI = &Target.getInstruction(DstOp); 4275 4276 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction 4277 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy. 4278 StringRef Name = DstI->TheDef->getName(); 4279 if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG") 4280 DstI = &Target.getInstruction(RK.getDef("COPY")); 4281 4282 return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(), 4283 DstI); 4284 } 4285 4286 void GlobalISelEmitter::importExplicitDefRenderers( 4287 BuildMIAction &DstMIBuilder) { 4288 const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); 4289 for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) { 4290 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I]; 4291 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name); 4292 } 4293 } 4294 4295 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers( 4296 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4297 const llvm::TreePatternNode *Dst) { 4298 const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); 4299 CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator()); 4300 4301 StringRef Name = OrigDstI->TheDef->getName(); 4302 unsigned ExpectedDstINumUses = Dst->getNumChildren(); 4303 4304 // EXTRACT_SUBREG needs to use a subregister COPY. 4305 if (Name == "EXTRACT_SUBREG") { 4306 if (!Dst->getChild(0)->isLeaf()) 4307 return failedImport("EXTRACT_SUBREG child #1 is not a leaf"); 4308 4309 if (DefInit *SubRegInit = 4310 dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) { 4311 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 4312 if (!RCDef) 4313 return failedImport("EXTRACT_SUBREG child #0 could not " 4314 "be coerced to a register class"); 4315 4316 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef); 4317 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4318 4319 const auto &SrcRCDstRCPair = 4320 RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx); 4321 if (SrcRCDstRCPair.hasValue()) { 4322 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4323 if (SrcRCDstRCPair->first != RC) 4324 return failedImport("EXTRACT_SUBREG requires an additional COPY"); 4325 } 4326 4327 DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(), 4328 SubIdx); 4329 return InsertPt; 4330 } 4331 4332 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4333 } 4334 4335 if (Name == "REG_SEQUENCE") { 4336 if (!Dst->getChild(0)->isLeaf()) 4337 return failedImport("REG_SEQUENCE child #0 is not a leaf"); 4338 4339 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 4340 if (!RCDef) 4341 return failedImport("REG_SEQUENCE child #0 could not " 4342 "be coerced to a register class"); 4343 4344 if ((ExpectedDstINumUses - 1) % 2 != 0) 4345 return failedImport("Malformed REG_SEQUENCE"); 4346 4347 for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) { 4348 TreePatternNode *ValChild = Dst->getChild(I); 4349 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 4350 4351 if (DefInit *SubRegInit = 4352 dyn_cast<DefInit>(SubRegChild->getLeafValue())) { 4353 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4354 4355 auto InsertPtOrError = 4356 importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild); 4357 if (auto Error = InsertPtOrError.takeError()) 4358 return std::move(Error); 4359 InsertPt = InsertPtOrError.get(); 4360 DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx); 4361 } 4362 } 4363 4364 return InsertPt; 4365 } 4366 4367 // Render the explicit uses. 4368 unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs; 4369 if (Name == "COPY_TO_REGCLASS") { 4370 DstINumUses--; // Ignore the class constraint. 4371 ExpectedDstINumUses--; 4372 } 4373 4374 // NumResults - This is the number of results produced by the instruction in 4375 // the "outs" list. 4376 unsigned NumResults = OrigDstI->Operands.NumDefs; 4377 4378 // Number of operands we know the output instruction must have. If it is 4379 // variadic, we could have more operands. 4380 unsigned NumFixedOperands = DstI->Operands.size(); 4381 4382 // Loop over all of the fixed operands of the instruction pattern, emitting 4383 // code to fill them all in. The node 'N' usually has number children equal to 4384 // the number of input operands of the instruction. However, in cases where 4385 // there are predicate operands for an instruction, we need to fill in the 4386 // 'execute always' values. Match up the node operands to the instruction 4387 // operands to do this. 4388 unsigned Child = 0; 4389 4390 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the 4391 // number of operands at the end of the list which have default values. 4392 // Those can come from the pattern if it provides enough arguments, or be 4393 // filled in with the default if the pattern hasn't provided them. But any 4394 // operand with a default value _before_ the last mandatory one will be 4395 // filled in with their defaults unconditionally. 4396 unsigned NonOverridableOperands = NumFixedOperands; 4397 while (NonOverridableOperands > NumResults && 4398 CGP.operandHasDefault(DstI->Operands[NonOverridableOperands - 1].Rec)) 4399 --NonOverridableOperands; 4400 4401 unsigned NumDefaultOps = 0; 4402 for (unsigned I = 0; I != DstINumUses; ++I) { 4403 unsigned InstOpNo = DstI->Operands.NumDefs + I; 4404 4405 // Determine what to emit for this operand. 4406 Record *OperandNode = DstI->Operands[InstOpNo].Rec; 4407 4408 // If the operand has default values, introduce them now. 4409 if (CGP.operandHasDefault(OperandNode) && 4410 (InstOpNo < NonOverridableOperands || Child >= Dst->getNumChildren())) { 4411 // This is a predicate or optional def operand which the pattern has not 4412 // overridden, or which we aren't letting it override; emit the 'default 4413 // ops' operands. 4414 4415 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[InstOpNo]; 4416 DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps"); 4417 if (auto Error = importDefaultOperandRenderers( 4418 InsertPt, M, DstMIBuilder, DefaultOps)) 4419 return std::move(Error); 4420 ++NumDefaultOps; 4421 continue; 4422 } 4423 4424 auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder, 4425 Dst->getChild(Child)); 4426 if (auto Error = InsertPtOrError.takeError()) 4427 return std::move(Error); 4428 InsertPt = InsertPtOrError.get(); 4429 ++Child; 4430 } 4431 4432 if (NumDefaultOps + ExpectedDstINumUses != DstINumUses) 4433 return failedImport("Expected " + llvm::to_string(DstINumUses) + 4434 " used operands but found " + 4435 llvm::to_string(ExpectedDstINumUses) + 4436 " explicit ones and " + llvm::to_string(NumDefaultOps) + 4437 " default ones"); 4438 4439 return InsertPt; 4440 } 4441 4442 Error GlobalISelEmitter::importDefaultOperandRenderers( 4443 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4444 DagInit *DefaultOps) const { 4445 for (const auto *DefaultOp : DefaultOps->getArgs()) { 4446 Optional<LLTCodeGen> OpTyOrNone = None; 4447 4448 // Look through ValueType operators. 4449 if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) { 4450 if (const DefInit *DefaultDagOperator = 4451 dyn_cast<DefInit>(DefaultDagOp->getOperator())) { 4452 if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) { 4453 OpTyOrNone = MVTToLLT(getValueType( 4454 DefaultDagOperator->getDef())); 4455 DefaultOp = DefaultDagOp->getArg(0); 4456 } 4457 } 4458 } 4459 4460 if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) { 4461 auto Def = DefaultDefOp->getDef(); 4462 if (Def->getName() == "undef_tied_input") { 4463 unsigned TempRegID = M.allocateTempRegID(); 4464 M.insertAction<MakeTempRegisterAction>( 4465 InsertPt, OpTyOrNone.getValue(), TempRegID); 4466 InsertPt = M.insertAction<BuildMIAction>( 4467 InsertPt, M.allocateOutputInsnID(), 4468 &Target.getInstruction(RK.getDef("IMPLICIT_DEF"))); 4469 BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>( 4470 InsertPt->get()); 4471 IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4472 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4473 } else { 4474 DstMIBuilder.addRenderer<AddRegisterRenderer>(Def); 4475 } 4476 continue; 4477 } 4478 4479 if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) { 4480 DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue()); 4481 continue; 4482 } 4483 4484 return failedImport("Could not add default op"); 4485 } 4486 4487 return Error::success(); 4488 } 4489 4490 Error GlobalISelEmitter::importImplicitDefRenderers( 4491 BuildMIAction &DstMIBuilder, 4492 const std::vector<Record *> &ImplicitDefs) const { 4493 if (!ImplicitDefs.empty()) 4494 return failedImport("Pattern defines a physical register"); 4495 return Error::success(); 4496 } 4497 4498 Optional<const CodeGenRegisterClass *> 4499 GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) { 4500 assert(Leaf && "Expected node?"); 4501 assert(Leaf->isLeaf() && "Expected leaf?"); 4502 Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue()); 4503 if (!RCRec) 4504 return None; 4505 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec); 4506 if (!RC) 4507 return None; 4508 return RC; 4509 } 4510 4511 Optional<const CodeGenRegisterClass *> 4512 GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) { 4513 if (!N) 4514 return None; 4515 4516 if (N->isLeaf()) 4517 return getRegClassFromLeaf(N); 4518 4519 // We don't have a leaf node, so we have to try and infer something. Check 4520 // that we have an instruction that we an infer something from. 4521 4522 // Only handle things that produce a single type. 4523 if (N->getNumTypes() != 1) 4524 return None; 4525 Record *OpRec = N->getOperator(); 4526 4527 // We only want instructions. 4528 if (!OpRec->isSubClassOf("Instruction")) 4529 return None; 4530 4531 // Don't want to try and infer things when there could potentially be more 4532 // than one candidate register class. 4533 auto &Inst = Target.getInstruction(OpRec); 4534 if (Inst.Operands.NumDefs > 1) 4535 return None; 4536 4537 // Handle any special-case instructions which we can safely infer register 4538 // classes from. 4539 StringRef InstName = Inst.TheDef->getName(); 4540 bool IsRegSequence = InstName == "REG_SEQUENCE"; 4541 if (IsRegSequence || InstName == "COPY_TO_REGCLASS") { 4542 // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It 4543 // has the desired register class as the first child. 4544 TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1); 4545 if (!RCChild->isLeaf()) 4546 return None; 4547 return getRegClassFromLeaf(RCChild); 4548 } 4549 4550 // Handle destination record types that we can safely infer a register class 4551 // from. 4552 const auto &DstIOperand = Inst.Operands[0]; 4553 Record *DstIOpRec = DstIOperand.Rec; 4554 if (DstIOpRec->isSubClassOf("RegisterOperand")) { 4555 DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); 4556 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); 4557 return &RC; 4558 } 4559 4560 if (DstIOpRec->isSubClassOf("RegisterClass")) { 4561 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); 4562 return &RC; 4563 } 4564 4565 return None; 4566 } 4567 4568 Optional<const CodeGenRegisterClass *> 4569 GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty, 4570 TreePatternNode *SubRegIdxNode) { 4571 assert(SubRegIdxNode && "Expected subregister index node!"); 4572 // We need a ValueTypeByHwMode for getSuperRegForSubReg. 4573 if (!Ty.isValueTypeByHwMode(false)) 4574 return None; 4575 if (!SubRegIdxNode->isLeaf()) 4576 return None; 4577 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); 4578 if (!SubRegInit) 4579 return None; 4580 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4581 4582 // Use the information we found above to find a minimal register class which 4583 // supports the subregister and type we want. 4584 auto RC = 4585 Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx); 4586 if (!RC) 4587 return None; 4588 return *RC; 4589 } 4590 4591 Optional<const CodeGenRegisterClass *> 4592 GlobalISelEmitter::inferSuperRegisterClassForNode( 4593 const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode, 4594 TreePatternNode *SubRegIdxNode) { 4595 assert(SuperRegNode && "Expected super register node!"); 4596 // Check if we already have a defined register class for the super register 4597 // node. If we do, then we should preserve that rather than inferring anything 4598 // from the subregister index node. We can assume that whoever wrote the 4599 // pattern in the first place made sure that the super register and 4600 // subregister are compatible. 4601 if (Optional<const CodeGenRegisterClass *> SuperRegisterClass = 4602 inferRegClassFromPattern(SuperRegNode)) 4603 return *SuperRegisterClass; 4604 return inferSuperRegisterClass(Ty, SubRegIdxNode); 4605 } 4606 4607 Optional<CodeGenSubRegIndex *> 4608 GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) { 4609 if (!SubRegIdxNode->isLeaf()) 4610 return None; 4611 4612 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); 4613 if (!SubRegInit) 4614 return None; 4615 return CGRegs.getSubRegIdx(SubRegInit->getDef()); 4616 } 4617 4618 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) { 4619 // Keep track of the matchers and actions to emit. 4620 int Score = P.getPatternComplexity(CGP); 4621 RuleMatcher M(P.getSrcRecord()->getLoc()); 4622 RuleMatcherScores[M.getRuleID()] = Score; 4623 M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) + 4624 " => " + 4625 llvm::to_string(*P.getDstPattern())); 4626 4627 if (auto Error = importRulePredicates(M, P.getPredicates())) 4628 return std::move(Error); 4629 4630 // Next, analyze the pattern operators. 4631 TreePatternNode *Src = P.getSrcPattern(); 4632 TreePatternNode *Dst = P.getDstPattern(); 4633 4634 // If the root of either pattern isn't a simple operator, ignore it. 4635 if (auto Err = isTrivialOperatorNode(Dst)) 4636 return failedImport("Dst pattern root isn't a trivial operator (" + 4637 toString(std::move(Err)) + ")"); 4638 if (auto Err = isTrivialOperatorNode(Src)) 4639 return failedImport("Src pattern root isn't a trivial operator (" + 4640 toString(std::move(Err)) + ")"); 4641 4642 // The different predicates and matchers created during 4643 // addInstructionMatcher use the RuleMatcher M to set up their 4644 // instruction ID (InsnVarID) that are going to be used when 4645 // M is going to be emitted. 4646 // However, the code doing the emission still relies on the IDs 4647 // returned during that process by the RuleMatcher when issuing 4648 // the recordInsn opcodes. 4649 // Because of that: 4650 // 1. The order in which we created the predicates 4651 // and such must be the same as the order in which we emit them, 4652 // and 4653 // 2. We need to reset the generation of the IDs in M somewhere between 4654 // addInstructionMatcher and emit 4655 // 4656 // FIXME: Long term, we don't want to have to rely on this implicit 4657 // naming being the same. One possible solution would be to have 4658 // explicit operator for operation capture and reference those. 4659 // The plus side is that it would expose opportunities to share 4660 // the capture accross rules. The downside is that it would 4661 // introduce a dependency between predicates (captures must happen 4662 // before their first use.) 4663 InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName()); 4664 unsigned TempOpIdx = 0; 4665 auto InsnMatcherOrError = 4666 createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx); 4667 if (auto Error = InsnMatcherOrError.takeError()) 4668 return std::move(Error); 4669 InstructionMatcher &InsnMatcher = InsnMatcherOrError.get(); 4670 4671 if (Dst->isLeaf()) { 4672 Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue()); 4673 4674 const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef); 4675 if (RCDef) { 4676 // We need to replace the def and all its uses with the specified 4677 // operand. However, we must also insert COPY's wherever needed. 4678 // For now, emit a copy and let the register allocator clean up. 4679 auto &DstI = Target.getInstruction(RK.getDef("COPY")); 4680 const auto &DstIOperand = DstI.Operands[0]; 4681 4682 OperandMatcher &OM0 = InsnMatcher.getOperand(0); 4683 OM0.setSymbolicName(DstIOperand.Name); 4684 M.defineOperand(OM0.getSymbolicName(), OM0); 4685 OM0.addPredicate<RegisterBankOperandMatcher>(RC); 4686 4687 auto &DstMIBuilder = 4688 M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI); 4689 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name); 4690 DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName()); 4691 M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC); 4692 4693 // We're done with this pattern! It's eligible for GISel emission; return 4694 // it. 4695 ++NumPatternImported; 4696 return std::move(M); 4697 } 4698 4699 return failedImport("Dst pattern root isn't a known leaf"); 4700 } 4701 4702 // Start with the defined operands (i.e., the results of the root operator). 4703 Record *DstOp = Dst->getOperator(); 4704 if (!DstOp->isSubClassOf("Instruction")) 4705 return failedImport("Pattern operator isn't an instruction"); 4706 4707 auto &DstI = Target.getInstruction(DstOp); 4708 StringRef DstIName = DstI.TheDef->getName(); 4709 4710 if (DstI.Operands.NumDefs != Src->getExtTypes().size()) 4711 return failedImport("Src pattern results and dst MI defs are different (" + 4712 to_string(Src->getExtTypes().size()) + " def(s) vs " + 4713 to_string(DstI.Operands.NumDefs) + " def(s))"); 4714 4715 // The root of the match also has constraints on the register bank so that it 4716 // matches the result instruction. 4717 unsigned OpIdx = 0; 4718 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { 4719 (void)VTy; 4720 4721 const auto &DstIOperand = DstI.Operands[OpIdx]; 4722 Record *DstIOpRec = DstIOperand.Rec; 4723 if (DstIName == "COPY_TO_REGCLASS") { 4724 DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); 4725 4726 if (DstIOpRec == nullptr) 4727 return failedImport( 4728 "COPY_TO_REGCLASS operand #1 isn't a register class"); 4729 } else if (DstIName == "REG_SEQUENCE") { 4730 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 4731 if (DstIOpRec == nullptr) 4732 return failedImport("REG_SEQUENCE operand #0 isn't a register class"); 4733 } else if (DstIName == "EXTRACT_SUBREG") { 4734 if (!Dst->getChild(0)->isLeaf()) 4735 return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf"); 4736 4737 // We can assume that a subregister is in the same bank as it's super 4738 // register. 4739 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 4740 4741 if (DstIOpRec == nullptr) 4742 return failedImport("EXTRACT_SUBREG operand #0 isn't a register class"); 4743 } else if (DstIName == "INSERT_SUBREG") { 4744 auto MaybeSuperClass = inferSuperRegisterClassForNode( 4745 VTy, Dst->getChild(0), Dst->getChild(2)); 4746 if (!MaybeSuperClass) 4747 return failedImport( 4748 "Cannot infer register class for INSERT_SUBREG operand #0"); 4749 // Move to the next pattern here, because the register class we found 4750 // doesn't necessarily have a record associated with it. So, we can't 4751 // set DstIOpRec using this. 4752 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 4753 OM.setSymbolicName(DstIOperand.Name); 4754 M.defineOperand(OM.getSymbolicName(), OM); 4755 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass); 4756 ++OpIdx; 4757 continue; 4758 } else if (DstIName == "SUBREG_TO_REG") { 4759 auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2)); 4760 if (!MaybeRegClass) 4761 return failedImport( 4762 "Cannot infer register class for SUBREG_TO_REG operand #0"); 4763 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 4764 OM.setSymbolicName(DstIOperand.Name); 4765 M.defineOperand(OM.getSymbolicName(), OM); 4766 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass); 4767 ++OpIdx; 4768 continue; 4769 } else if (DstIOpRec->isSubClassOf("RegisterOperand")) 4770 DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); 4771 else if (!DstIOpRec->isSubClassOf("RegisterClass")) 4772 return failedImport("Dst MI def isn't a register class" + 4773 to_string(*Dst)); 4774 4775 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 4776 OM.setSymbolicName(DstIOperand.Name); 4777 M.defineOperand(OM.getSymbolicName(), OM); 4778 OM.addPredicate<RegisterBankOperandMatcher>( 4779 Target.getRegisterClass(DstIOpRec)); 4780 ++OpIdx; 4781 } 4782 4783 auto DstMIBuilderOrError = 4784 createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst); 4785 if (auto Error = DstMIBuilderOrError.takeError()) 4786 return std::move(Error); 4787 BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get(); 4788 4789 // Render the implicit defs. 4790 // These are only added to the root of the result. 4791 if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs())) 4792 return std::move(Error); 4793 4794 DstMIBuilder.chooseInsnToMutate(M); 4795 4796 // Constrain the registers to classes. This is normally derived from the 4797 // emitted instruction but a few instructions require special handling. 4798 if (DstIName == "COPY_TO_REGCLASS") { 4799 // COPY_TO_REGCLASS does not provide operand constraints itself but the 4800 // result is constrained to the class given by the second child. 4801 Record *DstIOpRec = 4802 getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); 4803 4804 if (DstIOpRec == nullptr) 4805 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class"); 4806 4807 M.addAction<ConstrainOperandToRegClassAction>( 4808 0, 0, Target.getRegisterClass(DstIOpRec)); 4809 4810 // We're done with this pattern! It's eligible for GISel emission; return 4811 // it. 4812 ++NumPatternImported; 4813 return std::move(M); 4814 } 4815 4816 if (DstIName == "EXTRACT_SUBREG") { 4817 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 4818 if (!SuperClass) 4819 return failedImport( 4820 "Cannot infer register class from EXTRACT_SUBREG operand #0"); 4821 4822 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); 4823 if (!SubIdx) 4824 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4825 4826 // It would be nice to leave this constraint implicit but we're required 4827 // to pick a register class so constrain the result to a register class 4828 // that can hold the correct MVT. 4829 // 4830 // FIXME: This may introduce an extra copy if the chosen class doesn't 4831 // actually contain the subregisters. 4832 assert(Src->getExtTypes().size() == 1 && 4833 "Expected Src of EXTRACT_SUBREG to have one result type"); 4834 4835 const auto &SrcRCDstRCPair = 4836 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 4837 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4838 M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second); 4839 M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first); 4840 4841 // We're done with this pattern! It's eligible for GISel emission; return 4842 // it. 4843 ++NumPatternImported; 4844 return std::move(M); 4845 } 4846 4847 if (DstIName == "INSERT_SUBREG") { 4848 assert(Src->getExtTypes().size() == 1 && 4849 "Expected Src of INSERT_SUBREG to have one result type"); 4850 // We need to constrain the destination, a super regsister source, and a 4851 // subregister source. 4852 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4853 if (!SubClass) 4854 return failedImport( 4855 "Cannot infer register class from INSERT_SUBREG operand #1"); 4856 auto SuperClass = inferSuperRegisterClassForNode( 4857 Src->getExtType(0), Dst->getChild(0), Dst->getChild(2)); 4858 if (!SuperClass) 4859 return failedImport( 4860 "Cannot infer register class for INSERT_SUBREG operand #0"); 4861 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 4862 M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass); 4863 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); 4864 ++NumPatternImported; 4865 return std::move(M); 4866 } 4867 4868 if (DstIName == "SUBREG_TO_REG") { 4869 // We need to constrain the destination and subregister source. 4870 assert(Src->getExtTypes().size() == 1 && 4871 "Expected Src of SUBREG_TO_REG to have one result type"); 4872 4873 // Attempt to infer the subregister source from the first child. If it has 4874 // an explicitly given register class, we'll use that. Otherwise, we will 4875 // fail. 4876 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4877 if (!SubClass) 4878 return failedImport( 4879 "Cannot infer register class from SUBREG_TO_REG child #1"); 4880 // We don't have a child to look at that might have a super register node. 4881 auto SuperClass = 4882 inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2)); 4883 if (!SuperClass) 4884 return failedImport( 4885 "Cannot infer register class for SUBREG_TO_REG operand #0"); 4886 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 4887 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); 4888 ++NumPatternImported; 4889 return std::move(M); 4890 } 4891 4892 M.addAction<ConstrainOperandsToDefinitionAction>(0); 4893 4894 // We're done with this pattern! It's eligible for GISel emission; return it. 4895 ++NumPatternImported; 4896 return std::move(M); 4897 } 4898 4899 // Emit imm predicate table and an enum to reference them with. 4900 // The 'Predicate_' part of the name is redundant but eliminating it is more 4901 // trouble than it's worth. 4902 void GlobalISelEmitter::emitCxxPredicateFns( 4903 raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier, 4904 StringRef ArgType, StringRef ArgName, StringRef AdditionalDeclarations, 4905 std::function<bool(const Record *R)> Filter) { 4906 std::vector<const Record *> MatchedRecords; 4907 const auto &Defs = RK.getAllDerivedDefinitions("PatFrag"); 4908 std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords), 4909 [&](Record *Record) { 4910 return !Record->getValueAsString(CodeFieldName).empty() && 4911 Filter(Record); 4912 }); 4913 4914 if (!MatchedRecords.empty()) { 4915 OS << "// PatFrag predicates.\n" 4916 << "enum {\n"; 4917 std::string EnumeratorSeparator = 4918 (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str(); 4919 for (const auto *Record : MatchedRecords) { 4920 OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName() 4921 << EnumeratorSeparator; 4922 EnumeratorSeparator = ",\n"; 4923 } 4924 OS << "};\n"; 4925 } 4926 4927 OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName 4928 << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " " 4929 << ArgName << ") const {\n" 4930 << AdditionalDeclarations; 4931 if (!AdditionalDeclarations.empty()) 4932 OS << "\n"; 4933 if (!MatchedRecords.empty()) 4934 OS << " switch (PredicateID) {\n"; 4935 for (const auto *Record : MatchedRecords) { 4936 OS << " case GIPFP_" << TypeIdentifier << "_Predicate_" 4937 << Record->getName() << ": {\n" 4938 << " " << Record->getValueAsString(CodeFieldName) << "\n" 4939 << " llvm_unreachable(\"" << CodeFieldName 4940 << " should have returned\");\n" 4941 << " return false;\n" 4942 << " }\n"; 4943 } 4944 if (!MatchedRecords.empty()) 4945 OS << " }\n"; 4946 OS << " llvm_unreachable(\"Unknown predicate\");\n" 4947 << " return false;\n" 4948 << "}\n"; 4949 } 4950 4951 void GlobalISelEmitter::emitImmPredicateFns( 4952 raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType, 4953 std::function<bool(const Record *R)> Filter) { 4954 return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType, 4955 "Imm", "", Filter); 4956 } 4957 4958 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) { 4959 return emitCxxPredicateFns( 4960 OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI", 4961 " const MachineFunction &MF = *MI.getParent()->getParent();\n" 4962 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n" 4963 " (void)MRI;", 4964 [](const Record *R) { return true; }); 4965 } 4966 4967 template <class GroupT> 4968 std::vector<Matcher *> GlobalISelEmitter::optimizeRules( 4969 ArrayRef<Matcher *> Rules, 4970 std::vector<std::unique_ptr<Matcher>> &MatcherStorage) { 4971 4972 std::vector<Matcher *> OptRules; 4973 std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>(); 4974 assert(CurrentGroup->empty() && "Newly created group isn't empty!"); 4975 unsigned NumGroups = 0; 4976 4977 auto ProcessCurrentGroup = [&]() { 4978 if (CurrentGroup->empty()) 4979 // An empty group is good to be reused: 4980 return; 4981 4982 // If the group isn't large enough to provide any benefit, move all the 4983 // added rules out of it and make sure to re-create the group to properly 4984 // re-initialize it: 4985 if (CurrentGroup->size() < 2) 4986 for (Matcher *M : CurrentGroup->matchers()) 4987 OptRules.push_back(M); 4988 else { 4989 CurrentGroup->finalize(); 4990 OptRules.push_back(CurrentGroup.get()); 4991 MatcherStorage.emplace_back(std::move(CurrentGroup)); 4992 ++NumGroups; 4993 } 4994 CurrentGroup = std::make_unique<GroupT>(); 4995 }; 4996 for (Matcher *Rule : Rules) { 4997 // Greedily add as many matchers as possible to the current group: 4998 if (CurrentGroup->addMatcher(*Rule)) 4999 continue; 5000 5001 ProcessCurrentGroup(); 5002 assert(CurrentGroup->empty() && "A group wasn't properly re-initialized"); 5003 5004 // Try to add the pending matcher to a newly created empty group: 5005 if (!CurrentGroup->addMatcher(*Rule)) 5006 // If we couldn't add the matcher to an empty group, that group type 5007 // doesn't support that kind of matchers at all, so just skip it: 5008 OptRules.push_back(Rule); 5009 } 5010 ProcessCurrentGroup(); 5011 5012 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n"); 5013 assert(CurrentGroup->empty() && "The last group wasn't properly processed"); 5014 return OptRules; 5015 } 5016 5017 MatchTable 5018 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules, 5019 bool Optimize, bool WithCoverage) { 5020 std::vector<Matcher *> InputRules; 5021 for (Matcher &Rule : Rules) 5022 InputRules.push_back(&Rule); 5023 5024 if (!Optimize) 5025 return MatchTable::buildTable(InputRules, WithCoverage); 5026 5027 unsigned CurrentOrdering = 0; 5028 StringMap<unsigned> OpcodeOrder; 5029 for (RuleMatcher &Rule : Rules) { 5030 const StringRef Opcode = Rule.getOpcode(); 5031 assert(!Opcode.empty() && "Didn't expect an undefined opcode"); 5032 if (OpcodeOrder.count(Opcode) == 0) 5033 OpcodeOrder[Opcode] = CurrentOrdering++; 5034 } 5035 5036 std::stable_sort(InputRules.begin(), InputRules.end(), 5037 [&OpcodeOrder](const Matcher *A, const Matcher *B) { 5038 auto *L = static_cast<const RuleMatcher *>(A); 5039 auto *R = static_cast<const RuleMatcher *>(B); 5040 return std::make_tuple(OpcodeOrder[L->getOpcode()], 5041 L->getNumOperands()) < 5042 std::make_tuple(OpcodeOrder[R->getOpcode()], 5043 R->getNumOperands()); 5044 }); 5045 5046 for (Matcher *Rule : InputRules) 5047 Rule->optimize(); 5048 5049 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 5050 std::vector<Matcher *> OptRules = 5051 optimizeRules<GroupMatcher>(InputRules, MatcherStorage); 5052 5053 for (Matcher *Rule : OptRules) 5054 Rule->optimize(); 5055 5056 OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage); 5057 5058 return MatchTable::buildTable(OptRules, WithCoverage); 5059 } 5060 5061 void GroupMatcher::optimize() { 5062 // Make sure we only sort by a specific predicate within a range of rules that 5063 // all have that predicate checked against a specific value (not a wildcard): 5064 auto F = Matchers.begin(); 5065 auto T = F; 5066 auto E = Matchers.end(); 5067 while (T != E) { 5068 while (T != E) { 5069 auto *R = static_cast<RuleMatcher *>(*T); 5070 if (!R->getFirstConditionAsRootType().get().isValid()) 5071 break; 5072 ++T; 5073 } 5074 std::stable_sort(F, T, [](Matcher *A, Matcher *B) { 5075 auto *L = static_cast<RuleMatcher *>(A); 5076 auto *R = static_cast<RuleMatcher *>(B); 5077 return L->getFirstConditionAsRootType() < 5078 R->getFirstConditionAsRootType(); 5079 }); 5080 if (T != E) 5081 F = ++T; 5082 } 5083 GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage) 5084 .swap(Matchers); 5085 GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage) 5086 .swap(Matchers); 5087 } 5088 5089 void GlobalISelEmitter::run(raw_ostream &OS) { 5090 if (!UseCoverageFile.empty()) { 5091 RuleCoverage = CodeGenCoverage(); 5092 auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile); 5093 if (!RuleCoverageBufOrErr) { 5094 PrintWarning(SMLoc(), "Missing rule coverage data"); 5095 RuleCoverage = None; 5096 } else { 5097 if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) { 5098 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data"); 5099 RuleCoverage = None; 5100 } 5101 } 5102 } 5103 5104 // Track the run-time opcode values 5105 gatherOpcodeValues(); 5106 // Track the run-time LLT ID values 5107 gatherTypeIDValues(); 5108 5109 // Track the GINodeEquiv definitions. 5110 gatherNodeEquivs(); 5111 5112 emitSourceFileHeader(("Global Instruction Selector for the " + 5113 Target.getName() + " target").str(), OS); 5114 std::vector<RuleMatcher> Rules; 5115 // Look through the SelectionDAG patterns we found, possibly emitting some. 5116 for (const PatternToMatch &Pat : CGP.ptms()) { 5117 ++NumPatternTotal; 5118 5119 auto MatcherOrErr = runOnPattern(Pat); 5120 5121 // The pattern analysis can fail, indicating an unsupported pattern. 5122 // Report that if we've been asked to do so. 5123 if (auto Err = MatcherOrErr.takeError()) { 5124 if (WarnOnSkippedPatterns) { 5125 PrintWarning(Pat.getSrcRecord()->getLoc(), 5126 "Skipped pattern: " + toString(std::move(Err))); 5127 } else { 5128 consumeError(std::move(Err)); 5129 } 5130 ++NumPatternImportsSkipped; 5131 continue; 5132 } 5133 5134 if (RuleCoverage) { 5135 if (RuleCoverage->isCovered(MatcherOrErr->getRuleID())) 5136 ++NumPatternsTested; 5137 else 5138 PrintWarning(Pat.getSrcRecord()->getLoc(), 5139 "Pattern is not covered by a test"); 5140 } 5141 Rules.push_back(std::move(MatcherOrErr.get())); 5142 } 5143 5144 // Comparison function to order records by name. 5145 auto orderByName = [](const Record *A, const Record *B) { 5146 return A->getName() < B->getName(); 5147 }; 5148 5149 std::vector<Record *> ComplexPredicates = 5150 RK.getAllDerivedDefinitions("GIComplexOperandMatcher"); 5151 llvm::sort(ComplexPredicates, orderByName); 5152 5153 std::vector<Record *> CustomRendererFns = 5154 RK.getAllDerivedDefinitions("GICustomOperandRenderer"); 5155 llvm::sort(CustomRendererFns, orderByName); 5156 5157 unsigned MaxTemporaries = 0; 5158 for (const auto &Rule : Rules) 5159 MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns()); 5160 5161 OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n" 5162 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size() 5163 << ";\n" 5164 << "using PredicateBitset = " 5165 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n" 5166 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n"; 5167 5168 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n" 5169 << " mutable MatcherState State;\n" 5170 << " typedef " 5171 "ComplexRendererFns(" 5172 << Target.getName() 5173 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n" 5174 5175 << " typedef void(" << Target.getName() 5176 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const " 5177 "MachineInstr&, int) " 5178 "const;\n" 5179 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, " 5180 "CustomRendererFn> " 5181 "ISelInfo;\n"; 5182 OS << " static " << Target.getName() 5183 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n" 5184 << " static " << Target.getName() 5185 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n" 5186 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const " 5187 "override;\n" 5188 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) " 5189 "const override;\n" 5190 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat " 5191 "&Imm) const override;\n" 5192 << " const int64_t *getMatchTable() const override;\n" 5193 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI) " 5194 "const override;\n" 5195 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n"; 5196 5197 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n" 5198 << ", State(" << MaxTemporaries << "),\n" 5199 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets" 5200 << ", ComplexPredicateFns, CustomRenderers)\n" 5201 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n"; 5202 5203 OS << "#ifdef GET_GLOBALISEL_IMPL\n"; 5204 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures, 5205 OS); 5206 5207 // Separate subtarget features by how often they must be recomputed. 5208 SubtargetFeatureInfoMap ModuleFeatures; 5209 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), 5210 std::inserter(ModuleFeatures, ModuleFeatures.end()), 5211 [](const SubtargetFeatureInfoMap::value_type &X) { 5212 return !X.second.mustRecomputePerFunction(); 5213 }); 5214 SubtargetFeatureInfoMap FunctionFeatures; 5215 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), 5216 std::inserter(FunctionFeatures, FunctionFeatures.end()), 5217 [](const SubtargetFeatureInfoMap::value_type &X) { 5218 return X.second.mustRecomputePerFunction(); 5219 }); 5220 5221 SubtargetFeatureInfo::emitComputeAvailableFeatures( 5222 Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures", 5223 ModuleFeatures, OS); 5224 5225 5226 OS << "void " << Target.getName() << "InstructionSelector" 5227 "::setupGeneratedPerFunctionState(MachineFunction &MF) {\n" 5228 " AvailableFunctionFeatures = computeAvailableFunctionFeatures(" 5229 "(const " << Target.getName() << "Subtarget*)&MF.getSubtarget(), &MF);\n" 5230 "}\n"; 5231 5232 if (Target.getName() == "X86" || Target.getName() == "AArch64") { 5233 // TODO: Implement PGSO. 5234 OS << "static bool shouldOptForSize(const MachineFunction *MF) {\n"; 5235 OS << " return MF->getFunction().hasOptSize();\n"; 5236 OS << "}\n\n"; 5237 } 5238 5239 SubtargetFeatureInfo::emitComputeAvailableFeatures( 5240 Target.getName(), "InstructionSelector", 5241 "computeAvailableFunctionFeatures", FunctionFeatures, OS, 5242 "const MachineFunction *MF"); 5243 5244 // Emit a table containing the LLT objects needed by the matcher and an enum 5245 // for the matcher to reference them with. 5246 std::vector<LLTCodeGen> TypeObjects; 5247 for (const auto &Ty : KnownTypes) 5248 TypeObjects.push_back(Ty); 5249 llvm::sort(TypeObjects); 5250 OS << "// LLT Objects.\n" 5251 << "enum {\n"; 5252 for (const auto &TypeObject : TypeObjects) { 5253 OS << " "; 5254 TypeObject.emitCxxEnumValue(OS); 5255 OS << ",\n"; 5256 } 5257 OS << "};\n"; 5258 OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n" 5259 << "const static LLT TypeObjects[] = {\n"; 5260 for (const auto &TypeObject : TypeObjects) { 5261 OS << " "; 5262 TypeObject.emitCxxConstructorCall(OS); 5263 OS << ",\n"; 5264 } 5265 OS << "};\n\n"; 5266 5267 // Emit a table containing the PredicateBitsets objects needed by the matcher 5268 // and an enum for the matcher to reference them with. 5269 std::vector<std::vector<Record *>> FeatureBitsets; 5270 for (auto &Rule : Rules) 5271 FeatureBitsets.push_back(Rule.getRequiredFeatures()); 5272 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 5273 const std::vector<Record *> &B) { 5274 if (A.size() < B.size()) 5275 return true; 5276 if (A.size() > B.size()) 5277 return false; 5278 for (auto Pair : zip(A, B)) { 5279 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 5280 return true; 5281 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 5282 return false; 5283 } 5284 return false; 5285 }); 5286 FeatureBitsets.erase( 5287 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 5288 FeatureBitsets.end()); 5289 OS << "// Feature bitsets.\n" 5290 << "enum {\n" 5291 << " GIFBS_Invalid,\n"; 5292 for (const auto &FeatureBitset : FeatureBitsets) { 5293 if (FeatureBitset.empty()) 5294 continue; 5295 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 5296 } 5297 OS << "};\n" 5298 << "const static PredicateBitset FeatureBitsets[] {\n" 5299 << " {}, // GIFBS_Invalid\n"; 5300 for (const auto &FeatureBitset : FeatureBitsets) { 5301 if (FeatureBitset.empty()) 5302 continue; 5303 OS << " {"; 5304 for (const auto &Feature : FeatureBitset) { 5305 const auto &I = SubtargetFeatures.find(Feature); 5306 assert(I != SubtargetFeatures.end() && "Didn't import predicate?"); 5307 OS << I->second.getEnumBitName() << ", "; 5308 } 5309 OS << "},\n"; 5310 } 5311 OS << "};\n\n"; 5312 5313 // Emit complex predicate table and an enum to reference them with. 5314 OS << "// ComplexPattern predicates.\n" 5315 << "enum {\n" 5316 << " GICP_Invalid,\n"; 5317 for (const auto &Record : ComplexPredicates) 5318 OS << " GICP_" << Record->getName() << ",\n"; 5319 OS << "};\n" 5320 << "// See constructor for table contents\n\n"; 5321 5322 emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) { 5323 bool Unset; 5324 return !R->getValueAsBitOrUnset("IsAPFloat", Unset) && 5325 !R->getValueAsBit("IsAPInt"); 5326 }); 5327 emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) { 5328 bool Unset; 5329 return R->getValueAsBitOrUnset("IsAPFloat", Unset); 5330 }); 5331 emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) { 5332 return R->getValueAsBit("IsAPInt"); 5333 }); 5334 emitMIPredicateFns(OS); 5335 OS << "\n"; 5336 5337 OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n" 5338 << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n" 5339 << " nullptr, // GICP_Invalid\n"; 5340 for (const auto &Record : ComplexPredicates) 5341 OS << " &" << Target.getName() 5342 << "InstructionSelector::" << Record->getValueAsString("MatcherFn") 5343 << ", // " << Record->getName() << "\n"; 5344 OS << "};\n\n"; 5345 5346 OS << "// Custom renderers.\n" 5347 << "enum {\n" 5348 << " GICR_Invalid,\n"; 5349 for (const auto &Record : CustomRendererFns) 5350 OS << " GICR_" << Record->getValueAsString("RendererFn") << ", \n"; 5351 OS << "};\n"; 5352 5353 OS << Target.getName() << "InstructionSelector::CustomRendererFn\n" 5354 << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n" 5355 << " nullptr, // GICR_Invalid\n"; 5356 for (const auto &Record : CustomRendererFns) 5357 OS << " &" << Target.getName() 5358 << "InstructionSelector::" << Record->getValueAsString("RendererFn") 5359 << ", // " << Record->getName() << "\n"; 5360 OS << "};\n\n"; 5361 5362 llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) { 5363 int ScoreA = RuleMatcherScores[A.getRuleID()]; 5364 int ScoreB = RuleMatcherScores[B.getRuleID()]; 5365 if (ScoreA > ScoreB) 5366 return true; 5367 if (ScoreB > ScoreA) 5368 return false; 5369 if (A.isHigherPriorityThan(B)) { 5370 assert(!B.isHigherPriorityThan(A) && "Cannot be more important " 5371 "and less important at " 5372 "the same time"); 5373 return true; 5374 } 5375 return false; 5376 }); 5377 5378 OS << "bool " << Target.getName() 5379 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage " 5380 "&CoverageInfo) const {\n" 5381 << " MachineFunction &MF = *I.getParent()->getParent();\n" 5382 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n" 5383 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n" 5384 << " NewMIVector OutMIs;\n" 5385 << " State.MIs.clear();\n" 5386 << " State.MIs.push_back(&I);\n\n" 5387 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo" 5388 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures" 5389 << ", CoverageInfo)) {\n" 5390 << " return true;\n" 5391 << " }\n\n" 5392 << " return false;\n" 5393 << "}\n\n"; 5394 5395 const MatchTable Table = 5396 buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage); 5397 OS << "const int64_t *" << Target.getName() 5398 << "InstructionSelector::getMatchTable() const {\n"; 5399 Table.emitDeclaration(OS); 5400 OS << " return "; 5401 Table.emitUse(OS); 5402 OS << ";\n}\n"; 5403 OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n"; 5404 5405 OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n" 5406 << "PredicateBitset AvailableModuleFeatures;\n" 5407 << "mutable PredicateBitset AvailableFunctionFeatures;\n" 5408 << "PredicateBitset getAvailableFeatures() const {\n" 5409 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n" 5410 << "}\n" 5411 << "PredicateBitset\n" 5412 << "computeAvailableModuleFeatures(const " << Target.getName() 5413 << "Subtarget *Subtarget) const;\n" 5414 << "PredicateBitset\n" 5415 << "computeAvailableFunctionFeatures(const " << Target.getName() 5416 << "Subtarget *Subtarget,\n" 5417 << " const MachineFunction *MF) const;\n" 5418 << "void setupGeneratedPerFunctionState(MachineFunction &MF) override;\n" 5419 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n"; 5420 5421 OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n" 5422 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n" 5423 << "AvailableFunctionFeatures()\n" 5424 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n"; 5425 } 5426 5427 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) { 5428 if (SubtargetFeatures.count(Predicate) == 0) 5429 SubtargetFeatures.emplace( 5430 Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size())); 5431 } 5432 5433 void RuleMatcher::optimize() { 5434 for (auto &Item : InsnVariableIDs) { 5435 InstructionMatcher &InsnMatcher = *Item.first; 5436 for (auto &OM : InsnMatcher.operands()) { 5437 // Complex Patterns are usually expensive and they relatively rarely fail 5438 // on their own: more often we end up throwing away all the work done by a 5439 // matching part of a complex pattern because some other part of the 5440 // enclosing pattern didn't match. All of this makes it beneficial to 5441 // delay complex patterns until the very end of the rule matching, 5442 // especially for targets having lots of complex patterns. 5443 for (auto &OP : OM->predicates()) 5444 if (isa<ComplexPatternOperandMatcher>(OP)) 5445 EpilogueMatchers.emplace_back(std::move(OP)); 5446 OM->eraseNullPredicates(); 5447 } 5448 InsnMatcher.optimize(); 5449 } 5450 llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L, 5451 const std::unique_ptr<PredicateMatcher> &R) { 5452 return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) < 5453 std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx()); 5454 }); 5455 } 5456 5457 bool RuleMatcher::hasFirstCondition() const { 5458 if (insnmatchers_empty()) 5459 return false; 5460 InstructionMatcher &Matcher = insnmatchers_front(); 5461 if (!Matcher.predicates_empty()) 5462 return true; 5463 for (auto &OM : Matcher.operands()) 5464 for (auto &OP : OM->predicates()) 5465 if (!isa<InstructionOperandMatcher>(OP)) 5466 return true; 5467 return false; 5468 } 5469 5470 const PredicateMatcher &RuleMatcher::getFirstCondition() const { 5471 assert(!insnmatchers_empty() && 5472 "Trying to get a condition from an empty RuleMatcher"); 5473 5474 InstructionMatcher &Matcher = insnmatchers_front(); 5475 if (!Matcher.predicates_empty()) 5476 return **Matcher.predicates_begin(); 5477 // If there is no more predicate on the instruction itself, look at its 5478 // operands. 5479 for (auto &OM : Matcher.operands()) 5480 for (auto &OP : OM->predicates()) 5481 if (!isa<InstructionOperandMatcher>(OP)) 5482 return *OP; 5483 5484 llvm_unreachable("Trying to get a condition from an InstructionMatcher with " 5485 "no conditions"); 5486 } 5487 5488 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() { 5489 assert(!insnmatchers_empty() && 5490 "Trying to pop a condition from an empty RuleMatcher"); 5491 5492 InstructionMatcher &Matcher = insnmatchers_front(); 5493 if (!Matcher.predicates_empty()) 5494 return Matcher.predicates_pop_front(); 5495 // If there is no more predicate on the instruction itself, look at its 5496 // operands. 5497 for (auto &OM : Matcher.operands()) 5498 for (auto &OP : OM->predicates()) 5499 if (!isa<InstructionOperandMatcher>(OP)) { 5500 std::unique_ptr<PredicateMatcher> Result = std::move(OP); 5501 OM->eraseNullPredicates(); 5502 return Result; 5503 } 5504 5505 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with " 5506 "no conditions"); 5507 } 5508 5509 bool GroupMatcher::candidateConditionMatches( 5510 const PredicateMatcher &Predicate) const { 5511 5512 if (empty()) { 5513 // Sharing predicates for nested instructions is not supported yet as we 5514 // currently don't hoist the GIM_RecordInsn's properly, therefore we can 5515 // only work on the original root instruction (InsnVarID == 0): 5516 if (Predicate.getInsnVarID() != 0) 5517 return false; 5518 // ... otherwise an empty group can handle any predicate with no specific 5519 // requirements: 5520 return true; 5521 } 5522 5523 const Matcher &Representative = **Matchers.begin(); 5524 const auto &RepresentativeCondition = Representative.getFirstCondition(); 5525 // ... if not empty, the group can only accomodate matchers with the exact 5526 // same first condition: 5527 return Predicate.isIdentical(RepresentativeCondition); 5528 } 5529 5530 bool GroupMatcher::addMatcher(Matcher &Candidate) { 5531 if (!Candidate.hasFirstCondition()) 5532 return false; 5533 5534 const PredicateMatcher &Predicate = Candidate.getFirstCondition(); 5535 if (!candidateConditionMatches(Predicate)) 5536 return false; 5537 5538 Matchers.push_back(&Candidate); 5539 return true; 5540 } 5541 5542 void GroupMatcher::finalize() { 5543 assert(Conditions.empty() && "Already finalized?"); 5544 if (empty()) 5545 return; 5546 5547 Matcher &FirstRule = **Matchers.begin(); 5548 for (;;) { 5549 // All the checks are expected to succeed during the first iteration: 5550 for (const auto &Rule : Matchers) 5551 if (!Rule->hasFirstCondition()) 5552 return; 5553 const auto &FirstCondition = FirstRule.getFirstCondition(); 5554 for (unsigned I = 1, E = Matchers.size(); I < E; ++I) 5555 if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition)) 5556 return; 5557 5558 Conditions.push_back(FirstRule.popFirstCondition()); 5559 for (unsigned I = 1, E = Matchers.size(); I < E; ++I) 5560 Matchers[I]->popFirstCondition(); 5561 } 5562 } 5563 5564 void GroupMatcher::emit(MatchTable &Table) { 5565 unsigned LabelID = ~0U; 5566 if (!Conditions.empty()) { 5567 LabelID = Table.allocateLabelID(); 5568 Table << MatchTable::Opcode("GIM_Try", +1) 5569 << MatchTable::Comment("On fail goto") 5570 << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak; 5571 } 5572 for (auto &Condition : Conditions) 5573 Condition->emitPredicateOpcodes( 5574 Table, *static_cast<RuleMatcher *>(*Matchers.begin())); 5575 5576 for (const auto &M : Matchers) 5577 M->emit(Table); 5578 5579 // Exit the group 5580 if (!Conditions.empty()) 5581 Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak 5582 << MatchTable::Label(LabelID); 5583 } 5584 5585 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) { 5586 return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P); 5587 } 5588 5589 bool SwitchMatcher::candidateConditionMatches( 5590 const PredicateMatcher &Predicate) const { 5591 5592 if (empty()) { 5593 // Sharing predicates for nested instructions is not supported yet as we 5594 // currently don't hoist the GIM_RecordInsn's properly, therefore we can 5595 // only work on the original root instruction (InsnVarID == 0): 5596 if (Predicate.getInsnVarID() != 0) 5597 return false; 5598 // ... while an attempt to add even a root matcher to an empty SwitchMatcher 5599 // could fail as not all the types of conditions are supported: 5600 if (!isSupportedPredicateType(Predicate)) 5601 return false; 5602 // ... or the condition might not have a proper implementation of 5603 // getValue() / isIdenticalDownToValue() yet: 5604 if (!Predicate.hasValue()) 5605 return false; 5606 // ... otherwise an empty Switch can accomodate the condition with no 5607 // further requirements: 5608 return true; 5609 } 5610 5611 const Matcher &CaseRepresentative = **Matchers.begin(); 5612 const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition(); 5613 // Switch-cases must share the same kind of condition and path to the value it 5614 // checks: 5615 if (!Predicate.isIdenticalDownToValue(RepresentativeCondition)) 5616 return false; 5617 5618 const auto Value = Predicate.getValue(); 5619 // ... but be unique with respect to the actual value they check: 5620 return Values.count(Value) == 0; 5621 } 5622 5623 bool SwitchMatcher::addMatcher(Matcher &Candidate) { 5624 if (!Candidate.hasFirstCondition()) 5625 return false; 5626 5627 const PredicateMatcher &Predicate = Candidate.getFirstCondition(); 5628 if (!candidateConditionMatches(Predicate)) 5629 return false; 5630 const auto Value = Predicate.getValue(); 5631 Values.insert(Value); 5632 5633 Matchers.push_back(&Candidate); 5634 return true; 5635 } 5636 5637 void SwitchMatcher::finalize() { 5638 assert(Condition == nullptr && "Already finalized"); 5639 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); 5640 if (empty()) 5641 return; 5642 5643 std::stable_sort(Matchers.begin(), Matchers.end(), 5644 [](const Matcher *L, const Matcher *R) { 5645 return L->getFirstCondition().getValue() < 5646 R->getFirstCondition().getValue(); 5647 }); 5648 Condition = Matchers[0]->popFirstCondition(); 5649 for (unsigned I = 1, E = Values.size(); I < E; ++I) 5650 Matchers[I]->popFirstCondition(); 5651 } 5652 5653 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P, 5654 MatchTable &Table) { 5655 assert(isSupportedPredicateType(P) && "Predicate type is not supported"); 5656 5657 if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) { 5658 Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI") 5659 << MatchTable::IntValue(Condition->getInsnVarID()); 5660 return; 5661 } 5662 if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) { 5663 Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI") 5664 << MatchTable::IntValue(Condition->getInsnVarID()) 5665 << MatchTable::Comment("Op") 5666 << MatchTable::IntValue(Condition->getOpIdx()); 5667 return; 5668 } 5669 5670 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a " 5671 "predicate type that is claimed to be supported"); 5672 } 5673 5674 void SwitchMatcher::emit(MatchTable &Table) { 5675 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); 5676 if (empty()) 5677 return; 5678 assert(Condition != nullptr && 5679 "Broken SwitchMatcher, hasn't been finalized?"); 5680 5681 std::vector<unsigned> LabelIDs(Values.size()); 5682 std::generate(LabelIDs.begin(), LabelIDs.end(), 5683 [&Table]() { return Table.allocateLabelID(); }); 5684 const unsigned Default = Table.allocateLabelID(); 5685 5686 const int64_t LowerBound = Values.begin()->getRawValue(); 5687 const int64_t UpperBound = Values.rbegin()->getRawValue() + 1; 5688 5689 emitPredicateSpecificOpcodes(*Condition, Table); 5690 5691 Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound) 5692 << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")") 5693 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default); 5694 5695 int64_t J = LowerBound; 5696 auto VI = Values.begin(); 5697 for (unsigned I = 0, E = Values.size(); I < E; ++I) { 5698 auto V = *VI++; 5699 while (J++ < V.getRawValue()) 5700 Table << MatchTable::IntValue(0); 5701 V.turnIntoComment(); 5702 Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]); 5703 } 5704 Table << MatchTable::LineBreak; 5705 5706 for (unsigned I = 0, E = Values.size(); I < E; ++I) { 5707 Table << MatchTable::Label(LabelIDs[I]); 5708 Matchers[I]->emit(Table); 5709 Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; 5710 } 5711 Table << MatchTable::Label(Default); 5712 } 5713 5714 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); } 5715 5716 } // end anonymous namespace 5717 5718 //===----------------------------------------------------------------------===// 5719 5720 namespace llvm { 5721 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) { 5722 GlobalISelEmitter(RK).run(OS); 5723 } 5724 } // End llvm namespace 5725