1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This tablegen backend emits code for use by the GlobalISel instruction 11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td. 12 /// 13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen 14 /// backend, filters out the ones that are unsupported, maps 15 /// SelectionDAG-specific constructs to their GlobalISel counterpart 16 /// (when applicable: MVT to LLT; SDNode to generic Instruction). 17 /// 18 /// Not all patterns are supported: pass the tablegen invocation 19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped, 20 /// as well as why. 21 /// 22 /// The generated file defines a single method: 23 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const; 24 /// intended to be used in InstructionSelector::select as the first-step 25 /// selector for the patterns that don't require complex C++. 26 /// 27 /// FIXME: We'll probably want to eventually define a base 28 /// "TargetGenInstructionSelector" class. 29 /// 30 //===----------------------------------------------------------------------===// 31 32 #include "CodeGenDAGPatterns.h" 33 #include "CodeGenInstruction.h" 34 #include "SubtargetFeatureInfo.h" 35 #include "llvm/ADT/Optional.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/Support/CodeGenCoverage.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/LowLevelTypeImpl.h" 41 #include "llvm/Support/MachineValueType.h" 42 #include "llvm/Support/ScopedPrinter.h" 43 #include "llvm/TableGen/Error.h" 44 #include "llvm/TableGen/Record.h" 45 #include "llvm/TableGen/TableGenBackend.h" 46 #include <numeric> 47 #include <string> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "gisel-emitter" 51 52 STATISTIC(NumPatternTotal, "Total number of patterns"); 53 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG"); 54 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped"); 55 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information"); 56 STATISTIC(NumPatternEmitted, "Number of patterns emitted"); 57 58 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel"); 59 60 static cl::opt<bool> WarnOnSkippedPatterns( 61 "warn-on-skipped-patterns", 62 cl::desc("Explain why a pattern was skipped for inclusion " 63 "in the GlobalISel selector"), 64 cl::init(false), cl::cat(GlobalISelEmitterCat)); 65 66 static cl::opt<bool> GenerateCoverage( 67 "instrument-gisel-coverage", 68 cl::desc("Generate coverage instrumentation for GlobalISel"), 69 cl::init(false), cl::cat(GlobalISelEmitterCat)); 70 71 static cl::opt<std::string> UseCoverageFile( 72 "gisel-coverage-file", cl::init(""), 73 cl::desc("Specify file to retrieve coverage information from"), 74 cl::cat(GlobalISelEmitterCat)); 75 76 static cl::opt<bool> OptimizeMatchTable( 77 "optimize-match-table", 78 cl::desc("Generate an optimized version of the match table"), 79 cl::init(true), cl::cat(GlobalISelEmitterCat)); 80 81 namespace { 82 //===- Helper functions ---------------------------------------------------===// 83 84 /// Get the name of the enum value used to number the predicate function. 85 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) { 86 if (Predicate.hasGISelPredicateCode()) 87 return "GIPFP_MI_" + Predicate.getFnName(); 88 return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" + 89 Predicate.getFnName(); 90 } 91 92 /// Get the opcode used to check this predicate. 93 std::string getMatchOpcodeForImmPredicate(const TreePredicateFn &Predicate) { 94 return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate"; 95 } 96 97 /// This class stands in for LLT wherever we want to tablegen-erate an 98 /// equivalent at compiler run-time. 99 class LLTCodeGen { 100 private: 101 LLT Ty; 102 103 public: 104 LLTCodeGen() = default; 105 LLTCodeGen(const LLT &Ty) : Ty(Ty) {} 106 107 std::string getCxxEnumValue() const { 108 std::string Str; 109 raw_string_ostream OS(Str); 110 111 emitCxxEnumValue(OS); 112 return Str; 113 } 114 115 void emitCxxEnumValue(raw_ostream &OS) const { 116 if (Ty.isScalar()) { 117 OS << "GILLT_s" << Ty.getSizeInBits(); 118 return; 119 } 120 if (Ty.isVector()) { 121 OS << (Ty.isScalable() ? "GILLT_nxv" : "GILLT_v") 122 << Ty.getElementCount().getKnownMinValue() << "s" 123 << Ty.getScalarSizeInBits(); 124 return; 125 } 126 if (Ty.isPointer()) { 127 OS << "GILLT_p" << Ty.getAddressSpace(); 128 if (Ty.getSizeInBits() > 0) 129 OS << "s" << Ty.getSizeInBits(); 130 return; 131 } 132 llvm_unreachable("Unhandled LLT"); 133 } 134 135 void emitCxxConstructorCall(raw_ostream &OS) const { 136 if (Ty.isScalar()) { 137 OS << "LLT::scalar(" << Ty.getSizeInBits() << ")"; 138 return; 139 } 140 if (Ty.isVector()) { 141 OS << "LLT::vector(" 142 << (Ty.isScalable() ? "ElementCount::getScalable(" 143 : "ElementCount::getFixed(") 144 << Ty.getElementCount().getKnownMinValue() << "), " 145 << Ty.getScalarSizeInBits() << ")"; 146 return; 147 } 148 if (Ty.isPointer() && Ty.getSizeInBits() > 0) { 149 OS << "LLT::pointer(" << Ty.getAddressSpace() << ", " 150 << Ty.getSizeInBits() << ")"; 151 return; 152 } 153 llvm_unreachable("Unhandled LLT"); 154 } 155 156 const LLT &get() const { return Ty; } 157 158 /// This ordering is used for std::unique() and llvm::sort(). There's no 159 /// particular logic behind the order but either A < B or B < A must be 160 /// true if A != B. 161 bool operator<(const LLTCodeGen &Other) const { 162 if (Ty.isValid() != Other.Ty.isValid()) 163 return Ty.isValid() < Other.Ty.isValid(); 164 if (!Ty.isValid()) 165 return false; 166 167 if (Ty.isVector() != Other.Ty.isVector()) 168 return Ty.isVector() < Other.Ty.isVector(); 169 if (Ty.isScalar() != Other.Ty.isScalar()) 170 return Ty.isScalar() < Other.Ty.isScalar(); 171 if (Ty.isPointer() != Other.Ty.isPointer()) 172 return Ty.isPointer() < Other.Ty.isPointer(); 173 174 if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace()) 175 return Ty.getAddressSpace() < Other.Ty.getAddressSpace(); 176 177 if (Ty.isVector() && Ty.getElementCount() != Other.Ty.getElementCount()) 178 return std::make_tuple(Ty.isScalable(), 179 Ty.getElementCount().getKnownMinValue()) < 180 std::make_tuple(Other.Ty.isScalable(), 181 Other.Ty.getElementCount().getKnownMinValue()); 182 183 assert((!Ty.isVector() || Ty.isScalable() == Other.Ty.isScalable()) && 184 "Unexpected mismatch of scalable property"); 185 return Ty.isVector() 186 ? std::make_tuple(Ty.isScalable(), 187 Ty.getSizeInBits().getKnownMinSize()) < 188 std::make_tuple(Other.Ty.isScalable(), 189 Other.Ty.getSizeInBits().getKnownMinSize()) 190 : Ty.getSizeInBits().getFixedSize() < 191 Other.Ty.getSizeInBits().getFixedSize(); 192 } 193 194 bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; } 195 }; 196 197 // Track all types that are used so we can emit the corresponding enum. 198 std::set<LLTCodeGen> KnownTypes; 199 200 class InstructionMatcher; 201 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for 202 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...). 203 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) { 204 MVT VT(SVT); 205 206 if (VT.isVector() && !VT.getVectorElementCount().isScalar()) 207 return LLTCodeGen( 208 LLT::vector(VT.getVectorElementCount(), VT.getScalarSizeInBits())); 209 210 if (VT.isInteger() || VT.isFloatingPoint()) 211 return LLTCodeGen(LLT::scalar(VT.getSizeInBits())); 212 213 return None; 214 } 215 216 static std::string explainPredicates(const TreePatternNode *N) { 217 std::string Explanation; 218 StringRef Separator = ""; 219 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 220 const TreePredicateFn &P = Call.Fn; 221 Explanation += 222 (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str(); 223 Separator = ", "; 224 225 if (P.isAlwaysTrue()) 226 Explanation += " always-true"; 227 if (P.isImmediatePattern()) 228 Explanation += " immediate"; 229 230 if (P.isUnindexed()) 231 Explanation += " unindexed"; 232 233 if (P.isNonExtLoad()) 234 Explanation += " non-extload"; 235 if (P.isAnyExtLoad()) 236 Explanation += " extload"; 237 if (P.isSignExtLoad()) 238 Explanation += " sextload"; 239 if (P.isZeroExtLoad()) 240 Explanation += " zextload"; 241 242 if (P.isNonTruncStore()) 243 Explanation += " non-truncstore"; 244 if (P.isTruncStore()) 245 Explanation += " truncstore"; 246 247 if (Record *VT = P.getMemoryVT()) 248 Explanation += (" MemVT=" + VT->getName()).str(); 249 if (Record *VT = P.getScalarMemoryVT()) 250 Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str(); 251 252 if (ListInit *AddrSpaces = P.getAddressSpaces()) { 253 raw_string_ostream OS(Explanation); 254 OS << " AddressSpaces=["; 255 256 StringRef AddrSpaceSeparator; 257 for (Init *Val : AddrSpaces->getValues()) { 258 IntInit *IntVal = dyn_cast<IntInit>(Val); 259 if (!IntVal) 260 continue; 261 262 OS << AddrSpaceSeparator << IntVal->getValue(); 263 AddrSpaceSeparator = ", "; 264 } 265 266 OS << ']'; 267 } 268 269 int64_t MinAlign = P.getMinAlignment(); 270 if (MinAlign > 0) 271 Explanation += " MinAlign=" + utostr(MinAlign); 272 273 if (P.isAtomicOrderingMonotonic()) 274 Explanation += " monotonic"; 275 if (P.isAtomicOrderingAcquire()) 276 Explanation += " acquire"; 277 if (P.isAtomicOrderingRelease()) 278 Explanation += " release"; 279 if (P.isAtomicOrderingAcquireRelease()) 280 Explanation += " acq_rel"; 281 if (P.isAtomicOrderingSequentiallyConsistent()) 282 Explanation += " seq_cst"; 283 if (P.isAtomicOrderingAcquireOrStronger()) 284 Explanation += " >=acquire"; 285 if (P.isAtomicOrderingWeakerThanAcquire()) 286 Explanation += " <acquire"; 287 if (P.isAtomicOrderingReleaseOrStronger()) 288 Explanation += " >=release"; 289 if (P.isAtomicOrderingWeakerThanRelease()) 290 Explanation += " <release"; 291 } 292 return Explanation; 293 } 294 295 std::string explainOperator(Record *Operator) { 296 if (Operator->isSubClassOf("SDNode")) 297 return (" (" + Operator->getValueAsString("Opcode") + ")").str(); 298 299 if (Operator->isSubClassOf("Intrinsic")) 300 return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str(); 301 302 if (Operator->isSubClassOf("ComplexPattern")) 303 return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() + 304 ")") 305 .str(); 306 307 if (Operator->isSubClassOf("SDNodeXForm")) 308 return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() + 309 ")") 310 .str(); 311 312 return (" (Operator " + Operator->getName() + " not understood)").str(); 313 } 314 315 /// Helper function to let the emitter report skip reason error messages. 316 static Error failedImport(const Twine &Reason) { 317 return make_error<StringError>(Reason, inconvertibleErrorCode()); 318 } 319 320 static Error isTrivialOperatorNode(const TreePatternNode *N) { 321 std::string Explanation; 322 std::string Separator; 323 324 bool HasUnsupportedPredicate = false; 325 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 326 const TreePredicateFn &Predicate = Call.Fn; 327 328 if (Predicate.isAlwaysTrue()) 329 continue; 330 331 if (Predicate.isImmediatePattern()) 332 continue; 333 334 if (Predicate.hasNoUse()) 335 continue; 336 337 if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() || 338 Predicate.isSignExtLoad() || Predicate.isZeroExtLoad()) 339 continue; 340 341 if (Predicate.isNonTruncStore() || Predicate.isTruncStore()) 342 continue; 343 344 if (Predicate.isLoad() && Predicate.getMemoryVT()) 345 continue; 346 347 if (Predicate.isLoad() || Predicate.isStore()) { 348 if (Predicate.isUnindexed()) 349 continue; 350 } 351 352 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 353 const ListInit *AddrSpaces = Predicate.getAddressSpaces(); 354 if (AddrSpaces && !AddrSpaces->empty()) 355 continue; 356 357 if (Predicate.getMinAlignment() > 0) 358 continue; 359 } 360 361 if (Predicate.isAtomic() && Predicate.getMemoryVT()) 362 continue; 363 364 if (Predicate.isAtomic() && 365 (Predicate.isAtomicOrderingMonotonic() || 366 Predicate.isAtomicOrderingAcquire() || 367 Predicate.isAtomicOrderingRelease() || 368 Predicate.isAtomicOrderingAcquireRelease() || 369 Predicate.isAtomicOrderingSequentiallyConsistent() || 370 Predicate.isAtomicOrderingAcquireOrStronger() || 371 Predicate.isAtomicOrderingWeakerThanAcquire() || 372 Predicate.isAtomicOrderingReleaseOrStronger() || 373 Predicate.isAtomicOrderingWeakerThanRelease())) 374 continue; 375 376 if (Predicate.hasGISelPredicateCode()) 377 continue; 378 379 HasUnsupportedPredicate = true; 380 Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")"; 381 Separator = ", "; 382 Explanation += (Separator + "first-failing:" + 383 Predicate.getOrigPatFragRecord()->getRecord()->getName()) 384 .str(); 385 break; 386 } 387 388 if (!HasUnsupportedPredicate) 389 return Error::success(); 390 391 return failedImport(Explanation); 392 } 393 394 static Record *getInitValueAsRegClass(Init *V) { 395 if (DefInit *VDefInit = dyn_cast<DefInit>(V)) { 396 if (VDefInit->getDef()->isSubClassOf("RegisterOperand")) 397 return VDefInit->getDef()->getValueAsDef("RegClass"); 398 if (VDefInit->getDef()->isSubClassOf("RegisterClass")) 399 return VDefInit->getDef(); 400 } 401 return nullptr; 402 } 403 404 std::string 405 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 406 std::string Name = "GIFBS"; 407 for (const auto &Feature : FeatureBitset) 408 Name += ("_" + Feature->getName()).str(); 409 return Name; 410 } 411 412 static std::string getScopedName(unsigned Scope, const std::string &Name) { 413 return ("pred:" + Twine(Scope) + ":" + Name).str(); 414 } 415 416 //===- MatchTable Helpers -------------------------------------------------===// 417 418 class MatchTable; 419 420 /// A record to be stored in a MatchTable. 421 /// 422 /// This class represents any and all output that may be required to emit the 423 /// MatchTable. Instances are most often configured to represent an opcode or 424 /// value that will be emitted to the table with some formatting but it can also 425 /// represent commas, comments, and other formatting instructions. 426 struct MatchTableRecord { 427 enum RecordFlagsBits { 428 MTRF_None = 0x0, 429 /// Causes EmitStr to be formatted as comment when emitted. 430 MTRF_Comment = 0x1, 431 /// Causes the record value to be followed by a comma when emitted. 432 MTRF_CommaFollows = 0x2, 433 /// Causes the record value to be followed by a line break when emitted. 434 MTRF_LineBreakFollows = 0x4, 435 /// Indicates that the record defines a label and causes an additional 436 /// comment to be emitted containing the index of the label. 437 MTRF_Label = 0x8, 438 /// Causes the record to be emitted as the index of the label specified by 439 /// LabelID along with a comment indicating where that label is. 440 MTRF_JumpTarget = 0x10, 441 /// Causes the formatter to add a level of indentation before emitting the 442 /// record. 443 MTRF_Indent = 0x20, 444 /// Causes the formatter to remove a level of indentation after emitting the 445 /// record. 446 MTRF_Outdent = 0x40, 447 }; 448 449 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to 450 /// reference or define. 451 unsigned LabelID; 452 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a 453 /// value, a label name. 454 std::string EmitStr; 455 456 private: 457 /// The number of MatchTable elements described by this record. Comments are 0 458 /// while values are typically 1. Values >1 may occur when we need to emit 459 /// values that exceed the size of a MatchTable element. 460 unsigned NumElements; 461 462 public: 463 /// A bitfield of RecordFlagsBits flags. 464 unsigned Flags; 465 466 /// The actual run-time value, if known 467 int64_t RawValue; 468 469 MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr, 470 unsigned NumElements, unsigned Flags, 471 int64_t RawValue = std::numeric_limits<int64_t>::min()) 472 : LabelID(LabelID_.value_or(~0u)), EmitStr(EmitStr), 473 NumElements(NumElements), Flags(Flags), RawValue(RawValue) { 474 assert((!LabelID_ || LabelID != ~0u) && 475 "This value is reserved for non-labels"); 476 } 477 MatchTableRecord(const MatchTableRecord &Other) = default; 478 MatchTableRecord(MatchTableRecord &&Other) = default; 479 480 /// Useful if a Match Table Record gets optimized out 481 void turnIntoComment() { 482 Flags |= MTRF_Comment; 483 Flags &= ~MTRF_CommaFollows; 484 NumElements = 0; 485 } 486 487 /// For Jump Table generation purposes 488 bool operator<(const MatchTableRecord &Other) const { 489 return RawValue < Other.RawValue; 490 } 491 int64_t getRawValue() const { return RawValue; } 492 493 void emit(raw_ostream &OS, bool LineBreakNextAfterThis, 494 const MatchTable &Table) const; 495 unsigned size() const { return NumElements; } 496 }; 497 498 class Matcher; 499 500 /// Holds the contents of a generated MatchTable to enable formatting and the 501 /// necessary index tracking needed to support GIM_Try. 502 class MatchTable { 503 /// An unique identifier for the table. The generated table will be named 504 /// MatchTable${ID}. 505 unsigned ID; 506 /// The records that make up the table. Also includes comments describing the 507 /// values being emitted and line breaks to format it. 508 std::vector<MatchTableRecord> Contents; 509 /// The currently defined labels. 510 DenseMap<unsigned, unsigned> LabelMap; 511 /// Tracks the sum of MatchTableRecord::NumElements as the table is built. 512 unsigned CurrentSize = 0; 513 /// A unique identifier for a MatchTable label. 514 unsigned CurrentLabelID = 0; 515 /// Determines if the table should be instrumented for rule coverage tracking. 516 bool IsWithCoverage; 517 518 public: 519 static MatchTableRecord LineBreak; 520 static MatchTableRecord Comment(StringRef Comment) { 521 return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment); 522 } 523 static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) { 524 unsigned ExtraFlags = 0; 525 if (IndentAdjust > 0) 526 ExtraFlags |= MatchTableRecord::MTRF_Indent; 527 if (IndentAdjust < 0) 528 ExtraFlags |= MatchTableRecord::MTRF_Outdent; 529 530 return MatchTableRecord(None, Opcode, 1, 531 MatchTableRecord::MTRF_CommaFollows | ExtraFlags); 532 } 533 static MatchTableRecord NamedValue(StringRef NamedValue) { 534 return MatchTableRecord(None, NamedValue, 1, 535 MatchTableRecord::MTRF_CommaFollows); 536 } 537 static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) { 538 return MatchTableRecord(None, NamedValue, 1, 539 MatchTableRecord::MTRF_CommaFollows, RawValue); 540 } 541 static MatchTableRecord NamedValue(StringRef Namespace, 542 StringRef NamedValue) { 543 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, 544 MatchTableRecord::MTRF_CommaFollows); 545 } 546 static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue, 547 int64_t RawValue) { 548 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, 549 MatchTableRecord::MTRF_CommaFollows, RawValue); 550 } 551 static MatchTableRecord IntValue(int64_t IntValue) { 552 return MatchTableRecord(None, llvm::to_string(IntValue), 1, 553 MatchTableRecord::MTRF_CommaFollows); 554 } 555 static MatchTableRecord Label(unsigned LabelID) { 556 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0, 557 MatchTableRecord::MTRF_Label | 558 MatchTableRecord::MTRF_Comment | 559 MatchTableRecord::MTRF_LineBreakFollows); 560 } 561 static MatchTableRecord JumpTarget(unsigned LabelID) { 562 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1, 563 MatchTableRecord::MTRF_JumpTarget | 564 MatchTableRecord::MTRF_Comment | 565 MatchTableRecord::MTRF_CommaFollows); 566 } 567 568 static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage); 569 570 MatchTable(bool WithCoverage, unsigned ID = 0) 571 : ID(ID), IsWithCoverage(WithCoverage) {} 572 573 bool isWithCoverage() const { return IsWithCoverage; } 574 575 void push_back(const MatchTableRecord &Value) { 576 if (Value.Flags & MatchTableRecord::MTRF_Label) 577 defineLabel(Value.LabelID); 578 Contents.push_back(Value); 579 CurrentSize += Value.size(); 580 } 581 582 unsigned allocateLabelID() { return CurrentLabelID++; } 583 584 void defineLabel(unsigned LabelID) { 585 LabelMap.insert(std::make_pair(LabelID, CurrentSize)); 586 } 587 588 unsigned getLabelIndex(unsigned LabelID) const { 589 const auto I = LabelMap.find(LabelID); 590 assert(I != LabelMap.end() && "Use of undeclared label"); 591 return I->second; 592 } 593 594 void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; } 595 596 void emitDeclaration(raw_ostream &OS) const { 597 unsigned Indentation = 4; 598 OS << " constexpr static int64_t MatchTable" << ID << "[] = {"; 599 LineBreak.emit(OS, true, *this); 600 OS << std::string(Indentation, ' '); 601 602 for (auto I = Contents.begin(), E = Contents.end(); I != E; 603 ++I) { 604 bool LineBreakIsNext = false; 605 const auto &NextI = std::next(I); 606 607 if (NextI != E) { 608 if (NextI->EmitStr == "" && 609 NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows) 610 LineBreakIsNext = true; 611 } 612 613 if (I->Flags & MatchTableRecord::MTRF_Indent) 614 Indentation += 2; 615 616 I->emit(OS, LineBreakIsNext, *this); 617 if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows) 618 OS << std::string(Indentation, ' '); 619 620 if (I->Flags & MatchTableRecord::MTRF_Outdent) 621 Indentation -= 2; 622 } 623 OS << "};\n"; 624 } 625 }; 626 627 MatchTableRecord MatchTable::LineBreak = { 628 None, "" /* Emit String */, 0 /* Elements */, 629 MatchTableRecord::MTRF_LineBreakFollows}; 630 631 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis, 632 const MatchTable &Table) const { 633 bool UseLineComment = 634 LineBreakIsNextAfterThis || (Flags & MTRF_LineBreakFollows); 635 if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows)) 636 UseLineComment = false; 637 638 if (Flags & MTRF_Comment) 639 OS << (UseLineComment ? "// " : "/*"); 640 641 OS << EmitStr; 642 if (Flags & MTRF_Label) 643 OS << ": @" << Table.getLabelIndex(LabelID); 644 645 if ((Flags & MTRF_Comment) && !UseLineComment) 646 OS << "*/"; 647 648 if (Flags & MTRF_JumpTarget) { 649 if (Flags & MTRF_Comment) 650 OS << " "; 651 OS << Table.getLabelIndex(LabelID); 652 } 653 654 if (Flags & MTRF_CommaFollows) { 655 OS << ","; 656 if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows)) 657 OS << " "; 658 } 659 660 if (Flags & MTRF_LineBreakFollows) 661 OS << "\n"; 662 } 663 664 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) { 665 Table.push_back(Value); 666 return Table; 667 } 668 669 //===- Matchers -----------------------------------------------------------===// 670 671 class OperandMatcher; 672 class MatchAction; 673 class PredicateMatcher; 674 675 class Matcher { 676 public: 677 virtual ~Matcher() = default; 678 virtual void optimize() {} 679 virtual void emit(MatchTable &Table) = 0; 680 681 virtual bool hasFirstCondition() const = 0; 682 virtual const PredicateMatcher &getFirstCondition() const = 0; 683 virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0; 684 }; 685 686 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules, 687 bool WithCoverage) { 688 MatchTable Table(WithCoverage); 689 for (Matcher *Rule : Rules) 690 Rule->emit(Table); 691 692 return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; 693 } 694 695 class GroupMatcher final : public Matcher { 696 /// Conditions that form a common prefix of all the matchers contained. 697 SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions; 698 699 /// All the nested matchers, sharing a common prefix. 700 std::vector<Matcher *> Matchers; 701 702 /// An owning collection for any auxiliary matchers created while optimizing 703 /// nested matchers contained. 704 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 705 706 public: 707 /// Add a matcher to the collection of nested matchers if it meets the 708 /// requirements, and return true. If it doesn't, do nothing and return false. 709 /// 710 /// Expected to preserve its argument, so it could be moved out later on. 711 bool addMatcher(Matcher &Candidate); 712 713 /// Mark the matcher as fully-built and ensure any invariants expected by both 714 /// optimize() and emit(...) methods. Generally, both sequences of calls 715 /// are expected to lead to a sensible result: 716 /// 717 /// addMatcher(...)*; finalize(); optimize(); emit(...); and 718 /// addMatcher(...)*; finalize(); emit(...); 719 /// 720 /// or generally 721 /// 722 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }* 723 /// 724 /// Multiple calls to optimize() are expected to be handled gracefully, though 725 /// optimize() is not expected to be idempotent. Multiple calls to finalize() 726 /// aren't generally supported. emit(...) is expected to be non-mutating and 727 /// producing the exact same results upon repeated calls. 728 /// 729 /// addMatcher() calls after the finalize() call are not supported. 730 /// 731 /// finalize() and optimize() are both allowed to mutate the contained 732 /// matchers, so moving them out after finalize() is not supported. 733 void finalize(); 734 void optimize() override; 735 void emit(MatchTable &Table) override; 736 737 /// Could be used to move out the matchers added previously, unless finalize() 738 /// has been already called. If any of the matchers are moved out, the group 739 /// becomes safe to destroy, but not safe to re-use for anything else. 740 iterator_range<std::vector<Matcher *>::iterator> matchers() { 741 return make_range(Matchers.begin(), Matchers.end()); 742 } 743 size_t size() const { return Matchers.size(); } 744 bool empty() const { return Matchers.empty(); } 745 746 std::unique_ptr<PredicateMatcher> popFirstCondition() override { 747 assert(!Conditions.empty() && 748 "Trying to pop a condition from a condition-less group"); 749 std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front()); 750 Conditions.erase(Conditions.begin()); 751 return P; 752 } 753 const PredicateMatcher &getFirstCondition() const override { 754 assert(!Conditions.empty() && 755 "Trying to get a condition from a condition-less group"); 756 return *Conditions.front(); 757 } 758 bool hasFirstCondition() const override { return !Conditions.empty(); } 759 760 private: 761 /// See if a candidate matcher could be added to this group solely by 762 /// analyzing its first condition. 763 bool candidateConditionMatches(const PredicateMatcher &Predicate) const; 764 }; 765 766 class SwitchMatcher : public Matcher { 767 /// All the nested matchers, representing distinct switch-cases. The first 768 /// conditions (as Matcher::getFirstCondition() reports) of all the nested 769 /// matchers must share the same type and path to a value they check, in other 770 /// words, be isIdenticalDownToValue, but have different values they check 771 /// against. 772 std::vector<Matcher *> Matchers; 773 774 /// The representative condition, with a type and a path (InsnVarID and OpIdx 775 /// in most cases) shared by all the matchers contained. 776 std::unique_ptr<PredicateMatcher> Condition = nullptr; 777 778 /// Temporary set used to check that the case values don't repeat within the 779 /// same switch. 780 std::set<MatchTableRecord> Values; 781 782 /// An owning collection for any auxiliary matchers created while optimizing 783 /// nested matchers contained. 784 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 785 786 public: 787 bool addMatcher(Matcher &Candidate); 788 789 void finalize(); 790 void emit(MatchTable &Table) override; 791 792 iterator_range<std::vector<Matcher *>::iterator> matchers() { 793 return make_range(Matchers.begin(), Matchers.end()); 794 } 795 size_t size() const { return Matchers.size(); } 796 bool empty() const { return Matchers.empty(); } 797 798 std::unique_ptr<PredicateMatcher> popFirstCondition() override { 799 // SwitchMatcher doesn't have a common first condition for its cases, as all 800 // the cases only share a kind of a value (a type and a path to it) they 801 // match, but deliberately differ in the actual value they match. 802 llvm_unreachable("Trying to pop a condition from a condition-less group"); 803 } 804 const PredicateMatcher &getFirstCondition() const override { 805 llvm_unreachable("Trying to pop a condition from a condition-less group"); 806 } 807 bool hasFirstCondition() const override { return false; } 808 809 private: 810 /// See if the predicate type has a Switch-implementation for it. 811 static bool isSupportedPredicateType(const PredicateMatcher &Predicate); 812 813 bool candidateConditionMatches(const PredicateMatcher &Predicate) const; 814 815 /// emit()-helper 816 static void emitPredicateSpecificOpcodes(const PredicateMatcher &P, 817 MatchTable &Table); 818 }; 819 820 /// Generates code to check that a match rule matches. 821 class RuleMatcher : public Matcher { 822 public: 823 using ActionList = std::list<std::unique_ptr<MatchAction>>; 824 using action_iterator = ActionList::iterator; 825 826 protected: 827 /// A list of matchers that all need to succeed for the current rule to match. 828 /// FIXME: This currently supports a single match position but could be 829 /// extended to support multiple positions to support div/rem fusion or 830 /// load-multiple instructions. 831 using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ; 832 MatchersTy Matchers; 833 834 /// A list of actions that need to be taken when all predicates in this rule 835 /// have succeeded. 836 ActionList Actions; 837 838 using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>; 839 840 /// A map of instruction matchers to the local variables 841 DefinedInsnVariablesMap InsnVariableIDs; 842 843 using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>; 844 845 // The set of instruction matchers that have not yet been claimed for mutation 846 // by a BuildMI. 847 MutatableInsnSet MutatableInsns; 848 849 /// A map of named operands defined by the matchers that may be referenced by 850 /// the renderers. 851 StringMap<OperandMatcher *> DefinedOperands; 852 853 /// A map of anonymous physical register operands defined by the matchers that 854 /// may be referenced by the renderers. 855 DenseMap<Record *, OperandMatcher *> PhysRegOperands; 856 857 /// ID for the next instruction variable defined with implicitlyDefineInsnVar() 858 unsigned NextInsnVarID; 859 860 /// ID for the next output instruction allocated with allocateOutputInsnID() 861 unsigned NextOutputInsnID; 862 863 /// ID for the next temporary register ID allocated with allocateTempRegID() 864 unsigned NextTempRegID; 865 866 std::vector<Record *> RequiredFeatures; 867 std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers; 868 869 ArrayRef<SMLoc> SrcLoc; 870 871 typedef std::tuple<Record *, unsigned, unsigned> 872 DefinedComplexPatternSubOperand; 873 typedef StringMap<DefinedComplexPatternSubOperand> 874 DefinedComplexPatternSubOperandMap; 875 /// A map of Symbolic Names to ComplexPattern sub-operands. 876 DefinedComplexPatternSubOperandMap ComplexSubOperands; 877 /// A map used to for multiple referenced error check of ComplexSubOperand. 878 /// ComplexSubOperand can't be referenced multiple from different operands, 879 /// however multiple references from same operand are allowed since that is 880 /// how 'same operand checks' are generated. 881 StringMap<std::string> ComplexSubOperandsParentName; 882 883 uint64_t RuleID; 884 static uint64_t NextRuleID; 885 886 public: 887 RuleMatcher(ArrayRef<SMLoc> SrcLoc) 888 : NextInsnVarID(0), NextOutputInsnID(0), NextTempRegID(0), SrcLoc(SrcLoc), 889 RuleID(NextRuleID++) {} 890 RuleMatcher(RuleMatcher &&Other) = default; 891 RuleMatcher &operator=(RuleMatcher &&Other) = default; 892 893 uint64_t getRuleID() const { return RuleID; } 894 895 InstructionMatcher &addInstructionMatcher(StringRef SymbolicName); 896 void addRequiredFeature(Record *Feature); 897 const std::vector<Record *> &getRequiredFeatures() const; 898 899 template <class Kind, class... Args> Kind &addAction(Args &&... args); 900 template <class Kind, class... Args> 901 action_iterator insertAction(action_iterator InsertPt, Args &&... args); 902 903 /// Define an instruction without emitting any code to do so. 904 unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher); 905 906 unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const; 907 DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const { 908 return InsnVariableIDs.begin(); 909 } 910 DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const { 911 return InsnVariableIDs.end(); 912 } 913 iterator_range<typename DefinedInsnVariablesMap::const_iterator> 914 defined_insn_vars() const { 915 return make_range(defined_insn_vars_begin(), defined_insn_vars_end()); 916 } 917 918 MutatableInsnSet::const_iterator mutatable_insns_begin() const { 919 return MutatableInsns.begin(); 920 } 921 MutatableInsnSet::const_iterator mutatable_insns_end() const { 922 return MutatableInsns.end(); 923 } 924 iterator_range<typename MutatableInsnSet::const_iterator> 925 mutatable_insns() const { 926 return make_range(mutatable_insns_begin(), mutatable_insns_end()); 927 } 928 void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) { 929 bool R = MutatableInsns.erase(InsnMatcher); 930 assert(R && "Reserving a mutatable insn that isn't available"); 931 (void)R; 932 } 933 934 action_iterator actions_begin() { return Actions.begin(); } 935 action_iterator actions_end() { return Actions.end(); } 936 iterator_range<action_iterator> actions() { 937 return make_range(actions_begin(), actions_end()); 938 } 939 940 void defineOperand(StringRef SymbolicName, OperandMatcher &OM); 941 942 void definePhysRegOperand(Record *Reg, OperandMatcher &OM); 943 944 Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern, 945 unsigned RendererID, unsigned SubOperandID, 946 StringRef ParentSymbolicName) { 947 std::string ParentName(ParentSymbolicName); 948 if (ComplexSubOperands.count(SymbolicName)) { 949 const std::string &RecordedParentName = 950 ComplexSubOperandsParentName[SymbolicName]; 951 if (RecordedParentName != ParentName) 952 return failedImport("Error: Complex suboperand " + SymbolicName + 953 " referenced by different operands: " + 954 RecordedParentName + " and " + ParentName + "."); 955 // Complex suboperand referenced more than once from same the operand is 956 // used to generate 'same operand check'. Emitting of 957 // GIR_ComplexSubOperandRenderer for them is already handled. 958 return Error::success(); 959 } 960 961 ComplexSubOperands[SymbolicName] = 962 std::make_tuple(ComplexPattern, RendererID, SubOperandID); 963 ComplexSubOperandsParentName[SymbolicName] = ParentName; 964 965 return Error::success(); 966 } 967 968 Optional<DefinedComplexPatternSubOperand> 969 getComplexSubOperand(StringRef SymbolicName) const { 970 const auto &I = ComplexSubOperands.find(SymbolicName); 971 if (I == ComplexSubOperands.end()) 972 return None; 973 return I->second; 974 } 975 976 InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const; 977 const OperandMatcher &getOperandMatcher(StringRef Name) const; 978 const OperandMatcher &getPhysRegOperandMatcher(Record *) const; 979 980 void optimize() override; 981 void emit(MatchTable &Table) override; 982 983 /// Compare the priority of this object and B. 984 /// 985 /// Returns true if this object is more important than B. 986 bool isHigherPriorityThan(const RuleMatcher &B) const; 987 988 /// Report the maximum number of temporary operands needed by the rule 989 /// matcher. 990 unsigned countRendererFns() const; 991 992 std::unique_ptr<PredicateMatcher> popFirstCondition() override; 993 const PredicateMatcher &getFirstCondition() const override; 994 LLTCodeGen getFirstConditionAsRootType(); 995 bool hasFirstCondition() const override; 996 unsigned getNumOperands() const; 997 StringRef getOpcode() const; 998 999 // FIXME: Remove this as soon as possible 1000 InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); } 1001 1002 unsigned allocateOutputInsnID() { return NextOutputInsnID++; } 1003 unsigned allocateTempRegID() { return NextTempRegID++; } 1004 1005 iterator_range<MatchersTy::iterator> insnmatchers() { 1006 return make_range(Matchers.begin(), Matchers.end()); 1007 } 1008 bool insnmatchers_empty() const { return Matchers.empty(); } 1009 void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); } 1010 }; 1011 1012 uint64_t RuleMatcher::NextRuleID = 0; 1013 1014 using action_iterator = RuleMatcher::action_iterator; 1015 1016 template <class PredicateTy> class PredicateListMatcher { 1017 private: 1018 /// Template instantiations should specialize this to return a string to use 1019 /// for the comment emitted when there are no predicates. 1020 std::string getNoPredicateComment() const; 1021 1022 protected: 1023 using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>; 1024 PredicatesTy Predicates; 1025 1026 /// Track if the list of predicates was manipulated by one of the optimization 1027 /// methods. 1028 bool Optimized = false; 1029 1030 public: 1031 typename PredicatesTy::iterator predicates_begin() { 1032 return Predicates.begin(); 1033 } 1034 typename PredicatesTy::iterator predicates_end() { 1035 return Predicates.end(); 1036 } 1037 iterator_range<typename PredicatesTy::iterator> predicates() { 1038 return make_range(predicates_begin(), predicates_end()); 1039 } 1040 typename PredicatesTy::size_type predicates_size() const { 1041 return Predicates.size(); 1042 } 1043 bool predicates_empty() const { return Predicates.empty(); } 1044 1045 std::unique_ptr<PredicateTy> predicates_pop_front() { 1046 std::unique_ptr<PredicateTy> Front = std::move(Predicates.front()); 1047 Predicates.pop_front(); 1048 Optimized = true; 1049 return Front; 1050 } 1051 1052 void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) { 1053 Predicates.push_front(std::move(Predicate)); 1054 } 1055 1056 void eraseNullPredicates() { 1057 const auto NewEnd = 1058 std::stable_partition(Predicates.begin(), Predicates.end(), 1059 std::logical_not<std::unique_ptr<PredicateTy>>()); 1060 if (NewEnd != Predicates.begin()) { 1061 Predicates.erase(Predicates.begin(), NewEnd); 1062 Optimized = true; 1063 } 1064 } 1065 1066 /// Emit MatchTable opcodes that tests whether all the predicates are met. 1067 template <class... Args> 1068 void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) { 1069 if (Predicates.empty() && !Optimized) { 1070 Table << MatchTable::Comment(getNoPredicateComment()) 1071 << MatchTable::LineBreak; 1072 return; 1073 } 1074 1075 for (const auto &Predicate : predicates()) 1076 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...); 1077 } 1078 1079 /// Provide a function to avoid emitting certain predicates. This is used to 1080 /// defer some predicate checks until after others 1081 using PredicateFilterFunc = std::function<bool(const PredicateTy&)>; 1082 1083 /// Emit MatchTable opcodes for predicates which satisfy \p 1084 /// ShouldEmitPredicate. This should be called multiple times to ensure all 1085 /// predicates are eventually added to the match table. 1086 template <class... Args> 1087 void emitFilteredPredicateListOpcodes(PredicateFilterFunc ShouldEmitPredicate, 1088 MatchTable &Table, Args &&... args) { 1089 if (Predicates.empty() && !Optimized) { 1090 Table << MatchTable::Comment(getNoPredicateComment()) 1091 << MatchTable::LineBreak; 1092 return; 1093 } 1094 1095 for (const auto &Predicate : predicates()) { 1096 if (ShouldEmitPredicate(*Predicate)) 1097 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...); 1098 } 1099 } 1100 }; 1101 1102 class PredicateMatcher { 1103 public: 1104 /// This enum is used for RTTI and also defines the priority that is given to 1105 /// the predicate when generating the matcher code. Kinds with higher priority 1106 /// must be tested first. 1107 /// 1108 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter 1109 /// but OPM_Int must have priority over OPM_RegBank since constant integers 1110 /// are represented by a virtual register defined by a G_CONSTANT instruction. 1111 /// 1112 /// Note: The relative priority between IPM_ and OPM_ does not matter, they 1113 /// are currently not compared between each other. 1114 enum PredicateKind { 1115 IPM_Opcode, 1116 IPM_NumOperands, 1117 IPM_ImmPredicate, 1118 IPM_Imm, 1119 IPM_AtomicOrderingMMO, 1120 IPM_MemoryLLTSize, 1121 IPM_MemoryVsLLTSize, 1122 IPM_MemoryAddressSpace, 1123 IPM_MemoryAlignment, 1124 IPM_VectorSplatImm, 1125 IPM_NoUse, 1126 IPM_GenericPredicate, 1127 OPM_SameOperand, 1128 OPM_ComplexPattern, 1129 OPM_IntrinsicID, 1130 OPM_CmpPredicate, 1131 OPM_Instruction, 1132 OPM_Int, 1133 OPM_LiteralInt, 1134 OPM_LLT, 1135 OPM_PointerToAny, 1136 OPM_RegBank, 1137 OPM_MBB, 1138 OPM_RecordNamedOperand, 1139 }; 1140 1141 protected: 1142 PredicateKind Kind; 1143 unsigned InsnVarID; 1144 unsigned OpIdx; 1145 1146 public: 1147 PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0) 1148 : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {} 1149 1150 unsigned getInsnVarID() const { return InsnVarID; } 1151 unsigned getOpIdx() const { return OpIdx; } 1152 1153 virtual ~PredicateMatcher() = default; 1154 /// Emit MatchTable opcodes that check the predicate for the given operand. 1155 virtual void emitPredicateOpcodes(MatchTable &Table, 1156 RuleMatcher &Rule) const = 0; 1157 1158 PredicateKind getKind() const { return Kind; } 1159 1160 bool dependsOnOperands() const { 1161 // Custom predicates really depend on the context pattern of the 1162 // instruction, not just the individual instruction. This therefore 1163 // implicitly depends on all other pattern constraints. 1164 return Kind == IPM_GenericPredicate; 1165 } 1166 1167 virtual bool isIdentical(const PredicateMatcher &B) const { 1168 return B.getKind() == getKind() && InsnVarID == B.InsnVarID && 1169 OpIdx == B.OpIdx; 1170 } 1171 1172 virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const { 1173 return hasValue() && PredicateMatcher::isIdentical(B); 1174 } 1175 1176 virtual MatchTableRecord getValue() const { 1177 assert(hasValue() && "Can not get a value of a value-less predicate!"); 1178 llvm_unreachable("Not implemented yet"); 1179 } 1180 virtual bool hasValue() const { return false; } 1181 1182 /// Report the maximum number of temporary operands needed by the predicate 1183 /// matcher. 1184 virtual unsigned countRendererFns() const { return 0; } 1185 }; 1186 1187 /// Generates code to check a predicate of an operand. 1188 /// 1189 /// Typical predicates include: 1190 /// * Operand is a particular register. 1191 /// * Operand is assigned a particular register bank. 1192 /// * Operand is an MBB. 1193 class OperandPredicateMatcher : public PredicateMatcher { 1194 public: 1195 OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID, 1196 unsigned OpIdx) 1197 : PredicateMatcher(Kind, InsnVarID, OpIdx) {} 1198 virtual ~OperandPredicateMatcher() {} 1199 1200 /// Compare the priority of this object and B. 1201 /// 1202 /// Returns true if this object is more important than B. 1203 virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const; 1204 }; 1205 1206 template <> 1207 std::string 1208 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const { 1209 return "No operand predicates"; 1210 } 1211 1212 /// Generates code to check that a register operand is defined by the same exact 1213 /// one as another. 1214 class SameOperandMatcher : public OperandPredicateMatcher { 1215 std::string MatchingName; 1216 unsigned OrigOpIdx; 1217 1218 public: 1219 SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName, 1220 unsigned OrigOpIdx) 1221 : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx), 1222 MatchingName(MatchingName), OrigOpIdx(OrigOpIdx) {} 1223 1224 static bool classof(const PredicateMatcher *P) { 1225 return P->getKind() == OPM_SameOperand; 1226 } 1227 1228 void emitPredicateOpcodes(MatchTable &Table, 1229 RuleMatcher &Rule) const override; 1230 1231 bool isIdentical(const PredicateMatcher &B) const override { 1232 return OperandPredicateMatcher::isIdentical(B) && 1233 OrigOpIdx == cast<SameOperandMatcher>(&B)->OrigOpIdx && 1234 MatchingName == cast<SameOperandMatcher>(&B)->MatchingName; 1235 } 1236 }; 1237 1238 /// Generates code to check that an operand is a particular LLT. 1239 class LLTOperandMatcher : public OperandPredicateMatcher { 1240 protected: 1241 LLTCodeGen Ty; 1242 1243 public: 1244 static std::map<LLTCodeGen, unsigned> TypeIDValues; 1245 1246 static void initTypeIDValuesMap() { 1247 TypeIDValues.clear(); 1248 1249 unsigned ID = 0; 1250 for (const LLTCodeGen &LLTy : KnownTypes) 1251 TypeIDValues[LLTy] = ID++; 1252 } 1253 1254 LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty) 1255 : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) { 1256 KnownTypes.insert(Ty); 1257 } 1258 1259 static bool classof(const PredicateMatcher *P) { 1260 return P->getKind() == OPM_LLT; 1261 } 1262 bool isIdentical(const PredicateMatcher &B) const override { 1263 return OperandPredicateMatcher::isIdentical(B) && 1264 Ty == cast<LLTOperandMatcher>(&B)->Ty; 1265 } 1266 MatchTableRecord getValue() const override { 1267 const auto VI = TypeIDValues.find(Ty); 1268 if (VI == TypeIDValues.end()) 1269 return MatchTable::NamedValue(getTy().getCxxEnumValue()); 1270 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second); 1271 } 1272 bool hasValue() const override { 1273 if (TypeIDValues.size() != KnownTypes.size()) 1274 initTypeIDValuesMap(); 1275 return TypeIDValues.count(Ty); 1276 } 1277 1278 LLTCodeGen getTy() const { return Ty; } 1279 1280 void emitPredicateOpcodes(MatchTable &Table, 1281 RuleMatcher &Rule) const override { 1282 Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI") 1283 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1284 << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type") 1285 << getValue() << MatchTable::LineBreak; 1286 } 1287 }; 1288 1289 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues; 1290 1291 /// Generates code to check that an operand is a pointer to any address space. 1292 /// 1293 /// In SelectionDAG, the types did not describe pointers or address spaces. As a 1294 /// result, iN is used to describe a pointer of N bits to any address space and 1295 /// PatFrag predicates are typically used to constrain the address space. There's 1296 /// no reliable means to derive the missing type information from the pattern so 1297 /// imported rules must test the components of a pointer separately. 1298 /// 1299 /// If SizeInBits is zero, then the pointer size will be obtained from the 1300 /// subtarget. 1301 class PointerToAnyOperandMatcher : public OperandPredicateMatcher { 1302 protected: 1303 unsigned SizeInBits; 1304 1305 public: 1306 PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1307 unsigned SizeInBits) 1308 : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx), 1309 SizeInBits(SizeInBits) {} 1310 1311 static bool classof(const PredicateMatcher *P) { 1312 return P->getKind() == OPM_PointerToAny; 1313 } 1314 1315 bool isIdentical(const PredicateMatcher &B) const override { 1316 return OperandPredicateMatcher::isIdentical(B) && 1317 SizeInBits == cast<PointerToAnyOperandMatcher>(&B)->SizeInBits; 1318 } 1319 1320 void emitPredicateOpcodes(MatchTable &Table, 1321 RuleMatcher &Rule) const override { 1322 Table << MatchTable::Opcode("GIM_CheckPointerToAny") 1323 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1324 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1325 << MatchTable::Comment("SizeInBits") 1326 << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak; 1327 } 1328 }; 1329 1330 /// Generates code to record named operand in RecordedOperands list at StoreIdx. 1331 /// Predicates with 'let PredicateCodeUsesOperands = 1' get RecordedOperands as 1332 /// an argument to predicate's c++ code once all operands have been matched. 1333 class RecordNamedOperandMatcher : public OperandPredicateMatcher { 1334 protected: 1335 unsigned StoreIdx; 1336 std::string Name; 1337 1338 public: 1339 RecordNamedOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1340 unsigned StoreIdx, StringRef Name) 1341 : OperandPredicateMatcher(OPM_RecordNamedOperand, InsnVarID, OpIdx), 1342 StoreIdx(StoreIdx), Name(Name) {} 1343 1344 static bool classof(const PredicateMatcher *P) { 1345 return P->getKind() == OPM_RecordNamedOperand; 1346 } 1347 1348 bool isIdentical(const PredicateMatcher &B) const override { 1349 return OperandPredicateMatcher::isIdentical(B) && 1350 StoreIdx == cast<RecordNamedOperandMatcher>(&B)->StoreIdx && 1351 Name == cast<RecordNamedOperandMatcher>(&B)->Name; 1352 } 1353 1354 void emitPredicateOpcodes(MatchTable &Table, 1355 RuleMatcher &Rule) const override { 1356 Table << MatchTable::Opcode("GIM_RecordNamedOperand") 1357 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1358 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1359 << MatchTable::Comment("StoreIdx") << MatchTable::IntValue(StoreIdx) 1360 << MatchTable::Comment("Name : " + Name) << MatchTable::LineBreak; 1361 } 1362 }; 1363 1364 /// Generates code to check that an operand is a particular target constant. 1365 class ComplexPatternOperandMatcher : public OperandPredicateMatcher { 1366 protected: 1367 const OperandMatcher &Operand; 1368 const Record &TheDef; 1369 1370 unsigned getAllocatedTemporariesBaseID() const; 1371 1372 public: 1373 bool isIdentical(const PredicateMatcher &B) const override { return false; } 1374 1375 ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1376 const OperandMatcher &Operand, 1377 const Record &TheDef) 1378 : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx), 1379 Operand(Operand), TheDef(TheDef) {} 1380 1381 static bool classof(const PredicateMatcher *P) { 1382 return P->getKind() == OPM_ComplexPattern; 1383 } 1384 1385 void emitPredicateOpcodes(MatchTable &Table, 1386 RuleMatcher &Rule) const override { 1387 unsigned ID = getAllocatedTemporariesBaseID(); 1388 Table << MatchTable::Opcode("GIM_CheckComplexPattern") 1389 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1390 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1391 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID) 1392 << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str()) 1393 << MatchTable::LineBreak; 1394 } 1395 1396 unsigned countRendererFns() const override { 1397 return 1; 1398 } 1399 }; 1400 1401 /// Generates code to check that an operand is in a particular register bank. 1402 class RegisterBankOperandMatcher : public OperandPredicateMatcher { 1403 protected: 1404 const CodeGenRegisterClass &RC; 1405 1406 public: 1407 RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1408 const CodeGenRegisterClass &RC) 1409 : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {} 1410 1411 bool isIdentical(const PredicateMatcher &B) const override { 1412 return OperandPredicateMatcher::isIdentical(B) && 1413 RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef(); 1414 } 1415 1416 static bool classof(const PredicateMatcher *P) { 1417 return P->getKind() == OPM_RegBank; 1418 } 1419 1420 void emitPredicateOpcodes(MatchTable &Table, 1421 RuleMatcher &Rule) const override { 1422 Table << MatchTable::Opcode("GIM_CheckRegBankForClass") 1423 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1424 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1425 << MatchTable::Comment("RC") 1426 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") 1427 << MatchTable::LineBreak; 1428 } 1429 }; 1430 1431 /// Generates code to check that an operand is a basic block. 1432 class MBBOperandMatcher : public OperandPredicateMatcher { 1433 public: 1434 MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx) 1435 : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {} 1436 1437 static bool classof(const PredicateMatcher *P) { 1438 return P->getKind() == OPM_MBB; 1439 } 1440 1441 void emitPredicateOpcodes(MatchTable &Table, 1442 RuleMatcher &Rule) const override { 1443 Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI") 1444 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1445 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; 1446 } 1447 }; 1448 1449 class ImmOperandMatcher : public OperandPredicateMatcher { 1450 public: 1451 ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx) 1452 : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {} 1453 1454 static bool classof(const PredicateMatcher *P) { 1455 return P->getKind() == IPM_Imm; 1456 } 1457 1458 void emitPredicateOpcodes(MatchTable &Table, 1459 RuleMatcher &Rule) const override { 1460 Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI") 1461 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1462 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; 1463 } 1464 }; 1465 1466 /// Generates code to check that an operand is a G_CONSTANT with a particular 1467 /// int. 1468 class ConstantIntOperandMatcher : public OperandPredicateMatcher { 1469 protected: 1470 int64_t Value; 1471 1472 public: 1473 ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) 1474 : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {} 1475 1476 bool isIdentical(const PredicateMatcher &B) const override { 1477 return OperandPredicateMatcher::isIdentical(B) && 1478 Value == cast<ConstantIntOperandMatcher>(&B)->Value; 1479 } 1480 1481 static bool classof(const PredicateMatcher *P) { 1482 return P->getKind() == OPM_Int; 1483 } 1484 1485 void emitPredicateOpcodes(MatchTable &Table, 1486 RuleMatcher &Rule) const override { 1487 Table << MatchTable::Opcode("GIM_CheckConstantInt") 1488 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1489 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1490 << MatchTable::IntValue(Value) << MatchTable::LineBreak; 1491 } 1492 }; 1493 1494 /// Generates code to check that an operand is a raw int (where MO.isImm() or 1495 /// MO.isCImm() is true). 1496 class LiteralIntOperandMatcher : public OperandPredicateMatcher { 1497 protected: 1498 int64_t Value; 1499 1500 public: 1501 LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) 1502 : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx), 1503 Value(Value) {} 1504 1505 bool isIdentical(const PredicateMatcher &B) const override { 1506 return OperandPredicateMatcher::isIdentical(B) && 1507 Value == cast<LiteralIntOperandMatcher>(&B)->Value; 1508 } 1509 1510 static bool classof(const PredicateMatcher *P) { 1511 return P->getKind() == OPM_LiteralInt; 1512 } 1513 1514 void emitPredicateOpcodes(MatchTable &Table, 1515 RuleMatcher &Rule) const override { 1516 Table << MatchTable::Opcode("GIM_CheckLiteralInt") 1517 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1518 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1519 << MatchTable::IntValue(Value) << MatchTable::LineBreak; 1520 } 1521 }; 1522 1523 /// Generates code to check that an operand is an CmpInst predicate 1524 class CmpPredicateOperandMatcher : public OperandPredicateMatcher { 1525 protected: 1526 std::string PredName; 1527 1528 public: 1529 CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1530 std::string P) 1531 : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {} 1532 1533 bool isIdentical(const PredicateMatcher &B) const override { 1534 return OperandPredicateMatcher::isIdentical(B) && 1535 PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName; 1536 } 1537 1538 static bool classof(const PredicateMatcher *P) { 1539 return P->getKind() == OPM_CmpPredicate; 1540 } 1541 1542 void emitPredicateOpcodes(MatchTable &Table, 1543 RuleMatcher &Rule) const override { 1544 Table << MatchTable::Opcode("GIM_CheckCmpPredicate") 1545 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1546 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1547 << MatchTable::Comment("Predicate") 1548 << MatchTable::NamedValue("CmpInst", PredName) 1549 << MatchTable::LineBreak; 1550 } 1551 }; 1552 1553 /// Generates code to check that an operand is an intrinsic ID. 1554 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher { 1555 protected: 1556 const CodeGenIntrinsic *II; 1557 1558 public: 1559 IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1560 const CodeGenIntrinsic *II) 1561 : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {} 1562 1563 bool isIdentical(const PredicateMatcher &B) const override { 1564 return OperandPredicateMatcher::isIdentical(B) && 1565 II == cast<IntrinsicIDOperandMatcher>(&B)->II; 1566 } 1567 1568 static bool classof(const PredicateMatcher *P) { 1569 return P->getKind() == OPM_IntrinsicID; 1570 } 1571 1572 void emitPredicateOpcodes(MatchTable &Table, 1573 RuleMatcher &Rule) const override { 1574 Table << MatchTable::Opcode("GIM_CheckIntrinsicID") 1575 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1576 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1577 << MatchTable::NamedValue("Intrinsic::" + II->EnumName) 1578 << MatchTable::LineBreak; 1579 } 1580 }; 1581 1582 /// Generates code to check that this operand is an immediate whose value meets 1583 /// an immediate predicate. 1584 class OperandImmPredicateMatcher : public OperandPredicateMatcher { 1585 protected: 1586 TreePredicateFn Predicate; 1587 1588 public: 1589 OperandImmPredicateMatcher(unsigned InsnVarID, unsigned OpIdx, 1590 const TreePredicateFn &Predicate) 1591 : OperandPredicateMatcher(IPM_ImmPredicate, InsnVarID, OpIdx), 1592 Predicate(Predicate) {} 1593 1594 bool isIdentical(const PredicateMatcher &B) const override { 1595 return OperandPredicateMatcher::isIdentical(B) && 1596 Predicate.getOrigPatFragRecord() == 1597 cast<OperandImmPredicateMatcher>(&B) 1598 ->Predicate.getOrigPatFragRecord(); 1599 } 1600 1601 static bool classof(const PredicateMatcher *P) { 1602 return P->getKind() == IPM_ImmPredicate; 1603 } 1604 1605 void emitPredicateOpcodes(MatchTable &Table, 1606 RuleMatcher &Rule) const override { 1607 Table << MatchTable::Opcode("GIM_CheckImmOperandPredicate") 1608 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1609 << MatchTable::Comment("MO") << MatchTable::IntValue(OpIdx) 1610 << MatchTable::Comment("Predicate") 1611 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 1612 << MatchTable::LineBreak; 1613 } 1614 }; 1615 1616 /// Generates code to check that a set of predicates match for a particular 1617 /// operand. 1618 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> { 1619 protected: 1620 InstructionMatcher &Insn; 1621 unsigned OpIdx; 1622 std::string SymbolicName; 1623 1624 /// The index of the first temporary variable allocated to this operand. The 1625 /// number of allocated temporaries can be found with 1626 /// countRendererFns(). 1627 unsigned AllocatedTemporariesBaseID; 1628 1629 public: 1630 OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx, 1631 const std::string &SymbolicName, 1632 unsigned AllocatedTemporariesBaseID) 1633 : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName), 1634 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {} 1635 1636 bool hasSymbolicName() const { return !SymbolicName.empty(); } 1637 StringRef getSymbolicName() const { return SymbolicName; } 1638 void setSymbolicName(StringRef Name) { 1639 assert(SymbolicName.empty() && "Operand already has a symbolic name"); 1640 SymbolicName = std::string(Name); 1641 } 1642 1643 /// Construct a new operand predicate and add it to the matcher. 1644 template <class Kind, class... Args> 1645 Optional<Kind *> addPredicate(Args &&... args) { 1646 if (isSameAsAnotherOperand()) 1647 return None; 1648 Predicates.emplace_back(std::make_unique<Kind>( 1649 getInsnVarID(), getOpIdx(), std::forward<Args>(args)...)); 1650 return static_cast<Kind *>(Predicates.back().get()); 1651 } 1652 1653 unsigned getOpIdx() const { return OpIdx; } 1654 unsigned getInsnVarID() const; 1655 1656 std::string getOperandExpr(unsigned InsnVarID) const { 1657 return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" + 1658 llvm::to_string(OpIdx) + ")"; 1659 } 1660 1661 InstructionMatcher &getInstructionMatcher() const { return Insn; } 1662 1663 Error addTypeCheckPredicate(const TypeSetByHwMode &VTy, 1664 bool OperandIsAPointer); 1665 1666 /// Emit MatchTable opcodes that test whether the instruction named in 1667 /// InsnVarID matches all the predicates and all the operands. 1668 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { 1669 if (!Optimized) { 1670 std::string Comment; 1671 raw_string_ostream CommentOS(Comment); 1672 CommentOS << "MIs[" << getInsnVarID() << "] "; 1673 if (SymbolicName.empty()) 1674 CommentOS << "Operand " << OpIdx; 1675 else 1676 CommentOS << SymbolicName; 1677 Table << MatchTable::Comment(Comment) << MatchTable::LineBreak; 1678 } 1679 1680 emitPredicateListOpcodes(Table, Rule); 1681 } 1682 1683 /// Compare the priority of this object and B. 1684 /// 1685 /// Returns true if this object is more important than B. 1686 bool isHigherPriorityThan(OperandMatcher &B) { 1687 // Operand matchers involving more predicates have higher priority. 1688 if (predicates_size() > B.predicates_size()) 1689 return true; 1690 if (predicates_size() < B.predicates_size()) 1691 return false; 1692 1693 // This assumes that predicates are added in a consistent order. 1694 for (auto &&Predicate : zip(predicates(), B.predicates())) { 1695 if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate))) 1696 return true; 1697 if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate))) 1698 return false; 1699 } 1700 1701 return false; 1702 }; 1703 1704 /// Report the maximum number of temporary operands needed by the operand 1705 /// matcher. 1706 unsigned countRendererFns() { 1707 return std::accumulate( 1708 predicates().begin(), predicates().end(), 0, 1709 [](unsigned A, 1710 const std::unique_ptr<OperandPredicateMatcher> &Predicate) { 1711 return A + Predicate->countRendererFns(); 1712 }); 1713 } 1714 1715 unsigned getAllocatedTemporariesBaseID() const { 1716 return AllocatedTemporariesBaseID; 1717 } 1718 1719 bool isSameAsAnotherOperand() { 1720 for (const auto &Predicate : predicates()) 1721 if (isa<SameOperandMatcher>(Predicate)) 1722 return true; 1723 return false; 1724 } 1725 }; 1726 1727 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy, 1728 bool OperandIsAPointer) { 1729 if (!VTy.isMachineValueType()) 1730 return failedImport("unsupported typeset"); 1731 1732 if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) { 1733 addPredicate<PointerToAnyOperandMatcher>(0); 1734 return Error::success(); 1735 } 1736 1737 auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy); 1738 if (!OpTyOrNone) 1739 return failedImport("unsupported type"); 1740 1741 if (OperandIsAPointer) 1742 addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits()); 1743 else if (VTy.isPointer()) 1744 addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(), 1745 OpTyOrNone->get().getSizeInBits())); 1746 else 1747 addPredicate<LLTOperandMatcher>(*OpTyOrNone); 1748 return Error::success(); 1749 } 1750 1751 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const { 1752 return Operand.getAllocatedTemporariesBaseID(); 1753 } 1754 1755 /// Generates code to check a predicate on an instruction. 1756 /// 1757 /// Typical predicates include: 1758 /// * The opcode of the instruction is a particular value. 1759 /// * The nsw/nuw flag is/isn't set. 1760 class InstructionPredicateMatcher : public PredicateMatcher { 1761 public: 1762 InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID) 1763 : PredicateMatcher(Kind, InsnVarID) {} 1764 virtual ~InstructionPredicateMatcher() {} 1765 1766 /// Compare the priority of this object and B. 1767 /// 1768 /// Returns true if this object is more important than B. 1769 virtual bool 1770 isHigherPriorityThan(const InstructionPredicateMatcher &B) const { 1771 return Kind < B.Kind; 1772 }; 1773 }; 1774 1775 template <> 1776 std::string 1777 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const { 1778 return "No instruction predicates"; 1779 } 1780 1781 /// Generates code to check the opcode of an instruction. 1782 class InstructionOpcodeMatcher : public InstructionPredicateMatcher { 1783 protected: 1784 // Allow matching one to several, similar opcodes that share properties. This 1785 // is to handle patterns where one SelectionDAG operation maps to multiple 1786 // GlobalISel ones (e.g. G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC). The first 1787 // is treated as the canonical opcode. 1788 SmallVector<const CodeGenInstruction *, 2> Insts; 1789 1790 static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues; 1791 1792 1793 MatchTableRecord getInstValue(const CodeGenInstruction *I) const { 1794 const auto VI = OpcodeValues.find(I); 1795 if (VI != OpcodeValues.end()) 1796 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(), 1797 VI->second); 1798 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName()); 1799 } 1800 1801 public: 1802 static void initOpcodeValuesMap(const CodeGenTarget &Target) { 1803 OpcodeValues.clear(); 1804 1805 unsigned OpcodeValue = 0; 1806 for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue()) 1807 OpcodeValues[I] = OpcodeValue++; 1808 } 1809 1810 InstructionOpcodeMatcher(unsigned InsnVarID, 1811 ArrayRef<const CodeGenInstruction *> I) 1812 : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), 1813 Insts(I.begin(), I.end()) { 1814 assert((Insts.size() == 1 || Insts.size() == 2) && 1815 "unexpected number of opcode alternatives"); 1816 } 1817 1818 static bool classof(const PredicateMatcher *P) { 1819 return P->getKind() == IPM_Opcode; 1820 } 1821 1822 bool isIdentical(const PredicateMatcher &B) const override { 1823 return InstructionPredicateMatcher::isIdentical(B) && 1824 Insts == cast<InstructionOpcodeMatcher>(&B)->Insts; 1825 } 1826 1827 bool hasValue() const override { 1828 return Insts.size() == 1 && OpcodeValues.count(Insts[0]); 1829 } 1830 1831 // TODO: This is used for the SwitchMatcher optimization. We should be able to 1832 // return a list of the opcodes to match. 1833 MatchTableRecord getValue() const override { 1834 assert(Insts.size() == 1); 1835 1836 const CodeGenInstruction *I = Insts[0]; 1837 const auto VI = OpcodeValues.find(I); 1838 if (VI != OpcodeValues.end()) 1839 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(), 1840 VI->second); 1841 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName()); 1842 } 1843 1844 void emitPredicateOpcodes(MatchTable &Table, 1845 RuleMatcher &Rule) const override { 1846 StringRef CheckType = Insts.size() == 1 ? 1847 "GIM_CheckOpcode" : "GIM_CheckOpcodeIsEither"; 1848 Table << MatchTable::Opcode(CheckType) << MatchTable::Comment("MI") 1849 << MatchTable::IntValue(InsnVarID); 1850 1851 for (const CodeGenInstruction *I : Insts) 1852 Table << getInstValue(I); 1853 Table << MatchTable::LineBreak; 1854 } 1855 1856 /// Compare the priority of this object and B. 1857 /// 1858 /// Returns true if this object is more important than B. 1859 bool 1860 isHigherPriorityThan(const InstructionPredicateMatcher &B) const override { 1861 if (InstructionPredicateMatcher::isHigherPriorityThan(B)) 1862 return true; 1863 if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this)) 1864 return false; 1865 1866 // Prioritize opcodes for cosmetic reasons in the generated source. Although 1867 // this is cosmetic at the moment, we may want to drive a similar ordering 1868 // using instruction frequency information to improve compile time. 1869 if (const InstructionOpcodeMatcher *BO = 1870 dyn_cast<InstructionOpcodeMatcher>(&B)) 1871 return Insts[0]->TheDef->getName() < BO->Insts[0]->TheDef->getName(); 1872 1873 return false; 1874 }; 1875 1876 bool isConstantInstruction() const { 1877 return Insts.size() == 1 && Insts[0]->TheDef->getName() == "G_CONSTANT"; 1878 } 1879 1880 // The first opcode is the canonical opcode, and later are alternatives. 1881 StringRef getOpcode() const { 1882 return Insts[0]->TheDef->getName(); 1883 } 1884 1885 ArrayRef<const CodeGenInstruction *> getAlternativeOpcodes() { 1886 return Insts; 1887 } 1888 1889 bool isVariadicNumOperands() const { 1890 // If one is variadic, they all should be. 1891 return Insts[0]->Operands.isVariadic; 1892 } 1893 1894 StringRef getOperandType(unsigned OpIdx) const { 1895 // Types expected to be uniform for all alternatives. 1896 return Insts[0]->Operands[OpIdx].OperandType; 1897 } 1898 }; 1899 1900 DenseMap<const CodeGenInstruction *, unsigned> 1901 InstructionOpcodeMatcher::OpcodeValues; 1902 1903 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher { 1904 unsigned NumOperands = 0; 1905 1906 public: 1907 InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands) 1908 : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID), 1909 NumOperands(NumOperands) {} 1910 1911 static bool classof(const PredicateMatcher *P) { 1912 return P->getKind() == IPM_NumOperands; 1913 } 1914 1915 bool isIdentical(const PredicateMatcher &B) const override { 1916 return InstructionPredicateMatcher::isIdentical(B) && 1917 NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands; 1918 } 1919 1920 void emitPredicateOpcodes(MatchTable &Table, 1921 RuleMatcher &Rule) const override { 1922 Table << MatchTable::Opcode("GIM_CheckNumOperands") 1923 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1924 << MatchTable::Comment("Expected") 1925 << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak; 1926 } 1927 }; 1928 1929 /// Generates code to check that this instruction is a constant whose value 1930 /// meets an immediate predicate. 1931 /// 1932 /// Immediates are slightly odd since they are typically used like an operand 1933 /// but are represented as an operator internally. We typically write simm8:$src 1934 /// in a tablegen pattern, but this is just syntactic sugar for 1935 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes 1936 /// that will be matched and the predicate (which is attached to the imm 1937 /// operator) that will be tested. In SelectionDAG this describes a 1938 /// ConstantSDNode whose internal value will be tested using the simm8 predicate. 1939 /// 1940 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In 1941 /// this representation, the immediate could be tested with an 1942 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a 1943 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but 1944 /// there are two implementation issues with producing that matcher 1945 /// configuration from the SelectionDAG pattern: 1946 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that 1947 /// were we to sink the immediate predicate to the operand we would have to 1948 /// have two partial implementations of PatFrag support, one for immediates 1949 /// and one for non-immediates. 1950 /// * At the point we handle the predicate, the OperandMatcher hasn't been 1951 /// created yet. If we were to sink the predicate to the OperandMatcher we 1952 /// would also have to complicate (or duplicate) the code that descends and 1953 /// creates matchers for the subtree. 1954 /// Overall, it's simpler to handle it in the place it was found. 1955 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher { 1956 protected: 1957 TreePredicateFn Predicate; 1958 1959 public: 1960 InstructionImmPredicateMatcher(unsigned InsnVarID, 1961 const TreePredicateFn &Predicate) 1962 : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID), 1963 Predicate(Predicate) {} 1964 1965 bool isIdentical(const PredicateMatcher &B) const override { 1966 return InstructionPredicateMatcher::isIdentical(B) && 1967 Predicate.getOrigPatFragRecord() == 1968 cast<InstructionImmPredicateMatcher>(&B) 1969 ->Predicate.getOrigPatFragRecord(); 1970 } 1971 1972 static bool classof(const PredicateMatcher *P) { 1973 return P->getKind() == IPM_ImmPredicate; 1974 } 1975 1976 void emitPredicateOpcodes(MatchTable &Table, 1977 RuleMatcher &Rule) const override { 1978 Table << MatchTable::Opcode(getMatchOpcodeForImmPredicate(Predicate)) 1979 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1980 << MatchTable::Comment("Predicate") 1981 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 1982 << MatchTable::LineBreak; 1983 } 1984 }; 1985 1986 /// Generates code to check that a memory instruction has a atomic ordering 1987 /// MachineMemoryOperand. 1988 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher { 1989 public: 1990 enum AOComparator { 1991 AO_Exactly, 1992 AO_OrStronger, 1993 AO_WeakerThan, 1994 }; 1995 1996 protected: 1997 StringRef Order; 1998 AOComparator Comparator; 1999 2000 public: 2001 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order, 2002 AOComparator Comparator = AO_Exactly) 2003 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID), 2004 Order(Order), Comparator(Comparator) {} 2005 2006 static bool classof(const PredicateMatcher *P) { 2007 return P->getKind() == IPM_AtomicOrderingMMO; 2008 } 2009 2010 bool isIdentical(const PredicateMatcher &B) const override { 2011 if (!InstructionPredicateMatcher::isIdentical(B)) 2012 return false; 2013 const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B); 2014 return Order == R.Order && Comparator == R.Comparator; 2015 } 2016 2017 void emitPredicateOpcodes(MatchTable &Table, 2018 RuleMatcher &Rule) const override { 2019 StringRef Opcode = "GIM_CheckAtomicOrdering"; 2020 2021 if (Comparator == AO_OrStronger) 2022 Opcode = "GIM_CheckAtomicOrderingOrStrongerThan"; 2023 if (Comparator == AO_WeakerThan) 2024 Opcode = "GIM_CheckAtomicOrderingWeakerThan"; 2025 2026 Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI") 2027 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order") 2028 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str()) 2029 << MatchTable::LineBreak; 2030 } 2031 }; 2032 2033 /// Generates code to check that the size of an MMO is exactly N bytes. 2034 class MemorySizePredicateMatcher : public InstructionPredicateMatcher { 2035 protected: 2036 unsigned MMOIdx; 2037 uint64_t Size; 2038 2039 public: 2040 MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size) 2041 : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID), 2042 MMOIdx(MMOIdx), Size(Size) {} 2043 2044 static bool classof(const PredicateMatcher *P) { 2045 return P->getKind() == IPM_MemoryLLTSize; 2046 } 2047 bool isIdentical(const PredicateMatcher &B) const override { 2048 return InstructionPredicateMatcher::isIdentical(B) && 2049 MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx && 2050 Size == cast<MemorySizePredicateMatcher>(&B)->Size; 2051 } 2052 2053 void emitPredicateOpcodes(MatchTable &Table, 2054 RuleMatcher &Rule) const override { 2055 Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo") 2056 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2057 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2058 << MatchTable::Comment("Size") << MatchTable::IntValue(Size) 2059 << MatchTable::LineBreak; 2060 } 2061 }; 2062 2063 class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher { 2064 protected: 2065 unsigned MMOIdx; 2066 SmallVector<unsigned, 4> AddrSpaces; 2067 2068 public: 2069 MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 2070 ArrayRef<unsigned> AddrSpaces) 2071 : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID), 2072 MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {} 2073 2074 static bool classof(const PredicateMatcher *P) { 2075 return P->getKind() == IPM_MemoryAddressSpace; 2076 } 2077 bool isIdentical(const PredicateMatcher &B) const override { 2078 if (!InstructionPredicateMatcher::isIdentical(B)) 2079 return false; 2080 auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B); 2081 return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces; 2082 } 2083 2084 void emitPredicateOpcodes(MatchTable &Table, 2085 RuleMatcher &Rule) const override { 2086 Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace") 2087 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2088 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2089 // Encode number of address spaces to expect. 2090 << MatchTable::Comment("NumAddrSpace") 2091 << MatchTable::IntValue(AddrSpaces.size()); 2092 for (unsigned AS : AddrSpaces) 2093 Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS); 2094 2095 Table << MatchTable::LineBreak; 2096 } 2097 }; 2098 2099 class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher { 2100 protected: 2101 unsigned MMOIdx; 2102 int MinAlign; 2103 2104 public: 2105 MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 2106 int MinAlign) 2107 : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID), 2108 MMOIdx(MMOIdx), MinAlign(MinAlign) { 2109 assert(MinAlign > 0); 2110 } 2111 2112 static bool classof(const PredicateMatcher *P) { 2113 return P->getKind() == IPM_MemoryAlignment; 2114 } 2115 2116 bool isIdentical(const PredicateMatcher &B) const override { 2117 if (!InstructionPredicateMatcher::isIdentical(B)) 2118 return false; 2119 auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B); 2120 return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign; 2121 } 2122 2123 void emitPredicateOpcodes(MatchTable &Table, 2124 RuleMatcher &Rule) const override { 2125 Table << MatchTable::Opcode("GIM_CheckMemoryAlignment") 2126 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2127 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2128 << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign) 2129 << MatchTable::LineBreak; 2130 } 2131 }; 2132 2133 /// Generates code to check that the size of an MMO is less-than, equal-to, or 2134 /// greater than a given LLT. 2135 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher { 2136 public: 2137 enum RelationKind { 2138 GreaterThan, 2139 EqualTo, 2140 LessThan, 2141 }; 2142 2143 protected: 2144 unsigned MMOIdx; 2145 RelationKind Relation; 2146 unsigned OpIdx; 2147 2148 public: 2149 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 2150 enum RelationKind Relation, 2151 unsigned OpIdx) 2152 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID), 2153 MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {} 2154 2155 static bool classof(const PredicateMatcher *P) { 2156 return P->getKind() == IPM_MemoryVsLLTSize; 2157 } 2158 bool isIdentical(const PredicateMatcher &B) const override { 2159 return InstructionPredicateMatcher::isIdentical(B) && 2160 MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx && 2161 Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation && 2162 OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx; 2163 } 2164 2165 void emitPredicateOpcodes(MatchTable &Table, 2166 RuleMatcher &Rule) const override { 2167 Table << MatchTable::Opcode(Relation == EqualTo 2168 ? "GIM_CheckMemorySizeEqualToLLT" 2169 : Relation == GreaterThan 2170 ? "GIM_CheckMemorySizeGreaterThanLLT" 2171 : "GIM_CheckMemorySizeLessThanLLT") 2172 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2173 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2174 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) 2175 << MatchTable::LineBreak; 2176 } 2177 }; 2178 2179 // Matcher for immAllOnesV/immAllZerosV 2180 class VectorSplatImmPredicateMatcher : public InstructionPredicateMatcher { 2181 public: 2182 enum SplatKind { 2183 AllZeros, 2184 AllOnes 2185 }; 2186 2187 private: 2188 SplatKind Kind; 2189 2190 public: 2191 VectorSplatImmPredicateMatcher(unsigned InsnVarID, SplatKind K) 2192 : InstructionPredicateMatcher(IPM_VectorSplatImm, InsnVarID), Kind(K) {} 2193 2194 static bool classof(const PredicateMatcher *P) { 2195 return P->getKind() == IPM_VectorSplatImm; 2196 } 2197 2198 bool isIdentical(const PredicateMatcher &B) const override { 2199 return InstructionPredicateMatcher::isIdentical(B) && 2200 Kind == static_cast<const VectorSplatImmPredicateMatcher &>(B).Kind; 2201 } 2202 2203 void emitPredicateOpcodes(MatchTable &Table, 2204 RuleMatcher &Rule) const override { 2205 if (Kind == AllOnes) 2206 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllOnes"); 2207 else 2208 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllZeros"); 2209 2210 Table << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID); 2211 Table << MatchTable::LineBreak; 2212 } 2213 }; 2214 2215 /// Generates code to check an arbitrary C++ instruction predicate. 2216 class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher { 2217 protected: 2218 TreePredicateFn Predicate; 2219 2220 public: 2221 GenericInstructionPredicateMatcher(unsigned InsnVarID, 2222 TreePredicateFn Predicate) 2223 : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID), 2224 Predicate(Predicate) {} 2225 2226 static bool classof(const InstructionPredicateMatcher *P) { 2227 return P->getKind() == IPM_GenericPredicate; 2228 } 2229 bool isIdentical(const PredicateMatcher &B) const override { 2230 return InstructionPredicateMatcher::isIdentical(B) && 2231 Predicate == 2232 static_cast<const GenericInstructionPredicateMatcher &>(B) 2233 .Predicate; 2234 } 2235 void emitPredicateOpcodes(MatchTable &Table, 2236 RuleMatcher &Rule) const override { 2237 Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate") 2238 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2239 << MatchTable::Comment("FnId") 2240 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 2241 << MatchTable::LineBreak; 2242 } 2243 }; 2244 2245 /// Generates code to check for the absence of use of the result. 2246 // TODO? Generalize this to support checking for one use. 2247 class NoUsePredicateMatcher : public InstructionPredicateMatcher { 2248 public: 2249 NoUsePredicateMatcher(unsigned InsnVarID) 2250 : InstructionPredicateMatcher(IPM_NoUse, InsnVarID) {} 2251 2252 static bool classof(const PredicateMatcher *P) { 2253 return P->getKind() == IPM_NoUse; 2254 } 2255 2256 bool isIdentical(const PredicateMatcher &B) const override { 2257 return InstructionPredicateMatcher::isIdentical(B); 2258 } 2259 2260 void emitPredicateOpcodes(MatchTable &Table, 2261 RuleMatcher &Rule) const override { 2262 Table << MatchTable::Opcode("GIM_CheckHasNoUse") 2263 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2264 << MatchTable::LineBreak; 2265 } 2266 }; 2267 2268 /// Generates code to check that a set of predicates and operands match for a 2269 /// particular instruction. 2270 /// 2271 /// Typical predicates include: 2272 /// * Has a specific opcode. 2273 /// * Has an nsw/nuw flag or doesn't. 2274 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> { 2275 protected: 2276 typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec; 2277 2278 RuleMatcher &Rule; 2279 2280 /// The operands to match. All rendered operands must be present even if the 2281 /// condition is always true. 2282 OperandVec Operands; 2283 bool NumOperandsCheck = true; 2284 2285 std::string SymbolicName; 2286 unsigned InsnVarID; 2287 2288 /// PhysRegInputs - List list has an entry for each explicitly specified 2289 /// physreg input to the pattern. The first elt is the Register node, the 2290 /// second is the recorded slot number the input pattern match saved it in. 2291 SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs; 2292 2293 public: 2294 InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName, 2295 bool NumOpsCheck = true) 2296 : Rule(Rule), NumOperandsCheck(NumOpsCheck), SymbolicName(SymbolicName) { 2297 // We create a new instruction matcher. 2298 // Get a new ID for that instruction. 2299 InsnVarID = Rule.implicitlyDefineInsnVar(*this); 2300 } 2301 2302 /// Construct a new instruction predicate and add it to the matcher. 2303 template <class Kind, class... Args> 2304 Optional<Kind *> addPredicate(Args &&... args) { 2305 Predicates.emplace_back( 2306 std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...)); 2307 return static_cast<Kind *>(Predicates.back().get()); 2308 } 2309 2310 RuleMatcher &getRuleMatcher() const { return Rule; } 2311 2312 unsigned getInsnVarID() const { return InsnVarID; } 2313 2314 /// Add an operand to the matcher. 2315 OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName, 2316 unsigned AllocatedTemporariesBaseID) { 2317 Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName, 2318 AllocatedTemporariesBaseID)); 2319 if (!SymbolicName.empty()) 2320 Rule.defineOperand(SymbolicName, *Operands.back()); 2321 2322 return *Operands.back(); 2323 } 2324 2325 OperandMatcher &getOperand(unsigned OpIdx) { 2326 auto I = llvm::find_if(Operands, 2327 [&OpIdx](const std::unique_ptr<OperandMatcher> &X) { 2328 return X->getOpIdx() == OpIdx; 2329 }); 2330 if (I != Operands.end()) 2331 return **I; 2332 llvm_unreachable("Failed to lookup operand"); 2333 } 2334 2335 OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx, 2336 unsigned TempOpIdx) { 2337 assert(SymbolicName.empty()); 2338 OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx); 2339 Operands.emplace_back(OM); 2340 Rule.definePhysRegOperand(Reg, *OM); 2341 PhysRegInputs.emplace_back(Reg, OpIdx); 2342 return *OM; 2343 } 2344 2345 ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const { 2346 return PhysRegInputs; 2347 } 2348 2349 StringRef getSymbolicName() const { return SymbolicName; } 2350 unsigned getNumOperands() const { return Operands.size(); } 2351 OperandVec::iterator operands_begin() { return Operands.begin(); } 2352 OperandVec::iterator operands_end() { return Operands.end(); } 2353 iterator_range<OperandVec::iterator> operands() { 2354 return make_range(operands_begin(), operands_end()); 2355 } 2356 OperandVec::const_iterator operands_begin() const { return Operands.begin(); } 2357 OperandVec::const_iterator operands_end() const { return Operands.end(); } 2358 iterator_range<OperandVec::const_iterator> operands() const { 2359 return make_range(operands_begin(), operands_end()); 2360 } 2361 bool operands_empty() const { return Operands.empty(); } 2362 2363 void pop_front() { Operands.erase(Operands.begin()); } 2364 2365 void optimize(); 2366 2367 /// Emit MatchTable opcodes that test whether the instruction named in 2368 /// InsnVarName matches all the predicates and all the operands. 2369 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { 2370 if (NumOperandsCheck) 2371 InstructionNumOperandsMatcher(InsnVarID, getNumOperands()) 2372 .emitPredicateOpcodes(Table, Rule); 2373 2374 // First emit all instruction level predicates need to be verified before we 2375 // can verify operands. 2376 emitFilteredPredicateListOpcodes( 2377 [](const PredicateMatcher &P) { 2378 return !P.dependsOnOperands(); 2379 }, Table, Rule); 2380 2381 // Emit all operand constraints. 2382 for (const auto &Operand : Operands) 2383 Operand->emitPredicateOpcodes(Table, Rule); 2384 2385 // All of the tablegen defined predicates should now be matched. Now emit 2386 // any custom predicates that rely on all generated checks. 2387 emitFilteredPredicateListOpcodes( 2388 [](const PredicateMatcher &P) { 2389 return P.dependsOnOperands(); 2390 }, Table, Rule); 2391 } 2392 2393 /// Compare the priority of this object and B. 2394 /// 2395 /// Returns true if this object is more important than B. 2396 bool isHigherPriorityThan(InstructionMatcher &B) { 2397 // Instruction matchers involving more operands have higher priority. 2398 if (Operands.size() > B.Operands.size()) 2399 return true; 2400 if (Operands.size() < B.Operands.size()) 2401 return false; 2402 2403 for (auto &&P : zip(predicates(), B.predicates())) { 2404 auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get()); 2405 auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get()); 2406 if (L->isHigherPriorityThan(*R)) 2407 return true; 2408 if (R->isHigherPriorityThan(*L)) 2409 return false; 2410 } 2411 2412 for (auto Operand : zip(Operands, B.Operands)) { 2413 if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand))) 2414 return true; 2415 if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand))) 2416 return false; 2417 } 2418 2419 return false; 2420 }; 2421 2422 /// Report the maximum number of temporary operands needed by the instruction 2423 /// matcher. 2424 unsigned countRendererFns() { 2425 return std::accumulate( 2426 predicates().begin(), predicates().end(), 0, 2427 [](unsigned A, 2428 const std::unique_ptr<PredicateMatcher> &Predicate) { 2429 return A + Predicate->countRendererFns(); 2430 }) + 2431 std::accumulate( 2432 Operands.begin(), Operands.end(), 0, 2433 [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) { 2434 return A + Operand->countRendererFns(); 2435 }); 2436 } 2437 2438 InstructionOpcodeMatcher &getOpcodeMatcher() { 2439 for (auto &P : predicates()) 2440 if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get())) 2441 return *OpMatcher; 2442 llvm_unreachable("Didn't find an opcode matcher"); 2443 } 2444 2445 bool isConstantInstruction() { 2446 return getOpcodeMatcher().isConstantInstruction(); 2447 } 2448 2449 StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); } 2450 }; 2451 2452 StringRef RuleMatcher::getOpcode() const { 2453 return Matchers.front()->getOpcode(); 2454 } 2455 2456 unsigned RuleMatcher::getNumOperands() const { 2457 return Matchers.front()->getNumOperands(); 2458 } 2459 2460 LLTCodeGen RuleMatcher::getFirstConditionAsRootType() { 2461 InstructionMatcher &InsnMatcher = *Matchers.front(); 2462 if (!InsnMatcher.predicates_empty()) 2463 if (const auto *TM = 2464 dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin())) 2465 if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0) 2466 return TM->getTy(); 2467 return {}; 2468 } 2469 2470 /// Generates code to check that the operand is a register defined by an 2471 /// instruction that matches the given instruction matcher. 2472 /// 2473 /// For example, the pattern: 2474 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3)) 2475 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match 2476 /// the: 2477 /// (G_ADD $src1, $src2) 2478 /// subpattern. 2479 class InstructionOperandMatcher : public OperandPredicateMatcher { 2480 protected: 2481 std::unique_ptr<InstructionMatcher> InsnMatcher; 2482 2483 public: 2484 InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 2485 RuleMatcher &Rule, StringRef SymbolicName, 2486 bool NumOpsCheck = true) 2487 : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx), 2488 InsnMatcher(new InstructionMatcher(Rule, SymbolicName, NumOpsCheck)) {} 2489 2490 static bool classof(const PredicateMatcher *P) { 2491 return P->getKind() == OPM_Instruction; 2492 } 2493 2494 InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; } 2495 2496 void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const { 2497 const unsigned NewInsnVarID = InsnMatcher->getInsnVarID(); 2498 Table << MatchTable::Opcode("GIM_RecordInsn") 2499 << MatchTable::Comment("DefineMI") 2500 << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI") 2501 << MatchTable::IntValue(getInsnVarID()) 2502 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx()) 2503 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]") 2504 << MatchTable::LineBreak; 2505 } 2506 2507 void emitPredicateOpcodes(MatchTable &Table, 2508 RuleMatcher &Rule) const override { 2509 emitCaptureOpcodes(Table, Rule); 2510 InsnMatcher->emitPredicateOpcodes(Table, Rule); 2511 } 2512 2513 bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override { 2514 if (OperandPredicateMatcher::isHigherPriorityThan(B)) 2515 return true; 2516 if (B.OperandPredicateMatcher::isHigherPriorityThan(*this)) 2517 return false; 2518 2519 if (const InstructionOperandMatcher *BP = 2520 dyn_cast<InstructionOperandMatcher>(&B)) 2521 if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher)) 2522 return true; 2523 return false; 2524 } 2525 }; 2526 2527 void InstructionMatcher::optimize() { 2528 SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash; 2529 const auto &OpcMatcher = getOpcodeMatcher(); 2530 2531 Stash.push_back(predicates_pop_front()); 2532 if (Stash.back().get() == &OpcMatcher) { 2533 if (NumOperandsCheck && OpcMatcher.isVariadicNumOperands()) 2534 Stash.emplace_back( 2535 new InstructionNumOperandsMatcher(InsnVarID, getNumOperands())); 2536 NumOperandsCheck = false; 2537 2538 for (auto &OM : Operands) 2539 for (auto &OP : OM->predicates()) 2540 if (isa<IntrinsicIDOperandMatcher>(OP)) { 2541 Stash.push_back(std::move(OP)); 2542 OM->eraseNullPredicates(); 2543 break; 2544 } 2545 } 2546 2547 if (InsnVarID > 0) { 2548 assert(!Operands.empty() && "Nested instruction is expected to def a vreg"); 2549 for (auto &OP : Operands[0]->predicates()) 2550 OP.reset(); 2551 Operands[0]->eraseNullPredicates(); 2552 } 2553 for (auto &OM : Operands) { 2554 for (auto &OP : OM->predicates()) 2555 if (isa<LLTOperandMatcher>(OP)) 2556 Stash.push_back(std::move(OP)); 2557 OM->eraseNullPredicates(); 2558 } 2559 while (!Stash.empty()) 2560 prependPredicate(Stash.pop_back_val()); 2561 } 2562 2563 //===- Actions ------------------------------------------------------------===// 2564 class OperandRenderer { 2565 public: 2566 enum RendererKind { 2567 OR_Copy, 2568 OR_CopyOrAddZeroReg, 2569 OR_CopySubReg, 2570 OR_CopyPhysReg, 2571 OR_CopyConstantAsImm, 2572 OR_CopyFConstantAsFPImm, 2573 OR_Imm, 2574 OR_SubRegIndex, 2575 OR_Register, 2576 OR_TempRegister, 2577 OR_ComplexPattern, 2578 OR_Custom, 2579 OR_CustomOperand 2580 }; 2581 2582 protected: 2583 RendererKind Kind; 2584 2585 public: 2586 OperandRenderer(RendererKind Kind) : Kind(Kind) {} 2587 virtual ~OperandRenderer() {} 2588 2589 RendererKind getKind() const { return Kind; } 2590 2591 virtual void emitRenderOpcodes(MatchTable &Table, 2592 RuleMatcher &Rule) const = 0; 2593 }; 2594 2595 /// A CopyRenderer emits code to copy a single operand from an existing 2596 /// instruction to the one being built. 2597 class CopyRenderer : public OperandRenderer { 2598 protected: 2599 unsigned NewInsnID; 2600 /// The name of the operand. 2601 const StringRef SymbolicName; 2602 2603 public: 2604 CopyRenderer(unsigned NewInsnID, StringRef SymbolicName) 2605 : OperandRenderer(OR_Copy), NewInsnID(NewInsnID), 2606 SymbolicName(SymbolicName) { 2607 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); 2608 } 2609 2610 static bool classof(const OperandRenderer *R) { 2611 return R->getKind() == OR_Copy; 2612 } 2613 2614 StringRef getSymbolicName() const { return SymbolicName; } 2615 2616 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2617 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2618 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2619 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") 2620 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") 2621 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2622 << MatchTable::IntValue(Operand.getOpIdx()) 2623 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2624 } 2625 }; 2626 2627 /// A CopyRenderer emits code to copy a virtual register to a specific physical 2628 /// register. 2629 class CopyPhysRegRenderer : public OperandRenderer { 2630 protected: 2631 unsigned NewInsnID; 2632 Record *PhysReg; 2633 2634 public: 2635 CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg) 2636 : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID), 2637 PhysReg(Reg) { 2638 assert(PhysReg); 2639 } 2640 2641 static bool classof(const OperandRenderer *R) { 2642 return R->getKind() == OR_CopyPhysReg; 2643 } 2644 2645 Record *getPhysReg() const { return PhysReg; } 2646 2647 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2648 const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg); 2649 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2650 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") 2651 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") 2652 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2653 << MatchTable::IntValue(Operand.getOpIdx()) 2654 << MatchTable::Comment(PhysReg->getName()) 2655 << MatchTable::LineBreak; 2656 } 2657 }; 2658 2659 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an 2660 /// existing instruction to the one being built. If the operand turns out to be 2661 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register. 2662 class CopyOrAddZeroRegRenderer : public OperandRenderer { 2663 protected: 2664 unsigned NewInsnID; 2665 /// The name of the operand. 2666 const StringRef SymbolicName; 2667 const Record *ZeroRegisterDef; 2668 2669 public: 2670 CopyOrAddZeroRegRenderer(unsigned NewInsnID, 2671 StringRef SymbolicName, Record *ZeroRegisterDef) 2672 : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID), 2673 SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) { 2674 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); 2675 } 2676 2677 static bool classof(const OperandRenderer *R) { 2678 return R->getKind() == OR_CopyOrAddZeroReg; 2679 } 2680 2681 StringRef getSymbolicName() const { return SymbolicName; } 2682 2683 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2684 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2685 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2686 Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg") 2687 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2688 << MatchTable::Comment("OldInsnID") 2689 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2690 << MatchTable::IntValue(Operand.getOpIdx()) 2691 << MatchTable::NamedValue( 2692 (ZeroRegisterDef->getValue("Namespace") 2693 ? ZeroRegisterDef->getValueAsString("Namespace") 2694 : ""), 2695 ZeroRegisterDef->getName()) 2696 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2697 } 2698 }; 2699 2700 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to 2701 /// an extended immediate operand. 2702 class CopyConstantAsImmRenderer : public OperandRenderer { 2703 protected: 2704 unsigned NewInsnID; 2705 /// The name of the operand. 2706 const std::string SymbolicName; 2707 bool Signed; 2708 2709 public: 2710 CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName) 2711 : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID), 2712 SymbolicName(SymbolicName), Signed(true) {} 2713 2714 static bool classof(const OperandRenderer *R) { 2715 return R->getKind() == OR_CopyConstantAsImm; 2716 } 2717 2718 StringRef getSymbolicName() const { return SymbolicName; } 2719 2720 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2721 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2722 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2723 Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm" 2724 : "GIR_CopyConstantAsUImm") 2725 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2726 << MatchTable::Comment("OldInsnID") 2727 << MatchTable::IntValue(OldInsnVarID) 2728 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2729 } 2730 }; 2731 2732 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT 2733 /// instruction to an extended immediate operand. 2734 class CopyFConstantAsFPImmRenderer : public OperandRenderer { 2735 protected: 2736 unsigned NewInsnID; 2737 /// The name of the operand. 2738 const std::string SymbolicName; 2739 2740 public: 2741 CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName) 2742 : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID), 2743 SymbolicName(SymbolicName) {} 2744 2745 static bool classof(const OperandRenderer *R) { 2746 return R->getKind() == OR_CopyFConstantAsFPImm; 2747 } 2748 2749 StringRef getSymbolicName() const { return SymbolicName; } 2750 2751 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2752 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2753 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2754 Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm") 2755 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2756 << MatchTable::Comment("OldInsnID") 2757 << MatchTable::IntValue(OldInsnVarID) 2758 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2759 } 2760 }; 2761 2762 /// A CopySubRegRenderer emits code to copy a single register operand from an 2763 /// existing instruction to the one being built and indicate that only a 2764 /// subregister should be copied. 2765 class CopySubRegRenderer : public OperandRenderer { 2766 protected: 2767 unsigned NewInsnID; 2768 /// The name of the operand. 2769 const StringRef SymbolicName; 2770 /// The subregister to extract. 2771 const CodeGenSubRegIndex *SubReg; 2772 2773 public: 2774 CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName, 2775 const CodeGenSubRegIndex *SubReg) 2776 : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID), 2777 SymbolicName(SymbolicName), SubReg(SubReg) {} 2778 2779 static bool classof(const OperandRenderer *R) { 2780 return R->getKind() == OR_CopySubReg; 2781 } 2782 2783 StringRef getSymbolicName() const { return SymbolicName; } 2784 2785 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2786 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2787 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2788 Table << MatchTable::Opcode("GIR_CopySubReg") 2789 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2790 << MatchTable::Comment("OldInsnID") 2791 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2792 << MatchTable::IntValue(Operand.getOpIdx()) 2793 << MatchTable::Comment("SubRegIdx") 2794 << MatchTable::IntValue(SubReg->EnumValue) 2795 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2796 } 2797 }; 2798 2799 /// Adds a specific physical register to the instruction being built. 2800 /// This is typically useful for WZR/XZR on AArch64. 2801 class AddRegisterRenderer : public OperandRenderer { 2802 protected: 2803 unsigned InsnID; 2804 const Record *RegisterDef; 2805 bool IsDef; 2806 const CodeGenTarget &Target; 2807 2808 public: 2809 AddRegisterRenderer(unsigned InsnID, const CodeGenTarget &Target, 2810 const Record *RegisterDef, bool IsDef = false) 2811 : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef), 2812 IsDef(IsDef), Target(Target) {} 2813 2814 static bool classof(const OperandRenderer *R) { 2815 return R->getKind() == OR_Register; 2816 } 2817 2818 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2819 Table << MatchTable::Opcode("GIR_AddRegister") 2820 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID); 2821 if (RegisterDef->getName() != "zero_reg") { 2822 Table << MatchTable::NamedValue( 2823 (RegisterDef->getValue("Namespace") 2824 ? RegisterDef->getValueAsString("Namespace") 2825 : ""), 2826 RegisterDef->getName()); 2827 } else { 2828 Table << MatchTable::NamedValue(Target.getRegNamespace(), "NoRegister"); 2829 } 2830 Table << MatchTable::Comment("AddRegisterRegFlags"); 2831 2832 // TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are 2833 // really needed for a physical register reference. We can pack the 2834 // register and flags in a single field. 2835 if (IsDef) 2836 Table << MatchTable::NamedValue("RegState::Define"); 2837 else 2838 Table << MatchTable::IntValue(0); 2839 Table << MatchTable::LineBreak; 2840 } 2841 }; 2842 2843 /// Adds a specific temporary virtual register to the instruction being built. 2844 /// This is used to chain instructions together when emitting multiple 2845 /// instructions. 2846 class TempRegRenderer : public OperandRenderer { 2847 protected: 2848 unsigned InsnID; 2849 unsigned TempRegID; 2850 const CodeGenSubRegIndex *SubRegIdx; 2851 bool IsDef; 2852 bool IsDead; 2853 2854 public: 2855 TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false, 2856 const CodeGenSubRegIndex *SubReg = nullptr, 2857 bool IsDead = false) 2858 : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID), 2859 SubRegIdx(SubReg), IsDef(IsDef), IsDead(IsDead) {} 2860 2861 static bool classof(const OperandRenderer *R) { 2862 return R->getKind() == OR_TempRegister; 2863 } 2864 2865 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2866 if (SubRegIdx) { 2867 assert(!IsDef); 2868 Table << MatchTable::Opcode("GIR_AddTempSubRegister"); 2869 } else 2870 Table << MatchTable::Opcode("GIR_AddTempRegister"); 2871 2872 Table << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2873 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) 2874 << MatchTable::Comment("TempRegFlags"); 2875 2876 if (IsDef) { 2877 SmallString<32> RegFlags; 2878 RegFlags += "RegState::Define"; 2879 if (IsDead) 2880 RegFlags += "|RegState::Dead"; 2881 Table << MatchTable::NamedValue(RegFlags); 2882 } else 2883 Table << MatchTable::IntValue(0); 2884 2885 if (SubRegIdx) 2886 Table << MatchTable::NamedValue(SubRegIdx->getQualifiedName()); 2887 Table << MatchTable::LineBreak; 2888 } 2889 }; 2890 2891 /// Adds a specific immediate to the instruction being built. 2892 class ImmRenderer : public OperandRenderer { 2893 protected: 2894 unsigned InsnID; 2895 int64_t Imm; 2896 2897 public: 2898 ImmRenderer(unsigned InsnID, int64_t Imm) 2899 : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {} 2900 2901 static bool classof(const OperandRenderer *R) { 2902 return R->getKind() == OR_Imm; 2903 } 2904 2905 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2906 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") 2907 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm") 2908 << MatchTable::IntValue(Imm) << MatchTable::LineBreak; 2909 } 2910 }; 2911 2912 /// Adds an enum value for a subreg index to the instruction being built. 2913 class SubRegIndexRenderer : public OperandRenderer { 2914 protected: 2915 unsigned InsnID; 2916 const CodeGenSubRegIndex *SubRegIdx; 2917 2918 public: 2919 SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI) 2920 : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {} 2921 2922 static bool classof(const OperandRenderer *R) { 2923 return R->getKind() == OR_SubRegIndex; 2924 } 2925 2926 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2927 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") 2928 << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex") 2929 << MatchTable::IntValue(SubRegIdx->EnumValue) 2930 << MatchTable::LineBreak; 2931 } 2932 }; 2933 2934 /// Adds operands by calling a renderer function supplied by the ComplexPattern 2935 /// matcher function. 2936 class RenderComplexPatternOperand : public OperandRenderer { 2937 private: 2938 unsigned InsnID; 2939 const Record &TheDef; 2940 /// The name of the operand. 2941 const StringRef SymbolicName; 2942 /// The renderer number. This must be unique within a rule since it's used to 2943 /// identify a temporary variable to hold the renderer function. 2944 unsigned RendererID; 2945 /// When provided, this is the suboperand of the ComplexPattern operand to 2946 /// render. Otherwise all the suboperands will be rendered. 2947 Optional<unsigned> SubOperand; 2948 2949 unsigned getNumOperands() const { 2950 return TheDef.getValueAsDag("Operands")->getNumArgs(); 2951 } 2952 2953 public: 2954 RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef, 2955 StringRef SymbolicName, unsigned RendererID, 2956 Optional<unsigned> SubOperand = None) 2957 : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef), 2958 SymbolicName(SymbolicName), RendererID(RendererID), 2959 SubOperand(SubOperand) {} 2960 2961 static bool classof(const OperandRenderer *R) { 2962 return R->getKind() == OR_ComplexPattern; 2963 } 2964 2965 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2966 Table << MatchTable::Opcode(SubOperand ? "GIR_ComplexSubOperandRenderer" 2967 : "GIR_ComplexRenderer") 2968 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2969 << MatchTable::Comment("RendererID") 2970 << MatchTable::IntValue(RendererID); 2971 if (SubOperand) 2972 Table << MatchTable::Comment("SubOperand") 2973 << MatchTable::IntValue(SubOperand.value()); 2974 Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2975 } 2976 }; 2977 2978 class CustomRenderer : public OperandRenderer { 2979 protected: 2980 unsigned InsnID; 2981 const Record &Renderer; 2982 /// The name of the operand. 2983 const std::string SymbolicName; 2984 2985 public: 2986 CustomRenderer(unsigned InsnID, const Record &Renderer, 2987 StringRef SymbolicName) 2988 : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer), 2989 SymbolicName(SymbolicName) {} 2990 2991 static bool classof(const OperandRenderer *R) { 2992 return R->getKind() == OR_Custom; 2993 } 2994 2995 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2996 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2997 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2998 Table << MatchTable::Opcode("GIR_CustomRenderer") 2999 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3000 << MatchTable::Comment("OldInsnID") 3001 << MatchTable::IntValue(OldInsnVarID) 3002 << MatchTable::Comment("Renderer") 3003 << MatchTable::NamedValue( 3004 "GICR_" + Renderer.getValueAsString("RendererFn").str()) 3005 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 3006 } 3007 }; 3008 3009 class CustomOperandRenderer : public OperandRenderer { 3010 protected: 3011 unsigned InsnID; 3012 const Record &Renderer; 3013 /// The name of the operand. 3014 const std::string SymbolicName; 3015 3016 public: 3017 CustomOperandRenderer(unsigned InsnID, const Record &Renderer, 3018 StringRef SymbolicName) 3019 : OperandRenderer(OR_CustomOperand), InsnID(InsnID), Renderer(Renderer), 3020 SymbolicName(SymbolicName) {} 3021 3022 static bool classof(const OperandRenderer *R) { 3023 return R->getKind() == OR_CustomOperand; 3024 } 3025 3026 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3027 const OperandMatcher &OpdMatcher = Rule.getOperandMatcher(SymbolicName); 3028 Table << MatchTable::Opcode("GIR_CustomOperandRenderer") 3029 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3030 << MatchTable::Comment("OldInsnID") 3031 << MatchTable::IntValue(OpdMatcher.getInsnVarID()) 3032 << MatchTable::Comment("OpIdx") 3033 << MatchTable::IntValue(OpdMatcher.getOpIdx()) 3034 << MatchTable::Comment("OperandRenderer") 3035 << MatchTable::NamedValue( 3036 "GICR_" + Renderer.getValueAsString("RendererFn").str()) 3037 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 3038 } 3039 }; 3040 3041 /// An action taken when all Matcher predicates succeeded for a parent rule. 3042 /// 3043 /// Typical actions include: 3044 /// * Changing the opcode of an instruction. 3045 /// * Adding an operand to an instruction. 3046 class MatchAction { 3047 public: 3048 virtual ~MatchAction() {} 3049 3050 /// Emit the MatchTable opcodes to implement the action. 3051 virtual void emitActionOpcodes(MatchTable &Table, 3052 RuleMatcher &Rule) const = 0; 3053 }; 3054 3055 /// Generates a comment describing the matched rule being acted upon. 3056 class DebugCommentAction : public MatchAction { 3057 private: 3058 std::string S; 3059 3060 public: 3061 DebugCommentAction(StringRef S) : S(std::string(S)) {} 3062 3063 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3064 Table << MatchTable::Comment(S) << MatchTable::LineBreak; 3065 } 3066 }; 3067 3068 /// Generates code to build an instruction or mutate an existing instruction 3069 /// into the desired instruction when this is possible. 3070 class BuildMIAction : public MatchAction { 3071 private: 3072 unsigned InsnID; 3073 const CodeGenInstruction *I; 3074 InstructionMatcher *Matched; 3075 std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers; 3076 3077 /// True if the instruction can be built solely by mutating the opcode. 3078 bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const { 3079 if (!Insn) 3080 return false; 3081 3082 if (OperandRenderers.size() != Insn->getNumOperands()) 3083 return false; 3084 3085 for (const auto &Renderer : enumerate(OperandRenderers)) { 3086 if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) { 3087 const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName()); 3088 if (Insn != &OM.getInstructionMatcher() || 3089 OM.getOpIdx() != Renderer.index()) 3090 return false; 3091 } else 3092 return false; 3093 } 3094 3095 return true; 3096 } 3097 3098 public: 3099 BuildMIAction(unsigned InsnID, const CodeGenInstruction *I) 3100 : InsnID(InsnID), I(I), Matched(nullptr) {} 3101 3102 unsigned getInsnID() const { return InsnID; } 3103 const CodeGenInstruction *getCGI() const { return I; } 3104 3105 void chooseInsnToMutate(RuleMatcher &Rule) { 3106 for (auto *MutateCandidate : Rule.mutatable_insns()) { 3107 if (canMutate(Rule, MutateCandidate)) { 3108 // Take the first one we're offered that we're able to mutate. 3109 Rule.reserveInsnMatcherForMutation(MutateCandidate); 3110 Matched = MutateCandidate; 3111 return; 3112 } 3113 } 3114 } 3115 3116 template <class Kind, class... Args> 3117 Kind &addRenderer(Args&&... args) { 3118 OperandRenderers.emplace_back( 3119 std::make_unique<Kind>(InsnID, std::forward<Args>(args)...)); 3120 return *static_cast<Kind *>(OperandRenderers.back().get()); 3121 } 3122 3123 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3124 if (Matched) { 3125 assert(canMutate(Rule, Matched) && 3126 "Arranged to mutate an insn that isn't mutatable"); 3127 3128 unsigned RecycleInsnID = Rule.getInsnVarID(*Matched); 3129 Table << MatchTable::Opcode("GIR_MutateOpcode") 3130 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3131 << MatchTable::Comment("RecycleInsnID") 3132 << MatchTable::IntValue(RecycleInsnID) 3133 << MatchTable::Comment("Opcode") 3134 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) 3135 << MatchTable::LineBreak; 3136 3137 if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) { 3138 for (auto Def : I->ImplicitDefs) { 3139 auto Namespace = Def->getValue("Namespace") 3140 ? Def->getValueAsString("Namespace") 3141 : ""; 3142 Table << MatchTable::Opcode("GIR_AddImplicitDef") 3143 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3144 << MatchTable::NamedValue(Namespace, Def->getName()) 3145 << MatchTable::LineBreak; 3146 } 3147 for (auto Use : I->ImplicitUses) { 3148 auto Namespace = Use->getValue("Namespace") 3149 ? Use->getValueAsString("Namespace") 3150 : ""; 3151 Table << MatchTable::Opcode("GIR_AddImplicitUse") 3152 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3153 << MatchTable::NamedValue(Namespace, Use->getName()) 3154 << MatchTable::LineBreak; 3155 } 3156 } 3157 return; 3158 } 3159 3160 // TODO: Simple permutation looks like it could be almost as common as 3161 // mutation due to commutative operations. 3162 3163 Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID") 3164 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode") 3165 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) 3166 << MatchTable::LineBreak; 3167 for (const auto &Renderer : OperandRenderers) 3168 Renderer->emitRenderOpcodes(Table, Rule); 3169 3170 if (I->mayLoad || I->mayStore) { 3171 Table << MatchTable::Opcode("GIR_MergeMemOperands") 3172 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3173 << MatchTable::Comment("MergeInsnID's"); 3174 // Emit the ID's for all the instructions that are matched by this rule. 3175 // TODO: Limit this to matched instructions that mayLoad/mayStore or have 3176 // some other means of having a memoperand. Also limit this to 3177 // emitted instructions that expect to have a memoperand too. For 3178 // example, (G_SEXT (G_LOAD x)) that results in separate load and 3179 // sign-extend instructions shouldn't put the memoperand on the 3180 // sign-extend since it has no effect there. 3181 std::vector<unsigned> MergeInsnIDs; 3182 for (const auto &IDMatcherPair : Rule.defined_insn_vars()) 3183 MergeInsnIDs.push_back(IDMatcherPair.second); 3184 llvm::sort(MergeInsnIDs); 3185 for (const auto &MergeInsnID : MergeInsnIDs) 3186 Table << MatchTable::IntValue(MergeInsnID); 3187 Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList") 3188 << MatchTable::LineBreak; 3189 } 3190 3191 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do 3192 // better for combines. Particularly when there are multiple match 3193 // roots. 3194 if (InsnID == 0) 3195 Table << MatchTable::Opcode("GIR_EraseFromParent") 3196 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3197 << MatchTable::LineBreak; 3198 } 3199 }; 3200 3201 /// Generates code to constrain the operands of an output instruction to the 3202 /// register classes specified by the definition of that instruction. 3203 class ConstrainOperandsToDefinitionAction : public MatchAction { 3204 unsigned InsnID; 3205 3206 public: 3207 ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {} 3208 3209 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3210 Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands") 3211 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3212 << MatchTable::LineBreak; 3213 } 3214 }; 3215 3216 /// Generates code to constrain the specified operand of an output instruction 3217 /// to the specified register class. 3218 class ConstrainOperandToRegClassAction : public MatchAction { 3219 unsigned InsnID; 3220 unsigned OpIdx; 3221 const CodeGenRegisterClass &RC; 3222 3223 public: 3224 ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx, 3225 const CodeGenRegisterClass &RC) 3226 : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {} 3227 3228 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3229 Table << MatchTable::Opcode("GIR_ConstrainOperandRC") 3230 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3231 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 3232 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") 3233 << MatchTable::LineBreak; 3234 } 3235 }; 3236 3237 /// Generates code to create a temporary register which can be used to chain 3238 /// instructions together. 3239 class MakeTempRegisterAction : public MatchAction { 3240 private: 3241 LLTCodeGen Ty; 3242 unsigned TempRegID; 3243 3244 public: 3245 MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID) 3246 : Ty(Ty), TempRegID(TempRegID) { 3247 KnownTypes.insert(Ty); 3248 } 3249 3250 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3251 Table << MatchTable::Opcode("GIR_MakeTempReg") 3252 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) 3253 << MatchTable::Comment("TypeID") 3254 << MatchTable::NamedValue(Ty.getCxxEnumValue()) 3255 << MatchTable::LineBreak; 3256 } 3257 }; 3258 3259 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) { 3260 Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName)); 3261 MutatableInsns.insert(Matchers.back().get()); 3262 return *Matchers.back(); 3263 } 3264 3265 void RuleMatcher::addRequiredFeature(Record *Feature) { 3266 RequiredFeatures.push_back(Feature); 3267 } 3268 3269 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const { 3270 return RequiredFeatures; 3271 } 3272 3273 // Emplaces an action of the specified Kind at the end of the action list. 3274 // 3275 // Returns a reference to the newly created action. 3276 // 3277 // Like std::vector::emplace_back(), may invalidate all iterators if the new 3278 // size exceeds the capacity. Otherwise, only invalidates the past-the-end 3279 // iterator. 3280 template <class Kind, class... Args> 3281 Kind &RuleMatcher::addAction(Args &&... args) { 3282 Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...)); 3283 return *static_cast<Kind *>(Actions.back().get()); 3284 } 3285 3286 // Emplaces an action of the specified Kind before the given insertion point. 3287 // 3288 // Returns an iterator pointing at the newly created instruction. 3289 // 3290 // Like std::vector::insert(), may invalidate all iterators if the new size 3291 // exceeds the capacity. Otherwise, only invalidates the iterators from the 3292 // insertion point onwards. 3293 template <class Kind, class... Args> 3294 action_iterator RuleMatcher::insertAction(action_iterator InsertPt, 3295 Args &&... args) { 3296 return Actions.emplace(InsertPt, 3297 std::make_unique<Kind>(std::forward<Args>(args)...)); 3298 } 3299 3300 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) { 3301 unsigned NewInsnVarID = NextInsnVarID++; 3302 InsnVariableIDs[&Matcher] = NewInsnVarID; 3303 return NewInsnVarID; 3304 } 3305 3306 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const { 3307 const auto &I = InsnVariableIDs.find(&InsnMatcher); 3308 if (I != InsnVariableIDs.end()) 3309 return I->second; 3310 llvm_unreachable("Matched Insn was not captured in a local variable"); 3311 } 3312 3313 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) { 3314 if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) { 3315 DefinedOperands[SymbolicName] = &OM; 3316 return; 3317 } 3318 3319 // If the operand is already defined, then we must ensure both references in 3320 // the matcher have the exact same node. 3321 OM.addPredicate<SameOperandMatcher>( 3322 OM.getSymbolicName(), getOperandMatcher(OM.getSymbolicName()).getOpIdx()); 3323 } 3324 3325 void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) { 3326 if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) { 3327 PhysRegOperands[Reg] = &OM; 3328 return; 3329 } 3330 } 3331 3332 InstructionMatcher & 3333 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const { 3334 for (const auto &I : InsnVariableIDs) 3335 if (I.first->getSymbolicName() == SymbolicName) 3336 return *I.first; 3337 llvm_unreachable( 3338 ("Failed to lookup instruction " + SymbolicName).str().c_str()); 3339 } 3340 3341 const OperandMatcher & 3342 RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const { 3343 const auto &I = PhysRegOperands.find(Reg); 3344 3345 if (I == PhysRegOperands.end()) { 3346 PrintFatalError(SrcLoc, "Register " + Reg->getName() + 3347 " was not declared in matcher"); 3348 } 3349 3350 return *I->second; 3351 } 3352 3353 const OperandMatcher & 3354 RuleMatcher::getOperandMatcher(StringRef Name) const { 3355 const auto &I = DefinedOperands.find(Name); 3356 3357 if (I == DefinedOperands.end()) 3358 PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher"); 3359 3360 return *I->second; 3361 } 3362 3363 void RuleMatcher::emit(MatchTable &Table) { 3364 if (Matchers.empty()) 3365 llvm_unreachable("Unexpected empty matcher!"); 3366 3367 // The representation supports rules that require multiple roots such as: 3368 // %ptr(p0) = ... 3369 // %elt0(s32) = G_LOAD %ptr 3370 // %1(p0) = G_ADD %ptr, 4 3371 // %elt1(s32) = G_LOAD p0 %1 3372 // which could be usefully folded into: 3373 // %ptr(p0) = ... 3374 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr 3375 // on some targets but we don't need to make use of that yet. 3376 assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet"); 3377 3378 unsigned LabelID = Table.allocateLabelID(); 3379 Table << MatchTable::Opcode("GIM_Try", +1) 3380 << MatchTable::Comment("On fail goto") 3381 << MatchTable::JumpTarget(LabelID) 3382 << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str()) 3383 << MatchTable::LineBreak; 3384 3385 if (!RequiredFeatures.empty()) { 3386 Table << MatchTable::Opcode("GIM_CheckFeatures") 3387 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures)) 3388 << MatchTable::LineBreak; 3389 } 3390 3391 Matchers.front()->emitPredicateOpcodes(Table, *this); 3392 3393 // We must also check if it's safe to fold the matched instructions. 3394 if (InsnVariableIDs.size() >= 2) { 3395 // Invert the map to create stable ordering (by var names) 3396 SmallVector<unsigned, 2> InsnIDs; 3397 for (const auto &Pair : InsnVariableIDs) { 3398 // Skip the root node since it isn't moving anywhere. Everything else is 3399 // sinking to meet it. 3400 if (Pair.first == Matchers.front().get()) 3401 continue; 3402 3403 InsnIDs.push_back(Pair.second); 3404 } 3405 llvm::sort(InsnIDs); 3406 3407 for (const auto &InsnID : InsnIDs) { 3408 // Reject the difficult cases until we have a more accurate check. 3409 Table << MatchTable::Opcode("GIM_CheckIsSafeToFold") 3410 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3411 << MatchTable::LineBreak; 3412 3413 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or 3414 // account for unsafe cases. 3415 // 3416 // Example: 3417 // MI1--> %0 = ... 3418 // %1 = ... %0 3419 // MI0--> %2 = ... %0 3420 // It's not safe to erase MI1. We currently handle this by not 3421 // erasing %0 (even when it's dead). 3422 // 3423 // Example: 3424 // MI1--> %0 = load volatile @a 3425 // %1 = load volatile @a 3426 // MI0--> %2 = ... %0 3427 // It's not safe to sink %0's def past %1. We currently handle 3428 // this by rejecting all loads. 3429 // 3430 // Example: 3431 // MI1--> %0 = load @a 3432 // %1 = store @a 3433 // MI0--> %2 = ... %0 3434 // It's not safe to sink %0's def past %1. We currently handle 3435 // this by rejecting all loads. 3436 // 3437 // Example: 3438 // G_CONDBR %cond, @BB1 3439 // BB0: 3440 // MI1--> %0 = load @a 3441 // G_BR @BB1 3442 // BB1: 3443 // MI0--> %2 = ... %0 3444 // It's not always safe to sink %0 across control flow. In this 3445 // case it may introduce a memory fault. We currentl handle this 3446 // by rejecting all loads. 3447 } 3448 } 3449 3450 for (const auto &PM : EpilogueMatchers) 3451 PM->emitPredicateOpcodes(Table, *this); 3452 3453 for (const auto &MA : Actions) 3454 MA->emitActionOpcodes(Table, *this); 3455 3456 if (Table.isWithCoverage()) 3457 Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID) 3458 << MatchTable::LineBreak; 3459 else 3460 Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str()) 3461 << MatchTable::LineBreak; 3462 3463 Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak 3464 << MatchTable::Label(LabelID); 3465 ++NumPatternEmitted; 3466 } 3467 3468 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const { 3469 // Rules involving more match roots have higher priority. 3470 if (Matchers.size() > B.Matchers.size()) 3471 return true; 3472 if (Matchers.size() < B.Matchers.size()) 3473 return false; 3474 3475 for (auto Matcher : zip(Matchers, B.Matchers)) { 3476 if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher))) 3477 return true; 3478 if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher))) 3479 return false; 3480 } 3481 3482 return false; 3483 } 3484 3485 unsigned RuleMatcher::countRendererFns() const { 3486 return std::accumulate( 3487 Matchers.begin(), Matchers.end(), 0, 3488 [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) { 3489 return A + Matcher->countRendererFns(); 3490 }); 3491 } 3492 3493 bool OperandPredicateMatcher::isHigherPriorityThan( 3494 const OperandPredicateMatcher &B) const { 3495 // Generally speaking, an instruction is more important than an Int or a 3496 // LiteralInt because it can cover more nodes but theres an exception to 3497 // this. G_CONSTANT's are less important than either of those two because they 3498 // are more permissive. 3499 3500 const InstructionOperandMatcher *AOM = 3501 dyn_cast<InstructionOperandMatcher>(this); 3502 const InstructionOperandMatcher *BOM = 3503 dyn_cast<InstructionOperandMatcher>(&B); 3504 bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction(); 3505 bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction(); 3506 3507 if (AOM && BOM) { 3508 // The relative priorities between a G_CONSTANT and any other instruction 3509 // don't actually matter but this code is needed to ensure a strict weak 3510 // ordering. This is particularly important on Windows where the rules will 3511 // be incorrectly sorted without it. 3512 if (AIsConstantInsn != BIsConstantInsn) 3513 return AIsConstantInsn < BIsConstantInsn; 3514 return false; 3515 } 3516 3517 if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt)) 3518 return false; 3519 if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt)) 3520 return true; 3521 3522 return Kind < B.Kind; 3523 } 3524 3525 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table, 3526 RuleMatcher &Rule) const { 3527 const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName); 3528 unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher()); 3529 assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID()); 3530 3531 Table << MatchTable::Opcode("GIM_CheckIsSameOperand") 3532 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 3533 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) 3534 << MatchTable::Comment("OtherMI") 3535 << MatchTable::IntValue(OtherInsnVarID) 3536 << MatchTable::Comment("OtherOpIdx") 3537 << MatchTable::IntValue(OtherOM.getOpIdx()) 3538 << MatchTable::LineBreak; 3539 } 3540 3541 //===- GlobalISelEmitter class --------------------------------------------===// 3542 3543 static Expected<LLTCodeGen> getInstResultType(const TreePatternNode *Dst) { 3544 ArrayRef<TypeSetByHwMode> ChildTypes = Dst->getExtTypes(); 3545 if (ChildTypes.size() != 1) 3546 return failedImport("Dst pattern child has multiple results"); 3547 3548 Optional<LLTCodeGen> MaybeOpTy; 3549 if (ChildTypes.front().isMachineValueType()) { 3550 MaybeOpTy = 3551 MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); 3552 } 3553 3554 if (!MaybeOpTy) 3555 return failedImport("Dst operand has an unsupported type"); 3556 return *MaybeOpTy; 3557 } 3558 3559 class GlobalISelEmitter { 3560 public: 3561 explicit GlobalISelEmitter(RecordKeeper &RK); 3562 void run(raw_ostream &OS); 3563 3564 private: 3565 const RecordKeeper &RK; 3566 const CodeGenDAGPatterns CGP; 3567 const CodeGenTarget &Target; 3568 CodeGenRegBank &CGRegs; 3569 3570 /// Keep track of the equivalence between SDNodes and Instruction by mapping 3571 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to 3572 /// check for attributes on the relation such as CheckMMOIsNonAtomic. 3573 /// This is defined using 'GINodeEquiv' in the target description. 3574 DenseMap<Record *, Record *> NodeEquivs; 3575 3576 /// Keep track of the equivalence between ComplexPattern's and 3577 /// GIComplexOperandMatcher. Map entries are specified by subclassing 3578 /// GIComplexPatternEquiv. 3579 DenseMap<const Record *, const Record *> ComplexPatternEquivs; 3580 3581 /// Keep track of the equivalence between SDNodeXForm's and 3582 /// GICustomOperandRenderer. Map entries are specified by subclassing 3583 /// GISDNodeXFormEquiv. 3584 DenseMap<const Record *, const Record *> SDNodeXFormEquivs; 3585 3586 /// Keep track of Scores of PatternsToMatch similar to how the DAG does. 3587 /// This adds compatibility for RuleMatchers to use this for ordering rules. 3588 DenseMap<uint64_t, int> RuleMatcherScores; 3589 3590 // Map of predicates to their subtarget features. 3591 SubtargetFeatureInfoMap SubtargetFeatures; 3592 3593 // Rule coverage information. 3594 Optional<CodeGenCoverage> RuleCoverage; 3595 3596 /// Variables used to help with collecting of named operands for predicates 3597 /// with 'let PredicateCodeUsesOperands = 1'. WaitingForNamedOperands is set 3598 /// to the number of named operands that predicate expects. Store locations in 3599 /// StoreIdxForName correspond to the order in which operand names appear in 3600 /// predicate's argument list. 3601 /// When we visit named leaf operand and WaitingForNamedOperands is not zero, 3602 /// add matcher that will record operand and decrease counter. 3603 unsigned WaitingForNamedOperands = 0; 3604 StringMap<unsigned> StoreIdxForName; 3605 3606 void gatherOpcodeValues(); 3607 void gatherTypeIDValues(); 3608 void gatherNodeEquivs(); 3609 3610 Record *findNodeEquiv(Record *N) const; 3611 const CodeGenInstruction *getEquivNode(Record &Equiv, 3612 const TreePatternNode *N) const; 3613 3614 Error importRulePredicates(RuleMatcher &M, ArrayRef<Record *> Predicates); 3615 Expected<InstructionMatcher &> 3616 createAndImportSelDAGMatcher(RuleMatcher &Rule, 3617 InstructionMatcher &InsnMatcher, 3618 const TreePatternNode *Src, unsigned &TempOpIdx); 3619 Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R, 3620 unsigned &TempOpIdx) const; 3621 Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3622 const TreePatternNode *SrcChild, 3623 bool OperandIsAPointer, bool OperandIsImmArg, 3624 unsigned OpIdx, unsigned &TempOpIdx); 3625 3626 Expected<BuildMIAction &> createAndImportInstructionRenderer( 3627 RuleMatcher &M, InstructionMatcher &InsnMatcher, 3628 const TreePatternNode *Src, const TreePatternNode *Dst); 3629 Expected<action_iterator> createAndImportSubInstructionRenderer( 3630 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, 3631 unsigned TempReg); 3632 Expected<action_iterator> 3633 createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M, 3634 const TreePatternNode *Dst); 3635 3636 Expected<action_iterator> 3637 importExplicitDefRenderers(action_iterator InsertPt, RuleMatcher &M, 3638 BuildMIAction &DstMIBuilder, 3639 const TreePatternNode *Dst); 3640 3641 Expected<action_iterator> 3642 importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M, 3643 BuildMIAction &DstMIBuilder, 3644 const llvm::TreePatternNode *Dst); 3645 Expected<action_iterator> 3646 importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule, 3647 BuildMIAction &DstMIBuilder, 3648 TreePatternNode *DstChild); 3649 Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M, 3650 BuildMIAction &DstMIBuilder, 3651 DagInit *DefaultOps) const; 3652 Error 3653 importImplicitDefRenderers(BuildMIAction &DstMIBuilder, 3654 const std::vector<Record *> &ImplicitDefs) const; 3655 3656 void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName, 3657 StringRef TypeIdentifier, StringRef ArgType, 3658 StringRef ArgName, StringRef AdditionalArgs, 3659 StringRef AdditionalDeclarations, 3660 std::function<bool(const Record *R)> Filter); 3661 void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier, 3662 StringRef ArgType, 3663 std::function<bool(const Record *R)> Filter); 3664 void emitMIPredicateFns(raw_ostream &OS); 3665 3666 /// Analyze pattern \p P, returning a matcher for it if possible. 3667 /// Otherwise, return an Error explaining why we don't support it. 3668 Expected<RuleMatcher> runOnPattern(const PatternToMatch &P); 3669 3670 void declareSubtargetFeature(Record *Predicate); 3671 3672 MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize, 3673 bool WithCoverage); 3674 3675 /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned 3676 /// CodeGenRegisterClass will support the CodeGenRegisterClass of 3677 /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode. 3678 /// If no register class is found, return None. 3679 Optional<const CodeGenRegisterClass *> 3680 inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty, 3681 TreePatternNode *SuperRegNode, 3682 TreePatternNode *SubRegIdxNode); 3683 Optional<CodeGenSubRegIndex *> 3684 inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode); 3685 3686 /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode. 3687 /// Return None if no such class exists. 3688 Optional<const CodeGenRegisterClass *> 3689 inferSuperRegisterClass(const TypeSetByHwMode &Ty, 3690 TreePatternNode *SubRegIdxNode); 3691 3692 /// Return the CodeGenRegisterClass associated with \p Leaf if it has one. 3693 Optional<const CodeGenRegisterClass *> 3694 getRegClassFromLeaf(TreePatternNode *Leaf); 3695 3696 /// Return a CodeGenRegisterClass for \p N if one can be found. Return None 3697 /// otherwise. 3698 Optional<const CodeGenRegisterClass *> 3699 inferRegClassFromPattern(TreePatternNode *N); 3700 3701 /// Return the size of the MemoryVT in this predicate, if possible. 3702 Optional<unsigned> 3703 getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate); 3704 3705 // Add builtin predicates. 3706 Expected<InstructionMatcher &> 3707 addBuiltinPredicates(const Record *SrcGIEquivOrNull, 3708 const TreePredicateFn &Predicate, 3709 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher); 3710 3711 public: 3712 /// Takes a sequence of \p Rules and group them based on the predicates 3713 /// they share. \p MatcherStorage is used as a memory container 3714 /// for the group that are created as part of this process. 3715 /// 3716 /// What this optimization does looks like if GroupT = GroupMatcher: 3717 /// Output without optimization: 3718 /// \verbatim 3719 /// # R1 3720 /// # predicate A 3721 /// # predicate B 3722 /// ... 3723 /// # R2 3724 /// # predicate A // <-- effectively this is going to be checked twice. 3725 /// // Once in R1 and once in R2. 3726 /// # predicate C 3727 /// \endverbatim 3728 /// Output with optimization: 3729 /// \verbatim 3730 /// # Group1_2 3731 /// # predicate A // <-- Check is now shared. 3732 /// # R1 3733 /// # predicate B 3734 /// # R2 3735 /// # predicate C 3736 /// \endverbatim 3737 template <class GroupT> 3738 static std::vector<Matcher *> optimizeRules( 3739 ArrayRef<Matcher *> Rules, 3740 std::vector<std::unique_ptr<Matcher>> &MatcherStorage); 3741 }; 3742 3743 void GlobalISelEmitter::gatherOpcodeValues() { 3744 InstructionOpcodeMatcher::initOpcodeValuesMap(Target); 3745 } 3746 3747 void GlobalISelEmitter::gatherTypeIDValues() { 3748 LLTOperandMatcher::initTypeIDValuesMap(); 3749 } 3750 3751 void GlobalISelEmitter::gatherNodeEquivs() { 3752 assert(NodeEquivs.empty()); 3753 for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv")) 3754 NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv; 3755 3756 assert(ComplexPatternEquivs.empty()); 3757 for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) { 3758 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); 3759 if (!SelDAGEquiv) 3760 continue; 3761 ComplexPatternEquivs[SelDAGEquiv] = Equiv; 3762 } 3763 3764 assert(SDNodeXFormEquivs.empty()); 3765 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) { 3766 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); 3767 if (!SelDAGEquiv) 3768 continue; 3769 SDNodeXFormEquivs[SelDAGEquiv] = Equiv; 3770 } 3771 } 3772 3773 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const { 3774 return NodeEquivs.lookup(N); 3775 } 3776 3777 const CodeGenInstruction * 3778 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const { 3779 if (N->getNumChildren() >= 1) { 3780 // setcc operation maps to two different G_* instructions based on the type. 3781 if (!Equiv.isValueUnset("IfFloatingPoint") && 3782 MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint()) 3783 return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint")); 3784 } 3785 3786 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 3787 const TreePredicateFn &Predicate = Call.Fn; 3788 if (!Equiv.isValueUnset("IfSignExtend") && 3789 (Predicate.isLoad() || Predicate.isAtomic()) && 3790 Predicate.isSignExtLoad()) 3791 return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend")); 3792 if (!Equiv.isValueUnset("IfZeroExtend") && 3793 (Predicate.isLoad() || Predicate.isAtomic()) && 3794 Predicate.isZeroExtLoad()) 3795 return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend")); 3796 } 3797 3798 return &Target.getInstruction(Equiv.getValueAsDef("I")); 3799 } 3800 3801 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK) 3802 : RK(RK), CGP(RK), Target(CGP.getTargetInfo()), 3803 CGRegs(Target.getRegBank()) {} 3804 3805 //===- Emitter ------------------------------------------------------------===// 3806 3807 Error GlobalISelEmitter::importRulePredicates(RuleMatcher &M, 3808 ArrayRef<Record *> Predicates) { 3809 for (Record *Pred : Predicates) { 3810 if (Pred->getValueAsString("CondString").empty()) 3811 continue; 3812 declareSubtargetFeature(Pred); 3813 M.addRequiredFeature(Pred); 3814 } 3815 3816 return Error::success(); 3817 } 3818 3819 Optional<unsigned> GlobalISelEmitter::getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate) { 3820 Optional<LLTCodeGen> MemTyOrNone = 3821 MVTToLLT(getValueType(Predicate.getMemoryVT())); 3822 3823 if (!MemTyOrNone) 3824 return None; 3825 3826 // Align so unusual types like i1 don't get rounded down. 3827 return llvm::alignTo( 3828 static_cast<unsigned>(MemTyOrNone->get().getSizeInBits()), 8); 3829 } 3830 3831 Expected<InstructionMatcher &> GlobalISelEmitter::addBuiltinPredicates( 3832 const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate, 3833 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher) { 3834 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 3835 if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) { 3836 SmallVector<unsigned, 4> ParsedAddrSpaces; 3837 3838 for (Init *Val : AddrSpaces->getValues()) { 3839 IntInit *IntVal = dyn_cast<IntInit>(Val); 3840 if (!IntVal) 3841 return failedImport("Address space is not an integer"); 3842 ParsedAddrSpaces.push_back(IntVal->getValue()); 3843 } 3844 3845 if (!ParsedAddrSpaces.empty()) { 3846 InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>( 3847 0, ParsedAddrSpaces); 3848 return InsnMatcher; 3849 } 3850 } 3851 3852 int64_t MinAlign = Predicate.getMinAlignment(); 3853 if (MinAlign > 0) { 3854 InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign); 3855 return InsnMatcher; 3856 } 3857 } 3858 3859 // G_LOAD is used for both non-extending and any-extending loads. 3860 if (Predicate.isLoad() && Predicate.isNonExtLoad()) { 3861 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3862 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); 3863 return InsnMatcher; 3864 } 3865 if (Predicate.isLoad() && Predicate.isAnyExtLoad()) { 3866 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3867 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); 3868 return InsnMatcher; 3869 } 3870 3871 if (Predicate.isStore()) { 3872 if (Predicate.isTruncStore()) { 3873 if (Predicate.getMemoryVT() != nullptr) { 3874 // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size. 3875 auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); 3876 if (!MemSizeInBits) 3877 return failedImport("MemVT could not be converted to LLT"); 3878 3879 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0, *MemSizeInBits / 3880 8); 3881 } else { 3882 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3883 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); 3884 } 3885 return InsnMatcher; 3886 } 3887 if (Predicate.isNonTruncStore()) { 3888 // We need to check the sizes match here otherwise we could incorrectly 3889 // match truncating stores with non-truncating ones. 3890 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3891 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); 3892 } 3893 } 3894 3895 // No check required. We already did it by swapping the opcode. 3896 if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") && 3897 Predicate.isSignExtLoad()) 3898 return InsnMatcher; 3899 3900 // No check required. We already did it by swapping the opcode. 3901 if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") && 3902 Predicate.isZeroExtLoad()) 3903 return InsnMatcher; 3904 3905 // No check required. G_STORE by itself is a non-extending store. 3906 if (Predicate.isNonTruncStore()) 3907 return InsnMatcher; 3908 3909 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 3910 if (Predicate.getMemoryVT() != nullptr) { 3911 auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); 3912 if (!MemSizeInBits) 3913 return failedImport("MemVT could not be converted to LLT"); 3914 3915 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0, 3916 *MemSizeInBits / 8); 3917 return InsnMatcher; 3918 } 3919 } 3920 3921 if (Predicate.isLoad() || Predicate.isStore()) { 3922 // No check required. A G_LOAD/G_STORE is an unindexed load. 3923 if (Predicate.isUnindexed()) 3924 return InsnMatcher; 3925 } 3926 3927 if (Predicate.isAtomic()) { 3928 if (Predicate.isAtomicOrderingMonotonic()) { 3929 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Monotonic"); 3930 return InsnMatcher; 3931 } 3932 if (Predicate.isAtomicOrderingAcquire()) { 3933 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire"); 3934 return InsnMatcher; 3935 } 3936 if (Predicate.isAtomicOrderingRelease()) { 3937 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release"); 3938 return InsnMatcher; 3939 } 3940 if (Predicate.isAtomicOrderingAcquireRelease()) { 3941 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3942 "AcquireRelease"); 3943 return InsnMatcher; 3944 } 3945 if (Predicate.isAtomicOrderingSequentiallyConsistent()) { 3946 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3947 "SequentiallyConsistent"); 3948 return InsnMatcher; 3949 } 3950 } 3951 3952 if (Predicate.isAtomicOrderingAcquireOrStronger()) { 3953 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3954 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3955 return InsnMatcher; 3956 } 3957 if (Predicate.isAtomicOrderingWeakerThanAcquire()) { 3958 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3959 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); 3960 return InsnMatcher; 3961 } 3962 3963 if (Predicate.isAtomicOrderingReleaseOrStronger()) { 3964 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3965 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3966 return InsnMatcher; 3967 } 3968 if (Predicate.isAtomicOrderingWeakerThanRelease()) { 3969 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3970 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); 3971 return InsnMatcher; 3972 } 3973 HasAddedMatcher = false; 3974 return InsnMatcher; 3975 } 3976 3977 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher( 3978 RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3979 const TreePatternNode *Src, unsigned &TempOpIdx) { 3980 Record *SrcGIEquivOrNull = nullptr; 3981 const CodeGenInstruction *SrcGIOrNull = nullptr; 3982 3983 // Start with the defined operands (i.e., the results of the root operator). 3984 if (Src->getExtTypes().size() > 1) 3985 return failedImport("Src pattern has multiple results"); 3986 3987 if (Src->isLeaf()) { 3988 Init *SrcInit = Src->getLeafValue(); 3989 if (isa<IntInit>(SrcInit)) { 3990 InsnMatcher.addPredicate<InstructionOpcodeMatcher>( 3991 &Target.getInstruction(RK.getDef("G_CONSTANT"))); 3992 } else 3993 return failedImport( 3994 "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); 3995 } else { 3996 SrcGIEquivOrNull = findNodeEquiv(Src->getOperator()); 3997 if (!SrcGIEquivOrNull) 3998 return failedImport("Pattern operator lacks an equivalent Instruction" + 3999 explainOperator(Src->getOperator())); 4000 SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src); 4001 4002 // The operators look good: match the opcode 4003 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull); 4004 } 4005 4006 unsigned OpIdx = 0; 4007 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { 4008 // Results don't have a name unless they are the root node. The caller will 4009 // set the name if appropriate. 4010 OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); 4011 if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */)) 4012 return failedImport(toString(std::move(Error)) + 4013 " for result of Src pattern operator"); 4014 } 4015 4016 for (const TreePredicateCall &Call : Src->getPredicateCalls()) { 4017 const TreePredicateFn &Predicate = Call.Fn; 4018 bool HasAddedBuiltinMatcher = true; 4019 if (Predicate.isAlwaysTrue()) 4020 continue; 4021 4022 if (Predicate.isImmediatePattern()) { 4023 InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate); 4024 continue; 4025 } 4026 4027 auto InsnMatcherOrError = addBuiltinPredicates( 4028 SrcGIEquivOrNull, Predicate, InsnMatcher, HasAddedBuiltinMatcher); 4029 if (auto Error = InsnMatcherOrError.takeError()) 4030 return std::move(Error); 4031 4032 // FIXME: This should be part of addBuiltinPredicates(). If we add this at 4033 // the start of addBuiltinPredicates() without returning, then there might 4034 // be cases where we hit the last return before which the 4035 // HasAddedBuiltinMatcher will be set to false. The predicate could be 4036 // missed if we add it in the middle or at the end due to return statements 4037 // after the addPredicate<>() calls. 4038 if (Predicate.hasNoUse()) { 4039 InsnMatcher.addPredicate<NoUsePredicateMatcher>(); 4040 HasAddedBuiltinMatcher = true; 4041 } 4042 4043 if (Predicate.hasGISelPredicateCode()) { 4044 if (Predicate.usesOperands()) { 4045 assert(WaitingForNamedOperands == 0 && 4046 "previous predicate didn't find all operands or " 4047 "nested predicate that uses operands"); 4048 TreePattern *TP = Predicate.getOrigPatFragRecord(); 4049 WaitingForNamedOperands = TP->getNumArgs(); 4050 for (unsigned i = 0; i < WaitingForNamedOperands; ++i) 4051 StoreIdxForName[getScopedName(Call.Scope, TP->getArgName(i))] = i; 4052 } 4053 InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate); 4054 continue; 4055 } 4056 if (!HasAddedBuiltinMatcher) { 4057 return failedImport("Src pattern child has predicate (" + 4058 explainPredicates(Src) + ")"); 4059 } 4060 } 4061 4062 bool IsAtomic = false; 4063 if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic")) 4064 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic"); 4065 else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) { 4066 IsAtomic = true; 4067 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 4068 "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 4069 } 4070 4071 if (Src->isLeaf()) { 4072 Init *SrcInit = Src->getLeafValue(); 4073 if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) { 4074 OperandMatcher &OM = 4075 InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx); 4076 OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue()); 4077 } else 4078 return failedImport( 4079 "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); 4080 } else { 4081 assert(SrcGIOrNull && 4082 "Expected to have already found an equivalent Instruction"); 4083 if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" || 4084 SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") { 4085 // imm/fpimm still have operands but we don't need to do anything with it 4086 // here since we don't support ImmLeaf predicates yet. However, we still 4087 // need to note the hidden operand to get GIM_CheckNumOperands correct. 4088 InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); 4089 return InsnMatcher; 4090 } 4091 4092 // Special case because the operand order is changed from setcc. The 4093 // predicate operand needs to be swapped from the last operand to the first 4094 // source. 4095 4096 unsigned NumChildren = Src->getNumChildren(); 4097 bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP"; 4098 4099 if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") { 4100 TreePatternNode *SrcChild = Src->getChild(NumChildren - 1); 4101 if (SrcChild->isLeaf()) { 4102 DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue()); 4103 Record *CCDef = DI ? DI->getDef() : nullptr; 4104 if (!CCDef || !CCDef->isSubClassOf("CondCode")) 4105 return failedImport("Unable to handle CondCode"); 4106 4107 OperandMatcher &OM = 4108 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); 4109 StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") : 4110 CCDef->getValueAsString("ICmpPredicate"); 4111 4112 if (!PredType.empty()) { 4113 OM.addPredicate<CmpPredicateOperandMatcher>(std::string(PredType)); 4114 // Process the other 2 operands normally. 4115 --NumChildren; 4116 } 4117 } 4118 } 4119 4120 // Hack around an unfortunate mistake in how atomic store (and really 4121 // atomicrmw in general) operands were ordered. A ISD::STORE used the order 4122 // <stored value>, <pointer> order. ISD::ATOMIC_STORE used the opposite, 4123 // <pointer>, <stored value>. In GlobalISel there's just the one store 4124 // opcode, so we need to swap the operands here to get the right type check. 4125 if (IsAtomic && SrcGIOrNull->TheDef->getName() == "G_STORE") { 4126 assert(NumChildren == 2 && "wrong operands for atomic store"); 4127 4128 TreePatternNode *PtrChild = Src->getChild(0); 4129 TreePatternNode *ValueChild = Src->getChild(1); 4130 4131 if (auto Error = importChildMatcher(Rule, InsnMatcher, PtrChild, true, 4132 false, 1, TempOpIdx)) 4133 return std::move(Error); 4134 4135 if (auto Error = importChildMatcher(Rule, InsnMatcher, ValueChild, false, 4136 false, 0, TempOpIdx)) 4137 return std::move(Error); 4138 return InsnMatcher; 4139 } 4140 4141 // Match the used operands (i.e. the children of the operator). 4142 bool IsIntrinsic = 4143 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" || 4144 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS"; 4145 const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP); 4146 if (IsIntrinsic && !II) 4147 return failedImport("Expected IntInit containing intrinsic ID)"); 4148 4149 for (unsigned i = 0; i != NumChildren; ++i) { 4150 TreePatternNode *SrcChild = Src->getChild(i); 4151 4152 // We need to determine the meaning of a literal integer based on the 4153 // context. If this is a field required to be an immediate (such as an 4154 // immarg intrinsic argument), the required predicates are different than 4155 // a constant which may be materialized in a register. If we have an 4156 // argument that is required to be an immediate, we should not emit an LLT 4157 // type check, and should not be looking for a G_CONSTANT defined 4158 // register. 4159 bool OperandIsImmArg = SrcGIOrNull->isOperandImmArg(i); 4160 4161 // SelectionDAG allows pointers to be represented with iN since it doesn't 4162 // distinguish between pointers and integers but they are different types in GlobalISel. 4163 // Coerce integers to pointers to address space 0 if the context indicates a pointer. 4164 // 4165 bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i); 4166 4167 if (IsIntrinsic) { 4168 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately 4169 // following the defs is an intrinsic ID. 4170 if (i == 0) { 4171 OperandMatcher &OM = 4172 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); 4173 OM.addPredicate<IntrinsicIDOperandMatcher>(II); 4174 continue; 4175 } 4176 4177 // We have to check intrinsics for llvm_anyptr_ty and immarg parameters. 4178 // 4179 // Note that we have to look at the i-1th parameter, because we don't 4180 // have the intrinsic ID in the intrinsic's parameter list. 4181 OperandIsAPointer |= II->isParamAPointer(i - 1); 4182 OperandIsImmArg |= II->isParamImmArg(i - 1); 4183 } 4184 4185 if (auto Error = 4186 importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer, 4187 OperandIsImmArg, OpIdx++, TempOpIdx)) 4188 return std::move(Error); 4189 } 4190 } 4191 4192 return InsnMatcher; 4193 } 4194 4195 Error GlobalISelEmitter::importComplexPatternOperandMatcher( 4196 OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const { 4197 const auto &ComplexPattern = ComplexPatternEquivs.find(R); 4198 if (ComplexPattern == ComplexPatternEquivs.end()) 4199 return failedImport("SelectionDAG ComplexPattern (" + R->getName() + 4200 ") not mapped to GlobalISel"); 4201 4202 OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second); 4203 TempOpIdx++; 4204 return Error::success(); 4205 } 4206 4207 // Get the name to use for a pattern operand. For an anonymous physical register 4208 // input, this should use the register name. 4209 static StringRef getSrcChildName(const TreePatternNode *SrcChild, 4210 Record *&PhysReg) { 4211 StringRef SrcChildName = SrcChild->getName(); 4212 if (SrcChildName.empty() && SrcChild->isLeaf()) { 4213 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { 4214 auto *ChildRec = ChildDefInit->getDef(); 4215 if (ChildRec->isSubClassOf("Register")) { 4216 SrcChildName = ChildRec->getName(); 4217 PhysReg = ChildRec; 4218 } 4219 } 4220 } 4221 4222 return SrcChildName; 4223 } 4224 4225 Error GlobalISelEmitter::importChildMatcher( 4226 RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 4227 const TreePatternNode *SrcChild, bool OperandIsAPointer, 4228 bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) { 4229 4230 Record *PhysReg = nullptr; 4231 std::string SrcChildName = std::string(getSrcChildName(SrcChild, PhysReg)); 4232 if (!SrcChild->isLeaf() && 4233 SrcChild->getOperator()->isSubClassOf("ComplexPattern")) { 4234 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is 4235 // "MY_PAT:op1:op2" and the ones with same "name" represent same operand. 4236 std::string PatternName = std::string(SrcChild->getOperator()->getName()); 4237 for (unsigned i = 0; i < SrcChild->getNumChildren(); ++i) { 4238 PatternName += ":"; 4239 PatternName += SrcChild->getChild(i)->getName(); 4240 } 4241 SrcChildName = PatternName; 4242 } 4243 4244 OperandMatcher &OM = 4245 PhysReg ? InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx) 4246 : InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx); 4247 if (OM.isSameAsAnotherOperand()) 4248 return Error::success(); 4249 4250 ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes(); 4251 if (ChildTypes.size() != 1) 4252 return failedImport("Src pattern child has multiple results"); 4253 4254 // Check MBB's before the type check since they are not a known type. 4255 if (!SrcChild->isLeaf()) { 4256 if (SrcChild->getOperator()->isSubClassOf("SDNode")) { 4257 auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator()); 4258 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { 4259 OM.addPredicate<MBBOperandMatcher>(); 4260 return Error::success(); 4261 } 4262 if (SrcChild->getOperator()->getName() == "timm") { 4263 OM.addPredicate<ImmOperandMatcher>(); 4264 4265 // Add predicates, if any 4266 for (const TreePredicateCall &Call : SrcChild->getPredicateCalls()) { 4267 const TreePredicateFn &Predicate = Call.Fn; 4268 4269 // Only handle immediate patterns for now 4270 if (Predicate.isImmediatePattern()) { 4271 OM.addPredicate<OperandImmPredicateMatcher>(Predicate); 4272 } 4273 } 4274 4275 return Error::success(); 4276 } 4277 } 4278 } 4279 4280 // Immediate arguments have no meaningful type to check as they don't have 4281 // registers. 4282 if (!OperandIsImmArg) { 4283 if (auto Error = 4284 OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer)) 4285 return failedImport(toString(std::move(Error)) + " for Src operand (" + 4286 to_string(*SrcChild) + ")"); 4287 } 4288 4289 // Check for nested instructions. 4290 if (!SrcChild->isLeaf()) { 4291 if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) { 4292 // When a ComplexPattern is used as an operator, it should do the same 4293 // thing as when used as a leaf. However, the children of the operator 4294 // name the sub-operands that make up the complex operand and we must 4295 // prepare to reference them in the renderer too. 4296 unsigned RendererID = TempOpIdx; 4297 if (auto Error = importComplexPatternOperandMatcher( 4298 OM, SrcChild->getOperator(), TempOpIdx)) 4299 return Error; 4300 4301 for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) { 4302 auto *SubOperand = SrcChild->getChild(i); 4303 if (!SubOperand->getName().empty()) { 4304 if (auto Error = Rule.defineComplexSubOperand( 4305 SubOperand->getName(), SrcChild->getOperator(), RendererID, i, 4306 SrcChildName)) 4307 return Error; 4308 } 4309 } 4310 4311 return Error::success(); 4312 } 4313 4314 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( 4315 InsnMatcher.getRuleMatcher(), SrcChild->getName()); 4316 if (!MaybeInsnOperand) { 4317 // This isn't strictly true. If the user were to provide exactly the same 4318 // matchers as the original operand then we could allow it. However, it's 4319 // simpler to not permit the redundant specification. 4320 return failedImport("Nested instruction cannot be the same as another operand"); 4321 } 4322 4323 // Map the node to a gMIR instruction. 4324 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; 4325 auto InsnMatcherOrError = createAndImportSelDAGMatcher( 4326 Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx); 4327 if (auto Error = InsnMatcherOrError.takeError()) 4328 return Error; 4329 4330 return Error::success(); 4331 } 4332 4333 if (SrcChild->hasAnyPredicate()) 4334 return failedImport("Src pattern child has unsupported predicate"); 4335 4336 // Check for constant immediates. 4337 if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) { 4338 if (OperandIsImmArg) { 4339 // Checks for argument directly in operand list 4340 OM.addPredicate<LiteralIntOperandMatcher>(ChildInt->getValue()); 4341 } else { 4342 // Checks for materialized constant 4343 OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue()); 4344 } 4345 return Error::success(); 4346 } 4347 4348 // Check for def's like register classes or ComplexPattern's. 4349 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { 4350 auto *ChildRec = ChildDefInit->getDef(); 4351 4352 if (WaitingForNamedOperands) { 4353 auto PA = SrcChild->getNamesAsPredicateArg().begin(); 4354 std::string Name = getScopedName(PA->getScope(), PA->getIdentifier()); 4355 OM.addPredicate<RecordNamedOperandMatcher>(StoreIdxForName[Name], Name); 4356 --WaitingForNamedOperands; 4357 } 4358 4359 // Check for register classes. 4360 if (ChildRec->isSubClassOf("RegisterClass") || 4361 ChildRec->isSubClassOf("RegisterOperand")) { 4362 OM.addPredicate<RegisterBankOperandMatcher>( 4363 Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit))); 4364 return Error::success(); 4365 } 4366 4367 if (ChildRec->isSubClassOf("Register")) { 4368 // This just be emitted as a copy to the specific register. 4369 ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode(); 4370 const CodeGenRegisterClass *RC 4371 = CGRegs.getMinimalPhysRegClass(ChildRec, &VT); 4372 if (!RC) { 4373 return failedImport( 4374 "Could not determine physical register class of pattern source"); 4375 } 4376 4377 OM.addPredicate<RegisterBankOperandMatcher>(*RC); 4378 return Error::success(); 4379 } 4380 4381 // Check for ValueType. 4382 if (ChildRec->isSubClassOf("ValueType")) { 4383 // We already added a type check as standard practice so this doesn't need 4384 // to do anything. 4385 return Error::success(); 4386 } 4387 4388 // Check for ComplexPattern's. 4389 if (ChildRec->isSubClassOf("ComplexPattern")) 4390 return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx); 4391 4392 if (ChildRec->isSubClassOf("ImmLeaf")) { 4393 return failedImport( 4394 "Src pattern child def is an unsupported tablegen class (ImmLeaf)"); 4395 } 4396 4397 // Place holder for SRCVALUE nodes. Nothing to do here. 4398 if (ChildRec->getName() == "srcvalue") 4399 return Error::success(); 4400 4401 const bool ImmAllOnesV = ChildRec->getName() == "immAllOnesV"; 4402 if (ImmAllOnesV || ChildRec->getName() == "immAllZerosV") { 4403 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( 4404 InsnMatcher.getRuleMatcher(), SrcChild->getName(), false); 4405 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; 4406 4407 ValueTypeByHwMode VTy = ChildTypes.front().getValueTypeByHwMode(); 4408 4409 const CodeGenInstruction &BuildVector 4410 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR")); 4411 const CodeGenInstruction &BuildVectorTrunc 4412 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR_TRUNC")); 4413 4414 // Treat G_BUILD_VECTOR as the canonical opcode, and G_BUILD_VECTOR_TRUNC 4415 // as an alternative. 4416 InsnOperand.getInsnMatcher().addPredicate<InstructionOpcodeMatcher>( 4417 makeArrayRef({&BuildVector, &BuildVectorTrunc})); 4418 4419 // TODO: Handle both G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC We could 4420 // theoretically not emit any opcode check, but getOpcodeMatcher currently 4421 // has to succeed. 4422 OperandMatcher &OM = 4423 InsnOperand.getInsnMatcher().addOperand(0, "", TempOpIdx); 4424 if (auto Error = 4425 OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */)) 4426 return failedImport(toString(std::move(Error)) + 4427 " for result of Src pattern operator"); 4428 4429 InsnOperand.getInsnMatcher().addPredicate<VectorSplatImmPredicateMatcher>( 4430 ImmAllOnesV ? VectorSplatImmPredicateMatcher::AllOnes 4431 : VectorSplatImmPredicateMatcher::AllZeros); 4432 return Error::success(); 4433 } 4434 4435 return failedImport( 4436 "Src pattern child def is an unsupported tablegen class"); 4437 } 4438 4439 return failedImport("Src pattern child is an unsupported kind"); 4440 } 4441 4442 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer( 4443 action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder, 4444 TreePatternNode *DstChild) { 4445 4446 const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName()); 4447 if (SubOperand) { 4448 DstMIBuilder.addRenderer<RenderComplexPatternOperand>( 4449 *std::get<0>(*SubOperand), DstChild->getName(), 4450 std::get<1>(*SubOperand), std::get<2>(*SubOperand)); 4451 return InsertPt; 4452 } 4453 4454 if (!DstChild->isLeaf()) { 4455 if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) { 4456 auto Child = DstChild->getChild(0); 4457 auto I = SDNodeXFormEquivs.find(DstChild->getOperator()); 4458 if (I != SDNodeXFormEquivs.end()) { 4459 Record *XFormOpc = DstChild->getOperator()->getValueAsDef("Opcode"); 4460 if (XFormOpc->getName() == "timm") { 4461 // If this is a TargetConstant, there won't be a corresponding 4462 // instruction to transform. Instead, this will refer directly to an 4463 // operand in an instruction's operand list. 4464 DstMIBuilder.addRenderer<CustomOperandRenderer>(*I->second, 4465 Child->getName()); 4466 } else { 4467 DstMIBuilder.addRenderer<CustomRenderer>(*I->second, 4468 Child->getName()); 4469 } 4470 4471 return InsertPt; 4472 } 4473 return failedImport("SDNodeXForm " + Child->getName() + 4474 " has no custom renderer"); 4475 } 4476 4477 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't 4478 // inline, but in MI it's just another operand. 4479 if (DstChild->getOperator()->isSubClassOf("SDNode")) { 4480 auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator()); 4481 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { 4482 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4483 return InsertPt; 4484 } 4485 } 4486 4487 // Similarly, imm is an operator in TreePatternNode's view but must be 4488 // rendered as operands. 4489 // FIXME: The target should be able to choose sign-extended when appropriate 4490 // (e.g. on Mips). 4491 if (DstChild->getOperator()->getName() == "timm") { 4492 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4493 return InsertPt; 4494 } else if (DstChild->getOperator()->getName() == "imm") { 4495 DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName()); 4496 return InsertPt; 4497 } else if (DstChild->getOperator()->getName() == "fpimm") { 4498 DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>( 4499 DstChild->getName()); 4500 return InsertPt; 4501 } 4502 4503 if (DstChild->getOperator()->isSubClassOf("Instruction")) { 4504 auto OpTy = getInstResultType(DstChild); 4505 if (!OpTy) 4506 return OpTy.takeError(); 4507 4508 unsigned TempRegID = Rule.allocateTempRegID(); 4509 InsertPt = Rule.insertAction<MakeTempRegisterAction>( 4510 InsertPt, *OpTy, TempRegID); 4511 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4512 4513 auto InsertPtOrError = createAndImportSubInstructionRenderer( 4514 ++InsertPt, Rule, DstChild, TempRegID); 4515 if (auto Error = InsertPtOrError.takeError()) 4516 return std::move(Error); 4517 return InsertPtOrError.get(); 4518 } 4519 4520 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild)); 4521 } 4522 4523 // It could be a specific immediate in which case we should just check for 4524 // that immediate. 4525 if (const IntInit *ChildIntInit = 4526 dyn_cast<IntInit>(DstChild->getLeafValue())) { 4527 DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue()); 4528 return InsertPt; 4529 } 4530 4531 // Otherwise, we're looking for a bog-standard RegisterClass operand. 4532 if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) { 4533 auto *ChildRec = ChildDefInit->getDef(); 4534 4535 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes(); 4536 if (ChildTypes.size() != 1) 4537 return failedImport("Dst pattern child has multiple results"); 4538 4539 Optional<LLTCodeGen> OpTyOrNone = None; 4540 if (ChildTypes.front().isMachineValueType()) 4541 OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); 4542 if (!OpTyOrNone) 4543 return failedImport("Dst operand has an unsupported type"); 4544 4545 if (ChildRec->isSubClassOf("Register")) { 4546 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, ChildRec); 4547 return InsertPt; 4548 } 4549 4550 if (ChildRec->isSubClassOf("RegisterClass") || 4551 ChildRec->isSubClassOf("RegisterOperand") || 4552 ChildRec->isSubClassOf("ValueType")) { 4553 if (ChildRec->isSubClassOf("RegisterOperand") && 4554 !ChildRec->isValueUnset("GIZeroRegister")) { 4555 DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>( 4556 DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister")); 4557 return InsertPt; 4558 } 4559 4560 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4561 return InsertPt; 4562 } 4563 4564 if (ChildRec->isSubClassOf("SubRegIndex")) { 4565 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec); 4566 DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue); 4567 return InsertPt; 4568 } 4569 4570 if (ChildRec->isSubClassOf("ComplexPattern")) { 4571 const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec); 4572 if (ComplexPattern == ComplexPatternEquivs.end()) 4573 return failedImport( 4574 "SelectionDAG ComplexPattern not mapped to GlobalISel"); 4575 4576 const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName()); 4577 DstMIBuilder.addRenderer<RenderComplexPatternOperand>( 4578 *ComplexPattern->second, DstChild->getName(), 4579 OM.getAllocatedTemporariesBaseID()); 4580 return InsertPt; 4581 } 4582 4583 return failedImport( 4584 "Dst pattern child def is an unsupported tablegen class"); 4585 } 4586 return failedImport("Dst pattern child is an unsupported kind"); 4587 } 4588 4589 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer( 4590 RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src, 4591 const TreePatternNode *Dst) { 4592 auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst); 4593 if (auto Error = InsertPtOrError.takeError()) 4594 return std::move(Error); 4595 4596 action_iterator InsertPt = InsertPtOrError.get(); 4597 BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get()); 4598 4599 for (auto PhysInput : InsnMatcher.getPhysRegInputs()) { 4600 InsertPt = M.insertAction<BuildMIAction>( 4601 InsertPt, M.allocateOutputInsnID(), 4602 &Target.getInstruction(RK.getDef("COPY"))); 4603 BuildMIAction &CopyToPhysRegMIBuilder = 4604 *static_cast<BuildMIAction *>(InsertPt->get()); 4605 CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(Target, 4606 PhysInput.first, 4607 true); 4608 CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first); 4609 } 4610 4611 if (auto Error = importExplicitDefRenderers(InsertPt, M, DstMIBuilder, Dst) 4612 .takeError()) 4613 return std::move(Error); 4614 4615 if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst) 4616 .takeError()) 4617 return std::move(Error); 4618 4619 return DstMIBuilder; 4620 } 4621 4622 Expected<action_iterator> 4623 GlobalISelEmitter::createAndImportSubInstructionRenderer( 4624 const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, 4625 unsigned TempRegID) { 4626 auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst); 4627 4628 // TODO: Assert there's exactly one result. 4629 4630 if (auto Error = InsertPtOrError.takeError()) 4631 return std::move(Error); 4632 4633 BuildMIAction &DstMIBuilder = 4634 *static_cast<BuildMIAction *>(InsertPtOrError.get()->get()); 4635 4636 // Assign the result to TempReg. 4637 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true); 4638 4639 InsertPtOrError = 4640 importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst); 4641 if (auto Error = InsertPtOrError.takeError()) 4642 return std::move(Error); 4643 4644 // We need to make sure that when we import an INSERT_SUBREG as a 4645 // subinstruction that it ends up being constrained to the correct super 4646 // register and subregister classes. 4647 auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName(); 4648 if (OpName == "INSERT_SUBREG") { 4649 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4650 if (!SubClass) 4651 return failedImport( 4652 "Cannot infer register class from INSERT_SUBREG operand #1"); 4653 Optional<const CodeGenRegisterClass *> SuperClass = 4654 inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0), 4655 Dst->getChild(2)); 4656 if (!SuperClass) 4657 return failedImport( 4658 "Cannot infer register class for INSERT_SUBREG operand #0"); 4659 // The destination and the super register source of an INSERT_SUBREG must 4660 // be the same register class. 4661 M.insertAction<ConstrainOperandToRegClassAction>( 4662 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4663 M.insertAction<ConstrainOperandToRegClassAction>( 4664 InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass); 4665 M.insertAction<ConstrainOperandToRegClassAction>( 4666 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); 4667 return InsertPtOrError.get(); 4668 } 4669 4670 if (OpName == "EXTRACT_SUBREG") { 4671 // EXTRACT_SUBREG selects into a subregister COPY but unlike most 4672 // instructions, the result register class is controlled by the 4673 // subregisters of the operand. As a result, we must constrain the result 4674 // class rather than check that it's already the right one. 4675 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 4676 if (!SuperClass) 4677 return failedImport( 4678 "Cannot infer register class from EXTRACT_SUBREG operand #0"); 4679 4680 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); 4681 if (!SubIdx) 4682 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4683 4684 const auto SrcRCDstRCPair = 4685 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 4686 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4687 M.insertAction<ConstrainOperandToRegClassAction>( 4688 InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second); 4689 M.insertAction<ConstrainOperandToRegClassAction>( 4690 InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first); 4691 4692 // We're done with this pattern! It's eligible for GISel emission; return 4693 // it. 4694 return InsertPtOrError.get(); 4695 } 4696 4697 // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a 4698 // subinstruction. 4699 if (OpName == "SUBREG_TO_REG") { 4700 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4701 if (!SubClass) 4702 return failedImport( 4703 "Cannot infer register class from SUBREG_TO_REG child #1"); 4704 auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0), 4705 Dst->getChild(2)); 4706 if (!SuperClass) 4707 return failedImport( 4708 "Cannot infer register class for SUBREG_TO_REG operand #0"); 4709 M.insertAction<ConstrainOperandToRegClassAction>( 4710 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4711 M.insertAction<ConstrainOperandToRegClassAction>( 4712 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); 4713 return InsertPtOrError.get(); 4714 } 4715 4716 if (OpName == "REG_SEQUENCE") { 4717 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 4718 M.insertAction<ConstrainOperandToRegClassAction>( 4719 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4720 4721 unsigned Num = Dst->getNumChildren(); 4722 for (unsigned I = 1; I != Num; I += 2) { 4723 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 4724 4725 auto SubIdx = inferSubRegIndexForNode(SubRegChild); 4726 if (!SubIdx) 4727 return failedImport("REG_SEQUENCE child is not a subreg index"); 4728 4729 const auto SrcRCDstRCPair = 4730 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 4731 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4732 M.insertAction<ConstrainOperandToRegClassAction>( 4733 InsertPt, DstMIBuilder.getInsnID(), I, *SrcRCDstRCPair->second); 4734 } 4735 4736 return InsertPtOrError.get(); 4737 } 4738 4739 M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt, 4740 DstMIBuilder.getInsnID()); 4741 return InsertPtOrError.get(); 4742 } 4743 4744 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer( 4745 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) { 4746 Record *DstOp = Dst->getOperator(); 4747 if (!DstOp->isSubClassOf("Instruction")) { 4748 if (DstOp->isSubClassOf("ValueType")) 4749 return failedImport( 4750 "Pattern operator isn't an instruction (it's a ValueType)"); 4751 return failedImport("Pattern operator isn't an instruction"); 4752 } 4753 CodeGenInstruction *DstI = &Target.getInstruction(DstOp); 4754 4755 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction 4756 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy. 4757 StringRef Name = DstI->TheDef->getName(); 4758 if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG") 4759 DstI = &Target.getInstruction(RK.getDef("COPY")); 4760 4761 return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(), 4762 DstI); 4763 } 4764 4765 Expected<action_iterator> GlobalISelEmitter::importExplicitDefRenderers( 4766 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4767 const TreePatternNode *Dst) { 4768 const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); 4769 const unsigned NumDefs = DstI->Operands.NumDefs; 4770 if (NumDefs == 0) 4771 return InsertPt; 4772 4773 DstMIBuilder.addRenderer<CopyRenderer>(DstI->Operands[0].Name); 4774 4775 // Some instructions have multiple defs, but are missing a type entry 4776 // (e.g. s_cc_out operands). 4777 if (Dst->getExtTypes().size() < NumDefs) 4778 return failedImport("unhandled discarded def"); 4779 4780 // Patterns only handle a single result, so any result after the first is an 4781 // implicitly dead def. 4782 for (unsigned I = 1; I < NumDefs; ++I) { 4783 const TypeSetByHwMode &ExtTy = Dst->getExtType(I); 4784 if (!ExtTy.isMachineValueType()) 4785 return failedImport("unsupported typeset"); 4786 4787 auto OpTy = MVTToLLT(ExtTy.getMachineValueType().SimpleTy); 4788 if (!OpTy) 4789 return failedImport("unsupported type"); 4790 4791 unsigned TempRegID = M.allocateTempRegID(); 4792 InsertPt = 4793 M.insertAction<MakeTempRegisterAction>(InsertPt, *OpTy, TempRegID); 4794 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true, nullptr, true); 4795 } 4796 4797 return InsertPt; 4798 } 4799 4800 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers( 4801 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4802 const llvm::TreePatternNode *Dst) { 4803 const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); 4804 CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator()); 4805 4806 StringRef Name = OrigDstI->TheDef->getName(); 4807 unsigned ExpectedDstINumUses = Dst->getNumChildren(); 4808 4809 // EXTRACT_SUBREG needs to use a subregister COPY. 4810 if (Name == "EXTRACT_SUBREG") { 4811 if (!Dst->getChild(1)->isLeaf()) 4812 return failedImport("EXTRACT_SUBREG child #1 is not a leaf"); 4813 DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 4814 if (!SubRegInit) 4815 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4816 4817 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4818 TreePatternNode *ValChild = Dst->getChild(0); 4819 if (!ValChild->isLeaf()) { 4820 // We really have to handle the source instruction, and then insert a 4821 // copy from the subregister. 4822 auto ExtractSrcTy = getInstResultType(ValChild); 4823 if (!ExtractSrcTy) 4824 return ExtractSrcTy.takeError(); 4825 4826 unsigned TempRegID = M.allocateTempRegID(); 4827 InsertPt = M.insertAction<MakeTempRegisterAction>( 4828 InsertPt, *ExtractSrcTy, TempRegID); 4829 4830 auto InsertPtOrError = createAndImportSubInstructionRenderer( 4831 ++InsertPt, M, ValChild, TempRegID); 4832 if (auto Error = InsertPtOrError.takeError()) 4833 return std::move(Error); 4834 4835 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, false, SubIdx); 4836 return InsertPt; 4837 } 4838 4839 // If this is a source operand, this is just a subregister copy. 4840 Record *RCDef = getInitValueAsRegClass(ValChild->getLeafValue()); 4841 if (!RCDef) 4842 return failedImport("EXTRACT_SUBREG child #0 could not " 4843 "be coerced to a register class"); 4844 4845 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef); 4846 4847 const auto SrcRCDstRCPair = 4848 RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx); 4849 if (SrcRCDstRCPair) { 4850 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4851 if (SrcRCDstRCPair->first != RC) 4852 return failedImport("EXTRACT_SUBREG requires an additional COPY"); 4853 } 4854 4855 DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(), 4856 SubIdx); 4857 return InsertPt; 4858 } 4859 4860 if (Name == "REG_SEQUENCE") { 4861 if (!Dst->getChild(0)->isLeaf()) 4862 return failedImport("REG_SEQUENCE child #0 is not a leaf"); 4863 4864 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 4865 if (!RCDef) 4866 return failedImport("REG_SEQUENCE child #0 could not " 4867 "be coerced to a register class"); 4868 4869 if ((ExpectedDstINumUses - 1) % 2 != 0) 4870 return failedImport("Malformed REG_SEQUENCE"); 4871 4872 for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) { 4873 TreePatternNode *ValChild = Dst->getChild(I); 4874 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 4875 4876 if (DefInit *SubRegInit = 4877 dyn_cast<DefInit>(SubRegChild->getLeafValue())) { 4878 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4879 4880 auto InsertPtOrError = 4881 importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild); 4882 if (auto Error = InsertPtOrError.takeError()) 4883 return std::move(Error); 4884 InsertPt = InsertPtOrError.get(); 4885 DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx); 4886 } 4887 } 4888 4889 return InsertPt; 4890 } 4891 4892 // Render the explicit uses. 4893 unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs; 4894 if (Name == "COPY_TO_REGCLASS") { 4895 DstINumUses--; // Ignore the class constraint. 4896 ExpectedDstINumUses--; 4897 } 4898 4899 // NumResults - This is the number of results produced by the instruction in 4900 // the "outs" list. 4901 unsigned NumResults = OrigDstI->Operands.NumDefs; 4902 4903 // Number of operands we know the output instruction must have. If it is 4904 // variadic, we could have more operands. 4905 unsigned NumFixedOperands = DstI->Operands.size(); 4906 4907 // Loop over all of the fixed operands of the instruction pattern, emitting 4908 // code to fill them all in. The node 'N' usually has number children equal to 4909 // the number of input operands of the instruction. However, in cases where 4910 // there are predicate operands for an instruction, we need to fill in the 4911 // 'execute always' values. Match up the node operands to the instruction 4912 // operands to do this. 4913 unsigned Child = 0; 4914 4915 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the 4916 // number of operands at the end of the list which have default values. 4917 // Those can come from the pattern if it provides enough arguments, or be 4918 // filled in with the default if the pattern hasn't provided them. But any 4919 // operand with a default value _before_ the last mandatory one will be 4920 // filled in with their defaults unconditionally. 4921 unsigned NonOverridableOperands = NumFixedOperands; 4922 while (NonOverridableOperands > NumResults && 4923 CGP.operandHasDefault(DstI->Operands[NonOverridableOperands - 1].Rec)) 4924 --NonOverridableOperands; 4925 4926 unsigned NumDefaultOps = 0; 4927 for (unsigned I = 0; I != DstINumUses; ++I) { 4928 unsigned InstOpNo = DstI->Operands.NumDefs + I; 4929 4930 // Determine what to emit for this operand. 4931 Record *OperandNode = DstI->Operands[InstOpNo].Rec; 4932 4933 // If the operand has default values, introduce them now. 4934 if (CGP.operandHasDefault(OperandNode) && 4935 (InstOpNo < NonOverridableOperands || Child >= Dst->getNumChildren())) { 4936 // This is a predicate or optional def operand which the pattern has not 4937 // overridden, or which we aren't letting it override; emit the 'default 4938 // ops' operands. 4939 4940 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[InstOpNo]; 4941 DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps"); 4942 if (auto Error = importDefaultOperandRenderers( 4943 InsertPt, M, DstMIBuilder, DefaultOps)) 4944 return std::move(Error); 4945 ++NumDefaultOps; 4946 continue; 4947 } 4948 4949 auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder, 4950 Dst->getChild(Child)); 4951 if (auto Error = InsertPtOrError.takeError()) 4952 return std::move(Error); 4953 InsertPt = InsertPtOrError.get(); 4954 ++Child; 4955 } 4956 4957 if (NumDefaultOps + ExpectedDstINumUses != DstINumUses) 4958 return failedImport("Expected " + llvm::to_string(DstINumUses) + 4959 " used operands but found " + 4960 llvm::to_string(ExpectedDstINumUses) + 4961 " explicit ones and " + llvm::to_string(NumDefaultOps) + 4962 " default ones"); 4963 4964 return InsertPt; 4965 } 4966 4967 Error GlobalISelEmitter::importDefaultOperandRenderers( 4968 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4969 DagInit *DefaultOps) const { 4970 for (const auto *DefaultOp : DefaultOps->getArgs()) { 4971 Optional<LLTCodeGen> OpTyOrNone = None; 4972 4973 // Look through ValueType operators. 4974 if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) { 4975 if (const DefInit *DefaultDagOperator = 4976 dyn_cast<DefInit>(DefaultDagOp->getOperator())) { 4977 if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) { 4978 OpTyOrNone = MVTToLLT(getValueType( 4979 DefaultDagOperator->getDef())); 4980 DefaultOp = DefaultDagOp->getArg(0); 4981 } 4982 } 4983 } 4984 4985 if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) { 4986 auto Def = DefaultDefOp->getDef(); 4987 if (Def->getName() == "undef_tied_input") { 4988 unsigned TempRegID = M.allocateTempRegID(); 4989 M.insertAction<MakeTempRegisterAction>(InsertPt, OpTyOrNone.value(), 4990 TempRegID); 4991 InsertPt = M.insertAction<BuildMIAction>( 4992 InsertPt, M.allocateOutputInsnID(), 4993 &Target.getInstruction(RK.getDef("IMPLICIT_DEF"))); 4994 BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>( 4995 InsertPt->get()); 4996 IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4997 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4998 } else { 4999 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, Def); 5000 } 5001 continue; 5002 } 5003 5004 if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) { 5005 DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue()); 5006 continue; 5007 } 5008 5009 return failedImport("Could not add default op"); 5010 } 5011 5012 return Error::success(); 5013 } 5014 5015 Error GlobalISelEmitter::importImplicitDefRenderers( 5016 BuildMIAction &DstMIBuilder, 5017 const std::vector<Record *> &ImplicitDefs) const { 5018 if (!ImplicitDefs.empty()) 5019 return failedImport("Pattern defines a physical register"); 5020 return Error::success(); 5021 } 5022 5023 Optional<const CodeGenRegisterClass *> 5024 GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) { 5025 assert(Leaf && "Expected node?"); 5026 assert(Leaf->isLeaf() && "Expected leaf?"); 5027 Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue()); 5028 if (!RCRec) 5029 return None; 5030 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec); 5031 if (!RC) 5032 return None; 5033 return RC; 5034 } 5035 5036 Optional<const CodeGenRegisterClass *> 5037 GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) { 5038 if (!N) 5039 return None; 5040 5041 if (N->isLeaf()) 5042 return getRegClassFromLeaf(N); 5043 5044 // We don't have a leaf node, so we have to try and infer something. Check 5045 // that we have an instruction that we an infer something from. 5046 5047 // Only handle things that produce a single type. 5048 if (N->getNumTypes() != 1) 5049 return None; 5050 Record *OpRec = N->getOperator(); 5051 5052 // We only want instructions. 5053 if (!OpRec->isSubClassOf("Instruction")) 5054 return None; 5055 5056 // Don't want to try and infer things when there could potentially be more 5057 // than one candidate register class. 5058 auto &Inst = Target.getInstruction(OpRec); 5059 if (Inst.Operands.NumDefs > 1) 5060 return None; 5061 5062 // Handle any special-case instructions which we can safely infer register 5063 // classes from. 5064 StringRef InstName = Inst.TheDef->getName(); 5065 bool IsRegSequence = InstName == "REG_SEQUENCE"; 5066 if (IsRegSequence || InstName == "COPY_TO_REGCLASS") { 5067 // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It 5068 // has the desired register class as the first child. 5069 TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1); 5070 if (!RCChild->isLeaf()) 5071 return None; 5072 return getRegClassFromLeaf(RCChild); 5073 } 5074 if (InstName == "INSERT_SUBREG") { 5075 TreePatternNode *Child0 = N->getChild(0); 5076 assert(Child0->getNumTypes() == 1 && "Unexpected number of types!"); 5077 const TypeSetByHwMode &VTy = Child0->getExtType(0); 5078 return inferSuperRegisterClassForNode(VTy, Child0, N->getChild(2)); 5079 } 5080 if (InstName == "EXTRACT_SUBREG") { 5081 assert(N->getNumTypes() == 1 && "Unexpected number of types!"); 5082 const TypeSetByHwMode &VTy = N->getExtType(0); 5083 return inferSuperRegisterClass(VTy, N->getChild(1)); 5084 } 5085 5086 // Handle destination record types that we can safely infer a register class 5087 // from. 5088 const auto &DstIOperand = Inst.Operands[0]; 5089 Record *DstIOpRec = DstIOperand.Rec; 5090 if (DstIOpRec->isSubClassOf("RegisterOperand")) { 5091 DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); 5092 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); 5093 return &RC; 5094 } 5095 5096 if (DstIOpRec->isSubClassOf("RegisterClass")) { 5097 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); 5098 return &RC; 5099 } 5100 5101 return None; 5102 } 5103 5104 Optional<const CodeGenRegisterClass *> 5105 GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty, 5106 TreePatternNode *SubRegIdxNode) { 5107 assert(SubRegIdxNode && "Expected subregister index node!"); 5108 // We need a ValueTypeByHwMode for getSuperRegForSubReg. 5109 if (!Ty.isValueTypeByHwMode(false)) 5110 return None; 5111 if (!SubRegIdxNode->isLeaf()) 5112 return None; 5113 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); 5114 if (!SubRegInit) 5115 return None; 5116 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 5117 5118 // Use the information we found above to find a minimal register class which 5119 // supports the subregister and type we want. 5120 auto RC = 5121 Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx, 5122 /* MustBeAllocatable */ true); 5123 if (!RC) 5124 return None; 5125 return *RC; 5126 } 5127 5128 Optional<const CodeGenRegisterClass *> 5129 GlobalISelEmitter::inferSuperRegisterClassForNode( 5130 const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode, 5131 TreePatternNode *SubRegIdxNode) { 5132 assert(SuperRegNode && "Expected super register node!"); 5133 // Check if we already have a defined register class for the super register 5134 // node. If we do, then we should preserve that rather than inferring anything 5135 // from the subregister index node. We can assume that whoever wrote the 5136 // pattern in the first place made sure that the super register and 5137 // subregister are compatible. 5138 if (Optional<const CodeGenRegisterClass *> SuperRegisterClass = 5139 inferRegClassFromPattern(SuperRegNode)) 5140 return *SuperRegisterClass; 5141 return inferSuperRegisterClass(Ty, SubRegIdxNode); 5142 } 5143 5144 Optional<CodeGenSubRegIndex *> 5145 GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) { 5146 if (!SubRegIdxNode->isLeaf()) 5147 return None; 5148 5149 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); 5150 if (!SubRegInit) 5151 return None; 5152 return CGRegs.getSubRegIdx(SubRegInit->getDef()); 5153 } 5154 5155 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) { 5156 // Keep track of the matchers and actions to emit. 5157 int Score = P.getPatternComplexity(CGP); 5158 RuleMatcher M(P.getSrcRecord()->getLoc()); 5159 RuleMatcherScores[M.getRuleID()] = Score; 5160 M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) + 5161 " => " + 5162 llvm::to_string(*P.getDstPattern())); 5163 5164 SmallVector<Record *, 4> Predicates; 5165 P.getPredicateRecords(Predicates); 5166 if (auto Error = importRulePredicates(M, Predicates)) 5167 return std::move(Error); 5168 5169 // Next, analyze the pattern operators. 5170 TreePatternNode *Src = P.getSrcPattern(); 5171 TreePatternNode *Dst = P.getDstPattern(); 5172 5173 // If the root of either pattern isn't a simple operator, ignore it. 5174 if (auto Err = isTrivialOperatorNode(Dst)) 5175 return failedImport("Dst pattern root isn't a trivial operator (" + 5176 toString(std::move(Err)) + ")"); 5177 if (auto Err = isTrivialOperatorNode(Src)) 5178 return failedImport("Src pattern root isn't a trivial operator (" + 5179 toString(std::move(Err)) + ")"); 5180 5181 // The different predicates and matchers created during 5182 // addInstructionMatcher use the RuleMatcher M to set up their 5183 // instruction ID (InsnVarID) that are going to be used when 5184 // M is going to be emitted. 5185 // However, the code doing the emission still relies on the IDs 5186 // returned during that process by the RuleMatcher when issuing 5187 // the recordInsn opcodes. 5188 // Because of that: 5189 // 1. The order in which we created the predicates 5190 // and such must be the same as the order in which we emit them, 5191 // and 5192 // 2. We need to reset the generation of the IDs in M somewhere between 5193 // addInstructionMatcher and emit 5194 // 5195 // FIXME: Long term, we don't want to have to rely on this implicit 5196 // naming being the same. One possible solution would be to have 5197 // explicit operator for operation capture and reference those. 5198 // The plus side is that it would expose opportunities to share 5199 // the capture accross rules. The downside is that it would 5200 // introduce a dependency between predicates (captures must happen 5201 // before their first use.) 5202 InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName()); 5203 unsigned TempOpIdx = 0; 5204 auto InsnMatcherOrError = 5205 createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx); 5206 if (auto Error = InsnMatcherOrError.takeError()) 5207 return std::move(Error); 5208 InstructionMatcher &InsnMatcher = InsnMatcherOrError.get(); 5209 5210 if (Dst->isLeaf()) { 5211 Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue()); 5212 if (RCDef) { 5213 const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef); 5214 5215 // We need to replace the def and all its uses with the specified 5216 // operand. However, we must also insert COPY's wherever needed. 5217 // For now, emit a copy and let the register allocator clean up. 5218 auto &DstI = Target.getInstruction(RK.getDef("COPY")); 5219 const auto &DstIOperand = DstI.Operands[0]; 5220 5221 OperandMatcher &OM0 = InsnMatcher.getOperand(0); 5222 OM0.setSymbolicName(DstIOperand.Name); 5223 M.defineOperand(OM0.getSymbolicName(), OM0); 5224 OM0.addPredicate<RegisterBankOperandMatcher>(RC); 5225 5226 auto &DstMIBuilder = 5227 M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI); 5228 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name); 5229 DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName()); 5230 M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC); 5231 5232 // We're done with this pattern! It's eligible for GISel emission; return 5233 // it. 5234 ++NumPatternImported; 5235 return std::move(M); 5236 } 5237 5238 return failedImport("Dst pattern root isn't a known leaf"); 5239 } 5240 5241 // Start with the defined operands (i.e., the results of the root operator). 5242 Record *DstOp = Dst->getOperator(); 5243 if (!DstOp->isSubClassOf("Instruction")) 5244 return failedImport("Pattern operator isn't an instruction"); 5245 5246 auto &DstI = Target.getInstruction(DstOp); 5247 StringRef DstIName = DstI.TheDef->getName(); 5248 5249 unsigned DstNumDefs = DstI.Operands.NumDefs, 5250 SrcNumDefs = Src->getExtTypes().size(); 5251 if (DstNumDefs < SrcNumDefs) { 5252 if (DstNumDefs != 0) 5253 return failedImport("Src pattern result has more defs than dst MI (" + 5254 to_string(SrcNumDefs) + " def(s) vs " + 5255 to_string(DstNumDefs) + " def(s))"); 5256 5257 bool FoundNoUsePred = false; 5258 for (const auto &Pred : InsnMatcher.predicates()) { 5259 if ((FoundNoUsePred = isa<NoUsePredicateMatcher>(Pred.get()))) 5260 break; 5261 } 5262 if (!FoundNoUsePred) 5263 return failedImport("Src pattern result has " + to_string(SrcNumDefs) + 5264 " def(s) without the HasNoUse predicate set to true " 5265 "but Dst MI has no def"); 5266 } 5267 5268 // The root of the match also has constraints on the register bank so that it 5269 // matches the result instruction. 5270 unsigned OpIdx = 0; 5271 unsigned N = std::min(DstNumDefs, SrcNumDefs); 5272 for (unsigned I = 0; I < N; ++I) { 5273 const TypeSetByHwMode &VTy = Src->getExtType(I); 5274 5275 const auto &DstIOperand = DstI.Operands[OpIdx]; 5276 Record *DstIOpRec = DstIOperand.Rec; 5277 if (DstIName == "COPY_TO_REGCLASS") { 5278 DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); 5279 5280 if (DstIOpRec == nullptr) 5281 return failedImport( 5282 "COPY_TO_REGCLASS operand #1 isn't a register class"); 5283 } else if (DstIName == "REG_SEQUENCE") { 5284 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 5285 if (DstIOpRec == nullptr) 5286 return failedImport("REG_SEQUENCE operand #0 isn't a register class"); 5287 } else if (DstIName == "EXTRACT_SUBREG") { 5288 auto InferredClass = inferRegClassFromPattern(Dst->getChild(0)); 5289 if (!InferredClass) 5290 return failedImport("Could not infer class for EXTRACT_SUBREG operand #0"); 5291 5292 // We can assume that a subregister is in the same bank as it's super 5293 // register. 5294 DstIOpRec = (*InferredClass)->getDef(); 5295 } else if (DstIName == "INSERT_SUBREG") { 5296 auto MaybeSuperClass = inferSuperRegisterClassForNode( 5297 VTy, Dst->getChild(0), Dst->getChild(2)); 5298 if (!MaybeSuperClass) 5299 return failedImport( 5300 "Cannot infer register class for INSERT_SUBREG operand #0"); 5301 // Move to the next pattern here, because the register class we found 5302 // doesn't necessarily have a record associated with it. So, we can't 5303 // set DstIOpRec using this. 5304 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 5305 OM.setSymbolicName(DstIOperand.Name); 5306 M.defineOperand(OM.getSymbolicName(), OM); 5307 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass); 5308 ++OpIdx; 5309 continue; 5310 } else if (DstIName == "SUBREG_TO_REG") { 5311 auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2)); 5312 if (!MaybeRegClass) 5313 return failedImport( 5314 "Cannot infer register class for SUBREG_TO_REG operand #0"); 5315 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 5316 OM.setSymbolicName(DstIOperand.Name); 5317 M.defineOperand(OM.getSymbolicName(), OM); 5318 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass); 5319 ++OpIdx; 5320 continue; 5321 } else if (DstIOpRec->isSubClassOf("RegisterOperand")) 5322 DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); 5323 else if (!DstIOpRec->isSubClassOf("RegisterClass")) 5324 return failedImport("Dst MI def isn't a register class" + 5325 to_string(*Dst)); 5326 5327 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 5328 OM.setSymbolicName(DstIOperand.Name); 5329 M.defineOperand(OM.getSymbolicName(), OM); 5330 OM.addPredicate<RegisterBankOperandMatcher>( 5331 Target.getRegisterClass(DstIOpRec)); 5332 ++OpIdx; 5333 } 5334 5335 auto DstMIBuilderOrError = 5336 createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst); 5337 if (auto Error = DstMIBuilderOrError.takeError()) 5338 return std::move(Error); 5339 BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get(); 5340 5341 // Render the implicit defs. 5342 // These are only added to the root of the result. 5343 if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs())) 5344 return std::move(Error); 5345 5346 DstMIBuilder.chooseInsnToMutate(M); 5347 5348 // Constrain the registers to classes. This is normally derived from the 5349 // emitted instruction but a few instructions require special handling. 5350 if (DstIName == "COPY_TO_REGCLASS") { 5351 // COPY_TO_REGCLASS does not provide operand constraints itself but the 5352 // result is constrained to the class given by the second child. 5353 Record *DstIOpRec = 5354 getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); 5355 5356 if (DstIOpRec == nullptr) 5357 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class"); 5358 5359 M.addAction<ConstrainOperandToRegClassAction>( 5360 0, 0, Target.getRegisterClass(DstIOpRec)); 5361 5362 // We're done with this pattern! It's eligible for GISel emission; return 5363 // it. 5364 ++NumPatternImported; 5365 return std::move(M); 5366 } 5367 5368 if (DstIName == "EXTRACT_SUBREG") { 5369 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 5370 if (!SuperClass) 5371 return failedImport( 5372 "Cannot infer register class from EXTRACT_SUBREG operand #0"); 5373 5374 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); 5375 if (!SubIdx) 5376 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 5377 5378 // It would be nice to leave this constraint implicit but we're required 5379 // to pick a register class so constrain the result to a register class 5380 // that can hold the correct MVT. 5381 // 5382 // FIXME: This may introduce an extra copy if the chosen class doesn't 5383 // actually contain the subregisters. 5384 assert(Src->getExtTypes().size() == 1 && 5385 "Expected Src of EXTRACT_SUBREG to have one result type"); 5386 5387 const auto SrcRCDstRCPair = 5388 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 5389 if (!SrcRCDstRCPair) { 5390 return failedImport("subreg index is incompatible " 5391 "with inferred reg class"); 5392 } 5393 5394 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 5395 M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second); 5396 M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first); 5397 5398 // We're done with this pattern! It's eligible for GISel emission; return 5399 // it. 5400 ++NumPatternImported; 5401 return std::move(M); 5402 } 5403 5404 if (DstIName == "INSERT_SUBREG") { 5405 assert(Src->getExtTypes().size() == 1 && 5406 "Expected Src of INSERT_SUBREG to have one result type"); 5407 // We need to constrain the destination, a super regsister source, and a 5408 // subregister source. 5409 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 5410 if (!SubClass) 5411 return failedImport( 5412 "Cannot infer register class from INSERT_SUBREG operand #1"); 5413 auto SuperClass = inferSuperRegisterClassForNode( 5414 Src->getExtType(0), Dst->getChild(0), Dst->getChild(2)); 5415 if (!SuperClass) 5416 return failedImport( 5417 "Cannot infer register class for INSERT_SUBREG operand #0"); 5418 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 5419 M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass); 5420 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); 5421 ++NumPatternImported; 5422 return std::move(M); 5423 } 5424 5425 if (DstIName == "SUBREG_TO_REG") { 5426 // We need to constrain the destination and subregister source. 5427 assert(Src->getExtTypes().size() == 1 && 5428 "Expected Src of SUBREG_TO_REG to have one result type"); 5429 5430 // Attempt to infer the subregister source from the first child. If it has 5431 // an explicitly given register class, we'll use that. Otherwise, we will 5432 // fail. 5433 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 5434 if (!SubClass) 5435 return failedImport( 5436 "Cannot infer register class from SUBREG_TO_REG child #1"); 5437 // We don't have a child to look at that might have a super register node. 5438 auto SuperClass = 5439 inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2)); 5440 if (!SuperClass) 5441 return failedImport( 5442 "Cannot infer register class for SUBREG_TO_REG operand #0"); 5443 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 5444 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); 5445 ++NumPatternImported; 5446 return std::move(M); 5447 } 5448 5449 if (DstIName == "REG_SEQUENCE") { 5450 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 5451 5452 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 5453 5454 unsigned Num = Dst->getNumChildren(); 5455 for (unsigned I = 1; I != Num; I += 2) { 5456 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 5457 5458 auto SubIdx = inferSubRegIndexForNode(SubRegChild); 5459 if (!SubIdx) 5460 return failedImport("REG_SEQUENCE child is not a subreg index"); 5461 5462 const auto SrcRCDstRCPair = 5463 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 5464 5465 M.addAction<ConstrainOperandToRegClassAction>(0, I, 5466 *SrcRCDstRCPair->second); 5467 } 5468 5469 ++NumPatternImported; 5470 return std::move(M); 5471 } 5472 5473 M.addAction<ConstrainOperandsToDefinitionAction>(0); 5474 5475 // We're done with this pattern! It's eligible for GISel emission; return it. 5476 ++NumPatternImported; 5477 return std::move(M); 5478 } 5479 5480 // Emit imm predicate table and an enum to reference them with. 5481 // The 'Predicate_' part of the name is redundant but eliminating it is more 5482 // trouble than it's worth. 5483 void GlobalISelEmitter::emitCxxPredicateFns( 5484 raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier, 5485 StringRef ArgType, StringRef ArgName, StringRef AdditionalArgs, 5486 StringRef AdditionalDeclarations, 5487 std::function<bool(const Record *R)> Filter) { 5488 std::vector<const Record *> MatchedRecords; 5489 const auto &Defs = RK.getAllDerivedDefinitions("PatFrags"); 5490 std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords), 5491 [&](Record *Record) { 5492 return !Record->getValueAsString(CodeFieldName).empty() && 5493 Filter(Record); 5494 }); 5495 5496 if (!MatchedRecords.empty()) { 5497 OS << "// PatFrag predicates.\n" 5498 << "enum {\n"; 5499 std::string EnumeratorSeparator = 5500 (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str(); 5501 for (const auto *Record : MatchedRecords) { 5502 OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName() 5503 << EnumeratorSeparator; 5504 EnumeratorSeparator = ",\n"; 5505 } 5506 OS << "};\n"; 5507 } 5508 5509 OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName 5510 << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " " 5511 << ArgName << AdditionalArgs <<") const {\n" 5512 << AdditionalDeclarations; 5513 if (!AdditionalDeclarations.empty()) 5514 OS << "\n"; 5515 if (!MatchedRecords.empty()) 5516 OS << " switch (PredicateID) {\n"; 5517 for (const auto *Record : MatchedRecords) { 5518 OS << " case GIPFP_" << TypeIdentifier << "_Predicate_" 5519 << Record->getName() << ": {\n" 5520 << " " << Record->getValueAsString(CodeFieldName) << "\n" 5521 << " llvm_unreachable(\"" << CodeFieldName 5522 << " should have returned\");\n" 5523 << " return false;\n" 5524 << " }\n"; 5525 } 5526 if (!MatchedRecords.empty()) 5527 OS << " }\n"; 5528 OS << " llvm_unreachable(\"Unknown predicate\");\n" 5529 << " return false;\n" 5530 << "}\n"; 5531 } 5532 5533 void GlobalISelEmitter::emitImmPredicateFns( 5534 raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType, 5535 std::function<bool(const Record *R)> Filter) { 5536 return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType, 5537 "Imm", "", "", Filter); 5538 } 5539 5540 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) { 5541 return emitCxxPredicateFns( 5542 OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI", 5543 ", const std::array<const MachineOperand *, 3> &Operands", 5544 " const MachineFunction &MF = *MI.getParent()->getParent();\n" 5545 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n" 5546 " (void)MRI;", 5547 [](const Record *R) { return true; }); 5548 } 5549 5550 template <class GroupT> 5551 std::vector<Matcher *> GlobalISelEmitter::optimizeRules( 5552 ArrayRef<Matcher *> Rules, 5553 std::vector<std::unique_ptr<Matcher>> &MatcherStorage) { 5554 5555 std::vector<Matcher *> OptRules; 5556 std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>(); 5557 assert(CurrentGroup->empty() && "Newly created group isn't empty!"); 5558 unsigned NumGroups = 0; 5559 5560 auto ProcessCurrentGroup = [&]() { 5561 if (CurrentGroup->empty()) 5562 // An empty group is good to be reused: 5563 return; 5564 5565 // If the group isn't large enough to provide any benefit, move all the 5566 // added rules out of it and make sure to re-create the group to properly 5567 // re-initialize it: 5568 if (CurrentGroup->size() < 2) 5569 append_range(OptRules, CurrentGroup->matchers()); 5570 else { 5571 CurrentGroup->finalize(); 5572 OptRules.push_back(CurrentGroup.get()); 5573 MatcherStorage.emplace_back(std::move(CurrentGroup)); 5574 ++NumGroups; 5575 } 5576 CurrentGroup = std::make_unique<GroupT>(); 5577 }; 5578 for (Matcher *Rule : Rules) { 5579 // Greedily add as many matchers as possible to the current group: 5580 if (CurrentGroup->addMatcher(*Rule)) 5581 continue; 5582 5583 ProcessCurrentGroup(); 5584 assert(CurrentGroup->empty() && "A group wasn't properly re-initialized"); 5585 5586 // Try to add the pending matcher to a newly created empty group: 5587 if (!CurrentGroup->addMatcher(*Rule)) 5588 // If we couldn't add the matcher to an empty group, that group type 5589 // doesn't support that kind of matchers at all, so just skip it: 5590 OptRules.push_back(Rule); 5591 } 5592 ProcessCurrentGroup(); 5593 5594 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n"); 5595 (void) NumGroups; 5596 assert(CurrentGroup->empty() && "The last group wasn't properly processed"); 5597 return OptRules; 5598 } 5599 5600 MatchTable 5601 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules, 5602 bool Optimize, bool WithCoverage) { 5603 std::vector<Matcher *> InputRules; 5604 for (Matcher &Rule : Rules) 5605 InputRules.push_back(&Rule); 5606 5607 if (!Optimize) 5608 return MatchTable::buildTable(InputRules, WithCoverage); 5609 5610 unsigned CurrentOrdering = 0; 5611 StringMap<unsigned> OpcodeOrder; 5612 for (RuleMatcher &Rule : Rules) { 5613 const StringRef Opcode = Rule.getOpcode(); 5614 assert(!Opcode.empty() && "Didn't expect an undefined opcode"); 5615 if (OpcodeOrder.count(Opcode) == 0) 5616 OpcodeOrder[Opcode] = CurrentOrdering++; 5617 } 5618 5619 llvm::stable_sort(InputRules, [&OpcodeOrder](const Matcher *A, 5620 const Matcher *B) { 5621 auto *L = static_cast<const RuleMatcher *>(A); 5622 auto *R = static_cast<const RuleMatcher *>(B); 5623 return std::make_tuple(OpcodeOrder[L->getOpcode()], L->getNumOperands()) < 5624 std::make_tuple(OpcodeOrder[R->getOpcode()], R->getNumOperands()); 5625 }); 5626 5627 for (Matcher *Rule : InputRules) 5628 Rule->optimize(); 5629 5630 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 5631 std::vector<Matcher *> OptRules = 5632 optimizeRules<GroupMatcher>(InputRules, MatcherStorage); 5633 5634 for (Matcher *Rule : OptRules) 5635 Rule->optimize(); 5636 5637 OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage); 5638 5639 return MatchTable::buildTable(OptRules, WithCoverage); 5640 } 5641 5642 void GroupMatcher::optimize() { 5643 // Make sure we only sort by a specific predicate within a range of rules that 5644 // all have that predicate checked against a specific value (not a wildcard): 5645 auto F = Matchers.begin(); 5646 auto T = F; 5647 auto E = Matchers.end(); 5648 while (T != E) { 5649 while (T != E) { 5650 auto *R = static_cast<RuleMatcher *>(*T); 5651 if (!R->getFirstConditionAsRootType().get().isValid()) 5652 break; 5653 ++T; 5654 } 5655 std::stable_sort(F, T, [](Matcher *A, Matcher *B) { 5656 auto *L = static_cast<RuleMatcher *>(A); 5657 auto *R = static_cast<RuleMatcher *>(B); 5658 return L->getFirstConditionAsRootType() < 5659 R->getFirstConditionAsRootType(); 5660 }); 5661 if (T != E) 5662 F = ++T; 5663 } 5664 GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage) 5665 .swap(Matchers); 5666 GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage) 5667 .swap(Matchers); 5668 } 5669 5670 void GlobalISelEmitter::run(raw_ostream &OS) { 5671 if (!UseCoverageFile.empty()) { 5672 RuleCoverage = CodeGenCoverage(); 5673 auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile); 5674 if (!RuleCoverageBufOrErr) { 5675 PrintWarning(SMLoc(), "Missing rule coverage data"); 5676 RuleCoverage = None; 5677 } else { 5678 if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) { 5679 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data"); 5680 RuleCoverage = None; 5681 } 5682 } 5683 } 5684 5685 // Track the run-time opcode values 5686 gatherOpcodeValues(); 5687 // Track the run-time LLT ID values 5688 gatherTypeIDValues(); 5689 5690 // Track the GINodeEquiv definitions. 5691 gatherNodeEquivs(); 5692 5693 emitSourceFileHeader(("Global Instruction Selector for the " + 5694 Target.getName() + " target").str(), OS); 5695 std::vector<RuleMatcher> Rules; 5696 // Look through the SelectionDAG patterns we found, possibly emitting some. 5697 for (const PatternToMatch &Pat : CGP.ptms()) { 5698 ++NumPatternTotal; 5699 5700 auto MatcherOrErr = runOnPattern(Pat); 5701 5702 // The pattern analysis can fail, indicating an unsupported pattern. 5703 // Report that if we've been asked to do so. 5704 if (auto Err = MatcherOrErr.takeError()) { 5705 if (WarnOnSkippedPatterns) { 5706 PrintWarning(Pat.getSrcRecord()->getLoc(), 5707 "Skipped pattern: " + toString(std::move(Err))); 5708 } else { 5709 consumeError(std::move(Err)); 5710 } 5711 ++NumPatternImportsSkipped; 5712 continue; 5713 } 5714 5715 if (RuleCoverage) { 5716 if (RuleCoverage->isCovered(MatcherOrErr->getRuleID())) 5717 ++NumPatternsTested; 5718 else 5719 PrintWarning(Pat.getSrcRecord()->getLoc(), 5720 "Pattern is not covered by a test"); 5721 } 5722 Rules.push_back(std::move(MatcherOrErr.get())); 5723 } 5724 5725 // Comparison function to order records by name. 5726 auto orderByName = [](const Record *A, const Record *B) { 5727 return A->getName() < B->getName(); 5728 }; 5729 5730 std::vector<Record *> ComplexPredicates = 5731 RK.getAllDerivedDefinitions("GIComplexOperandMatcher"); 5732 llvm::sort(ComplexPredicates, orderByName); 5733 5734 std::vector<StringRef> CustomRendererFns; 5735 transform(RK.getAllDerivedDefinitions("GICustomOperandRenderer"), 5736 std::back_inserter(CustomRendererFns), [](const auto &Record) { 5737 return Record->getValueAsString("RendererFn"); 5738 }); 5739 // Sort and remove duplicates to get a list of unique renderer functions, in 5740 // case some were mentioned more than once. 5741 llvm::sort(CustomRendererFns); 5742 CustomRendererFns.erase( 5743 std::unique(CustomRendererFns.begin(), CustomRendererFns.end()), 5744 CustomRendererFns.end()); 5745 5746 unsigned MaxTemporaries = 0; 5747 for (const auto &Rule : Rules) 5748 MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns()); 5749 5750 OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n" 5751 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size() 5752 << ";\n" 5753 << "using PredicateBitset = " 5754 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n" 5755 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n"; 5756 5757 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n" 5758 << " mutable MatcherState State;\n" 5759 << " typedef " 5760 "ComplexRendererFns(" 5761 << Target.getName() 5762 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n" 5763 5764 << " typedef void(" << Target.getName() 5765 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const " 5766 "MachineInstr &, int) " 5767 "const;\n" 5768 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, " 5769 "CustomRendererFn> " 5770 "ISelInfo;\n"; 5771 OS << " static " << Target.getName() 5772 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n" 5773 << " static " << Target.getName() 5774 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n" 5775 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const " 5776 "override;\n" 5777 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) " 5778 "const override;\n" 5779 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat " 5780 "&Imm) const override;\n" 5781 << " const int64_t *getMatchTable() const override;\n" 5782 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI" 5783 ", const std::array<const MachineOperand *, 3> &Operands) " 5784 "const override;\n" 5785 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n"; 5786 5787 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n" 5788 << ", State(" << MaxTemporaries << "),\n" 5789 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets" 5790 << ", ComplexPredicateFns, CustomRenderers)\n" 5791 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n"; 5792 5793 OS << "#ifdef GET_GLOBALISEL_IMPL\n"; 5794 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures, 5795 OS); 5796 5797 // Separate subtarget features by how often they must be recomputed. 5798 SubtargetFeatureInfoMap ModuleFeatures; 5799 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), 5800 std::inserter(ModuleFeatures, ModuleFeatures.end()), 5801 [](const SubtargetFeatureInfoMap::value_type &X) { 5802 return !X.second.mustRecomputePerFunction(); 5803 }); 5804 SubtargetFeatureInfoMap FunctionFeatures; 5805 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), 5806 std::inserter(FunctionFeatures, FunctionFeatures.end()), 5807 [](const SubtargetFeatureInfoMap::value_type &X) { 5808 return X.second.mustRecomputePerFunction(); 5809 }); 5810 5811 SubtargetFeatureInfo::emitComputeAvailableFeatures( 5812 Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures", 5813 ModuleFeatures, OS); 5814 5815 5816 OS << "void " << Target.getName() << "InstructionSelector" 5817 "::setupGeneratedPerFunctionState(MachineFunction &MF) {\n" 5818 " AvailableFunctionFeatures = computeAvailableFunctionFeatures(" 5819 "(const " << Target.getName() << "Subtarget *)&MF.getSubtarget(), &MF);\n" 5820 "}\n"; 5821 5822 SubtargetFeatureInfo::emitComputeAvailableFeatures( 5823 Target.getName(), "InstructionSelector", 5824 "computeAvailableFunctionFeatures", FunctionFeatures, OS, 5825 "const MachineFunction *MF"); 5826 5827 // Emit a table containing the LLT objects needed by the matcher and an enum 5828 // for the matcher to reference them with. 5829 std::vector<LLTCodeGen> TypeObjects; 5830 append_range(TypeObjects, KnownTypes); 5831 llvm::sort(TypeObjects); 5832 OS << "// LLT Objects.\n" 5833 << "enum {\n"; 5834 for (const auto &TypeObject : TypeObjects) { 5835 OS << " "; 5836 TypeObject.emitCxxEnumValue(OS); 5837 OS << ",\n"; 5838 } 5839 OS << "};\n"; 5840 OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n" 5841 << "const static LLT TypeObjects[] = {\n"; 5842 for (const auto &TypeObject : TypeObjects) { 5843 OS << " "; 5844 TypeObject.emitCxxConstructorCall(OS); 5845 OS << ",\n"; 5846 } 5847 OS << "};\n\n"; 5848 5849 // Emit a table containing the PredicateBitsets objects needed by the matcher 5850 // and an enum for the matcher to reference them with. 5851 std::vector<std::vector<Record *>> FeatureBitsets; 5852 for (auto &Rule : Rules) 5853 FeatureBitsets.push_back(Rule.getRequiredFeatures()); 5854 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 5855 const std::vector<Record *> &B) { 5856 if (A.size() < B.size()) 5857 return true; 5858 if (A.size() > B.size()) 5859 return false; 5860 for (auto Pair : zip(A, B)) { 5861 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 5862 return true; 5863 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 5864 return false; 5865 } 5866 return false; 5867 }); 5868 FeatureBitsets.erase( 5869 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 5870 FeatureBitsets.end()); 5871 OS << "// Feature bitsets.\n" 5872 << "enum {\n" 5873 << " GIFBS_Invalid,\n"; 5874 for (const auto &FeatureBitset : FeatureBitsets) { 5875 if (FeatureBitset.empty()) 5876 continue; 5877 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 5878 } 5879 OS << "};\n" 5880 << "const static PredicateBitset FeatureBitsets[] {\n" 5881 << " {}, // GIFBS_Invalid\n"; 5882 for (const auto &FeatureBitset : FeatureBitsets) { 5883 if (FeatureBitset.empty()) 5884 continue; 5885 OS << " {"; 5886 for (const auto &Feature : FeatureBitset) { 5887 const auto &I = SubtargetFeatures.find(Feature); 5888 assert(I != SubtargetFeatures.end() && "Didn't import predicate?"); 5889 OS << I->second.getEnumBitName() << ", "; 5890 } 5891 OS << "},\n"; 5892 } 5893 OS << "};\n\n"; 5894 5895 // Emit complex predicate table and an enum to reference them with. 5896 OS << "// ComplexPattern predicates.\n" 5897 << "enum {\n" 5898 << " GICP_Invalid,\n"; 5899 for (const auto &Record : ComplexPredicates) 5900 OS << " GICP_" << Record->getName() << ",\n"; 5901 OS << "};\n" 5902 << "// See constructor for table contents\n\n"; 5903 5904 emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) { 5905 bool Unset; 5906 return !R->getValueAsBitOrUnset("IsAPFloat", Unset) && 5907 !R->getValueAsBit("IsAPInt"); 5908 }); 5909 emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) { 5910 bool Unset; 5911 return R->getValueAsBitOrUnset("IsAPFloat", Unset); 5912 }); 5913 emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) { 5914 return R->getValueAsBit("IsAPInt"); 5915 }); 5916 emitMIPredicateFns(OS); 5917 OS << "\n"; 5918 5919 OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n" 5920 << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n" 5921 << " nullptr, // GICP_Invalid\n"; 5922 for (const auto &Record : ComplexPredicates) 5923 OS << " &" << Target.getName() 5924 << "InstructionSelector::" << Record->getValueAsString("MatcherFn") 5925 << ", // " << Record->getName() << "\n"; 5926 OS << "};\n\n"; 5927 5928 OS << "// Custom renderers.\n" 5929 << "enum {\n" 5930 << " GICR_Invalid,\n"; 5931 for (const auto &Fn : CustomRendererFns) 5932 OS << " GICR_" << Fn << ",\n"; 5933 OS << "};\n"; 5934 5935 OS << Target.getName() << "InstructionSelector::CustomRendererFn\n" 5936 << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n" 5937 << " nullptr, // GICR_Invalid\n"; 5938 for (const auto &Fn : CustomRendererFns) 5939 OS << " &" << Target.getName() << "InstructionSelector::" << Fn << ",\n"; 5940 OS << "};\n\n"; 5941 5942 llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) { 5943 int ScoreA = RuleMatcherScores[A.getRuleID()]; 5944 int ScoreB = RuleMatcherScores[B.getRuleID()]; 5945 if (ScoreA > ScoreB) 5946 return true; 5947 if (ScoreB > ScoreA) 5948 return false; 5949 if (A.isHigherPriorityThan(B)) { 5950 assert(!B.isHigherPriorityThan(A) && "Cannot be more important " 5951 "and less important at " 5952 "the same time"); 5953 return true; 5954 } 5955 return false; 5956 }); 5957 5958 OS << "bool " << Target.getName() 5959 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage " 5960 "&CoverageInfo) const {\n" 5961 << " MachineFunction &MF = *I.getParent()->getParent();\n" 5962 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n" 5963 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n" 5964 << " NewMIVector OutMIs;\n" 5965 << " State.MIs.clear();\n" 5966 << " State.MIs.push_back(&I);\n\n" 5967 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo" 5968 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures" 5969 << ", CoverageInfo)) {\n" 5970 << " return true;\n" 5971 << " }\n\n" 5972 << " return false;\n" 5973 << "}\n\n"; 5974 5975 const MatchTable Table = 5976 buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage); 5977 OS << "const int64_t *" << Target.getName() 5978 << "InstructionSelector::getMatchTable() const {\n"; 5979 Table.emitDeclaration(OS); 5980 OS << " return "; 5981 Table.emitUse(OS); 5982 OS << ";\n}\n"; 5983 OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n"; 5984 5985 OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n" 5986 << "PredicateBitset AvailableModuleFeatures;\n" 5987 << "mutable PredicateBitset AvailableFunctionFeatures;\n" 5988 << "PredicateBitset getAvailableFeatures() const {\n" 5989 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n" 5990 << "}\n" 5991 << "PredicateBitset\n" 5992 << "computeAvailableModuleFeatures(const " << Target.getName() 5993 << "Subtarget *Subtarget) const;\n" 5994 << "PredicateBitset\n" 5995 << "computeAvailableFunctionFeatures(const " << Target.getName() 5996 << "Subtarget *Subtarget,\n" 5997 << " const MachineFunction *MF) const;\n" 5998 << "void setupGeneratedPerFunctionState(MachineFunction &MF) override;\n" 5999 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n"; 6000 6001 OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n" 6002 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n" 6003 << "AvailableFunctionFeatures()\n" 6004 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n"; 6005 } 6006 6007 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) { 6008 if (SubtargetFeatures.count(Predicate) == 0) 6009 SubtargetFeatures.emplace( 6010 Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size())); 6011 } 6012 6013 void RuleMatcher::optimize() { 6014 for (auto &Item : InsnVariableIDs) { 6015 InstructionMatcher &InsnMatcher = *Item.first; 6016 for (auto &OM : InsnMatcher.operands()) { 6017 // Complex Patterns are usually expensive and they relatively rarely fail 6018 // on their own: more often we end up throwing away all the work done by a 6019 // matching part of a complex pattern because some other part of the 6020 // enclosing pattern didn't match. All of this makes it beneficial to 6021 // delay complex patterns until the very end of the rule matching, 6022 // especially for targets having lots of complex patterns. 6023 for (auto &OP : OM->predicates()) 6024 if (isa<ComplexPatternOperandMatcher>(OP)) 6025 EpilogueMatchers.emplace_back(std::move(OP)); 6026 OM->eraseNullPredicates(); 6027 } 6028 InsnMatcher.optimize(); 6029 } 6030 llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L, 6031 const std::unique_ptr<PredicateMatcher> &R) { 6032 return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) < 6033 std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx()); 6034 }); 6035 } 6036 6037 bool RuleMatcher::hasFirstCondition() const { 6038 if (insnmatchers_empty()) 6039 return false; 6040 InstructionMatcher &Matcher = insnmatchers_front(); 6041 if (!Matcher.predicates_empty()) 6042 return true; 6043 for (auto &OM : Matcher.operands()) 6044 for (auto &OP : OM->predicates()) 6045 if (!isa<InstructionOperandMatcher>(OP)) 6046 return true; 6047 return false; 6048 } 6049 6050 const PredicateMatcher &RuleMatcher::getFirstCondition() const { 6051 assert(!insnmatchers_empty() && 6052 "Trying to get a condition from an empty RuleMatcher"); 6053 6054 InstructionMatcher &Matcher = insnmatchers_front(); 6055 if (!Matcher.predicates_empty()) 6056 return **Matcher.predicates_begin(); 6057 // If there is no more predicate on the instruction itself, look at its 6058 // operands. 6059 for (auto &OM : Matcher.operands()) 6060 for (auto &OP : OM->predicates()) 6061 if (!isa<InstructionOperandMatcher>(OP)) 6062 return *OP; 6063 6064 llvm_unreachable("Trying to get a condition from an InstructionMatcher with " 6065 "no conditions"); 6066 } 6067 6068 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() { 6069 assert(!insnmatchers_empty() && 6070 "Trying to pop a condition from an empty RuleMatcher"); 6071 6072 InstructionMatcher &Matcher = insnmatchers_front(); 6073 if (!Matcher.predicates_empty()) 6074 return Matcher.predicates_pop_front(); 6075 // If there is no more predicate on the instruction itself, look at its 6076 // operands. 6077 for (auto &OM : Matcher.operands()) 6078 for (auto &OP : OM->predicates()) 6079 if (!isa<InstructionOperandMatcher>(OP)) { 6080 std::unique_ptr<PredicateMatcher> Result = std::move(OP); 6081 OM->eraseNullPredicates(); 6082 return Result; 6083 } 6084 6085 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with " 6086 "no conditions"); 6087 } 6088 6089 bool GroupMatcher::candidateConditionMatches( 6090 const PredicateMatcher &Predicate) const { 6091 6092 if (empty()) { 6093 // Sharing predicates for nested instructions is not supported yet as we 6094 // currently don't hoist the GIM_RecordInsn's properly, therefore we can 6095 // only work on the original root instruction (InsnVarID == 0): 6096 if (Predicate.getInsnVarID() != 0) 6097 return false; 6098 // ... otherwise an empty group can handle any predicate with no specific 6099 // requirements: 6100 return true; 6101 } 6102 6103 const Matcher &Representative = **Matchers.begin(); 6104 const auto &RepresentativeCondition = Representative.getFirstCondition(); 6105 // ... if not empty, the group can only accomodate matchers with the exact 6106 // same first condition: 6107 return Predicate.isIdentical(RepresentativeCondition); 6108 } 6109 6110 bool GroupMatcher::addMatcher(Matcher &Candidate) { 6111 if (!Candidate.hasFirstCondition()) 6112 return false; 6113 6114 const PredicateMatcher &Predicate = Candidate.getFirstCondition(); 6115 if (!candidateConditionMatches(Predicate)) 6116 return false; 6117 6118 Matchers.push_back(&Candidate); 6119 return true; 6120 } 6121 6122 void GroupMatcher::finalize() { 6123 assert(Conditions.empty() && "Already finalized?"); 6124 if (empty()) 6125 return; 6126 6127 Matcher &FirstRule = **Matchers.begin(); 6128 for (;;) { 6129 // All the checks are expected to succeed during the first iteration: 6130 for (const auto &Rule : Matchers) 6131 if (!Rule->hasFirstCondition()) 6132 return; 6133 const auto &FirstCondition = FirstRule.getFirstCondition(); 6134 for (unsigned I = 1, E = Matchers.size(); I < E; ++I) 6135 if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition)) 6136 return; 6137 6138 Conditions.push_back(FirstRule.popFirstCondition()); 6139 for (unsigned I = 1, E = Matchers.size(); I < E; ++I) 6140 Matchers[I]->popFirstCondition(); 6141 } 6142 } 6143 6144 void GroupMatcher::emit(MatchTable &Table) { 6145 unsigned LabelID = ~0U; 6146 if (!Conditions.empty()) { 6147 LabelID = Table.allocateLabelID(); 6148 Table << MatchTable::Opcode("GIM_Try", +1) 6149 << MatchTable::Comment("On fail goto") 6150 << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak; 6151 } 6152 for (auto &Condition : Conditions) 6153 Condition->emitPredicateOpcodes( 6154 Table, *static_cast<RuleMatcher *>(*Matchers.begin())); 6155 6156 for (const auto &M : Matchers) 6157 M->emit(Table); 6158 6159 // Exit the group 6160 if (!Conditions.empty()) 6161 Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak 6162 << MatchTable::Label(LabelID); 6163 } 6164 6165 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) { 6166 return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P); 6167 } 6168 6169 bool SwitchMatcher::candidateConditionMatches( 6170 const PredicateMatcher &Predicate) const { 6171 6172 if (empty()) { 6173 // Sharing predicates for nested instructions is not supported yet as we 6174 // currently don't hoist the GIM_RecordInsn's properly, therefore we can 6175 // only work on the original root instruction (InsnVarID == 0): 6176 if (Predicate.getInsnVarID() != 0) 6177 return false; 6178 // ... while an attempt to add even a root matcher to an empty SwitchMatcher 6179 // could fail as not all the types of conditions are supported: 6180 if (!isSupportedPredicateType(Predicate)) 6181 return false; 6182 // ... or the condition might not have a proper implementation of 6183 // getValue() / isIdenticalDownToValue() yet: 6184 if (!Predicate.hasValue()) 6185 return false; 6186 // ... otherwise an empty Switch can accomodate the condition with no 6187 // further requirements: 6188 return true; 6189 } 6190 6191 const Matcher &CaseRepresentative = **Matchers.begin(); 6192 const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition(); 6193 // Switch-cases must share the same kind of condition and path to the value it 6194 // checks: 6195 if (!Predicate.isIdenticalDownToValue(RepresentativeCondition)) 6196 return false; 6197 6198 const auto Value = Predicate.getValue(); 6199 // ... but be unique with respect to the actual value they check: 6200 return Values.count(Value) == 0; 6201 } 6202 6203 bool SwitchMatcher::addMatcher(Matcher &Candidate) { 6204 if (!Candidate.hasFirstCondition()) 6205 return false; 6206 6207 const PredicateMatcher &Predicate = Candidate.getFirstCondition(); 6208 if (!candidateConditionMatches(Predicate)) 6209 return false; 6210 const auto Value = Predicate.getValue(); 6211 Values.insert(Value); 6212 6213 Matchers.push_back(&Candidate); 6214 return true; 6215 } 6216 6217 void SwitchMatcher::finalize() { 6218 assert(Condition == nullptr && "Already finalized"); 6219 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); 6220 if (empty()) 6221 return; 6222 6223 llvm::stable_sort(Matchers, [](const Matcher *L, const Matcher *R) { 6224 return L->getFirstCondition().getValue() < 6225 R->getFirstCondition().getValue(); 6226 }); 6227 Condition = Matchers[0]->popFirstCondition(); 6228 for (unsigned I = 1, E = Values.size(); I < E; ++I) 6229 Matchers[I]->popFirstCondition(); 6230 } 6231 6232 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P, 6233 MatchTable &Table) { 6234 assert(isSupportedPredicateType(P) && "Predicate type is not supported"); 6235 6236 if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) { 6237 Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI") 6238 << MatchTable::IntValue(Condition->getInsnVarID()); 6239 return; 6240 } 6241 if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) { 6242 Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI") 6243 << MatchTable::IntValue(Condition->getInsnVarID()) 6244 << MatchTable::Comment("Op") 6245 << MatchTable::IntValue(Condition->getOpIdx()); 6246 return; 6247 } 6248 6249 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a " 6250 "predicate type that is claimed to be supported"); 6251 } 6252 6253 void SwitchMatcher::emit(MatchTable &Table) { 6254 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); 6255 if (empty()) 6256 return; 6257 assert(Condition != nullptr && 6258 "Broken SwitchMatcher, hasn't been finalized?"); 6259 6260 std::vector<unsigned> LabelIDs(Values.size()); 6261 std::generate(LabelIDs.begin(), LabelIDs.end(), 6262 [&Table]() { return Table.allocateLabelID(); }); 6263 const unsigned Default = Table.allocateLabelID(); 6264 6265 const int64_t LowerBound = Values.begin()->getRawValue(); 6266 const int64_t UpperBound = Values.rbegin()->getRawValue() + 1; 6267 6268 emitPredicateSpecificOpcodes(*Condition, Table); 6269 6270 Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound) 6271 << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")") 6272 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default); 6273 6274 int64_t J = LowerBound; 6275 auto VI = Values.begin(); 6276 for (unsigned I = 0, E = Values.size(); I < E; ++I) { 6277 auto V = *VI++; 6278 while (J++ < V.getRawValue()) 6279 Table << MatchTable::IntValue(0); 6280 V.turnIntoComment(); 6281 Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]); 6282 } 6283 Table << MatchTable::LineBreak; 6284 6285 for (unsigned I = 0, E = Values.size(); I < E; ++I) { 6286 Table << MatchTable::Label(LabelIDs[I]); 6287 Matchers[I]->emit(Table); 6288 Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; 6289 } 6290 Table << MatchTable::Label(Default); 6291 } 6292 6293 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); } 6294 6295 } // end anonymous namespace 6296 6297 //===----------------------------------------------------------------------===// 6298 6299 namespace llvm { 6300 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) { 6301 GlobalISelEmitter(RK).run(OS); 6302 } 6303 } // End llvm namespace 6304