1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This tablegen backend emits code for use by the GlobalISel instruction 11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td. 12 /// 13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen 14 /// backend, filters out the ones that are unsupported, maps 15 /// SelectionDAG-specific constructs to their GlobalISel counterpart 16 /// (when applicable: MVT to LLT; SDNode to generic Instruction). 17 /// 18 /// Not all patterns are supported: pass the tablegen invocation 19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped, 20 /// as well as why. 21 /// 22 /// The generated file defines a single method: 23 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const; 24 /// intended to be used in InstructionSelector::select as the first-step 25 /// selector for the patterns that don't require complex C++. 26 /// 27 /// FIXME: We'll probably want to eventually define a base 28 /// "TargetGenInstructionSelector" class. 29 /// 30 //===----------------------------------------------------------------------===// 31 32 #include "CodeGenDAGPatterns.h" 33 #include "SubtargetFeatureInfo.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/SmallSet.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/Support/CodeGenCoverage.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/LowLevelTypeImpl.h" 41 #include "llvm/Support/MachineValueType.h" 42 #include "llvm/Support/ScopedPrinter.h" 43 #include "llvm/TableGen/Error.h" 44 #include "llvm/TableGen/Record.h" 45 #include "llvm/TableGen/TableGenBackend.h" 46 #include <numeric> 47 #include <string> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "gisel-emitter" 51 52 STATISTIC(NumPatternTotal, "Total number of patterns"); 53 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG"); 54 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped"); 55 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information"); 56 STATISTIC(NumPatternEmitted, "Number of patterns emitted"); 57 58 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel"); 59 60 static cl::opt<bool> WarnOnSkippedPatterns( 61 "warn-on-skipped-patterns", 62 cl::desc("Explain why a pattern was skipped for inclusion " 63 "in the GlobalISel selector"), 64 cl::init(false), cl::cat(GlobalISelEmitterCat)); 65 66 static cl::opt<bool> GenerateCoverage( 67 "instrument-gisel-coverage", 68 cl::desc("Generate coverage instrumentation for GlobalISel"), 69 cl::init(false), cl::cat(GlobalISelEmitterCat)); 70 71 static cl::opt<std::string> UseCoverageFile( 72 "gisel-coverage-file", cl::init(""), 73 cl::desc("Specify file to retrieve coverage information from"), 74 cl::cat(GlobalISelEmitterCat)); 75 76 static cl::opt<bool> OptimizeMatchTable( 77 "optimize-match-table", 78 cl::desc("Generate an optimized version of the match table"), 79 cl::init(true), cl::cat(GlobalISelEmitterCat)); 80 81 namespace { 82 //===- Helper functions ---------------------------------------------------===// 83 84 /// Get the name of the enum value used to number the predicate function. 85 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) { 86 if (Predicate.hasGISelPredicateCode()) 87 return "GIPFP_MI_" + Predicate.getFnName(); 88 return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" + 89 Predicate.getFnName(); 90 } 91 92 /// Get the opcode used to check this predicate. 93 std::string getMatchOpcodeForImmPredicate(const TreePredicateFn &Predicate) { 94 return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate"; 95 } 96 97 /// This class stands in for LLT wherever we want to tablegen-erate an 98 /// equivalent at compiler run-time. 99 class LLTCodeGen { 100 private: 101 LLT Ty; 102 103 public: 104 LLTCodeGen() = default; 105 LLTCodeGen(const LLT &Ty) : Ty(Ty) {} 106 107 std::string getCxxEnumValue() const { 108 std::string Str; 109 raw_string_ostream OS(Str); 110 111 emitCxxEnumValue(OS); 112 return OS.str(); 113 } 114 115 void emitCxxEnumValue(raw_ostream &OS) const { 116 if (Ty.isScalar()) { 117 OS << "GILLT_s" << Ty.getSizeInBits(); 118 return; 119 } 120 if (Ty.isVector()) { 121 OS << (Ty.isScalable() ? "GILLT_nxv" : "GILLT_v") 122 << Ty.getElementCount().getKnownMinValue() << "s" 123 << Ty.getScalarSizeInBits(); 124 return; 125 } 126 if (Ty.isPointer()) { 127 OS << "GILLT_p" << Ty.getAddressSpace(); 128 if (Ty.getSizeInBits() > 0) 129 OS << "s" << Ty.getSizeInBits(); 130 return; 131 } 132 llvm_unreachable("Unhandled LLT"); 133 } 134 135 void emitCxxConstructorCall(raw_ostream &OS) const { 136 if (Ty.isScalar()) { 137 OS << "LLT::scalar(" << Ty.getSizeInBits() << ")"; 138 return; 139 } 140 if (Ty.isVector()) { 141 OS << "LLT::vector(" 142 << (Ty.isScalable() ? "ElementCount::getScalable(" 143 : "ElementCount::getFixed(") 144 << Ty.getElementCount().getKnownMinValue() << "), " 145 << Ty.getScalarSizeInBits() << ")"; 146 return; 147 } 148 if (Ty.isPointer() && Ty.getSizeInBits() > 0) { 149 OS << "LLT::pointer(" << Ty.getAddressSpace() << ", " 150 << Ty.getSizeInBits() << ")"; 151 return; 152 } 153 llvm_unreachable("Unhandled LLT"); 154 } 155 156 const LLT &get() const { return Ty; } 157 158 /// This ordering is used for std::unique() and llvm::sort(). There's no 159 /// particular logic behind the order but either A < B or B < A must be 160 /// true if A != B. 161 bool operator<(const LLTCodeGen &Other) const { 162 if (Ty.isValid() != Other.Ty.isValid()) 163 return Ty.isValid() < Other.Ty.isValid(); 164 if (!Ty.isValid()) 165 return false; 166 167 if (Ty.isVector() != Other.Ty.isVector()) 168 return Ty.isVector() < Other.Ty.isVector(); 169 if (Ty.isScalar() != Other.Ty.isScalar()) 170 return Ty.isScalar() < Other.Ty.isScalar(); 171 if (Ty.isPointer() != Other.Ty.isPointer()) 172 return Ty.isPointer() < Other.Ty.isPointer(); 173 174 if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace()) 175 return Ty.getAddressSpace() < Other.Ty.getAddressSpace(); 176 177 if (Ty.isVector() && Ty.getElementCount() != Other.Ty.getElementCount()) 178 return std::make_tuple(Ty.isScalable(), 179 Ty.getElementCount().getKnownMinValue()) < 180 std::make_tuple(Other.Ty.isScalable(), 181 Other.Ty.getElementCount().getKnownMinValue()); 182 183 assert((!Ty.isVector() || Ty.isScalable() == Other.Ty.isScalable()) && 184 "Unexpected mismatch of scalable property"); 185 return Ty.isVector() 186 ? std::make_tuple(Ty.isScalable(), 187 Ty.getSizeInBits().getKnownMinSize()) < 188 std::make_tuple(Other.Ty.isScalable(), 189 Other.Ty.getSizeInBits().getKnownMinSize()) 190 : Ty.getSizeInBits().getFixedSize() < 191 Other.Ty.getSizeInBits().getFixedSize(); 192 } 193 194 bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; } 195 }; 196 197 // Track all types that are used so we can emit the corresponding enum. 198 std::set<LLTCodeGen> KnownTypes; 199 200 class InstructionMatcher; 201 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for 202 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...). 203 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) { 204 MVT VT(SVT); 205 206 if (VT.isVector() && !VT.getVectorElementCount().isScalar()) 207 return LLTCodeGen( 208 LLT::vector(VT.getVectorElementCount(), VT.getScalarSizeInBits())); 209 210 if (VT.isInteger() || VT.isFloatingPoint()) 211 return LLTCodeGen(LLT::scalar(VT.getSizeInBits())); 212 213 return None; 214 } 215 216 static std::string explainPredicates(const TreePatternNode *N) { 217 std::string Explanation; 218 StringRef Separator = ""; 219 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 220 const TreePredicateFn &P = Call.Fn; 221 Explanation += 222 (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str(); 223 Separator = ", "; 224 225 if (P.isAlwaysTrue()) 226 Explanation += " always-true"; 227 if (P.isImmediatePattern()) 228 Explanation += " immediate"; 229 230 if (P.isUnindexed()) 231 Explanation += " unindexed"; 232 233 if (P.isNonExtLoad()) 234 Explanation += " non-extload"; 235 if (P.isAnyExtLoad()) 236 Explanation += " extload"; 237 if (P.isSignExtLoad()) 238 Explanation += " sextload"; 239 if (P.isZeroExtLoad()) 240 Explanation += " zextload"; 241 242 if (P.isNonTruncStore()) 243 Explanation += " non-truncstore"; 244 if (P.isTruncStore()) 245 Explanation += " truncstore"; 246 247 if (Record *VT = P.getMemoryVT()) 248 Explanation += (" MemVT=" + VT->getName()).str(); 249 if (Record *VT = P.getScalarMemoryVT()) 250 Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str(); 251 252 if (ListInit *AddrSpaces = P.getAddressSpaces()) { 253 raw_string_ostream OS(Explanation); 254 OS << " AddressSpaces=["; 255 256 StringRef AddrSpaceSeparator; 257 for (Init *Val : AddrSpaces->getValues()) { 258 IntInit *IntVal = dyn_cast<IntInit>(Val); 259 if (!IntVal) 260 continue; 261 262 OS << AddrSpaceSeparator << IntVal->getValue(); 263 AddrSpaceSeparator = ", "; 264 } 265 266 OS << ']'; 267 } 268 269 int64_t MinAlign = P.getMinAlignment(); 270 if (MinAlign > 0) 271 Explanation += " MinAlign=" + utostr(MinAlign); 272 273 if (P.isAtomicOrderingMonotonic()) 274 Explanation += " monotonic"; 275 if (P.isAtomicOrderingAcquire()) 276 Explanation += " acquire"; 277 if (P.isAtomicOrderingRelease()) 278 Explanation += " release"; 279 if (P.isAtomicOrderingAcquireRelease()) 280 Explanation += " acq_rel"; 281 if (P.isAtomicOrderingSequentiallyConsistent()) 282 Explanation += " seq_cst"; 283 if (P.isAtomicOrderingAcquireOrStronger()) 284 Explanation += " >=acquire"; 285 if (P.isAtomicOrderingWeakerThanAcquire()) 286 Explanation += " <acquire"; 287 if (P.isAtomicOrderingReleaseOrStronger()) 288 Explanation += " >=release"; 289 if (P.isAtomicOrderingWeakerThanRelease()) 290 Explanation += " <release"; 291 } 292 return Explanation; 293 } 294 295 std::string explainOperator(Record *Operator) { 296 if (Operator->isSubClassOf("SDNode")) 297 return (" (" + Operator->getValueAsString("Opcode") + ")").str(); 298 299 if (Operator->isSubClassOf("Intrinsic")) 300 return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str(); 301 302 if (Operator->isSubClassOf("ComplexPattern")) 303 return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() + 304 ")") 305 .str(); 306 307 if (Operator->isSubClassOf("SDNodeXForm")) 308 return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() + 309 ")") 310 .str(); 311 312 return (" (Operator " + Operator->getName() + " not understood)").str(); 313 } 314 315 /// Helper function to let the emitter report skip reason error messages. 316 static Error failedImport(const Twine &Reason) { 317 return make_error<StringError>(Reason, inconvertibleErrorCode()); 318 } 319 320 static Error isTrivialOperatorNode(const TreePatternNode *N) { 321 std::string Explanation; 322 std::string Separator; 323 324 bool HasUnsupportedPredicate = false; 325 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 326 const TreePredicateFn &Predicate = Call.Fn; 327 328 if (Predicate.isAlwaysTrue()) 329 continue; 330 331 if (Predicate.isImmediatePattern()) 332 continue; 333 334 if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() || 335 Predicate.isSignExtLoad() || Predicate.isZeroExtLoad()) 336 continue; 337 338 if (Predicate.isNonTruncStore() || Predicate.isTruncStore()) 339 continue; 340 341 if (Predicate.isLoad() && Predicate.getMemoryVT()) 342 continue; 343 344 if (Predicate.isLoad() || Predicate.isStore()) { 345 if (Predicate.isUnindexed()) 346 continue; 347 } 348 349 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 350 const ListInit *AddrSpaces = Predicate.getAddressSpaces(); 351 if (AddrSpaces && !AddrSpaces->empty()) 352 continue; 353 354 if (Predicate.getMinAlignment() > 0) 355 continue; 356 } 357 358 if (Predicate.isAtomic() && Predicate.getMemoryVT()) 359 continue; 360 361 if (Predicate.isAtomic() && 362 (Predicate.isAtomicOrderingMonotonic() || 363 Predicate.isAtomicOrderingAcquire() || 364 Predicate.isAtomicOrderingRelease() || 365 Predicate.isAtomicOrderingAcquireRelease() || 366 Predicate.isAtomicOrderingSequentiallyConsistent() || 367 Predicate.isAtomicOrderingAcquireOrStronger() || 368 Predicate.isAtomicOrderingWeakerThanAcquire() || 369 Predicate.isAtomicOrderingReleaseOrStronger() || 370 Predicate.isAtomicOrderingWeakerThanRelease())) 371 continue; 372 373 if (Predicate.hasGISelPredicateCode()) 374 continue; 375 376 HasUnsupportedPredicate = true; 377 Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")"; 378 Separator = ", "; 379 Explanation += (Separator + "first-failing:" + 380 Predicate.getOrigPatFragRecord()->getRecord()->getName()) 381 .str(); 382 break; 383 } 384 385 if (!HasUnsupportedPredicate) 386 return Error::success(); 387 388 return failedImport(Explanation); 389 } 390 391 static Record *getInitValueAsRegClass(Init *V) { 392 if (DefInit *VDefInit = dyn_cast<DefInit>(V)) { 393 if (VDefInit->getDef()->isSubClassOf("RegisterOperand")) 394 return VDefInit->getDef()->getValueAsDef("RegClass"); 395 if (VDefInit->getDef()->isSubClassOf("RegisterClass")) 396 return VDefInit->getDef(); 397 } 398 return nullptr; 399 } 400 401 std::string 402 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 403 std::string Name = "GIFBS"; 404 for (const auto &Feature : FeatureBitset) 405 Name += ("_" + Feature->getName()).str(); 406 return Name; 407 } 408 409 static std::string getScopedName(unsigned Scope, const std::string &Name) { 410 return ("pred:" + Twine(Scope) + ":" + Name).str(); 411 } 412 413 //===- MatchTable Helpers -------------------------------------------------===// 414 415 class MatchTable; 416 417 /// A record to be stored in a MatchTable. 418 /// 419 /// This class represents any and all output that may be required to emit the 420 /// MatchTable. Instances are most often configured to represent an opcode or 421 /// value that will be emitted to the table with some formatting but it can also 422 /// represent commas, comments, and other formatting instructions. 423 struct MatchTableRecord { 424 enum RecordFlagsBits { 425 MTRF_None = 0x0, 426 /// Causes EmitStr to be formatted as comment when emitted. 427 MTRF_Comment = 0x1, 428 /// Causes the record value to be followed by a comma when emitted. 429 MTRF_CommaFollows = 0x2, 430 /// Causes the record value to be followed by a line break when emitted. 431 MTRF_LineBreakFollows = 0x4, 432 /// Indicates that the record defines a label and causes an additional 433 /// comment to be emitted containing the index of the label. 434 MTRF_Label = 0x8, 435 /// Causes the record to be emitted as the index of the label specified by 436 /// LabelID along with a comment indicating where that label is. 437 MTRF_JumpTarget = 0x10, 438 /// Causes the formatter to add a level of indentation before emitting the 439 /// record. 440 MTRF_Indent = 0x20, 441 /// Causes the formatter to remove a level of indentation after emitting the 442 /// record. 443 MTRF_Outdent = 0x40, 444 }; 445 446 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to 447 /// reference or define. 448 unsigned LabelID; 449 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a 450 /// value, a label name. 451 std::string EmitStr; 452 453 private: 454 /// The number of MatchTable elements described by this record. Comments are 0 455 /// while values are typically 1. Values >1 may occur when we need to emit 456 /// values that exceed the size of a MatchTable element. 457 unsigned NumElements; 458 459 public: 460 /// A bitfield of RecordFlagsBits flags. 461 unsigned Flags; 462 463 /// The actual run-time value, if known 464 int64_t RawValue; 465 466 MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr, 467 unsigned NumElements, unsigned Flags, 468 int64_t RawValue = std::numeric_limits<int64_t>::min()) 469 : LabelID(LabelID_.getValueOr(~0u)), EmitStr(EmitStr), 470 NumElements(NumElements), Flags(Flags), RawValue(RawValue) { 471 assert((!LabelID_.hasValue() || LabelID != ~0u) && 472 "This value is reserved for non-labels"); 473 } 474 MatchTableRecord(const MatchTableRecord &Other) = default; 475 MatchTableRecord(MatchTableRecord &&Other) = default; 476 477 /// Useful if a Match Table Record gets optimized out 478 void turnIntoComment() { 479 Flags |= MTRF_Comment; 480 Flags &= ~MTRF_CommaFollows; 481 NumElements = 0; 482 } 483 484 /// For Jump Table generation purposes 485 bool operator<(const MatchTableRecord &Other) const { 486 return RawValue < Other.RawValue; 487 } 488 int64_t getRawValue() const { return RawValue; } 489 490 void emit(raw_ostream &OS, bool LineBreakNextAfterThis, 491 const MatchTable &Table) const; 492 unsigned size() const { return NumElements; } 493 }; 494 495 class Matcher; 496 497 /// Holds the contents of a generated MatchTable to enable formatting and the 498 /// necessary index tracking needed to support GIM_Try. 499 class MatchTable { 500 /// An unique identifier for the table. The generated table will be named 501 /// MatchTable${ID}. 502 unsigned ID; 503 /// The records that make up the table. Also includes comments describing the 504 /// values being emitted and line breaks to format it. 505 std::vector<MatchTableRecord> Contents; 506 /// The currently defined labels. 507 DenseMap<unsigned, unsigned> LabelMap; 508 /// Tracks the sum of MatchTableRecord::NumElements as the table is built. 509 unsigned CurrentSize = 0; 510 /// A unique identifier for a MatchTable label. 511 unsigned CurrentLabelID = 0; 512 /// Determines if the table should be instrumented for rule coverage tracking. 513 bool IsWithCoverage; 514 515 public: 516 static MatchTableRecord LineBreak; 517 static MatchTableRecord Comment(StringRef Comment) { 518 return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment); 519 } 520 static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) { 521 unsigned ExtraFlags = 0; 522 if (IndentAdjust > 0) 523 ExtraFlags |= MatchTableRecord::MTRF_Indent; 524 if (IndentAdjust < 0) 525 ExtraFlags |= MatchTableRecord::MTRF_Outdent; 526 527 return MatchTableRecord(None, Opcode, 1, 528 MatchTableRecord::MTRF_CommaFollows | ExtraFlags); 529 } 530 static MatchTableRecord NamedValue(StringRef NamedValue) { 531 return MatchTableRecord(None, NamedValue, 1, 532 MatchTableRecord::MTRF_CommaFollows); 533 } 534 static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) { 535 return MatchTableRecord(None, NamedValue, 1, 536 MatchTableRecord::MTRF_CommaFollows, RawValue); 537 } 538 static MatchTableRecord NamedValue(StringRef Namespace, 539 StringRef NamedValue) { 540 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, 541 MatchTableRecord::MTRF_CommaFollows); 542 } 543 static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue, 544 int64_t RawValue) { 545 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, 546 MatchTableRecord::MTRF_CommaFollows, RawValue); 547 } 548 static MatchTableRecord IntValue(int64_t IntValue) { 549 return MatchTableRecord(None, llvm::to_string(IntValue), 1, 550 MatchTableRecord::MTRF_CommaFollows); 551 } 552 static MatchTableRecord Label(unsigned LabelID) { 553 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0, 554 MatchTableRecord::MTRF_Label | 555 MatchTableRecord::MTRF_Comment | 556 MatchTableRecord::MTRF_LineBreakFollows); 557 } 558 static MatchTableRecord JumpTarget(unsigned LabelID) { 559 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1, 560 MatchTableRecord::MTRF_JumpTarget | 561 MatchTableRecord::MTRF_Comment | 562 MatchTableRecord::MTRF_CommaFollows); 563 } 564 565 static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage); 566 567 MatchTable(bool WithCoverage, unsigned ID = 0) 568 : ID(ID), IsWithCoverage(WithCoverage) {} 569 570 bool isWithCoverage() const { return IsWithCoverage; } 571 572 void push_back(const MatchTableRecord &Value) { 573 if (Value.Flags & MatchTableRecord::MTRF_Label) 574 defineLabel(Value.LabelID); 575 Contents.push_back(Value); 576 CurrentSize += Value.size(); 577 } 578 579 unsigned allocateLabelID() { return CurrentLabelID++; } 580 581 void defineLabel(unsigned LabelID) { 582 LabelMap.insert(std::make_pair(LabelID, CurrentSize)); 583 } 584 585 unsigned getLabelIndex(unsigned LabelID) const { 586 const auto I = LabelMap.find(LabelID); 587 assert(I != LabelMap.end() && "Use of undeclared label"); 588 return I->second; 589 } 590 591 void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; } 592 593 void emitDeclaration(raw_ostream &OS) const { 594 unsigned Indentation = 4; 595 OS << " constexpr static int64_t MatchTable" << ID << "[] = {"; 596 LineBreak.emit(OS, true, *this); 597 OS << std::string(Indentation, ' '); 598 599 for (auto I = Contents.begin(), E = Contents.end(); I != E; 600 ++I) { 601 bool LineBreakIsNext = false; 602 const auto &NextI = std::next(I); 603 604 if (NextI != E) { 605 if (NextI->EmitStr == "" && 606 NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows) 607 LineBreakIsNext = true; 608 } 609 610 if (I->Flags & MatchTableRecord::MTRF_Indent) 611 Indentation += 2; 612 613 I->emit(OS, LineBreakIsNext, *this); 614 if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows) 615 OS << std::string(Indentation, ' '); 616 617 if (I->Flags & MatchTableRecord::MTRF_Outdent) 618 Indentation -= 2; 619 } 620 OS << "};\n"; 621 } 622 }; 623 624 MatchTableRecord MatchTable::LineBreak = { 625 None, "" /* Emit String */, 0 /* Elements */, 626 MatchTableRecord::MTRF_LineBreakFollows}; 627 628 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis, 629 const MatchTable &Table) const { 630 bool UseLineComment = 631 LineBreakIsNextAfterThis || (Flags & MTRF_LineBreakFollows); 632 if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows)) 633 UseLineComment = false; 634 635 if (Flags & MTRF_Comment) 636 OS << (UseLineComment ? "// " : "/*"); 637 638 OS << EmitStr; 639 if (Flags & MTRF_Label) 640 OS << ": @" << Table.getLabelIndex(LabelID); 641 642 if ((Flags & MTRF_Comment) && !UseLineComment) 643 OS << "*/"; 644 645 if (Flags & MTRF_JumpTarget) { 646 if (Flags & MTRF_Comment) 647 OS << " "; 648 OS << Table.getLabelIndex(LabelID); 649 } 650 651 if (Flags & MTRF_CommaFollows) { 652 OS << ","; 653 if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows)) 654 OS << " "; 655 } 656 657 if (Flags & MTRF_LineBreakFollows) 658 OS << "\n"; 659 } 660 661 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) { 662 Table.push_back(Value); 663 return Table; 664 } 665 666 //===- Matchers -----------------------------------------------------------===// 667 668 class OperandMatcher; 669 class MatchAction; 670 class PredicateMatcher; 671 class RuleMatcher; 672 673 class Matcher { 674 public: 675 virtual ~Matcher() = default; 676 virtual void optimize() {} 677 virtual void emit(MatchTable &Table) = 0; 678 679 virtual bool hasFirstCondition() const = 0; 680 virtual const PredicateMatcher &getFirstCondition() const = 0; 681 virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0; 682 }; 683 684 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules, 685 bool WithCoverage) { 686 MatchTable Table(WithCoverage); 687 for (Matcher *Rule : Rules) 688 Rule->emit(Table); 689 690 return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; 691 } 692 693 class GroupMatcher final : public Matcher { 694 /// Conditions that form a common prefix of all the matchers contained. 695 SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions; 696 697 /// All the nested matchers, sharing a common prefix. 698 std::vector<Matcher *> Matchers; 699 700 /// An owning collection for any auxiliary matchers created while optimizing 701 /// nested matchers contained. 702 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 703 704 public: 705 /// Add a matcher to the collection of nested matchers if it meets the 706 /// requirements, and return true. If it doesn't, do nothing and return false. 707 /// 708 /// Expected to preserve its argument, so it could be moved out later on. 709 bool addMatcher(Matcher &Candidate); 710 711 /// Mark the matcher as fully-built and ensure any invariants expected by both 712 /// optimize() and emit(...) methods. Generally, both sequences of calls 713 /// are expected to lead to a sensible result: 714 /// 715 /// addMatcher(...)*; finalize(); optimize(); emit(...); and 716 /// addMatcher(...)*; finalize(); emit(...); 717 /// 718 /// or generally 719 /// 720 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }* 721 /// 722 /// Multiple calls to optimize() are expected to be handled gracefully, though 723 /// optimize() is not expected to be idempotent. Multiple calls to finalize() 724 /// aren't generally supported. emit(...) is expected to be non-mutating and 725 /// producing the exact same results upon repeated calls. 726 /// 727 /// addMatcher() calls after the finalize() call are not supported. 728 /// 729 /// finalize() and optimize() are both allowed to mutate the contained 730 /// matchers, so moving them out after finalize() is not supported. 731 void finalize(); 732 void optimize() override; 733 void emit(MatchTable &Table) override; 734 735 /// Could be used to move out the matchers added previously, unless finalize() 736 /// has been already called. If any of the matchers are moved out, the group 737 /// becomes safe to destroy, but not safe to re-use for anything else. 738 iterator_range<std::vector<Matcher *>::iterator> matchers() { 739 return make_range(Matchers.begin(), Matchers.end()); 740 } 741 size_t size() const { return Matchers.size(); } 742 bool empty() const { return Matchers.empty(); } 743 744 std::unique_ptr<PredicateMatcher> popFirstCondition() override { 745 assert(!Conditions.empty() && 746 "Trying to pop a condition from a condition-less group"); 747 std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front()); 748 Conditions.erase(Conditions.begin()); 749 return P; 750 } 751 const PredicateMatcher &getFirstCondition() const override { 752 assert(!Conditions.empty() && 753 "Trying to get a condition from a condition-less group"); 754 return *Conditions.front(); 755 } 756 bool hasFirstCondition() const override { return !Conditions.empty(); } 757 758 private: 759 /// See if a candidate matcher could be added to this group solely by 760 /// analyzing its first condition. 761 bool candidateConditionMatches(const PredicateMatcher &Predicate) const; 762 }; 763 764 class SwitchMatcher : public Matcher { 765 /// All the nested matchers, representing distinct switch-cases. The first 766 /// conditions (as Matcher::getFirstCondition() reports) of all the nested 767 /// matchers must share the same type and path to a value they check, in other 768 /// words, be isIdenticalDownToValue, but have different values they check 769 /// against. 770 std::vector<Matcher *> Matchers; 771 772 /// The representative condition, with a type and a path (InsnVarID and OpIdx 773 /// in most cases) shared by all the matchers contained. 774 std::unique_ptr<PredicateMatcher> Condition = nullptr; 775 776 /// Temporary set used to check that the case values don't repeat within the 777 /// same switch. 778 std::set<MatchTableRecord> Values; 779 780 /// An owning collection for any auxiliary matchers created while optimizing 781 /// nested matchers contained. 782 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 783 784 public: 785 bool addMatcher(Matcher &Candidate); 786 787 void finalize(); 788 void emit(MatchTable &Table) override; 789 790 iterator_range<std::vector<Matcher *>::iterator> matchers() { 791 return make_range(Matchers.begin(), Matchers.end()); 792 } 793 size_t size() const { return Matchers.size(); } 794 bool empty() const { return Matchers.empty(); } 795 796 std::unique_ptr<PredicateMatcher> popFirstCondition() override { 797 // SwitchMatcher doesn't have a common first condition for its cases, as all 798 // the cases only share a kind of a value (a type and a path to it) they 799 // match, but deliberately differ in the actual value they match. 800 llvm_unreachable("Trying to pop a condition from a condition-less group"); 801 } 802 const PredicateMatcher &getFirstCondition() const override { 803 llvm_unreachable("Trying to pop a condition from a condition-less group"); 804 } 805 bool hasFirstCondition() const override { return false; } 806 807 private: 808 /// See if the predicate type has a Switch-implementation for it. 809 static bool isSupportedPredicateType(const PredicateMatcher &Predicate); 810 811 bool candidateConditionMatches(const PredicateMatcher &Predicate) const; 812 813 /// emit()-helper 814 static void emitPredicateSpecificOpcodes(const PredicateMatcher &P, 815 MatchTable &Table); 816 }; 817 818 /// Generates code to check that a match rule matches. 819 class RuleMatcher : public Matcher { 820 public: 821 using ActionList = std::list<std::unique_ptr<MatchAction>>; 822 using action_iterator = ActionList::iterator; 823 824 protected: 825 /// A list of matchers that all need to succeed for the current rule to match. 826 /// FIXME: This currently supports a single match position but could be 827 /// extended to support multiple positions to support div/rem fusion or 828 /// load-multiple instructions. 829 using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ; 830 MatchersTy Matchers; 831 832 /// A list of actions that need to be taken when all predicates in this rule 833 /// have succeeded. 834 ActionList Actions; 835 836 using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>; 837 838 /// A map of instruction matchers to the local variables 839 DefinedInsnVariablesMap InsnVariableIDs; 840 841 using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>; 842 843 // The set of instruction matchers that have not yet been claimed for mutation 844 // by a BuildMI. 845 MutatableInsnSet MutatableInsns; 846 847 /// A map of named operands defined by the matchers that may be referenced by 848 /// the renderers. 849 StringMap<OperandMatcher *> DefinedOperands; 850 851 /// A map of anonymous physical register operands defined by the matchers that 852 /// may be referenced by the renderers. 853 DenseMap<Record *, OperandMatcher *> PhysRegOperands; 854 855 /// ID for the next instruction variable defined with implicitlyDefineInsnVar() 856 unsigned NextInsnVarID; 857 858 /// ID for the next output instruction allocated with allocateOutputInsnID() 859 unsigned NextOutputInsnID; 860 861 /// ID for the next temporary register ID allocated with allocateTempRegID() 862 unsigned NextTempRegID; 863 864 std::vector<Record *> RequiredFeatures; 865 std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers; 866 867 ArrayRef<SMLoc> SrcLoc; 868 869 typedef std::tuple<Record *, unsigned, unsigned> 870 DefinedComplexPatternSubOperand; 871 typedef StringMap<DefinedComplexPatternSubOperand> 872 DefinedComplexPatternSubOperandMap; 873 /// A map of Symbolic Names to ComplexPattern sub-operands. 874 DefinedComplexPatternSubOperandMap ComplexSubOperands; 875 /// A map used to for multiple referenced error check of ComplexSubOperand. 876 /// ComplexSubOperand can't be referenced multiple from different operands, 877 /// however multiple references from same operand are allowed since that is 878 /// how 'same operand checks' are generated. 879 StringMap<std::string> ComplexSubOperandsParentName; 880 881 uint64_t RuleID; 882 static uint64_t NextRuleID; 883 884 public: 885 RuleMatcher(ArrayRef<SMLoc> SrcLoc) 886 : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(), 887 DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0), 888 NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(), 889 RuleID(NextRuleID++) {} 890 RuleMatcher(RuleMatcher &&Other) = default; 891 RuleMatcher &operator=(RuleMatcher &&Other) = default; 892 893 uint64_t getRuleID() const { return RuleID; } 894 895 InstructionMatcher &addInstructionMatcher(StringRef SymbolicName); 896 void addRequiredFeature(Record *Feature); 897 const std::vector<Record *> &getRequiredFeatures() const; 898 899 template <class Kind, class... Args> Kind &addAction(Args &&... args); 900 template <class Kind, class... Args> 901 action_iterator insertAction(action_iterator InsertPt, Args &&... args); 902 903 /// Define an instruction without emitting any code to do so. 904 unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher); 905 906 unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const; 907 DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const { 908 return InsnVariableIDs.begin(); 909 } 910 DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const { 911 return InsnVariableIDs.end(); 912 } 913 iterator_range<typename DefinedInsnVariablesMap::const_iterator> 914 defined_insn_vars() const { 915 return make_range(defined_insn_vars_begin(), defined_insn_vars_end()); 916 } 917 918 MutatableInsnSet::const_iterator mutatable_insns_begin() const { 919 return MutatableInsns.begin(); 920 } 921 MutatableInsnSet::const_iterator mutatable_insns_end() const { 922 return MutatableInsns.end(); 923 } 924 iterator_range<typename MutatableInsnSet::const_iterator> 925 mutatable_insns() const { 926 return make_range(mutatable_insns_begin(), mutatable_insns_end()); 927 } 928 void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) { 929 bool R = MutatableInsns.erase(InsnMatcher); 930 assert(R && "Reserving a mutatable insn that isn't available"); 931 (void)R; 932 } 933 934 action_iterator actions_begin() { return Actions.begin(); } 935 action_iterator actions_end() { return Actions.end(); } 936 iterator_range<action_iterator> actions() { 937 return make_range(actions_begin(), actions_end()); 938 } 939 940 void defineOperand(StringRef SymbolicName, OperandMatcher &OM); 941 942 void definePhysRegOperand(Record *Reg, OperandMatcher &OM); 943 944 Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern, 945 unsigned RendererID, unsigned SubOperandID, 946 StringRef ParentSymbolicName) { 947 std::string ParentName(ParentSymbolicName); 948 if (ComplexSubOperands.count(SymbolicName)) { 949 const std::string &RecordedParentName = 950 ComplexSubOperandsParentName[SymbolicName]; 951 if (RecordedParentName != ParentName) 952 return failedImport("Error: Complex suboperand " + SymbolicName + 953 " referenced by different operands: " + 954 RecordedParentName + " and " + ParentName + "."); 955 // Complex suboperand referenced more than once from same the operand is 956 // used to generate 'same operand check'. Emitting of 957 // GIR_ComplexSubOperandRenderer for them is already handled. 958 return Error::success(); 959 } 960 961 ComplexSubOperands[SymbolicName] = 962 std::make_tuple(ComplexPattern, RendererID, SubOperandID); 963 ComplexSubOperandsParentName[SymbolicName] = ParentName; 964 965 return Error::success(); 966 } 967 968 Optional<DefinedComplexPatternSubOperand> 969 getComplexSubOperand(StringRef SymbolicName) const { 970 const auto &I = ComplexSubOperands.find(SymbolicName); 971 if (I == ComplexSubOperands.end()) 972 return None; 973 return I->second; 974 } 975 976 InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const; 977 const OperandMatcher &getOperandMatcher(StringRef Name) const; 978 const OperandMatcher &getPhysRegOperandMatcher(Record *) const; 979 980 void optimize() override; 981 void emit(MatchTable &Table) override; 982 983 /// Compare the priority of this object and B. 984 /// 985 /// Returns true if this object is more important than B. 986 bool isHigherPriorityThan(const RuleMatcher &B) const; 987 988 /// Report the maximum number of temporary operands needed by the rule 989 /// matcher. 990 unsigned countRendererFns() const; 991 992 std::unique_ptr<PredicateMatcher> popFirstCondition() override; 993 const PredicateMatcher &getFirstCondition() const override; 994 LLTCodeGen getFirstConditionAsRootType(); 995 bool hasFirstCondition() const override; 996 unsigned getNumOperands() const; 997 StringRef getOpcode() const; 998 999 // FIXME: Remove this as soon as possible 1000 InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); } 1001 1002 unsigned allocateOutputInsnID() { return NextOutputInsnID++; } 1003 unsigned allocateTempRegID() { return NextTempRegID++; } 1004 1005 iterator_range<MatchersTy::iterator> insnmatchers() { 1006 return make_range(Matchers.begin(), Matchers.end()); 1007 } 1008 bool insnmatchers_empty() const { return Matchers.empty(); } 1009 void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); } 1010 }; 1011 1012 uint64_t RuleMatcher::NextRuleID = 0; 1013 1014 using action_iterator = RuleMatcher::action_iterator; 1015 1016 template <class PredicateTy> class PredicateListMatcher { 1017 private: 1018 /// Template instantiations should specialize this to return a string to use 1019 /// for the comment emitted when there are no predicates. 1020 std::string getNoPredicateComment() const; 1021 1022 protected: 1023 using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>; 1024 PredicatesTy Predicates; 1025 1026 /// Track if the list of predicates was manipulated by one of the optimization 1027 /// methods. 1028 bool Optimized = false; 1029 1030 public: 1031 typename PredicatesTy::iterator predicates_begin() { 1032 return Predicates.begin(); 1033 } 1034 typename PredicatesTy::iterator predicates_end() { 1035 return Predicates.end(); 1036 } 1037 iterator_range<typename PredicatesTy::iterator> predicates() { 1038 return make_range(predicates_begin(), predicates_end()); 1039 } 1040 typename PredicatesTy::size_type predicates_size() const { 1041 return Predicates.size(); 1042 } 1043 bool predicates_empty() const { return Predicates.empty(); } 1044 1045 std::unique_ptr<PredicateTy> predicates_pop_front() { 1046 std::unique_ptr<PredicateTy> Front = std::move(Predicates.front()); 1047 Predicates.pop_front(); 1048 Optimized = true; 1049 return Front; 1050 } 1051 1052 void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) { 1053 Predicates.push_front(std::move(Predicate)); 1054 } 1055 1056 void eraseNullPredicates() { 1057 const auto NewEnd = 1058 std::stable_partition(Predicates.begin(), Predicates.end(), 1059 std::logical_not<std::unique_ptr<PredicateTy>>()); 1060 if (NewEnd != Predicates.begin()) { 1061 Predicates.erase(Predicates.begin(), NewEnd); 1062 Optimized = true; 1063 } 1064 } 1065 1066 /// Emit MatchTable opcodes that tests whether all the predicates are met. 1067 template <class... Args> 1068 void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) { 1069 if (Predicates.empty() && !Optimized) { 1070 Table << MatchTable::Comment(getNoPredicateComment()) 1071 << MatchTable::LineBreak; 1072 return; 1073 } 1074 1075 for (const auto &Predicate : predicates()) 1076 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...); 1077 } 1078 1079 /// Provide a function to avoid emitting certain predicates. This is used to 1080 /// defer some predicate checks until after others 1081 using PredicateFilterFunc = std::function<bool(const PredicateTy&)>; 1082 1083 /// Emit MatchTable opcodes for predicates which satisfy \p 1084 /// ShouldEmitPredicate. This should be called multiple times to ensure all 1085 /// predicates are eventually added to the match table. 1086 template <class... Args> 1087 void emitFilteredPredicateListOpcodes(PredicateFilterFunc ShouldEmitPredicate, 1088 MatchTable &Table, Args &&... args) { 1089 if (Predicates.empty() && !Optimized) { 1090 Table << MatchTable::Comment(getNoPredicateComment()) 1091 << MatchTable::LineBreak; 1092 return; 1093 } 1094 1095 for (const auto &Predicate : predicates()) { 1096 if (ShouldEmitPredicate(*Predicate)) 1097 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...); 1098 } 1099 } 1100 }; 1101 1102 class PredicateMatcher { 1103 public: 1104 /// This enum is used for RTTI and also defines the priority that is given to 1105 /// the predicate when generating the matcher code. Kinds with higher priority 1106 /// must be tested first. 1107 /// 1108 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter 1109 /// but OPM_Int must have priority over OPM_RegBank since constant integers 1110 /// are represented by a virtual register defined by a G_CONSTANT instruction. 1111 /// 1112 /// Note: The relative priority between IPM_ and OPM_ does not matter, they 1113 /// are currently not compared between each other. 1114 enum PredicateKind { 1115 IPM_Opcode, 1116 IPM_NumOperands, 1117 IPM_ImmPredicate, 1118 IPM_Imm, 1119 IPM_AtomicOrderingMMO, 1120 IPM_MemoryLLTSize, 1121 IPM_MemoryVsLLTSize, 1122 IPM_MemoryAddressSpace, 1123 IPM_MemoryAlignment, 1124 IPM_VectorSplatImm, 1125 IPM_GenericPredicate, 1126 OPM_SameOperand, 1127 OPM_ComplexPattern, 1128 OPM_IntrinsicID, 1129 OPM_CmpPredicate, 1130 OPM_Instruction, 1131 OPM_Int, 1132 OPM_LiteralInt, 1133 OPM_LLT, 1134 OPM_PointerToAny, 1135 OPM_RegBank, 1136 OPM_MBB, 1137 OPM_RecordNamedOperand, 1138 }; 1139 1140 protected: 1141 PredicateKind Kind; 1142 unsigned InsnVarID; 1143 unsigned OpIdx; 1144 1145 public: 1146 PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0) 1147 : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {} 1148 1149 unsigned getInsnVarID() const { return InsnVarID; } 1150 unsigned getOpIdx() const { return OpIdx; } 1151 1152 virtual ~PredicateMatcher() = default; 1153 /// Emit MatchTable opcodes that check the predicate for the given operand. 1154 virtual void emitPredicateOpcodes(MatchTable &Table, 1155 RuleMatcher &Rule) const = 0; 1156 1157 PredicateKind getKind() const { return Kind; } 1158 1159 bool dependsOnOperands() const { 1160 // Custom predicates really depend on the context pattern of the 1161 // instruction, not just the individual instruction. This therefore 1162 // implicitly depends on all other pattern constraints. 1163 return Kind == IPM_GenericPredicate; 1164 } 1165 1166 virtual bool isIdentical(const PredicateMatcher &B) const { 1167 return B.getKind() == getKind() && InsnVarID == B.InsnVarID && 1168 OpIdx == B.OpIdx; 1169 } 1170 1171 virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const { 1172 return hasValue() && PredicateMatcher::isIdentical(B); 1173 } 1174 1175 virtual MatchTableRecord getValue() const { 1176 assert(hasValue() && "Can not get a value of a value-less predicate!"); 1177 llvm_unreachable("Not implemented yet"); 1178 } 1179 virtual bool hasValue() const { return false; } 1180 1181 /// Report the maximum number of temporary operands needed by the predicate 1182 /// matcher. 1183 virtual unsigned countRendererFns() const { return 0; } 1184 }; 1185 1186 /// Generates code to check a predicate of an operand. 1187 /// 1188 /// Typical predicates include: 1189 /// * Operand is a particular register. 1190 /// * Operand is assigned a particular register bank. 1191 /// * Operand is an MBB. 1192 class OperandPredicateMatcher : public PredicateMatcher { 1193 public: 1194 OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID, 1195 unsigned OpIdx) 1196 : PredicateMatcher(Kind, InsnVarID, OpIdx) {} 1197 virtual ~OperandPredicateMatcher() {} 1198 1199 /// Compare the priority of this object and B. 1200 /// 1201 /// Returns true if this object is more important than B. 1202 virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const; 1203 }; 1204 1205 template <> 1206 std::string 1207 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const { 1208 return "No operand predicates"; 1209 } 1210 1211 /// Generates code to check that a register operand is defined by the same exact 1212 /// one as another. 1213 class SameOperandMatcher : public OperandPredicateMatcher { 1214 std::string MatchingName; 1215 1216 public: 1217 SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName) 1218 : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx), 1219 MatchingName(MatchingName) {} 1220 1221 static bool classof(const PredicateMatcher *P) { 1222 return P->getKind() == OPM_SameOperand; 1223 } 1224 1225 void emitPredicateOpcodes(MatchTable &Table, 1226 RuleMatcher &Rule) const override; 1227 1228 bool isIdentical(const PredicateMatcher &B) const override { 1229 return OperandPredicateMatcher::isIdentical(B) && 1230 MatchingName == cast<SameOperandMatcher>(&B)->MatchingName; 1231 } 1232 }; 1233 1234 /// Generates code to check that an operand is a particular LLT. 1235 class LLTOperandMatcher : public OperandPredicateMatcher { 1236 protected: 1237 LLTCodeGen Ty; 1238 1239 public: 1240 static std::map<LLTCodeGen, unsigned> TypeIDValues; 1241 1242 static void initTypeIDValuesMap() { 1243 TypeIDValues.clear(); 1244 1245 unsigned ID = 0; 1246 for (const LLTCodeGen &LLTy : KnownTypes) 1247 TypeIDValues[LLTy] = ID++; 1248 } 1249 1250 LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty) 1251 : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) { 1252 KnownTypes.insert(Ty); 1253 } 1254 1255 static bool classof(const PredicateMatcher *P) { 1256 return P->getKind() == OPM_LLT; 1257 } 1258 bool isIdentical(const PredicateMatcher &B) const override { 1259 return OperandPredicateMatcher::isIdentical(B) && 1260 Ty == cast<LLTOperandMatcher>(&B)->Ty; 1261 } 1262 MatchTableRecord getValue() const override { 1263 const auto VI = TypeIDValues.find(Ty); 1264 if (VI == TypeIDValues.end()) 1265 return MatchTable::NamedValue(getTy().getCxxEnumValue()); 1266 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second); 1267 } 1268 bool hasValue() const override { 1269 if (TypeIDValues.size() != KnownTypes.size()) 1270 initTypeIDValuesMap(); 1271 return TypeIDValues.count(Ty); 1272 } 1273 1274 LLTCodeGen getTy() const { return Ty; } 1275 1276 void emitPredicateOpcodes(MatchTable &Table, 1277 RuleMatcher &Rule) const override { 1278 Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI") 1279 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1280 << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type") 1281 << getValue() << MatchTable::LineBreak; 1282 } 1283 }; 1284 1285 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues; 1286 1287 /// Generates code to check that an operand is a pointer to any address space. 1288 /// 1289 /// In SelectionDAG, the types did not describe pointers or address spaces. As a 1290 /// result, iN is used to describe a pointer of N bits to any address space and 1291 /// PatFrag predicates are typically used to constrain the address space. There's 1292 /// no reliable means to derive the missing type information from the pattern so 1293 /// imported rules must test the components of a pointer separately. 1294 /// 1295 /// If SizeInBits is zero, then the pointer size will be obtained from the 1296 /// subtarget. 1297 class PointerToAnyOperandMatcher : public OperandPredicateMatcher { 1298 protected: 1299 unsigned SizeInBits; 1300 1301 public: 1302 PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1303 unsigned SizeInBits) 1304 : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx), 1305 SizeInBits(SizeInBits) {} 1306 1307 static bool classof(const PredicateMatcher *P) { 1308 return P->getKind() == OPM_PointerToAny; 1309 } 1310 1311 bool isIdentical(const PredicateMatcher &B) const override { 1312 return OperandPredicateMatcher::isIdentical(B) && 1313 SizeInBits == cast<PointerToAnyOperandMatcher>(&B)->SizeInBits; 1314 } 1315 1316 void emitPredicateOpcodes(MatchTable &Table, 1317 RuleMatcher &Rule) const override { 1318 Table << MatchTable::Opcode("GIM_CheckPointerToAny") 1319 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1320 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1321 << MatchTable::Comment("SizeInBits") 1322 << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak; 1323 } 1324 }; 1325 1326 /// Generates code to record named operand in RecordedOperands list at StoreIdx. 1327 /// Predicates with 'let PredicateCodeUsesOperands = 1' get RecordedOperands as 1328 /// an argument to predicate's c++ code once all operands have been matched. 1329 class RecordNamedOperandMatcher : public OperandPredicateMatcher { 1330 protected: 1331 unsigned StoreIdx; 1332 std::string Name; 1333 1334 public: 1335 RecordNamedOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1336 unsigned StoreIdx, StringRef Name) 1337 : OperandPredicateMatcher(OPM_RecordNamedOperand, InsnVarID, OpIdx), 1338 StoreIdx(StoreIdx), Name(Name) {} 1339 1340 static bool classof(const PredicateMatcher *P) { 1341 return P->getKind() == OPM_RecordNamedOperand; 1342 } 1343 1344 bool isIdentical(const PredicateMatcher &B) const override { 1345 return OperandPredicateMatcher::isIdentical(B) && 1346 StoreIdx == cast<RecordNamedOperandMatcher>(&B)->StoreIdx && 1347 Name == cast<RecordNamedOperandMatcher>(&B)->Name; 1348 } 1349 1350 void emitPredicateOpcodes(MatchTable &Table, 1351 RuleMatcher &Rule) const override { 1352 Table << MatchTable::Opcode("GIM_RecordNamedOperand") 1353 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1354 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1355 << MatchTable::Comment("StoreIdx") << MatchTable::IntValue(StoreIdx) 1356 << MatchTable::Comment("Name : " + Name) << MatchTable::LineBreak; 1357 } 1358 }; 1359 1360 /// Generates code to check that an operand is a particular target constant. 1361 class ComplexPatternOperandMatcher : public OperandPredicateMatcher { 1362 protected: 1363 const OperandMatcher &Operand; 1364 const Record &TheDef; 1365 1366 unsigned getAllocatedTemporariesBaseID() const; 1367 1368 public: 1369 bool isIdentical(const PredicateMatcher &B) const override { return false; } 1370 1371 ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1372 const OperandMatcher &Operand, 1373 const Record &TheDef) 1374 : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx), 1375 Operand(Operand), TheDef(TheDef) {} 1376 1377 static bool classof(const PredicateMatcher *P) { 1378 return P->getKind() == OPM_ComplexPattern; 1379 } 1380 1381 void emitPredicateOpcodes(MatchTable &Table, 1382 RuleMatcher &Rule) const override { 1383 unsigned ID = getAllocatedTemporariesBaseID(); 1384 Table << MatchTable::Opcode("GIM_CheckComplexPattern") 1385 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1386 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1387 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID) 1388 << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str()) 1389 << MatchTable::LineBreak; 1390 } 1391 1392 unsigned countRendererFns() const override { 1393 return 1; 1394 } 1395 }; 1396 1397 /// Generates code to check that an operand is in a particular register bank. 1398 class RegisterBankOperandMatcher : public OperandPredicateMatcher { 1399 protected: 1400 const CodeGenRegisterClass &RC; 1401 1402 public: 1403 RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1404 const CodeGenRegisterClass &RC) 1405 : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {} 1406 1407 bool isIdentical(const PredicateMatcher &B) const override { 1408 return OperandPredicateMatcher::isIdentical(B) && 1409 RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef(); 1410 } 1411 1412 static bool classof(const PredicateMatcher *P) { 1413 return P->getKind() == OPM_RegBank; 1414 } 1415 1416 void emitPredicateOpcodes(MatchTable &Table, 1417 RuleMatcher &Rule) const override { 1418 Table << MatchTable::Opcode("GIM_CheckRegBankForClass") 1419 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1420 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1421 << MatchTable::Comment("RC") 1422 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") 1423 << MatchTable::LineBreak; 1424 } 1425 }; 1426 1427 /// Generates code to check that an operand is a basic block. 1428 class MBBOperandMatcher : public OperandPredicateMatcher { 1429 public: 1430 MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx) 1431 : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {} 1432 1433 static bool classof(const PredicateMatcher *P) { 1434 return P->getKind() == OPM_MBB; 1435 } 1436 1437 void emitPredicateOpcodes(MatchTable &Table, 1438 RuleMatcher &Rule) const override { 1439 Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI") 1440 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1441 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; 1442 } 1443 }; 1444 1445 class ImmOperandMatcher : public OperandPredicateMatcher { 1446 public: 1447 ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx) 1448 : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {} 1449 1450 static bool classof(const PredicateMatcher *P) { 1451 return P->getKind() == IPM_Imm; 1452 } 1453 1454 void emitPredicateOpcodes(MatchTable &Table, 1455 RuleMatcher &Rule) const override { 1456 Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI") 1457 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1458 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; 1459 } 1460 }; 1461 1462 /// Generates code to check that an operand is a G_CONSTANT with a particular 1463 /// int. 1464 class ConstantIntOperandMatcher : public OperandPredicateMatcher { 1465 protected: 1466 int64_t Value; 1467 1468 public: 1469 ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) 1470 : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {} 1471 1472 bool isIdentical(const PredicateMatcher &B) const override { 1473 return OperandPredicateMatcher::isIdentical(B) && 1474 Value == cast<ConstantIntOperandMatcher>(&B)->Value; 1475 } 1476 1477 static bool classof(const PredicateMatcher *P) { 1478 return P->getKind() == OPM_Int; 1479 } 1480 1481 void emitPredicateOpcodes(MatchTable &Table, 1482 RuleMatcher &Rule) const override { 1483 Table << MatchTable::Opcode("GIM_CheckConstantInt") 1484 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1485 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1486 << MatchTable::IntValue(Value) << MatchTable::LineBreak; 1487 } 1488 }; 1489 1490 /// Generates code to check that an operand is a raw int (where MO.isImm() or 1491 /// MO.isCImm() is true). 1492 class LiteralIntOperandMatcher : public OperandPredicateMatcher { 1493 protected: 1494 int64_t Value; 1495 1496 public: 1497 LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) 1498 : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx), 1499 Value(Value) {} 1500 1501 bool isIdentical(const PredicateMatcher &B) const override { 1502 return OperandPredicateMatcher::isIdentical(B) && 1503 Value == cast<LiteralIntOperandMatcher>(&B)->Value; 1504 } 1505 1506 static bool classof(const PredicateMatcher *P) { 1507 return P->getKind() == OPM_LiteralInt; 1508 } 1509 1510 void emitPredicateOpcodes(MatchTable &Table, 1511 RuleMatcher &Rule) const override { 1512 Table << MatchTable::Opcode("GIM_CheckLiteralInt") 1513 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1514 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1515 << MatchTable::IntValue(Value) << MatchTable::LineBreak; 1516 } 1517 }; 1518 1519 /// Generates code to check that an operand is an CmpInst predicate 1520 class CmpPredicateOperandMatcher : public OperandPredicateMatcher { 1521 protected: 1522 std::string PredName; 1523 1524 public: 1525 CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1526 std::string P) 1527 : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {} 1528 1529 bool isIdentical(const PredicateMatcher &B) const override { 1530 return OperandPredicateMatcher::isIdentical(B) && 1531 PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName; 1532 } 1533 1534 static bool classof(const PredicateMatcher *P) { 1535 return P->getKind() == OPM_CmpPredicate; 1536 } 1537 1538 void emitPredicateOpcodes(MatchTable &Table, 1539 RuleMatcher &Rule) const override { 1540 Table << MatchTable::Opcode("GIM_CheckCmpPredicate") 1541 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1542 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1543 << MatchTable::Comment("Predicate") 1544 << MatchTable::NamedValue("CmpInst", PredName) 1545 << MatchTable::LineBreak; 1546 } 1547 }; 1548 1549 /// Generates code to check that an operand is an intrinsic ID. 1550 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher { 1551 protected: 1552 const CodeGenIntrinsic *II; 1553 1554 public: 1555 IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1556 const CodeGenIntrinsic *II) 1557 : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {} 1558 1559 bool isIdentical(const PredicateMatcher &B) const override { 1560 return OperandPredicateMatcher::isIdentical(B) && 1561 II == cast<IntrinsicIDOperandMatcher>(&B)->II; 1562 } 1563 1564 static bool classof(const PredicateMatcher *P) { 1565 return P->getKind() == OPM_IntrinsicID; 1566 } 1567 1568 void emitPredicateOpcodes(MatchTable &Table, 1569 RuleMatcher &Rule) const override { 1570 Table << MatchTable::Opcode("GIM_CheckIntrinsicID") 1571 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1572 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1573 << MatchTable::NamedValue("Intrinsic::" + II->EnumName) 1574 << MatchTable::LineBreak; 1575 } 1576 }; 1577 1578 /// Generates code to check that this operand is an immediate whose value meets 1579 /// an immediate predicate. 1580 class OperandImmPredicateMatcher : public OperandPredicateMatcher { 1581 protected: 1582 TreePredicateFn Predicate; 1583 1584 public: 1585 OperandImmPredicateMatcher(unsigned InsnVarID, unsigned OpIdx, 1586 const TreePredicateFn &Predicate) 1587 : OperandPredicateMatcher(IPM_ImmPredicate, InsnVarID, OpIdx), 1588 Predicate(Predicate) {} 1589 1590 bool isIdentical(const PredicateMatcher &B) const override { 1591 return OperandPredicateMatcher::isIdentical(B) && 1592 Predicate.getOrigPatFragRecord() == 1593 cast<OperandImmPredicateMatcher>(&B) 1594 ->Predicate.getOrigPatFragRecord(); 1595 } 1596 1597 static bool classof(const PredicateMatcher *P) { 1598 return P->getKind() == IPM_ImmPredicate; 1599 } 1600 1601 void emitPredicateOpcodes(MatchTable &Table, 1602 RuleMatcher &Rule) const override { 1603 Table << MatchTable::Opcode("GIM_CheckImmOperandPredicate") 1604 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1605 << MatchTable::Comment("MO") << MatchTable::IntValue(OpIdx) 1606 << MatchTable::Comment("Predicate") 1607 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 1608 << MatchTable::LineBreak; 1609 } 1610 }; 1611 1612 /// Generates code to check that a set of predicates match for a particular 1613 /// operand. 1614 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> { 1615 protected: 1616 InstructionMatcher &Insn; 1617 unsigned OpIdx; 1618 std::string SymbolicName; 1619 1620 /// The index of the first temporary variable allocated to this operand. The 1621 /// number of allocated temporaries can be found with 1622 /// countRendererFns(). 1623 unsigned AllocatedTemporariesBaseID; 1624 1625 public: 1626 OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx, 1627 const std::string &SymbolicName, 1628 unsigned AllocatedTemporariesBaseID) 1629 : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName), 1630 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {} 1631 1632 bool hasSymbolicName() const { return !SymbolicName.empty(); } 1633 StringRef getSymbolicName() const { return SymbolicName; } 1634 void setSymbolicName(StringRef Name) { 1635 assert(SymbolicName.empty() && "Operand already has a symbolic name"); 1636 SymbolicName = std::string(Name); 1637 } 1638 1639 /// Construct a new operand predicate and add it to the matcher. 1640 template <class Kind, class... Args> 1641 Optional<Kind *> addPredicate(Args &&... args) { 1642 if (isSameAsAnotherOperand()) 1643 return None; 1644 Predicates.emplace_back(std::make_unique<Kind>( 1645 getInsnVarID(), getOpIdx(), std::forward<Args>(args)...)); 1646 return static_cast<Kind *>(Predicates.back().get()); 1647 } 1648 1649 unsigned getOpIdx() const { return OpIdx; } 1650 unsigned getInsnVarID() const; 1651 1652 std::string getOperandExpr(unsigned InsnVarID) const { 1653 return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" + 1654 llvm::to_string(OpIdx) + ")"; 1655 } 1656 1657 InstructionMatcher &getInstructionMatcher() const { return Insn; } 1658 1659 Error addTypeCheckPredicate(const TypeSetByHwMode &VTy, 1660 bool OperandIsAPointer); 1661 1662 /// Emit MatchTable opcodes that test whether the instruction named in 1663 /// InsnVarID matches all the predicates and all the operands. 1664 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { 1665 if (!Optimized) { 1666 std::string Comment; 1667 raw_string_ostream CommentOS(Comment); 1668 CommentOS << "MIs[" << getInsnVarID() << "] "; 1669 if (SymbolicName.empty()) 1670 CommentOS << "Operand " << OpIdx; 1671 else 1672 CommentOS << SymbolicName; 1673 Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak; 1674 } 1675 1676 emitPredicateListOpcodes(Table, Rule); 1677 } 1678 1679 /// Compare the priority of this object and B. 1680 /// 1681 /// Returns true if this object is more important than B. 1682 bool isHigherPriorityThan(OperandMatcher &B) { 1683 // Operand matchers involving more predicates have higher priority. 1684 if (predicates_size() > B.predicates_size()) 1685 return true; 1686 if (predicates_size() < B.predicates_size()) 1687 return false; 1688 1689 // This assumes that predicates are added in a consistent order. 1690 for (auto &&Predicate : zip(predicates(), B.predicates())) { 1691 if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate))) 1692 return true; 1693 if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate))) 1694 return false; 1695 } 1696 1697 return false; 1698 }; 1699 1700 /// Report the maximum number of temporary operands needed by the operand 1701 /// matcher. 1702 unsigned countRendererFns() { 1703 return std::accumulate( 1704 predicates().begin(), predicates().end(), 0, 1705 [](unsigned A, 1706 const std::unique_ptr<OperandPredicateMatcher> &Predicate) { 1707 return A + Predicate->countRendererFns(); 1708 }); 1709 } 1710 1711 unsigned getAllocatedTemporariesBaseID() const { 1712 return AllocatedTemporariesBaseID; 1713 } 1714 1715 bool isSameAsAnotherOperand() { 1716 for (const auto &Predicate : predicates()) 1717 if (isa<SameOperandMatcher>(Predicate)) 1718 return true; 1719 return false; 1720 } 1721 }; 1722 1723 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy, 1724 bool OperandIsAPointer) { 1725 if (!VTy.isMachineValueType()) 1726 return failedImport("unsupported typeset"); 1727 1728 if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) { 1729 addPredicate<PointerToAnyOperandMatcher>(0); 1730 return Error::success(); 1731 } 1732 1733 auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy); 1734 if (!OpTyOrNone) 1735 return failedImport("unsupported type"); 1736 1737 if (OperandIsAPointer) 1738 addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits()); 1739 else if (VTy.isPointer()) 1740 addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(), 1741 OpTyOrNone->get().getSizeInBits())); 1742 else 1743 addPredicate<LLTOperandMatcher>(*OpTyOrNone); 1744 return Error::success(); 1745 } 1746 1747 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const { 1748 return Operand.getAllocatedTemporariesBaseID(); 1749 } 1750 1751 /// Generates code to check a predicate on an instruction. 1752 /// 1753 /// Typical predicates include: 1754 /// * The opcode of the instruction is a particular value. 1755 /// * The nsw/nuw flag is/isn't set. 1756 class InstructionPredicateMatcher : public PredicateMatcher { 1757 public: 1758 InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID) 1759 : PredicateMatcher(Kind, InsnVarID) {} 1760 virtual ~InstructionPredicateMatcher() {} 1761 1762 /// Compare the priority of this object and B. 1763 /// 1764 /// Returns true if this object is more important than B. 1765 virtual bool 1766 isHigherPriorityThan(const InstructionPredicateMatcher &B) const { 1767 return Kind < B.Kind; 1768 }; 1769 }; 1770 1771 template <> 1772 std::string 1773 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const { 1774 return "No instruction predicates"; 1775 } 1776 1777 /// Generates code to check the opcode of an instruction. 1778 class InstructionOpcodeMatcher : public InstructionPredicateMatcher { 1779 protected: 1780 // Allow matching one to several, similar opcodes that share properties. This 1781 // is to handle patterns where one SelectionDAG operation maps to multiple 1782 // GlobalISel ones (e.g. G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC). The first 1783 // is treated as the canonical opcode. 1784 SmallVector<const CodeGenInstruction *, 2> Insts; 1785 1786 static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues; 1787 1788 1789 MatchTableRecord getInstValue(const CodeGenInstruction *I) const { 1790 const auto VI = OpcodeValues.find(I); 1791 if (VI != OpcodeValues.end()) 1792 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(), 1793 VI->second); 1794 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName()); 1795 } 1796 1797 public: 1798 static void initOpcodeValuesMap(const CodeGenTarget &Target) { 1799 OpcodeValues.clear(); 1800 1801 unsigned OpcodeValue = 0; 1802 for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue()) 1803 OpcodeValues[I] = OpcodeValue++; 1804 } 1805 1806 InstructionOpcodeMatcher(unsigned InsnVarID, 1807 ArrayRef<const CodeGenInstruction *> I) 1808 : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), 1809 Insts(I.begin(), I.end()) { 1810 assert((Insts.size() == 1 || Insts.size() == 2) && 1811 "unexpected number of opcode alternatives"); 1812 } 1813 1814 static bool classof(const PredicateMatcher *P) { 1815 return P->getKind() == IPM_Opcode; 1816 } 1817 1818 bool isIdentical(const PredicateMatcher &B) const override { 1819 return InstructionPredicateMatcher::isIdentical(B) && 1820 Insts == cast<InstructionOpcodeMatcher>(&B)->Insts; 1821 } 1822 1823 bool hasValue() const override { 1824 return Insts.size() == 1 && OpcodeValues.count(Insts[0]); 1825 } 1826 1827 // TODO: This is used for the SwitchMatcher optimization. We should be able to 1828 // return a list of the opcodes to match. 1829 MatchTableRecord getValue() const override { 1830 assert(Insts.size() == 1); 1831 1832 const CodeGenInstruction *I = Insts[0]; 1833 const auto VI = OpcodeValues.find(I); 1834 if (VI != OpcodeValues.end()) 1835 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(), 1836 VI->second); 1837 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName()); 1838 } 1839 1840 void emitPredicateOpcodes(MatchTable &Table, 1841 RuleMatcher &Rule) const override { 1842 StringRef CheckType = Insts.size() == 1 ? 1843 "GIM_CheckOpcode" : "GIM_CheckOpcodeIsEither"; 1844 Table << MatchTable::Opcode(CheckType) << MatchTable::Comment("MI") 1845 << MatchTable::IntValue(InsnVarID); 1846 1847 for (const CodeGenInstruction *I : Insts) 1848 Table << getInstValue(I); 1849 Table << MatchTable::LineBreak; 1850 } 1851 1852 /// Compare the priority of this object and B. 1853 /// 1854 /// Returns true if this object is more important than B. 1855 bool 1856 isHigherPriorityThan(const InstructionPredicateMatcher &B) const override { 1857 if (InstructionPredicateMatcher::isHigherPriorityThan(B)) 1858 return true; 1859 if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this)) 1860 return false; 1861 1862 // Prioritize opcodes for cosmetic reasons in the generated source. Although 1863 // this is cosmetic at the moment, we may want to drive a similar ordering 1864 // using instruction frequency information to improve compile time. 1865 if (const InstructionOpcodeMatcher *BO = 1866 dyn_cast<InstructionOpcodeMatcher>(&B)) 1867 return Insts[0]->TheDef->getName() < BO->Insts[0]->TheDef->getName(); 1868 1869 return false; 1870 }; 1871 1872 bool isConstantInstruction() const { 1873 return Insts.size() == 1 && Insts[0]->TheDef->getName() == "G_CONSTANT"; 1874 } 1875 1876 // The first opcode is the canonical opcode, and later are alternatives. 1877 StringRef getOpcode() const { 1878 return Insts[0]->TheDef->getName(); 1879 } 1880 1881 ArrayRef<const CodeGenInstruction *> getAlternativeOpcodes() { 1882 return Insts; 1883 } 1884 1885 bool isVariadicNumOperands() const { 1886 // If one is variadic, they all should be. 1887 return Insts[0]->Operands.isVariadic; 1888 } 1889 1890 StringRef getOperandType(unsigned OpIdx) const { 1891 // Types expected to be uniform for all alternatives. 1892 return Insts[0]->Operands[OpIdx].OperandType; 1893 } 1894 }; 1895 1896 DenseMap<const CodeGenInstruction *, unsigned> 1897 InstructionOpcodeMatcher::OpcodeValues; 1898 1899 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher { 1900 unsigned NumOperands = 0; 1901 1902 public: 1903 InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands) 1904 : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID), 1905 NumOperands(NumOperands) {} 1906 1907 static bool classof(const PredicateMatcher *P) { 1908 return P->getKind() == IPM_NumOperands; 1909 } 1910 1911 bool isIdentical(const PredicateMatcher &B) const override { 1912 return InstructionPredicateMatcher::isIdentical(B) && 1913 NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands; 1914 } 1915 1916 void emitPredicateOpcodes(MatchTable &Table, 1917 RuleMatcher &Rule) const override { 1918 Table << MatchTable::Opcode("GIM_CheckNumOperands") 1919 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1920 << MatchTable::Comment("Expected") 1921 << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak; 1922 } 1923 }; 1924 1925 /// Generates code to check that this instruction is a constant whose value 1926 /// meets an immediate predicate. 1927 /// 1928 /// Immediates are slightly odd since they are typically used like an operand 1929 /// but are represented as an operator internally. We typically write simm8:$src 1930 /// in a tablegen pattern, but this is just syntactic sugar for 1931 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes 1932 /// that will be matched and the predicate (which is attached to the imm 1933 /// operator) that will be tested. In SelectionDAG this describes a 1934 /// ConstantSDNode whose internal value will be tested using the simm8 predicate. 1935 /// 1936 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In 1937 /// this representation, the immediate could be tested with an 1938 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a 1939 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but 1940 /// there are two implementation issues with producing that matcher 1941 /// configuration from the SelectionDAG pattern: 1942 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that 1943 /// were we to sink the immediate predicate to the operand we would have to 1944 /// have two partial implementations of PatFrag support, one for immediates 1945 /// and one for non-immediates. 1946 /// * At the point we handle the predicate, the OperandMatcher hasn't been 1947 /// created yet. If we were to sink the predicate to the OperandMatcher we 1948 /// would also have to complicate (or duplicate) the code that descends and 1949 /// creates matchers for the subtree. 1950 /// Overall, it's simpler to handle it in the place it was found. 1951 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher { 1952 protected: 1953 TreePredicateFn Predicate; 1954 1955 public: 1956 InstructionImmPredicateMatcher(unsigned InsnVarID, 1957 const TreePredicateFn &Predicate) 1958 : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID), 1959 Predicate(Predicate) {} 1960 1961 bool isIdentical(const PredicateMatcher &B) const override { 1962 return InstructionPredicateMatcher::isIdentical(B) && 1963 Predicate.getOrigPatFragRecord() == 1964 cast<InstructionImmPredicateMatcher>(&B) 1965 ->Predicate.getOrigPatFragRecord(); 1966 } 1967 1968 static bool classof(const PredicateMatcher *P) { 1969 return P->getKind() == IPM_ImmPredicate; 1970 } 1971 1972 void emitPredicateOpcodes(MatchTable &Table, 1973 RuleMatcher &Rule) const override { 1974 Table << MatchTable::Opcode(getMatchOpcodeForImmPredicate(Predicate)) 1975 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1976 << MatchTable::Comment("Predicate") 1977 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 1978 << MatchTable::LineBreak; 1979 } 1980 }; 1981 1982 /// Generates code to check that a memory instruction has a atomic ordering 1983 /// MachineMemoryOperand. 1984 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher { 1985 public: 1986 enum AOComparator { 1987 AO_Exactly, 1988 AO_OrStronger, 1989 AO_WeakerThan, 1990 }; 1991 1992 protected: 1993 StringRef Order; 1994 AOComparator Comparator; 1995 1996 public: 1997 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order, 1998 AOComparator Comparator = AO_Exactly) 1999 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID), 2000 Order(Order), Comparator(Comparator) {} 2001 2002 static bool classof(const PredicateMatcher *P) { 2003 return P->getKind() == IPM_AtomicOrderingMMO; 2004 } 2005 2006 bool isIdentical(const PredicateMatcher &B) const override { 2007 if (!InstructionPredicateMatcher::isIdentical(B)) 2008 return false; 2009 const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B); 2010 return Order == R.Order && Comparator == R.Comparator; 2011 } 2012 2013 void emitPredicateOpcodes(MatchTable &Table, 2014 RuleMatcher &Rule) const override { 2015 StringRef Opcode = "GIM_CheckAtomicOrdering"; 2016 2017 if (Comparator == AO_OrStronger) 2018 Opcode = "GIM_CheckAtomicOrderingOrStrongerThan"; 2019 if (Comparator == AO_WeakerThan) 2020 Opcode = "GIM_CheckAtomicOrderingWeakerThan"; 2021 2022 Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI") 2023 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order") 2024 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str()) 2025 << MatchTable::LineBreak; 2026 } 2027 }; 2028 2029 /// Generates code to check that the size of an MMO is exactly N bytes. 2030 class MemorySizePredicateMatcher : public InstructionPredicateMatcher { 2031 protected: 2032 unsigned MMOIdx; 2033 uint64_t Size; 2034 2035 public: 2036 MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size) 2037 : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID), 2038 MMOIdx(MMOIdx), Size(Size) {} 2039 2040 static bool classof(const PredicateMatcher *P) { 2041 return P->getKind() == IPM_MemoryLLTSize; 2042 } 2043 bool isIdentical(const PredicateMatcher &B) const override { 2044 return InstructionPredicateMatcher::isIdentical(B) && 2045 MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx && 2046 Size == cast<MemorySizePredicateMatcher>(&B)->Size; 2047 } 2048 2049 void emitPredicateOpcodes(MatchTable &Table, 2050 RuleMatcher &Rule) const override { 2051 Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo") 2052 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2053 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2054 << MatchTable::Comment("Size") << MatchTable::IntValue(Size) 2055 << MatchTable::LineBreak; 2056 } 2057 }; 2058 2059 class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher { 2060 protected: 2061 unsigned MMOIdx; 2062 SmallVector<unsigned, 4> AddrSpaces; 2063 2064 public: 2065 MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 2066 ArrayRef<unsigned> AddrSpaces) 2067 : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID), 2068 MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {} 2069 2070 static bool classof(const PredicateMatcher *P) { 2071 return P->getKind() == IPM_MemoryAddressSpace; 2072 } 2073 bool isIdentical(const PredicateMatcher &B) const override { 2074 if (!InstructionPredicateMatcher::isIdentical(B)) 2075 return false; 2076 auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B); 2077 return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces; 2078 } 2079 2080 void emitPredicateOpcodes(MatchTable &Table, 2081 RuleMatcher &Rule) const override { 2082 Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace") 2083 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2084 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2085 // Encode number of address spaces to expect. 2086 << MatchTable::Comment("NumAddrSpace") 2087 << MatchTable::IntValue(AddrSpaces.size()); 2088 for (unsigned AS : AddrSpaces) 2089 Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS); 2090 2091 Table << MatchTable::LineBreak; 2092 } 2093 }; 2094 2095 class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher { 2096 protected: 2097 unsigned MMOIdx; 2098 int MinAlign; 2099 2100 public: 2101 MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 2102 int MinAlign) 2103 : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID), 2104 MMOIdx(MMOIdx), MinAlign(MinAlign) { 2105 assert(MinAlign > 0); 2106 } 2107 2108 static bool classof(const PredicateMatcher *P) { 2109 return P->getKind() == IPM_MemoryAlignment; 2110 } 2111 2112 bool isIdentical(const PredicateMatcher &B) const override { 2113 if (!InstructionPredicateMatcher::isIdentical(B)) 2114 return false; 2115 auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B); 2116 return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign; 2117 } 2118 2119 void emitPredicateOpcodes(MatchTable &Table, 2120 RuleMatcher &Rule) const override { 2121 Table << MatchTable::Opcode("GIM_CheckMemoryAlignment") 2122 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2123 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2124 << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign) 2125 << MatchTable::LineBreak; 2126 } 2127 }; 2128 2129 /// Generates code to check that the size of an MMO is less-than, equal-to, or 2130 /// greater than a given LLT. 2131 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher { 2132 public: 2133 enum RelationKind { 2134 GreaterThan, 2135 EqualTo, 2136 LessThan, 2137 }; 2138 2139 protected: 2140 unsigned MMOIdx; 2141 RelationKind Relation; 2142 unsigned OpIdx; 2143 2144 public: 2145 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 2146 enum RelationKind Relation, 2147 unsigned OpIdx) 2148 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID), 2149 MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {} 2150 2151 static bool classof(const PredicateMatcher *P) { 2152 return P->getKind() == IPM_MemoryVsLLTSize; 2153 } 2154 bool isIdentical(const PredicateMatcher &B) const override { 2155 return InstructionPredicateMatcher::isIdentical(B) && 2156 MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx && 2157 Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation && 2158 OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx; 2159 } 2160 2161 void emitPredicateOpcodes(MatchTable &Table, 2162 RuleMatcher &Rule) const override { 2163 Table << MatchTable::Opcode(Relation == EqualTo 2164 ? "GIM_CheckMemorySizeEqualToLLT" 2165 : Relation == GreaterThan 2166 ? "GIM_CheckMemorySizeGreaterThanLLT" 2167 : "GIM_CheckMemorySizeLessThanLLT") 2168 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2169 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2170 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) 2171 << MatchTable::LineBreak; 2172 } 2173 }; 2174 2175 // Matcher for immAllOnesV/immAllZerosV 2176 class VectorSplatImmPredicateMatcher : public InstructionPredicateMatcher { 2177 public: 2178 enum SplatKind { 2179 AllZeros, 2180 AllOnes 2181 }; 2182 2183 private: 2184 SplatKind Kind; 2185 2186 public: 2187 VectorSplatImmPredicateMatcher(unsigned InsnVarID, SplatKind K) 2188 : InstructionPredicateMatcher(IPM_VectorSplatImm, InsnVarID), Kind(K) {} 2189 2190 static bool classof(const PredicateMatcher *P) { 2191 return P->getKind() == IPM_VectorSplatImm; 2192 } 2193 2194 bool isIdentical(const PredicateMatcher &B) const override { 2195 return InstructionPredicateMatcher::isIdentical(B) && 2196 Kind == static_cast<const VectorSplatImmPredicateMatcher &>(B).Kind; 2197 } 2198 2199 void emitPredicateOpcodes(MatchTable &Table, 2200 RuleMatcher &Rule) const override { 2201 if (Kind == AllOnes) 2202 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllOnes"); 2203 else 2204 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllZeros"); 2205 2206 Table << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID); 2207 Table << MatchTable::LineBreak; 2208 } 2209 }; 2210 2211 /// Generates code to check an arbitrary C++ instruction predicate. 2212 class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher { 2213 protected: 2214 TreePredicateFn Predicate; 2215 2216 public: 2217 GenericInstructionPredicateMatcher(unsigned InsnVarID, 2218 TreePredicateFn Predicate) 2219 : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID), 2220 Predicate(Predicate) {} 2221 2222 static bool classof(const InstructionPredicateMatcher *P) { 2223 return P->getKind() == IPM_GenericPredicate; 2224 } 2225 bool isIdentical(const PredicateMatcher &B) const override { 2226 return InstructionPredicateMatcher::isIdentical(B) && 2227 Predicate == 2228 static_cast<const GenericInstructionPredicateMatcher &>(B) 2229 .Predicate; 2230 } 2231 void emitPredicateOpcodes(MatchTable &Table, 2232 RuleMatcher &Rule) const override { 2233 Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate") 2234 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2235 << MatchTable::Comment("FnId") 2236 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 2237 << MatchTable::LineBreak; 2238 } 2239 }; 2240 2241 /// Generates code to check that a set of predicates and operands match for a 2242 /// particular instruction. 2243 /// 2244 /// Typical predicates include: 2245 /// * Has a specific opcode. 2246 /// * Has an nsw/nuw flag or doesn't. 2247 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> { 2248 protected: 2249 typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec; 2250 2251 RuleMatcher &Rule; 2252 2253 /// The operands to match. All rendered operands must be present even if the 2254 /// condition is always true. 2255 OperandVec Operands; 2256 bool NumOperandsCheck = true; 2257 2258 std::string SymbolicName; 2259 unsigned InsnVarID; 2260 2261 /// PhysRegInputs - List list has an entry for each explicitly specified 2262 /// physreg input to the pattern. The first elt is the Register node, the 2263 /// second is the recorded slot number the input pattern match saved it in. 2264 SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs; 2265 2266 public: 2267 InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName, 2268 bool NumOpsCheck = true) 2269 : Rule(Rule), NumOperandsCheck(NumOpsCheck), SymbolicName(SymbolicName) { 2270 // We create a new instruction matcher. 2271 // Get a new ID for that instruction. 2272 InsnVarID = Rule.implicitlyDefineInsnVar(*this); 2273 } 2274 2275 /// Construct a new instruction predicate and add it to the matcher. 2276 template <class Kind, class... Args> 2277 Optional<Kind *> addPredicate(Args &&... args) { 2278 Predicates.emplace_back( 2279 std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...)); 2280 return static_cast<Kind *>(Predicates.back().get()); 2281 } 2282 2283 RuleMatcher &getRuleMatcher() const { return Rule; } 2284 2285 unsigned getInsnVarID() const { return InsnVarID; } 2286 2287 /// Add an operand to the matcher. 2288 OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName, 2289 unsigned AllocatedTemporariesBaseID) { 2290 Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName, 2291 AllocatedTemporariesBaseID)); 2292 if (!SymbolicName.empty()) 2293 Rule.defineOperand(SymbolicName, *Operands.back()); 2294 2295 return *Operands.back(); 2296 } 2297 2298 OperandMatcher &getOperand(unsigned OpIdx) { 2299 auto I = llvm::find_if(Operands, 2300 [&OpIdx](const std::unique_ptr<OperandMatcher> &X) { 2301 return X->getOpIdx() == OpIdx; 2302 }); 2303 if (I != Operands.end()) 2304 return **I; 2305 llvm_unreachable("Failed to lookup operand"); 2306 } 2307 2308 OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx, 2309 unsigned TempOpIdx) { 2310 assert(SymbolicName.empty()); 2311 OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx); 2312 Operands.emplace_back(OM); 2313 Rule.definePhysRegOperand(Reg, *OM); 2314 PhysRegInputs.emplace_back(Reg, OpIdx); 2315 return *OM; 2316 } 2317 2318 ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const { 2319 return PhysRegInputs; 2320 } 2321 2322 StringRef getSymbolicName() const { return SymbolicName; } 2323 unsigned getNumOperands() const { return Operands.size(); } 2324 OperandVec::iterator operands_begin() { return Operands.begin(); } 2325 OperandVec::iterator operands_end() { return Operands.end(); } 2326 iterator_range<OperandVec::iterator> operands() { 2327 return make_range(operands_begin(), operands_end()); 2328 } 2329 OperandVec::const_iterator operands_begin() const { return Operands.begin(); } 2330 OperandVec::const_iterator operands_end() const { return Operands.end(); } 2331 iterator_range<OperandVec::const_iterator> operands() const { 2332 return make_range(operands_begin(), operands_end()); 2333 } 2334 bool operands_empty() const { return Operands.empty(); } 2335 2336 void pop_front() { Operands.erase(Operands.begin()); } 2337 2338 void optimize(); 2339 2340 /// Emit MatchTable opcodes that test whether the instruction named in 2341 /// InsnVarName matches all the predicates and all the operands. 2342 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { 2343 if (NumOperandsCheck) 2344 InstructionNumOperandsMatcher(InsnVarID, getNumOperands()) 2345 .emitPredicateOpcodes(Table, Rule); 2346 2347 // First emit all instruction level predicates need to be verified before we 2348 // can verify operands. 2349 emitFilteredPredicateListOpcodes( 2350 [](const PredicateMatcher &P) { 2351 return !P.dependsOnOperands(); 2352 }, Table, Rule); 2353 2354 // Emit all operand constraints. 2355 for (const auto &Operand : Operands) 2356 Operand->emitPredicateOpcodes(Table, Rule); 2357 2358 // All of the tablegen defined predicates should now be matched. Now emit 2359 // any custom predicates that rely on all generated checks. 2360 emitFilteredPredicateListOpcodes( 2361 [](const PredicateMatcher &P) { 2362 return P.dependsOnOperands(); 2363 }, Table, Rule); 2364 } 2365 2366 /// Compare the priority of this object and B. 2367 /// 2368 /// Returns true if this object is more important than B. 2369 bool isHigherPriorityThan(InstructionMatcher &B) { 2370 // Instruction matchers involving more operands have higher priority. 2371 if (Operands.size() > B.Operands.size()) 2372 return true; 2373 if (Operands.size() < B.Operands.size()) 2374 return false; 2375 2376 for (auto &&P : zip(predicates(), B.predicates())) { 2377 auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get()); 2378 auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get()); 2379 if (L->isHigherPriorityThan(*R)) 2380 return true; 2381 if (R->isHigherPriorityThan(*L)) 2382 return false; 2383 } 2384 2385 for (auto Operand : zip(Operands, B.Operands)) { 2386 if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand))) 2387 return true; 2388 if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand))) 2389 return false; 2390 } 2391 2392 return false; 2393 }; 2394 2395 /// Report the maximum number of temporary operands needed by the instruction 2396 /// matcher. 2397 unsigned countRendererFns() { 2398 return std::accumulate( 2399 predicates().begin(), predicates().end(), 0, 2400 [](unsigned A, 2401 const std::unique_ptr<PredicateMatcher> &Predicate) { 2402 return A + Predicate->countRendererFns(); 2403 }) + 2404 std::accumulate( 2405 Operands.begin(), Operands.end(), 0, 2406 [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) { 2407 return A + Operand->countRendererFns(); 2408 }); 2409 } 2410 2411 InstructionOpcodeMatcher &getOpcodeMatcher() { 2412 for (auto &P : predicates()) 2413 if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get())) 2414 return *OpMatcher; 2415 llvm_unreachable("Didn't find an opcode matcher"); 2416 } 2417 2418 bool isConstantInstruction() { 2419 return getOpcodeMatcher().isConstantInstruction(); 2420 } 2421 2422 StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); } 2423 }; 2424 2425 StringRef RuleMatcher::getOpcode() const { 2426 return Matchers.front()->getOpcode(); 2427 } 2428 2429 unsigned RuleMatcher::getNumOperands() const { 2430 return Matchers.front()->getNumOperands(); 2431 } 2432 2433 LLTCodeGen RuleMatcher::getFirstConditionAsRootType() { 2434 InstructionMatcher &InsnMatcher = *Matchers.front(); 2435 if (!InsnMatcher.predicates_empty()) 2436 if (const auto *TM = 2437 dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin())) 2438 if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0) 2439 return TM->getTy(); 2440 return {}; 2441 } 2442 2443 /// Generates code to check that the operand is a register defined by an 2444 /// instruction that matches the given instruction matcher. 2445 /// 2446 /// For example, the pattern: 2447 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3)) 2448 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match 2449 /// the: 2450 /// (G_ADD $src1, $src2) 2451 /// subpattern. 2452 class InstructionOperandMatcher : public OperandPredicateMatcher { 2453 protected: 2454 std::unique_ptr<InstructionMatcher> InsnMatcher; 2455 2456 public: 2457 InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 2458 RuleMatcher &Rule, StringRef SymbolicName, 2459 bool NumOpsCheck = true) 2460 : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx), 2461 InsnMatcher(new InstructionMatcher(Rule, SymbolicName, NumOpsCheck)) {} 2462 2463 static bool classof(const PredicateMatcher *P) { 2464 return P->getKind() == OPM_Instruction; 2465 } 2466 2467 InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; } 2468 2469 void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const { 2470 const unsigned NewInsnVarID = InsnMatcher->getInsnVarID(); 2471 Table << MatchTable::Opcode("GIM_RecordInsn") 2472 << MatchTable::Comment("DefineMI") 2473 << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI") 2474 << MatchTable::IntValue(getInsnVarID()) 2475 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx()) 2476 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]") 2477 << MatchTable::LineBreak; 2478 } 2479 2480 void emitPredicateOpcodes(MatchTable &Table, 2481 RuleMatcher &Rule) const override { 2482 emitCaptureOpcodes(Table, Rule); 2483 InsnMatcher->emitPredicateOpcodes(Table, Rule); 2484 } 2485 2486 bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override { 2487 if (OperandPredicateMatcher::isHigherPriorityThan(B)) 2488 return true; 2489 if (B.OperandPredicateMatcher::isHigherPriorityThan(*this)) 2490 return false; 2491 2492 if (const InstructionOperandMatcher *BP = 2493 dyn_cast<InstructionOperandMatcher>(&B)) 2494 if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher)) 2495 return true; 2496 return false; 2497 } 2498 }; 2499 2500 void InstructionMatcher::optimize() { 2501 SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash; 2502 const auto &OpcMatcher = getOpcodeMatcher(); 2503 2504 Stash.push_back(predicates_pop_front()); 2505 if (Stash.back().get() == &OpcMatcher) { 2506 if (NumOperandsCheck && OpcMatcher.isVariadicNumOperands()) 2507 Stash.emplace_back( 2508 new InstructionNumOperandsMatcher(InsnVarID, getNumOperands())); 2509 NumOperandsCheck = false; 2510 2511 for (auto &OM : Operands) 2512 for (auto &OP : OM->predicates()) 2513 if (isa<IntrinsicIDOperandMatcher>(OP)) { 2514 Stash.push_back(std::move(OP)); 2515 OM->eraseNullPredicates(); 2516 break; 2517 } 2518 } 2519 2520 if (InsnVarID > 0) { 2521 assert(!Operands.empty() && "Nested instruction is expected to def a vreg"); 2522 for (auto &OP : Operands[0]->predicates()) 2523 OP.reset(); 2524 Operands[0]->eraseNullPredicates(); 2525 } 2526 for (auto &OM : Operands) { 2527 for (auto &OP : OM->predicates()) 2528 if (isa<LLTOperandMatcher>(OP)) 2529 Stash.push_back(std::move(OP)); 2530 OM->eraseNullPredicates(); 2531 } 2532 while (!Stash.empty()) 2533 prependPredicate(Stash.pop_back_val()); 2534 } 2535 2536 //===- Actions ------------------------------------------------------------===// 2537 class OperandRenderer { 2538 public: 2539 enum RendererKind { 2540 OR_Copy, 2541 OR_CopyOrAddZeroReg, 2542 OR_CopySubReg, 2543 OR_CopyPhysReg, 2544 OR_CopyConstantAsImm, 2545 OR_CopyFConstantAsFPImm, 2546 OR_Imm, 2547 OR_SubRegIndex, 2548 OR_Register, 2549 OR_TempRegister, 2550 OR_ComplexPattern, 2551 OR_Custom, 2552 OR_CustomOperand 2553 }; 2554 2555 protected: 2556 RendererKind Kind; 2557 2558 public: 2559 OperandRenderer(RendererKind Kind) : Kind(Kind) {} 2560 virtual ~OperandRenderer() {} 2561 2562 RendererKind getKind() const { return Kind; } 2563 2564 virtual void emitRenderOpcodes(MatchTable &Table, 2565 RuleMatcher &Rule) const = 0; 2566 }; 2567 2568 /// A CopyRenderer emits code to copy a single operand from an existing 2569 /// instruction to the one being built. 2570 class CopyRenderer : public OperandRenderer { 2571 protected: 2572 unsigned NewInsnID; 2573 /// The name of the operand. 2574 const StringRef SymbolicName; 2575 2576 public: 2577 CopyRenderer(unsigned NewInsnID, StringRef SymbolicName) 2578 : OperandRenderer(OR_Copy), NewInsnID(NewInsnID), 2579 SymbolicName(SymbolicName) { 2580 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); 2581 } 2582 2583 static bool classof(const OperandRenderer *R) { 2584 return R->getKind() == OR_Copy; 2585 } 2586 2587 StringRef getSymbolicName() const { return SymbolicName; } 2588 2589 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2590 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2591 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2592 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") 2593 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") 2594 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2595 << MatchTable::IntValue(Operand.getOpIdx()) 2596 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2597 } 2598 }; 2599 2600 /// A CopyRenderer emits code to copy a virtual register to a specific physical 2601 /// register. 2602 class CopyPhysRegRenderer : public OperandRenderer { 2603 protected: 2604 unsigned NewInsnID; 2605 Record *PhysReg; 2606 2607 public: 2608 CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg) 2609 : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID), 2610 PhysReg(Reg) { 2611 assert(PhysReg); 2612 } 2613 2614 static bool classof(const OperandRenderer *R) { 2615 return R->getKind() == OR_CopyPhysReg; 2616 } 2617 2618 Record *getPhysReg() const { return PhysReg; } 2619 2620 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2621 const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg); 2622 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2623 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") 2624 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") 2625 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2626 << MatchTable::IntValue(Operand.getOpIdx()) 2627 << MatchTable::Comment(PhysReg->getName()) 2628 << MatchTable::LineBreak; 2629 } 2630 }; 2631 2632 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an 2633 /// existing instruction to the one being built. If the operand turns out to be 2634 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register. 2635 class CopyOrAddZeroRegRenderer : public OperandRenderer { 2636 protected: 2637 unsigned NewInsnID; 2638 /// The name of the operand. 2639 const StringRef SymbolicName; 2640 const Record *ZeroRegisterDef; 2641 2642 public: 2643 CopyOrAddZeroRegRenderer(unsigned NewInsnID, 2644 StringRef SymbolicName, Record *ZeroRegisterDef) 2645 : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID), 2646 SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) { 2647 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); 2648 } 2649 2650 static bool classof(const OperandRenderer *R) { 2651 return R->getKind() == OR_CopyOrAddZeroReg; 2652 } 2653 2654 StringRef getSymbolicName() const { return SymbolicName; } 2655 2656 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2657 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2658 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2659 Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg") 2660 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2661 << MatchTable::Comment("OldInsnID") 2662 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2663 << MatchTable::IntValue(Operand.getOpIdx()) 2664 << MatchTable::NamedValue( 2665 (ZeroRegisterDef->getValue("Namespace") 2666 ? ZeroRegisterDef->getValueAsString("Namespace") 2667 : ""), 2668 ZeroRegisterDef->getName()) 2669 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2670 } 2671 }; 2672 2673 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to 2674 /// an extended immediate operand. 2675 class CopyConstantAsImmRenderer : public OperandRenderer { 2676 protected: 2677 unsigned NewInsnID; 2678 /// The name of the operand. 2679 const std::string SymbolicName; 2680 bool Signed; 2681 2682 public: 2683 CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName) 2684 : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID), 2685 SymbolicName(SymbolicName), Signed(true) {} 2686 2687 static bool classof(const OperandRenderer *R) { 2688 return R->getKind() == OR_CopyConstantAsImm; 2689 } 2690 2691 StringRef getSymbolicName() const { return SymbolicName; } 2692 2693 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2694 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2695 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2696 Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm" 2697 : "GIR_CopyConstantAsUImm") 2698 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2699 << MatchTable::Comment("OldInsnID") 2700 << MatchTable::IntValue(OldInsnVarID) 2701 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2702 } 2703 }; 2704 2705 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT 2706 /// instruction to an extended immediate operand. 2707 class CopyFConstantAsFPImmRenderer : public OperandRenderer { 2708 protected: 2709 unsigned NewInsnID; 2710 /// The name of the operand. 2711 const std::string SymbolicName; 2712 2713 public: 2714 CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName) 2715 : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID), 2716 SymbolicName(SymbolicName) {} 2717 2718 static bool classof(const OperandRenderer *R) { 2719 return R->getKind() == OR_CopyFConstantAsFPImm; 2720 } 2721 2722 StringRef getSymbolicName() const { return SymbolicName; } 2723 2724 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2725 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2726 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2727 Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm") 2728 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2729 << MatchTable::Comment("OldInsnID") 2730 << MatchTable::IntValue(OldInsnVarID) 2731 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2732 } 2733 }; 2734 2735 /// A CopySubRegRenderer emits code to copy a single register operand from an 2736 /// existing instruction to the one being built and indicate that only a 2737 /// subregister should be copied. 2738 class CopySubRegRenderer : public OperandRenderer { 2739 protected: 2740 unsigned NewInsnID; 2741 /// The name of the operand. 2742 const StringRef SymbolicName; 2743 /// The subregister to extract. 2744 const CodeGenSubRegIndex *SubReg; 2745 2746 public: 2747 CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName, 2748 const CodeGenSubRegIndex *SubReg) 2749 : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID), 2750 SymbolicName(SymbolicName), SubReg(SubReg) {} 2751 2752 static bool classof(const OperandRenderer *R) { 2753 return R->getKind() == OR_CopySubReg; 2754 } 2755 2756 StringRef getSymbolicName() const { return SymbolicName; } 2757 2758 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2759 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2760 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2761 Table << MatchTable::Opcode("GIR_CopySubReg") 2762 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2763 << MatchTable::Comment("OldInsnID") 2764 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2765 << MatchTable::IntValue(Operand.getOpIdx()) 2766 << MatchTable::Comment("SubRegIdx") 2767 << MatchTable::IntValue(SubReg->EnumValue) 2768 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2769 } 2770 }; 2771 2772 /// Adds a specific physical register to the instruction being built. 2773 /// This is typically useful for WZR/XZR on AArch64. 2774 class AddRegisterRenderer : public OperandRenderer { 2775 protected: 2776 unsigned InsnID; 2777 const Record *RegisterDef; 2778 bool IsDef; 2779 const CodeGenTarget &Target; 2780 2781 public: 2782 AddRegisterRenderer(unsigned InsnID, const CodeGenTarget &Target, 2783 const Record *RegisterDef, bool IsDef = false) 2784 : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef), 2785 IsDef(IsDef), Target(Target) {} 2786 2787 static bool classof(const OperandRenderer *R) { 2788 return R->getKind() == OR_Register; 2789 } 2790 2791 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2792 Table << MatchTable::Opcode("GIR_AddRegister") 2793 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID); 2794 if (RegisterDef->getName() != "zero_reg") { 2795 Table << MatchTable::NamedValue( 2796 (RegisterDef->getValue("Namespace") 2797 ? RegisterDef->getValueAsString("Namespace") 2798 : ""), 2799 RegisterDef->getName()); 2800 } else { 2801 Table << MatchTable::NamedValue(Target.getRegNamespace(), "NoRegister"); 2802 } 2803 Table << MatchTable::Comment("AddRegisterRegFlags"); 2804 2805 // TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are 2806 // really needed for a physical register reference. We can pack the 2807 // register and flags in a single field. 2808 if (IsDef) 2809 Table << MatchTable::NamedValue("RegState::Define"); 2810 else 2811 Table << MatchTable::IntValue(0); 2812 Table << MatchTable::LineBreak; 2813 } 2814 }; 2815 2816 /// Adds a specific temporary virtual register to the instruction being built. 2817 /// This is used to chain instructions together when emitting multiple 2818 /// instructions. 2819 class TempRegRenderer : public OperandRenderer { 2820 protected: 2821 unsigned InsnID; 2822 unsigned TempRegID; 2823 const CodeGenSubRegIndex *SubRegIdx; 2824 bool IsDef; 2825 bool IsDead; 2826 2827 public: 2828 TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false, 2829 const CodeGenSubRegIndex *SubReg = nullptr, 2830 bool IsDead = false) 2831 : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID), 2832 SubRegIdx(SubReg), IsDef(IsDef), IsDead(IsDead) {} 2833 2834 static bool classof(const OperandRenderer *R) { 2835 return R->getKind() == OR_TempRegister; 2836 } 2837 2838 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2839 if (SubRegIdx) { 2840 assert(!IsDef); 2841 Table << MatchTable::Opcode("GIR_AddTempSubRegister"); 2842 } else 2843 Table << MatchTable::Opcode("GIR_AddTempRegister"); 2844 2845 Table << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2846 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) 2847 << MatchTable::Comment("TempRegFlags"); 2848 2849 if (IsDef) { 2850 SmallString<32> RegFlags; 2851 RegFlags += "RegState::Define"; 2852 if (IsDead) 2853 RegFlags += "|RegState::Dead"; 2854 Table << MatchTable::NamedValue(RegFlags); 2855 } else 2856 Table << MatchTable::IntValue(0); 2857 2858 if (SubRegIdx) 2859 Table << MatchTable::NamedValue(SubRegIdx->getQualifiedName()); 2860 Table << MatchTable::LineBreak; 2861 } 2862 }; 2863 2864 /// Adds a specific immediate to the instruction being built. 2865 class ImmRenderer : public OperandRenderer { 2866 protected: 2867 unsigned InsnID; 2868 int64_t Imm; 2869 2870 public: 2871 ImmRenderer(unsigned InsnID, int64_t Imm) 2872 : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {} 2873 2874 static bool classof(const OperandRenderer *R) { 2875 return R->getKind() == OR_Imm; 2876 } 2877 2878 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2879 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") 2880 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm") 2881 << MatchTable::IntValue(Imm) << MatchTable::LineBreak; 2882 } 2883 }; 2884 2885 /// Adds an enum value for a subreg index to the instruction being built. 2886 class SubRegIndexRenderer : public OperandRenderer { 2887 protected: 2888 unsigned InsnID; 2889 const CodeGenSubRegIndex *SubRegIdx; 2890 2891 public: 2892 SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI) 2893 : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {} 2894 2895 static bool classof(const OperandRenderer *R) { 2896 return R->getKind() == OR_SubRegIndex; 2897 } 2898 2899 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2900 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") 2901 << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex") 2902 << MatchTable::IntValue(SubRegIdx->EnumValue) 2903 << MatchTable::LineBreak; 2904 } 2905 }; 2906 2907 /// Adds operands by calling a renderer function supplied by the ComplexPattern 2908 /// matcher function. 2909 class RenderComplexPatternOperand : public OperandRenderer { 2910 private: 2911 unsigned InsnID; 2912 const Record &TheDef; 2913 /// The name of the operand. 2914 const StringRef SymbolicName; 2915 /// The renderer number. This must be unique within a rule since it's used to 2916 /// identify a temporary variable to hold the renderer function. 2917 unsigned RendererID; 2918 /// When provided, this is the suboperand of the ComplexPattern operand to 2919 /// render. Otherwise all the suboperands will be rendered. 2920 Optional<unsigned> SubOperand; 2921 2922 unsigned getNumOperands() const { 2923 return TheDef.getValueAsDag("Operands")->getNumArgs(); 2924 } 2925 2926 public: 2927 RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef, 2928 StringRef SymbolicName, unsigned RendererID, 2929 Optional<unsigned> SubOperand = None) 2930 : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef), 2931 SymbolicName(SymbolicName), RendererID(RendererID), 2932 SubOperand(SubOperand) {} 2933 2934 static bool classof(const OperandRenderer *R) { 2935 return R->getKind() == OR_ComplexPattern; 2936 } 2937 2938 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2939 Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer" 2940 : "GIR_ComplexRenderer") 2941 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2942 << MatchTable::Comment("RendererID") 2943 << MatchTable::IntValue(RendererID); 2944 if (SubOperand.hasValue()) 2945 Table << MatchTable::Comment("SubOperand") 2946 << MatchTable::IntValue(SubOperand.getValue()); 2947 Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2948 } 2949 }; 2950 2951 class CustomRenderer : public OperandRenderer { 2952 protected: 2953 unsigned InsnID; 2954 const Record &Renderer; 2955 /// The name of the operand. 2956 const std::string SymbolicName; 2957 2958 public: 2959 CustomRenderer(unsigned InsnID, const Record &Renderer, 2960 StringRef SymbolicName) 2961 : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer), 2962 SymbolicName(SymbolicName) {} 2963 2964 static bool classof(const OperandRenderer *R) { 2965 return R->getKind() == OR_Custom; 2966 } 2967 2968 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2969 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2970 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2971 Table << MatchTable::Opcode("GIR_CustomRenderer") 2972 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2973 << MatchTable::Comment("OldInsnID") 2974 << MatchTable::IntValue(OldInsnVarID) 2975 << MatchTable::Comment("Renderer") 2976 << MatchTable::NamedValue( 2977 "GICR_" + Renderer.getValueAsString("RendererFn").str()) 2978 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2979 } 2980 }; 2981 2982 class CustomOperandRenderer : public OperandRenderer { 2983 protected: 2984 unsigned InsnID; 2985 const Record &Renderer; 2986 /// The name of the operand. 2987 const std::string SymbolicName; 2988 2989 public: 2990 CustomOperandRenderer(unsigned InsnID, const Record &Renderer, 2991 StringRef SymbolicName) 2992 : OperandRenderer(OR_CustomOperand), InsnID(InsnID), Renderer(Renderer), 2993 SymbolicName(SymbolicName) {} 2994 2995 static bool classof(const OperandRenderer *R) { 2996 return R->getKind() == OR_CustomOperand; 2997 } 2998 2999 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3000 const OperandMatcher &OpdMatcher = Rule.getOperandMatcher(SymbolicName); 3001 Table << MatchTable::Opcode("GIR_CustomOperandRenderer") 3002 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3003 << MatchTable::Comment("OldInsnID") 3004 << MatchTable::IntValue(OpdMatcher.getInsnVarID()) 3005 << MatchTable::Comment("OpIdx") 3006 << MatchTable::IntValue(OpdMatcher.getOpIdx()) 3007 << MatchTable::Comment("OperandRenderer") 3008 << MatchTable::NamedValue( 3009 "GICR_" + Renderer.getValueAsString("RendererFn").str()) 3010 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 3011 } 3012 }; 3013 3014 /// An action taken when all Matcher predicates succeeded for a parent rule. 3015 /// 3016 /// Typical actions include: 3017 /// * Changing the opcode of an instruction. 3018 /// * Adding an operand to an instruction. 3019 class MatchAction { 3020 public: 3021 virtual ~MatchAction() {} 3022 3023 /// Emit the MatchTable opcodes to implement the action. 3024 virtual void emitActionOpcodes(MatchTable &Table, 3025 RuleMatcher &Rule) const = 0; 3026 }; 3027 3028 /// Generates a comment describing the matched rule being acted upon. 3029 class DebugCommentAction : public MatchAction { 3030 private: 3031 std::string S; 3032 3033 public: 3034 DebugCommentAction(StringRef S) : S(std::string(S)) {} 3035 3036 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3037 Table << MatchTable::Comment(S) << MatchTable::LineBreak; 3038 } 3039 }; 3040 3041 /// Generates code to build an instruction or mutate an existing instruction 3042 /// into the desired instruction when this is possible. 3043 class BuildMIAction : public MatchAction { 3044 private: 3045 unsigned InsnID; 3046 const CodeGenInstruction *I; 3047 InstructionMatcher *Matched; 3048 std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers; 3049 3050 /// True if the instruction can be built solely by mutating the opcode. 3051 bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const { 3052 if (!Insn) 3053 return false; 3054 3055 if (OperandRenderers.size() != Insn->getNumOperands()) 3056 return false; 3057 3058 for (const auto &Renderer : enumerate(OperandRenderers)) { 3059 if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) { 3060 const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName()); 3061 if (Insn != &OM.getInstructionMatcher() || 3062 OM.getOpIdx() != Renderer.index()) 3063 return false; 3064 } else 3065 return false; 3066 } 3067 3068 return true; 3069 } 3070 3071 public: 3072 BuildMIAction(unsigned InsnID, const CodeGenInstruction *I) 3073 : InsnID(InsnID), I(I), Matched(nullptr) {} 3074 3075 unsigned getInsnID() const { return InsnID; } 3076 const CodeGenInstruction *getCGI() const { return I; } 3077 3078 void chooseInsnToMutate(RuleMatcher &Rule) { 3079 for (auto *MutateCandidate : Rule.mutatable_insns()) { 3080 if (canMutate(Rule, MutateCandidate)) { 3081 // Take the first one we're offered that we're able to mutate. 3082 Rule.reserveInsnMatcherForMutation(MutateCandidate); 3083 Matched = MutateCandidate; 3084 return; 3085 } 3086 } 3087 } 3088 3089 template <class Kind, class... Args> 3090 Kind &addRenderer(Args&&... args) { 3091 OperandRenderers.emplace_back( 3092 std::make_unique<Kind>(InsnID, std::forward<Args>(args)...)); 3093 return *static_cast<Kind *>(OperandRenderers.back().get()); 3094 } 3095 3096 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3097 if (Matched) { 3098 assert(canMutate(Rule, Matched) && 3099 "Arranged to mutate an insn that isn't mutatable"); 3100 3101 unsigned RecycleInsnID = Rule.getInsnVarID(*Matched); 3102 Table << MatchTable::Opcode("GIR_MutateOpcode") 3103 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3104 << MatchTable::Comment("RecycleInsnID") 3105 << MatchTable::IntValue(RecycleInsnID) 3106 << MatchTable::Comment("Opcode") 3107 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) 3108 << MatchTable::LineBreak; 3109 3110 if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) { 3111 for (auto Def : I->ImplicitDefs) { 3112 auto Namespace = Def->getValue("Namespace") 3113 ? Def->getValueAsString("Namespace") 3114 : ""; 3115 Table << MatchTable::Opcode("GIR_AddImplicitDef") 3116 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3117 << MatchTable::NamedValue(Namespace, Def->getName()) 3118 << MatchTable::LineBreak; 3119 } 3120 for (auto Use : I->ImplicitUses) { 3121 auto Namespace = Use->getValue("Namespace") 3122 ? Use->getValueAsString("Namespace") 3123 : ""; 3124 Table << MatchTable::Opcode("GIR_AddImplicitUse") 3125 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3126 << MatchTable::NamedValue(Namespace, Use->getName()) 3127 << MatchTable::LineBreak; 3128 } 3129 } 3130 return; 3131 } 3132 3133 // TODO: Simple permutation looks like it could be almost as common as 3134 // mutation due to commutative operations. 3135 3136 Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID") 3137 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode") 3138 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) 3139 << MatchTable::LineBreak; 3140 for (const auto &Renderer : OperandRenderers) 3141 Renderer->emitRenderOpcodes(Table, Rule); 3142 3143 if (I->mayLoad || I->mayStore) { 3144 Table << MatchTable::Opcode("GIR_MergeMemOperands") 3145 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3146 << MatchTable::Comment("MergeInsnID's"); 3147 // Emit the ID's for all the instructions that are matched by this rule. 3148 // TODO: Limit this to matched instructions that mayLoad/mayStore or have 3149 // some other means of having a memoperand. Also limit this to 3150 // emitted instructions that expect to have a memoperand too. For 3151 // example, (G_SEXT (G_LOAD x)) that results in separate load and 3152 // sign-extend instructions shouldn't put the memoperand on the 3153 // sign-extend since it has no effect there. 3154 std::vector<unsigned> MergeInsnIDs; 3155 for (const auto &IDMatcherPair : Rule.defined_insn_vars()) 3156 MergeInsnIDs.push_back(IDMatcherPair.second); 3157 llvm::sort(MergeInsnIDs); 3158 for (const auto &MergeInsnID : MergeInsnIDs) 3159 Table << MatchTable::IntValue(MergeInsnID); 3160 Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList") 3161 << MatchTable::LineBreak; 3162 } 3163 3164 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do 3165 // better for combines. Particularly when there are multiple match 3166 // roots. 3167 if (InsnID == 0) 3168 Table << MatchTable::Opcode("GIR_EraseFromParent") 3169 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3170 << MatchTable::LineBreak; 3171 } 3172 }; 3173 3174 /// Generates code to constrain the operands of an output instruction to the 3175 /// register classes specified by the definition of that instruction. 3176 class ConstrainOperandsToDefinitionAction : public MatchAction { 3177 unsigned InsnID; 3178 3179 public: 3180 ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {} 3181 3182 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3183 Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands") 3184 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3185 << MatchTable::LineBreak; 3186 } 3187 }; 3188 3189 /// Generates code to constrain the specified operand of an output instruction 3190 /// to the specified register class. 3191 class ConstrainOperandToRegClassAction : public MatchAction { 3192 unsigned InsnID; 3193 unsigned OpIdx; 3194 const CodeGenRegisterClass &RC; 3195 3196 public: 3197 ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx, 3198 const CodeGenRegisterClass &RC) 3199 : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {} 3200 3201 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3202 Table << MatchTable::Opcode("GIR_ConstrainOperandRC") 3203 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3204 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 3205 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") 3206 << MatchTable::LineBreak; 3207 } 3208 }; 3209 3210 /// Generates code to create a temporary register which can be used to chain 3211 /// instructions together. 3212 class MakeTempRegisterAction : public MatchAction { 3213 private: 3214 LLTCodeGen Ty; 3215 unsigned TempRegID; 3216 3217 public: 3218 MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID) 3219 : Ty(Ty), TempRegID(TempRegID) { 3220 KnownTypes.insert(Ty); 3221 } 3222 3223 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3224 Table << MatchTable::Opcode("GIR_MakeTempReg") 3225 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) 3226 << MatchTable::Comment("TypeID") 3227 << MatchTable::NamedValue(Ty.getCxxEnumValue()) 3228 << MatchTable::LineBreak; 3229 } 3230 }; 3231 3232 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) { 3233 Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName)); 3234 MutatableInsns.insert(Matchers.back().get()); 3235 return *Matchers.back(); 3236 } 3237 3238 void RuleMatcher::addRequiredFeature(Record *Feature) { 3239 RequiredFeatures.push_back(Feature); 3240 } 3241 3242 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const { 3243 return RequiredFeatures; 3244 } 3245 3246 // Emplaces an action of the specified Kind at the end of the action list. 3247 // 3248 // Returns a reference to the newly created action. 3249 // 3250 // Like std::vector::emplace_back(), may invalidate all iterators if the new 3251 // size exceeds the capacity. Otherwise, only invalidates the past-the-end 3252 // iterator. 3253 template <class Kind, class... Args> 3254 Kind &RuleMatcher::addAction(Args &&... args) { 3255 Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...)); 3256 return *static_cast<Kind *>(Actions.back().get()); 3257 } 3258 3259 // Emplaces an action of the specified Kind before the given insertion point. 3260 // 3261 // Returns an iterator pointing at the newly created instruction. 3262 // 3263 // Like std::vector::insert(), may invalidate all iterators if the new size 3264 // exceeds the capacity. Otherwise, only invalidates the iterators from the 3265 // insertion point onwards. 3266 template <class Kind, class... Args> 3267 action_iterator RuleMatcher::insertAction(action_iterator InsertPt, 3268 Args &&... args) { 3269 return Actions.emplace(InsertPt, 3270 std::make_unique<Kind>(std::forward<Args>(args)...)); 3271 } 3272 3273 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) { 3274 unsigned NewInsnVarID = NextInsnVarID++; 3275 InsnVariableIDs[&Matcher] = NewInsnVarID; 3276 return NewInsnVarID; 3277 } 3278 3279 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const { 3280 const auto &I = InsnVariableIDs.find(&InsnMatcher); 3281 if (I != InsnVariableIDs.end()) 3282 return I->second; 3283 llvm_unreachable("Matched Insn was not captured in a local variable"); 3284 } 3285 3286 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) { 3287 if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) { 3288 DefinedOperands[SymbolicName] = &OM; 3289 return; 3290 } 3291 3292 // If the operand is already defined, then we must ensure both references in 3293 // the matcher have the exact same node. 3294 OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName()); 3295 } 3296 3297 void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) { 3298 if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) { 3299 PhysRegOperands[Reg] = &OM; 3300 return; 3301 } 3302 } 3303 3304 InstructionMatcher & 3305 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const { 3306 for (const auto &I : InsnVariableIDs) 3307 if (I.first->getSymbolicName() == SymbolicName) 3308 return *I.first; 3309 llvm_unreachable( 3310 ("Failed to lookup instruction " + SymbolicName).str().c_str()); 3311 } 3312 3313 const OperandMatcher & 3314 RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const { 3315 const auto &I = PhysRegOperands.find(Reg); 3316 3317 if (I == PhysRegOperands.end()) { 3318 PrintFatalError(SrcLoc, "Register " + Reg->getName() + 3319 " was not declared in matcher"); 3320 } 3321 3322 return *I->second; 3323 } 3324 3325 const OperandMatcher & 3326 RuleMatcher::getOperandMatcher(StringRef Name) const { 3327 const auto &I = DefinedOperands.find(Name); 3328 3329 if (I == DefinedOperands.end()) 3330 PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher"); 3331 3332 return *I->second; 3333 } 3334 3335 void RuleMatcher::emit(MatchTable &Table) { 3336 if (Matchers.empty()) 3337 llvm_unreachable("Unexpected empty matcher!"); 3338 3339 // The representation supports rules that require multiple roots such as: 3340 // %ptr(p0) = ... 3341 // %elt0(s32) = G_LOAD %ptr 3342 // %1(p0) = G_ADD %ptr, 4 3343 // %elt1(s32) = G_LOAD p0 %1 3344 // which could be usefully folded into: 3345 // %ptr(p0) = ... 3346 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr 3347 // on some targets but we don't need to make use of that yet. 3348 assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet"); 3349 3350 unsigned LabelID = Table.allocateLabelID(); 3351 Table << MatchTable::Opcode("GIM_Try", +1) 3352 << MatchTable::Comment("On fail goto") 3353 << MatchTable::JumpTarget(LabelID) 3354 << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str()) 3355 << MatchTable::LineBreak; 3356 3357 if (!RequiredFeatures.empty()) { 3358 Table << MatchTable::Opcode("GIM_CheckFeatures") 3359 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures)) 3360 << MatchTable::LineBreak; 3361 } 3362 3363 Matchers.front()->emitPredicateOpcodes(Table, *this); 3364 3365 // We must also check if it's safe to fold the matched instructions. 3366 if (InsnVariableIDs.size() >= 2) { 3367 // Invert the map to create stable ordering (by var names) 3368 SmallVector<unsigned, 2> InsnIDs; 3369 for (const auto &Pair : InsnVariableIDs) { 3370 // Skip the root node since it isn't moving anywhere. Everything else is 3371 // sinking to meet it. 3372 if (Pair.first == Matchers.front().get()) 3373 continue; 3374 3375 InsnIDs.push_back(Pair.second); 3376 } 3377 llvm::sort(InsnIDs); 3378 3379 for (const auto &InsnID : InsnIDs) { 3380 // Reject the difficult cases until we have a more accurate check. 3381 Table << MatchTable::Opcode("GIM_CheckIsSafeToFold") 3382 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3383 << MatchTable::LineBreak; 3384 3385 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or 3386 // account for unsafe cases. 3387 // 3388 // Example: 3389 // MI1--> %0 = ... 3390 // %1 = ... %0 3391 // MI0--> %2 = ... %0 3392 // It's not safe to erase MI1. We currently handle this by not 3393 // erasing %0 (even when it's dead). 3394 // 3395 // Example: 3396 // MI1--> %0 = load volatile @a 3397 // %1 = load volatile @a 3398 // MI0--> %2 = ... %0 3399 // It's not safe to sink %0's def past %1. We currently handle 3400 // this by rejecting all loads. 3401 // 3402 // Example: 3403 // MI1--> %0 = load @a 3404 // %1 = store @a 3405 // MI0--> %2 = ... %0 3406 // It's not safe to sink %0's def past %1. We currently handle 3407 // this by rejecting all loads. 3408 // 3409 // Example: 3410 // G_CONDBR %cond, @BB1 3411 // BB0: 3412 // MI1--> %0 = load @a 3413 // G_BR @BB1 3414 // BB1: 3415 // MI0--> %2 = ... %0 3416 // It's not always safe to sink %0 across control flow. In this 3417 // case it may introduce a memory fault. We currentl handle this 3418 // by rejecting all loads. 3419 } 3420 } 3421 3422 for (const auto &PM : EpilogueMatchers) 3423 PM->emitPredicateOpcodes(Table, *this); 3424 3425 for (const auto &MA : Actions) 3426 MA->emitActionOpcodes(Table, *this); 3427 3428 if (Table.isWithCoverage()) 3429 Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID) 3430 << MatchTable::LineBreak; 3431 else 3432 Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str()) 3433 << MatchTable::LineBreak; 3434 3435 Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak 3436 << MatchTable::Label(LabelID); 3437 ++NumPatternEmitted; 3438 } 3439 3440 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const { 3441 // Rules involving more match roots have higher priority. 3442 if (Matchers.size() > B.Matchers.size()) 3443 return true; 3444 if (Matchers.size() < B.Matchers.size()) 3445 return false; 3446 3447 for (auto Matcher : zip(Matchers, B.Matchers)) { 3448 if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher))) 3449 return true; 3450 if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher))) 3451 return false; 3452 } 3453 3454 return false; 3455 } 3456 3457 unsigned RuleMatcher::countRendererFns() const { 3458 return std::accumulate( 3459 Matchers.begin(), Matchers.end(), 0, 3460 [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) { 3461 return A + Matcher->countRendererFns(); 3462 }); 3463 } 3464 3465 bool OperandPredicateMatcher::isHigherPriorityThan( 3466 const OperandPredicateMatcher &B) const { 3467 // Generally speaking, an instruction is more important than an Int or a 3468 // LiteralInt because it can cover more nodes but theres an exception to 3469 // this. G_CONSTANT's are less important than either of those two because they 3470 // are more permissive. 3471 3472 const InstructionOperandMatcher *AOM = 3473 dyn_cast<InstructionOperandMatcher>(this); 3474 const InstructionOperandMatcher *BOM = 3475 dyn_cast<InstructionOperandMatcher>(&B); 3476 bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction(); 3477 bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction(); 3478 3479 if (AOM && BOM) { 3480 // The relative priorities between a G_CONSTANT and any other instruction 3481 // don't actually matter but this code is needed to ensure a strict weak 3482 // ordering. This is particularly important on Windows where the rules will 3483 // be incorrectly sorted without it. 3484 if (AIsConstantInsn != BIsConstantInsn) 3485 return AIsConstantInsn < BIsConstantInsn; 3486 return false; 3487 } 3488 3489 if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt)) 3490 return false; 3491 if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt)) 3492 return true; 3493 3494 return Kind < B.Kind; 3495 } 3496 3497 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table, 3498 RuleMatcher &Rule) const { 3499 const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName); 3500 unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher()); 3501 assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID()); 3502 3503 Table << MatchTable::Opcode("GIM_CheckIsSameOperand") 3504 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 3505 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) 3506 << MatchTable::Comment("OtherMI") 3507 << MatchTable::IntValue(OtherInsnVarID) 3508 << MatchTable::Comment("OtherOpIdx") 3509 << MatchTable::IntValue(OtherOM.getOpIdx()) 3510 << MatchTable::LineBreak; 3511 } 3512 3513 //===- GlobalISelEmitter class --------------------------------------------===// 3514 3515 static Expected<LLTCodeGen> getInstResultType(const TreePatternNode *Dst) { 3516 ArrayRef<TypeSetByHwMode> ChildTypes = Dst->getExtTypes(); 3517 if (ChildTypes.size() != 1) 3518 return failedImport("Dst pattern child has multiple results"); 3519 3520 Optional<LLTCodeGen> MaybeOpTy; 3521 if (ChildTypes.front().isMachineValueType()) { 3522 MaybeOpTy = 3523 MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); 3524 } 3525 3526 if (!MaybeOpTy) 3527 return failedImport("Dst operand has an unsupported type"); 3528 return *MaybeOpTy; 3529 } 3530 3531 class GlobalISelEmitter { 3532 public: 3533 explicit GlobalISelEmitter(RecordKeeper &RK); 3534 void run(raw_ostream &OS); 3535 3536 private: 3537 const RecordKeeper &RK; 3538 const CodeGenDAGPatterns CGP; 3539 const CodeGenTarget &Target; 3540 CodeGenRegBank &CGRegs; 3541 3542 /// Keep track of the equivalence between SDNodes and Instruction by mapping 3543 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to 3544 /// check for attributes on the relation such as CheckMMOIsNonAtomic. 3545 /// This is defined using 'GINodeEquiv' in the target description. 3546 DenseMap<Record *, Record *> NodeEquivs; 3547 3548 /// Keep track of the equivalence between ComplexPattern's and 3549 /// GIComplexOperandMatcher. Map entries are specified by subclassing 3550 /// GIComplexPatternEquiv. 3551 DenseMap<const Record *, const Record *> ComplexPatternEquivs; 3552 3553 /// Keep track of the equivalence between SDNodeXForm's and 3554 /// GICustomOperandRenderer. Map entries are specified by subclassing 3555 /// GISDNodeXFormEquiv. 3556 DenseMap<const Record *, const Record *> SDNodeXFormEquivs; 3557 3558 /// Keep track of Scores of PatternsToMatch similar to how the DAG does. 3559 /// This adds compatibility for RuleMatchers to use this for ordering rules. 3560 DenseMap<uint64_t, int> RuleMatcherScores; 3561 3562 // Map of predicates to their subtarget features. 3563 SubtargetFeatureInfoMap SubtargetFeatures; 3564 3565 // Rule coverage information. 3566 Optional<CodeGenCoverage> RuleCoverage; 3567 3568 /// Variables used to help with collecting of named operands for predicates 3569 /// with 'let PredicateCodeUsesOperands = 1'. WaitingForNamedOperands is set 3570 /// to the number of named operands that predicate expects. Store locations in 3571 /// StoreIdxForName correspond to the order in which operand names appear in 3572 /// predicate's argument list. 3573 /// When we visit named leaf operand and WaitingForNamedOperands is not zero, 3574 /// add matcher that will record operand and decrease counter. 3575 unsigned WaitingForNamedOperands = 0; 3576 StringMap<unsigned> StoreIdxForName; 3577 3578 void gatherOpcodeValues(); 3579 void gatherTypeIDValues(); 3580 void gatherNodeEquivs(); 3581 3582 Record *findNodeEquiv(Record *N) const; 3583 const CodeGenInstruction *getEquivNode(Record &Equiv, 3584 const TreePatternNode *N) const; 3585 3586 Error importRulePredicates(RuleMatcher &M, ArrayRef<Record *> Predicates); 3587 Expected<InstructionMatcher &> 3588 createAndImportSelDAGMatcher(RuleMatcher &Rule, 3589 InstructionMatcher &InsnMatcher, 3590 const TreePatternNode *Src, unsigned &TempOpIdx); 3591 Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R, 3592 unsigned &TempOpIdx) const; 3593 Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3594 const TreePatternNode *SrcChild, 3595 bool OperandIsAPointer, bool OperandIsImmArg, 3596 unsigned OpIdx, unsigned &TempOpIdx); 3597 3598 Expected<BuildMIAction &> createAndImportInstructionRenderer( 3599 RuleMatcher &M, InstructionMatcher &InsnMatcher, 3600 const TreePatternNode *Src, const TreePatternNode *Dst); 3601 Expected<action_iterator> createAndImportSubInstructionRenderer( 3602 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, 3603 unsigned TempReg); 3604 Expected<action_iterator> 3605 createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M, 3606 const TreePatternNode *Dst); 3607 3608 Expected<action_iterator> 3609 importExplicitDefRenderers(action_iterator InsertPt, RuleMatcher &M, 3610 BuildMIAction &DstMIBuilder, 3611 const TreePatternNode *Dst); 3612 3613 Expected<action_iterator> 3614 importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M, 3615 BuildMIAction &DstMIBuilder, 3616 const llvm::TreePatternNode *Dst); 3617 Expected<action_iterator> 3618 importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule, 3619 BuildMIAction &DstMIBuilder, 3620 TreePatternNode *DstChild); 3621 Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M, 3622 BuildMIAction &DstMIBuilder, 3623 DagInit *DefaultOps) const; 3624 Error 3625 importImplicitDefRenderers(BuildMIAction &DstMIBuilder, 3626 const std::vector<Record *> &ImplicitDefs) const; 3627 3628 void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName, 3629 StringRef TypeIdentifier, StringRef ArgType, 3630 StringRef ArgName, StringRef AdditionalArgs, 3631 StringRef AdditionalDeclarations, 3632 std::function<bool(const Record *R)> Filter); 3633 void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier, 3634 StringRef ArgType, 3635 std::function<bool(const Record *R)> Filter); 3636 void emitMIPredicateFns(raw_ostream &OS); 3637 3638 /// Analyze pattern \p P, returning a matcher for it if possible. 3639 /// Otherwise, return an Error explaining why we don't support it. 3640 Expected<RuleMatcher> runOnPattern(const PatternToMatch &P); 3641 3642 void declareSubtargetFeature(Record *Predicate); 3643 3644 MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize, 3645 bool WithCoverage); 3646 3647 /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned 3648 /// CodeGenRegisterClass will support the CodeGenRegisterClass of 3649 /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode. 3650 /// If no register class is found, return None. 3651 Optional<const CodeGenRegisterClass *> 3652 inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty, 3653 TreePatternNode *SuperRegNode, 3654 TreePatternNode *SubRegIdxNode); 3655 Optional<CodeGenSubRegIndex *> 3656 inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode); 3657 3658 /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode. 3659 /// Return None if no such class exists. 3660 Optional<const CodeGenRegisterClass *> 3661 inferSuperRegisterClass(const TypeSetByHwMode &Ty, 3662 TreePatternNode *SubRegIdxNode); 3663 3664 /// Return the CodeGenRegisterClass associated with \p Leaf if it has one. 3665 Optional<const CodeGenRegisterClass *> 3666 getRegClassFromLeaf(TreePatternNode *Leaf); 3667 3668 /// Return a CodeGenRegisterClass for \p N if one can be found. Return None 3669 /// otherwise. 3670 Optional<const CodeGenRegisterClass *> 3671 inferRegClassFromPattern(TreePatternNode *N); 3672 3673 /// Return the size of the MemoryVT in this predicate, if possible. 3674 Optional<unsigned> 3675 getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate); 3676 3677 // Add builtin predicates. 3678 Expected<InstructionMatcher &> 3679 addBuiltinPredicates(const Record *SrcGIEquivOrNull, 3680 const TreePredicateFn &Predicate, 3681 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher); 3682 3683 public: 3684 /// Takes a sequence of \p Rules and group them based on the predicates 3685 /// they share. \p MatcherStorage is used as a memory container 3686 /// for the group that are created as part of this process. 3687 /// 3688 /// What this optimization does looks like if GroupT = GroupMatcher: 3689 /// Output without optimization: 3690 /// \verbatim 3691 /// # R1 3692 /// # predicate A 3693 /// # predicate B 3694 /// ... 3695 /// # R2 3696 /// # predicate A // <-- effectively this is going to be checked twice. 3697 /// // Once in R1 and once in R2. 3698 /// # predicate C 3699 /// \endverbatim 3700 /// Output with optimization: 3701 /// \verbatim 3702 /// # Group1_2 3703 /// # predicate A // <-- Check is now shared. 3704 /// # R1 3705 /// # predicate B 3706 /// # R2 3707 /// # predicate C 3708 /// \endverbatim 3709 template <class GroupT> 3710 static std::vector<Matcher *> optimizeRules( 3711 ArrayRef<Matcher *> Rules, 3712 std::vector<std::unique_ptr<Matcher>> &MatcherStorage); 3713 }; 3714 3715 void GlobalISelEmitter::gatherOpcodeValues() { 3716 InstructionOpcodeMatcher::initOpcodeValuesMap(Target); 3717 } 3718 3719 void GlobalISelEmitter::gatherTypeIDValues() { 3720 LLTOperandMatcher::initTypeIDValuesMap(); 3721 } 3722 3723 void GlobalISelEmitter::gatherNodeEquivs() { 3724 assert(NodeEquivs.empty()); 3725 for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv")) 3726 NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv; 3727 3728 assert(ComplexPatternEquivs.empty()); 3729 for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) { 3730 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); 3731 if (!SelDAGEquiv) 3732 continue; 3733 ComplexPatternEquivs[SelDAGEquiv] = Equiv; 3734 } 3735 3736 assert(SDNodeXFormEquivs.empty()); 3737 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) { 3738 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); 3739 if (!SelDAGEquiv) 3740 continue; 3741 SDNodeXFormEquivs[SelDAGEquiv] = Equiv; 3742 } 3743 } 3744 3745 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const { 3746 return NodeEquivs.lookup(N); 3747 } 3748 3749 const CodeGenInstruction * 3750 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const { 3751 if (N->getNumChildren() >= 1) { 3752 // setcc operation maps to two different G_* instructions based on the type. 3753 if (!Equiv.isValueUnset("IfFloatingPoint") && 3754 MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint()) 3755 return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint")); 3756 } 3757 3758 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 3759 const TreePredicateFn &Predicate = Call.Fn; 3760 if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() && 3761 Predicate.isSignExtLoad()) 3762 return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend")); 3763 if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() && 3764 Predicate.isZeroExtLoad()) 3765 return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend")); 3766 } 3767 3768 return &Target.getInstruction(Equiv.getValueAsDef("I")); 3769 } 3770 3771 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK) 3772 : RK(RK), CGP(RK), Target(CGP.getTargetInfo()), 3773 CGRegs(Target.getRegBank()) {} 3774 3775 //===- Emitter ------------------------------------------------------------===// 3776 3777 Error GlobalISelEmitter::importRulePredicates(RuleMatcher &M, 3778 ArrayRef<Record *> Predicates) { 3779 for (Record *Pred : Predicates) { 3780 if (Pred->getValueAsString("CondString").empty()) 3781 continue; 3782 declareSubtargetFeature(Pred); 3783 M.addRequiredFeature(Pred); 3784 } 3785 3786 return Error::success(); 3787 } 3788 3789 Optional<unsigned> GlobalISelEmitter::getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate) { 3790 Optional<LLTCodeGen> MemTyOrNone = 3791 MVTToLLT(getValueType(Predicate.getMemoryVT())); 3792 3793 if (!MemTyOrNone) 3794 return None; 3795 3796 // Align so unusual types like i1 don't get rounded down. 3797 return llvm::alignTo( 3798 static_cast<unsigned>(MemTyOrNone->get().getSizeInBits()), 8); 3799 } 3800 3801 Expected<InstructionMatcher &> GlobalISelEmitter::addBuiltinPredicates( 3802 const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate, 3803 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher) { 3804 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 3805 if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) { 3806 SmallVector<unsigned, 4> ParsedAddrSpaces; 3807 3808 for (Init *Val : AddrSpaces->getValues()) { 3809 IntInit *IntVal = dyn_cast<IntInit>(Val); 3810 if (!IntVal) 3811 return failedImport("Address space is not an integer"); 3812 ParsedAddrSpaces.push_back(IntVal->getValue()); 3813 } 3814 3815 if (!ParsedAddrSpaces.empty()) { 3816 InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>( 3817 0, ParsedAddrSpaces); 3818 } 3819 } 3820 3821 int64_t MinAlign = Predicate.getMinAlignment(); 3822 if (MinAlign > 0) 3823 InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign); 3824 } 3825 3826 // G_LOAD is used for both non-extending and any-extending loads. 3827 if (Predicate.isLoad() && Predicate.isNonExtLoad()) { 3828 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3829 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); 3830 return InsnMatcher; 3831 } 3832 if (Predicate.isLoad() && Predicate.isAnyExtLoad()) { 3833 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3834 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); 3835 return InsnMatcher; 3836 } 3837 3838 if (Predicate.isStore()) { 3839 if (Predicate.isTruncStore()) { 3840 if (Predicate.getMemoryVT() != nullptr) { 3841 // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size. 3842 auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); 3843 if (!MemSizeInBits) 3844 return failedImport("MemVT could not be converted to LLT"); 3845 3846 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0, *MemSizeInBits / 3847 8); 3848 } else { 3849 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3850 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); 3851 } 3852 return InsnMatcher; 3853 } 3854 if (Predicate.isNonTruncStore()) { 3855 // We need to check the sizes match here otherwise we could incorrectly 3856 // match truncating stores with non-truncating ones. 3857 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3858 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); 3859 } 3860 } 3861 3862 // No check required. We already did it by swapping the opcode. 3863 if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") && 3864 Predicate.isSignExtLoad()) 3865 return InsnMatcher; 3866 3867 // No check required. We already did it by swapping the opcode. 3868 if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") && 3869 Predicate.isZeroExtLoad()) 3870 return InsnMatcher; 3871 3872 // No check required. G_STORE by itself is a non-extending store. 3873 if (Predicate.isNonTruncStore()) 3874 return InsnMatcher; 3875 3876 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 3877 if (Predicate.getMemoryVT() != nullptr) { 3878 auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); 3879 if (!MemSizeInBits) 3880 return failedImport("MemVT could not be converted to LLT"); 3881 3882 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0, 3883 *MemSizeInBits / 8); 3884 return InsnMatcher; 3885 } 3886 } 3887 3888 if (Predicate.isLoad() || Predicate.isStore()) { 3889 // No check required. A G_LOAD/G_STORE is an unindexed load. 3890 if (Predicate.isUnindexed()) 3891 return InsnMatcher; 3892 } 3893 3894 if (Predicate.isAtomic()) { 3895 if (Predicate.isAtomicOrderingMonotonic()) { 3896 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Monotonic"); 3897 return InsnMatcher; 3898 } 3899 if (Predicate.isAtomicOrderingAcquire()) { 3900 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire"); 3901 return InsnMatcher; 3902 } 3903 if (Predicate.isAtomicOrderingRelease()) { 3904 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release"); 3905 return InsnMatcher; 3906 } 3907 if (Predicate.isAtomicOrderingAcquireRelease()) { 3908 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3909 "AcquireRelease"); 3910 return InsnMatcher; 3911 } 3912 if (Predicate.isAtomicOrderingSequentiallyConsistent()) { 3913 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3914 "SequentiallyConsistent"); 3915 return InsnMatcher; 3916 } 3917 } 3918 3919 if (Predicate.isAtomicOrderingAcquireOrStronger()) { 3920 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3921 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3922 return InsnMatcher; 3923 } 3924 if (Predicate.isAtomicOrderingWeakerThanAcquire()) { 3925 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3926 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); 3927 return InsnMatcher; 3928 } 3929 3930 if (Predicate.isAtomicOrderingReleaseOrStronger()) { 3931 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3932 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3933 return InsnMatcher; 3934 } 3935 if (Predicate.isAtomicOrderingWeakerThanRelease()) { 3936 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3937 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); 3938 return InsnMatcher; 3939 } 3940 HasAddedMatcher = false; 3941 return InsnMatcher; 3942 } 3943 3944 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher( 3945 RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3946 const TreePatternNode *Src, unsigned &TempOpIdx) { 3947 Record *SrcGIEquivOrNull = nullptr; 3948 const CodeGenInstruction *SrcGIOrNull = nullptr; 3949 3950 // Start with the defined operands (i.e., the results of the root operator). 3951 if (Src->getExtTypes().size() > 1) 3952 return failedImport("Src pattern has multiple results"); 3953 3954 if (Src->isLeaf()) { 3955 Init *SrcInit = Src->getLeafValue(); 3956 if (isa<IntInit>(SrcInit)) { 3957 InsnMatcher.addPredicate<InstructionOpcodeMatcher>( 3958 &Target.getInstruction(RK.getDef("G_CONSTANT"))); 3959 } else 3960 return failedImport( 3961 "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); 3962 } else { 3963 SrcGIEquivOrNull = findNodeEquiv(Src->getOperator()); 3964 if (!SrcGIEquivOrNull) 3965 return failedImport("Pattern operator lacks an equivalent Instruction" + 3966 explainOperator(Src->getOperator())); 3967 SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src); 3968 3969 // The operators look good: match the opcode 3970 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull); 3971 } 3972 3973 unsigned OpIdx = 0; 3974 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { 3975 // Results don't have a name unless they are the root node. The caller will 3976 // set the name if appropriate. 3977 OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); 3978 if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */)) 3979 return failedImport(toString(std::move(Error)) + 3980 " for result of Src pattern operator"); 3981 } 3982 3983 for (const TreePredicateCall &Call : Src->getPredicateCalls()) { 3984 const TreePredicateFn &Predicate = Call.Fn; 3985 bool HasAddedBuiltinMatcher = true; 3986 if (Predicate.isAlwaysTrue()) 3987 continue; 3988 3989 if (Predicate.isImmediatePattern()) { 3990 InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate); 3991 continue; 3992 } 3993 3994 auto InsnMatcherOrError = addBuiltinPredicates( 3995 SrcGIEquivOrNull, Predicate, InsnMatcher, HasAddedBuiltinMatcher); 3996 if (auto Error = InsnMatcherOrError.takeError()) 3997 return std::move(Error); 3998 3999 if (Predicate.hasGISelPredicateCode()) { 4000 if (Predicate.usesOperands()) { 4001 assert(WaitingForNamedOperands == 0 && 4002 "previous predicate didn't find all operands or " 4003 "nested predicate that uses operands"); 4004 TreePattern *TP = Predicate.getOrigPatFragRecord(); 4005 WaitingForNamedOperands = TP->getNumArgs(); 4006 for (unsigned i = 0; i < WaitingForNamedOperands; ++i) 4007 StoreIdxForName[getScopedName(Call.Scope, TP->getArgName(i))] = i; 4008 } 4009 InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate); 4010 continue; 4011 } 4012 if (!HasAddedBuiltinMatcher) { 4013 return failedImport("Src pattern child has predicate (" + 4014 explainPredicates(Src) + ")"); 4015 } 4016 } 4017 4018 bool IsAtomic = false; 4019 if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic")) 4020 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic"); 4021 else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) { 4022 IsAtomic = true; 4023 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 4024 "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 4025 } 4026 4027 if (Src->isLeaf()) { 4028 Init *SrcInit = Src->getLeafValue(); 4029 if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) { 4030 OperandMatcher &OM = 4031 InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx); 4032 OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue()); 4033 } else 4034 return failedImport( 4035 "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); 4036 } else { 4037 assert(SrcGIOrNull && 4038 "Expected to have already found an equivalent Instruction"); 4039 if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" || 4040 SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") { 4041 // imm/fpimm still have operands but we don't need to do anything with it 4042 // here since we don't support ImmLeaf predicates yet. However, we still 4043 // need to note the hidden operand to get GIM_CheckNumOperands correct. 4044 InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); 4045 return InsnMatcher; 4046 } 4047 4048 // Special case because the operand order is changed from setcc. The 4049 // predicate operand needs to be swapped from the last operand to the first 4050 // source. 4051 4052 unsigned NumChildren = Src->getNumChildren(); 4053 bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP"; 4054 4055 if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") { 4056 TreePatternNode *SrcChild = Src->getChild(NumChildren - 1); 4057 if (SrcChild->isLeaf()) { 4058 DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue()); 4059 Record *CCDef = DI ? DI->getDef() : nullptr; 4060 if (!CCDef || !CCDef->isSubClassOf("CondCode")) 4061 return failedImport("Unable to handle CondCode"); 4062 4063 OperandMatcher &OM = 4064 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); 4065 StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") : 4066 CCDef->getValueAsString("ICmpPredicate"); 4067 4068 if (!PredType.empty()) { 4069 OM.addPredicate<CmpPredicateOperandMatcher>(std::string(PredType)); 4070 // Process the other 2 operands normally. 4071 --NumChildren; 4072 } 4073 } 4074 } 4075 4076 // Hack around an unfortunate mistake in how atomic store (and really 4077 // atomicrmw in general) operands were ordered. A ISD::STORE used the order 4078 // <stored value>, <pointer> order. ISD::ATOMIC_STORE used the opposite, 4079 // <pointer>, <stored value>. In GlobalISel there's just the one store 4080 // opcode, so we need to swap the operands here to get the right type check. 4081 if (IsAtomic && SrcGIOrNull->TheDef->getName() == "G_STORE") { 4082 assert(NumChildren == 2 && "wrong operands for atomic store"); 4083 4084 TreePatternNode *PtrChild = Src->getChild(0); 4085 TreePatternNode *ValueChild = Src->getChild(1); 4086 4087 if (auto Error = importChildMatcher(Rule, InsnMatcher, PtrChild, true, 4088 false, 1, TempOpIdx)) 4089 return std::move(Error); 4090 4091 if (auto Error = importChildMatcher(Rule, InsnMatcher, ValueChild, false, 4092 false, 0, TempOpIdx)) 4093 return std::move(Error); 4094 return InsnMatcher; 4095 } 4096 4097 // Match the used operands (i.e. the children of the operator). 4098 bool IsIntrinsic = 4099 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" || 4100 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS"; 4101 const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP); 4102 if (IsIntrinsic && !II) 4103 return failedImport("Expected IntInit containing intrinsic ID)"); 4104 4105 for (unsigned i = 0; i != NumChildren; ++i) { 4106 TreePatternNode *SrcChild = Src->getChild(i); 4107 4108 // We need to determine the meaning of a literal integer based on the 4109 // context. If this is a field required to be an immediate (such as an 4110 // immarg intrinsic argument), the required predicates are different than 4111 // a constant which may be materialized in a register. If we have an 4112 // argument that is required to be an immediate, we should not emit an LLT 4113 // type check, and should not be looking for a G_CONSTANT defined 4114 // register. 4115 bool OperandIsImmArg = SrcGIOrNull->isOperandImmArg(i); 4116 4117 // SelectionDAG allows pointers to be represented with iN since it doesn't 4118 // distinguish between pointers and integers but they are different types in GlobalISel. 4119 // Coerce integers to pointers to address space 0 if the context indicates a pointer. 4120 // 4121 bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i); 4122 4123 if (IsIntrinsic) { 4124 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately 4125 // following the defs is an intrinsic ID. 4126 if (i == 0) { 4127 OperandMatcher &OM = 4128 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); 4129 OM.addPredicate<IntrinsicIDOperandMatcher>(II); 4130 continue; 4131 } 4132 4133 // We have to check intrinsics for llvm_anyptr_ty and immarg parameters. 4134 // 4135 // Note that we have to look at the i-1th parameter, because we don't 4136 // have the intrinsic ID in the intrinsic's parameter list. 4137 OperandIsAPointer |= II->isParamAPointer(i - 1); 4138 OperandIsImmArg |= II->isParamImmArg(i - 1); 4139 } 4140 4141 if (auto Error = 4142 importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer, 4143 OperandIsImmArg, OpIdx++, TempOpIdx)) 4144 return std::move(Error); 4145 } 4146 } 4147 4148 return InsnMatcher; 4149 } 4150 4151 Error GlobalISelEmitter::importComplexPatternOperandMatcher( 4152 OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const { 4153 const auto &ComplexPattern = ComplexPatternEquivs.find(R); 4154 if (ComplexPattern == ComplexPatternEquivs.end()) 4155 return failedImport("SelectionDAG ComplexPattern (" + R->getName() + 4156 ") not mapped to GlobalISel"); 4157 4158 OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second); 4159 TempOpIdx++; 4160 return Error::success(); 4161 } 4162 4163 // Get the name to use for a pattern operand. For an anonymous physical register 4164 // input, this should use the register name. 4165 static StringRef getSrcChildName(const TreePatternNode *SrcChild, 4166 Record *&PhysReg) { 4167 StringRef SrcChildName = SrcChild->getName(); 4168 if (SrcChildName.empty() && SrcChild->isLeaf()) { 4169 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { 4170 auto *ChildRec = ChildDefInit->getDef(); 4171 if (ChildRec->isSubClassOf("Register")) { 4172 SrcChildName = ChildRec->getName(); 4173 PhysReg = ChildRec; 4174 } 4175 } 4176 } 4177 4178 return SrcChildName; 4179 } 4180 4181 Error GlobalISelEmitter::importChildMatcher( 4182 RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 4183 const TreePatternNode *SrcChild, bool OperandIsAPointer, 4184 bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) { 4185 4186 Record *PhysReg = nullptr; 4187 std::string SrcChildName = std::string(getSrcChildName(SrcChild, PhysReg)); 4188 if (!SrcChild->isLeaf() && 4189 SrcChild->getOperator()->isSubClassOf("ComplexPattern")) { 4190 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is 4191 // "MY_PAT:op1:op2" and the ones with same "name" represent same operand. 4192 std::string PatternName = std::string(SrcChild->getOperator()->getName()); 4193 for (unsigned i = 0; i < SrcChild->getNumChildren(); ++i) { 4194 PatternName += ":"; 4195 PatternName += SrcChild->getChild(i)->getName(); 4196 } 4197 SrcChildName = PatternName; 4198 } 4199 4200 OperandMatcher &OM = 4201 PhysReg ? InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx) 4202 : InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx); 4203 if (OM.isSameAsAnotherOperand()) 4204 return Error::success(); 4205 4206 ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes(); 4207 if (ChildTypes.size() != 1) 4208 return failedImport("Src pattern child has multiple results"); 4209 4210 // Check MBB's before the type check since they are not a known type. 4211 if (!SrcChild->isLeaf()) { 4212 if (SrcChild->getOperator()->isSubClassOf("SDNode")) { 4213 auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator()); 4214 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { 4215 OM.addPredicate<MBBOperandMatcher>(); 4216 return Error::success(); 4217 } 4218 if (SrcChild->getOperator()->getName() == "timm") { 4219 OM.addPredicate<ImmOperandMatcher>(); 4220 4221 // Add predicates, if any 4222 for (const TreePredicateCall &Call : SrcChild->getPredicateCalls()) { 4223 const TreePredicateFn &Predicate = Call.Fn; 4224 4225 // Only handle immediate patterns for now 4226 if (Predicate.isImmediatePattern()) { 4227 OM.addPredicate<OperandImmPredicateMatcher>(Predicate); 4228 } 4229 } 4230 4231 return Error::success(); 4232 } 4233 } 4234 } 4235 4236 // Immediate arguments have no meaningful type to check as they don't have 4237 // registers. 4238 if (!OperandIsImmArg) { 4239 if (auto Error = 4240 OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer)) 4241 return failedImport(toString(std::move(Error)) + " for Src operand (" + 4242 to_string(*SrcChild) + ")"); 4243 } 4244 4245 // Check for nested instructions. 4246 if (!SrcChild->isLeaf()) { 4247 if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) { 4248 // When a ComplexPattern is used as an operator, it should do the same 4249 // thing as when used as a leaf. However, the children of the operator 4250 // name the sub-operands that make up the complex operand and we must 4251 // prepare to reference them in the renderer too. 4252 unsigned RendererID = TempOpIdx; 4253 if (auto Error = importComplexPatternOperandMatcher( 4254 OM, SrcChild->getOperator(), TempOpIdx)) 4255 return Error; 4256 4257 for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) { 4258 auto *SubOperand = SrcChild->getChild(i); 4259 if (!SubOperand->getName().empty()) { 4260 if (auto Error = Rule.defineComplexSubOperand( 4261 SubOperand->getName(), SrcChild->getOperator(), RendererID, i, 4262 SrcChildName)) 4263 return Error; 4264 } 4265 } 4266 4267 return Error::success(); 4268 } 4269 4270 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( 4271 InsnMatcher.getRuleMatcher(), SrcChild->getName()); 4272 if (!MaybeInsnOperand.hasValue()) { 4273 // This isn't strictly true. If the user were to provide exactly the same 4274 // matchers as the original operand then we could allow it. However, it's 4275 // simpler to not permit the redundant specification. 4276 return failedImport("Nested instruction cannot be the same as another operand"); 4277 } 4278 4279 // Map the node to a gMIR instruction. 4280 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; 4281 auto InsnMatcherOrError = createAndImportSelDAGMatcher( 4282 Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx); 4283 if (auto Error = InsnMatcherOrError.takeError()) 4284 return Error; 4285 4286 return Error::success(); 4287 } 4288 4289 if (SrcChild->hasAnyPredicate()) 4290 return failedImport("Src pattern child has unsupported predicate"); 4291 4292 // Check for constant immediates. 4293 if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) { 4294 if (OperandIsImmArg) { 4295 // Checks for argument directly in operand list 4296 OM.addPredicate<LiteralIntOperandMatcher>(ChildInt->getValue()); 4297 } else { 4298 // Checks for materialized constant 4299 OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue()); 4300 } 4301 return Error::success(); 4302 } 4303 4304 // Check for def's like register classes or ComplexPattern's. 4305 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { 4306 auto *ChildRec = ChildDefInit->getDef(); 4307 4308 if (WaitingForNamedOperands) { 4309 auto PA = SrcChild->getNamesAsPredicateArg().begin(); 4310 std::string Name = getScopedName(PA->getScope(), PA->getIdentifier()); 4311 OM.addPredicate<RecordNamedOperandMatcher>(StoreIdxForName[Name], Name); 4312 --WaitingForNamedOperands; 4313 } 4314 4315 // Check for register classes. 4316 if (ChildRec->isSubClassOf("RegisterClass") || 4317 ChildRec->isSubClassOf("RegisterOperand")) { 4318 OM.addPredicate<RegisterBankOperandMatcher>( 4319 Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit))); 4320 return Error::success(); 4321 } 4322 4323 if (ChildRec->isSubClassOf("Register")) { 4324 // This just be emitted as a copy to the specific register. 4325 ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode(); 4326 const CodeGenRegisterClass *RC 4327 = CGRegs.getMinimalPhysRegClass(ChildRec, &VT); 4328 if (!RC) { 4329 return failedImport( 4330 "Could not determine physical register class of pattern source"); 4331 } 4332 4333 OM.addPredicate<RegisterBankOperandMatcher>(*RC); 4334 return Error::success(); 4335 } 4336 4337 // Check for ValueType. 4338 if (ChildRec->isSubClassOf("ValueType")) { 4339 // We already added a type check as standard practice so this doesn't need 4340 // to do anything. 4341 return Error::success(); 4342 } 4343 4344 // Check for ComplexPattern's. 4345 if (ChildRec->isSubClassOf("ComplexPattern")) 4346 return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx); 4347 4348 if (ChildRec->isSubClassOf("ImmLeaf")) { 4349 return failedImport( 4350 "Src pattern child def is an unsupported tablegen class (ImmLeaf)"); 4351 } 4352 4353 // Place holder for SRCVALUE nodes. Nothing to do here. 4354 if (ChildRec->getName() == "srcvalue") 4355 return Error::success(); 4356 4357 const bool ImmAllOnesV = ChildRec->getName() == "immAllOnesV"; 4358 if (ImmAllOnesV || ChildRec->getName() == "immAllZerosV") { 4359 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( 4360 InsnMatcher.getRuleMatcher(), SrcChild->getName(), false); 4361 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; 4362 4363 ValueTypeByHwMode VTy = ChildTypes.front().getValueTypeByHwMode(); 4364 4365 const CodeGenInstruction &BuildVector 4366 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR")); 4367 const CodeGenInstruction &BuildVectorTrunc 4368 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR_TRUNC")); 4369 4370 // Treat G_BUILD_VECTOR as the canonical opcode, and G_BUILD_VECTOR_TRUNC 4371 // as an alternative. 4372 InsnOperand.getInsnMatcher().addPredicate<InstructionOpcodeMatcher>( 4373 makeArrayRef({&BuildVector, &BuildVectorTrunc})); 4374 4375 // TODO: Handle both G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC We could 4376 // theoretically not emit any opcode check, but getOpcodeMatcher currently 4377 // has to succeed. 4378 OperandMatcher &OM = 4379 InsnOperand.getInsnMatcher().addOperand(0, "", TempOpIdx); 4380 if (auto Error = 4381 OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */)) 4382 return failedImport(toString(std::move(Error)) + 4383 " for result of Src pattern operator"); 4384 4385 InsnOperand.getInsnMatcher().addPredicate<VectorSplatImmPredicateMatcher>( 4386 ImmAllOnesV ? VectorSplatImmPredicateMatcher::AllOnes 4387 : VectorSplatImmPredicateMatcher::AllZeros); 4388 return Error::success(); 4389 } 4390 4391 return failedImport( 4392 "Src pattern child def is an unsupported tablegen class"); 4393 } 4394 4395 return failedImport("Src pattern child is an unsupported kind"); 4396 } 4397 4398 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer( 4399 action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder, 4400 TreePatternNode *DstChild) { 4401 4402 const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName()); 4403 if (SubOperand.hasValue()) { 4404 DstMIBuilder.addRenderer<RenderComplexPatternOperand>( 4405 *std::get<0>(*SubOperand), DstChild->getName(), 4406 std::get<1>(*SubOperand), std::get<2>(*SubOperand)); 4407 return InsertPt; 4408 } 4409 4410 if (!DstChild->isLeaf()) { 4411 if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) { 4412 auto Child = DstChild->getChild(0); 4413 auto I = SDNodeXFormEquivs.find(DstChild->getOperator()); 4414 if (I != SDNodeXFormEquivs.end()) { 4415 Record *XFormOpc = DstChild->getOperator()->getValueAsDef("Opcode"); 4416 if (XFormOpc->getName() == "timm") { 4417 // If this is a TargetConstant, there won't be a corresponding 4418 // instruction to transform. Instead, this will refer directly to an 4419 // operand in an instruction's operand list. 4420 DstMIBuilder.addRenderer<CustomOperandRenderer>(*I->second, 4421 Child->getName()); 4422 } else { 4423 DstMIBuilder.addRenderer<CustomRenderer>(*I->second, 4424 Child->getName()); 4425 } 4426 4427 return InsertPt; 4428 } 4429 return failedImport("SDNodeXForm " + Child->getName() + 4430 " has no custom renderer"); 4431 } 4432 4433 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't 4434 // inline, but in MI it's just another operand. 4435 if (DstChild->getOperator()->isSubClassOf("SDNode")) { 4436 auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator()); 4437 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { 4438 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4439 return InsertPt; 4440 } 4441 } 4442 4443 // Similarly, imm is an operator in TreePatternNode's view but must be 4444 // rendered as operands. 4445 // FIXME: The target should be able to choose sign-extended when appropriate 4446 // (e.g. on Mips). 4447 if (DstChild->getOperator()->getName() == "timm") { 4448 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4449 return InsertPt; 4450 } else if (DstChild->getOperator()->getName() == "imm") { 4451 DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName()); 4452 return InsertPt; 4453 } else if (DstChild->getOperator()->getName() == "fpimm") { 4454 DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>( 4455 DstChild->getName()); 4456 return InsertPt; 4457 } 4458 4459 if (DstChild->getOperator()->isSubClassOf("Instruction")) { 4460 auto OpTy = getInstResultType(DstChild); 4461 if (!OpTy) 4462 return OpTy.takeError(); 4463 4464 unsigned TempRegID = Rule.allocateTempRegID(); 4465 InsertPt = Rule.insertAction<MakeTempRegisterAction>( 4466 InsertPt, *OpTy, TempRegID); 4467 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4468 4469 auto InsertPtOrError = createAndImportSubInstructionRenderer( 4470 ++InsertPt, Rule, DstChild, TempRegID); 4471 if (auto Error = InsertPtOrError.takeError()) 4472 return std::move(Error); 4473 return InsertPtOrError.get(); 4474 } 4475 4476 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild)); 4477 } 4478 4479 // It could be a specific immediate in which case we should just check for 4480 // that immediate. 4481 if (const IntInit *ChildIntInit = 4482 dyn_cast<IntInit>(DstChild->getLeafValue())) { 4483 DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue()); 4484 return InsertPt; 4485 } 4486 4487 // Otherwise, we're looking for a bog-standard RegisterClass operand. 4488 if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) { 4489 auto *ChildRec = ChildDefInit->getDef(); 4490 4491 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes(); 4492 if (ChildTypes.size() != 1) 4493 return failedImport("Dst pattern child has multiple results"); 4494 4495 Optional<LLTCodeGen> OpTyOrNone = None; 4496 if (ChildTypes.front().isMachineValueType()) 4497 OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); 4498 if (!OpTyOrNone) 4499 return failedImport("Dst operand has an unsupported type"); 4500 4501 if (ChildRec->isSubClassOf("Register")) { 4502 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, ChildRec); 4503 return InsertPt; 4504 } 4505 4506 if (ChildRec->isSubClassOf("RegisterClass") || 4507 ChildRec->isSubClassOf("RegisterOperand") || 4508 ChildRec->isSubClassOf("ValueType")) { 4509 if (ChildRec->isSubClassOf("RegisterOperand") && 4510 !ChildRec->isValueUnset("GIZeroRegister")) { 4511 DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>( 4512 DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister")); 4513 return InsertPt; 4514 } 4515 4516 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4517 return InsertPt; 4518 } 4519 4520 if (ChildRec->isSubClassOf("SubRegIndex")) { 4521 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec); 4522 DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue); 4523 return InsertPt; 4524 } 4525 4526 if (ChildRec->isSubClassOf("ComplexPattern")) { 4527 const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec); 4528 if (ComplexPattern == ComplexPatternEquivs.end()) 4529 return failedImport( 4530 "SelectionDAG ComplexPattern not mapped to GlobalISel"); 4531 4532 const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName()); 4533 DstMIBuilder.addRenderer<RenderComplexPatternOperand>( 4534 *ComplexPattern->second, DstChild->getName(), 4535 OM.getAllocatedTemporariesBaseID()); 4536 return InsertPt; 4537 } 4538 4539 return failedImport( 4540 "Dst pattern child def is an unsupported tablegen class"); 4541 } 4542 return failedImport("Dst pattern child is an unsupported kind"); 4543 } 4544 4545 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer( 4546 RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src, 4547 const TreePatternNode *Dst) { 4548 auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst); 4549 if (auto Error = InsertPtOrError.takeError()) 4550 return std::move(Error); 4551 4552 action_iterator InsertPt = InsertPtOrError.get(); 4553 BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get()); 4554 4555 for (auto PhysInput : InsnMatcher.getPhysRegInputs()) { 4556 InsertPt = M.insertAction<BuildMIAction>( 4557 InsertPt, M.allocateOutputInsnID(), 4558 &Target.getInstruction(RK.getDef("COPY"))); 4559 BuildMIAction &CopyToPhysRegMIBuilder = 4560 *static_cast<BuildMIAction *>(InsertPt->get()); 4561 CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(Target, 4562 PhysInput.first, 4563 true); 4564 CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first); 4565 } 4566 4567 if (auto Error = importExplicitDefRenderers(InsertPt, M, DstMIBuilder, Dst) 4568 .takeError()) 4569 return std::move(Error); 4570 4571 if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst) 4572 .takeError()) 4573 return std::move(Error); 4574 4575 return DstMIBuilder; 4576 } 4577 4578 Expected<action_iterator> 4579 GlobalISelEmitter::createAndImportSubInstructionRenderer( 4580 const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, 4581 unsigned TempRegID) { 4582 auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst); 4583 4584 // TODO: Assert there's exactly one result. 4585 4586 if (auto Error = InsertPtOrError.takeError()) 4587 return std::move(Error); 4588 4589 BuildMIAction &DstMIBuilder = 4590 *static_cast<BuildMIAction *>(InsertPtOrError.get()->get()); 4591 4592 // Assign the result to TempReg. 4593 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true); 4594 4595 InsertPtOrError = 4596 importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst); 4597 if (auto Error = InsertPtOrError.takeError()) 4598 return std::move(Error); 4599 4600 // We need to make sure that when we import an INSERT_SUBREG as a 4601 // subinstruction that it ends up being constrained to the correct super 4602 // register and subregister classes. 4603 auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName(); 4604 if (OpName == "INSERT_SUBREG") { 4605 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4606 if (!SubClass) 4607 return failedImport( 4608 "Cannot infer register class from INSERT_SUBREG operand #1"); 4609 Optional<const CodeGenRegisterClass *> SuperClass = 4610 inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0), 4611 Dst->getChild(2)); 4612 if (!SuperClass) 4613 return failedImport( 4614 "Cannot infer register class for INSERT_SUBREG operand #0"); 4615 // The destination and the super register source of an INSERT_SUBREG must 4616 // be the same register class. 4617 M.insertAction<ConstrainOperandToRegClassAction>( 4618 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4619 M.insertAction<ConstrainOperandToRegClassAction>( 4620 InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass); 4621 M.insertAction<ConstrainOperandToRegClassAction>( 4622 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); 4623 return InsertPtOrError.get(); 4624 } 4625 4626 if (OpName == "EXTRACT_SUBREG") { 4627 // EXTRACT_SUBREG selects into a subregister COPY but unlike most 4628 // instructions, the result register class is controlled by the 4629 // subregisters of the operand. As a result, we must constrain the result 4630 // class rather than check that it's already the right one. 4631 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 4632 if (!SuperClass) 4633 return failedImport( 4634 "Cannot infer register class from EXTRACT_SUBREG operand #0"); 4635 4636 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); 4637 if (!SubIdx) 4638 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4639 4640 const auto SrcRCDstRCPair = 4641 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 4642 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4643 M.insertAction<ConstrainOperandToRegClassAction>( 4644 InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second); 4645 M.insertAction<ConstrainOperandToRegClassAction>( 4646 InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first); 4647 4648 // We're done with this pattern! It's eligible for GISel emission; return 4649 // it. 4650 return InsertPtOrError.get(); 4651 } 4652 4653 // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a 4654 // subinstruction. 4655 if (OpName == "SUBREG_TO_REG") { 4656 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4657 if (!SubClass) 4658 return failedImport( 4659 "Cannot infer register class from SUBREG_TO_REG child #1"); 4660 auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0), 4661 Dst->getChild(2)); 4662 if (!SuperClass) 4663 return failedImport( 4664 "Cannot infer register class for SUBREG_TO_REG operand #0"); 4665 M.insertAction<ConstrainOperandToRegClassAction>( 4666 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4667 M.insertAction<ConstrainOperandToRegClassAction>( 4668 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); 4669 return InsertPtOrError.get(); 4670 } 4671 4672 if (OpName == "REG_SEQUENCE") { 4673 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 4674 M.insertAction<ConstrainOperandToRegClassAction>( 4675 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4676 4677 unsigned Num = Dst->getNumChildren(); 4678 for (unsigned I = 1; I != Num; I += 2) { 4679 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 4680 4681 auto SubIdx = inferSubRegIndexForNode(SubRegChild); 4682 if (!SubIdx) 4683 return failedImport("REG_SEQUENCE child is not a subreg index"); 4684 4685 const auto SrcRCDstRCPair = 4686 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 4687 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4688 M.insertAction<ConstrainOperandToRegClassAction>( 4689 InsertPt, DstMIBuilder.getInsnID(), I, *SrcRCDstRCPair->second); 4690 } 4691 4692 return InsertPtOrError.get(); 4693 } 4694 4695 M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt, 4696 DstMIBuilder.getInsnID()); 4697 return InsertPtOrError.get(); 4698 } 4699 4700 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer( 4701 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) { 4702 Record *DstOp = Dst->getOperator(); 4703 if (!DstOp->isSubClassOf("Instruction")) { 4704 if (DstOp->isSubClassOf("ValueType")) 4705 return failedImport( 4706 "Pattern operator isn't an instruction (it's a ValueType)"); 4707 return failedImport("Pattern operator isn't an instruction"); 4708 } 4709 CodeGenInstruction *DstI = &Target.getInstruction(DstOp); 4710 4711 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction 4712 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy. 4713 StringRef Name = DstI->TheDef->getName(); 4714 if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG") 4715 DstI = &Target.getInstruction(RK.getDef("COPY")); 4716 4717 return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(), 4718 DstI); 4719 } 4720 4721 Expected<action_iterator> GlobalISelEmitter::importExplicitDefRenderers( 4722 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4723 const TreePatternNode *Dst) { 4724 const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); 4725 const unsigned NumDefs = DstI->Operands.NumDefs; 4726 if (NumDefs == 0) 4727 return InsertPt; 4728 4729 DstMIBuilder.addRenderer<CopyRenderer>(DstI->Operands[0].Name); 4730 4731 // Some instructions have multiple defs, but are missing a type entry 4732 // (e.g. s_cc_out operands). 4733 if (Dst->getExtTypes().size() < NumDefs) 4734 return failedImport("unhandled discarded def"); 4735 4736 // Patterns only handle a single result, so any result after the first is an 4737 // implicitly dead def. 4738 for (unsigned I = 1; I < NumDefs; ++I) { 4739 const TypeSetByHwMode &ExtTy = Dst->getExtType(I); 4740 if (!ExtTy.isMachineValueType()) 4741 return failedImport("unsupported typeset"); 4742 4743 auto OpTy = MVTToLLT(ExtTy.getMachineValueType().SimpleTy); 4744 if (!OpTy) 4745 return failedImport("unsupported type"); 4746 4747 unsigned TempRegID = M.allocateTempRegID(); 4748 InsertPt = 4749 M.insertAction<MakeTempRegisterAction>(InsertPt, *OpTy, TempRegID); 4750 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true, nullptr, true); 4751 } 4752 4753 return InsertPt; 4754 } 4755 4756 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers( 4757 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4758 const llvm::TreePatternNode *Dst) { 4759 const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); 4760 CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator()); 4761 4762 StringRef Name = OrigDstI->TheDef->getName(); 4763 unsigned ExpectedDstINumUses = Dst->getNumChildren(); 4764 4765 // EXTRACT_SUBREG needs to use a subregister COPY. 4766 if (Name == "EXTRACT_SUBREG") { 4767 if (!Dst->getChild(1)->isLeaf()) 4768 return failedImport("EXTRACT_SUBREG child #1 is not a leaf"); 4769 DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 4770 if (!SubRegInit) 4771 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4772 4773 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4774 TreePatternNode *ValChild = Dst->getChild(0); 4775 if (!ValChild->isLeaf()) { 4776 // We really have to handle the source instruction, and then insert a 4777 // copy from the subregister. 4778 auto ExtractSrcTy = getInstResultType(ValChild); 4779 if (!ExtractSrcTy) 4780 return ExtractSrcTy.takeError(); 4781 4782 unsigned TempRegID = M.allocateTempRegID(); 4783 InsertPt = M.insertAction<MakeTempRegisterAction>( 4784 InsertPt, *ExtractSrcTy, TempRegID); 4785 4786 auto InsertPtOrError = createAndImportSubInstructionRenderer( 4787 ++InsertPt, M, ValChild, TempRegID); 4788 if (auto Error = InsertPtOrError.takeError()) 4789 return std::move(Error); 4790 4791 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, false, SubIdx); 4792 return InsertPt; 4793 } 4794 4795 // If this is a source operand, this is just a subregister copy. 4796 Record *RCDef = getInitValueAsRegClass(ValChild->getLeafValue()); 4797 if (!RCDef) 4798 return failedImport("EXTRACT_SUBREG child #0 could not " 4799 "be coerced to a register class"); 4800 4801 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef); 4802 4803 const auto SrcRCDstRCPair = 4804 RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx); 4805 if (SrcRCDstRCPair.hasValue()) { 4806 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4807 if (SrcRCDstRCPair->first != RC) 4808 return failedImport("EXTRACT_SUBREG requires an additional COPY"); 4809 } 4810 4811 DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(), 4812 SubIdx); 4813 return InsertPt; 4814 } 4815 4816 if (Name == "REG_SEQUENCE") { 4817 if (!Dst->getChild(0)->isLeaf()) 4818 return failedImport("REG_SEQUENCE child #0 is not a leaf"); 4819 4820 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 4821 if (!RCDef) 4822 return failedImport("REG_SEQUENCE child #0 could not " 4823 "be coerced to a register class"); 4824 4825 if ((ExpectedDstINumUses - 1) % 2 != 0) 4826 return failedImport("Malformed REG_SEQUENCE"); 4827 4828 for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) { 4829 TreePatternNode *ValChild = Dst->getChild(I); 4830 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 4831 4832 if (DefInit *SubRegInit = 4833 dyn_cast<DefInit>(SubRegChild->getLeafValue())) { 4834 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4835 4836 auto InsertPtOrError = 4837 importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild); 4838 if (auto Error = InsertPtOrError.takeError()) 4839 return std::move(Error); 4840 InsertPt = InsertPtOrError.get(); 4841 DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx); 4842 } 4843 } 4844 4845 return InsertPt; 4846 } 4847 4848 // Render the explicit uses. 4849 unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs; 4850 if (Name == "COPY_TO_REGCLASS") { 4851 DstINumUses--; // Ignore the class constraint. 4852 ExpectedDstINumUses--; 4853 } 4854 4855 // NumResults - This is the number of results produced by the instruction in 4856 // the "outs" list. 4857 unsigned NumResults = OrigDstI->Operands.NumDefs; 4858 4859 // Number of operands we know the output instruction must have. If it is 4860 // variadic, we could have more operands. 4861 unsigned NumFixedOperands = DstI->Operands.size(); 4862 4863 // Loop over all of the fixed operands of the instruction pattern, emitting 4864 // code to fill them all in. The node 'N' usually has number children equal to 4865 // the number of input operands of the instruction. However, in cases where 4866 // there are predicate operands for an instruction, we need to fill in the 4867 // 'execute always' values. Match up the node operands to the instruction 4868 // operands to do this. 4869 unsigned Child = 0; 4870 4871 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the 4872 // number of operands at the end of the list which have default values. 4873 // Those can come from the pattern if it provides enough arguments, or be 4874 // filled in with the default if the pattern hasn't provided them. But any 4875 // operand with a default value _before_ the last mandatory one will be 4876 // filled in with their defaults unconditionally. 4877 unsigned NonOverridableOperands = NumFixedOperands; 4878 while (NonOverridableOperands > NumResults && 4879 CGP.operandHasDefault(DstI->Operands[NonOverridableOperands - 1].Rec)) 4880 --NonOverridableOperands; 4881 4882 unsigned NumDefaultOps = 0; 4883 for (unsigned I = 0; I != DstINumUses; ++I) { 4884 unsigned InstOpNo = DstI->Operands.NumDefs + I; 4885 4886 // Determine what to emit for this operand. 4887 Record *OperandNode = DstI->Operands[InstOpNo].Rec; 4888 4889 // If the operand has default values, introduce them now. 4890 if (CGP.operandHasDefault(OperandNode) && 4891 (InstOpNo < NonOverridableOperands || Child >= Dst->getNumChildren())) { 4892 // This is a predicate or optional def operand which the pattern has not 4893 // overridden, or which we aren't letting it override; emit the 'default 4894 // ops' operands. 4895 4896 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[InstOpNo]; 4897 DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps"); 4898 if (auto Error = importDefaultOperandRenderers( 4899 InsertPt, M, DstMIBuilder, DefaultOps)) 4900 return std::move(Error); 4901 ++NumDefaultOps; 4902 continue; 4903 } 4904 4905 auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder, 4906 Dst->getChild(Child)); 4907 if (auto Error = InsertPtOrError.takeError()) 4908 return std::move(Error); 4909 InsertPt = InsertPtOrError.get(); 4910 ++Child; 4911 } 4912 4913 if (NumDefaultOps + ExpectedDstINumUses != DstINumUses) 4914 return failedImport("Expected " + llvm::to_string(DstINumUses) + 4915 " used operands but found " + 4916 llvm::to_string(ExpectedDstINumUses) + 4917 " explicit ones and " + llvm::to_string(NumDefaultOps) + 4918 " default ones"); 4919 4920 return InsertPt; 4921 } 4922 4923 Error GlobalISelEmitter::importDefaultOperandRenderers( 4924 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4925 DagInit *DefaultOps) const { 4926 for (const auto *DefaultOp : DefaultOps->getArgs()) { 4927 Optional<LLTCodeGen> OpTyOrNone = None; 4928 4929 // Look through ValueType operators. 4930 if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) { 4931 if (const DefInit *DefaultDagOperator = 4932 dyn_cast<DefInit>(DefaultDagOp->getOperator())) { 4933 if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) { 4934 OpTyOrNone = MVTToLLT(getValueType( 4935 DefaultDagOperator->getDef())); 4936 DefaultOp = DefaultDagOp->getArg(0); 4937 } 4938 } 4939 } 4940 4941 if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) { 4942 auto Def = DefaultDefOp->getDef(); 4943 if (Def->getName() == "undef_tied_input") { 4944 unsigned TempRegID = M.allocateTempRegID(); 4945 M.insertAction<MakeTempRegisterAction>( 4946 InsertPt, OpTyOrNone.getValue(), TempRegID); 4947 InsertPt = M.insertAction<BuildMIAction>( 4948 InsertPt, M.allocateOutputInsnID(), 4949 &Target.getInstruction(RK.getDef("IMPLICIT_DEF"))); 4950 BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>( 4951 InsertPt->get()); 4952 IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4953 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4954 } else { 4955 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, Def); 4956 } 4957 continue; 4958 } 4959 4960 if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) { 4961 DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue()); 4962 continue; 4963 } 4964 4965 return failedImport("Could not add default op"); 4966 } 4967 4968 return Error::success(); 4969 } 4970 4971 Error GlobalISelEmitter::importImplicitDefRenderers( 4972 BuildMIAction &DstMIBuilder, 4973 const std::vector<Record *> &ImplicitDefs) const { 4974 if (!ImplicitDefs.empty()) 4975 return failedImport("Pattern defines a physical register"); 4976 return Error::success(); 4977 } 4978 4979 Optional<const CodeGenRegisterClass *> 4980 GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) { 4981 assert(Leaf && "Expected node?"); 4982 assert(Leaf->isLeaf() && "Expected leaf?"); 4983 Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue()); 4984 if (!RCRec) 4985 return None; 4986 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec); 4987 if (!RC) 4988 return None; 4989 return RC; 4990 } 4991 4992 Optional<const CodeGenRegisterClass *> 4993 GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) { 4994 if (!N) 4995 return None; 4996 4997 if (N->isLeaf()) 4998 return getRegClassFromLeaf(N); 4999 5000 // We don't have a leaf node, so we have to try and infer something. Check 5001 // that we have an instruction that we an infer something from. 5002 5003 // Only handle things that produce a single type. 5004 if (N->getNumTypes() != 1) 5005 return None; 5006 Record *OpRec = N->getOperator(); 5007 5008 // We only want instructions. 5009 if (!OpRec->isSubClassOf("Instruction")) 5010 return None; 5011 5012 // Don't want to try and infer things when there could potentially be more 5013 // than one candidate register class. 5014 auto &Inst = Target.getInstruction(OpRec); 5015 if (Inst.Operands.NumDefs > 1) 5016 return None; 5017 5018 // Handle any special-case instructions which we can safely infer register 5019 // classes from. 5020 StringRef InstName = Inst.TheDef->getName(); 5021 bool IsRegSequence = InstName == "REG_SEQUENCE"; 5022 if (IsRegSequence || InstName == "COPY_TO_REGCLASS") { 5023 // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It 5024 // has the desired register class as the first child. 5025 TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1); 5026 if (!RCChild->isLeaf()) 5027 return None; 5028 return getRegClassFromLeaf(RCChild); 5029 } 5030 if (InstName == "INSERT_SUBREG") { 5031 TreePatternNode *Child0 = N->getChild(0); 5032 assert(Child0->getNumTypes() == 1 && "Unexpected number of types!"); 5033 const TypeSetByHwMode &VTy = Child0->getExtType(0); 5034 return inferSuperRegisterClassForNode(VTy, Child0, N->getChild(2)); 5035 } 5036 if (InstName == "EXTRACT_SUBREG") { 5037 assert(N->getNumTypes() == 1 && "Unexpected number of types!"); 5038 const TypeSetByHwMode &VTy = N->getExtType(0); 5039 return inferSuperRegisterClass(VTy, N->getChild(1)); 5040 } 5041 5042 // Handle destination record types that we can safely infer a register class 5043 // from. 5044 const auto &DstIOperand = Inst.Operands[0]; 5045 Record *DstIOpRec = DstIOperand.Rec; 5046 if (DstIOpRec->isSubClassOf("RegisterOperand")) { 5047 DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); 5048 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); 5049 return &RC; 5050 } 5051 5052 if (DstIOpRec->isSubClassOf("RegisterClass")) { 5053 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); 5054 return &RC; 5055 } 5056 5057 return None; 5058 } 5059 5060 Optional<const CodeGenRegisterClass *> 5061 GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty, 5062 TreePatternNode *SubRegIdxNode) { 5063 assert(SubRegIdxNode && "Expected subregister index node!"); 5064 // We need a ValueTypeByHwMode for getSuperRegForSubReg. 5065 if (!Ty.isValueTypeByHwMode(false)) 5066 return None; 5067 if (!SubRegIdxNode->isLeaf()) 5068 return None; 5069 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); 5070 if (!SubRegInit) 5071 return None; 5072 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 5073 5074 // Use the information we found above to find a minimal register class which 5075 // supports the subregister and type we want. 5076 auto RC = 5077 Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx, 5078 /* MustBeAllocatable */ true); 5079 if (!RC) 5080 return None; 5081 return *RC; 5082 } 5083 5084 Optional<const CodeGenRegisterClass *> 5085 GlobalISelEmitter::inferSuperRegisterClassForNode( 5086 const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode, 5087 TreePatternNode *SubRegIdxNode) { 5088 assert(SuperRegNode && "Expected super register node!"); 5089 // Check if we already have a defined register class for the super register 5090 // node. If we do, then we should preserve that rather than inferring anything 5091 // from the subregister index node. We can assume that whoever wrote the 5092 // pattern in the first place made sure that the super register and 5093 // subregister are compatible. 5094 if (Optional<const CodeGenRegisterClass *> SuperRegisterClass = 5095 inferRegClassFromPattern(SuperRegNode)) 5096 return *SuperRegisterClass; 5097 return inferSuperRegisterClass(Ty, SubRegIdxNode); 5098 } 5099 5100 Optional<CodeGenSubRegIndex *> 5101 GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) { 5102 if (!SubRegIdxNode->isLeaf()) 5103 return None; 5104 5105 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); 5106 if (!SubRegInit) 5107 return None; 5108 return CGRegs.getSubRegIdx(SubRegInit->getDef()); 5109 } 5110 5111 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) { 5112 // Keep track of the matchers and actions to emit. 5113 int Score = P.getPatternComplexity(CGP); 5114 RuleMatcher M(P.getSrcRecord()->getLoc()); 5115 RuleMatcherScores[M.getRuleID()] = Score; 5116 M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) + 5117 " => " + 5118 llvm::to_string(*P.getDstPattern())); 5119 5120 SmallVector<Record *, 4> Predicates; 5121 P.getPredicateRecords(Predicates); 5122 if (auto Error = importRulePredicates(M, Predicates)) 5123 return std::move(Error); 5124 5125 // Next, analyze the pattern operators. 5126 TreePatternNode *Src = P.getSrcPattern(); 5127 TreePatternNode *Dst = P.getDstPattern(); 5128 5129 // If the root of either pattern isn't a simple operator, ignore it. 5130 if (auto Err = isTrivialOperatorNode(Dst)) 5131 return failedImport("Dst pattern root isn't a trivial operator (" + 5132 toString(std::move(Err)) + ")"); 5133 if (auto Err = isTrivialOperatorNode(Src)) 5134 return failedImport("Src pattern root isn't a trivial operator (" + 5135 toString(std::move(Err)) + ")"); 5136 5137 // The different predicates and matchers created during 5138 // addInstructionMatcher use the RuleMatcher M to set up their 5139 // instruction ID (InsnVarID) that are going to be used when 5140 // M is going to be emitted. 5141 // However, the code doing the emission still relies on the IDs 5142 // returned during that process by the RuleMatcher when issuing 5143 // the recordInsn opcodes. 5144 // Because of that: 5145 // 1. The order in which we created the predicates 5146 // and such must be the same as the order in which we emit them, 5147 // and 5148 // 2. We need to reset the generation of the IDs in M somewhere between 5149 // addInstructionMatcher and emit 5150 // 5151 // FIXME: Long term, we don't want to have to rely on this implicit 5152 // naming being the same. One possible solution would be to have 5153 // explicit operator for operation capture and reference those. 5154 // The plus side is that it would expose opportunities to share 5155 // the capture accross rules. The downside is that it would 5156 // introduce a dependency between predicates (captures must happen 5157 // before their first use.) 5158 InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName()); 5159 unsigned TempOpIdx = 0; 5160 auto InsnMatcherOrError = 5161 createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx); 5162 if (auto Error = InsnMatcherOrError.takeError()) 5163 return std::move(Error); 5164 InstructionMatcher &InsnMatcher = InsnMatcherOrError.get(); 5165 5166 if (Dst->isLeaf()) { 5167 Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue()); 5168 if (RCDef) { 5169 const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef); 5170 5171 // We need to replace the def and all its uses with the specified 5172 // operand. However, we must also insert COPY's wherever needed. 5173 // For now, emit a copy and let the register allocator clean up. 5174 auto &DstI = Target.getInstruction(RK.getDef("COPY")); 5175 const auto &DstIOperand = DstI.Operands[0]; 5176 5177 OperandMatcher &OM0 = InsnMatcher.getOperand(0); 5178 OM0.setSymbolicName(DstIOperand.Name); 5179 M.defineOperand(OM0.getSymbolicName(), OM0); 5180 OM0.addPredicate<RegisterBankOperandMatcher>(RC); 5181 5182 auto &DstMIBuilder = 5183 M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI); 5184 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name); 5185 DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName()); 5186 M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC); 5187 5188 // We're done with this pattern! It's eligible for GISel emission; return 5189 // it. 5190 ++NumPatternImported; 5191 return std::move(M); 5192 } 5193 5194 return failedImport("Dst pattern root isn't a known leaf"); 5195 } 5196 5197 // Start with the defined operands (i.e., the results of the root operator). 5198 Record *DstOp = Dst->getOperator(); 5199 if (!DstOp->isSubClassOf("Instruction")) 5200 return failedImport("Pattern operator isn't an instruction"); 5201 5202 auto &DstI = Target.getInstruction(DstOp); 5203 StringRef DstIName = DstI.TheDef->getName(); 5204 5205 if (DstI.Operands.NumDefs < Src->getExtTypes().size()) 5206 return failedImport("Src pattern result has more defs than dst MI (" + 5207 to_string(Src->getExtTypes().size()) + " def(s) vs " + 5208 to_string(DstI.Operands.NumDefs) + " def(s))"); 5209 5210 // The root of the match also has constraints on the register bank so that it 5211 // matches the result instruction. 5212 unsigned OpIdx = 0; 5213 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { 5214 (void)VTy; 5215 5216 const auto &DstIOperand = DstI.Operands[OpIdx]; 5217 Record *DstIOpRec = DstIOperand.Rec; 5218 if (DstIName == "COPY_TO_REGCLASS") { 5219 DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); 5220 5221 if (DstIOpRec == nullptr) 5222 return failedImport( 5223 "COPY_TO_REGCLASS operand #1 isn't a register class"); 5224 } else if (DstIName == "REG_SEQUENCE") { 5225 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 5226 if (DstIOpRec == nullptr) 5227 return failedImport("REG_SEQUENCE operand #0 isn't a register class"); 5228 } else if (DstIName == "EXTRACT_SUBREG") { 5229 auto InferredClass = inferRegClassFromPattern(Dst->getChild(0)); 5230 if (!InferredClass) 5231 return failedImport("Could not infer class for EXTRACT_SUBREG operand #0"); 5232 5233 // We can assume that a subregister is in the same bank as it's super 5234 // register. 5235 DstIOpRec = (*InferredClass)->getDef(); 5236 } else if (DstIName == "INSERT_SUBREG") { 5237 auto MaybeSuperClass = inferSuperRegisterClassForNode( 5238 VTy, Dst->getChild(0), Dst->getChild(2)); 5239 if (!MaybeSuperClass) 5240 return failedImport( 5241 "Cannot infer register class for INSERT_SUBREG operand #0"); 5242 // Move to the next pattern here, because the register class we found 5243 // doesn't necessarily have a record associated with it. So, we can't 5244 // set DstIOpRec using this. 5245 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 5246 OM.setSymbolicName(DstIOperand.Name); 5247 M.defineOperand(OM.getSymbolicName(), OM); 5248 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass); 5249 ++OpIdx; 5250 continue; 5251 } else if (DstIName == "SUBREG_TO_REG") { 5252 auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2)); 5253 if (!MaybeRegClass) 5254 return failedImport( 5255 "Cannot infer register class for SUBREG_TO_REG operand #0"); 5256 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 5257 OM.setSymbolicName(DstIOperand.Name); 5258 M.defineOperand(OM.getSymbolicName(), OM); 5259 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass); 5260 ++OpIdx; 5261 continue; 5262 } else if (DstIOpRec->isSubClassOf("RegisterOperand")) 5263 DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); 5264 else if (!DstIOpRec->isSubClassOf("RegisterClass")) 5265 return failedImport("Dst MI def isn't a register class" + 5266 to_string(*Dst)); 5267 5268 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 5269 OM.setSymbolicName(DstIOperand.Name); 5270 M.defineOperand(OM.getSymbolicName(), OM); 5271 OM.addPredicate<RegisterBankOperandMatcher>( 5272 Target.getRegisterClass(DstIOpRec)); 5273 ++OpIdx; 5274 } 5275 5276 auto DstMIBuilderOrError = 5277 createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst); 5278 if (auto Error = DstMIBuilderOrError.takeError()) 5279 return std::move(Error); 5280 BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get(); 5281 5282 // Render the implicit defs. 5283 // These are only added to the root of the result. 5284 if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs())) 5285 return std::move(Error); 5286 5287 DstMIBuilder.chooseInsnToMutate(M); 5288 5289 // Constrain the registers to classes. This is normally derived from the 5290 // emitted instruction but a few instructions require special handling. 5291 if (DstIName == "COPY_TO_REGCLASS") { 5292 // COPY_TO_REGCLASS does not provide operand constraints itself but the 5293 // result is constrained to the class given by the second child. 5294 Record *DstIOpRec = 5295 getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); 5296 5297 if (DstIOpRec == nullptr) 5298 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class"); 5299 5300 M.addAction<ConstrainOperandToRegClassAction>( 5301 0, 0, Target.getRegisterClass(DstIOpRec)); 5302 5303 // We're done with this pattern! It's eligible for GISel emission; return 5304 // it. 5305 ++NumPatternImported; 5306 return std::move(M); 5307 } 5308 5309 if (DstIName == "EXTRACT_SUBREG") { 5310 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 5311 if (!SuperClass) 5312 return failedImport( 5313 "Cannot infer register class from EXTRACT_SUBREG operand #0"); 5314 5315 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); 5316 if (!SubIdx) 5317 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 5318 5319 // It would be nice to leave this constraint implicit but we're required 5320 // to pick a register class so constrain the result to a register class 5321 // that can hold the correct MVT. 5322 // 5323 // FIXME: This may introduce an extra copy if the chosen class doesn't 5324 // actually contain the subregisters. 5325 assert(Src->getExtTypes().size() == 1 && 5326 "Expected Src of EXTRACT_SUBREG to have one result type"); 5327 5328 const auto SrcRCDstRCPair = 5329 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 5330 if (!SrcRCDstRCPair) { 5331 return failedImport("subreg index is incompatible " 5332 "with inferred reg class"); 5333 } 5334 5335 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 5336 M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second); 5337 M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first); 5338 5339 // We're done with this pattern! It's eligible for GISel emission; return 5340 // it. 5341 ++NumPatternImported; 5342 return std::move(M); 5343 } 5344 5345 if (DstIName == "INSERT_SUBREG") { 5346 assert(Src->getExtTypes().size() == 1 && 5347 "Expected Src of INSERT_SUBREG to have one result type"); 5348 // We need to constrain the destination, a super regsister source, and a 5349 // subregister source. 5350 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 5351 if (!SubClass) 5352 return failedImport( 5353 "Cannot infer register class from INSERT_SUBREG operand #1"); 5354 auto SuperClass = inferSuperRegisterClassForNode( 5355 Src->getExtType(0), Dst->getChild(0), Dst->getChild(2)); 5356 if (!SuperClass) 5357 return failedImport( 5358 "Cannot infer register class for INSERT_SUBREG operand #0"); 5359 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 5360 M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass); 5361 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); 5362 ++NumPatternImported; 5363 return std::move(M); 5364 } 5365 5366 if (DstIName == "SUBREG_TO_REG") { 5367 // We need to constrain the destination and subregister source. 5368 assert(Src->getExtTypes().size() == 1 && 5369 "Expected Src of SUBREG_TO_REG to have one result type"); 5370 5371 // Attempt to infer the subregister source from the first child. If it has 5372 // an explicitly given register class, we'll use that. Otherwise, we will 5373 // fail. 5374 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 5375 if (!SubClass) 5376 return failedImport( 5377 "Cannot infer register class from SUBREG_TO_REG child #1"); 5378 // We don't have a child to look at that might have a super register node. 5379 auto SuperClass = 5380 inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2)); 5381 if (!SuperClass) 5382 return failedImport( 5383 "Cannot infer register class for SUBREG_TO_REG operand #0"); 5384 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 5385 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); 5386 ++NumPatternImported; 5387 return std::move(M); 5388 } 5389 5390 if (DstIName == "REG_SEQUENCE") { 5391 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 5392 5393 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 5394 5395 unsigned Num = Dst->getNumChildren(); 5396 for (unsigned I = 1; I != Num; I += 2) { 5397 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 5398 5399 auto SubIdx = inferSubRegIndexForNode(SubRegChild); 5400 if (!SubIdx) 5401 return failedImport("REG_SEQUENCE child is not a subreg index"); 5402 5403 const auto SrcRCDstRCPair = 5404 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 5405 5406 M.addAction<ConstrainOperandToRegClassAction>(0, I, 5407 *SrcRCDstRCPair->second); 5408 } 5409 5410 ++NumPatternImported; 5411 return std::move(M); 5412 } 5413 5414 M.addAction<ConstrainOperandsToDefinitionAction>(0); 5415 5416 // We're done with this pattern! It's eligible for GISel emission; return it. 5417 ++NumPatternImported; 5418 return std::move(M); 5419 } 5420 5421 // Emit imm predicate table and an enum to reference them with. 5422 // The 'Predicate_' part of the name is redundant but eliminating it is more 5423 // trouble than it's worth. 5424 void GlobalISelEmitter::emitCxxPredicateFns( 5425 raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier, 5426 StringRef ArgType, StringRef ArgName, StringRef AdditionalArgs, 5427 StringRef AdditionalDeclarations, 5428 std::function<bool(const Record *R)> Filter) { 5429 std::vector<const Record *> MatchedRecords; 5430 const auto &Defs = RK.getAllDerivedDefinitions("PatFrags"); 5431 std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords), 5432 [&](Record *Record) { 5433 return !Record->getValueAsString(CodeFieldName).empty() && 5434 Filter(Record); 5435 }); 5436 5437 if (!MatchedRecords.empty()) { 5438 OS << "// PatFrag predicates.\n" 5439 << "enum {\n"; 5440 std::string EnumeratorSeparator = 5441 (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str(); 5442 for (const auto *Record : MatchedRecords) { 5443 OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName() 5444 << EnumeratorSeparator; 5445 EnumeratorSeparator = ",\n"; 5446 } 5447 OS << "};\n"; 5448 } 5449 5450 OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName 5451 << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " " 5452 << ArgName << AdditionalArgs <<") const {\n" 5453 << AdditionalDeclarations; 5454 if (!AdditionalDeclarations.empty()) 5455 OS << "\n"; 5456 if (!MatchedRecords.empty()) 5457 OS << " switch (PredicateID) {\n"; 5458 for (const auto *Record : MatchedRecords) { 5459 OS << " case GIPFP_" << TypeIdentifier << "_Predicate_" 5460 << Record->getName() << ": {\n" 5461 << " " << Record->getValueAsString(CodeFieldName) << "\n" 5462 << " llvm_unreachable(\"" << CodeFieldName 5463 << " should have returned\");\n" 5464 << " return false;\n" 5465 << " }\n"; 5466 } 5467 if (!MatchedRecords.empty()) 5468 OS << " }\n"; 5469 OS << " llvm_unreachable(\"Unknown predicate\");\n" 5470 << " return false;\n" 5471 << "}\n"; 5472 } 5473 5474 void GlobalISelEmitter::emitImmPredicateFns( 5475 raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType, 5476 std::function<bool(const Record *R)> Filter) { 5477 return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType, 5478 "Imm", "", "", Filter); 5479 } 5480 5481 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) { 5482 return emitCxxPredicateFns( 5483 OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI", 5484 ", const std::array<const MachineOperand *, 3> &Operands", 5485 " const MachineFunction &MF = *MI.getParent()->getParent();\n" 5486 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n" 5487 " (void)MRI;", 5488 [](const Record *R) { return true; }); 5489 } 5490 5491 template <class GroupT> 5492 std::vector<Matcher *> GlobalISelEmitter::optimizeRules( 5493 ArrayRef<Matcher *> Rules, 5494 std::vector<std::unique_ptr<Matcher>> &MatcherStorage) { 5495 5496 std::vector<Matcher *> OptRules; 5497 std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>(); 5498 assert(CurrentGroup->empty() && "Newly created group isn't empty!"); 5499 unsigned NumGroups = 0; 5500 5501 auto ProcessCurrentGroup = [&]() { 5502 if (CurrentGroup->empty()) 5503 // An empty group is good to be reused: 5504 return; 5505 5506 // If the group isn't large enough to provide any benefit, move all the 5507 // added rules out of it and make sure to re-create the group to properly 5508 // re-initialize it: 5509 if (CurrentGroup->size() < 2) 5510 append_range(OptRules, CurrentGroup->matchers()); 5511 else { 5512 CurrentGroup->finalize(); 5513 OptRules.push_back(CurrentGroup.get()); 5514 MatcherStorage.emplace_back(std::move(CurrentGroup)); 5515 ++NumGroups; 5516 } 5517 CurrentGroup = std::make_unique<GroupT>(); 5518 }; 5519 for (Matcher *Rule : Rules) { 5520 // Greedily add as many matchers as possible to the current group: 5521 if (CurrentGroup->addMatcher(*Rule)) 5522 continue; 5523 5524 ProcessCurrentGroup(); 5525 assert(CurrentGroup->empty() && "A group wasn't properly re-initialized"); 5526 5527 // Try to add the pending matcher to a newly created empty group: 5528 if (!CurrentGroup->addMatcher(*Rule)) 5529 // If we couldn't add the matcher to an empty group, that group type 5530 // doesn't support that kind of matchers at all, so just skip it: 5531 OptRules.push_back(Rule); 5532 } 5533 ProcessCurrentGroup(); 5534 5535 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n"); 5536 assert(CurrentGroup->empty() && "The last group wasn't properly processed"); 5537 return OptRules; 5538 } 5539 5540 MatchTable 5541 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules, 5542 bool Optimize, bool WithCoverage) { 5543 std::vector<Matcher *> InputRules; 5544 for (Matcher &Rule : Rules) 5545 InputRules.push_back(&Rule); 5546 5547 if (!Optimize) 5548 return MatchTable::buildTable(InputRules, WithCoverage); 5549 5550 unsigned CurrentOrdering = 0; 5551 StringMap<unsigned> OpcodeOrder; 5552 for (RuleMatcher &Rule : Rules) { 5553 const StringRef Opcode = Rule.getOpcode(); 5554 assert(!Opcode.empty() && "Didn't expect an undefined opcode"); 5555 if (OpcodeOrder.count(Opcode) == 0) 5556 OpcodeOrder[Opcode] = CurrentOrdering++; 5557 } 5558 5559 llvm::stable_sort(InputRules, [&OpcodeOrder](const Matcher *A, 5560 const Matcher *B) { 5561 auto *L = static_cast<const RuleMatcher *>(A); 5562 auto *R = static_cast<const RuleMatcher *>(B); 5563 return std::make_tuple(OpcodeOrder[L->getOpcode()], L->getNumOperands()) < 5564 std::make_tuple(OpcodeOrder[R->getOpcode()], R->getNumOperands()); 5565 }); 5566 5567 for (Matcher *Rule : InputRules) 5568 Rule->optimize(); 5569 5570 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 5571 std::vector<Matcher *> OptRules = 5572 optimizeRules<GroupMatcher>(InputRules, MatcherStorage); 5573 5574 for (Matcher *Rule : OptRules) 5575 Rule->optimize(); 5576 5577 OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage); 5578 5579 return MatchTable::buildTable(OptRules, WithCoverage); 5580 } 5581 5582 void GroupMatcher::optimize() { 5583 // Make sure we only sort by a specific predicate within a range of rules that 5584 // all have that predicate checked against a specific value (not a wildcard): 5585 auto F = Matchers.begin(); 5586 auto T = F; 5587 auto E = Matchers.end(); 5588 while (T != E) { 5589 while (T != E) { 5590 auto *R = static_cast<RuleMatcher *>(*T); 5591 if (!R->getFirstConditionAsRootType().get().isValid()) 5592 break; 5593 ++T; 5594 } 5595 std::stable_sort(F, T, [](Matcher *A, Matcher *B) { 5596 auto *L = static_cast<RuleMatcher *>(A); 5597 auto *R = static_cast<RuleMatcher *>(B); 5598 return L->getFirstConditionAsRootType() < 5599 R->getFirstConditionAsRootType(); 5600 }); 5601 if (T != E) 5602 F = ++T; 5603 } 5604 GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage) 5605 .swap(Matchers); 5606 GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage) 5607 .swap(Matchers); 5608 } 5609 5610 void GlobalISelEmitter::run(raw_ostream &OS) { 5611 if (!UseCoverageFile.empty()) { 5612 RuleCoverage = CodeGenCoverage(); 5613 auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile); 5614 if (!RuleCoverageBufOrErr) { 5615 PrintWarning(SMLoc(), "Missing rule coverage data"); 5616 RuleCoverage = None; 5617 } else { 5618 if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) { 5619 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data"); 5620 RuleCoverage = None; 5621 } 5622 } 5623 } 5624 5625 // Track the run-time opcode values 5626 gatherOpcodeValues(); 5627 // Track the run-time LLT ID values 5628 gatherTypeIDValues(); 5629 5630 // Track the GINodeEquiv definitions. 5631 gatherNodeEquivs(); 5632 5633 emitSourceFileHeader(("Global Instruction Selector for the " + 5634 Target.getName() + " target").str(), OS); 5635 std::vector<RuleMatcher> Rules; 5636 // Look through the SelectionDAG patterns we found, possibly emitting some. 5637 for (const PatternToMatch &Pat : CGP.ptms()) { 5638 ++NumPatternTotal; 5639 5640 auto MatcherOrErr = runOnPattern(Pat); 5641 5642 // The pattern analysis can fail, indicating an unsupported pattern. 5643 // Report that if we've been asked to do so. 5644 if (auto Err = MatcherOrErr.takeError()) { 5645 if (WarnOnSkippedPatterns) { 5646 PrintWarning(Pat.getSrcRecord()->getLoc(), 5647 "Skipped pattern: " + toString(std::move(Err))); 5648 } else { 5649 consumeError(std::move(Err)); 5650 } 5651 ++NumPatternImportsSkipped; 5652 continue; 5653 } 5654 5655 if (RuleCoverage) { 5656 if (RuleCoverage->isCovered(MatcherOrErr->getRuleID())) 5657 ++NumPatternsTested; 5658 else 5659 PrintWarning(Pat.getSrcRecord()->getLoc(), 5660 "Pattern is not covered by a test"); 5661 } 5662 Rules.push_back(std::move(MatcherOrErr.get())); 5663 } 5664 5665 // Comparison function to order records by name. 5666 auto orderByName = [](const Record *A, const Record *B) { 5667 return A->getName() < B->getName(); 5668 }; 5669 5670 std::vector<Record *> ComplexPredicates = 5671 RK.getAllDerivedDefinitions("GIComplexOperandMatcher"); 5672 llvm::sort(ComplexPredicates, orderByName); 5673 5674 std::vector<StringRef> CustomRendererFns; 5675 transform(RK.getAllDerivedDefinitions("GICustomOperandRenderer"), 5676 std::back_inserter(CustomRendererFns), [](const auto &Record) { 5677 return Record->getValueAsString("RendererFn"); 5678 }); 5679 // Sort and remove duplicates to get a list of unique renderer functions, in 5680 // case some were mentioned more than once. 5681 llvm::sort(CustomRendererFns); 5682 CustomRendererFns.erase( 5683 std::unique(CustomRendererFns.begin(), CustomRendererFns.end()), 5684 CustomRendererFns.end()); 5685 5686 unsigned MaxTemporaries = 0; 5687 for (const auto &Rule : Rules) 5688 MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns()); 5689 5690 OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n" 5691 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size() 5692 << ";\n" 5693 << "using PredicateBitset = " 5694 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n" 5695 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n"; 5696 5697 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n" 5698 << " mutable MatcherState State;\n" 5699 << " typedef " 5700 "ComplexRendererFns(" 5701 << Target.getName() 5702 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n" 5703 5704 << " typedef void(" << Target.getName() 5705 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const " 5706 "MachineInstr &, int) " 5707 "const;\n" 5708 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, " 5709 "CustomRendererFn> " 5710 "ISelInfo;\n"; 5711 OS << " static " << Target.getName() 5712 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n" 5713 << " static " << Target.getName() 5714 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n" 5715 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const " 5716 "override;\n" 5717 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) " 5718 "const override;\n" 5719 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat " 5720 "&Imm) const override;\n" 5721 << " const int64_t *getMatchTable() const override;\n" 5722 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI" 5723 ", const std::array<const MachineOperand *, 3> &Operands) " 5724 "const override;\n" 5725 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n"; 5726 5727 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n" 5728 << ", State(" << MaxTemporaries << "),\n" 5729 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets" 5730 << ", ComplexPredicateFns, CustomRenderers)\n" 5731 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n"; 5732 5733 OS << "#ifdef GET_GLOBALISEL_IMPL\n"; 5734 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures, 5735 OS); 5736 5737 // Separate subtarget features by how often they must be recomputed. 5738 SubtargetFeatureInfoMap ModuleFeatures; 5739 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), 5740 std::inserter(ModuleFeatures, ModuleFeatures.end()), 5741 [](const SubtargetFeatureInfoMap::value_type &X) { 5742 return !X.second.mustRecomputePerFunction(); 5743 }); 5744 SubtargetFeatureInfoMap FunctionFeatures; 5745 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), 5746 std::inserter(FunctionFeatures, FunctionFeatures.end()), 5747 [](const SubtargetFeatureInfoMap::value_type &X) { 5748 return X.second.mustRecomputePerFunction(); 5749 }); 5750 5751 SubtargetFeatureInfo::emitComputeAvailableFeatures( 5752 Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures", 5753 ModuleFeatures, OS); 5754 5755 5756 OS << "void " << Target.getName() << "InstructionSelector" 5757 "::setupGeneratedPerFunctionState(MachineFunction &MF) {\n" 5758 " AvailableFunctionFeatures = computeAvailableFunctionFeatures(" 5759 "(const " << Target.getName() << "Subtarget *)&MF.getSubtarget(), &MF);\n" 5760 "}\n"; 5761 5762 SubtargetFeatureInfo::emitComputeAvailableFeatures( 5763 Target.getName(), "InstructionSelector", 5764 "computeAvailableFunctionFeatures", FunctionFeatures, OS, 5765 "const MachineFunction *MF"); 5766 5767 // Emit a table containing the LLT objects needed by the matcher and an enum 5768 // for the matcher to reference them with. 5769 std::vector<LLTCodeGen> TypeObjects; 5770 append_range(TypeObjects, KnownTypes); 5771 llvm::sort(TypeObjects); 5772 OS << "// LLT Objects.\n" 5773 << "enum {\n"; 5774 for (const auto &TypeObject : TypeObjects) { 5775 OS << " "; 5776 TypeObject.emitCxxEnumValue(OS); 5777 OS << ",\n"; 5778 } 5779 OS << "};\n"; 5780 OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n" 5781 << "const static LLT TypeObjects[] = {\n"; 5782 for (const auto &TypeObject : TypeObjects) { 5783 OS << " "; 5784 TypeObject.emitCxxConstructorCall(OS); 5785 OS << ",\n"; 5786 } 5787 OS << "};\n\n"; 5788 5789 // Emit a table containing the PredicateBitsets objects needed by the matcher 5790 // and an enum for the matcher to reference them with. 5791 std::vector<std::vector<Record *>> FeatureBitsets; 5792 for (auto &Rule : Rules) 5793 FeatureBitsets.push_back(Rule.getRequiredFeatures()); 5794 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 5795 const std::vector<Record *> &B) { 5796 if (A.size() < B.size()) 5797 return true; 5798 if (A.size() > B.size()) 5799 return false; 5800 for (auto Pair : zip(A, B)) { 5801 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 5802 return true; 5803 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 5804 return false; 5805 } 5806 return false; 5807 }); 5808 FeatureBitsets.erase( 5809 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 5810 FeatureBitsets.end()); 5811 OS << "// Feature bitsets.\n" 5812 << "enum {\n" 5813 << " GIFBS_Invalid,\n"; 5814 for (const auto &FeatureBitset : FeatureBitsets) { 5815 if (FeatureBitset.empty()) 5816 continue; 5817 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 5818 } 5819 OS << "};\n" 5820 << "const static PredicateBitset FeatureBitsets[] {\n" 5821 << " {}, // GIFBS_Invalid\n"; 5822 for (const auto &FeatureBitset : FeatureBitsets) { 5823 if (FeatureBitset.empty()) 5824 continue; 5825 OS << " {"; 5826 for (const auto &Feature : FeatureBitset) { 5827 const auto &I = SubtargetFeatures.find(Feature); 5828 assert(I != SubtargetFeatures.end() && "Didn't import predicate?"); 5829 OS << I->second.getEnumBitName() << ", "; 5830 } 5831 OS << "},\n"; 5832 } 5833 OS << "};\n\n"; 5834 5835 // Emit complex predicate table and an enum to reference them with. 5836 OS << "// ComplexPattern predicates.\n" 5837 << "enum {\n" 5838 << " GICP_Invalid,\n"; 5839 for (const auto &Record : ComplexPredicates) 5840 OS << " GICP_" << Record->getName() << ",\n"; 5841 OS << "};\n" 5842 << "// See constructor for table contents\n\n"; 5843 5844 emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) { 5845 bool Unset; 5846 return !R->getValueAsBitOrUnset("IsAPFloat", Unset) && 5847 !R->getValueAsBit("IsAPInt"); 5848 }); 5849 emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) { 5850 bool Unset; 5851 return R->getValueAsBitOrUnset("IsAPFloat", Unset); 5852 }); 5853 emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) { 5854 return R->getValueAsBit("IsAPInt"); 5855 }); 5856 emitMIPredicateFns(OS); 5857 OS << "\n"; 5858 5859 OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n" 5860 << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n" 5861 << " nullptr, // GICP_Invalid\n"; 5862 for (const auto &Record : ComplexPredicates) 5863 OS << " &" << Target.getName() 5864 << "InstructionSelector::" << Record->getValueAsString("MatcherFn") 5865 << ", // " << Record->getName() << "\n"; 5866 OS << "};\n\n"; 5867 5868 OS << "// Custom renderers.\n" 5869 << "enum {\n" 5870 << " GICR_Invalid,\n"; 5871 for (const auto &Fn : CustomRendererFns) 5872 OS << " GICR_" << Fn << ",\n"; 5873 OS << "};\n"; 5874 5875 OS << Target.getName() << "InstructionSelector::CustomRendererFn\n" 5876 << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n" 5877 << " nullptr, // GICR_Invalid\n"; 5878 for (const auto &Fn : CustomRendererFns) 5879 OS << " &" << Target.getName() << "InstructionSelector::" << Fn << ",\n"; 5880 OS << "};\n\n"; 5881 5882 llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) { 5883 int ScoreA = RuleMatcherScores[A.getRuleID()]; 5884 int ScoreB = RuleMatcherScores[B.getRuleID()]; 5885 if (ScoreA > ScoreB) 5886 return true; 5887 if (ScoreB > ScoreA) 5888 return false; 5889 if (A.isHigherPriorityThan(B)) { 5890 assert(!B.isHigherPriorityThan(A) && "Cannot be more important " 5891 "and less important at " 5892 "the same time"); 5893 return true; 5894 } 5895 return false; 5896 }); 5897 5898 OS << "bool " << Target.getName() 5899 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage " 5900 "&CoverageInfo) const {\n" 5901 << " MachineFunction &MF = *I.getParent()->getParent();\n" 5902 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n" 5903 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n" 5904 << " NewMIVector OutMIs;\n" 5905 << " State.MIs.clear();\n" 5906 << " State.MIs.push_back(&I);\n\n" 5907 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo" 5908 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures" 5909 << ", CoverageInfo)) {\n" 5910 << " return true;\n" 5911 << " }\n\n" 5912 << " return false;\n" 5913 << "}\n\n"; 5914 5915 const MatchTable Table = 5916 buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage); 5917 OS << "const int64_t *" << Target.getName() 5918 << "InstructionSelector::getMatchTable() const {\n"; 5919 Table.emitDeclaration(OS); 5920 OS << " return "; 5921 Table.emitUse(OS); 5922 OS << ";\n}\n"; 5923 OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n"; 5924 5925 OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n" 5926 << "PredicateBitset AvailableModuleFeatures;\n" 5927 << "mutable PredicateBitset AvailableFunctionFeatures;\n" 5928 << "PredicateBitset getAvailableFeatures() const {\n" 5929 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n" 5930 << "}\n" 5931 << "PredicateBitset\n" 5932 << "computeAvailableModuleFeatures(const " << Target.getName() 5933 << "Subtarget *Subtarget) const;\n" 5934 << "PredicateBitset\n" 5935 << "computeAvailableFunctionFeatures(const " << Target.getName() 5936 << "Subtarget *Subtarget,\n" 5937 << " const MachineFunction *MF) const;\n" 5938 << "void setupGeneratedPerFunctionState(MachineFunction &MF) override;\n" 5939 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n"; 5940 5941 OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n" 5942 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n" 5943 << "AvailableFunctionFeatures()\n" 5944 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n"; 5945 } 5946 5947 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) { 5948 if (SubtargetFeatures.count(Predicate) == 0) 5949 SubtargetFeatures.emplace( 5950 Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size())); 5951 } 5952 5953 void RuleMatcher::optimize() { 5954 for (auto &Item : InsnVariableIDs) { 5955 InstructionMatcher &InsnMatcher = *Item.first; 5956 for (auto &OM : InsnMatcher.operands()) { 5957 // Complex Patterns are usually expensive and they relatively rarely fail 5958 // on their own: more often we end up throwing away all the work done by a 5959 // matching part of a complex pattern because some other part of the 5960 // enclosing pattern didn't match. All of this makes it beneficial to 5961 // delay complex patterns until the very end of the rule matching, 5962 // especially for targets having lots of complex patterns. 5963 for (auto &OP : OM->predicates()) 5964 if (isa<ComplexPatternOperandMatcher>(OP)) 5965 EpilogueMatchers.emplace_back(std::move(OP)); 5966 OM->eraseNullPredicates(); 5967 } 5968 InsnMatcher.optimize(); 5969 } 5970 llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L, 5971 const std::unique_ptr<PredicateMatcher> &R) { 5972 return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) < 5973 std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx()); 5974 }); 5975 } 5976 5977 bool RuleMatcher::hasFirstCondition() const { 5978 if (insnmatchers_empty()) 5979 return false; 5980 InstructionMatcher &Matcher = insnmatchers_front(); 5981 if (!Matcher.predicates_empty()) 5982 return true; 5983 for (auto &OM : Matcher.operands()) 5984 for (auto &OP : OM->predicates()) 5985 if (!isa<InstructionOperandMatcher>(OP)) 5986 return true; 5987 return false; 5988 } 5989 5990 const PredicateMatcher &RuleMatcher::getFirstCondition() const { 5991 assert(!insnmatchers_empty() && 5992 "Trying to get a condition from an empty RuleMatcher"); 5993 5994 InstructionMatcher &Matcher = insnmatchers_front(); 5995 if (!Matcher.predicates_empty()) 5996 return **Matcher.predicates_begin(); 5997 // If there is no more predicate on the instruction itself, look at its 5998 // operands. 5999 for (auto &OM : Matcher.operands()) 6000 for (auto &OP : OM->predicates()) 6001 if (!isa<InstructionOperandMatcher>(OP)) 6002 return *OP; 6003 6004 llvm_unreachable("Trying to get a condition from an InstructionMatcher with " 6005 "no conditions"); 6006 } 6007 6008 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() { 6009 assert(!insnmatchers_empty() && 6010 "Trying to pop a condition from an empty RuleMatcher"); 6011 6012 InstructionMatcher &Matcher = insnmatchers_front(); 6013 if (!Matcher.predicates_empty()) 6014 return Matcher.predicates_pop_front(); 6015 // If there is no more predicate on the instruction itself, look at its 6016 // operands. 6017 for (auto &OM : Matcher.operands()) 6018 for (auto &OP : OM->predicates()) 6019 if (!isa<InstructionOperandMatcher>(OP)) { 6020 std::unique_ptr<PredicateMatcher> Result = std::move(OP); 6021 OM->eraseNullPredicates(); 6022 return Result; 6023 } 6024 6025 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with " 6026 "no conditions"); 6027 } 6028 6029 bool GroupMatcher::candidateConditionMatches( 6030 const PredicateMatcher &Predicate) const { 6031 6032 if (empty()) { 6033 // Sharing predicates for nested instructions is not supported yet as we 6034 // currently don't hoist the GIM_RecordInsn's properly, therefore we can 6035 // only work on the original root instruction (InsnVarID == 0): 6036 if (Predicate.getInsnVarID() != 0) 6037 return false; 6038 // ... otherwise an empty group can handle any predicate with no specific 6039 // requirements: 6040 return true; 6041 } 6042 6043 const Matcher &Representative = **Matchers.begin(); 6044 const auto &RepresentativeCondition = Representative.getFirstCondition(); 6045 // ... if not empty, the group can only accomodate matchers with the exact 6046 // same first condition: 6047 return Predicate.isIdentical(RepresentativeCondition); 6048 } 6049 6050 bool GroupMatcher::addMatcher(Matcher &Candidate) { 6051 if (!Candidate.hasFirstCondition()) 6052 return false; 6053 6054 const PredicateMatcher &Predicate = Candidate.getFirstCondition(); 6055 if (!candidateConditionMatches(Predicate)) 6056 return false; 6057 6058 Matchers.push_back(&Candidate); 6059 return true; 6060 } 6061 6062 void GroupMatcher::finalize() { 6063 assert(Conditions.empty() && "Already finalized?"); 6064 if (empty()) 6065 return; 6066 6067 Matcher &FirstRule = **Matchers.begin(); 6068 for (;;) { 6069 // All the checks are expected to succeed during the first iteration: 6070 for (const auto &Rule : Matchers) 6071 if (!Rule->hasFirstCondition()) 6072 return; 6073 const auto &FirstCondition = FirstRule.getFirstCondition(); 6074 for (unsigned I = 1, E = Matchers.size(); I < E; ++I) 6075 if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition)) 6076 return; 6077 6078 Conditions.push_back(FirstRule.popFirstCondition()); 6079 for (unsigned I = 1, E = Matchers.size(); I < E; ++I) 6080 Matchers[I]->popFirstCondition(); 6081 } 6082 } 6083 6084 void GroupMatcher::emit(MatchTable &Table) { 6085 unsigned LabelID = ~0U; 6086 if (!Conditions.empty()) { 6087 LabelID = Table.allocateLabelID(); 6088 Table << MatchTable::Opcode("GIM_Try", +1) 6089 << MatchTable::Comment("On fail goto") 6090 << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak; 6091 } 6092 for (auto &Condition : Conditions) 6093 Condition->emitPredicateOpcodes( 6094 Table, *static_cast<RuleMatcher *>(*Matchers.begin())); 6095 6096 for (const auto &M : Matchers) 6097 M->emit(Table); 6098 6099 // Exit the group 6100 if (!Conditions.empty()) 6101 Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak 6102 << MatchTable::Label(LabelID); 6103 } 6104 6105 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) { 6106 return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P); 6107 } 6108 6109 bool SwitchMatcher::candidateConditionMatches( 6110 const PredicateMatcher &Predicate) const { 6111 6112 if (empty()) { 6113 // Sharing predicates for nested instructions is not supported yet as we 6114 // currently don't hoist the GIM_RecordInsn's properly, therefore we can 6115 // only work on the original root instruction (InsnVarID == 0): 6116 if (Predicate.getInsnVarID() != 0) 6117 return false; 6118 // ... while an attempt to add even a root matcher to an empty SwitchMatcher 6119 // could fail as not all the types of conditions are supported: 6120 if (!isSupportedPredicateType(Predicate)) 6121 return false; 6122 // ... or the condition might not have a proper implementation of 6123 // getValue() / isIdenticalDownToValue() yet: 6124 if (!Predicate.hasValue()) 6125 return false; 6126 // ... otherwise an empty Switch can accomodate the condition with no 6127 // further requirements: 6128 return true; 6129 } 6130 6131 const Matcher &CaseRepresentative = **Matchers.begin(); 6132 const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition(); 6133 // Switch-cases must share the same kind of condition and path to the value it 6134 // checks: 6135 if (!Predicate.isIdenticalDownToValue(RepresentativeCondition)) 6136 return false; 6137 6138 const auto Value = Predicate.getValue(); 6139 // ... but be unique with respect to the actual value they check: 6140 return Values.count(Value) == 0; 6141 } 6142 6143 bool SwitchMatcher::addMatcher(Matcher &Candidate) { 6144 if (!Candidate.hasFirstCondition()) 6145 return false; 6146 6147 const PredicateMatcher &Predicate = Candidate.getFirstCondition(); 6148 if (!candidateConditionMatches(Predicate)) 6149 return false; 6150 const auto Value = Predicate.getValue(); 6151 Values.insert(Value); 6152 6153 Matchers.push_back(&Candidate); 6154 return true; 6155 } 6156 6157 void SwitchMatcher::finalize() { 6158 assert(Condition == nullptr && "Already finalized"); 6159 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); 6160 if (empty()) 6161 return; 6162 6163 llvm::stable_sort(Matchers, [](const Matcher *L, const Matcher *R) { 6164 return L->getFirstCondition().getValue() < 6165 R->getFirstCondition().getValue(); 6166 }); 6167 Condition = Matchers[0]->popFirstCondition(); 6168 for (unsigned I = 1, E = Values.size(); I < E; ++I) 6169 Matchers[I]->popFirstCondition(); 6170 } 6171 6172 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P, 6173 MatchTable &Table) { 6174 assert(isSupportedPredicateType(P) && "Predicate type is not supported"); 6175 6176 if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) { 6177 Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI") 6178 << MatchTable::IntValue(Condition->getInsnVarID()); 6179 return; 6180 } 6181 if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) { 6182 Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI") 6183 << MatchTable::IntValue(Condition->getInsnVarID()) 6184 << MatchTable::Comment("Op") 6185 << MatchTable::IntValue(Condition->getOpIdx()); 6186 return; 6187 } 6188 6189 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a " 6190 "predicate type that is claimed to be supported"); 6191 } 6192 6193 void SwitchMatcher::emit(MatchTable &Table) { 6194 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); 6195 if (empty()) 6196 return; 6197 assert(Condition != nullptr && 6198 "Broken SwitchMatcher, hasn't been finalized?"); 6199 6200 std::vector<unsigned> LabelIDs(Values.size()); 6201 std::generate(LabelIDs.begin(), LabelIDs.end(), 6202 [&Table]() { return Table.allocateLabelID(); }); 6203 const unsigned Default = Table.allocateLabelID(); 6204 6205 const int64_t LowerBound = Values.begin()->getRawValue(); 6206 const int64_t UpperBound = Values.rbegin()->getRawValue() + 1; 6207 6208 emitPredicateSpecificOpcodes(*Condition, Table); 6209 6210 Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound) 6211 << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")") 6212 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default); 6213 6214 int64_t J = LowerBound; 6215 auto VI = Values.begin(); 6216 for (unsigned I = 0, E = Values.size(); I < E; ++I) { 6217 auto V = *VI++; 6218 while (J++ < V.getRawValue()) 6219 Table << MatchTable::IntValue(0); 6220 V.turnIntoComment(); 6221 Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]); 6222 } 6223 Table << MatchTable::LineBreak; 6224 6225 for (unsigned I = 0, E = Values.size(); I < E; ++I) { 6226 Table << MatchTable::Label(LabelIDs[I]); 6227 Matchers[I]->emit(Table); 6228 Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; 6229 } 6230 Table << MatchTable::Label(Default); 6231 } 6232 6233 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); } 6234 6235 } // end anonymous namespace 6236 6237 //===----------------------------------------------------------------------===// 6238 6239 namespace llvm { 6240 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) { 6241 GlobalISelEmitter(RK).run(OS); 6242 } 6243 } // End llvm namespace 6244