1 ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits code for use by the "fast" instruction 10 // selection algorithm. See the comments at the top of 11 // lib/CodeGen/SelectionDAG/FastISel.cpp for background. 12 // 13 // This file scans through the target's tablegen instruction-info files 14 // and extracts instructions with obvious-looking patterns, and it emits 15 // code to look up these instructions by type and operator. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "CodeGenDAGPatterns.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/TableGen/Error.h" 24 #include "llvm/TableGen/Record.h" 25 #include "llvm/TableGen/TableGenBackend.h" 26 #include <utility> 27 using namespace llvm; 28 29 30 /// InstructionMemo - This class holds additional information about an 31 /// instruction needed to emit code for it. 32 /// 33 namespace { 34 struct InstructionMemo { 35 std::string Name; 36 const CodeGenRegisterClass *RC; 37 std::string SubRegNo; 38 std::vector<std::string> PhysRegs; 39 std::string PredicateCheck; 40 41 InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC, 42 std::string SubRegNo, std::vector<std::string> PhysRegs, 43 std::string PredicateCheck) 44 : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)), 45 PhysRegs(std::move(PhysRegs)), 46 PredicateCheck(std::move(PredicateCheck)) {} 47 48 // Make sure we do not copy InstructionMemo. 49 InstructionMemo(const InstructionMemo &Other) = delete; 50 InstructionMemo(InstructionMemo &&Other) = default; 51 }; 52 } // End anonymous namespace 53 54 /// ImmPredicateSet - This uniques predicates (represented as a string) and 55 /// gives them unique (small) integer ID's that start at 0. 56 namespace { 57 class ImmPredicateSet { 58 DenseMap<TreePattern *, unsigned> ImmIDs; 59 std::vector<TreePredicateFn> PredsByName; 60 public: 61 62 unsigned getIDFor(TreePredicateFn Pred) { 63 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; 64 if (Entry == 0) { 65 PredsByName.push_back(Pred); 66 Entry = PredsByName.size(); 67 } 68 return Entry-1; 69 } 70 71 const TreePredicateFn &getPredicate(unsigned i) { 72 assert(i < PredsByName.size()); 73 return PredsByName[i]; 74 } 75 76 typedef std::vector<TreePredicateFn>::const_iterator iterator; 77 iterator begin() const { return PredsByName.begin(); } 78 iterator end() const { return PredsByName.end(); } 79 80 }; 81 } // End anonymous namespace 82 83 /// OperandsSignature - This class holds a description of a list of operand 84 /// types. It has utility methods for emitting text based on the operands. 85 /// 86 namespace { 87 struct OperandsSignature { 88 class OpKind { 89 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; 90 char Repr; 91 public: 92 93 OpKind() : Repr(OK_Invalid) {} 94 95 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } 96 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } 97 98 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; } 99 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; } 100 static OpKind getImm(unsigned V) { 101 assert((unsigned)OK_Imm+V < 128 && 102 "Too many integer predicates for the 'Repr' char"); 103 OpKind K; K.Repr = OK_Imm+V; return K; 104 } 105 106 bool isReg() const { return Repr == OK_Reg; } 107 bool isFP() const { return Repr == OK_FP; } 108 bool isImm() const { return Repr >= OK_Imm; } 109 110 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; } 111 112 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 113 bool StripImmCodes) const { 114 if (isReg()) 115 OS << 'r'; 116 else if (isFP()) 117 OS << 'f'; 118 else { 119 OS << 'i'; 120 if (!StripImmCodes) 121 if (unsigned Code = getImmCode()) 122 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName(); 123 } 124 } 125 }; 126 127 128 SmallVector<OpKind, 3> Operands; 129 130 bool operator<(const OperandsSignature &O) const { 131 return Operands < O.Operands; 132 } 133 bool operator==(const OperandsSignature &O) const { 134 return Operands == O.Operands; 135 } 136 137 bool empty() const { return Operands.empty(); } 138 139 bool hasAnyImmediateCodes() const { 140 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 141 if (Operands[i].isImm() && Operands[i].getImmCode() != 0) 142 return true; 143 return false; 144 } 145 146 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced 147 /// to zero. 148 OperandsSignature getWithoutImmCodes() const { 149 OperandsSignature Result; 150 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 151 if (!Operands[i].isImm()) 152 Result.Operands.push_back(Operands[i]); 153 else 154 Result.Operands.push_back(OpKind::getImm(0)); 155 return Result; 156 } 157 158 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) { 159 bool EmittedAnything = false; 160 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 161 if (!Operands[i].isImm()) continue; 162 163 unsigned Code = Operands[i].getImmCode(); 164 if (Code == 0) continue; 165 166 if (EmittedAnything) 167 OS << " &&\n "; 168 169 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1); 170 171 // Emit the type check. 172 TreePattern *TP = PredFn.getOrigPatFragRecord(); 173 ValueTypeByHwMode VVT = TP->getTree(0)->getType(0); 174 assert(VVT.isSimple() && 175 "Cannot use variable value types with fast isel"); 176 OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && "; 177 178 OS << PredFn.getFnName() << "(imm" << i <<')'; 179 EmittedAnything = true; 180 } 181 } 182 183 /// initialize - Examine the given pattern and initialize the contents 184 /// of the Operands array accordingly. Return true if all the operands 185 /// are supported, false otherwise. 186 /// 187 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target, 188 MVT::SimpleValueType VT, 189 ImmPredicateSet &ImmediatePredicates, 190 const CodeGenRegisterClass *OrigDstRC) { 191 if (InstPatNode->isLeaf()) 192 return false; 193 194 if (InstPatNode->getOperator()->getName() == "imm") { 195 Operands.push_back(OpKind::getImm(0)); 196 return true; 197 } 198 199 if (InstPatNode->getOperator()->getName() == "fpimm") { 200 Operands.push_back(OpKind::getFP()); 201 return true; 202 } 203 204 const CodeGenRegisterClass *DstRC = nullptr; 205 206 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 207 TreePatternNode *Op = InstPatNode->getChild(i); 208 209 // Handle imm operands specially. 210 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") { 211 unsigned PredNo = 0; 212 if (!Op->getPredicateCalls().empty()) { 213 TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn; 214 // If there is more than one predicate weighing in on this operand 215 // then we don't handle it. This doesn't typically happen for 216 // immediates anyway. 217 if (Op->getPredicateCalls().size() > 1 || 218 !PredFn.isImmediatePattern() || PredFn.usesOperands()) 219 return false; 220 // Ignore any instruction with 'FastIselShouldIgnore', these are 221 // not needed and just bloat the fast instruction selector. For 222 // example, X86 doesn't need to generate code to match ADD16ri8 since 223 // ADD16ri will do just fine. 224 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); 225 if (Rec->getValueAsBit("FastIselShouldIgnore")) 226 return false; 227 228 PredNo = ImmediatePredicates.getIDFor(PredFn)+1; 229 } 230 231 Operands.push_back(OpKind::getImm(PredNo)); 232 continue; 233 } 234 235 236 // For now, filter out any operand with a predicate. 237 // For now, filter out any operand with multiple values. 238 if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1) 239 return false; 240 241 if (!Op->isLeaf()) { 242 if (Op->getOperator()->getName() == "fpimm") { 243 Operands.push_back(OpKind::getFP()); 244 continue; 245 } 246 // For now, ignore other non-leaf nodes. 247 return false; 248 } 249 250 assert(Op->hasConcreteType(0) && "Type infererence not done?"); 251 252 // For now, all the operands must have the same type (if they aren't 253 // immediates). Note that this causes us to reject variable sized shifts 254 // on X86. 255 if (Op->getSimpleType(0) != VT) 256 return false; 257 258 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue()); 259 if (!OpDI) 260 return false; 261 Record *OpLeafRec = OpDI->getDef(); 262 263 // For now, the only other thing we accept is register operands. 264 const CodeGenRegisterClass *RC = nullptr; 265 if (OpLeafRec->isSubClassOf("RegisterOperand")) 266 OpLeafRec = OpLeafRec->getValueAsDef("RegClass"); 267 if (OpLeafRec->isSubClassOf("RegisterClass")) 268 RC = &Target.getRegisterClass(OpLeafRec); 269 else if (OpLeafRec->isSubClassOf("Register")) 270 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec); 271 else if (OpLeafRec->isSubClassOf("ValueType")) { 272 RC = OrigDstRC; 273 } else 274 return false; 275 276 // For now, this needs to be a register class of some sort. 277 if (!RC) 278 return false; 279 280 // For now, all the operands must have the same register class or be 281 // a strict subclass of the destination. 282 if (DstRC) { 283 if (DstRC != RC && !DstRC->hasSubClass(RC)) 284 return false; 285 } else 286 DstRC = RC; 287 Operands.push_back(OpKind::getReg()); 288 } 289 return true; 290 } 291 292 void PrintParameters(raw_ostream &OS) const { 293 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 294 if (Operands[i].isReg()) { 295 OS << "unsigned Op" << i << ", bool Op" << i << "IsKill"; 296 } else if (Operands[i].isImm()) { 297 OS << "uint64_t imm" << i; 298 } else if (Operands[i].isFP()) { 299 OS << "const ConstantFP *f" << i; 300 } else { 301 llvm_unreachable("Unknown operand kind!"); 302 } 303 if (i + 1 != e) 304 OS << ", "; 305 } 306 } 307 308 void PrintArguments(raw_ostream &OS, 309 const std::vector<std::string> &PR) const { 310 assert(PR.size() == Operands.size()); 311 bool PrintedArg = false; 312 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 313 if (PR[i] != "") 314 // Implicit physical register operand. 315 continue; 316 317 if (PrintedArg) 318 OS << ", "; 319 if (Operands[i].isReg()) { 320 OS << "Op" << i << ", Op" << i << "IsKill"; 321 PrintedArg = true; 322 } else if (Operands[i].isImm()) { 323 OS << "imm" << i; 324 PrintedArg = true; 325 } else if (Operands[i].isFP()) { 326 OS << "f" << i; 327 PrintedArg = true; 328 } else { 329 llvm_unreachable("Unknown operand kind!"); 330 } 331 } 332 } 333 334 void PrintArguments(raw_ostream &OS) const { 335 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 336 if (Operands[i].isReg()) { 337 OS << "Op" << i << ", Op" << i << "IsKill"; 338 } else if (Operands[i].isImm()) { 339 OS << "imm" << i; 340 } else if (Operands[i].isFP()) { 341 OS << "f" << i; 342 } else { 343 llvm_unreachable("Unknown operand kind!"); 344 } 345 if (i + 1 != e) 346 OS << ", "; 347 } 348 } 349 350 351 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR, 352 ImmPredicateSet &ImmPredicates, 353 bool StripImmCodes = false) const { 354 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 355 if (PR[i] != "") 356 // Implicit physical register operand. e.g. Instruction::Mul expect to 357 // select to a binary op. On x86, mul may take a single operand with 358 // the other operand being implicit. We must emit something that looks 359 // like a binary instruction except for the very inner fastEmitInst_* 360 // call. 361 continue; 362 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 363 } 364 } 365 366 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 367 bool StripImmCodes = false) const { 368 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 369 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 370 } 371 }; 372 } // End anonymous namespace 373 374 namespace { 375 class FastISelMap { 376 // A multimap is needed instead of a "plain" map because the key is 377 // the instruction's complexity (an int) and they are not unique. 378 typedef std::multimap<int, InstructionMemo> PredMap; 379 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; 380 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; 381 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; 382 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> 383 OperandsOpcodeTypeRetPredMap; 384 385 OperandsOpcodeTypeRetPredMap SimplePatterns; 386 387 // This is used to check that there are no duplicate predicates 388 typedef std::multimap<std::string, bool> PredCheckMap; 389 typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap; 390 typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap; 391 typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap; 392 typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap> 393 OperandsOpcodeTypeRetPredCheckMap; 394 395 OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck; 396 397 std::map<OperandsSignature, std::vector<OperandsSignature> > 398 SignaturesWithConstantForms; 399 400 StringRef InstNS; 401 ImmPredicateSet ImmediatePredicates; 402 public: 403 explicit FastISelMap(StringRef InstNS); 404 405 void collectPatterns(CodeGenDAGPatterns &CGP); 406 void printImmediatePredicates(raw_ostream &OS); 407 void printFunctionDefinitions(raw_ostream &OS); 408 private: 409 void emitInstructionCode(raw_ostream &OS, 410 const OperandsSignature &Operands, 411 const PredMap &PM, 412 const std::string &RetVTName); 413 }; 414 } // End anonymous namespace 415 416 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { 417 return std::string(CGP.getSDNodeInfo(Op).getEnumName()); 418 } 419 420 static std::string getLegalCName(std::string OpName) { 421 std::string::size_type pos = OpName.find("::"); 422 if (pos != std::string::npos) 423 OpName.replace(pos, 2, "_"); 424 return OpName; 425 } 426 427 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {} 428 429 static std::string PhyRegForNode(TreePatternNode *Op, 430 const CodeGenTarget &Target) { 431 std::string PhysReg; 432 433 if (!Op->isLeaf()) 434 return PhysReg; 435 436 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef(); 437 if (!OpLeafRec->isSubClassOf("Register")) 438 return PhysReg; 439 440 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) 441 ->getValue(); 442 PhysReg += "::"; 443 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); 444 return PhysReg; 445 } 446 447 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) { 448 const CodeGenTarget &Target = CGP.getTargetInfo(); 449 450 // Scan through all the patterns and record the simple ones. 451 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), 452 E = CGP.ptm_end(); I != E; ++I) { 453 const PatternToMatch &Pattern = *I; 454 455 // For now, just look at Instructions, so that we don't have to worry 456 // about emitting multiple instructions for a pattern. 457 TreePatternNode *Dst = Pattern.getDstPattern(); 458 if (Dst->isLeaf()) continue; 459 Record *Op = Dst->getOperator(); 460 if (!Op->isSubClassOf("Instruction")) 461 continue; 462 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); 463 if (II.Operands.empty()) 464 continue; 465 466 // Allow instructions to be marked as unavailable for FastISel for 467 // certain cases, i.e. an ISA has two 'and' instruction which differ 468 // by what registers they can use but are otherwise identical for 469 // codegen purposes. 470 if (II.FastISelShouldIgnore) 471 continue; 472 473 // For now, ignore multi-instruction patterns. 474 bool MultiInsts = false; 475 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { 476 TreePatternNode *ChildOp = Dst->getChild(i); 477 if (ChildOp->isLeaf()) 478 continue; 479 if (ChildOp->getOperator()->isSubClassOf("Instruction")) { 480 MultiInsts = true; 481 break; 482 } 483 } 484 if (MultiInsts) 485 continue; 486 487 // For now, ignore instructions where the first operand is not an 488 // output register. 489 const CodeGenRegisterClass *DstRC = nullptr; 490 std::string SubRegNo; 491 if (Op->getName() != "EXTRACT_SUBREG") { 492 Record *Op0Rec = II.Operands[0].Rec; 493 if (Op0Rec->isSubClassOf("RegisterOperand")) 494 Op0Rec = Op0Rec->getValueAsDef("RegClass"); 495 if (!Op0Rec->isSubClassOf("RegisterClass")) 496 continue; 497 DstRC = &Target.getRegisterClass(Op0Rec); 498 if (!DstRC) 499 continue; 500 } else { 501 // If this isn't a leaf, then continue since the register classes are 502 // a bit too complicated for now. 503 if (!Dst->getChild(1)->isLeaf()) continue; 504 505 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 506 if (SR) 507 SubRegNo = getQualifiedName(SR->getDef()); 508 else 509 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString(); 510 } 511 512 // Inspect the pattern. 513 TreePatternNode *InstPatNode = Pattern.getSrcPattern(); 514 if (!InstPatNode) continue; 515 if (InstPatNode->isLeaf()) continue; 516 517 // Ignore multiple result nodes for now. 518 if (InstPatNode->getNumTypes() > 1) continue; 519 520 Record *InstPatOp = InstPatNode->getOperator(); 521 std::string OpcodeName = getOpcodeName(InstPatOp, CGP); 522 MVT::SimpleValueType RetVT = MVT::isVoid; 523 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0); 524 MVT::SimpleValueType VT = RetVT; 525 if (InstPatNode->getNumChildren()) { 526 assert(InstPatNode->getChild(0)->getNumTypes() == 1); 527 VT = InstPatNode->getChild(0)->getSimpleType(0); 528 } 529 530 // For now, filter out any instructions with predicates. 531 if (!InstPatNode->getPredicateCalls().empty()) 532 continue; 533 534 // Check all the operands. 535 OperandsSignature Operands; 536 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, 537 DstRC)) 538 continue; 539 540 std::vector<std::string> PhysRegInputs; 541 if (InstPatNode->getOperator()->getName() == "imm" || 542 InstPatNode->getOperator()->getName() == "fpimm") 543 PhysRegInputs.push_back(""); 544 else { 545 // Compute the PhysRegs used by the given pattern, and check that 546 // the mapping from the src to dst patterns is simple. 547 bool FoundNonSimplePattern = false; 548 unsigned DstIndex = 0; 549 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 550 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target); 551 if (PhysReg.empty()) { 552 if (DstIndex >= Dst->getNumChildren() || 553 Dst->getChild(DstIndex)->getName() != 554 InstPatNode->getChild(i)->getName()) { 555 FoundNonSimplePattern = true; 556 break; 557 } 558 ++DstIndex; 559 } 560 561 PhysRegInputs.push_back(PhysReg); 562 } 563 564 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren()) 565 FoundNonSimplePattern = true; 566 567 if (FoundNonSimplePattern) 568 continue; 569 } 570 571 // Check if the operands match one of the patterns handled by FastISel. 572 std::string ManglingSuffix; 573 raw_string_ostream SuffixOS(ManglingSuffix); 574 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true); 575 SuffixOS.flush(); 576 if (!StringSwitch<bool>(ManglingSuffix) 577 .Cases("", "r", "rr", "ri", "i", "f", true) 578 .Default(false)) 579 continue; 580 581 // Get the predicate that guards this pattern. 582 std::string PredicateCheck = Pattern.getPredicateCheck(); 583 584 // Ok, we found a pattern that we can handle. Remember it. 585 InstructionMemo Memo( 586 Pattern.getDstPattern()->getOperator()->getName(), 587 DstRC, 588 SubRegNo, 589 PhysRegInputs, 590 PredicateCheck 591 ); 592 593 int complexity = Pattern.getPatternComplexity(CGP); 594 595 if (SimplePatternsCheck[Operands][OpcodeName][VT] 596 [RetVT].count(PredicateCheck)) { 597 PrintFatalError(Pattern.getSrcRecord()->getLoc(), 598 "Duplicate predicate in FastISel table!"); 599 } 600 SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert( 601 std::make_pair(PredicateCheck, true)); 602 603 // Note: Instructions with the same complexity will appear in the order 604 // that they are encountered. 605 SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity, 606 std::move(Memo)); 607 608 // If any of the operands were immediates with predicates on them, strip 609 // them down to a signature that doesn't have predicates so that we can 610 // associate them with the stripped predicate version. 611 if (Operands.hasAnyImmediateCodes()) { 612 SignaturesWithConstantForms[Operands.getWithoutImmCodes()] 613 .push_back(Operands); 614 } 615 } 616 } 617 618 void FastISelMap::printImmediatePredicates(raw_ostream &OS) { 619 if (ImmediatePredicates.begin() == ImmediatePredicates.end()) 620 return; 621 622 OS << "\n// FastEmit Immediate Predicate functions.\n"; 623 for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(), 624 E = ImmediatePredicates.end(); I != E; ++I) { 625 OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n"; 626 OS << I->getImmediatePredicateCode() << "\n}\n"; 627 } 628 629 OS << "\n\n"; 630 } 631 632 void FastISelMap::emitInstructionCode(raw_ostream &OS, 633 const OperandsSignature &Operands, 634 const PredMap &PM, 635 const std::string &RetVTName) { 636 // Emit code for each possible instruction. There may be 637 // multiple if there are subtarget concerns. A reverse iterator 638 // is used to produce the ones with highest complexity first. 639 640 bool OneHadNoPredicate = false; 641 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend(); 642 PI != PE; ++PI) { 643 const InstructionMemo &Memo = PI->second; 644 std::string PredicateCheck = Memo.PredicateCheck; 645 646 if (PredicateCheck.empty()) { 647 assert(!OneHadNoPredicate && 648 "Multiple instructions match and more than one had " 649 "no predicate!"); 650 OneHadNoPredicate = true; 651 } else { 652 if (OneHadNoPredicate) { 653 PrintFatalError("Multiple instructions match and one with no " 654 "predicate came before one with a predicate! " 655 "name:" + Memo.Name + " predicate: " + PredicateCheck); 656 } 657 OS << " if (" + PredicateCheck + ") {\n"; 658 OS << " "; 659 } 660 661 for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) { 662 if (Memo.PhysRegs[i] != "") 663 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, " 664 << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i] 665 << ").addReg(Op" << i << ");\n"; 666 } 667 668 OS << " return fastEmitInst_"; 669 if (Memo.SubRegNo.empty()) { 670 Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates, 671 true); 672 OS << "(" << InstNS << "::" << Memo.Name << ", "; 673 OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass"; 674 if (!Operands.empty()) 675 OS << ", "; 676 Operands.PrintArguments(OS, Memo.PhysRegs); 677 OS << ");\n"; 678 } else { 679 OS << "extractsubreg(" << RetVTName 680 << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n"; 681 } 682 683 if (!PredicateCheck.empty()) { 684 OS << " }\n"; 685 } 686 } 687 // Return 0 if all of the possibilities had predicates but none 688 // were satisfied. 689 if (!OneHadNoPredicate) 690 OS << " return 0;\n"; 691 OS << "}\n"; 692 OS << "\n"; 693 } 694 695 696 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { 697 // Now emit code for all the patterns that we collected. 698 for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(), 699 OE = SimplePatterns.end(); OI != OE; ++OI) { 700 const OperandsSignature &Operands = OI->first; 701 const OpcodeTypeRetPredMap &OTM = OI->second; 702 703 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 704 I != E; ++I) { 705 const std::string &Opcode = I->first; 706 const TypeRetPredMap &TM = I->second; 707 708 OS << "// FastEmit functions for " << Opcode << ".\n"; 709 OS << "\n"; 710 711 // Emit one function for each opcode,type pair. 712 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 713 TI != TE; ++TI) { 714 MVT::SimpleValueType VT = TI->first; 715 const RetPredMap &RM = TI->second; 716 if (RM.size() != 1) { 717 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 718 RI != RE; ++RI) { 719 MVT::SimpleValueType RetVT = RI->first; 720 const PredMap &PM = RI->second; 721 722 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 723 << getLegalCName(std::string(getName(VT))) << "_" 724 << getLegalCName(std::string(getName(RetVT))) << "_"; 725 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 726 OS << "("; 727 Operands.PrintParameters(OS); 728 OS << ") {\n"; 729 730 emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT))); 731 } 732 733 // Emit one function for the type that demultiplexes on return type. 734 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 735 << getLegalCName(std::string(getName(VT))) << "_"; 736 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 737 OS << "(MVT RetVT"; 738 if (!Operands.empty()) 739 OS << ", "; 740 Operands.PrintParameters(OS); 741 OS << ") {\nswitch (RetVT.SimpleTy) {\n"; 742 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 743 RI != RE; ++RI) { 744 MVT::SimpleValueType RetVT = RI->first; 745 OS << " case " << getName(RetVT) << ": return fastEmit_" 746 << getLegalCName(Opcode) << "_" 747 << getLegalCName(std::string(getName(VT))) << "_" 748 << getLegalCName(std::string(getName(RetVT))) << "_"; 749 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 750 OS << "("; 751 Operands.PrintArguments(OS); 752 OS << ");\n"; 753 } 754 OS << " default: return 0;\n}\n}\n\n"; 755 756 } else { 757 // Non-variadic return type. 758 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 759 << getLegalCName(std::string(getName(VT))) << "_"; 760 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 761 OS << "(MVT RetVT"; 762 if (!Operands.empty()) 763 OS << ", "; 764 Operands.PrintParameters(OS); 765 OS << ") {\n"; 766 767 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) 768 << ")\n return 0;\n"; 769 770 const PredMap &PM = RM.begin()->second; 771 772 emitInstructionCode(OS, Operands, PM, "RetVT"); 773 } 774 } 775 776 // Emit one function for the opcode that demultiplexes based on the type. 777 OS << "unsigned fastEmit_" 778 << getLegalCName(Opcode) << "_"; 779 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 780 OS << "(MVT VT, MVT RetVT"; 781 if (!Operands.empty()) 782 OS << ", "; 783 Operands.PrintParameters(OS); 784 OS << ") {\n"; 785 OS << " switch (VT.SimpleTy) {\n"; 786 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 787 TI != TE; ++TI) { 788 MVT::SimpleValueType VT = TI->first; 789 std::string TypeName = std::string(getName(VT)); 790 OS << " case " << TypeName << ": return fastEmit_" 791 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; 792 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 793 OS << "(RetVT"; 794 if (!Operands.empty()) 795 OS << ", "; 796 Operands.PrintArguments(OS); 797 OS << ");\n"; 798 } 799 OS << " default: return 0;\n"; 800 OS << " }\n"; 801 OS << "}\n"; 802 OS << "\n"; 803 } 804 805 OS << "// Top-level FastEmit function.\n"; 806 OS << "\n"; 807 808 // Emit one function for the operand signature that demultiplexes based 809 // on opcode and type. 810 OS << "unsigned fastEmit_"; 811 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 812 OS << "(MVT VT, MVT RetVT, unsigned Opcode"; 813 if (!Operands.empty()) 814 OS << ", "; 815 Operands.PrintParameters(OS); 816 OS << ") "; 817 if (!Operands.hasAnyImmediateCodes()) 818 OS << "override "; 819 OS << "{\n"; 820 821 // If there are any forms of this signature available that operate on 822 // constrained forms of the immediate (e.g., 32-bit sext immediate in a 823 // 64-bit operand), check them first. 824 825 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI 826 = SignaturesWithConstantForms.find(Operands); 827 if (MI != SignaturesWithConstantForms.end()) { 828 // Unique any duplicates out of the list. 829 llvm::sort(MI->second); 830 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()), 831 MI->second.end()); 832 833 // Check each in order it was seen. It would be nice to have a good 834 // relative ordering between them, but we're not going for optimality 835 // here. 836 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) { 837 OS << " if ("; 838 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates); 839 OS << ")\n if (unsigned Reg = fastEmit_"; 840 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates); 841 OS << "(VT, RetVT, Opcode"; 842 if (!MI->second[i].empty()) 843 OS << ", "; 844 MI->second[i].PrintArguments(OS); 845 OS << "))\n return Reg;\n\n"; 846 } 847 848 // Done with this, remove it. 849 SignaturesWithConstantForms.erase(MI); 850 } 851 852 OS << " switch (Opcode) {\n"; 853 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 854 I != E; ++I) { 855 const std::string &Opcode = I->first; 856 857 OS << " case " << Opcode << ": return fastEmit_" 858 << getLegalCName(Opcode) << "_"; 859 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 860 OS << "(VT, RetVT"; 861 if (!Operands.empty()) 862 OS << ", "; 863 Operands.PrintArguments(OS); 864 OS << ");\n"; 865 } 866 OS << " default: return 0;\n"; 867 OS << " }\n"; 868 OS << "}\n"; 869 OS << "\n"; 870 } 871 872 // TODO: SignaturesWithConstantForms should be empty here. 873 } 874 875 namespace llvm { 876 877 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) { 878 CodeGenDAGPatterns CGP(RK); 879 const CodeGenTarget &Target = CGP.getTargetInfo(); 880 emitSourceFileHeader("\"Fast\" Instruction Selector for the " + 881 Target.getName().str() + " target", OS); 882 883 // Determine the target's namespace name. 884 StringRef InstNS = Target.getInstNamespace(); 885 assert(!InstNS.empty() && "Can't determine target-specific namespace!"); 886 887 FastISelMap F(InstNS); 888 F.collectPatterns(CGP); 889 F.printImmediatePredicates(OS); 890 F.printFunctionDefinitions(OS); 891 } 892 893 } // End llvm namespace 894