1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This tablegen backend emits code for use by the GlobalISel instruction 11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td. 12 /// 13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen 14 /// backend, filters out the ones that are unsupported, maps 15 /// SelectionDAG-specific constructs to their GlobalISel counterpart 16 /// (when applicable: MVT to LLT; SDNode to generic Instruction). 17 /// 18 /// Not all patterns are supported: pass the tablegen invocation 19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped, 20 /// as well as why. 21 /// 22 /// The generated file defines a single method: 23 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const; 24 /// intended to be used in InstructionSelector::select as the first-step 25 /// selector for the patterns that don't require complex C++. 26 /// 27 /// FIXME: We'll probably want to eventually define a base 28 /// "TargetGenInstructionSelector" class. 29 /// 30 //===----------------------------------------------------------------------===// 31 32 #include "CodeGenDAGPatterns.h" 33 #include "SubtargetFeatureInfo.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/Support/CodeGenCoverage.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Error.h" 39 #include "llvm/Support/LowLevelTypeImpl.h" 40 #include "llvm/Support/MachineValueType.h" 41 #include "llvm/Support/ScopedPrinter.h" 42 #include "llvm/TableGen/Error.h" 43 #include "llvm/TableGen/Record.h" 44 #include "llvm/TableGen/TableGenBackend.h" 45 #include <numeric> 46 #include <string> 47 using namespace llvm; 48 49 #define DEBUG_TYPE "gisel-emitter" 50 51 STATISTIC(NumPatternTotal, "Total number of patterns"); 52 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG"); 53 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped"); 54 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information"); 55 STATISTIC(NumPatternEmitted, "Number of patterns emitted"); 56 57 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel"); 58 59 static cl::opt<bool> WarnOnSkippedPatterns( 60 "warn-on-skipped-patterns", 61 cl::desc("Explain why a pattern was skipped for inclusion " 62 "in the GlobalISel selector"), 63 cl::init(false), cl::cat(GlobalISelEmitterCat)); 64 65 static cl::opt<bool> GenerateCoverage( 66 "instrument-gisel-coverage", 67 cl::desc("Generate coverage instrumentation for GlobalISel"), 68 cl::init(false), cl::cat(GlobalISelEmitterCat)); 69 70 static cl::opt<std::string> UseCoverageFile( 71 "gisel-coverage-file", cl::init(""), 72 cl::desc("Specify file to retrieve coverage information from"), 73 cl::cat(GlobalISelEmitterCat)); 74 75 static cl::opt<bool> OptimizeMatchTable( 76 "optimize-match-table", 77 cl::desc("Generate an optimized version of the match table"), 78 cl::init(true), cl::cat(GlobalISelEmitterCat)); 79 80 namespace { 81 //===- Helper functions ---------------------------------------------------===// 82 83 /// Get the name of the enum value used to number the predicate function. 84 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) { 85 if (Predicate.hasGISelPredicateCode()) 86 return "GIPFP_MI_" + Predicate.getFnName(); 87 return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" + 88 Predicate.getFnName(); 89 } 90 91 /// Get the opcode used to check this predicate. 92 std::string getMatchOpcodeForImmPredicate(const TreePredicateFn &Predicate) { 93 return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate"; 94 } 95 96 /// This class stands in for LLT wherever we want to tablegen-erate an 97 /// equivalent at compiler run-time. 98 class LLTCodeGen { 99 private: 100 LLT Ty; 101 102 public: 103 LLTCodeGen() = default; 104 LLTCodeGen(const LLT &Ty) : Ty(Ty) {} 105 106 std::string getCxxEnumValue() const { 107 std::string Str; 108 raw_string_ostream OS(Str); 109 110 emitCxxEnumValue(OS); 111 return Str; 112 } 113 114 void emitCxxEnumValue(raw_ostream &OS) const { 115 if (Ty.isScalar()) { 116 OS << "GILLT_s" << Ty.getSizeInBits(); 117 return; 118 } 119 if (Ty.isVector()) { 120 OS << (Ty.isScalable() ? "GILLT_nxv" : "GILLT_v") 121 << Ty.getElementCount().getKnownMinValue() << "s" 122 << Ty.getScalarSizeInBits(); 123 return; 124 } 125 if (Ty.isPointer()) { 126 OS << "GILLT_p" << Ty.getAddressSpace(); 127 if (Ty.getSizeInBits() > 0) 128 OS << "s" << Ty.getSizeInBits(); 129 return; 130 } 131 llvm_unreachable("Unhandled LLT"); 132 } 133 134 void emitCxxConstructorCall(raw_ostream &OS) const { 135 if (Ty.isScalar()) { 136 OS << "LLT::scalar(" << Ty.getSizeInBits() << ")"; 137 return; 138 } 139 if (Ty.isVector()) { 140 OS << "LLT::vector(" 141 << (Ty.isScalable() ? "ElementCount::getScalable(" 142 : "ElementCount::getFixed(") 143 << Ty.getElementCount().getKnownMinValue() << "), " 144 << Ty.getScalarSizeInBits() << ")"; 145 return; 146 } 147 if (Ty.isPointer() && Ty.getSizeInBits() > 0) { 148 OS << "LLT::pointer(" << Ty.getAddressSpace() << ", " 149 << Ty.getSizeInBits() << ")"; 150 return; 151 } 152 llvm_unreachable("Unhandled LLT"); 153 } 154 155 const LLT &get() const { return Ty; } 156 157 /// This ordering is used for std::unique() and llvm::sort(). There's no 158 /// particular logic behind the order but either A < B or B < A must be 159 /// true if A != B. 160 bool operator<(const LLTCodeGen &Other) const { 161 if (Ty.isValid() != Other.Ty.isValid()) 162 return Ty.isValid() < Other.Ty.isValid(); 163 if (!Ty.isValid()) 164 return false; 165 166 if (Ty.isVector() != Other.Ty.isVector()) 167 return Ty.isVector() < Other.Ty.isVector(); 168 if (Ty.isScalar() != Other.Ty.isScalar()) 169 return Ty.isScalar() < Other.Ty.isScalar(); 170 if (Ty.isPointer() != Other.Ty.isPointer()) 171 return Ty.isPointer() < Other.Ty.isPointer(); 172 173 if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace()) 174 return Ty.getAddressSpace() < Other.Ty.getAddressSpace(); 175 176 if (Ty.isVector() && Ty.getElementCount() != Other.Ty.getElementCount()) 177 return std::make_tuple(Ty.isScalable(), 178 Ty.getElementCount().getKnownMinValue()) < 179 std::make_tuple(Other.Ty.isScalable(), 180 Other.Ty.getElementCount().getKnownMinValue()); 181 182 assert((!Ty.isVector() || Ty.isScalable() == Other.Ty.isScalable()) && 183 "Unexpected mismatch of scalable property"); 184 return Ty.isVector() 185 ? std::make_tuple(Ty.isScalable(), 186 Ty.getSizeInBits().getKnownMinSize()) < 187 std::make_tuple(Other.Ty.isScalable(), 188 Other.Ty.getSizeInBits().getKnownMinSize()) 189 : Ty.getSizeInBits().getFixedSize() < 190 Other.Ty.getSizeInBits().getFixedSize(); 191 } 192 193 bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; } 194 }; 195 196 // Track all types that are used so we can emit the corresponding enum. 197 std::set<LLTCodeGen> KnownTypes; 198 199 class InstructionMatcher; 200 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for 201 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...). 202 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) { 203 MVT VT(SVT); 204 205 if (VT.isVector() && !VT.getVectorElementCount().isScalar()) 206 return LLTCodeGen( 207 LLT::vector(VT.getVectorElementCount(), VT.getScalarSizeInBits())); 208 209 if (VT.isInteger() || VT.isFloatingPoint()) 210 return LLTCodeGen(LLT::scalar(VT.getSizeInBits())); 211 212 return None; 213 } 214 215 static std::string explainPredicates(const TreePatternNode *N) { 216 std::string Explanation; 217 StringRef Separator = ""; 218 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 219 const TreePredicateFn &P = Call.Fn; 220 Explanation += 221 (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str(); 222 Separator = ", "; 223 224 if (P.isAlwaysTrue()) 225 Explanation += " always-true"; 226 if (P.isImmediatePattern()) 227 Explanation += " immediate"; 228 229 if (P.isUnindexed()) 230 Explanation += " unindexed"; 231 232 if (P.isNonExtLoad()) 233 Explanation += " non-extload"; 234 if (P.isAnyExtLoad()) 235 Explanation += " extload"; 236 if (P.isSignExtLoad()) 237 Explanation += " sextload"; 238 if (P.isZeroExtLoad()) 239 Explanation += " zextload"; 240 241 if (P.isNonTruncStore()) 242 Explanation += " non-truncstore"; 243 if (P.isTruncStore()) 244 Explanation += " truncstore"; 245 246 if (Record *VT = P.getMemoryVT()) 247 Explanation += (" MemVT=" + VT->getName()).str(); 248 if (Record *VT = P.getScalarMemoryVT()) 249 Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str(); 250 251 if (ListInit *AddrSpaces = P.getAddressSpaces()) { 252 raw_string_ostream OS(Explanation); 253 OS << " AddressSpaces=["; 254 255 StringRef AddrSpaceSeparator; 256 for (Init *Val : AddrSpaces->getValues()) { 257 IntInit *IntVal = dyn_cast<IntInit>(Val); 258 if (!IntVal) 259 continue; 260 261 OS << AddrSpaceSeparator << IntVal->getValue(); 262 AddrSpaceSeparator = ", "; 263 } 264 265 OS << ']'; 266 } 267 268 int64_t MinAlign = P.getMinAlignment(); 269 if (MinAlign > 0) 270 Explanation += " MinAlign=" + utostr(MinAlign); 271 272 if (P.isAtomicOrderingMonotonic()) 273 Explanation += " monotonic"; 274 if (P.isAtomicOrderingAcquire()) 275 Explanation += " acquire"; 276 if (P.isAtomicOrderingRelease()) 277 Explanation += " release"; 278 if (P.isAtomicOrderingAcquireRelease()) 279 Explanation += " acq_rel"; 280 if (P.isAtomicOrderingSequentiallyConsistent()) 281 Explanation += " seq_cst"; 282 if (P.isAtomicOrderingAcquireOrStronger()) 283 Explanation += " >=acquire"; 284 if (P.isAtomicOrderingWeakerThanAcquire()) 285 Explanation += " <acquire"; 286 if (P.isAtomicOrderingReleaseOrStronger()) 287 Explanation += " >=release"; 288 if (P.isAtomicOrderingWeakerThanRelease()) 289 Explanation += " <release"; 290 } 291 return Explanation; 292 } 293 294 std::string explainOperator(Record *Operator) { 295 if (Operator->isSubClassOf("SDNode")) 296 return (" (" + Operator->getValueAsString("Opcode") + ")").str(); 297 298 if (Operator->isSubClassOf("Intrinsic")) 299 return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str(); 300 301 if (Operator->isSubClassOf("ComplexPattern")) 302 return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() + 303 ")") 304 .str(); 305 306 if (Operator->isSubClassOf("SDNodeXForm")) 307 return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() + 308 ")") 309 .str(); 310 311 return (" (Operator " + Operator->getName() + " not understood)").str(); 312 } 313 314 /// Helper function to let the emitter report skip reason error messages. 315 static Error failedImport(const Twine &Reason) { 316 return make_error<StringError>(Reason, inconvertibleErrorCode()); 317 } 318 319 static Error isTrivialOperatorNode(const TreePatternNode *N) { 320 std::string Explanation; 321 std::string Separator; 322 323 bool HasUnsupportedPredicate = false; 324 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 325 const TreePredicateFn &Predicate = Call.Fn; 326 327 if (Predicate.isAlwaysTrue()) 328 continue; 329 330 if (Predicate.isImmediatePattern()) 331 continue; 332 333 if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() || 334 Predicate.isSignExtLoad() || Predicate.isZeroExtLoad()) 335 continue; 336 337 if (Predicate.isNonTruncStore() || Predicate.isTruncStore()) 338 continue; 339 340 if (Predicate.isLoad() && Predicate.getMemoryVT()) 341 continue; 342 343 if (Predicate.isLoad() || Predicate.isStore()) { 344 if (Predicate.isUnindexed()) 345 continue; 346 } 347 348 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 349 const ListInit *AddrSpaces = Predicate.getAddressSpaces(); 350 if (AddrSpaces && !AddrSpaces->empty()) 351 continue; 352 353 if (Predicate.getMinAlignment() > 0) 354 continue; 355 } 356 357 if (Predicate.isAtomic() && Predicate.getMemoryVT()) 358 continue; 359 360 if (Predicate.isAtomic() && 361 (Predicate.isAtomicOrderingMonotonic() || 362 Predicate.isAtomicOrderingAcquire() || 363 Predicate.isAtomicOrderingRelease() || 364 Predicate.isAtomicOrderingAcquireRelease() || 365 Predicate.isAtomicOrderingSequentiallyConsistent() || 366 Predicate.isAtomicOrderingAcquireOrStronger() || 367 Predicate.isAtomicOrderingWeakerThanAcquire() || 368 Predicate.isAtomicOrderingReleaseOrStronger() || 369 Predicate.isAtomicOrderingWeakerThanRelease())) 370 continue; 371 372 if (Predicate.hasGISelPredicateCode()) 373 continue; 374 375 HasUnsupportedPredicate = true; 376 Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")"; 377 Separator = ", "; 378 Explanation += (Separator + "first-failing:" + 379 Predicate.getOrigPatFragRecord()->getRecord()->getName()) 380 .str(); 381 break; 382 } 383 384 if (!HasUnsupportedPredicate) 385 return Error::success(); 386 387 return failedImport(Explanation); 388 } 389 390 static Record *getInitValueAsRegClass(Init *V) { 391 if (DefInit *VDefInit = dyn_cast<DefInit>(V)) { 392 if (VDefInit->getDef()->isSubClassOf("RegisterOperand")) 393 return VDefInit->getDef()->getValueAsDef("RegClass"); 394 if (VDefInit->getDef()->isSubClassOf("RegisterClass")) 395 return VDefInit->getDef(); 396 } 397 return nullptr; 398 } 399 400 std::string 401 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 402 std::string Name = "GIFBS"; 403 for (const auto &Feature : FeatureBitset) 404 Name += ("_" + Feature->getName()).str(); 405 return Name; 406 } 407 408 static std::string getScopedName(unsigned Scope, const std::string &Name) { 409 return ("pred:" + Twine(Scope) + ":" + Name).str(); 410 } 411 412 //===- MatchTable Helpers -------------------------------------------------===// 413 414 class MatchTable; 415 416 /// A record to be stored in a MatchTable. 417 /// 418 /// This class represents any and all output that may be required to emit the 419 /// MatchTable. Instances are most often configured to represent an opcode or 420 /// value that will be emitted to the table with some formatting but it can also 421 /// represent commas, comments, and other formatting instructions. 422 struct MatchTableRecord { 423 enum RecordFlagsBits { 424 MTRF_None = 0x0, 425 /// Causes EmitStr to be formatted as comment when emitted. 426 MTRF_Comment = 0x1, 427 /// Causes the record value to be followed by a comma when emitted. 428 MTRF_CommaFollows = 0x2, 429 /// Causes the record value to be followed by a line break when emitted. 430 MTRF_LineBreakFollows = 0x4, 431 /// Indicates that the record defines a label and causes an additional 432 /// comment to be emitted containing the index of the label. 433 MTRF_Label = 0x8, 434 /// Causes the record to be emitted as the index of the label specified by 435 /// LabelID along with a comment indicating where that label is. 436 MTRF_JumpTarget = 0x10, 437 /// Causes the formatter to add a level of indentation before emitting the 438 /// record. 439 MTRF_Indent = 0x20, 440 /// Causes the formatter to remove a level of indentation after emitting the 441 /// record. 442 MTRF_Outdent = 0x40, 443 }; 444 445 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to 446 /// reference or define. 447 unsigned LabelID; 448 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a 449 /// value, a label name. 450 std::string EmitStr; 451 452 private: 453 /// The number of MatchTable elements described by this record. Comments are 0 454 /// while values are typically 1. Values >1 may occur when we need to emit 455 /// values that exceed the size of a MatchTable element. 456 unsigned NumElements; 457 458 public: 459 /// A bitfield of RecordFlagsBits flags. 460 unsigned Flags; 461 462 /// The actual run-time value, if known 463 int64_t RawValue; 464 465 MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr, 466 unsigned NumElements, unsigned Flags, 467 int64_t RawValue = std::numeric_limits<int64_t>::min()) 468 : LabelID(LabelID_.getValueOr(~0u)), EmitStr(EmitStr), 469 NumElements(NumElements), Flags(Flags), RawValue(RawValue) { 470 assert((!LabelID_.hasValue() || LabelID != ~0u) && 471 "This value is reserved for non-labels"); 472 } 473 MatchTableRecord(const MatchTableRecord &Other) = default; 474 MatchTableRecord(MatchTableRecord &&Other) = default; 475 476 /// Useful if a Match Table Record gets optimized out 477 void turnIntoComment() { 478 Flags |= MTRF_Comment; 479 Flags &= ~MTRF_CommaFollows; 480 NumElements = 0; 481 } 482 483 /// For Jump Table generation purposes 484 bool operator<(const MatchTableRecord &Other) const { 485 return RawValue < Other.RawValue; 486 } 487 int64_t getRawValue() const { return RawValue; } 488 489 void emit(raw_ostream &OS, bool LineBreakNextAfterThis, 490 const MatchTable &Table) const; 491 unsigned size() const { return NumElements; } 492 }; 493 494 class Matcher; 495 496 /// Holds the contents of a generated MatchTable to enable formatting and the 497 /// necessary index tracking needed to support GIM_Try. 498 class MatchTable { 499 /// An unique identifier for the table. The generated table will be named 500 /// MatchTable${ID}. 501 unsigned ID; 502 /// The records that make up the table. Also includes comments describing the 503 /// values being emitted and line breaks to format it. 504 std::vector<MatchTableRecord> Contents; 505 /// The currently defined labels. 506 DenseMap<unsigned, unsigned> LabelMap; 507 /// Tracks the sum of MatchTableRecord::NumElements as the table is built. 508 unsigned CurrentSize = 0; 509 /// A unique identifier for a MatchTable label. 510 unsigned CurrentLabelID = 0; 511 /// Determines if the table should be instrumented for rule coverage tracking. 512 bool IsWithCoverage; 513 514 public: 515 static MatchTableRecord LineBreak; 516 static MatchTableRecord Comment(StringRef Comment) { 517 return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment); 518 } 519 static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) { 520 unsigned ExtraFlags = 0; 521 if (IndentAdjust > 0) 522 ExtraFlags |= MatchTableRecord::MTRF_Indent; 523 if (IndentAdjust < 0) 524 ExtraFlags |= MatchTableRecord::MTRF_Outdent; 525 526 return MatchTableRecord(None, Opcode, 1, 527 MatchTableRecord::MTRF_CommaFollows | ExtraFlags); 528 } 529 static MatchTableRecord NamedValue(StringRef NamedValue) { 530 return MatchTableRecord(None, NamedValue, 1, 531 MatchTableRecord::MTRF_CommaFollows); 532 } 533 static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) { 534 return MatchTableRecord(None, NamedValue, 1, 535 MatchTableRecord::MTRF_CommaFollows, RawValue); 536 } 537 static MatchTableRecord NamedValue(StringRef Namespace, 538 StringRef NamedValue) { 539 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, 540 MatchTableRecord::MTRF_CommaFollows); 541 } 542 static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue, 543 int64_t RawValue) { 544 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, 545 MatchTableRecord::MTRF_CommaFollows, RawValue); 546 } 547 static MatchTableRecord IntValue(int64_t IntValue) { 548 return MatchTableRecord(None, llvm::to_string(IntValue), 1, 549 MatchTableRecord::MTRF_CommaFollows); 550 } 551 static MatchTableRecord Label(unsigned LabelID) { 552 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0, 553 MatchTableRecord::MTRF_Label | 554 MatchTableRecord::MTRF_Comment | 555 MatchTableRecord::MTRF_LineBreakFollows); 556 } 557 static MatchTableRecord JumpTarget(unsigned LabelID) { 558 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1, 559 MatchTableRecord::MTRF_JumpTarget | 560 MatchTableRecord::MTRF_Comment | 561 MatchTableRecord::MTRF_CommaFollows); 562 } 563 564 static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage); 565 566 MatchTable(bool WithCoverage, unsigned ID = 0) 567 : ID(ID), IsWithCoverage(WithCoverage) {} 568 569 bool isWithCoverage() const { return IsWithCoverage; } 570 571 void push_back(const MatchTableRecord &Value) { 572 if (Value.Flags & MatchTableRecord::MTRF_Label) 573 defineLabel(Value.LabelID); 574 Contents.push_back(Value); 575 CurrentSize += Value.size(); 576 } 577 578 unsigned allocateLabelID() { return CurrentLabelID++; } 579 580 void defineLabel(unsigned LabelID) { 581 LabelMap.insert(std::make_pair(LabelID, CurrentSize)); 582 } 583 584 unsigned getLabelIndex(unsigned LabelID) const { 585 const auto I = LabelMap.find(LabelID); 586 assert(I != LabelMap.end() && "Use of undeclared label"); 587 return I->second; 588 } 589 590 void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; } 591 592 void emitDeclaration(raw_ostream &OS) const { 593 unsigned Indentation = 4; 594 OS << " constexpr static int64_t MatchTable" << ID << "[] = {"; 595 LineBreak.emit(OS, true, *this); 596 OS << std::string(Indentation, ' '); 597 598 for (auto I = Contents.begin(), E = Contents.end(); I != E; 599 ++I) { 600 bool LineBreakIsNext = false; 601 const auto &NextI = std::next(I); 602 603 if (NextI != E) { 604 if (NextI->EmitStr == "" && 605 NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows) 606 LineBreakIsNext = true; 607 } 608 609 if (I->Flags & MatchTableRecord::MTRF_Indent) 610 Indentation += 2; 611 612 I->emit(OS, LineBreakIsNext, *this); 613 if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows) 614 OS << std::string(Indentation, ' '); 615 616 if (I->Flags & MatchTableRecord::MTRF_Outdent) 617 Indentation -= 2; 618 } 619 OS << "};\n"; 620 } 621 }; 622 623 MatchTableRecord MatchTable::LineBreak = { 624 None, "" /* Emit String */, 0 /* Elements */, 625 MatchTableRecord::MTRF_LineBreakFollows}; 626 627 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis, 628 const MatchTable &Table) const { 629 bool UseLineComment = 630 LineBreakIsNextAfterThis || (Flags & MTRF_LineBreakFollows); 631 if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows)) 632 UseLineComment = false; 633 634 if (Flags & MTRF_Comment) 635 OS << (UseLineComment ? "// " : "/*"); 636 637 OS << EmitStr; 638 if (Flags & MTRF_Label) 639 OS << ": @" << Table.getLabelIndex(LabelID); 640 641 if ((Flags & MTRF_Comment) && !UseLineComment) 642 OS << "*/"; 643 644 if (Flags & MTRF_JumpTarget) { 645 if (Flags & MTRF_Comment) 646 OS << " "; 647 OS << Table.getLabelIndex(LabelID); 648 } 649 650 if (Flags & MTRF_CommaFollows) { 651 OS << ","; 652 if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows)) 653 OS << " "; 654 } 655 656 if (Flags & MTRF_LineBreakFollows) 657 OS << "\n"; 658 } 659 660 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) { 661 Table.push_back(Value); 662 return Table; 663 } 664 665 //===- Matchers -----------------------------------------------------------===// 666 667 class OperandMatcher; 668 class MatchAction; 669 class PredicateMatcher; 670 671 class Matcher { 672 public: 673 virtual ~Matcher() = default; 674 virtual void optimize() {} 675 virtual void emit(MatchTable &Table) = 0; 676 677 virtual bool hasFirstCondition() const = 0; 678 virtual const PredicateMatcher &getFirstCondition() const = 0; 679 virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0; 680 }; 681 682 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules, 683 bool WithCoverage) { 684 MatchTable Table(WithCoverage); 685 for (Matcher *Rule : Rules) 686 Rule->emit(Table); 687 688 return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; 689 } 690 691 class GroupMatcher final : public Matcher { 692 /// Conditions that form a common prefix of all the matchers contained. 693 SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions; 694 695 /// All the nested matchers, sharing a common prefix. 696 std::vector<Matcher *> Matchers; 697 698 /// An owning collection for any auxiliary matchers created while optimizing 699 /// nested matchers contained. 700 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 701 702 public: 703 /// Add a matcher to the collection of nested matchers if it meets the 704 /// requirements, and return true. If it doesn't, do nothing and return false. 705 /// 706 /// Expected to preserve its argument, so it could be moved out later on. 707 bool addMatcher(Matcher &Candidate); 708 709 /// Mark the matcher as fully-built and ensure any invariants expected by both 710 /// optimize() and emit(...) methods. Generally, both sequences of calls 711 /// are expected to lead to a sensible result: 712 /// 713 /// addMatcher(...)*; finalize(); optimize(); emit(...); and 714 /// addMatcher(...)*; finalize(); emit(...); 715 /// 716 /// or generally 717 /// 718 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }* 719 /// 720 /// Multiple calls to optimize() are expected to be handled gracefully, though 721 /// optimize() is not expected to be idempotent. Multiple calls to finalize() 722 /// aren't generally supported. emit(...) is expected to be non-mutating and 723 /// producing the exact same results upon repeated calls. 724 /// 725 /// addMatcher() calls after the finalize() call are not supported. 726 /// 727 /// finalize() and optimize() are both allowed to mutate the contained 728 /// matchers, so moving them out after finalize() is not supported. 729 void finalize(); 730 void optimize() override; 731 void emit(MatchTable &Table) override; 732 733 /// Could be used to move out the matchers added previously, unless finalize() 734 /// has been already called. If any of the matchers are moved out, the group 735 /// becomes safe to destroy, but not safe to re-use for anything else. 736 iterator_range<std::vector<Matcher *>::iterator> matchers() { 737 return make_range(Matchers.begin(), Matchers.end()); 738 } 739 size_t size() const { return Matchers.size(); } 740 bool empty() const { return Matchers.empty(); } 741 742 std::unique_ptr<PredicateMatcher> popFirstCondition() override { 743 assert(!Conditions.empty() && 744 "Trying to pop a condition from a condition-less group"); 745 std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front()); 746 Conditions.erase(Conditions.begin()); 747 return P; 748 } 749 const PredicateMatcher &getFirstCondition() const override { 750 assert(!Conditions.empty() && 751 "Trying to get a condition from a condition-less group"); 752 return *Conditions.front(); 753 } 754 bool hasFirstCondition() const override { return !Conditions.empty(); } 755 756 private: 757 /// See if a candidate matcher could be added to this group solely by 758 /// analyzing its first condition. 759 bool candidateConditionMatches(const PredicateMatcher &Predicate) const; 760 }; 761 762 class SwitchMatcher : public Matcher { 763 /// All the nested matchers, representing distinct switch-cases. The first 764 /// conditions (as Matcher::getFirstCondition() reports) of all the nested 765 /// matchers must share the same type and path to a value they check, in other 766 /// words, be isIdenticalDownToValue, but have different values they check 767 /// against. 768 std::vector<Matcher *> Matchers; 769 770 /// The representative condition, with a type and a path (InsnVarID and OpIdx 771 /// in most cases) shared by all the matchers contained. 772 std::unique_ptr<PredicateMatcher> Condition = nullptr; 773 774 /// Temporary set used to check that the case values don't repeat within the 775 /// same switch. 776 std::set<MatchTableRecord> Values; 777 778 /// An owning collection for any auxiliary matchers created while optimizing 779 /// nested matchers contained. 780 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 781 782 public: 783 bool addMatcher(Matcher &Candidate); 784 785 void finalize(); 786 void emit(MatchTable &Table) override; 787 788 iterator_range<std::vector<Matcher *>::iterator> matchers() { 789 return make_range(Matchers.begin(), Matchers.end()); 790 } 791 size_t size() const { return Matchers.size(); } 792 bool empty() const { return Matchers.empty(); } 793 794 std::unique_ptr<PredicateMatcher> popFirstCondition() override { 795 // SwitchMatcher doesn't have a common first condition for its cases, as all 796 // the cases only share a kind of a value (a type and a path to it) they 797 // match, but deliberately differ in the actual value they match. 798 llvm_unreachable("Trying to pop a condition from a condition-less group"); 799 } 800 const PredicateMatcher &getFirstCondition() const override { 801 llvm_unreachable("Trying to pop a condition from a condition-less group"); 802 } 803 bool hasFirstCondition() const override { return false; } 804 805 private: 806 /// See if the predicate type has a Switch-implementation for it. 807 static bool isSupportedPredicateType(const PredicateMatcher &Predicate); 808 809 bool candidateConditionMatches(const PredicateMatcher &Predicate) const; 810 811 /// emit()-helper 812 static void emitPredicateSpecificOpcodes(const PredicateMatcher &P, 813 MatchTable &Table); 814 }; 815 816 /// Generates code to check that a match rule matches. 817 class RuleMatcher : public Matcher { 818 public: 819 using ActionList = std::list<std::unique_ptr<MatchAction>>; 820 using action_iterator = ActionList::iterator; 821 822 protected: 823 /// A list of matchers that all need to succeed for the current rule to match. 824 /// FIXME: This currently supports a single match position but could be 825 /// extended to support multiple positions to support div/rem fusion or 826 /// load-multiple instructions. 827 using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ; 828 MatchersTy Matchers; 829 830 /// A list of actions that need to be taken when all predicates in this rule 831 /// have succeeded. 832 ActionList Actions; 833 834 using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>; 835 836 /// A map of instruction matchers to the local variables 837 DefinedInsnVariablesMap InsnVariableIDs; 838 839 using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>; 840 841 // The set of instruction matchers that have not yet been claimed for mutation 842 // by a BuildMI. 843 MutatableInsnSet MutatableInsns; 844 845 /// A map of named operands defined by the matchers that may be referenced by 846 /// the renderers. 847 StringMap<OperandMatcher *> DefinedOperands; 848 849 /// A map of anonymous physical register operands defined by the matchers that 850 /// may be referenced by the renderers. 851 DenseMap<Record *, OperandMatcher *> PhysRegOperands; 852 853 /// ID for the next instruction variable defined with implicitlyDefineInsnVar() 854 unsigned NextInsnVarID; 855 856 /// ID for the next output instruction allocated with allocateOutputInsnID() 857 unsigned NextOutputInsnID; 858 859 /// ID for the next temporary register ID allocated with allocateTempRegID() 860 unsigned NextTempRegID; 861 862 std::vector<Record *> RequiredFeatures; 863 std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers; 864 865 ArrayRef<SMLoc> SrcLoc; 866 867 typedef std::tuple<Record *, unsigned, unsigned> 868 DefinedComplexPatternSubOperand; 869 typedef StringMap<DefinedComplexPatternSubOperand> 870 DefinedComplexPatternSubOperandMap; 871 /// A map of Symbolic Names to ComplexPattern sub-operands. 872 DefinedComplexPatternSubOperandMap ComplexSubOperands; 873 /// A map used to for multiple referenced error check of ComplexSubOperand. 874 /// ComplexSubOperand can't be referenced multiple from different operands, 875 /// however multiple references from same operand are allowed since that is 876 /// how 'same operand checks' are generated. 877 StringMap<std::string> ComplexSubOperandsParentName; 878 879 uint64_t RuleID; 880 static uint64_t NextRuleID; 881 882 public: 883 RuleMatcher(ArrayRef<SMLoc> SrcLoc) 884 : NextInsnVarID(0), NextOutputInsnID(0), NextTempRegID(0), SrcLoc(SrcLoc), 885 RuleID(NextRuleID++) {} 886 RuleMatcher(RuleMatcher &&Other) = default; 887 RuleMatcher &operator=(RuleMatcher &&Other) = default; 888 889 uint64_t getRuleID() const { return RuleID; } 890 891 InstructionMatcher &addInstructionMatcher(StringRef SymbolicName); 892 void addRequiredFeature(Record *Feature); 893 const std::vector<Record *> &getRequiredFeatures() const; 894 895 template <class Kind, class... Args> Kind &addAction(Args &&... args); 896 template <class Kind, class... Args> 897 action_iterator insertAction(action_iterator InsertPt, Args &&... args); 898 899 /// Define an instruction without emitting any code to do so. 900 unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher); 901 902 unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const; 903 DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const { 904 return InsnVariableIDs.begin(); 905 } 906 DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const { 907 return InsnVariableIDs.end(); 908 } 909 iterator_range<typename DefinedInsnVariablesMap::const_iterator> 910 defined_insn_vars() const { 911 return make_range(defined_insn_vars_begin(), defined_insn_vars_end()); 912 } 913 914 MutatableInsnSet::const_iterator mutatable_insns_begin() const { 915 return MutatableInsns.begin(); 916 } 917 MutatableInsnSet::const_iterator mutatable_insns_end() const { 918 return MutatableInsns.end(); 919 } 920 iterator_range<typename MutatableInsnSet::const_iterator> 921 mutatable_insns() const { 922 return make_range(mutatable_insns_begin(), mutatable_insns_end()); 923 } 924 void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) { 925 bool R = MutatableInsns.erase(InsnMatcher); 926 assert(R && "Reserving a mutatable insn that isn't available"); 927 (void)R; 928 } 929 930 action_iterator actions_begin() { return Actions.begin(); } 931 action_iterator actions_end() { return Actions.end(); } 932 iterator_range<action_iterator> actions() { 933 return make_range(actions_begin(), actions_end()); 934 } 935 936 void defineOperand(StringRef SymbolicName, OperandMatcher &OM); 937 938 void definePhysRegOperand(Record *Reg, OperandMatcher &OM); 939 940 Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern, 941 unsigned RendererID, unsigned SubOperandID, 942 StringRef ParentSymbolicName) { 943 std::string ParentName(ParentSymbolicName); 944 if (ComplexSubOperands.count(SymbolicName)) { 945 const std::string &RecordedParentName = 946 ComplexSubOperandsParentName[SymbolicName]; 947 if (RecordedParentName != ParentName) 948 return failedImport("Error: Complex suboperand " + SymbolicName + 949 " referenced by different operands: " + 950 RecordedParentName + " and " + ParentName + "."); 951 // Complex suboperand referenced more than once from same the operand is 952 // used to generate 'same operand check'. Emitting of 953 // GIR_ComplexSubOperandRenderer for them is already handled. 954 return Error::success(); 955 } 956 957 ComplexSubOperands[SymbolicName] = 958 std::make_tuple(ComplexPattern, RendererID, SubOperandID); 959 ComplexSubOperandsParentName[SymbolicName] = ParentName; 960 961 return Error::success(); 962 } 963 964 Optional<DefinedComplexPatternSubOperand> 965 getComplexSubOperand(StringRef SymbolicName) const { 966 const auto &I = ComplexSubOperands.find(SymbolicName); 967 if (I == ComplexSubOperands.end()) 968 return None; 969 return I->second; 970 } 971 972 InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const; 973 const OperandMatcher &getOperandMatcher(StringRef Name) const; 974 const OperandMatcher &getPhysRegOperandMatcher(Record *) const; 975 976 void optimize() override; 977 void emit(MatchTable &Table) override; 978 979 /// Compare the priority of this object and B. 980 /// 981 /// Returns true if this object is more important than B. 982 bool isHigherPriorityThan(const RuleMatcher &B) const; 983 984 /// Report the maximum number of temporary operands needed by the rule 985 /// matcher. 986 unsigned countRendererFns() const; 987 988 std::unique_ptr<PredicateMatcher> popFirstCondition() override; 989 const PredicateMatcher &getFirstCondition() const override; 990 LLTCodeGen getFirstConditionAsRootType(); 991 bool hasFirstCondition() const override; 992 unsigned getNumOperands() const; 993 StringRef getOpcode() const; 994 995 // FIXME: Remove this as soon as possible 996 InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); } 997 998 unsigned allocateOutputInsnID() { return NextOutputInsnID++; } 999 unsigned allocateTempRegID() { return NextTempRegID++; } 1000 1001 iterator_range<MatchersTy::iterator> insnmatchers() { 1002 return make_range(Matchers.begin(), Matchers.end()); 1003 } 1004 bool insnmatchers_empty() const { return Matchers.empty(); } 1005 void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); } 1006 }; 1007 1008 uint64_t RuleMatcher::NextRuleID = 0; 1009 1010 using action_iterator = RuleMatcher::action_iterator; 1011 1012 template <class PredicateTy> class PredicateListMatcher { 1013 private: 1014 /// Template instantiations should specialize this to return a string to use 1015 /// for the comment emitted when there are no predicates. 1016 std::string getNoPredicateComment() const; 1017 1018 protected: 1019 using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>; 1020 PredicatesTy Predicates; 1021 1022 /// Track if the list of predicates was manipulated by one of the optimization 1023 /// methods. 1024 bool Optimized = false; 1025 1026 public: 1027 typename PredicatesTy::iterator predicates_begin() { 1028 return Predicates.begin(); 1029 } 1030 typename PredicatesTy::iterator predicates_end() { 1031 return Predicates.end(); 1032 } 1033 iterator_range<typename PredicatesTy::iterator> predicates() { 1034 return make_range(predicates_begin(), predicates_end()); 1035 } 1036 typename PredicatesTy::size_type predicates_size() const { 1037 return Predicates.size(); 1038 } 1039 bool predicates_empty() const { return Predicates.empty(); } 1040 1041 std::unique_ptr<PredicateTy> predicates_pop_front() { 1042 std::unique_ptr<PredicateTy> Front = std::move(Predicates.front()); 1043 Predicates.pop_front(); 1044 Optimized = true; 1045 return Front; 1046 } 1047 1048 void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) { 1049 Predicates.push_front(std::move(Predicate)); 1050 } 1051 1052 void eraseNullPredicates() { 1053 const auto NewEnd = 1054 std::stable_partition(Predicates.begin(), Predicates.end(), 1055 std::logical_not<std::unique_ptr<PredicateTy>>()); 1056 if (NewEnd != Predicates.begin()) { 1057 Predicates.erase(Predicates.begin(), NewEnd); 1058 Optimized = true; 1059 } 1060 } 1061 1062 /// Emit MatchTable opcodes that tests whether all the predicates are met. 1063 template <class... Args> 1064 void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) { 1065 if (Predicates.empty() && !Optimized) { 1066 Table << MatchTable::Comment(getNoPredicateComment()) 1067 << MatchTable::LineBreak; 1068 return; 1069 } 1070 1071 for (const auto &Predicate : predicates()) 1072 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...); 1073 } 1074 1075 /// Provide a function to avoid emitting certain predicates. This is used to 1076 /// defer some predicate checks until after others 1077 using PredicateFilterFunc = std::function<bool(const PredicateTy&)>; 1078 1079 /// Emit MatchTable opcodes for predicates which satisfy \p 1080 /// ShouldEmitPredicate. This should be called multiple times to ensure all 1081 /// predicates are eventually added to the match table. 1082 template <class... Args> 1083 void emitFilteredPredicateListOpcodes(PredicateFilterFunc ShouldEmitPredicate, 1084 MatchTable &Table, Args &&... args) { 1085 if (Predicates.empty() && !Optimized) { 1086 Table << MatchTable::Comment(getNoPredicateComment()) 1087 << MatchTable::LineBreak; 1088 return; 1089 } 1090 1091 for (const auto &Predicate : predicates()) { 1092 if (ShouldEmitPredicate(*Predicate)) 1093 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...); 1094 } 1095 } 1096 }; 1097 1098 class PredicateMatcher { 1099 public: 1100 /// This enum is used for RTTI and also defines the priority that is given to 1101 /// the predicate when generating the matcher code. Kinds with higher priority 1102 /// must be tested first. 1103 /// 1104 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter 1105 /// but OPM_Int must have priority over OPM_RegBank since constant integers 1106 /// are represented by a virtual register defined by a G_CONSTANT instruction. 1107 /// 1108 /// Note: The relative priority between IPM_ and OPM_ does not matter, they 1109 /// are currently not compared between each other. 1110 enum PredicateKind { 1111 IPM_Opcode, 1112 IPM_NumOperands, 1113 IPM_ImmPredicate, 1114 IPM_Imm, 1115 IPM_AtomicOrderingMMO, 1116 IPM_MemoryLLTSize, 1117 IPM_MemoryVsLLTSize, 1118 IPM_MemoryAddressSpace, 1119 IPM_MemoryAlignment, 1120 IPM_VectorSplatImm, 1121 IPM_GenericPredicate, 1122 OPM_SameOperand, 1123 OPM_ComplexPattern, 1124 OPM_IntrinsicID, 1125 OPM_CmpPredicate, 1126 OPM_Instruction, 1127 OPM_Int, 1128 OPM_LiteralInt, 1129 OPM_LLT, 1130 OPM_PointerToAny, 1131 OPM_RegBank, 1132 OPM_MBB, 1133 OPM_RecordNamedOperand, 1134 }; 1135 1136 protected: 1137 PredicateKind Kind; 1138 unsigned InsnVarID; 1139 unsigned OpIdx; 1140 1141 public: 1142 PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0) 1143 : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {} 1144 1145 unsigned getInsnVarID() const { return InsnVarID; } 1146 unsigned getOpIdx() const { return OpIdx; } 1147 1148 virtual ~PredicateMatcher() = default; 1149 /// Emit MatchTable opcodes that check the predicate for the given operand. 1150 virtual void emitPredicateOpcodes(MatchTable &Table, 1151 RuleMatcher &Rule) const = 0; 1152 1153 PredicateKind getKind() const { return Kind; } 1154 1155 bool dependsOnOperands() const { 1156 // Custom predicates really depend on the context pattern of the 1157 // instruction, not just the individual instruction. This therefore 1158 // implicitly depends on all other pattern constraints. 1159 return Kind == IPM_GenericPredicate; 1160 } 1161 1162 virtual bool isIdentical(const PredicateMatcher &B) const { 1163 return B.getKind() == getKind() && InsnVarID == B.InsnVarID && 1164 OpIdx == B.OpIdx; 1165 } 1166 1167 virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const { 1168 return hasValue() && PredicateMatcher::isIdentical(B); 1169 } 1170 1171 virtual MatchTableRecord getValue() const { 1172 assert(hasValue() && "Can not get a value of a value-less predicate!"); 1173 llvm_unreachable("Not implemented yet"); 1174 } 1175 virtual bool hasValue() const { return false; } 1176 1177 /// Report the maximum number of temporary operands needed by the predicate 1178 /// matcher. 1179 virtual unsigned countRendererFns() const { return 0; } 1180 }; 1181 1182 /// Generates code to check a predicate of an operand. 1183 /// 1184 /// Typical predicates include: 1185 /// * Operand is a particular register. 1186 /// * Operand is assigned a particular register bank. 1187 /// * Operand is an MBB. 1188 class OperandPredicateMatcher : public PredicateMatcher { 1189 public: 1190 OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID, 1191 unsigned OpIdx) 1192 : PredicateMatcher(Kind, InsnVarID, OpIdx) {} 1193 virtual ~OperandPredicateMatcher() {} 1194 1195 /// Compare the priority of this object and B. 1196 /// 1197 /// Returns true if this object is more important than B. 1198 virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const; 1199 }; 1200 1201 template <> 1202 std::string 1203 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const { 1204 return "No operand predicates"; 1205 } 1206 1207 /// Generates code to check that a register operand is defined by the same exact 1208 /// one as another. 1209 class SameOperandMatcher : public OperandPredicateMatcher { 1210 std::string MatchingName; 1211 unsigned OrigOpIdx; 1212 1213 public: 1214 SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName, 1215 unsigned OrigOpIdx) 1216 : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx), 1217 MatchingName(MatchingName), OrigOpIdx(OrigOpIdx) {} 1218 1219 static bool classof(const PredicateMatcher *P) { 1220 return P->getKind() == OPM_SameOperand; 1221 } 1222 1223 void emitPredicateOpcodes(MatchTable &Table, 1224 RuleMatcher &Rule) const override; 1225 1226 bool isIdentical(const PredicateMatcher &B) const override { 1227 return OperandPredicateMatcher::isIdentical(B) && 1228 OrigOpIdx == cast<SameOperandMatcher>(&B)->OrigOpIdx && 1229 MatchingName == cast<SameOperandMatcher>(&B)->MatchingName; 1230 } 1231 }; 1232 1233 /// Generates code to check that an operand is a particular LLT. 1234 class LLTOperandMatcher : public OperandPredicateMatcher { 1235 protected: 1236 LLTCodeGen Ty; 1237 1238 public: 1239 static std::map<LLTCodeGen, unsigned> TypeIDValues; 1240 1241 static void initTypeIDValuesMap() { 1242 TypeIDValues.clear(); 1243 1244 unsigned ID = 0; 1245 for (const LLTCodeGen &LLTy : KnownTypes) 1246 TypeIDValues[LLTy] = ID++; 1247 } 1248 1249 LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty) 1250 : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) { 1251 KnownTypes.insert(Ty); 1252 } 1253 1254 static bool classof(const PredicateMatcher *P) { 1255 return P->getKind() == OPM_LLT; 1256 } 1257 bool isIdentical(const PredicateMatcher &B) const override { 1258 return OperandPredicateMatcher::isIdentical(B) && 1259 Ty == cast<LLTOperandMatcher>(&B)->Ty; 1260 } 1261 MatchTableRecord getValue() const override { 1262 const auto VI = TypeIDValues.find(Ty); 1263 if (VI == TypeIDValues.end()) 1264 return MatchTable::NamedValue(getTy().getCxxEnumValue()); 1265 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second); 1266 } 1267 bool hasValue() const override { 1268 if (TypeIDValues.size() != KnownTypes.size()) 1269 initTypeIDValuesMap(); 1270 return TypeIDValues.count(Ty); 1271 } 1272 1273 LLTCodeGen getTy() const { return Ty; } 1274 1275 void emitPredicateOpcodes(MatchTable &Table, 1276 RuleMatcher &Rule) const override { 1277 Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI") 1278 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1279 << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type") 1280 << getValue() << MatchTable::LineBreak; 1281 } 1282 }; 1283 1284 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues; 1285 1286 /// Generates code to check that an operand is a pointer to any address space. 1287 /// 1288 /// In SelectionDAG, the types did not describe pointers or address spaces. As a 1289 /// result, iN is used to describe a pointer of N bits to any address space and 1290 /// PatFrag predicates are typically used to constrain the address space. There's 1291 /// no reliable means to derive the missing type information from the pattern so 1292 /// imported rules must test the components of a pointer separately. 1293 /// 1294 /// If SizeInBits is zero, then the pointer size will be obtained from the 1295 /// subtarget. 1296 class PointerToAnyOperandMatcher : public OperandPredicateMatcher { 1297 protected: 1298 unsigned SizeInBits; 1299 1300 public: 1301 PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1302 unsigned SizeInBits) 1303 : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx), 1304 SizeInBits(SizeInBits) {} 1305 1306 static bool classof(const PredicateMatcher *P) { 1307 return P->getKind() == OPM_PointerToAny; 1308 } 1309 1310 bool isIdentical(const PredicateMatcher &B) const override { 1311 return OperandPredicateMatcher::isIdentical(B) && 1312 SizeInBits == cast<PointerToAnyOperandMatcher>(&B)->SizeInBits; 1313 } 1314 1315 void emitPredicateOpcodes(MatchTable &Table, 1316 RuleMatcher &Rule) const override { 1317 Table << MatchTable::Opcode("GIM_CheckPointerToAny") 1318 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1319 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1320 << MatchTable::Comment("SizeInBits") 1321 << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak; 1322 } 1323 }; 1324 1325 /// Generates code to record named operand in RecordedOperands list at StoreIdx. 1326 /// Predicates with 'let PredicateCodeUsesOperands = 1' get RecordedOperands as 1327 /// an argument to predicate's c++ code once all operands have been matched. 1328 class RecordNamedOperandMatcher : public OperandPredicateMatcher { 1329 protected: 1330 unsigned StoreIdx; 1331 std::string Name; 1332 1333 public: 1334 RecordNamedOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1335 unsigned StoreIdx, StringRef Name) 1336 : OperandPredicateMatcher(OPM_RecordNamedOperand, InsnVarID, OpIdx), 1337 StoreIdx(StoreIdx), Name(Name) {} 1338 1339 static bool classof(const PredicateMatcher *P) { 1340 return P->getKind() == OPM_RecordNamedOperand; 1341 } 1342 1343 bool isIdentical(const PredicateMatcher &B) const override { 1344 return OperandPredicateMatcher::isIdentical(B) && 1345 StoreIdx == cast<RecordNamedOperandMatcher>(&B)->StoreIdx && 1346 Name == cast<RecordNamedOperandMatcher>(&B)->Name; 1347 } 1348 1349 void emitPredicateOpcodes(MatchTable &Table, 1350 RuleMatcher &Rule) const override { 1351 Table << MatchTable::Opcode("GIM_RecordNamedOperand") 1352 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1353 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1354 << MatchTable::Comment("StoreIdx") << MatchTable::IntValue(StoreIdx) 1355 << MatchTable::Comment("Name : " + Name) << MatchTable::LineBreak; 1356 } 1357 }; 1358 1359 /// Generates code to check that an operand is a particular target constant. 1360 class ComplexPatternOperandMatcher : public OperandPredicateMatcher { 1361 protected: 1362 const OperandMatcher &Operand; 1363 const Record &TheDef; 1364 1365 unsigned getAllocatedTemporariesBaseID() const; 1366 1367 public: 1368 bool isIdentical(const PredicateMatcher &B) const override { return false; } 1369 1370 ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1371 const OperandMatcher &Operand, 1372 const Record &TheDef) 1373 : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx), 1374 Operand(Operand), TheDef(TheDef) {} 1375 1376 static bool classof(const PredicateMatcher *P) { 1377 return P->getKind() == OPM_ComplexPattern; 1378 } 1379 1380 void emitPredicateOpcodes(MatchTable &Table, 1381 RuleMatcher &Rule) const override { 1382 unsigned ID = getAllocatedTemporariesBaseID(); 1383 Table << MatchTable::Opcode("GIM_CheckComplexPattern") 1384 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1385 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1386 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID) 1387 << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str()) 1388 << MatchTable::LineBreak; 1389 } 1390 1391 unsigned countRendererFns() const override { 1392 return 1; 1393 } 1394 }; 1395 1396 /// Generates code to check that an operand is in a particular register bank. 1397 class RegisterBankOperandMatcher : public OperandPredicateMatcher { 1398 protected: 1399 const CodeGenRegisterClass &RC; 1400 1401 public: 1402 RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1403 const CodeGenRegisterClass &RC) 1404 : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {} 1405 1406 bool isIdentical(const PredicateMatcher &B) const override { 1407 return OperandPredicateMatcher::isIdentical(B) && 1408 RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef(); 1409 } 1410 1411 static bool classof(const PredicateMatcher *P) { 1412 return P->getKind() == OPM_RegBank; 1413 } 1414 1415 void emitPredicateOpcodes(MatchTable &Table, 1416 RuleMatcher &Rule) const override { 1417 Table << MatchTable::Opcode("GIM_CheckRegBankForClass") 1418 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1419 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1420 << MatchTable::Comment("RC") 1421 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") 1422 << MatchTable::LineBreak; 1423 } 1424 }; 1425 1426 /// Generates code to check that an operand is a basic block. 1427 class MBBOperandMatcher : public OperandPredicateMatcher { 1428 public: 1429 MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx) 1430 : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {} 1431 1432 static bool classof(const PredicateMatcher *P) { 1433 return P->getKind() == OPM_MBB; 1434 } 1435 1436 void emitPredicateOpcodes(MatchTable &Table, 1437 RuleMatcher &Rule) const override { 1438 Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI") 1439 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1440 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; 1441 } 1442 }; 1443 1444 class ImmOperandMatcher : public OperandPredicateMatcher { 1445 public: 1446 ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx) 1447 : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {} 1448 1449 static bool classof(const PredicateMatcher *P) { 1450 return P->getKind() == IPM_Imm; 1451 } 1452 1453 void emitPredicateOpcodes(MatchTable &Table, 1454 RuleMatcher &Rule) const override { 1455 Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI") 1456 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1457 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; 1458 } 1459 }; 1460 1461 /// Generates code to check that an operand is a G_CONSTANT with a particular 1462 /// int. 1463 class ConstantIntOperandMatcher : public OperandPredicateMatcher { 1464 protected: 1465 int64_t Value; 1466 1467 public: 1468 ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) 1469 : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {} 1470 1471 bool isIdentical(const PredicateMatcher &B) const override { 1472 return OperandPredicateMatcher::isIdentical(B) && 1473 Value == cast<ConstantIntOperandMatcher>(&B)->Value; 1474 } 1475 1476 static bool classof(const PredicateMatcher *P) { 1477 return P->getKind() == OPM_Int; 1478 } 1479 1480 void emitPredicateOpcodes(MatchTable &Table, 1481 RuleMatcher &Rule) const override { 1482 Table << MatchTable::Opcode("GIM_CheckConstantInt") 1483 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1484 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1485 << MatchTable::IntValue(Value) << MatchTable::LineBreak; 1486 } 1487 }; 1488 1489 /// Generates code to check that an operand is a raw int (where MO.isImm() or 1490 /// MO.isCImm() is true). 1491 class LiteralIntOperandMatcher : public OperandPredicateMatcher { 1492 protected: 1493 int64_t Value; 1494 1495 public: 1496 LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) 1497 : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx), 1498 Value(Value) {} 1499 1500 bool isIdentical(const PredicateMatcher &B) const override { 1501 return OperandPredicateMatcher::isIdentical(B) && 1502 Value == cast<LiteralIntOperandMatcher>(&B)->Value; 1503 } 1504 1505 static bool classof(const PredicateMatcher *P) { 1506 return P->getKind() == OPM_LiteralInt; 1507 } 1508 1509 void emitPredicateOpcodes(MatchTable &Table, 1510 RuleMatcher &Rule) const override { 1511 Table << MatchTable::Opcode("GIM_CheckLiteralInt") 1512 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1513 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1514 << MatchTable::IntValue(Value) << MatchTable::LineBreak; 1515 } 1516 }; 1517 1518 /// Generates code to check that an operand is an CmpInst predicate 1519 class CmpPredicateOperandMatcher : public OperandPredicateMatcher { 1520 protected: 1521 std::string PredName; 1522 1523 public: 1524 CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1525 std::string P) 1526 : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {} 1527 1528 bool isIdentical(const PredicateMatcher &B) const override { 1529 return OperandPredicateMatcher::isIdentical(B) && 1530 PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName; 1531 } 1532 1533 static bool classof(const PredicateMatcher *P) { 1534 return P->getKind() == OPM_CmpPredicate; 1535 } 1536 1537 void emitPredicateOpcodes(MatchTable &Table, 1538 RuleMatcher &Rule) const override { 1539 Table << MatchTable::Opcode("GIM_CheckCmpPredicate") 1540 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1541 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1542 << MatchTable::Comment("Predicate") 1543 << MatchTable::NamedValue("CmpInst", PredName) 1544 << MatchTable::LineBreak; 1545 } 1546 }; 1547 1548 /// Generates code to check that an operand is an intrinsic ID. 1549 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher { 1550 protected: 1551 const CodeGenIntrinsic *II; 1552 1553 public: 1554 IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1555 const CodeGenIntrinsic *II) 1556 : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {} 1557 1558 bool isIdentical(const PredicateMatcher &B) const override { 1559 return OperandPredicateMatcher::isIdentical(B) && 1560 II == cast<IntrinsicIDOperandMatcher>(&B)->II; 1561 } 1562 1563 static bool classof(const PredicateMatcher *P) { 1564 return P->getKind() == OPM_IntrinsicID; 1565 } 1566 1567 void emitPredicateOpcodes(MatchTable &Table, 1568 RuleMatcher &Rule) const override { 1569 Table << MatchTable::Opcode("GIM_CheckIntrinsicID") 1570 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1571 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1572 << MatchTable::NamedValue("Intrinsic::" + II->EnumName) 1573 << MatchTable::LineBreak; 1574 } 1575 }; 1576 1577 /// Generates code to check that this operand is an immediate whose value meets 1578 /// an immediate predicate. 1579 class OperandImmPredicateMatcher : public OperandPredicateMatcher { 1580 protected: 1581 TreePredicateFn Predicate; 1582 1583 public: 1584 OperandImmPredicateMatcher(unsigned InsnVarID, unsigned OpIdx, 1585 const TreePredicateFn &Predicate) 1586 : OperandPredicateMatcher(IPM_ImmPredicate, InsnVarID, OpIdx), 1587 Predicate(Predicate) {} 1588 1589 bool isIdentical(const PredicateMatcher &B) const override { 1590 return OperandPredicateMatcher::isIdentical(B) && 1591 Predicate.getOrigPatFragRecord() == 1592 cast<OperandImmPredicateMatcher>(&B) 1593 ->Predicate.getOrigPatFragRecord(); 1594 } 1595 1596 static bool classof(const PredicateMatcher *P) { 1597 return P->getKind() == IPM_ImmPredicate; 1598 } 1599 1600 void emitPredicateOpcodes(MatchTable &Table, 1601 RuleMatcher &Rule) const override { 1602 Table << MatchTable::Opcode("GIM_CheckImmOperandPredicate") 1603 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1604 << MatchTable::Comment("MO") << MatchTable::IntValue(OpIdx) 1605 << MatchTable::Comment("Predicate") 1606 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 1607 << MatchTable::LineBreak; 1608 } 1609 }; 1610 1611 /// Generates code to check that a set of predicates match for a particular 1612 /// operand. 1613 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> { 1614 protected: 1615 InstructionMatcher &Insn; 1616 unsigned OpIdx; 1617 std::string SymbolicName; 1618 1619 /// The index of the first temporary variable allocated to this operand. The 1620 /// number of allocated temporaries can be found with 1621 /// countRendererFns(). 1622 unsigned AllocatedTemporariesBaseID; 1623 1624 public: 1625 OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx, 1626 const std::string &SymbolicName, 1627 unsigned AllocatedTemporariesBaseID) 1628 : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName), 1629 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {} 1630 1631 bool hasSymbolicName() const { return !SymbolicName.empty(); } 1632 StringRef getSymbolicName() const { return SymbolicName; } 1633 void setSymbolicName(StringRef Name) { 1634 assert(SymbolicName.empty() && "Operand already has a symbolic name"); 1635 SymbolicName = std::string(Name); 1636 } 1637 1638 /// Construct a new operand predicate and add it to the matcher. 1639 template <class Kind, class... Args> 1640 Optional<Kind *> addPredicate(Args &&... args) { 1641 if (isSameAsAnotherOperand()) 1642 return None; 1643 Predicates.emplace_back(std::make_unique<Kind>( 1644 getInsnVarID(), getOpIdx(), std::forward<Args>(args)...)); 1645 return static_cast<Kind *>(Predicates.back().get()); 1646 } 1647 1648 unsigned getOpIdx() const { return OpIdx; } 1649 unsigned getInsnVarID() const; 1650 1651 std::string getOperandExpr(unsigned InsnVarID) const { 1652 return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" + 1653 llvm::to_string(OpIdx) + ")"; 1654 } 1655 1656 InstructionMatcher &getInstructionMatcher() const { return Insn; } 1657 1658 Error addTypeCheckPredicate(const TypeSetByHwMode &VTy, 1659 bool OperandIsAPointer); 1660 1661 /// Emit MatchTable opcodes that test whether the instruction named in 1662 /// InsnVarID matches all the predicates and all the operands. 1663 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { 1664 if (!Optimized) { 1665 std::string Comment; 1666 raw_string_ostream CommentOS(Comment); 1667 CommentOS << "MIs[" << getInsnVarID() << "] "; 1668 if (SymbolicName.empty()) 1669 CommentOS << "Operand " << OpIdx; 1670 else 1671 CommentOS << SymbolicName; 1672 Table << MatchTable::Comment(Comment) << MatchTable::LineBreak; 1673 } 1674 1675 emitPredicateListOpcodes(Table, Rule); 1676 } 1677 1678 /// Compare the priority of this object and B. 1679 /// 1680 /// Returns true if this object is more important than B. 1681 bool isHigherPriorityThan(OperandMatcher &B) { 1682 // Operand matchers involving more predicates have higher priority. 1683 if (predicates_size() > B.predicates_size()) 1684 return true; 1685 if (predicates_size() < B.predicates_size()) 1686 return false; 1687 1688 // This assumes that predicates are added in a consistent order. 1689 for (auto &&Predicate : zip(predicates(), B.predicates())) { 1690 if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate))) 1691 return true; 1692 if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate))) 1693 return false; 1694 } 1695 1696 return false; 1697 }; 1698 1699 /// Report the maximum number of temporary operands needed by the operand 1700 /// matcher. 1701 unsigned countRendererFns() { 1702 return std::accumulate( 1703 predicates().begin(), predicates().end(), 0, 1704 [](unsigned A, 1705 const std::unique_ptr<OperandPredicateMatcher> &Predicate) { 1706 return A + Predicate->countRendererFns(); 1707 }); 1708 } 1709 1710 unsigned getAllocatedTemporariesBaseID() const { 1711 return AllocatedTemporariesBaseID; 1712 } 1713 1714 bool isSameAsAnotherOperand() { 1715 for (const auto &Predicate : predicates()) 1716 if (isa<SameOperandMatcher>(Predicate)) 1717 return true; 1718 return false; 1719 } 1720 }; 1721 1722 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy, 1723 bool OperandIsAPointer) { 1724 if (!VTy.isMachineValueType()) 1725 return failedImport("unsupported typeset"); 1726 1727 if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) { 1728 addPredicate<PointerToAnyOperandMatcher>(0); 1729 return Error::success(); 1730 } 1731 1732 auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy); 1733 if (!OpTyOrNone) 1734 return failedImport("unsupported type"); 1735 1736 if (OperandIsAPointer) 1737 addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits()); 1738 else if (VTy.isPointer()) 1739 addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(), 1740 OpTyOrNone->get().getSizeInBits())); 1741 else 1742 addPredicate<LLTOperandMatcher>(*OpTyOrNone); 1743 return Error::success(); 1744 } 1745 1746 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const { 1747 return Operand.getAllocatedTemporariesBaseID(); 1748 } 1749 1750 /// Generates code to check a predicate on an instruction. 1751 /// 1752 /// Typical predicates include: 1753 /// * The opcode of the instruction is a particular value. 1754 /// * The nsw/nuw flag is/isn't set. 1755 class InstructionPredicateMatcher : public PredicateMatcher { 1756 public: 1757 InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID) 1758 : PredicateMatcher(Kind, InsnVarID) {} 1759 virtual ~InstructionPredicateMatcher() {} 1760 1761 /// Compare the priority of this object and B. 1762 /// 1763 /// Returns true if this object is more important than B. 1764 virtual bool 1765 isHigherPriorityThan(const InstructionPredicateMatcher &B) const { 1766 return Kind < B.Kind; 1767 }; 1768 }; 1769 1770 template <> 1771 std::string 1772 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const { 1773 return "No instruction predicates"; 1774 } 1775 1776 /// Generates code to check the opcode of an instruction. 1777 class InstructionOpcodeMatcher : public InstructionPredicateMatcher { 1778 protected: 1779 // Allow matching one to several, similar opcodes that share properties. This 1780 // is to handle patterns where one SelectionDAG operation maps to multiple 1781 // GlobalISel ones (e.g. G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC). The first 1782 // is treated as the canonical opcode. 1783 SmallVector<const CodeGenInstruction *, 2> Insts; 1784 1785 static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues; 1786 1787 1788 MatchTableRecord getInstValue(const CodeGenInstruction *I) const { 1789 const auto VI = OpcodeValues.find(I); 1790 if (VI != OpcodeValues.end()) 1791 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(), 1792 VI->second); 1793 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName()); 1794 } 1795 1796 public: 1797 static void initOpcodeValuesMap(const CodeGenTarget &Target) { 1798 OpcodeValues.clear(); 1799 1800 unsigned OpcodeValue = 0; 1801 for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue()) 1802 OpcodeValues[I] = OpcodeValue++; 1803 } 1804 1805 InstructionOpcodeMatcher(unsigned InsnVarID, 1806 ArrayRef<const CodeGenInstruction *> I) 1807 : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), 1808 Insts(I.begin(), I.end()) { 1809 assert((Insts.size() == 1 || Insts.size() == 2) && 1810 "unexpected number of opcode alternatives"); 1811 } 1812 1813 static bool classof(const PredicateMatcher *P) { 1814 return P->getKind() == IPM_Opcode; 1815 } 1816 1817 bool isIdentical(const PredicateMatcher &B) const override { 1818 return InstructionPredicateMatcher::isIdentical(B) && 1819 Insts == cast<InstructionOpcodeMatcher>(&B)->Insts; 1820 } 1821 1822 bool hasValue() const override { 1823 return Insts.size() == 1 && OpcodeValues.count(Insts[0]); 1824 } 1825 1826 // TODO: This is used for the SwitchMatcher optimization. We should be able to 1827 // return a list of the opcodes to match. 1828 MatchTableRecord getValue() const override { 1829 assert(Insts.size() == 1); 1830 1831 const CodeGenInstruction *I = Insts[0]; 1832 const auto VI = OpcodeValues.find(I); 1833 if (VI != OpcodeValues.end()) 1834 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(), 1835 VI->second); 1836 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName()); 1837 } 1838 1839 void emitPredicateOpcodes(MatchTable &Table, 1840 RuleMatcher &Rule) const override { 1841 StringRef CheckType = Insts.size() == 1 ? 1842 "GIM_CheckOpcode" : "GIM_CheckOpcodeIsEither"; 1843 Table << MatchTable::Opcode(CheckType) << MatchTable::Comment("MI") 1844 << MatchTable::IntValue(InsnVarID); 1845 1846 for (const CodeGenInstruction *I : Insts) 1847 Table << getInstValue(I); 1848 Table << MatchTable::LineBreak; 1849 } 1850 1851 /// Compare the priority of this object and B. 1852 /// 1853 /// Returns true if this object is more important than B. 1854 bool 1855 isHigherPriorityThan(const InstructionPredicateMatcher &B) const override { 1856 if (InstructionPredicateMatcher::isHigherPriorityThan(B)) 1857 return true; 1858 if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this)) 1859 return false; 1860 1861 // Prioritize opcodes for cosmetic reasons in the generated source. Although 1862 // this is cosmetic at the moment, we may want to drive a similar ordering 1863 // using instruction frequency information to improve compile time. 1864 if (const InstructionOpcodeMatcher *BO = 1865 dyn_cast<InstructionOpcodeMatcher>(&B)) 1866 return Insts[0]->TheDef->getName() < BO->Insts[0]->TheDef->getName(); 1867 1868 return false; 1869 }; 1870 1871 bool isConstantInstruction() const { 1872 return Insts.size() == 1 && Insts[0]->TheDef->getName() == "G_CONSTANT"; 1873 } 1874 1875 // The first opcode is the canonical opcode, and later are alternatives. 1876 StringRef getOpcode() const { 1877 return Insts[0]->TheDef->getName(); 1878 } 1879 1880 ArrayRef<const CodeGenInstruction *> getAlternativeOpcodes() { 1881 return Insts; 1882 } 1883 1884 bool isVariadicNumOperands() const { 1885 // If one is variadic, they all should be. 1886 return Insts[0]->Operands.isVariadic; 1887 } 1888 1889 StringRef getOperandType(unsigned OpIdx) const { 1890 // Types expected to be uniform for all alternatives. 1891 return Insts[0]->Operands[OpIdx].OperandType; 1892 } 1893 }; 1894 1895 DenseMap<const CodeGenInstruction *, unsigned> 1896 InstructionOpcodeMatcher::OpcodeValues; 1897 1898 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher { 1899 unsigned NumOperands = 0; 1900 1901 public: 1902 InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands) 1903 : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID), 1904 NumOperands(NumOperands) {} 1905 1906 static bool classof(const PredicateMatcher *P) { 1907 return P->getKind() == IPM_NumOperands; 1908 } 1909 1910 bool isIdentical(const PredicateMatcher &B) const override { 1911 return InstructionPredicateMatcher::isIdentical(B) && 1912 NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands; 1913 } 1914 1915 void emitPredicateOpcodes(MatchTable &Table, 1916 RuleMatcher &Rule) const override { 1917 Table << MatchTable::Opcode("GIM_CheckNumOperands") 1918 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1919 << MatchTable::Comment("Expected") 1920 << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak; 1921 } 1922 }; 1923 1924 /// Generates code to check that this instruction is a constant whose value 1925 /// meets an immediate predicate. 1926 /// 1927 /// Immediates are slightly odd since they are typically used like an operand 1928 /// but are represented as an operator internally. We typically write simm8:$src 1929 /// in a tablegen pattern, but this is just syntactic sugar for 1930 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes 1931 /// that will be matched and the predicate (which is attached to the imm 1932 /// operator) that will be tested. In SelectionDAG this describes a 1933 /// ConstantSDNode whose internal value will be tested using the simm8 predicate. 1934 /// 1935 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In 1936 /// this representation, the immediate could be tested with an 1937 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a 1938 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but 1939 /// there are two implementation issues with producing that matcher 1940 /// configuration from the SelectionDAG pattern: 1941 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that 1942 /// were we to sink the immediate predicate to the operand we would have to 1943 /// have two partial implementations of PatFrag support, one for immediates 1944 /// and one for non-immediates. 1945 /// * At the point we handle the predicate, the OperandMatcher hasn't been 1946 /// created yet. If we were to sink the predicate to the OperandMatcher we 1947 /// would also have to complicate (or duplicate) the code that descends and 1948 /// creates matchers for the subtree. 1949 /// Overall, it's simpler to handle it in the place it was found. 1950 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher { 1951 protected: 1952 TreePredicateFn Predicate; 1953 1954 public: 1955 InstructionImmPredicateMatcher(unsigned InsnVarID, 1956 const TreePredicateFn &Predicate) 1957 : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID), 1958 Predicate(Predicate) {} 1959 1960 bool isIdentical(const PredicateMatcher &B) const override { 1961 return InstructionPredicateMatcher::isIdentical(B) && 1962 Predicate.getOrigPatFragRecord() == 1963 cast<InstructionImmPredicateMatcher>(&B) 1964 ->Predicate.getOrigPatFragRecord(); 1965 } 1966 1967 static bool classof(const PredicateMatcher *P) { 1968 return P->getKind() == IPM_ImmPredicate; 1969 } 1970 1971 void emitPredicateOpcodes(MatchTable &Table, 1972 RuleMatcher &Rule) const override { 1973 Table << MatchTable::Opcode(getMatchOpcodeForImmPredicate(Predicate)) 1974 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1975 << MatchTable::Comment("Predicate") 1976 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 1977 << MatchTable::LineBreak; 1978 } 1979 }; 1980 1981 /// Generates code to check that a memory instruction has a atomic ordering 1982 /// MachineMemoryOperand. 1983 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher { 1984 public: 1985 enum AOComparator { 1986 AO_Exactly, 1987 AO_OrStronger, 1988 AO_WeakerThan, 1989 }; 1990 1991 protected: 1992 StringRef Order; 1993 AOComparator Comparator; 1994 1995 public: 1996 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order, 1997 AOComparator Comparator = AO_Exactly) 1998 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID), 1999 Order(Order), Comparator(Comparator) {} 2000 2001 static bool classof(const PredicateMatcher *P) { 2002 return P->getKind() == IPM_AtomicOrderingMMO; 2003 } 2004 2005 bool isIdentical(const PredicateMatcher &B) const override { 2006 if (!InstructionPredicateMatcher::isIdentical(B)) 2007 return false; 2008 const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B); 2009 return Order == R.Order && Comparator == R.Comparator; 2010 } 2011 2012 void emitPredicateOpcodes(MatchTable &Table, 2013 RuleMatcher &Rule) const override { 2014 StringRef Opcode = "GIM_CheckAtomicOrdering"; 2015 2016 if (Comparator == AO_OrStronger) 2017 Opcode = "GIM_CheckAtomicOrderingOrStrongerThan"; 2018 if (Comparator == AO_WeakerThan) 2019 Opcode = "GIM_CheckAtomicOrderingWeakerThan"; 2020 2021 Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI") 2022 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order") 2023 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str()) 2024 << MatchTable::LineBreak; 2025 } 2026 }; 2027 2028 /// Generates code to check that the size of an MMO is exactly N bytes. 2029 class MemorySizePredicateMatcher : public InstructionPredicateMatcher { 2030 protected: 2031 unsigned MMOIdx; 2032 uint64_t Size; 2033 2034 public: 2035 MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size) 2036 : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID), 2037 MMOIdx(MMOIdx), Size(Size) {} 2038 2039 static bool classof(const PredicateMatcher *P) { 2040 return P->getKind() == IPM_MemoryLLTSize; 2041 } 2042 bool isIdentical(const PredicateMatcher &B) const override { 2043 return InstructionPredicateMatcher::isIdentical(B) && 2044 MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx && 2045 Size == cast<MemorySizePredicateMatcher>(&B)->Size; 2046 } 2047 2048 void emitPredicateOpcodes(MatchTable &Table, 2049 RuleMatcher &Rule) const override { 2050 Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo") 2051 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2052 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2053 << MatchTable::Comment("Size") << MatchTable::IntValue(Size) 2054 << MatchTable::LineBreak; 2055 } 2056 }; 2057 2058 class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher { 2059 protected: 2060 unsigned MMOIdx; 2061 SmallVector<unsigned, 4> AddrSpaces; 2062 2063 public: 2064 MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 2065 ArrayRef<unsigned> AddrSpaces) 2066 : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID), 2067 MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {} 2068 2069 static bool classof(const PredicateMatcher *P) { 2070 return P->getKind() == IPM_MemoryAddressSpace; 2071 } 2072 bool isIdentical(const PredicateMatcher &B) const override { 2073 if (!InstructionPredicateMatcher::isIdentical(B)) 2074 return false; 2075 auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B); 2076 return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces; 2077 } 2078 2079 void emitPredicateOpcodes(MatchTable &Table, 2080 RuleMatcher &Rule) const override { 2081 Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace") 2082 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2083 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2084 // Encode number of address spaces to expect. 2085 << MatchTable::Comment("NumAddrSpace") 2086 << MatchTable::IntValue(AddrSpaces.size()); 2087 for (unsigned AS : AddrSpaces) 2088 Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS); 2089 2090 Table << MatchTable::LineBreak; 2091 } 2092 }; 2093 2094 class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher { 2095 protected: 2096 unsigned MMOIdx; 2097 int MinAlign; 2098 2099 public: 2100 MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 2101 int MinAlign) 2102 : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID), 2103 MMOIdx(MMOIdx), MinAlign(MinAlign) { 2104 assert(MinAlign > 0); 2105 } 2106 2107 static bool classof(const PredicateMatcher *P) { 2108 return P->getKind() == IPM_MemoryAlignment; 2109 } 2110 2111 bool isIdentical(const PredicateMatcher &B) const override { 2112 if (!InstructionPredicateMatcher::isIdentical(B)) 2113 return false; 2114 auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B); 2115 return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign; 2116 } 2117 2118 void emitPredicateOpcodes(MatchTable &Table, 2119 RuleMatcher &Rule) const override { 2120 Table << MatchTable::Opcode("GIM_CheckMemoryAlignment") 2121 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2122 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2123 << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign) 2124 << MatchTable::LineBreak; 2125 } 2126 }; 2127 2128 /// Generates code to check that the size of an MMO is less-than, equal-to, or 2129 /// greater than a given LLT. 2130 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher { 2131 public: 2132 enum RelationKind { 2133 GreaterThan, 2134 EqualTo, 2135 LessThan, 2136 }; 2137 2138 protected: 2139 unsigned MMOIdx; 2140 RelationKind Relation; 2141 unsigned OpIdx; 2142 2143 public: 2144 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 2145 enum RelationKind Relation, 2146 unsigned OpIdx) 2147 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID), 2148 MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {} 2149 2150 static bool classof(const PredicateMatcher *P) { 2151 return P->getKind() == IPM_MemoryVsLLTSize; 2152 } 2153 bool isIdentical(const PredicateMatcher &B) const override { 2154 return InstructionPredicateMatcher::isIdentical(B) && 2155 MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx && 2156 Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation && 2157 OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx; 2158 } 2159 2160 void emitPredicateOpcodes(MatchTable &Table, 2161 RuleMatcher &Rule) const override { 2162 Table << MatchTable::Opcode(Relation == EqualTo 2163 ? "GIM_CheckMemorySizeEqualToLLT" 2164 : Relation == GreaterThan 2165 ? "GIM_CheckMemorySizeGreaterThanLLT" 2166 : "GIM_CheckMemorySizeLessThanLLT") 2167 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2168 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2169 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) 2170 << MatchTable::LineBreak; 2171 } 2172 }; 2173 2174 // Matcher for immAllOnesV/immAllZerosV 2175 class VectorSplatImmPredicateMatcher : public InstructionPredicateMatcher { 2176 public: 2177 enum SplatKind { 2178 AllZeros, 2179 AllOnes 2180 }; 2181 2182 private: 2183 SplatKind Kind; 2184 2185 public: 2186 VectorSplatImmPredicateMatcher(unsigned InsnVarID, SplatKind K) 2187 : InstructionPredicateMatcher(IPM_VectorSplatImm, InsnVarID), Kind(K) {} 2188 2189 static bool classof(const PredicateMatcher *P) { 2190 return P->getKind() == IPM_VectorSplatImm; 2191 } 2192 2193 bool isIdentical(const PredicateMatcher &B) const override { 2194 return InstructionPredicateMatcher::isIdentical(B) && 2195 Kind == static_cast<const VectorSplatImmPredicateMatcher &>(B).Kind; 2196 } 2197 2198 void emitPredicateOpcodes(MatchTable &Table, 2199 RuleMatcher &Rule) const override { 2200 if (Kind == AllOnes) 2201 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllOnes"); 2202 else 2203 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllZeros"); 2204 2205 Table << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID); 2206 Table << MatchTable::LineBreak; 2207 } 2208 }; 2209 2210 /// Generates code to check an arbitrary C++ instruction predicate. 2211 class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher { 2212 protected: 2213 TreePredicateFn Predicate; 2214 2215 public: 2216 GenericInstructionPredicateMatcher(unsigned InsnVarID, 2217 TreePredicateFn Predicate) 2218 : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID), 2219 Predicate(Predicate) {} 2220 2221 static bool classof(const InstructionPredicateMatcher *P) { 2222 return P->getKind() == IPM_GenericPredicate; 2223 } 2224 bool isIdentical(const PredicateMatcher &B) const override { 2225 return InstructionPredicateMatcher::isIdentical(B) && 2226 Predicate == 2227 static_cast<const GenericInstructionPredicateMatcher &>(B) 2228 .Predicate; 2229 } 2230 void emitPredicateOpcodes(MatchTable &Table, 2231 RuleMatcher &Rule) const override { 2232 Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate") 2233 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2234 << MatchTable::Comment("FnId") 2235 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 2236 << MatchTable::LineBreak; 2237 } 2238 }; 2239 2240 /// Generates code to check that a set of predicates and operands match for a 2241 /// particular instruction. 2242 /// 2243 /// Typical predicates include: 2244 /// * Has a specific opcode. 2245 /// * Has an nsw/nuw flag or doesn't. 2246 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> { 2247 protected: 2248 typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec; 2249 2250 RuleMatcher &Rule; 2251 2252 /// The operands to match. All rendered operands must be present even if the 2253 /// condition is always true. 2254 OperandVec Operands; 2255 bool NumOperandsCheck = true; 2256 2257 std::string SymbolicName; 2258 unsigned InsnVarID; 2259 2260 /// PhysRegInputs - List list has an entry for each explicitly specified 2261 /// physreg input to the pattern. The first elt is the Register node, the 2262 /// second is the recorded slot number the input pattern match saved it in. 2263 SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs; 2264 2265 public: 2266 InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName, 2267 bool NumOpsCheck = true) 2268 : Rule(Rule), NumOperandsCheck(NumOpsCheck), SymbolicName(SymbolicName) { 2269 // We create a new instruction matcher. 2270 // Get a new ID for that instruction. 2271 InsnVarID = Rule.implicitlyDefineInsnVar(*this); 2272 } 2273 2274 /// Construct a new instruction predicate and add it to the matcher. 2275 template <class Kind, class... Args> 2276 Optional<Kind *> addPredicate(Args &&... args) { 2277 Predicates.emplace_back( 2278 std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...)); 2279 return static_cast<Kind *>(Predicates.back().get()); 2280 } 2281 2282 RuleMatcher &getRuleMatcher() const { return Rule; } 2283 2284 unsigned getInsnVarID() const { return InsnVarID; } 2285 2286 /// Add an operand to the matcher. 2287 OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName, 2288 unsigned AllocatedTemporariesBaseID) { 2289 Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName, 2290 AllocatedTemporariesBaseID)); 2291 if (!SymbolicName.empty()) 2292 Rule.defineOperand(SymbolicName, *Operands.back()); 2293 2294 return *Operands.back(); 2295 } 2296 2297 OperandMatcher &getOperand(unsigned OpIdx) { 2298 auto I = llvm::find_if(Operands, 2299 [&OpIdx](const std::unique_ptr<OperandMatcher> &X) { 2300 return X->getOpIdx() == OpIdx; 2301 }); 2302 if (I != Operands.end()) 2303 return **I; 2304 llvm_unreachable("Failed to lookup operand"); 2305 } 2306 2307 OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx, 2308 unsigned TempOpIdx) { 2309 assert(SymbolicName.empty()); 2310 OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx); 2311 Operands.emplace_back(OM); 2312 Rule.definePhysRegOperand(Reg, *OM); 2313 PhysRegInputs.emplace_back(Reg, OpIdx); 2314 return *OM; 2315 } 2316 2317 ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const { 2318 return PhysRegInputs; 2319 } 2320 2321 StringRef getSymbolicName() const { return SymbolicName; } 2322 unsigned getNumOperands() const { return Operands.size(); } 2323 OperandVec::iterator operands_begin() { return Operands.begin(); } 2324 OperandVec::iterator operands_end() { return Operands.end(); } 2325 iterator_range<OperandVec::iterator> operands() { 2326 return make_range(operands_begin(), operands_end()); 2327 } 2328 OperandVec::const_iterator operands_begin() const { return Operands.begin(); } 2329 OperandVec::const_iterator operands_end() const { return Operands.end(); } 2330 iterator_range<OperandVec::const_iterator> operands() const { 2331 return make_range(operands_begin(), operands_end()); 2332 } 2333 bool operands_empty() const { return Operands.empty(); } 2334 2335 void pop_front() { Operands.erase(Operands.begin()); } 2336 2337 void optimize(); 2338 2339 /// Emit MatchTable opcodes that test whether the instruction named in 2340 /// InsnVarName matches all the predicates and all the operands. 2341 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { 2342 if (NumOperandsCheck) 2343 InstructionNumOperandsMatcher(InsnVarID, getNumOperands()) 2344 .emitPredicateOpcodes(Table, Rule); 2345 2346 // First emit all instruction level predicates need to be verified before we 2347 // can verify operands. 2348 emitFilteredPredicateListOpcodes( 2349 [](const PredicateMatcher &P) { 2350 return !P.dependsOnOperands(); 2351 }, Table, Rule); 2352 2353 // Emit all operand constraints. 2354 for (const auto &Operand : Operands) 2355 Operand->emitPredicateOpcodes(Table, Rule); 2356 2357 // All of the tablegen defined predicates should now be matched. Now emit 2358 // any custom predicates that rely on all generated checks. 2359 emitFilteredPredicateListOpcodes( 2360 [](const PredicateMatcher &P) { 2361 return P.dependsOnOperands(); 2362 }, Table, Rule); 2363 } 2364 2365 /// Compare the priority of this object and B. 2366 /// 2367 /// Returns true if this object is more important than B. 2368 bool isHigherPriorityThan(InstructionMatcher &B) { 2369 // Instruction matchers involving more operands have higher priority. 2370 if (Operands.size() > B.Operands.size()) 2371 return true; 2372 if (Operands.size() < B.Operands.size()) 2373 return false; 2374 2375 for (auto &&P : zip(predicates(), B.predicates())) { 2376 auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get()); 2377 auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get()); 2378 if (L->isHigherPriorityThan(*R)) 2379 return true; 2380 if (R->isHigherPriorityThan(*L)) 2381 return false; 2382 } 2383 2384 for (auto Operand : zip(Operands, B.Operands)) { 2385 if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand))) 2386 return true; 2387 if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand))) 2388 return false; 2389 } 2390 2391 return false; 2392 }; 2393 2394 /// Report the maximum number of temporary operands needed by the instruction 2395 /// matcher. 2396 unsigned countRendererFns() { 2397 return std::accumulate( 2398 predicates().begin(), predicates().end(), 0, 2399 [](unsigned A, 2400 const std::unique_ptr<PredicateMatcher> &Predicate) { 2401 return A + Predicate->countRendererFns(); 2402 }) + 2403 std::accumulate( 2404 Operands.begin(), Operands.end(), 0, 2405 [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) { 2406 return A + Operand->countRendererFns(); 2407 }); 2408 } 2409 2410 InstructionOpcodeMatcher &getOpcodeMatcher() { 2411 for (auto &P : predicates()) 2412 if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get())) 2413 return *OpMatcher; 2414 llvm_unreachable("Didn't find an opcode matcher"); 2415 } 2416 2417 bool isConstantInstruction() { 2418 return getOpcodeMatcher().isConstantInstruction(); 2419 } 2420 2421 StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); } 2422 }; 2423 2424 StringRef RuleMatcher::getOpcode() const { 2425 return Matchers.front()->getOpcode(); 2426 } 2427 2428 unsigned RuleMatcher::getNumOperands() const { 2429 return Matchers.front()->getNumOperands(); 2430 } 2431 2432 LLTCodeGen RuleMatcher::getFirstConditionAsRootType() { 2433 InstructionMatcher &InsnMatcher = *Matchers.front(); 2434 if (!InsnMatcher.predicates_empty()) 2435 if (const auto *TM = 2436 dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin())) 2437 if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0) 2438 return TM->getTy(); 2439 return {}; 2440 } 2441 2442 /// Generates code to check that the operand is a register defined by an 2443 /// instruction that matches the given instruction matcher. 2444 /// 2445 /// For example, the pattern: 2446 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3)) 2447 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match 2448 /// the: 2449 /// (G_ADD $src1, $src2) 2450 /// subpattern. 2451 class InstructionOperandMatcher : public OperandPredicateMatcher { 2452 protected: 2453 std::unique_ptr<InstructionMatcher> InsnMatcher; 2454 2455 public: 2456 InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 2457 RuleMatcher &Rule, StringRef SymbolicName, 2458 bool NumOpsCheck = true) 2459 : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx), 2460 InsnMatcher(new InstructionMatcher(Rule, SymbolicName, NumOpsCheck)) {} 2461 2462 static bool classof(const PredicateMatcher *P) { 2463 return P->getKind() == OPM_Instruction; 2464 } 2465 2466 InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; } 2467 2468 void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const { 2469 const unsigned NewInsnVarID = InsnMatcher->getInsnVarID(); 2470 Table << MatchTable::Opcode("GIM_RecordInsn") 2471 << MatchTable::Comment("DefineMI") 2472 << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI") 2473 << MatchTable::IntValue(getInsnVarID()) 2474 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx()) 2475 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]") 2476 << MatchTable::LineBreak; 2477 } 2478 2479 void emitPredicateOpcodes(MatchTable &Table, 2480 RuleMatcher &Rule) const override { 2481 emitCaptureOpcodes(Table, Rule); 2482 InsnMatcher->emitPredicateOpcodes(Table, Rule); 2483 } 2484 2485 bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override { 2486 if (OperandPredicateMatcher::isHigherPriorityThan(B)) 2487 return true; 2488 if (B.OperandPredicateMatcher::isHigherPriorityThan(*this)) 2489 return false; 2490 2491 if (const InstructionOperandMatcher *BP = 2492 dyn_cast<InstructionOperandMatcher>(&B)) 2493 if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher)) 2494 return true; 2495 return false; 2496 } 2497 }; 2498 2499 void InstructionMatcher::optimize() { 2500 SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash; 2501 const auto &OpcMatcher = getOpcodeMatcher(); 2502 2503 Stash.push_back(predicates_pop_front()); 2504 if (Stash.back().get() == &OpcMatcher) { 2505 if (NumOperandsCheck && OpcMatcher.isVariadicNumOperands()) 2506 Stash.emplace_back( 2507 new InstructionNumOperandsMatcher(InsnVarID, getNumOperands())); 2508 NumOperandsCheck = false; 2509 2510 for (auto &OM : Operands) 2511 for (auto &OP : OM->predicates()) 2512 if (isa<IntrinsicIDOperandMatcher>(OP)) { 2513 Stash.push_back(std::move(OP)); 2514 OM->eraseNullPredicates(); 2515 break; 2516 } 2517 } 2518 2519 if (InsnVarID > 0) { 2520 assert(!Operands.empty() && "Nested instruction is expected to def a vreg"); 2521 for (auto &OP : Operands[0]->predicates()) 2522 OP.reset(); 2523 Operands[0]->eraseNullPredicates(); 2524 } 2525 for (auto &OM : Operands) { 2526 for (auto &OP : OM->predicates()) 2527 if (isa<LLTOperandMatcher>(OP)) 2528 Stash.push_back(std::move(OP)); 2529 OM->eraseNullPredicates(); 2530 } 2531 while (!Stash.empty()) 2532 prependPredicate(Stash.pop_back_val()); 2533 } 2534 2535 //===- Actions ------------------------------------------------------------===// 2536 class OperandRenderer { 2537 public: 2538 enum RendererKind { 2539 OR_Copy, 2540 OR_CopyOrAddZeroReg, 2541 OR_CopySubReg, 2542 OR_CopyPhysReg, 2543 OR_CopyConstantAsImm, 2544 OR_CopyFConstantAsFPImm, 2545 OR_Imm, 2546 OR_SubRegIndex, 2547 OR_Register, 2548 OR_TempRegister, 2549 OR_ComplexPattern, 2550 OR_Custom, 2551 OR_CustomOperand 2552 }; 2553 2554 protected: 2555 RendererKind Kind; 2556 2557 public: 2558 OperandRenderer(RendererKind Kind) : Kind(Kind) {} 2559 virtual ~OperandRenderer() {} 2560 2561 RendererKind getKind() const { return Kind; } 2562 2563 virtual void emitRenderOpcodes(MatchTable &Table, 2564 RuleMatcher &Rule) const = 0; 2565 }; 2566 2567 /// A CopyRenderer emits code to copy a single operand from an existing 2568 /// instruction to the one being built. 2569 class CopyRenderer : public OperandRenderer { 2570 protected: 2571 unsigned NewInsnID; 2572 /// The name of the operand. 2573 const StringRef SymbolicName; 2574 2575 public: 2576 CopyRenderer(unsigned NewInsnID, StringRef SymbolicName) 2577 : OperandRenderer(OR_Copy), NewInsnID(NewInsnID), 2578 SymbolicName(SymbolicName) { 2579 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); 2580 } 2581 2582 static bool classof(const OperandRenderer *R) { 2583 return R->getKind() == OR_Copy; 2584 } 2585 2586 StringRef getSymbolicName() const { return SymbolicName; } 2587 2588 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2589 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2590 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2591 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") 2592 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") 2593 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2594 << MatchTable::IntValue(Operand.getOpIdx()) 2595 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2596 } 2597 }; 2598 2599 /// A CopyRenderer emits code to copy a virtual register to a specific physical 2600 /// register. 2601 class CopyPhysRegRenderer : public OperandRenderer { 2602 protected: 2603 unsigned NewInsnID; 2604 Record *PhysReg; 2605 2606 public: 2607 CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg) 2608 : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID), 2609 PhysReg(Reg) { 2610 assert(PhysReg); 2611 } 2612 2613 static bool classof(const OperandRenderer *R) { 2614 return R->getKind() == OR_CopyPhysReg; 2615 } 2616 2617 Record *getPhysReg() const { return PhysReg; } 2618 2619 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2620 const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg); 2621 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2622 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") 2623 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") 2624 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2625 << MatchTable::IntValue(Operand.getOpIdx()) 2626 << MatchTable::Comment(PhysReg->getName()) 2627 << MatchTable::LineBreak; 2628 } 2629 }; 2630 2631 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an 2632 /// existing instruction to the one being built. If the operand turns out to be 2633 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register. 2634 class CopyOrAddZeroRegRenderer : public OperandRenderer { 2635 protected: 2636 unsigned NewInsnID; 2637 /// The name of the operand. 2638 const StringRef SymbolicName; 2639 const Record *ZeroRegisterDef; 2640 2641 public: 2642 CopyOrAddZeroRegRenderer(unsigned NewInsnID, 2643 StringRef SymbolicName, Record *ZeroRegisterDef) 2644 : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID), 2645 SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) { 2646 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); 2647 } 2648 2649 static bool classof(const OperandRenderer *R) { 2650 return R->getKind() == OR_CopyOrAddZeroReg; 2651 } 2652 2653 StringRef getSymbolicName() const { return SymbolicName; } 2654 2655 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2656 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2657 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2658 Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg") 2659 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2660 << MatchTable::Comment("OldInsnID") 2661 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2662 << MatchTable::IntValue(Operand.getOpIdx()) 2663 << MatchTable::NamedValue( 2664 (ZeroRegisterDef->getValue("Namespace") 2665 ? ZeroRegisterDef->getValueAsString("Namespace") 2666 : ""), 2667 ZeroRegisterDef->getName()) 2668 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2669 } 2670 }; 2671 2672 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to 2673 /// an extended immediate operand. 2674 class CopyConstantAsImmRenderer : public OperandRenderer { 2675 protected: 2676 unsigned NewInsnID; 2677 /// The name of the operand. 2678 const std::string SymbolicName; 2679 bool Signed; 2680 2681 public: 2682 CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName) 2683 : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID), 2684 SymbolicName(SymbolicName), Signed(true) {} 2685 2686 static bool classof(const OperandRenderer *R) { 2687 return R->getKind() == OR_CopyConstantAsImm; 2688 } 2689 2690 StringRef getSymbolicName() const { return SymbolicName; } 2691 2692 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2693 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2694 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2695 Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm" 2696 : "GIR_CopyConstantAsUImm") 2697 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2698 << MatchTable::Comment("OldInsnID") 2699 << MatchTable::IntValue(OldInsnVarID) 2700 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2701 } 2702 }; 2703 2704 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT 2705 /// instruction to an extended immediate operand. 2706 class CopyFConstantAsFPImmRenderer : public OperandRenderer { 2707 protected: 2708 unsigned NewInsnID; 2709 /// The name of the operand. 2710 const std::string SymbolicName; 2711 2712 public: 2713 CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName) 2714 : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID), 2715 SymbolicName(SymbolicName) {} 2716 2717 static bool classof(const OperandRenderer *R) { 2718 return R->getKind() == OR_CopyFConstantAsFPImm; 2719 } 2720 2721 StringRef getSymbolicName() const { return SymbolicName; } 2722 2723 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2724 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2725 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2726 Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm") 2727 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2728 << MatchTable::Comment("OldInsnID") 2729 << MatchTable::IntValue(OldInsnVarID) 2730 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2731 } 2732 }; 2733 2734 /// A CopySubRegRenderer emits code to copy a single register operand from an 2735 /// existing instruction to the one being built and indicate that only a 2736 /// subregister should be copied. 2737 class CopySubRegRenderer : public OperandRenderer { 2738 protected: 2739 unsigned NewInsnID; 2740 /// The name of the operand. 2741 const StringRef SymbolicName; 2742 /// The subregister to extract. 2743 const CodeGenSubRegIndex *SubReg; 2744 2745 public: 2746 CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName, 2747 const CodeGenSubRegIndex *SubReg) 2748 : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID), 2749 SymbolicName(SymbolicName), SubReg(SubReg) {} 2750 2751 static bool classof(const OperandRenderer *R) { 2752 return R->getKind() == OR_CopySubReg; 2753 } 2754 2755 StringRef getSymbolicName() const { return SymbolicName; } 2756 2757 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2758 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2759 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2760 Table << MatchTable::Opcode("GIR_CopySubReg") 2761 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2762 << MatchTable::Comment("OldInsnID") 2763 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2764 << MatchTable::IntValue(Operand.getOpIdx()) 2765 << MatchTable::Comment("SubRegIdx") 2766 << MatchTable::IntValue(SubReg->EnumValue) 2767 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2768 } 2769 }; 2770 2771 /// Adds a specific physical register to the instruction being built. 2772 /// This is typically useful for WZR/XZR on AArch64. 2773 class AddRegisterRenderer : public OperandRenderer { 2774 protected: 2775 unsigned InsnID; 2776 const Record *RegisterDef; 2777 bool IsDef; 2778 const CodeGenTarget &Target; 2779 2780 public: 2781 AddRegisterRenderer(unsigned InsnID, const CodeGenTarget &Target, 2782 const Record *RegisterDef, bool IsDef = false) 2783 : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef), 2784 IsDef(IsDef), Target(Target) {} 2785 2786 static bool classof(const OperandRenderer *R) { 2787 return R->getKind() == OR_Register; 2788 } 2789 2790 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2791 Table << MatchTable::Opcode("GIR_AddRegister") 2792 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID); 2793 if (RegisterDef->getName() != "zero_reg") { 2794 Table << MatchTable::NamedValue( 2795 (RegisterDef->getValue("Namespace") 2796 ? RegisterDef->getValueAsString("Namespace") 2797 : ""), 2798 RegisterDef->getName()); 2799 } else { 2800 Table << MatchTable::NamedValue(Target.getRegNamespace(), "NoRegister"); 2801 } 2802 Table << MatchTable::Comment("AddRegisterRegFlags"); 2803 2804 // TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are 2805 // really needed for a physical register reference. We can pack the 2806 // register and flags in a single field. 2807 if (IsDef) 2808 Table << MatchTable::NamedValue("RegState::Define"); 2809 else 2810 Table << MatchTable::IntValue(0); 2811 Table << MatchTable::LineBreak; 2812 } 2813 }; 2814 2815 /// Adds a specific temporary virtual register to the instruction being built. 2816 /// This is used to chain instructions together when emitting multiple 2817 /// instructions. 2818 class TempRegRenderer : public OperandRenderer { 2819 protected: 2820 unsigned InsnID; 2821 unsigned TempRegID; 2822 const CodeGenSubRegIndex *SubRegIdx; 2823 bool IsDef; 2824 bool IsDead; 2825 2826 public: 2827 TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false, 2828 const CodeGenSubRegIndex *SubReg = nullptr, 2829 bool IsDead = false) 2830 : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID), 2831 SubRegIdx(SubReg), IsDef(IsDef), IsDead(IsDead) {} 2832 2833 static bool classof(const OperandRenderer *R) { 2834 return R->getKind() == OR_TempRegister; 2835 } 2836 2837 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2838 if (SubRegIdx) { 2839 assert(!IsDef); 2840 Table << MatchTable::Opcode("GIR_AddTempSubRegister"); 2841 } else 2842 Table << MatchTable::Opcode("GIR_AddTempRegister"); 2843 2844 Table << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2845 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) 2846 << MatchTable::Comment("TempRegFlags"); 2847 2848 if (IsDef) { 2849 SmallString<32> RegFlags; 2850 RegFlags += "RegState::Define"; 2851 if (IsDead) 2852 RegFlags += "|RegState::Dead"; 2853 Table << MatchTable::NamedValue(RegFlags); 2854 } else 2855 Table << MatchTable::IntValue(0); 2856 2857 if (SubRegIdx) 2858 Table << MatchTable::NamedValue(SubRegIdx->getQualifiedName()); 2859 Table << MatchTable::LineBreak; 2860 } 2861 }; 2862 2863 /// Adds a specific immediate to the instruction being built. 2864 class ImmRenderer : public OperandRenderer { 2865 protected: 2866 unsigned InsnID; 2867 int64_t Imm; 2868 2869 public: 2870 ImmRenderer(unsigned InsnID, int64_t Imm) 2871 : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {} 2872 2873 static bool classof(const OperandRenderer *R) { 2874 return R->getKind() == OR_Imm; 2875 } 2876 2877 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2878 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") 2879 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm") 2880 << MatchTable::IntValue(Imm) << MatchTable::LineBreak; 2881 } 2882 }; 2883 2884 /// Adds an enum value for a subreg index to the instruction being built. 2885 class SubRegIndexRenderer : public OperandRenderer { 2886 protected: 2887 unsigned InsnID; 2888 const CodeGenSubRegIndex *SubRegIdx; 2889 2890 public: 2891 SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI) 2892 : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {} 2893 2894 static bool classof(const OperandRenderer *R) { 2895 return R->getKind() == OR_SubRegIndex; 2896 } 2897 2898 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2899 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") 2900 << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex") 2901 << MatchTable::IntValue(SubRegIdx->EnumValue) 2902 << MatchTable::LineBreak; 2903 } 2904 }; 2905 2906 /// Adds operands by calling a renderer function supplied by the ComplexPattern 2907 /// matcher function. 2908 class RenderComplexPatternOperand : public OperandRenderer { 2909 private: 2910 unsigned InsnID; 2911 const Record &TheDef; 2912 /// The name of the operand. 2913 const StringRef SymbolicName; 2914 /// The renderer number. This must be unique within a rule since it's used to 2915 /// identify a temporary variable to hold the renderer function. 2916 unsigned RendererID; 2917 /// When provided, this is the suboperand of the ComplexPattern operand to 2918 /// render. Otherwise all the suboperands will be rendered. 2919 Optional<unsigned> SubOperand; 2920 2921 unsigned getNumOperands() const { 2922 return TheDef.getValueAsDag("Operands")->getNumArgs(); 2923 } 2924 2925 public: 2926 RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef, 2927 StringRef SymbolicName, unsigned RendererID, 2928 Optional<unsigned> SubOperand = None) 2929 : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef), 2930 SymbolicName(SymbolicName), RendererID(RendererID), 2931 SubOperand(SubOperand) {} 2932 2933 static bool classof(const OperandRenderer *R) { 2934 return R->getKind() == OR_ComplexPattern; 2935 } 2936 2937 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2938 Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer" 2939 : "GIR_ComplexRenderer") 2940 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2941 << MatchTable::Comment("RendererID") 2942 << MatchTable::IntValue(RendererID); 2943 if (SubOperand.hasValue()) 2944 Table << MatchTable::Comment("SubOperand") 2945 << MatchTable::IntValue(SubOperand.getValue()); 2946 Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2947 } 2948 }; 2949 2950 class CustomRenderer : public OperandRenderer { 2951 protected: 2952 unsigned InsnID; 2953 const Record &Renderer; 2954 /// The name of the operand. 2955 const std::string SymbolicName; 2956 2957 public: 2958 CustomRenderer(unsigned InsnID, const Record &Renderer, 2959 StringRef SymbolicName) 2960 : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer), 2961 SymbolicName(SymbolicName) {} 2962 2963 static bool classof(const OperandRenderer *R) { 2964 return R->getKind() == OR_Custom; 2965 } 2966 2967 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2968 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2969 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2970 Table << MatchTable::Opcode("GIR_CustomRenderer") 2971 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2972 << MatchTable::Comment("OldInsnID") 2973 << MatchTable::IntValue(OldInsnVarID) 2974 << MatchTable::Comment("Renderer") 2975 << MatchTable::NamedValue( 2976 "GICR_" + Renderer.getValueAsString("RendererFn").str()) 2977 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2978 } 2979 }; 2980 2981 class CustomOperandRenderer : public OperandRenderer { 2982 protected: 2983 unsigned InsnID; 2984 const Record &Renderer; 2985 /// The name of the operand. 2986 const std::string SymbolicName; 2987 2988 public: 2989 CustomOperandRenderer(unsigned InsnID, const Record &Renderer, 2990 StringRef SymbolicName) 2991 : OperandRenderer(OR_CustomOperand), InsnID(InsnID), Renderer(Renderer), 2992 SymbolicName(SymbolicName) {} 2993 2994 static bool classof(const OperandRenderer *R) { 2995 return R->getKind() == OR_CustomOperand; 2996 } 2997 2998 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2999 const OperandMatcher &OpdMatcher = Rule.getOperandMatcher(SymbolicName); 3000 Table << MatchTable::Opcode("GIR_CustomOperandRenderer") 3001 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3002 << MatchTable::Comment("OldInsnID") 3003 << MatchTable::IntValue(OpdMatcher.getInsnVarID()) 3004 << MatchTable::Comment("OpIdx") 3005 << MatchTable::IntValue(OpdMatcher.getOpIdx()) 3006 << MatchTable::Comment("OperandRenderer") 3007 << MatchTable::NamedValue( 3008 "GICR_" + Renderer.getValueAsString("RendererFn").str()) 3009 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 3010 } 3011 }; 3012 3013 /// An action taken when all Matcher predicates succeeded for a parent rule. 3014 /// 3015 /// Typical actions include: 3016 /// * Changing the opcode of an instruction. 3017 /// * Adding an operand to an instruction. 3018 class MatchAction { 3019 public: 3020 virtual ~MatchAction() {} 3021 3022 /// Emit the MatchTable opcodes to implement the action. 3023 virtual void emitActionOpcodes(MatchTable &Table, 3024 RuleMatcher &Rule) const = 0; 3025 }; 3026 3027 /// Generates a comment describing the matched rule being acted upon. 3028 class DebugCommentAction : public MatchAction { 3029 private: 3030 std::string S; 3031 3032 public: 3033 DebugCommentAction(StringRef S) : S(std::string(S)) {} 3034 3035 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3036 Table << MatchTable::Comment(S) << MatchTable::LineBreak; 3037 } 3038 }; 3039 3040 /// Generates code to build an instruction or mutate an existing instruction 3041 /// into the desired instruction when this is possible. 3042 class BuildMIAction : public MatchAction { 3043 private: 3044 unsigned InsnID; 3045 const CodeGenInstruction *I; 3046 InstructionMatcher *Matched; 3047 std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers; 3048 3049 /// True if the instruction can be built solely by mutating the opcode. 3050 bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const { 3051 if (!Insn) 3052 return false; 3053 3054 if (OperandRenderers.size() != Insn->getNumOperands()) 3055 return false; 3056 3057 for (const auto &Renderer : enumerate(OperandRenderers)) { 3058 if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) { 3059 const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName()); 3060 if (Insn != &OM.getInstructionMatcher() || 3061 OM.getOpIdx() != Renderer.index()) 3062 return false; 3063 } else 3064 return false; 3065 } 3066 3067 return true; 3068 } 3069 3070 public: 3071 BuildMIAction(unsigned InsnID, const CodeGenInstruction *I) 3072 : InsnID(InsnID), I(I), Matched(nullptr) {} 3073 3074 unsigned getInsnID() const { return InsnID; } 3075 const CodeGenInstruction *getCGI() const { return I; } 3076 3077 void chooseInsnToMutate(RuleMatcher &Rule) { 3078 for (auto *MutateCandidate : Rule.mutatable_insns()) { 3079 if (canMutate(Rule, MutateCandidate)) { 3080 // Take the first one we're offered that we're able to mutate. 3081 Rule.reserveInsnMatcherForMutation(MutateCandidate); 3082 Matched = MutateCandidate; 3083 return; 3084 } 3085 } 3086 } 3087 3088 template <class Kind, class... Args> 3089 Kind &addRenderer(Args&&... args) { 3090 OperandRenderers.emplace_back( 3091 std::make_unique<Kind>(InsnID, std::forward<Args>(args)...)); 3092 return *static_cast<Kind *>(OperandRenderers.back().get()); 3093 } 3094 3095 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3096 if (Matched) { 3097 assert(canMutate(Rule, Matched) && 3098 "Arranged to mutate an insn that isn't mutatable"); 3099 3100 unsigned RecycleInsnID = Rule.getInsnVarID(*Matched); 3101 Table << MatchTable::Opcode("GIR_MutateOpcode") 3102 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3103 << MatchTable::Comment("RecycleInsnID") 3104 << MatchTable::IntValue(RecycleInsnID) 3105 << MatchTable::Comment("Opcode") 3106 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) 3107 << MatchTable::LineBreak; 3108 3109 if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) { 3110 for (auto Def : I->ImplicitDefs) { 3111 auto Namespace = Def->getValue("Namespace") 3112 ? Def->getValueAsString("Namespace") 3113 : ""; 3114 Table << MatchTable::Opcode("GIR_AddImplicitDef") 3115 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3116 << MatchTable::NamedValue(Namespace, Def->getName()) 3117 << MatchTable::LineBreak; 3118 } 3119 for (auto Use : I->ImplicitUses) { 3120 auto Namespace = Use->getValue("Namespace") 3121 ? Use->getValueAsString("Namespace") 3122 : ""; 3123 Table << MatchTable::Opcode("GIR_AddImplicitUse") 3124 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3125 << MatchTable::NamedValue(Namespace, Use->getName()) 3126 << MatchTable::LineBreak; 3127 } 3128 } 3129 return; 3130 } 3131 3132 // TODO: Simple permutation looks like it could be almost as common as 3133 // mutation due to commutative operations. 3134 3135 Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID") 3136 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode") 3137 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) 3138 << MatchTable::LineBreak; 3139 for (const auto &Renderer : OperandRenderers) 3140 Renderer->emitRenderOpcodes(Table, Rule); 3141 3142 if (I->mayLoad || I->mayStore) { 3143 Table << MatchTable::Opcode("GIR_MergeMemOperands") 3144 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3145 << MatchTable::Comment("MergeInsnID's"); 3146 // Emit the ID's for all the instructions that are matched by this rule. 3147 // TODO: Limit this to matched instructions that mayLoad/mayStore or have 3148 // some other means of having a memoperand. Also limit this to 3149 // emitted instructions that expect to have a memoperand too. For 3150 // example, (G_SEXT (G_LOAD x)) that results in separate load and 3151 // sign-extend instructions shouldn't put the memoperand on the 3152 // sign-extend since it has no effect there. 3153 std::vector<unsigned> MergeInsnIDs; 3154 for (const auto &IDMatcherPair : Rule.defined_insn_vars()) 3155 MergeInsnIDs.push_back(IDMatcherPair.second); 3156 llvm::sort(MergeInsnIDs); 3157 for (const auto &MergeInsnID : MergeInsnIDs) 3158 Table << MatchTable::IntValue(MergeInsnID); 3159 Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList") 3160 << MatchTable::LineBreak; 3161 } 3162 3163 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do 3164 // better for combines. Particularly when there are multiple match 3165 // roots. 3166 if (InsnID == 0) 3167 Table << MatchTable::Opcode("GIR_EraseFromParent") 3168 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3169 << MatchTable::LineBreak; 3170 } 3171 }; 3172 3173 /// Generates code to constrain the operands of an output instruction to the 3174 /// register classes specified by the definition of that instruction. 3175 class ConstrainOperandsToDefinitionAction : public MatchAction { 3176 unsigned InsnID; 3177 3178 public: 3179 ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {} 3180 3181 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3182 Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands") 3183 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3184 << MatchTable::LineBreak; 3185 } 3186 }; 3187 3188 /// Generates code to constrain the specified operand of an output instruction 3189 /// to the specified register class. 3190 class ConstrainOperandToRegClassAction : public MatchAction { 3191 unsigned InsnID; 3192 unsigned OpIdx; 3193 const CodeGenRegisterClass &RC; 3194 3195 public: 3196 ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx, 3197 const CodeGenRegisterClass &RC) 3198 : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {} 3199 3200 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3201 Table << MatchTable::Opcode("GIR_ConstrainOperandRC") 3202 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3203 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 3204 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") 3205 << MatchTable::LineBreak; 3206 } 3207 }; 3208 3209 /// Generates code to create a temporary register which can be used to chain 3210 /// instructions together. 3211 class MakeTempRegisterAction : public MatchAction { 3212 private: 3213 LLTCodeGen Ty; 3214 unsigned TempRegID; 3215 3216 public: 3217 MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID) 3218 : Ty(Ty), TempRegID(TempRegID) { 3219 KnownTypes.insert(Ty); 3220 } 3221 3222 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3223 Table << MatchTable::Opcode("GIR_MakeTempReg") 3224 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) 3225 << MatchTable::Comment("TypeID") 3226 << MatchTable::NamedValue(Ty.getCxxEnumValue()) 3227 << MatchTable::LineBreak; 3228 } 3229 }; 3230 3231 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) { 3232 Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName)); 3233 MutatableInsns.insert(Matchers.back().get()); 3234 return *Matchers.back(); 3235 } 3236 3237 void RuleMatcher::addRequiredFeature(Record *Feature) { 3238 RequiredFeatures.push_back(Feature); 3239 } 3240 3241 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const { 3242 return RequiredFeatures; 3243 } 3244 3245 // Emplaces an action of the specified Kind at the end of the action list. 3246 // 3247 // Returns a reference to the newly created action. 3248 // 3249 // Like std::vector::emplace_back(), may invalidate all iterators if the new 3250 // size exceeds the capacity. Otherwise, only invalidates the past-the-end 3251 // iterator. 3252 template <class Kind, class... Args> 3253 Kind &RuleMatcher::addAction(Args &&... args) { 3254 Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...)); 3255 return *static_cast<Kind *>(Actions.back().get()); 3256 } 3257 3258 // Emplaces an action of the specified Kind before the given insertion point. 3259 // 3260 // Returns an iterator pointing at the newly created instruction. 3261 // 3262 // Like std::vector::insert(), may invalidate all iterators if the new size 3263 // exceeds the capacity. Otherwise, only invalidates the iterators from the 3264 // insertion point onwards. 3265 template <class Kind, class... Args> 3266 action_iterator RuleMatcher::insertAction(action_iterator InsertPt, 3267 Args &&... args) { 3268 return Actions.emplace(InsertPt, 3269 std::make_unique<Kind>(std::forward<Args>(args)...)); 3270 } 3271 3272 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) { 3273 unsigned NewInsnVarID = NextInsnVarID++; 3274 InsnVariableIDs[&Matcher] = NewInsnVarID; 3275 return NewInsnVarID; 3276 } 3277 3278 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const { 3279 const auto &I = InsnVariableIDs.find(&InsnMatcher); 3280 if (I != InsnVariableIDs.end()) 3281 return I->second; 3282 llvm_unreachable("Matched Insn was not captured in a local variable"); 3283 } 3284 3285 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) { 3286 if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) { 3287 DefinedOperands[SymbolicName] = &OM; 3288 return; 3289 } 3290 3291 // If the operand is already defined, then we must ensure both references in 3292 // the matcher have the exact same node. 3293 OM.addPredicate<SameOperandMatcher>( 3294 OM.getSymbolicName(), getOperandMatcher(OM.getSymbolicName()).getOpIdx()); 3295 } 3296 3297 void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) { 3298 if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) { 3299 PhysRegOperands[Reg] = &OM; 3300 return; 3301 } 3302 } 3303 3304 InstructionMatcher & 3305 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const { 3306 for (const auto &I : InsnVariableIDs) 3307 if (I.first->getSymbolicName() == SymbolicName) 3308 return *I.first; 3309 llvm_unreachable( 3310 ("Failed to lookup instruction " + SymbolicName).str().c_str()); 3311 } 3312 3313 const OperandMatcher & 3314 RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const { 3315 const auto &I = PhysRegOperands.find(Reg); 3316 3317 if (I == PhysRegOperands.end()) { 3318 PrintFatalError(SrcLoc, "Register " + Reg->getName() + 3319 " was not declared in matcher"); 3320 } 3321 3322 return *I->second; 3323 } 3324 3325 const OperandMatcher & 3326 RuleMatcher::getOperandMatcher(StringRef Name) const { 3327 const auto &I = DefinedOperands.find(Name); 3328 3329 if (I == DefinedOperands.end()) 3330 PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher"); 3331 3332 return *I->second; 3333 } 3334 3335 void RuleMatcher::emit(MatchTable &Table) { 3336 if (Matchers.empty()) 3337 llvm_unreachable("Unexpected empty matcher!"); 3338 3339 // The representation supports rules that require multiple roots such as: 3340 // %ptr(p0) = ... 3341 // %elt0(s32) = G_LOAD %ptr 3342 // %1(p0) = G_ADD %ptr, 4 3343 // %elt1(s32) = G_LOAD p0 %1 3344 // which could be usefully folded into: 3345 // %ptr(p0) = ... 3346 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr 3347 // on some targets but we don't need to make use of that yet. 3348 assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet"); 3349 3350 unsigned LabelID = Table.allocateLabelID(); 3351 Table << MatchTable::Opcode("GIM_Try", +1) 3352 << MatchTable::Comment("On fail goto") 3353 << MatchTable::JumpTarget(LabelID) 3354 << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str()) 3355 << MatchTable::LineBreak; 3356 3357 if (!RequiredFeatures.empty()) { 3358 Table << MatchTable::Opcode("GIM_CheckFeatures") 3359 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures)) 3360 << MatchTable::LineBreak; 3361 } 3362 3363 Matchers.front()->emitPredicateOpcodes(Table, *this); 3364 3365 // We must also check if it's safe to fold the matched instructions. 3366 if (InsnVariableIDs.size() >= 2) { 3367 // Invert the map to create stable ordering (by var names) 3368 SmallVector<unsigned, 2> InsnIDs; 3369 for (const auto &Pair : InsnVariableIDs) { 3370 // Skip the root node since it isn't moving anywhere. Everything else is 3371 // sinking to meet it. 3372 if (Pair.first == Matchers.front().get()) 3373 continue; 3374 3375 InsnIDs.push_back(Pair.second); 3376 } 3377 llvm::sort(InsnIDs); 3378 3379 for (const auto &InsnID : InsnIDs) { 3380 // Reject the difficult cases until we have a more accurate check. 3381 Table << MatchTable::Opcode("GIM_CheckIsSafeToFold") 3382 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3383 << MatchTable::LineBreak; 3384 3385 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or 3386 // account for unsafe cases. 3387 // 3388 // Example: 3389 // MI1--> %0 = ... 3390 // %1 = ... %0 3391 // MI0--> %2 = ... %0 3392 // It's not safe to erase MI1. We currently handle this by not 3393 // erasing %0 (even when it's dead). 3394 // 3395 // Example: 3396 // MI1--> %0 = load volatile @a 3397 // %1 = load volatile @a 3398 // MI0--> %2 = ... %0 3399 // It's not safe to sink %0's def past %1. We currently handle 3400 // this by rejecting all loads. 3401 // 3402 // Example: 3403 // MI1--> %0 = load @a 3404 // %1 = store @a 3405 // MI0--> %2 = ... %0 3406 // It's not safe to sink %0's def past %1. We currently handle 3407 // this by rejecting all loads. 3408 // 3409 // Example: 3410 // G_CONDBR %cond, @BB1 3411 // BB0: 3412 // MI1--> %0 = load @a 3413 // G_BR @BB1 3414 // BB1: 3415 // MI0--> %2 = ... %0 3416 // It's not always safe to sink %0 across control flow. In this 3417 // case it may introduce a memory fault. We currentl handle this 3418 // by rejecting all loads. 3419 } 3420 } 3421 3422 for (const auto &PM : EpilogueMatchers) 3423 PM->emitPredicateOpcodes(Table, *this); 3424 3425 for (const auto &MA : Actions) 3426 MA->emitActionOpcodes(Table, *this); 3427 3428 if (Table.isWithCoverage()) 3429 Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID) 3430 << MatchTable::LineBreak; 3431 else 3432 Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str()) 3433 << MatchTable::LineBreak; 3434 3435 Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak 3436 << MatchTable::Label(LabelID); 3437 ++NumPatternEmitted; 3438 } 3439 3440 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const { 3441 // Rules involving more match roots have higher priority. 3442 if (Matchers.size() > B.Matchers.size()) 3443 return true; 3444 if (Matchers.size() < B.Matchers.size()) 3445 return false; 3446 3447 for (auto Matcher : zip(Matchers, B.Matchers)) { 3448 if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher))) 3449 return true; 3450 if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher))) 3451 return false; 3452 } 3453 3454 return false; 3455 } 3456 3457 unsigned RuleMatcher::countRendererFns() const { 3458 return std::accumulate( 3459 Matchers.begin(), Matchers.end(), 0, 3460 [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) { 3461 return A + Matcher->countRendererFns(); 3462 }); 3463 } 3464 3465 bool OperandPredicateMatcher::isHigherPriorityThan( 3466 const OperandPredicateMatcher &B) const { 3467 // Generally speaking, an instruction is more important than an Int or a 3468 // LiteralInt because it can cover more nodes but theres an exception to 3469 // this. G_CONSTANT's are less important than either of those two because they 3470 // are more permissive. 3471 3472 const InstructionOperandMatcher *AOM = 3473 dyn_cast<InstructionOperandMatcher>(this); 3474 const InstructionOperandMatcher *BOM = 3475 dyn_cast<InstructionOperandMatcher>(&B); 3476 bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction(); 3477 bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction(); 3478 3479 if (AOM && BOM) { 3480 // The relative priorities between a G_CONSTANT and any other instruction 3481 // don't actually matter but this code is needed to ensure a strict weak 3482 // ordering. This is particularly important on Windows where the rules will 3483 // be incorrectly sorted without it. 3484 if (AIsConstantInsn != BIsConstantInsn) 3485 return AIsConstantInsn < BIsConstantInsn; 3486 return false; 3487 } 3488 3489 if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt)) 3490 return false; 3491 if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt)) 3492 return true; 3493 3494 return Kind < B.Kind; 3495 } 3496 3497 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table, 3498 RuleMatcher &Rule) const { 3499 const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName); 3500 unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher()); 3501 assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID()); 3502 3503 Table << MatchTable::Opcode("GIM_CheckIsSameOperand") 3504 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 3505 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) 3506 << MatchTable::Comment("OtherMI") 3507 << MatchTable::IntValue(OtherInsnVarID) 3508 << MatchTable::Comment("OtherOpIdx") 3509 << MatchTable::IntValue(OtherOM.getOpIdx()) 3510 << MatchTable::LineBreak; 3511 } 3512 3513 //===- GlobalISelEmitter class --------------------------------------------===// 3514 3515 static Expected<LLTCodeGen> getInstResultType(const TreePatternNode *Dst) { 3516 ArrayRef<TypeSetByHwMode> ChildTypes = Dst->getExtTypes(); 3517 if (ChildTypes.size() != 1) 3518 return failedImport("Dst pattern child has multiple results"); 3519 3520 Optional<LLTCodeGen> MaybeOpTy; 3521 if (ChildTypes.front().isMachineValueType()) { 3522 MaybeOpTy = 3523 MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); 3524 } 3525 3526 if (!MaybeOpTy) 3527 return failedImport("Dst operand has an unsupported type"); 3528 return *MaybeOpTy; 3529 } 3530 3531 class GlobalISelEmitter { 3532 public: 3533 explicit GlobalISelEmitter(RecordKeeper &RK); 3534 void run(raw_ostream &OS); 3535 3536 private: 3537 const RecordKeeper &RK; 3538 const CodeGenDAGPatterns CGP; 3539 const CodeGenTarget &Target; 3540 CodeGenRegBank &CGRegs; 3541 3542 /// Keep track of the equivalence between SDNodes and Instruction by mapping 3543 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to 3544 /// check for attributes on the relation such as CheckMMOIsNonAtomic. 3545 /// This is defined using 'GINodeEquiv' in the target description. 3546 DenseMap<Record *, Record *> NodeEquivs; 3547 3548 /// Keep track of the equivalence between ComplexPattern's and 3549 /// GIComplexOperandMatcher. Map entries are specified by subclassing 3550 /// GIComplexPatternEquiv. 3551 DenseMap<const Record *, const Record *> ComplexPatternEquivs; 3552 3553 /// Keep track of the equivalence between SDNodeXForm's and 3554 /// GICustomOperandRenderer. Map entries are specified by subclassing 3555 /// GISDNodeXFormEquiv. 3556 DenseMap<const Record *, const Record *> SDNodeXFormEquivs; 3557 3558 /// Keep track of Scores of PatternsToMatch similar to how the DAG does. 3559 /// This adds compatibility for RuleMatchers to use this for ordering rules. 3560 DenseMap<uint64_t, int> RuleMatcherScores; 3561 3562 // Map of predicates to their subtarget features. 3563 SubtargetFeatureInfoMap SubtargetFeatures; 3564 3565 // Rule coverage information. 3566 Optional<CodeGenCoverage> RuleCoverage; 3567 3568 /// Variables used to help with collecting of named operands for predicates 3569 /// with 'let PredicateCodeUsesOperands = 1'. WaitingForNamedOperands is set 3570 /// to the number of named operands that predicate expects. Store locations in 3571 /// StoreIdxForName correspond to the order in which operand names appear in 3572 /// predicate's argument list. 3573 /// When we visit named leaf operand and WaitingForNamedOperands is not zero, 3574 /// add matcher that will record operand and decrease counter. 3575 unsigned WaitingForNamedOperands = 0; 3576 StringMap<unsigned> StoreIdxForName; 3577 3578 void gatherOpcodeValues(); 3579 void gatherTypeIDValues(); 3580 void gatherNodeEquivs(); 3581 3582 Record *findNodeEquiv(Record *N) const; 3583 const CodeGenInstruction *getEquivNode(Record &Equiv, 3584 const TreePatternNode *N) const; 3585 3586 Error importRulePredicates(RuleMatcher &M, ArrayRef<Record *> Predicates); 3587 Expected<InstructionMatcher &> 3588 createAndImportSelDAGMatcher(RuleMatcher &Rule, 3589 InstructionMatcher &InsnMatcher, 3590 const TreePatternNode *Src, unsigned &TempOpIdx); 3591 Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R, 3592 unsigned &TempOpIdx) const; 3593 Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3594 const TreePatternNode *SrcChild, 3595 bool OperandIsAPointer, bool OperandIsImmArg, 3596 unsigned OpIdx, unsigned &TempOpIdx); 3597 3598 Expected<BuildMIAction &> createAndImportInstructionRenderer( 3599 RuleMatcher &M, InstructionMatcher &InsnMatcher, 3600 const TreePatternNode *Src, const TreePatternNode *Dst); 3601 Expected<action_iterator> createAndImportSubInstructionRenderer( 3602 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, 3603 unsigned TempReg); 3604 Expected<action_iterator> 3605 createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M, 3606 const TreePatternNode *Dst); 3607 3608 Expected<action_iterator> 3609 importExplicitDefRenderers(action_iterator InsertPt, RuleMatcher &M, 3610 BuildMIAction &DstMIBuilder, 3611 const TreePatternNode *Dst); 3612 3613 Expected<action_iterator> 3614 importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M, 3615 BuildMIAction &DstMIBuilder, 3616 const llvm::TreePatternNode *Dst); 3617 Expected<action_iterator> 3618 importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule, 3619 BuildMIAction &DstMIBuilder, 3620 TreePatternNode *DstChild); 3621 Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M, 3622 BuildMIAction &DstMIBuilder, 3623 DagInit *DefaultOps) const; 3624 Error 3625 importImplicitDefRenderers(BuildMIAction &DstMIBuilder, 3626 const std::vector<Record *> &ImplicitDefs) const; 3627 3628 void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName, 3629 StringRef TypeIdentifier, StringRef ArgType, 3630 StringRef ArgName, StringRef AdditionalArgs, 3631 StringRef AdditionalDeclarations, 3632 std::function<bool(const Record *R)> Filter); 3633 void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier, 3634 StringRef ArgType, 3635 std::function<bool(const Record *R)> Filter); 3636 void emitMIPredicateFns(raw_ostream &OS); 3637 3638 /// Analyze pattern \p P, returning a matcher for it if possible. 3639 /// Otherwise, return an Error explaining why we don't support it. 3640 Expected<RuleMatcher> runOnPattern(const PatternToMatch &P); 3641 3642 void declareSubtargetFeature(Record *Predicate); 3643 3644 MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize, 3645 bool WithCoverage); 3646 3647 /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned 3648 /// CodeGenRegisterClass will support the CodeGenRegisterClass of 3649 /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode. 3650 /// If no register class is found, return None. 3651 Optional<const CodeGenRegisterClass *> 3652 inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty, 3653 TreePatternNode *SuperRegNode, 3654 TreePatternNode *SubRegIdxNode); 3655 Optional<CodeGenSubRegIndex *> 3656 inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode); 3657 3658 /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode. 3659 /// Return None if no such class exists. 3660 Optional<const CodeGenRegisterClass *> 3661 inferSuperRegisterClass(const TypeSetByHwMode &Ty, 3662 TreePatternNode *SubRegIdxNode); 3663 3664 /// Return the CodeGenRegisterClass associated with \p Leaf if it has one. 3665 Optional<const CodeGenRegisterClass *> 3666 getRegClassFromLeaf(TreePatternNode *Leaf); 3667 3668 /// Return a CodeGenRegisterClass for \p N if one can be found. Return None 3669 /// otherwise. 3670 Optional<const CodeGenRegisterClass *> 3671 inferRegClassFromPattern(TreePatternNode *N); 3672 3673 /// Return the size of the MemoryVT in this predicate, if possible. 3674 Optional<unsigned> 3675 getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate); 3676 3677 // Add builtin predicates. 3678 Expected<InstructionMatcher &> 3679 addBuiltinPredicates(const Record *SrcGIEquivOrNull, 3680 const TreePredicateFn &Predicate, 3681 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher); 3682 3683 public: 3684 /// Takes a sequence of \p Rules and group them based on the predicates 3685 /// they share. \p MatcherStorage is used as a memory container 3686 /// for the group that are created as part of this process. 3687 /// 3688 /// What this optimization does looks like if GroupT = GroupMatcher: 3689 /// Output without optimization: 3690 /// \verbatim 3691 /// # R1 3692 /// # predicate A 3693 /// # predicate B 3694 /// ... 3695 /// # R2 3696 /// # predicate A // <-- effectively this is going to be checked twice. 3697 /// // Once in R1 and once in R2. 3698 /// # predicate C 3699 /// \endverbatim 3700 /// Output with optimization: 3701 /// \verbatim 3702 /// # Group1_2 3703 /// # predicate A // <-- Check is now shared. 3704 /// # R1 3705 /// # predicate B 3706 /// # R2 3707 /// # predicate C 3708 /// \endverbatim 3709 template <class GroupT> 3710 static std::vector<Matcher *> optimizeRules( 3711 ArrayRef<Matcher *> Rules, 3712 std::vector<std::unique_ptr<Matcher>> &MatcherStorage); 3713 }; 3714 3715 void GlobalISelEmitter::gatherOpcodeValues() { 3716 InstructionOpcodeMatcher::initOpcodeValuesMap(Target); 3717 } 3718 3719 void GlobalISelEmitter::gatherTypeIDValues() { 3720 LLTOperandMatcher::initTypeIDValuesMap(); 3721 } 3722 3723 void GlobalISelEmitter::gatherNodeEquivs() { 3724 assert(NodeEquivs.empty()); 3725 for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv")) 3726 NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv; 3727 3728 assert(ComplexPatternEquivs.empty()); 3729 for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) { 3730 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); 3731 if (!SelDAGEquiv) 3732 continue; 3733 ComplexPatternEquivs[SelDAGEquiv] = Equiv; 3734 } 3735 3736 assert(SDNodeXFormEquivs.empty()); 3737 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) { 3738 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); 3739 if (!SelDAGEquiv) 3740 continue; 3741 SDNodeXFormEquivs[SelDAGEquiv] = Equiv; 3742 } 3743 } 3744 3745 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const { 3746 return NodeEquivs.lookup(N); 3747 } 3748 3749 const CodeGenInstruction * 3750 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const { 3751 if (N->getNumChildren() >= 1) { 3752 // setcc operation maps to two different G_* instructions based on the type. 3753 if (!Equiv.isValueUnset("IfFloatingPoint") && 3754 MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint()) 3755 return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint")); 3756 } 3757 3758 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 3759 const TreePredicateFn &Predicate = Call.Fn; 3760 if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() && 3761 Predicate.isSignExtLoad()) 3762 return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend")); 3763 if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() && 3764 Predicate.isZeroExtLoad()) 3765 return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend")); 3766 } 3767 3768 return &Target.getInstruction(Equiv.getValueAsDef("I")); 3769 } 3770 3771 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK) 3772 : RK(RK), CGP(RK), Target(CGP.getTargetInfo()), 3773 CGRegs(Target.getRegBank()) {} 3774 3775 //===- Emitter ------------------------------------------------------------===// 3776 3777 Error GlobalISelEmitter::importRulePredicates(RuleMatcher &M, 3778 ArrayRef<Record *> Predicates) { 3779 for (Record *Pred : Predicates) { 3780 if (Pred->getValueAsString("CondString").empty()) 3781 continue; 3782 declareSubtargetFeature(Pred); 3783 M.addRequiredFeature(Pred); 3784 } 3785 3786 return Error::success(); 3787 } 3788 3789 Optional<unsigned> GlobalISelEmitter::getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate) { 3790 Optional<LLTCodeGen> MemTyOrNone = 3791 MVTToLLT(getValueType(Predicate.getMemoryVT())); 3792 3793 if (!MemTyOrNone) 3794 return None; 3795 3796 // Align so unusual types like i1 don't get rounded down. 3797 return llvm::alignTo( 3798 static_cast<unsigned>(MemTyOrNone->get().getSizeInBits()), 8); 3799 } 3800 3801 Expected<InstructionMatcher &> GlobalISelEmitter::addBuiltinPredicates( 3802 const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate, 3803 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher) { 3804 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 3805 if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) { 3806 SmallVector<unsigned, 4> ParsedAddrSpaces; 3807 3808 for (Init *Val : AddrSpaces->getValues()) { 3809 IntInit *IntVal = dyn_cast<IntInit>(Val); 3810 if (!IntVal) 3811 return failedImport("Address space is not an integer"); 3812 ParsedAddrSpaces.push_back(IntVal->getValue()); 3813 } 3814 3815 if (!ParsedAddrSpaces.empty()) { 3816 InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>( 3817 0, ParsedAddrSpaces); 3818 } 3819 } 3820 3821 int64_t MinAlign = Predicate.getMinAlignment(); 3822 if (MinAlign > 0) 3823 InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign); 3824 } 3825 3826 // G_LOAD is used for both non-extending and any-extending loads. 3827 if (Predicate.isLoad() && Predicate.isNonExtLoad()) { 3828 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3829 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); 3830 return InsnMatcher; 3831 } 3832 if (Predicate.isLoad() && Predicate.isAnyExtLoad()) { 3833 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3834 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); 3835 return InsnMatcher; 3836 } 3837 3838 if (Predicate.isStore()) { 3839 if (Predicate.isTruncStore()) { 3840 if (Predicate.getMemoryVT() != nullptr) { 3841 // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size. 3842 auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); 3843 if (!MemSizeInBits) 3844 return failedImport("MemVT could not be converted to LLT"); 3845 3846 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0, *MemSizeInBits / 3847 8); 3848 } else { 3849 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3850 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); 3851 } 3852 return InsnMatcher; 3853 } 3854 if (Predicate.isNonTruncStore()) { 3855 // We need to check the sizes match here otherwise we could incorrectly 3856 // match truncating stores with non-truncating ones. 3857 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3858 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); 3859 } 3860 } 3861 3862 // No check required. We already did it by swapping the opcode. 3863 if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") && 3864 Predicate.isSignExtLoad()) 3865 return InsnMatcher; 3866 3867 // No check required. We already did it by swapping the opcode. 3868 if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") && 3869 Predicate.isZeroExtLoad()) 3870 return InsnMatcher; 3871 3872 // No check required. G_STORE by itself is a non-extending store. 3873 if (Predicate.isNonTruncStore()) 3874 return InsnMatcher; 3875 3876 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 3877 if (Predicate.getMemoryVT() != nullptr) { 3878 auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); 3879 if (!MemSizeInBits) 3880 return failedImport("MemVT could not be converted to LLT"); 3881 3882 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0, 3883 *MemSizeInBits / 8); 3884 return InsnMatcher; 3885 } 3886 } 3887 3888 if (Predicate.isLoad() || Predicate.isStore()) { 3889 // No check required. A G_LOAD/G_STORE is an unindexed load. 3890 if (Predicate.isUnindexed()) 3891 return InsnMatcher; 3892 } 3893 3894 if (Predicate.isAtomic()) { 3895 if (Predicate.isAtomicOrderingMonotonic()) { 3896 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Monotonic"); 3897 return InsnMatcher; 3898 } 3899 if (Predicate.isAtomicOrderingAcquire()) { 3900 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire"); 3901 return InsnMatcher; 3902 } 3903 if (Predicate.isAtomicOrderingRelease()) { 3904 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release"); 3905 return InsnMatcher; 3906 } 3907 if (Predicate.isAtomicOrderingAcquireRelease()) { 3908 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3909 "AcquireRelease"); 3910 return InsnMatcher; 3911 } 3912 if (Predicate.isAtomicOrderingSequentiallyConsistent()) { 3913 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3914 "SequentiallyConsistent"); 3915 return InsnMatcher; 3916 } 3917 } 3918 3919 if (Predicate.isAtomicOrderingAcquireOrStronger()) { 3920 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3921 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3922 return InsnMatcher; 3923 } 3924 if (Predicate.isAtomicOrderingWeakerThanAcquire()) { 3925 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3926 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); 3927 return InsnMatcher; 3928 } 3929 3930 if (Predicate.isAtomicOrderingReleaseOrStronger()) { 3931 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3932 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3933 return InsnMatcher; 3934 } 3935 if (Predicate.isAtomicOrderingWeakerThanRelease()) { 3936 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3937 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); 3938 return InsnMatcher; 3939 } 3940 HasAddedMatcher = false; 3941 return InsnMatcher; 3942 } 3943 3944 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher( 3945 RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3946 const TreePatternNode *Src, unsigned &TempOpIdx) { 3947 Record *SrcGIEquivOrNull = nullptr; 3948 const CodeGenInstruction *SrcGIOrNull = nullptr; 3949 3950 // Start with the defined operands (i.e., the results of the root operator). 3951 if (Src->getExtTypes().size() > 1) 3952 return failedImport("Src pattern has multiple results"); 3953 3954 if (Src->isLeaf()) { 3955 Init *SrcInit = Src->getLeafValue(); 3956 if (isa<IntInit>(SrcInit)) { 3957 InsnMatcher.addPredicate<InstructionOpcodeMatcher>( 3958 &Target.getInstruction(RK.getDef("G_CONSTANT"))); 3959 } else 3960 return failedImport( 3961 "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); 3962 } else { 3963 SrcGIEquivOrNull = findNodeEquiv(Src->getOperator()); 3964 if (!SrcGIEquivOrNull) 3965 return failedImport("Pattern operator lacks an equivalent Instruction" + 3966 explainOperator(Src->getOperator())); 3967 SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src); 3968 3969 // The operators look good: match the opcode 3970 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull); 3971 } 3972 3973 unsigned OpIdx = 0; 3974 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { 3975 // Results don't have a name unless they are the root node. The caller will 3976 // set the name if appropriate. 3977 OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); 3978 if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */)) 3979 return failedImport(toString(std::move(Error)) + 3980 " for result of Src pattern operator"); 3981 } 3982 3983 for (const TreePredicateCall &Call : Src->getPredicateCalls()) { 3984 const TreePredicateFn &Predicate = Call.Fn; 3985 bool HasAddedBuiltinMatcher = true; 3986 if (Predicate.isAlwaysTrue()) 3987 continue; 3988 3989 if (Predicate.isImmediatePattern()) { 3990 InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate); 3991 continue; 3992 } 3993 3994 auto InsnMatcherOrError = addBuiltinPredicates( 3995 SrcGIEquivOrNull, Predicate, InsnMatcher, HasAddedBuiltinMatcher); 3996 if (auto Error = InsnMatcherOrError.takeError()) 3997 return std::move(Error); 3998 3999 if (Predicate.hasGISelPredicateCode()) { 4000 if (Predicate.usesOperands()) { 4001 assert(WaitingForNamedOperands == 0 && 4002 "previous predicate didn't find all operands or " 4003 "nested predicate that uses operands"); 4004 TreePattern *TP = Predicate.getOrigPatFragRecord(); 4005 WaitingForNamedOperands = TP->getNumArgs(); 4006 for (unsigned i = 0; i < WaitingForNamedOperands; ++i) 4007 StoreIdxForName[getScopedName(Call.Scope, TP->getArgName(i))] = i; 4008 } 4009 InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate); 4010 continue; 4011 } 4012 if (!HasAddedBuiltinMatcher) { 4013 return failedImport("Src pattern child has predicate (" + 4014 explainPredicates(Src) + ")"); 4015 } 4016 } 4017 4018 bool IsAtomic = false; 4019 if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic")) 4020 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic"); 4021 else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) { 4022 IsAtomic = true; 4023 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 4024 "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 4025 } 4026 4027 if (Src->isLeaf()) { 4028 Init *SrcInit = Src->getLeafValue(); 4029 if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) { 4030 OperandMatcher &OM = 4031 InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx); 4032 OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue()); 4033 } else 4034 return failedImport( 4035 "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); 4036 } else { 4037 assert(SrcGIOrNull && 4038 "Expected to have already found an equivalent Instruction"); 4039 if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" || 4040 SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") { 4041 // imm/fpimm still have operands but we don't need to do anything with it 4042 // here since we don't support ImmLeaf predicates yet. However, we still 4043 // need to note the hidden operand to get GIM_CheckNumOperands correct. 4044 InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); 4045 return InsnMatcher; 4046 } 4047 4048 // Special case because the operand order is changed from setcc. The 4049 // predicate operand needs to be swapped from the last operand to the first 4050 // source. 4051 4052 unsigned NumChildren = Src->getNumChildren(); 4053 bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP"; 4054 4055 if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") { 4056 TreePatternNode *SrcChild = Src->getChild(NumChildren - 1); 4057 if (SrcChild->isLeaf()) { 4058 DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue()); 4059 Record *CCDef = DI ? DI->getDef() : nullptr; 4060 if (!CCDef || !CCDef->isSubClassOf("CondCode")) 4061 return failedImport("Unable to handle CondCode"); 4062 4063 OperandMatcher &OM = 4064 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); 4065 StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") : 4066 CCDef->getValueAsString("ICmpPredicate"); 4067 4068 if (!PredType.empty()) { 4069 OM.addPredicate<CmpPredicateOperandMatcher>(std::string(PredType)); 4070 // Process the other 2 operands normally. 4071 --NumChildren; 4072 } 4073 } 4074 } 4075 4076 // Hack around an unfortunate mistake in how atomic store (and really 4077 // atomicrmw in general) operands were ordered. A ISD::STORE used the order 4078 // <stored value>, <pointer> order. ISD::ATOMIC_STORE used the opposite, 4079 // <pointer>, <stored value>. In GlobalISel there's just the one store 4080 // opcode, so we need to swap the operands here to get the right type check. 4081 if (IsAtomic && SrcGIOrNull->TheDef->getName() == "G_STORE") { 4082 assert(NumChildren == 2 && "wrong operands for atomic store"); 4083 4084 TreePatternNode *PtrChild = Src->getChild(0); 4085 TreePatternNode *ValueChild = Src->getChild(1); 4086 4087 if (auto Error = importChildMatcher(Rule, InsnMatcher, PtrChild, true, 4088 false, 1, TempOpIdx)) 4089 return std::move(Error); 4090 4091 if (auto Error = importChildMatcher(Rule, InsnMatcher, ValueChild, false, 4092 false, 0, TempOpIdx)) 4093 return std::move(Error); 4094 return InsnMatcher; 4095 } 4096 4097 // Match the used operands (i.e. the children of the operator). 4098 bool IsIntrinsic = 4099 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" || 4100 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS"; 4101 const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP); 4102 if (IsIntrinsic && !II) 4103 return failedImport("Expected IntInit containing intrinsic ID)"); 4104 4105 for (unsigned i = 0; i != NumChildren; ++i) { 4106 TreePatternNode *SrcChild = Src->getChild(i); 4107 4108 // We need to determine the meaning of a literal integer based on the 4109 // context. If this is a field required to be an immediate (such as an 4110 // immarg intrinsic argument), the required predicates are different than 4111 // a constant which may be materialized in a register. If we have an 4112 // argument that is required to be an immediate, we should not emit an LLT 4113 // type check, and should not be looking for a G_CONSTANT defined 4114 // register. 4115 bool OperandIsImmArg = SrcGIOrNull->isOperandImmArg(i); 4116 4117 // SelectionDAG allows pointers to be represented with iN since it doesn't 4118 // distinguish between pointers and integers but they are different types in GlobalISel. 4119 // Coerce integers to pointers to address space 0 if the context indicates a pointer. 4120 // 4121 bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i); 4122 4123 if (IsIntrinsic) { 4124 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately 4125 // following the defs is an intrinsic ID. 4126 if (i == 0) { 4127 OperandMatcher &OM = 4128 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); 4129 OM.addPredicate<IntrinsicIDOperandMatcher>(II); 4130 continue; 4131 } 4132 4133 // We have to check intrinsics for llvm_anyptr_ty and immarg parameters. 4134 // 4135 // Note that we have to look at the i-1th parameter, because we don't 4136 // have the intrinsic ID in the intrinsic's parameter list. 4137 OperandIsAPointer |= II->isParamAPointer(i - 1); 4138 OperandIsImmArg |= II->isParamImmArg(i - 1); 4139 } 4140 4141 if (auto Error = 4142 importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer, 4143 OperandIsImmArg, OpIdx++, TempOpIdx)) 4144 return std::move(Error); 4145 } 4146 } 4147 4148 return InsnMatcher; 4149 } 4150 4151 Error GlobalISelEmitter::importComplexPatternOperandMatcher( 4152 OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const { 4153 const auto &ComplexPattern = ComplexPatternEquivs.find(R); 4154 if (ComplexPattern == ComplexPatternEquivs.end()) 4155 return failedImport("SelectionDAG ComplexPattern (" + R->getName() + 4156 ") not mapped to GlobalISel"); 4157 4158 OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second); 4159 TempOpIdx++; 4160 return Error::success(); 4161 } 4162 4163 // Get the name to use for a pattern operand. For an anonymous physical register 4164 // input, this should use the register name. 4165 static StringRef getSrcChildName(const TreePatternNode *SrcChild, 4166 Record *&PhysReg) { 4167 StringRef SrcChildName = SrcChild->getName(); 4168 if (SrcChildName.empty() && SrcChild->isLeaf()) { 4169 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { 4170 auto *ChildRec = ChildDefInit->getDef(); 4171 if (ChildRec->isSubClassOf("Register")) { 4172 SrcChildName = ChildRec->getName(); 4173 PhysReg = ChildRec; 4174 } 4175 } 4176 } 4177 4178 return SrcChildName; 4179 } 4180 4181 Error GlobalISelEmitter::importChildMatcher( 4182 RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 4183 const TreePatternNode *SrcChild, bool OperandIsAPointer, 4184 bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) { 4185 4186 Record *PhysReg = nullptr; 4187 std::string SrcChildName = std::string(getSrcChildName(SrcChild, PhysReg)); 4188 if (!SrcChild->isLeaf() && 4189 SrcChild->getOperator()->isSubClassOf("ComplexPattern")) { 4190 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is 4191 // "MY_PAT:op1:op2" and the ones with same "name" represent same operand. 4192 std::string PatternName = std::string(SrcChild->getOperator()->getName()); 4193 for (unsigned i = 0; i < SrcChild->getNumChildren(); ++i) { 4194 PatternName += ":"; 4195 PatternName += SrcChild->getChild(i)->getName(); 4196 } 4197 SrcChildName = PatternName; 4198 } 4199 4200 OperandMatcher &OM = 4201 PhysReg ? InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx) 4202 : InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx); 4203 if (OM.isSameAsAnotherOperand()) 4204 return Error::success(); 4205 4206 ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes(); 4207 if (ChildTypes.size() != 1) 4208 return failedImport("Src pattern child has multiple results"); 4209 4210 // Check MBB's before the type check since they are not a known type. 4211 if (!SrcChild->isLeaf()) { 4212 if (SrcChild->getOperator()->isSubClassOf("SDNode")) { 4213 auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator()); 4214 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { 4215 OM.addPredicate<MBBOperandMatcher>(); 4216 return Error::success(); 4217 } 4218 if (SrcChild->getOperator()->getName() == "timm") { 4219 OM.addPredicate<ImmOperandMatcher>(); 4220 4221 // Add predicates, if any 4222 for (const TreePredicateCall &Call : SrcChild->getPredicateCalls()) { 4223 const TreePredicateFn &Predicate = Call.Fn; 4224 4225 // Only handle immediate patterns for now 4226 if (Predicate.isImmediatePattern()) { 4227 OM.addPredicate<OperandImmPredicateMatcher>(Predicate); 4228 } 4229 } 4230 4231 return Error::success(); 4232 } 4233 } 4234 } 4235 4236 // Immediate arguments have no meaningful type to check as they don't have 4237 // registers. 4238 if (!OperandIsImmArg) { 4239 if (auto Error = 4240 OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer)) 4241 return failedImport(toString(std::move(Error)) + " for Src operand (" + 4242 to_string(*SrcChild) + ")"); 4243 } 4244 4245 // Check for nested instructions. 4246 if (!SrcChild->isLeaf()) { 4247 if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) { 4248 // When a ComplexPattern is used as an operator, it should do the same 4249 // thing as when used as a leaf. However, the children of the operator 4250 // name the sub-operands that make up the complex operand and we must 4251 // prepare to reference them in the renderer too. 4252 unsigned RendererID = TempOpIdx; 4253 if (auto Error = importComplexPatternOperandMatcher( 4254 OM, SrcChild->getOperator(), TempOpIdx)) 4255 return Error; 4256 4257 for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) { 4258 auto *SubOperand = SrcChild->getChild(i); 4259 if (!SubOperand->getName().empty()) { 4260 if (auto Error = Rule.defineComplexSubOperand( 4261 SubOperand->getName(), SrcChild->getOperator(), RendererID, i, 4262 SrcChildName)) 4263 return Error; 4264 } 4265 } 4266 4267 return Error::success(); 4268 } 4269 4270 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( 4271 InsnMatcher.getRuleMatcher(), SrcChild->getName()); 4272 if (!MaybeInsnOperand.hasValue()) { 4273 // This isn't strictly true. If the user were to provide exactly the same 4274 // matchers as the original operand then we could allow it. However, it's 4275 // simpler to not permit the redundant specification. 4276 return failedImport("Nested instruction cannot be the same as another operand"); 4277 } 4278 4279 // Map the node to a gMIR instruction. 4280 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; 4281 auto InsnMatcherOrError = createAndImportSelDAGMatcher( 4282 Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx); 4283 if (auto Error = InsnMatcherOrError.takeError()) 4284 return Error; 4285 4286 return Error::success(); 4287 } 4288 4289 if (SrcChild->hasAnyPredicate()) 4290 return failedImport("Src pattern child has unsupported predicate"); 4291 4292 // Check for constant immediates. 4293 if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) { 4294 if (OperandIsImmArg) { 4295 // Checks for argument directly in operand list 4296 OM.addPredicate<LiteralIntOperandMatcher>(ChildInt->getValue()); 4297 } else { 4298 // Checks for materialized constant 4299 OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue()); 4300 } 4301 return Error::success(); 4302 } 4303 4304 // Check for def's like register classes or ComplexPattern's. 4305 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { 4306 auto *ChildRec = ChildDefInit->getDef(); 4307 4308 if (WaitingForNamedOperands) { 4309 auto PA = SrcChild->getNamesAsPredicateArg().begin(); 4310 std::string Name = getScopedName(PA->getScope(), PA->getIdentifier()); 4311 OM.addPredicate<RecordNamedOperandMatcher>(StoreIdxForName[Name], Name); 4312 --WaitingForNamedOperands; 4313 } 4314 4315 // Check for register classes. 4316 if (ChildRec->isSubClassOf("RegisterClass") || 4317 ChildRec->isSubClassOf("RegisterOperand")) { 4318 OM.addPredicate<RegisterBankOperandMatcher>( 4319 Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit))); 4320 return Error::success(); 4321 } 4322 4323 if (ChildRec->isSubClassOf("Register")) { 4324 // This just be emitted as a copy to the specific register. 4325 ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode(); 4326 const CodeGenRegisterClass *RC 4327 = CGRegs.getMinimalPhysRegClass(ChildRec, &VT); 4328 if (!RC) { 4329 return failedImport( 4330 "Could not determine physical register class of pattern source"); 4331 } 4332 4333 OM.addPredicate<RegisterBankOperandMatcher>(*RC); 4334 return Error::success(); 4335 } 4336 4337 // Check for ValueType. 4338 if (ChildRec->isSubClassOf("ValueType")) { 4339 // We already added a type check as standard practice so this doesn't need 4340 // to do anything. 4341 return Error::success(); 4342 } 4343 4344 // Check for ComplexPattern's. 4345 if (ChildRec->isSubClassOf("ComplexPattern")) 4346 return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx); 4347 4348 if (ChildRec->isSubClassOf("ImmLeaf")) { 4349 return failedImport( 4350 "Src pattern child def is an unsupported tablegen class (ImmLeaf)"); 4351 } 4352 4353 // Place holder for SRCVALUE nodes. Nothing to do here. 4354 if (ChildRec->getName() == "srcvalue") 4355 return Error::success(); 4356 4357 const bool ImmAllOnesV = ChildRec->getName() == "immAllOnesV"; 4358 if (ImmAllOnesV || ChildRec->getName() == "immAllZerosV") { 4359 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( 4360 InsnMatcher.getRuleMatcher(), SrcChild->getName(), false); 4361 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; 4362 4363 ValueTypeByHwMode VTy = ChildTypes.front().getValueTypeByHwMode(); 4364 4365 const CodeGenInstruction &BuildVector 4366 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR")); 4367 const CodeGenInstruction &BuildVectorTrunc 4368 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR_TRUNC")); 4369 4370 // Treat G_BUILD_VECTOR as the canonical opcode, and G_BUILD_VECTOR_TRUNC 4371 // as an alternative. 4372 InsnOperand.getInsnMatcher().addPredicate<InstructionOpcodeMatcher>( 4373 makeArrayRef({&BuildVector, &BuildVectorTrunc})); 4374 4375 // TODO: Handle both G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC We could 4376 // theoretically not emit any opcode check, but getOpcodeMatcher currently 4377 // has to succeed. 4378 OperandMatcher &OM = 4379 InsnOperand.getInsnMatcher().addOperand(0, "", TempOpIdx); 4380 if (auto Error = 4381 OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */)) 4382 return failedImport(toString(std::move(Error)) + 4383 " for result of Src pattern operator"); 4384 4385 InsnOperand.getInsnMatcher().addPredicate<VectorSplatImmPredicateMatcher>( 4386 ImmAllOnesV ? VectorSplatImmPredicateMatcher::AllOnes 4387 : VectorSplatImmPredicateMatcher::AllZeros); 4388 return Error::success(); 4389 } 4390 4391 return failedImport( 4392 "Src pattern child def is an unsupported tablegen class"); 4393 } 4394 4395 return failedImport("Src pattern child is an unsupported kind"); 4396 } 4397 4398 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer( 4399 action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder, 4400 TreePatternNode *DstChild) { 4401 4402 const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName()); 4403 if (SubOperand.hasValue()) { 4404 DstMIBuilder.addRenderer<RenderComplexPatternOperand>( 4405 *std::get<0>(*SubOperand), DstChild->getName(), 4406 std::get<1>(*SubOperand), std::get<2>(*SubOperand)); 4407 return InsertPt; 4408 } 4409 4410 if (!DstChild->isLeaf()) { 4411 if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) { 4412 auto Child = DstChild->getChild(0); 4413 auto I = SDNodeXFormEquivs.find(DstChild->getOperator()); 4414 if (I != SDNodeXFormEquivs.end()) { 4415 Record *XFormOpc = DstChild->getOperator()->getValueAsDef("Opcode"); 4416 if (XFormOpc->getName() == "timm") { 4417 // If this is a TargetConstant, there won't be a corresponding 4418 // instruction to transform. Instead, this will refer directly to an 4419 // operand in an instruction's operand list. 4420 DstMIBuilder.addRenderer<CustomOperandRenderer>(*I->second, 4421 Child->getName()); 4422 } else { 4423 DstMIBuilder.addRenderer<CustomRenderer>(*I->second, 4424 Child->getName()); 4425 } 4426 4427 return InsertPt; 4428 } 4429 return failedImport("SDNodeXForm " + Child->getName() + 4430 " has no custom renderer"); 4431 } 4432 4433 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't 4434 // inline, but in MI it's just another operand. 4435 if (DstChild->getOperator()->isSubClassOf("SDNode")) { 4436 auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator()); 4437 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { 4438 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4439 return InsertPt; 4440 } 4441 } 4442 4443 // Similarly, imm is an operator in TreePatternNode's view but must be 4444 // rendered as operands. 4445 // FIXME: The target should be able to choose sign-extended when appropriate 4446 // (e.g. on Mips). 4447 if (DstChild->getOperator()->getName() == "timm") { 4448 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4449 return InsertPt; 4450 } else if (DstChild->getOperator()->getName() == "imm") { 4451 DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName()); 4452 return InsertPt; 4453 } else if (DstChild->getOperator()->getName() == "fpimm") { 4454 DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>( 4455 DstChild->getName()); 4456 return InsertPt; 4457 } 4458 4459 if (DstChild->getOperator()->isSubClassOf("Instruction")) { 4460 auto OpTy = getInstResultType(DstChild); 4461 if (!OpTy) 4462 return OpTy.takeError(); 4463 4464 unsigned TempRegID = Rule.allocateTempRegID(); 4465 InsertPt = Rule.insertAction<MakeTempRegisterAction>( 4466 InsertPt, *OpTy, TempRegID); 4467 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4468 4469 auto InsertPtOrError = createAndImportSubInstructionRenderer( 4470 ++InsertPt, Rule, DstChild, TempRegID); 4471 if (auto Error = InsertPtOrError.takeError()) 4472 return std::move(Error); 4473 return InsertPtOrError.get(); 4474 } 4475 4476 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild)); 4477 } 4478 4479 // It could be a specific immediate in which case we should just check for 4480 // that immediate. 4481 if (const IntInit *ChildIntInit = 4482 dyn_cast<IntInit>(DstChild->getLeafValue())) { 4483 DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue()); 4484 return InsertPt; 4485 } 4486 4487 // Otherwise, we're looking for a bog-standard RegisterClass operand. 4488 if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) { 4489 auto *ChildRec = ChildDefInit->getDef(); 4490 4491 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes(); 4492 if (ChildTypes.size() != 1) 4493 return failedImport("Dst pattern child has multiple results"); 4494 4495 Optional<LLTCodeGen> OpTyOrNone = None; 4496 if (ChildTypes.front().isMachineValueType()) 4497 OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); 4498 if (!OpTyOrNone) 4499 return failedImport("Dst operand has an unsupported type"); 4500 4501 if (ChildRec->isSubClassOf("Register")) { 4502 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, ChildRec); 4503 return InsertPt; 4504 } 4505 4506 if (ChildRec->isSubClassOf("RegisterClass") || 4507 ChildRec->isSubClassOf("RegisterOperand") || 4508 ChildRec->isSubClassOf("ValueType")) { 4509 if (ChildRec->isSubClassOf("RegisterOperand") && 4510 !ChildRec->isValueUnset("GIZeroRegister")) { 4511 DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>( 4512 DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister")); 4513 return InsertPt; 4514 } 4515 4516 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4517 return InsertPt; 4518 } 4519 4520 if (ChildRec->isSubClassOf("SubRegIndex")) { 4521 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec); 4522 DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue); 4523 return InsertPt; 4524 } 4525 4526 if (ChildRec->isSubClassOf("ComplexPattern")) { 4527 const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec); 4528 if (ComplexPattern == ComplexPatternEquivs.end()) 4529 return failedImport( 4530 "SelectionDAG ComplexPattern not mapped to GlobalISel"); 4531 4532 const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName()); 4533 DstMIBuilder.addRenderer<RenderComplexPatternOperand>( 4534 *ComplexPattern->second, DstChild->getName(), 4535 OM.getAllocatedTemporariesBaseID()); 4536 return InsertPt; 4537 } 4538 4539 return failedImport( 4540 "Dst pattern child def is an unsupported tablegen class"); 4541 } 4542 return failedImport("Dst pattern child is an unsupported kind"); 4543 } 4544 4545 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer( 4546 RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src, 4547 const TreePatternNode *Dst) { 4548 auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst); 4549 if (auto Error = InsertPtOrError.takeError()) 4550 return std::move(Error); 4551 4552 action_iterator InsertPt = InsertPtOrError.get(); 4553 BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get()); 4554 4555 for (auto PhysInput : InsnMatcher.getPhysRegInputs()) { 4556 InsertPt = M.insertAction<BuildMIAction>( 4557 InsertPt, M.allocateOutputInsnID(), 4558 &Target.getInstruction(RK.getDef("COPY"))); 4559 BuildMIAction &CopyToPhysRegMIBuilder = 4560 *static_cast<BuildMIAction *>(InsertPt->get()); 4561 CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(Target, 4562 PhysInput.first, 4563 true); 4564 CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first); 4565 } 4566 4567 if (auto Error = importExplicitDefRenderers(InsertPt, M, DstMIBuilder, Dst) 4568 .takeError()) 4569 return std::move(Error); 4570 4571 if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst) 4572 .takeError()) 4573 return std::move(Error); 4574 4575 return DstMIBuilder; 4576 } 4577 4578 Expected<action_iterator> 4579 GlobalISelEmitter::createAndImportSubInstructionRenderer( 4580 const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, 4581 unsigned TempRegID) { 4582 auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst); 4583 4584 // TODO: Assert there's exactly one result. 4585 4586 if (auto Error = InsertPtOrError.takeError()) 4587 return std::move(Error); 4588 4589 BuildMIAction &DstMIBuilder = 4590 *static_cast<BuildMIAction *>(InsertPtOrError.get()->get()); 4591 4592 // Assign the result to TempReg. 4593 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true); 4594 4595 InsertPtOrError = 4596 importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst); 4597 if (auto Error = InsertPtOrError.takeError()) 4598 return std::move(Error); 4599 4600 // We need to make sure that when we import an INSERT_SUBREG as a 4601 // subinstruction that it ends up being constrained to the correct super 4602 // register and subregister classes. 4603 auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName(); 4604 if (OpName == "INSERT_SUBREG") { 4605 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4606 if (!SubClass) 4607 return failedImport( 4608 "Cannot infer register class from INSERT_SUBREG operand #1"); 4609 Optional<const CodeGenRegisterClass *> SuperClass = 4610 inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0), 4611 Dst->getChild(2)); 4612 if (!SuperClass) 4613 return failedImport( 4614 "Cannot infer register class for INSERT_SUBREG operand #0"); 4615 // The destination and the super register source of an INSERT_SUBREG must 4616 // be the same register class. 4617 M.insertAction<ConstrainOperandToRegClassAction>( 4618 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4619 M.insertAction<ConstrainOperandToRegClassAction>( 4620 InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass); 4621 M.insertAction<ConstrainOperandToRegClassAction>( 4622 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); 4623 return InsertPtOrError.get(); 4624 } 4625 4626 if (OpName == "EXTRACT_SUBREG") { 4627 // EXTRACT_SUBREG selects into a subregister COPY but unlike most 4628 // instructions, the result register class is controlled by the 4629 // subregisters of the operand. As a result, we must constrain the result 4630 // class rather than check that it's already the right one. 4631 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 4632 if (!SuperClass) 4633 return failedImport( 4634 "Cannot infer register class from EXTRACT_SUBREG operand #0"); 4635 4636 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); 4637 if (!SubIdx) 4638 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4639 4640 const auto SrcRCDstRCPair = 4641 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 4642 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4643 M.insertAction<ConstrainOperandToRegClassAction>( 4644 InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second); 4645 M.insertAction<ConstrainOperandToRegClassAction>( 4646 InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first); 4647 4648 // We're done with this pattern! It's eligible for GISel emission; return 4649 // it. 4650 return InsertPtOrError.get(); 4651 } 4652 4653 // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a 4654 // subinstruction. 4655 if (OpName == "SUBREG_TO_REG") { 4656 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4657 if (!SubClass) 4658 return failedImport( 4659 "Cannot infer register class from SUBREG_TO_REG child #1"); 4660 auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0), 4661 Dst->getChild(2)); 4662 if (!SuperClass) 4663 return failedImport( 4664 "Cannot infer register class for SUBREG_TO_REG operand #0"); 4665 M.insertAction<ConstrainOperandToRegClassAction>( 4666 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4667 M.insertAction<ConstrainOperandToRegClassAction>( 4668 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); 4669 return InsertPtOrError.get(); 4670 } 4671 4672 if (OpName == "REG_SEQUENCE") { 4673 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 4674 M.insertAction<ConstrainOperandToRegClassAction>( 4675 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4676 4677 unsigned Num = Dst->getNumChildren(); 4678 for (unsigned I = 1; I != Num; I += 2) { 4679 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 4680 4681 auto SubIdx = inferSubRegIndexForNode(SubRegChild); 4682 if (!SubIdx) 4683 return failedImport("REG_SEQUENCE child is not a subreg index"); 4684 4685 const auto SrcRCDstRCPair = 4686 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 4687 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4688 M.insertAction<ConstrainOperandToRegClassAction>( 4689 InsertPt, DstMIBuilder.getInsnID(), I, *SrcRCDstRCPair->second); 4690 } 4691 4692 return InsertPtOrError.get(); 4693 } 4694 4695 M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt, 4696 DstMIBuilder.getInsnID()); 4697 return InsertPtOrError.get(); 4698 } 4699 4700 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer( 4701 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) { 4702 Record *DstOp = Dst->getOperator(); 4703 if (!DstOp->isSubClassOf("Instruction")) { 4704 if (DstOp->isSubClassOf("ValueType")) 4705 return failedImport( 4706 "Pattern operator isn't an instruction (it's a ValueType)"); 4707 return failedImport("Pattern operator isn't an instruction"); 4708 } 4709 CodeGenInstruction *DstI = &Target.getInstruction(DstOp); 4710 4711 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction 4712 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy. 4713 StringRef Name = DstI->TheDef->getName(); 4714 if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG") 4715 DstI = &Target.getInstruction(RK.getDef("COPY")); 4716 4717 return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(), 4718 DstI); 4719 } 4720 4721 Expected<action_iterator> GlobalISelEmitter::importExplicitDefRenderers( 4722 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4723 const TreePatternNode *Dst) { 4724 const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); 4725 const unsigned NumDefs = DstI->Operands.NumDefs; 4726 if (NumDefs == 0) 4727 return InsertPt; 4728 4729 DstMIBuilder.addRenderer<CopyRenderer>(DstI->Operands[0].Name); 4730 4731 // Some instructions have multiple defs, but are missing a type entry 4732 // (e.g. s_cc_out operands). 4733 if (Dst->getExtTypes().size() < NumDefs) 4734 return failedImport("unhandled discarded def"); 4735 4736 // Patterns only handle a single result, so any result after the first is an 4737 // implicitly dead def. 4738 for (unsigned I = 1; I < NumDefs; ++I) { 4739 const TypeSetByHwMode &ExtTy = Dst->getExtType(I); 4740 if (!ExtTy.isMachineValueType()) 4741 return failedImport("unsupported typeset"); 4742 4743 auto OpTy = MVTToLLT(ExtTy.getMachineValueType().SimpleTy); 4744 if (!OpTy) 4745 return failedImport("unsupported type"); 4746 4747 unsigned TempRegID = M.allocateTempRegID(); 4748 InsertPt = 4749 M.insertAction<MakeTempRegisterAction>(InsertPt, *OpTy, TempRegID); 4750 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true, nullptr, true); 4751 } 4752 4753 return InsertPt; 4754 } 4755 4756 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers( 4757 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4758 const llvm::TreePatternNode *Dst) { 4759 const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); 4760 CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator()); 4761 4762 StringRef Name = OrigDstI->TheDef->getName(); 4763 unsigned ExpectedDstINumUses = Dst->getNumChildren(); 4764 4765 // EXTRACT_SUBREG needs to use a subregister COPY. 4766 if (Name == "EXTRACT_SUBREG") { 4767 if (!Dst->getChild(1)->isLeaf()) 4768 return failedImport("EXTRACT_SUBREG child #1 is not a leaf"); 4769 DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 4770 if (!SubRegInit) 4771 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4772 4773 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4774 TreePatternNode *ValChild = Dst->getChild(0); 4775 if (!ValChild->isLeaf()) { 4776 // We really have to handle the source instruction, and then insert a 4777 // copy from the subregister. 4778 auto ExtractSrcTy = getInstResultType(ValChild); 4779 if (!ExtractSrcTy) 4780 return ExtractSrcTy.takeError(); 4781 4782 unsigned TempRegID = M.allocateTempRegID(); 4783 InsertPt = M.insertAction<MakeTempRegisterAction>( 4784 InsertPt, *ExtractSrcTy, TempRegID); 4785 4786 auto InsertPtOrError = createAndImportSubInstructionRenderer( 4787 ++InsertPt, M, ValChild, TempRegID); 4788 if (auto Error = InsertPtOrError.takeError()) 4789 return std::move(Error); 4790 4791 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, false, SubIdx); 4792 return InsertPt; 4793 } 4794 4795 // If this is a source operand, this is just a subregister copy. 4796 Record *RCDef = getInitValueAsRegClass(ValChild->getLeafValue()); 4797 if (!RCDef) 4798 return failedImport("EXTRACT_SUBREG child #0 could not " 4799 "be coerced to a register class"); 4800 4801 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef); 4802 4803 const auto SrcRCDstRCPair = 4804 RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx); 4805 if (SrcRCDstRCPair.hasValue()) { 4806 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4807 if (SrcRCDstRCPair->first != RC) 4808 return failedImport("EXTRACT_SUBREG requires an additional COPY"); 4809 } 4810 4811 DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(), 4812 SubIdx); 4813 return InsertPt; 4814 } 4815 4816 if (Name == "REG_SEQUENCE") { 4817 if (!Dst->getChild(0)->isLeaf()) 4818 return failedImport("REG_SEQUENCE child #0 is not a leaf"); 4819 4820 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 4821 if (!RCDef) 4822 return failedImport("REG_SEQUENCE child #0 could not " 4823 "be coerced to a register class"); 4824 4825 if ((ExpectedDstINumUses - 1) % 2 != 0) 4826 return failedImport("Malformed REG_SEQUENCE"); 4827 4828 for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) { 4829 TreePatternNode *ValChild = Dst->getChild(I); 4830 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 4831 4832 if (DefInit *SubRegInit = 4833 dyn_cast<DefInit>(SubRegChild->getLeafValue())) { 4834 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4835 4836 auto InsertPtOrError = 4837 importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild); 4838 if (auto Error = InsertPtOrError.takeError()) 4839 return std::move(Error); 4840 InsertPt = InsertPtOrError.get(); 4841 DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx); 4842 } 4843 } 4844 4845 return InsertPt; 4846 } 4847 4848 // Render the explicit uses. 4849 unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs; 4850 if (Name == "COPY_TO_REGCLASS") { 4851 DstINumUses--; // Ignore the class constraint. 4852 ExpectedDstINumUses--; 4853 } 4854 4855 // NumResults - This is the number of results produced by the instruction in 4856 // the "outs" list. 4857 unsigned NumResults = OrigDstI->Operands.NumDefs; 4858 4859 // Number of operands we know the output instruction must have. If it is 4860 // variadic, we could have more operands. 4861 unsigned NumFixedOperands = DstI->Operands.size(); 4862 4863 // Loop over all of the fixed operands of the instruction pattern, emitting 4864 // code to fill them all in. The node 'N' usually has number children equal to 4865 // the number of input operands of the instruction. However, in cases where 4866 // there are predicate operands for an instruction, we need to fill in the 4867 // 'execute always' values. Match up the node operands to the instruction 4868 // operands to do this. 4869 unsigned Child = 0; 4870 4871 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the 4872 // number of operands at the end of the list which have default values. 4873 // Those can come from the pattern if it provides enough arguments, or be 4874 // filled in with the default if the pattern hasn't provided them. But any 4875 // operand with a default value _before_ the last mandatory one will be 4876 // filled in with their defaults unconditionally. 4877 unsigned NonOverridableOperands = NumFixedOperands; 4878 while (NonOverridableOperands > NumResults && 4879 CGP.operandHasDefault(DstI->Operands[NonOverridableOperands - 1].Rec)) 4880 --NonOverridableOperands; 4881 4882 unsigned NumDefaultOps = 0; 4883 for (unsigned I = 0; I != DstINumUses; ++I) { 4884 unsigned InstOpNo = DstI->Operands.NumDefs + I; 4885 4886 // Determine what to emit for this operand. 4887 Record *OperandNode = DstI->Operands[InstOpNo].Rec; 4888 4889 // If the operand has default values, introduce them now. 4890 if (CGP.operandHasDefault(OperandNode) && 4891 (InstOpNo < NonOverridableOperands || Child >= Dst->getNumChildren())) { 4892 // This is a predicate or optional def operand which the pattern has not 4893 // overridden, or which we aren't letting it override; emit the 'default 4894 // ops' operands. 4895 4896 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[InstOpNo]; 4897 DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps"); 4898 if (auto Error = importDefaultOperandRenderers( 4899 InsertPt, M, DstMIBuilder, DefaultOps)) 4900 return std::move(Error); 4901 ++NumDefaultOps; 4902 continue; 4903 } 4904 4905 auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder, 4906 Dst->getChild(Child)); 4907 if (auto Error = InsertPtOrError.takeError()) 4908 return std::move(Error); 4909 InsertPt = InsertPtOrError.get(); 4910 ++Child; 4911 } 4912 4913 if (NumDefaultOps + ExpectedDstINumUses != DstINumUses) 4914 return failedImport("Expected " + llvm::to_string(DstINumUses) + 4915 " used operands but found " + 4916 llvm::to_string(ExpectedDstINumUses) + 4917 " explicit ones and " + llvm::to_string(NumDefaultOps) + 4918 " default ones"); 4919 4920 return InsertPt; 4921 } 4922 4923 Error GlobalISelEmitter::importDefaultOperandRenderers( 4924 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4925 DagInit *DefaultOps) const { 4926 for (const auto *DefaultOp : DefaultOps->getArgs()) { 4927 Optional<LLTCodeGen> OpTyOrNone = None; 4928 4929 // Look through ValueType operators. 4930 if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) { 4931 if (const DefInit *DefaultDagOperator = 4932 dyn_cast<DefInit>(DefaultDagOp->getOperator())) { 4933 if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) { 4934 OpTyOrNone = MVTToLLT(getValueType( 4935 DefaultDagOperator->getDef())); 4936 DefaultOp = DefaultDagOp->getArg(0); 4937 } 4938 } 4939 } 4940 4941 if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) { 4942 auto Def = DefaultDefOp->getDef(); 4943 if (Def->getName() == "undef_tied_input") { 4944 unsigned TempRegID = M.allocateTempRegID(); 4945 M.insertAction<MakeTempRegisterAction>( 4946 InsertPt, OpTyOrNone.getValue(), TempRegID); 4947 InsertPt = M.insertAction<BuildMIAction>( 4948 InsertPt, M.allocateOutputInsnID(), 4949 &Target.getInstruction(RK.getDef("IMPLICIT_DEF"))); 4950 BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>( 4951 InsertPt->get()); 4952 IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4953 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4954 } else { 4955 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, Def); 4956 } 4957 continue; 4958 } 4959 4960 if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) { 4961 DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue()); 4962 continue; 4963 } 4964 4965 return failedImport("Could not add default op"); 4966 } 4967 4968 return Error::success(); 4969 } 4970 4971 Error GlobalISelEmitter::importImplicitDefRenderers( 4972 BuildMIAction &DstMIBuilder, 4973 const std::vector<Record *> &ImplicitDefs) const { 4974 if (!ImplicitDefs.empty()) 4975 return failedImport("Pattern defines a physical register"); 4976 return Error::success(); 4977 } 4978 4979 Optional<const CodeGenRegisterClass *> 4980 GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) { 4981 assert(Leaf && "Expected node?"); 4982 assert(Leaf->isLeaf() && "Expected leaf?"); 4983 Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue()); 4984 if (!RCRec) 4985 return None; 4986 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec); 4987 if (!RC) 4988 return None; 4989 return RC; 4990 } 4991 4992 Optional<const CodeGenRegisterClass *> 4993 GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) { 4994 if (!N) 4995 return None; 4996 4997 if (N->isLeaf()) 4998 return getRegClassFromLeaf(N); 4999 5000 // We don't have a leaf node, so we have to try and infer something. Check 5001 // that we have an instruction that we an infer something from. 5002 5003 // Only handle things that produce a single type. 5004 if (N->getNumTypes() != 1) 5005 return None; 5006 Record *OpRec = N->getOperator(); 5007 5008 // We only want instructions. 5009 if (!OpRec->isSubClassOf("Instruction")) 5010 return None; 5011 5012 // Don't want to try and infer things when there could potentially be more 5013 // than one candidate register class. 5014 auto &Inst = Target.getInstruction(OpRec); 5015 if (Inst.Operands.NumDefs > 1) 5016 return None; 5017 5018 // Handle any special-case instructions which we can safely infer register 5019 // classes from. 5020 StringRef InstName = Inst.TheDef->getName(); 5021 bool IsRegSequence = InstName == "REG_SEQUENCE"; 5022 if (IsRegSequence || InstName == "COPY_TO_REGCLASS") { 5023 // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It 5024 // has the desired register class as the first child. 5025 TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1); 5026 if (!RCChild->isLeaf()) 5027 return None; 5028 return getRegClassFromLeaf(RCChild); 5029 } 5030 if (InstName == "INSERT_SUBREG") { 5031 TreePatternNode *Child0 = N->getChild(0); 5032 assert(Child0->getNumTypes() == 1 && "Unexpected number of types!"); 5033 const TypeSetByHwMode &VTy = Child0->getExtType(0); 5034 return inferSuperRegisterClassForNode(VTy, Child0, N->getChild(2)); 5035 } 5036 if (InstName == "EXTRACT_SUBREG") { 5037 assert(N->getNumTypes() == 1 && "Unexpected number of types!"); 5038 const TypeSetByHwMode &VTy = N->getExtType(0); 5039 return inferSuperRegisterClass(VTy, N->getChild(1)); 5040 } 5041 5042 // Handle destination record types that we can safely infer a register class 5043 // from. 5044 const auto &DstIOperand = Inst.Operands[0]; 5045 Record *DstIOpRec = DstIOperand.Rec; 5046 if (DstIOpRec->isSubClassOf("RegisterOperand")) { 5047 DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); 5048 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); 5049 return &RC; 5050 } 5051 5052 if (DstIOpRec->isSubClassOf("RegisterClass")) { 5053 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); 5054 return &RC; 5055 } 5056 5057 return None; 5058 } 5059 5060 Optional<const CodeGenRegisterClass *> 5061 GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty, 5062 TreePatternNode *SubRegIdxNode) { 5063 assert(SubRegIdxNode && "Expected subregister index node!"); 5064 // We need a ValueTypeByHwMode for getSuperRegForSubReg. 5065 if (!Ty.isValueTypeByHwMode(false)) 5066 return None; 5067 if (!SubRegIdxNode->isLeaf()) 5068 return None; 5069 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); 5070 if (!SubRegInit) 5071 return None; 5072 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 5073 5074 // Use the information we found above to find a minimal register class which 5075 // supports the subregister and type we want. 5076 auto RC = 5077 Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx, 5078 /* MustBeAllocatable */ true); 5079 if (!RC) 5080 return None; 5081 return *RC; 5082 } 5083 5084 Optional<const CodeGenRegisterClass *> 5085 GlobalISelEmitter::inferSuperRegisterClassForNode( 5086 const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode, 5087 TreePatternNode *SubRegIdxNode) { 5088 assert(SuperRegNode && "Expected super register node!"); 5089 // Check if we already have a defined register class for the super register 5090 // node. If we do, then we should preserve that rather than inferring anything 5091 // from the subregister index node. We can assume that whoever wrote the 5092 // pattern in the first place made sure that the super register and 5093 // subregister are compatible. 5094 if (Optional<const CodeGenRegisterClass *> SuperRegisterClass = 5095 inferRegClassFromPattern(SuperRegNode)) 5096 return *SuperRegisterClass; 5097 return inferSuperRegisterClass(Ty, SubRegIdxNode); 5098 } 5099 5100 Optional<CodeGenSubRegIndex *> 5101 GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) { 5102 if (!SubRegIdxNode->isLeaf()) 5103 return None; 5104 5105 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); 5106 if (!SubRegInit) 5107 return None; 5108 return CGRegs.getSubRegIdx(SubRegInit->getDef()); 5109 } 5110 5111 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) { 5112 // Keep track of the matchers and actions to emit. 5113 int Score = P.getPatternComplexity(CGP); 5114 RuleMatcher M(P.getSrcRecord()->getLoc()); 5115 RuleMatcherScores[M.getRuleID()] = Score; 5116 M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) + 5117 " => " + 5118 llvm::to_string(*P.getDstPattern())); 5119 5120 SmallVector<Record *, 4> Predicates; 5121 P.getPredicateRecords(Predicates); 5122 if (auto Error = importRulePredicates(M, Predicates)) 5123 return std::move(Error); 5124 5125 // Next, analyze the pattern operators. 5126 TreePatternNode *Src = P.getSrcPattern(); 5127 TreePatternNode *Dst = P.getDstPattern(); 5128 5129 // If the root of either pattern isn't a simple operator, ignore it. 5130 if (auto Err = isTrivialOperatorNode(Dst)) 5131 return failedImport("Dst pattern root isn't a trivial operator (" + 5132 toString(std::move(Err)) + ")"); 5133 if (auto Err = isTrivialOperatorNode(Src)) 5134 return failedImport("Src pattern root isn't a trivial operator (" + 5135 toString(std::move(Err)) + ")"); 5136 5137 // The different predicates and matchers created during 5138 // addInstructionMatcher use the RuleMatcher M to set up their 5139 // instruction ID (InsnVarID) that are going to be used when 5140 // M is going to be emitted. 5141 // However, the code doing the emission still relies on the IDs 5142 // returned during that process by the RuleMatcher when issuing 5143 // the recordInsn opcodes. 5144 // Because of that: 5145 // 1. The order in which we created the predicates 5146 // and such must be the same as the order in which we emit them, 5147 // and 5148 // 2. We need to reset the generation of the IDs in M somewhere between 5149 // addInstructionMatcher and emit 5150 // 5151 // FIXME: Long term, we don't want to have to rely on this implicit 5152 // naming being the same. One possible solution would be to have 5153 // explicit operator for operation capture and reference those. 5154 // The plus side is that it would expose opportunities to share 5155 // the capture accross rules. The downside is that it would 5156 // introduce a dependency between predicates (captures must happen 5157 // before their first use.) 5158 InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName()); 5159 unsigned TempOpIdx = 0; 5160 auto InsnMatcherOrError = 5161 createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx); 5162 if (auto Error = InsnMatcherOrError.takeError()) 5163 return std::move(Error); 5164 InstructionMatcher &InsnMatcher = InsnMatcherOrError.get(); 5165 5166 if (Dst->isLeaf()) { 5167 Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue()); 5168 if (RCDef) { 5169 const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef); 5170 5171 // We need to replace the def and all its uses with the specified 5172 // operand. However, we must also insert COPY's wherever needed. 5173 // For now, emit a copy and let the register allocator clean up. 5174 auto &DstI = Target.getInstruction(RK.getDef("COPY")); 5175 const auto &DstIOperand = DstI.Operands[0]; 5176 5177 OperandMatcher &OM0 = InsnMatcher.getOperand(0); 5178 OM0.setSymbolicName(DstIOperand.Name); 5179 M.defineOperand(OM0.getSymbolicName(), OM0); 5180 OM0.addPredicate<RegisterBankOperandMatcher>(RC); 5181 5182 auto &DstMIBuilder = 5183 M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI); 5184 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name); 5185 DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName()); 5186 M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC); 5187 5188 // We're done with this pattern! It's eligible for GISel emission; return 5189 // it. 5190 ++NumPatternImported; 5191 return std::move(M); 5192 } 5193 5194 return failedImport("Dst pattern root isn't a known leaf"); 5195 } 5196 5197 // Start with the defined operands (i.e., the results of the root operator). 5198 Record *DstOp = Dst->getOperator(); 5199 if (!DstOp->isSubClassOf("Instruction")) 5200 return failedImport("Pattern operator isn't an instruction"); 5201 5202 auto &DstI = Target.getInstruction(DstOp); 5203 StringRef DstIName = DstI.TheDef->getName(); 5204 5205 if (DstI.Operands.NumDefs < Src->getExtTypes().size()) 5206 return failedImport("Src pattern result has more defs than dst MI (" + 5207 to_string(Src->getExtTypes().size()) + " def(s) vs " + 5208 to_string(DstI.Operands.NumDefs) + " def(s))"); 5209 5210 // The root of the match also has constraints on the register bank so that it 5211 // matches the result instruction. 5212 unsigned OpIdx = 0; 5213 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { 5214 (void)VTy; 5215 5216 const auto &DstIOperand = DstI.Operands[OpIdx]; 5217 Record *DstIOpRec = DstIOperand.Rec; 5218 if (DstIName == "COPY_TO_REGCLASS") { 5219 DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); 5220 5221 if (DstIOpRec == nullptr) 5222 return failedImport( 5223 "COPY_TO_REGCLASS operand #1 isn't a register class"); 5224 } else if (DstIName == "REG_SEQUENCE") { 5225 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 5226 if (DstIOpRec == nullptr) 5227 return failedImport("REG_SEQUENCE operand #0 isn't a register class"); 5228 } else if (DstIName == "EXTRACT_SUBREG") { 5229 auto InferredClass = inferRegClassFromPattern(Dst->getChild(0)); 5230 if (!InferredClass) 5231 return failedImport("Could not infer class for EXTRACT_SUBREG operand #0"); 5232 5233 // We can assume that a subregister is in the same bank as it's super 5234 // register. 5235 DstIOpRec = (*InferredClass)->getDef(); 5236 } else if (DstIName == "INSERT_SUBREG") { 5237 auto MaybeSuperClass = inferSuperRegisterClassForNode( 5238 VTy, Dst->getChild(0), Dst->getChild(2)); 5239 if (!MaybeSuperClass) 5240 return failedImport( 5241 "Cannot infer register class for INSERT_SUBREG operand #0"); 5242 // Move to the next pattern here, because the register class we found 5243 // doesn't necessarily have a record associated with it. So, we can't 5244 // set DstIOpRec using this. 5245 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 5246 OM.setSymbolicName(DstIOperand.Name); 5247 M.defineOperand(OM.getSymbolicName(), OM); 5248 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass); 5249 ++OpIdx; 5250 continue; 5251 } else if (DstIName == "SUBREG_TO_REG") { 5252 auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2)); 5253 if (!MaybeRegClass) 5254 return failedImport( 5255 "Cannot infer register class for SUBREG_TO_REG operand #0"); 5256 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 5257 OM.setSymbolicName(DstIOperand.Name); 5258 M.defineOperand(OM.getSymbolicName(), OM); 5259 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass); 5260 ++OpIdx; 5261 continue; 5262 } else if (DstIOpRec->isSubClassOf("RegisterOperand")) 5263 DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); 5264 else if (!DstIOpRec->isSubClassOf("RegisterClass")) 5265 return failedImport("Dst MI def isn't a register class" + 5266 to_string(*Dst)); 5267 5268 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 5269 OM.setSymbolicName(DstIOperand.Name); 5270 M.defineOperand(OM.getSymbolicName(), OM); 5271 OM.addPredicate<RegisterBankOperandMatcher>( 5272 Target.getRegisterClass(DstIOpRec)); 5273 ++OpIdx; 5274 } 5275 5276 auto DstMIBuilderOrError = 5277 createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst); 5278 if (auto Error = DstMIBuilderOrError.takeError()) 5279 return std::move(Error); 5280 BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get(); 5281 5282 // Render the implicit defs. 5283 // These are only added to the root of the result. 5284 if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs())) 5285 return std::move(Error); 5286 5287 DstMIBuilder.chooseInsnToMutate(M); 5288 5289 // Constrain the registers to classes. This is normally derived from the 5290 // emitted instruction but a few instructions require special handling. 5291 if (DstIName == "COPY_TO_REGCLASS") { 5292 // COPY_TO_REGCLASS does not provide operand constraints itself but the 5293 // result is constrained to the class given by the second child. 5294 Record *DstIOpRec = 5295 getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); 5296 5297 if (DstIOpRec == nullptr) 5298 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class"); 5299 5300 M.addAction<ConstrainOperandToRegClassAction>( 5301 0, 0, Target.getRegisterClass(DstIOpRec)); 5302 5303 // We're done with this pattern! It's eligible for GISel emission; return 5304 // it. 5305 ++NumPatternImported; 5306 return std::move(M); 5307 } 5308 5309 if (DstIName == "EXTRACT_SUBREG") { 5310 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 5311 if (!SuperClass) 5312 return failedImport( 5313 "Cannot infer register class from EXTRACT_SUBREG operand #0"); 5314 5315 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); 5316 if (!SubIdx) 5317 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 5318 5319 // It would be nice to leave this constraint implicit but we're required 5320 // to pick a register class so constrain the result to a register class 5321 // that can hold the correct MVT. 5322 // 5323 // FIXME: This may introduce an extra copy if the chosen class doesn't 5324 // actually contain the subregisters. 5325 assert(Src->getExtTypes().size() == 1 && 5326 "Expected Src of EXTRACT_SUBREG to have one result type"); 5327 5328 const auto SrcRCDstRCPair = 5329 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 5330 if (!SrcRCDstRCPair) { 5331 return failedImport("subreg index is incompatible " 5332 "with inferred reg class"); 5333 } 5334 5335 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 5336 M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second); 5337 M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first); 5338 5339 // We're done with this pattern! It's eligible for GISel emission; return 5340 // it. 5341 ++NumPatternImported; 5342 return std::move(M); 5343 } 5344 5345 if (DstIName == "INSERT_SUBREG") { 5346 assert(Src->getExtTypes().size() == 1 && 5347 "Expected Src of INSERT_SUBREG to have one result type"); 5348 // We need to constrain the destination, a super regsister source, and a 5349 // subregister source. 5350 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 5351 if (!SubClass) 5352 return failedImport( 5353 "Cannot infer register class from INSERT_SUBREG operand #1"); 5354 auto SuperClass = inferSuperRegisterClassForNode( 5355 Src->getExtType(0), Dst->getChild(0), Dst->getChild(2)); 5356 if (!SuperClass) 5357 return failedImport( 5358 "Cannot infer register class for INSERT_SUBREG operand #0"); 5359 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 5360 M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass); 5361 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); 5362 ++NumPatternImported; 5363 return std::move(M); 5364 } 5365 5366 if (DstIName == "SUBREG_TO_REG") { 5367 // We need to constrain the destination and subregister source. 5368 assert(Src->getExtTypes().size() == 1 && 5369 "Expected Src of SUBREG_TO_REG to have one result type"); 5370 5371 // Attempt to infer the subregister source from the first child. If it has 5372 // an explicitly given register class, we'll use that. Otherwise, we will 5373 // fail. 5374 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 5375 if (!SubClass) 5376 return failedImport( 5377 "Cannot infer register class from SUBREG_TO_REG child #1"); 5378 // We don't have a child to look at that might have a super register node. 5379 auto SuperClass = 5380 inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2)); 5381 if (!SuperClass) 5382 return failedImport( 5383 "Cannot infer register class for SUBREG_TO_REG operand #0"); 5384 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 5385 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); 5386 ++NumPatternImported; 5387 return std::move(M); 5388 } 5389 5390 if (DstIName == "REG_SEQUENCE") { 5391 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 5392 5393 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 5394 5395 unsigned Num = Dst->getNumChildren(); 5396 for (unsigned I = 1; I != Num; I += 2) { 5397 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 5398 5399 auto SubIdx = inferSubRegIndexForNode(SubRegChild); 5400 if (!SubIdx) 5401 return failedImport("REG_SEQUENCE child is not a subreg index"); 5402 5403 const auto SrcRCDstRCPair = 5404 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 5405 5406 M.addAction<ConstrainOperandToRegClassAction>(0, I, 5407 *SrcRCDstRCPair->second); 5408 } 5409 5410 ++NumPatternImported; 5411 return std::move(M); 5412 } 5413 5414 M.addAction<ConstrainOperandsToDefinitionAction>(0); 5415 5416 // We're done with this pattern! It's eligible for GISel emission; return it. 5417 ++NumPatternImported; 5418 return std::move(M); 5419 } 5420 5421 // Emit imm predicate table and an enum to reference them with. 5422 // The 'Predicate_' part of the name is redundant but eliminating it is more 5423 // trouble than it's worth. 5424 void GlobalISelEmitter::emitCxxPredicateFns( 5425 raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier, 5426 StringRef ArgType, StringRef ArgName, StringRef AdditionalArgs, 5427 StringRef AdditionalDeclarations, 5428 std::function<bool(const Record *R)> Filter) { 5429 std::vector<const Record *> MatchedRecords; 5430 const auto &Defs = RK.getAllDerivedDefinitions("PatFrags"); 5431 std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords), 5432 [&](Record *Record) { 5433 return !Record->getValueAsString(CodeFieldName).empty() && 5434 Filter(Record); 5435 }); 5436 5437 if (!MatchedRecords.empty()) { 5438 OS << "// PatFrag predicates.\n" 5439 << "enum {\n"; 5440 std::string EnumeratorSeparator = 5441 (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str(); 5442 for (const auto *Record : MatchedRecords) { 5443 OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName() 5444 << EnumeratorSeparator; 5445 EnumeratorSeparator = ",\n"; 5446 } 5447 OS << "};\n"; 5448 } 5449 5450 OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName 5451 << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " " 5452 << ArgName << AdditionalArgs <<") const {\n" 5453 << AdditionalDeclarations; 5454 if (!AdditionalDeclarations.empty()) 5455 OS << "\n"; 5456 if (!MatchedRecords.empty()) 5457 OS << " switch (PredicateID) {\n"; 5458 for (const auto *Record : MatchedRecords) { 5459 OS << " case GIPFP_" << TypeIdentifier << "_Predicate_" 5460 << Record->getName() << ": {\n" 5461 << " " << Record->getValueAsString(CodeFieldName) << "\n" 5462 << " llvm_unreachable(\"" << CodeFieldName 5463 << " should have returned\");\n" 5464 << " return false;\n" 5465 << " }\n"; 5466 } 5467 if (!MatchedRecords.empty()) 5468 OS << " }\n"; 5469 OS << " llvm_unreachable(\"Unknown predicate\");\n" 5470 << " return false;\n" 5471 << "}\n"; 5472 } 5473 5474 void GlobalISelEmitter::emitImmPredicateFns( 5475 raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType, 5476 std::function<bool(const Record *R)> Filter) { 5477 return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType, 5478 "Imm", "", "", Filter); 5479 } 5480 5481 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) { 5482 return emitCxxPredicateFns( 5483 OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI", 5484 ", const std::array<const MachineOperand *, 3> &Operands", 5485 " const MachineFunction &MF = *MI.getParent()->getParent();\n" 5486 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n" 5487 " (void)MRI;", 5488 [](const Record *R) { return true; }); 5489 } 5490 5491 template <class GroupT> 5492 std::vector<Matcher *> GlobalISelEmitter::optimizeRules( 5493 ArrayRef<Matcher *> Rules, 5494 std::vector<std::unique_ptr<Matcher>> &MatcherStorage) { 5495 5496 std::vector<Matcher *> OptRules; 5497 std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>(); 5498 assert(CurrentGroup->empty() && "Newly created group isn't empty!"); 5499 unsigned NumGroups = 0; 5500 5501 auto ProcessCurrentGroup = [&]() { 5502 if (CurrentGroup->empty()) 5503 // An empty group is good to be reused: 5504 return; 5505 5506 // If the group isn't large enough to provide any benefit, move all the 5507 // added rules out of it and make sure to re-create the group to properly 5508 // re-initialize it: 5509 if (CurrentGroup->size() < 2) 5510 append_range(OptRules, CurrentGroup->matchers()); 5511 else { 5512 CurrentGroup->finalize(); 5513 OptRules.push_back(CurrentGroup.get()); 5514 MatcherStorage.emplace_back(std::move(CurrentGroup)); 5515 ++NumGroups; 5516 } 5517 CurrentGroup = std::make_unique<GroupT>(); 5518 }; 5519 for (Matcher *Rule : Rules) { 5520 // Greedily add as many matchers as possible to the current group: 5521 if (CurrentGroup->addMatcher(*Rule)) 5522 continue; 5523 5524 ProcessCurrentGroup(); 5525 assert(CurrentGroup->empty() && "A group wasn't properly re-initialized"); 5526 5527 // Try to add the pending matcher to a newly created empty group: 5528 if (!CurrentGroup->addMatcher(*Rule)) 5529 // If we couldn't add the matcher to an empty group, that group type 5530 // doesn't support that kind of matchers at all, so just skip it: 5531 OptRules.push_back(Rule); 5532 } 5533 ProcessCurrentGroup(); 5534 5535 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n"); 5536 assert(CurrentGroup->empty() && "The last group wasn't properly processed"); 5537 return OptRules; 5538 } 5539 5540 MatchTable 5541 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules, 5542 bool Optimize, bool WithCoverage) { 5543 std::vector<Matcher *> InputRules; 5544 for (Matcher &Rule : Rules) 5545 InputRules.push_back(&Rule); 5546 5547 if (!Optimize) 5548 return MatchTable::buildTable(InputRules, WithCoverage); 5549 5550 unsigned CurrentOrdering = 0; 5551 StringMap<unsigned> OpcodeOrder; 5552 for (RuleMatcher &Rule : Rules) { 5553 const StringRef Opcode = Rule.getOpcode(); 5554 assert(!Opcode.empty() && "Didn't expect an undefined opcode"); 5555 if (OpcodeOrder.count(Opcode) == 0) 5556 OpcodeOrder[Opcode] = CurrentOrdering++; 5557 } 5558 5559 llvm::stable_sort(InputRules, [&OpcodeOrder](const Matcher *A, 5560 const Matcher *B) { 5561 auto *L = static_cast<const RuleMatcher *>(A); 5562 auto *R = static_cast<const RuleMatcher *>(B); 5563 return std::make_tuple(OpcodeOrder[L->getOpcode()], L->getNumOperands()) < 5564 std::make_tuple(OpcodeOrder[R->getOpcode()], R->getNumOperands()); 5565 }); 5566 5567 for (Matcher *Rule : InputRules) 5568 Rule->optimize(); 5569 5570 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 5571 std::vector<Matcher *> OptRules = 5572 optimizeRules<GroupMatcher>(InputRules, MatcherStorage); 5573 5574 for (Matcher *Rule : OptRules) 5575 Rule->optimize(); 5576 5577 OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage); 5578 5579 return MatchTable::buildTable(OptRules, WithCoverage); 5580 } 5581 5582 void GroupMatcher::optimize() { 5583 // Make sure we only sort by a specific predicate within a range of rules that 5584 // all have that predicate checked against a specific value (not a wildcard): 5585 auto F = Matchers.begin(); 5586 auto T = F; 5587 auto E = Matchers.end(); 5588 while (T != E) { 5589 while (T != E) { 5590 auto *R = static_cast<RuleMatcher *>(*T); 5591 if (!R->getFirstConditionAsRootType().get().isValid()) 5592 break; 5593 ++T; 5594 } 5595 std::stable_sort(F, T, [](Matcher *A, Matcher *B) { 5596 auto *L = static_cast<RuleMatcher *>(A); 5597 auto *R = static_cast<RuleMatcher *>(B); 5598 return L->getFirstConditionAsRootType() < 5599 R->getFirstConditionAsRootType(); 5600 }); 5601 if (T != E) 5602 F = ++T; 5603 } 5604 GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage) 5605 .swap(Matchers); 5606 GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage) 5607 .swap(Matchers); 5608 } 5609 5610 void GlobalISelEmitter::run(raw_ostream &OS) { 5611 if (!UseCoverageFile.empty()) { 5612 RuleCoverage = CodeGenCoverage(); 5613 auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile); 5614 if (!RuleCoverageBufOrErr) { 5615 PrintWarning(SMLoc(), "Missing rule coverage data"); 5616 RuleCoverage = None; 5617 } else { 5618 if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) { 5619 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data"); 5620 RuleCoverage = None; 5621 } 5622 } 5623 } 5624 5625 // Track the run-time opcode values 5626 gatherOpcodeValues(); 5627 // Track the run-time LLT ID values 5628 gatherTypeIDValues(); 5629 5630 // Track the GINodeEquiv definitions. 5631 gatherNodeEquivs(); 5632 5633 emitSourceFileHeader(("Global Instruction Selector for the " + 5634 Target.getName() + " target").str(), OS); 5635 std::vector<RuleMatcher> Rules; 5636 // Look through the SelectionDAG patterns we found, possibly emitting some. 5637 for (const PatternToMatch &Pat : CGP.ptms()) { 5638 ++NumPatternTotal; 5639 5640 auto MatcherOrErr = runOnPattern(Pat); 5641 5642 // The pattern analysis can fail, indicating an unsupported pattern. 5643 // Report that if we've been asked to do so. 5644 if (auto Err = MatcherOrErr.takeError()) { 5645 if (WarnOnSkippedPatterns) { 5646 PrintWarning(Pat.getSrcRecord()->getLoc(), 5647 "Skipped pattern: " + toString(std::move(Err))); 5648 } else { 5649 consumeError(std::move(Err)); 5650 } 5651 ++NumPatternImportsSkipped; 5652 continue; 5653 } 5654 5655 if (RuleCoverage) { 5656 if (RuleCoverage->isCovered(MatcherOrErr->getRuleID())) 5657 ++NumPatternsTested; 5658 else 5659 PrintWarning(Pat.getSrcRecord()->getLoc(), 5660 "Pattern is not covered by a test"); 5661 } 5662 Rules.push_back(std::move(MatcherOrErr.get())); 5663 } 5664 5665 // Comparison function to order records by name. 5666 auto orderByName = [](const Record *A, const Record *B) { 5667 return A->getName() < B->getName(); 5668 }; 5669 5670 std::vector<Record *> ComplexPredicates = 5671 RK.getAllDerivedDefinitions("GIComplexOperandMatcher"); 5672 llvm::sort(ComplexPredicates, orderByName); 5673 5674 std::vector<StringRef> CustomRendererFns; 5675 transform(RK.getAllDerivedDefinitions("GICustomOperandRenderer"), 5676 std::back_inserter(CustomRendererFns), [](const auto &Record) { 5677 return Record->getValueAsString("RendererFn"); 5678 }); 5679 // Sort and remove duplicates to get a list of unique renderer functions, in 5680 // case some were mentioned more than once. 5681 llvm::sort(CustomRendererFns); 5682 CustomRendererFns.erase( 5683 std::unique(CustomRendererFns.begin(), CustomRendererFns.end()), 5684 CustomRendererFns.end()); 5685 5686 unsigned MaxTemporaries = 0; 5687 for (const auto &Rule : Rules) 5688 MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns()); 5689 5690 OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n" 5691 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size() 5692 << ";\n" 5693 << "using PredicateBitset = " 5694 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n" 5695 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n"; 5696 5697 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n" 5698 << " mutable MatcherState State;\n" 5699 << " typedef " 5700 "ComplexRendererFns(" 5701 << Target.getName() 5702 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n" 5703 5704 << " typedef void(" << Target.getName() 5705 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const " 5706 "MachineInstr &, int) " 5707 "const;\n" 5708 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, " 5709 "CustomRendererFn> " 5710 "ISelInfo;\n"; 5711 OS << " static " << Target.getName() 5712 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n" 5713 << " static " << Target.getName() 5714 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n" 5715 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const " 5716 "override;\n" 5717 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) " 5718 "const override;\n" 5719 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat " 5720 "&Imm) const override;\n" 5721 << " const int64_t *getMatchTable() const override;\n" 5722 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI" 5723 ", const std::array<const MachineOperand *, 3> &Operands) " 5724 "const override;\n" 5725 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n"; 5726 5727 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n" 5728 << ", State(" << MaxTemporaries << "),\n" 5729 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets" 5730 << ", ComplexPredicateFns, CustomRenderers)\n" 5731 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n"; 5732 5733 OS << "#ifdef GET_GLOBALISEL_IMPL\n"; 5734 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures, 5735 OS); 5736 5737 // Separate subtarget features by how often they must be recomputed. 5738 SubtargetFeatureInfoMap ModuleFeatures; 5739 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), 5740 std::inserter(ModuleFeatures, ModuleFeatures.end()), 5741 [](const SubtargetFeatureInfoMap::value_type &X) { 5742 return !X.second.mustRecomputePerFunction(); 5743 }); 5744 SubtargetFeatureInfoMap FunctionFeatures; 5745 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), 5746 std::inserter(FunctionFeatures, FunctionFeatures.end()), 5747 [](const SubtargetFeatureInfoMap::value_type &X) { 5748 return X.second.mustRecomputePerFunction(); 5749 }); 5750 5751 SubtargetFeatureInfo::emitComputeAvailableFeatures( 5752 Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures", 5753 ModuleFeatures, OS); 5754 5755 5756 OS << "void " << Target.getName() << "InstructionSelector" 5757 "::setupGeneratedPerFunctionState(MachineFunction &MF) {\n" 5758 " AvailableFunctionFeatures = computeAvailableFunctionFeatures(" 5759 "(const " << Target.getName() << "Subtarget *)&MF.getSubtarget(), &MF);\n" 5760 "}\n"; 5761 5762 SubtargetFeatureInfo::emitComputeAvailableFeatures( 5763 Target.getName(), "InstructionSelector", 5764 "computeAvailableFunctionFeatures", FunctionFeatures, OS, 5765 "const MachineFunction *MF"); 5766 5767 // Emit a table containing the LLT objects needed by the matcher and an enum 5768 // for the matcher to reference them with. 5769 std::vector<LLTCodeGen> TypeObjects; 5770 append_range(TypeObjects, KnownTypes); 5771 llvm::sort(TypeObjects); 5772 OS << "// LLT Objects.\n" 5773 << "enum {\n"; 5774 for (const auto &TypeObject : TypeObjects) { 5775 OS << " "; 5776 TypeObject.emitCxxEnumValue(OS); 5777 OS << ",\n"; 5778 } 5779 OS << "};\n"; 5780 OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n" 5781 << "const static LLT TypeObjects[] = {\n"; 5782 for (const auto &TypeObject : TypeObjects) { 5783 OS << " "; 5784 TypeObject.emitCxxConstructorCall(OS); 5785 OS << ",\n"; 5786 } 5787 OS << "};\n\n"; 5788 5789 // Emit a table containing the PredicateBitsets objects needed by the matcher 5790 // and an enum for the matcher to reference them with. 5791 std::vector<std::vector<Record *>> FeatureBitsets; 5792 for (auto &Rule : Rules) 5793 FeatureBitsets.push_back(Rule.getRequiredFeatures()); 5794 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 5795 const std::vector<Record *> &B) { 5796 if (A.size() < B.size()) 5797 return true; 5798 if (A.size() > B.size()) 5799 return false; 5800 for (auto Pair : zip(A, B)) { 5801 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 5802 return true; 5803 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 5804 return false; 5805 } 5806 return false; 5807 }); 5808 FeatureBitsets.erase( 5809 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 5810 FeatureBitsets.end()); 5811 OS << "// Feature bitsets.\n" 5812 << "enum {\n" 5813 << " GIFBS_Invalid,\n"; 5814 for (const auto &FeatureBitset : FeatureBitsets) { 5815 if (FeatureBitset.empty()) 5816 continue; 5817 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 5818 } 5819 OS << "};\n" 5820 << "const static PredicateBitset FeatureBitsets[] {\n" 5821 << " {}, // GIFBS_Invalid\n"; 5822 for (const auto &FeatureBitset : FeatureBitsets) { 5823 if (FeatureBitset.empty()) 5824 continue; 5825 OS << " {"; 5826 for (const auto &Feature : FeatureBitset) { 5827 const auto &I = SubtargetFeatures.find(Feature); 5828 assert(I != SubtargetFeatures.end() && "Didn't import predicate?"); 5829 OS << I->second.getEnumBitName() << ", "; 5830 } 5831 OS << "},\n"; 5832 } 5833 OS << "};\n\n"; 5834 5835 // Emit complex predicate table and an enum to reference them with. 5836 OS << "// ComplexPattern predicates.\n" 5837 << "enum {\n" 5838 << " GICP_Invalid,\n"; 5839 for (const auto &Record : ComplexPredicates) 5840 OS << " GICP_" << Record->getName() << ",\n"; 5841 OS << "};\n" 5842 << "// See constructor for table contents\n\n"; 5843 5844 emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) { 5845 bool Unset; 5846 return !R->getValueAsBitOrUnset("IsAPFloat", Unset) && 5847 !R->getValueAsBit("IsAPInt"); 5848 }); 5849 emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) { 5850 bool Unset; 5851 return R->getValueAsBitOrUnset("IsAPFloat", Unset); 5852 }); 5853 emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) { 5854 return R->getValueAsBit("IsAPInt"); 5855 }); 5856 emitMIPredicateFns(OS); 5857 OS << "\n"; 5858 5859 OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n" 5860 << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n" 5861 << " nullptr, // GICP_Invalid\n"; 5862 for (const auto &Record : ComplexPredicates) 5863 OS << " &" << Target.getName() 5864 << "InstructionSelector::" << Record->getValueAsString("MatcherFn") 5865 << ", // " << Record->getName() << "\n"; 5866 OS << "};\n\n"; 5867 5868 OS << "// Custom renderers.\n" 5869 << "enum {\n" 5870 << " GICR_Invalid,\n"; 5871 for (const auto &Fn : CustomRendererFns) 5872 OS << " GICR_" << Fn << ",\n"; 5873 OS << "};\n"; 5874 5875 OS << Target.getName() << "InstructionSelector::CustomRendererFn\n" 5876 << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n" 5877 << " nullptr, // GICR_Invalid\n"; 5878 for (const auto &Fn : CustomRendererFns) 5879 OS << " &" << Target.getName() << "InstructionSelector::" << Fn << ",\n"; 5880 OS << "};\n\n"; 5881 5882 llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) { 5883 int ScoreA = RuleMatcherScores[A.getRuleID()]; 5884 int ScoreB = RuleMatcherScores[B.getRuleID()]; 5885 if (ScoreA > ScoreB) 5886 return true; 5887 if (ScoreB > ScoreA) 5888 return false; 5889 if (A.isHigherPriorityThan(B)) { 5890 assert(!B.isHigherPriorityThan(A) && "Cannot be more important " 5891 "and less important at " 5892 "the same time"); 5893 return true; 5894 } 5895 return false; 5896 }); 5897 5898 OS << "bool " << Target.getName() 5899 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage " 5900 "&CoverageInfo) const {\n" 5901 << " MachineFunction &MF = *I.getParent()->getParent();\n" 5902 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n" 5903 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n" 5904 << " NewMIVector OutMIs;\n" 5905 << " State.MIs.clear();\n" 5906 << " State.MIs.push_back(&I);\n\n" 5907 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo" 5908 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures" 5909 << ", CoverageInfo)) {\n" 5910 << " return true;\n" 5911 << " }\n\n" 5912 << " return false;\n" 5913 << "}\n\n"; 5914 5915 const MatchTable Table = 5916 buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage); 5917 OS << "const int64_t *" << Target.getName() 5918 << "InstructionSelector::getMatchTable() const {\n"; 5919 Table.emitDeclaration(OS); 5920 OS << " return "; 5921 Table.emitUse(OS); 5922 OS << ";\n}\n"; 5923 OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n"; 5924 5925 OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n" 5926 << "PredicateBitset AvailableModuleFeatures;\n" 5927 << "mutable PredicateBitset AvailableFunctionFeatures;\n" 5928 << "PredicateBitset getAvailableFeatures() const {\n" 5929 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n" 5930 << "}\n" 5931 << "PredicateBitset\n" 5932 << "computeAvailableModuleFeatures(const " << Target.getName() 5933 << "Subtarget *Subtarget) const;\n" 5934 << "PredicateBitset\n" 5935 << "computeAvailableFunctionFeatures(const " << Target.getName() 5936 << "Subtarget *Subtarget,\n" 5937 << " const MachineFunction *MF) const;\n" 5938 << "void setupGeneratedPerFunctionState(MachineFunction &MF) override;\n" 5939 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n"; 5940 5941 OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n" 5942 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n" 5943 << "AvailableFunctionFeatures()\n" 5944 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n"; 5945 } 5946 5947 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) { 5948 if (SubtargetFeatures.count(Predicate) == 0) 5949 SubtargetFeatures.emplace( 5950 Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size())); 5951 } 5952 5953 void RuleMatcher::optimize() { 5954 for (auto &Item : InsnVariableIDs) { 5955 InstructionMatcher &InsnMatcher = *Item.first; 5956 for (auto &OM : InsnMatcher.operands()) { 5957 // Complex Patterns are usually expensive and they relatively rarely fail 5958 // on their own: more often we end up throwing away all the work done by a 5959 // matching part of a complex pattern because some other part of the 5960 // enclosing pattern didn't match. All of this makes it beneficial to 5961 // delay complex patterns until the very end of the rule matching, 5962 // especially for targets having lots of complex patterns. 5963 for (auto &OP : OM->predicates()) 5964 if (isa<ComplexPatternOperandMatcher>(OP)) 5965 EpilogueMatchers.emplace_back(std::move(OP)); 5966 OM->eraseNullPredicates(); 5967 } 5968 InsnMatcher.optimize(); 5969 } 5970 llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L, 5971 const std::unique_ptr<PredicateMatcher> &R) { 5972 return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) < 5973 std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx()); 5974 }); 5975 } 5976 5977 bool RuleMatcher::hasFirstCondition() const { 5978 if (insnmatchers_empty()) 5979 return false; 5980 InstructionMatcher &Matcher = insnmatchers_front(); 5981 if (!Matcher.predicates_empty()) 5982 return true; 5983 for (auto &OM : Matcher.operands()) 5984 for (auto &OP : OM->predicates()) 5985 if (!isa<InstructionOperandMatcher>(OP)) 5986 return true; 5987 return false; 5988 } 5989 5990 const PredicateMatcher &RuleMatcher::getFirstCondition() const { 5991 assert(!insnmatchers_empty() && 5992 "Trying to get a condition from an empty RuleMatcher"); 5993 5994 InstructionMatcher &Matcher = insnmatchers_front(); 5995 if (!Matcher.predicates_empty()) 5996 return **Matcher.predicates_begin(); 5997 // If there is no more predicate on the instruction itself, look at its 5998 // operands. 5999 for (auto &OM : Matcher.operands()) 6000 for (auto &OP : OM->predicates()) 6001 if (!isa<InstructionOperandMatcher>(OP)) 6002 return *OP; 6003 6004 llvm_unreachable("Trying to get a condition from an InstructionMatcher with " 6005 "no conditions"); 6006 } 6007 6008 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() { 6009 assert(!insnmatchers_empty() && 6010 "Trying to pop a condition from an empty RuleMatcher"); 6011 6012 InstructionMatcher &Matcher = insnmatchers_front(); 6013 if (!Matcher.predicates_empty()) 6014 return Matcher.predicates_pop_front(); 6015 // If there is no more predicate on the instruction itself, look at its 6016 // operands. 6017 for (auto &OM : Matcher.operands()) 6018 for (auto &OP : OM->predicates()) 6019 if (!isa<InstructionOperandMatcher>(OP)) { 6020 std::unique_ptr<PredicateMatcher> Result = std::move(OP); 6021 OM->eraseNullPredicates(); 6022 return Result; 6023 } 6024 6025 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with " 6026 "no conditions"); 6027 } 6028 6029 bool GroupMatcher::candidateConditionMatches( 6030 const PredicateMatcher &Predicate) const { 6031 6032 if (empty()) { 6033 // Sharing predicates for nested instructions is not supported yet as we 6034 // currently don't hoist the GIM_RecordInsn's properly, therefore we can 6035 // only work on the original root instruction (InsnVarID == 0): 6036 if (Predicate.getInsnVarID() != 0) 6037 return false; 6038 // ... otherwise an empty group can handle any predicate with no specific 6039 // requirements: 6040 return true; 6041 } 6042 6043 const Matcher &Representative = **Matchers.begin(); 6044 const auto &RepresentativeCondition = Representative.getFirstCondition(); 6045 // ... if not empty, the group can only accomodate matchers with the exact 6046 // same first condition: 6047 return Predicate.isIdentical(RepresentativeCondition); 6048 } 6049 6050 bool GroupMatcher::addMatcher(Matcher &Candidate) { 6051 if (!Candidate.hasFirstCondition()) 6052 return false; 6053 6054 const PredicateMatcher &Predicate = Candidate.getFirstCondition(); 6055 if (!candidateConditionMatches(Predicate)) 6056 return false; 6057 6058 Matchers.push_back(&Candidate); 6059 return true; 6060 } 6061 6062 void GroupMatcher::finalize() { 6063 assert(Conditions.empty() && "Already finalized?"); 6064 if (empty()) 6065 return; 6066 6067 Matcher &FirstRule = **Matchers.begin(); 6068 for (;;) { 6069 // All the checks are expected to succeed during the first iteration: 6070 for (const auto &Rule : Matchers) 6071 if (!Rule->hasFirstCondition()) 6072 return; 6073 const auto &FirstCondition = FirstRule.getFirstCondition(); 6074 for (unsigned I = 1, E = Matchers.size(); I < E; ++I) 6075 if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition)) 6076 return; 6077 6078 Conditions.push_back(FirstRule.popFirstCondition()); 6079 for (unsigned I = 1, E = Matchers.size(); I < E; ++I) 6080 Matchers[I]->popFirstCondition(); 6081 } 6082 } 6083 6084 void GroupMatcher::emit(MatchTable &Table) { 6085 unsigned LabelID = ~0U; 6086 if (!Conditions.empty()) { 6087 LabelID = Table.allocateLabelID(); 6088 Table << MatchTable::Opcode("GIM_Try", +1) 6089 << MatchTable::Comment("On fail goto") 6090 << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak; 6091 } 6092 for (auto &Condition : Conditions) 6093 Condition->emitPredicateOpcodes( 6094 Table, *static_cast<RuleMatcher *>(*Matchers.begin())); 6095 6096 for (const auto &M : Matchers) 6097 M->emit(Table); 6098 6099 // Exit the group 6100 if (!Conditions.empty()) 6101 Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak 6102 << MatchTable::Label(LabelID); 6103 } 6104 6105 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) { 6106 return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P); 6107 } 6108 6109 bool SwitchMatcher::candidateConditionMatches( 6110 const PredicateMatcher &Predicate) const { 6111 6112 if (empty()) { 6113 // Sharing predicates for nested instructions is not supported yet as we 6114 // currently don't hoist the GIM_RecordInsn's properly, therefore we can 6115 // only work on the original root instruction (InsnVarID == 0): 6116 if (Predicate.getInsnVarID() != 0) 6117 return false; 6118 // ... while an attempt to add even a root matcher to an empty SwitchMatcher 6119 // could fail as not all the types of conditions are supported: 6120 if (!isSupportedPredicateType(Predicate)) 6121 return false; 6122 // ... or the condition might not have a proper implementation of 6123 // getValue() / isIdenticalDownToValue() yet: 6124 if (!Predicate.hasValue()) 6125 return false; 6126 // ... otherwise an empty Switch can accomodate the condition with no 6127 // further requirements: 6128 return true; 6129 } 6130 6131 const Matcher &CaseRepresentative = **Matchers.begin(); 6132 const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition(); 6133 // Switch-cases must share the same kind of condition and path to the value it 6134 // checks: 6135 if (!Predicate.isIdenticalDownToValue(RepresentativeCondition)) 6136 return false; 6137 6138 const auto Value = Predicate.getValue(); 6139 // ... but be unique with respect to the actual value they check: 6140 return Values.count(Value) == 0; 6141 } 6142 6143 bool SwitchMatcher::addMatcher(Matcher &Candidate) { 6144 if (!Candidate.hasFirstCondition()) 6145 return false; 6146 6147 const PredicateMatcher &Predicate = Candidate.getFirstCondition(); 6148 if (!candidateConditionMatches(Predicate)) 6149 return false; 6150 const auto Value = Predicate.getValue(); 6151 Values.insert(Value); 6152 6153 Matchers.push_back(&Candidate); 6154 return true; 6155 } 6156 6157 void SwitchMatcher::finalize() { 6158 assert(Condition == nullptr && "Already finalized"); 6159 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); 6160 if (empty()) 6161 return; 6162 6163 llvm::stable_sort(Matchers, [](const Matcher *L, const Matcher *R) { 6164 return L->getFirstCondition().getValue() < 6165 R->getFirstCondition().getValue(); 6166 }); 6167 Condition = Matchers[0]->popFirstCondition(); 6168 for (unsigned I = 1, E = Values.size(); I < E; ++I) 6169 Matchers[I]->popFirstCondition(); 6170 } 6171 6172 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P, 6173 MatchTable &Table) { 6174 assert(isSupportedPredicateType(P) && "Predicate type is not supported"); 6175 6176 if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) { 6177 Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI") 6178 << MatchTable::IntValue(Condition->getInsnVarID()); 6179 return; 6180 } 6181 if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) { 6182 Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI") 6183 << MatchTable::IntValue(Condition->getInsnVarID()) 6184 << MatchTable::Comment("Op") 6185 << MatchTable::IntValue(Condition->getOpIdx()); 6186 return; 6187 } 6188 6189 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a " 6190 "predicate type that is claimed to be supported"); 6191 } 6192 6193 void SwitchMatcher::emit(MatchTable &Table) { 6194 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); 6195 if (empty()) 6196 return; 6197 assert(Condition != nullptr && 6198 "Broken SwitchMatcher, hasn't been finalized?"); 6199 6200 std::vector<unsigned> LabelIDs(Values.size()); 6201 std::generate(LabelIDs.begin(), LabelIDs.end(), 6202 [&Table]() { return Table.allocateLabelID(); }); 6203 const unsigned Default = Table.allocateLabelID(); 6204 6205 const int64_t LowerBound = Values.begin()->getRawValue(); 6206 const int64_t UpperBound = Values.rbegin()->getRawValue() + 1; 6207 6208 emitPredicateSpecificOpcodes(*Condition, Table); 6209 6210 Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound) 6211 << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")") 6212 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default); 6213 6214 int64_t J = LowerBound; 6215 auto VI = Values.begin(); 6216 for (unsigned I = 0, E = Values.size(); I < E; ++I) { 6217 auto V = *VI++; 6218 while (J++ < V.getRawValue()) 6219 Table << MatchTable::IntValue(0); 6220 V.turnIntoComment(); 6221 Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]); 6222 } 6223 Table << MatchTable::LineBreak; 6224 6225 for (unsigned I = 0, E = Values.size(); I < E; ++I) { 6226 Table << MatchTable::Label(LabelIDs[I]); 6227 Matchers[I]->emit(Table); 6228 Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; 6229 } 6230 Table << MatchTable::Label(Default); 6231 } 6232 6233 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); } 6234 6235 } // end anonymous namespace 6236 6237 //===----------------------------------------------------------------------===// 6238 6239 namespace llvm { 6240 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) { 6241 GlobalISelEmitter(RK).run(OS); 6242 } 6243 } // End llvm namespace 6244