1 ///===- FastISelEmitter.cpp - Generate an instruction selector ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits code for use by the "fast" instruction 10 // selection algorithm. See the comments at the top of 11 // lib/CodeGen/SelectionDAG/FastISel.cpp for background. 12 // 13 // This file scans through the target's tablegen instruction-info files 14 // and extracts instructions with obvious-looking patterns, and it emits 15 // code to look up these instructions by type and operator. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "Common/CodeGenDAGPatterns.h" 20 #include "Common/CodeGenInstruction.h" 21 #include "Common/CodeGenRegisters.h" 22 #include "Common/CodeGenTarget.h" 23 #include "Common/InfoByHwMode.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include "llvm/TableGen/TableGenBackend.h" 29 #include <set> 30 #include <utility> 31 using namespace llvm; 32 33 /// InstructionMemo - This class holds additional information about an 34 /// instruction needed to emit code for it. 35 /// 36 namespace { 37 struct InstructionMemo { 38 std::string Name; 39 const CodeGenRegisterClass *RC; 40 std::string SubRegNo; 41 std::vector<std::string> PhysRegs; 42 std::string PredicateCheck; 43 44 InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC, 45 std::string SubRegNo, std::vector<std::string> PhysRegs, 46 std::string PredicateCheck) 47 : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)), 48 PhysRegs(std::move(PhysRegs)), 49 PredicateCheck(std::move(PredicateCheck)) {} 50 51 // Make sure we do not copy InstructionMemo. 52 InstructionMemo(const InstructionMemo &Other) = delete; 53 InstructionMemo(InstructionMemo &&Other) = default; 54 }; 55 } // End anonymous namespace 56 57 /// ImmPredicateSet - This uniques predicates (represented as a string) and 58 /// gives them unique (small) integer ID's that start at 0. 59 namespace { 60 class ImmPredicateSet { 61 DenseMap<TreePattern *, unsigned> ImmIDs; 62 std::vector<TreePredicateFn> PredsByName; 63 64 public: 65 unsigned getIDFor(TreePredicateFn Pred) { 66 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; 67 if (Entry == 0) { 68 PredsByName.push_back(Pred); 69 Entry = PredsByName.size(); 70 } 71 return Entry - 1; 72 } 73 74 const TreePredicateFn &getPredicate(unsigned i) { 75 assert(i < PredsByName.size()); 76 return PredsByName[i]; 77 } 78 79 typedef std::vector<TreePredicateFn>::const_iterator iterator; 80 iterator begin() const { return PredsByName.begin(); } 81 iterator end() const { return PredsByName.end(); } 82 }; 83 } // End anonymous namespace 84 85 /// OperandsSignature - This class holds a description of a list of operand 86 /// types. It has utility methods for emitting text based on the operands. 87 /// 88 namespace { 89 struct OperandsSignature { 90 class OpKind { 91 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; 92 char Repr; 93 94 public: 95 OpKind() : Repr(OK_Invalid) {} 96 97 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } 98 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } 99 100 static OpKind getReg() { 101 OpKind K; 102 K.Repr = OK_Reg; 103 return K; 104 } 105 static OpKind getFP() { 106 OpKind K; 107 K.Repr = OK_FP; 108 return K; 109 } 110 static OpKind getImm(unsigned V) { 111 assert((unsigned)OK_Imm + V < 128 && 112 "Too many integer predicates for the 'Repr' char"); 113 OpKind K; 114 K.Repr = OK_Imm + V; 115 return K; 116 } 117 118 bool isReg() const { return Repr == OK_Reg; } 119 bool isFP() const { return Repr == OK_FP; } 120 bool isImm() const { return Repr >= OK_Imm; } 121 122 unsigned getImmCode() const { 123 assert(isImm()); 124 return Repr - OK_Imm; 125 } 126 127 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 128 bool StripImmCodes) const { 129 if (isReg()) 130 OS << 'r'; 131 else if (isFP()) 132 OS << 'f'; 133 else { 134 OS << 'i'; 135 if (!StripImmCodes) 136 if (unsigned Code = getImmCode()) 137 OS << "_" << ImmPredicates.getPredicate(Code - 1).getFnName(); 138 } 139 } 140 }; 141 142 SmallVector<OpKind, 3> Operands; 143 144 bool operator<(const OperandsSignature &O) const { 145 return Operands < O.Operands; 146 } 147 bool operator==(const OperandsSignature &O) const { 148 return Operands == O.Operands; 149 } 150 151 bool empty() const { return Operands.empty(); } 152 153 bool hasAnyImmediateCodes() const { 154 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 155 if (Operands[i].isImm() && Operands[i].getImmCode() != 0) 156 return true; 157 return false; 158 } 159 160 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced 161 /// to zero. 162 OperandsSignature getWithoutImmCodes() const { 163 OperandsSignature Result; 164 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 165 if (!Operands[i].isImm()) 166 Result.Operands.push_back(Operands[i]); 167 else 168 Result.Operands.push_back(OpKind::getImm(0)); 169 return Result; 170 } 171 172 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) { 173 bool EmittedAnything = false; 174 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 175 if (!Operands[i].isImm()) 176 continue; 177 178 unsigned Code = Operands[i].getImmCode(); 179 if (Code == 0) 180 continue; 181 182 if (EmittedAnything) 183 OS << " &&\n "; 184 185 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code - 1); 186 187 // Emit the type check. 188 TreePattern *TP = PredFn.getOrigPatFragRecord(); 189 ValueTypeByHwMode VVT = TP->getTree(0)->getType(0); 190 assert(VVT.isSimple() && 191 "Cannot use variable value types with fast isel"); 192 OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && "; 193 194 OS << PredFn.getFnName() << "(imm" << i << ')'; 195 EmittedAnything = true; 196 } 197 } 198 199 /// initialize - Examine the given pattern and initialize the contents 200 /// of the Operands array accordingly. Return true if all the operands 201 /// are supported, false otherwise. 202 /// 203 bool initialize(TreePatternNode &InstPatNode, const CodeGenTarget &Target, 204 MVT::SimpleValueType VT, ImmPredicateSet &ImmediatePredicates, 205 const CodeGenRegisterClass *OrigDstRC) { 206 if (InstPatNode.isLeaf()) 207 return false; 208 209 if (InstPatNode.getOperator()->getName() == "imm") { 210 Operands.push_back(OpKind::getImm(0)); 211 return true; 212 } 213 214 if (InstPatNode.getOperator()->getName() == "fpimm") { 215 Operands.push_back(OpKind::getFP()); 216 return true; 217 } 218 219 const CodeGenRegisterClass *DstRC = nullptr; 220 221 for (unsigned i = 0, e = InstPatNode.getNumChildren(); i != e; ++i) { 222 TreePatternNode &Op = InstPatNode.getChild(i); 223 224 // Handle imm operands specially. 225 if (!Op.isLeaf() && Op.getOperator()->getName() == "imm") { 226 unsigned PredNo = 0; 227 if (!Op.getPredicateCalls().empty()) { 228 TreePredicateFn PredFn = Op.getPredicateCalls()[0].Fn; 229 // If there is more than one predicate weighing in on this operand 230 // then we don't handle it. This doesn't typically happen for 231 // immediates anyway. 232 if (Op.getPredicateCalls().size() > 1 || 233 !PredFn.isImmediatePattern() || PredFn.usesOperands()) 234 return false; 235 // Ignore any instruction with 'FastIselShouldIgnore', these are 236 // not needed and just bloat the fast instruction selector. For 237 // example, X86 doesn't need to generate code to match ADD16ri8 since 238 // ADD16ri will do just fine. 239 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); 240 if (Rec->getValueAsBit("FastIselShouldIgnore")) 241 return false; 242 243 PredNo = ImmediatePredicates.getIDFor(PredFn) + 1; 244 } 245 246 Operands.push_back(OpKind::getImm(PredNo)); 247 continue; 248 } 249 250 // For now, filter out any operand with a predicate. 251 // For now, filter out any operand with multiple values. 252 if (!Op.getPredicateCalls().empty() || Op.getNumTypes() != 1) 253 return false; 254 255 if (!Op.isLeaf()) { 256 if (Op.getOperator()->getName() == "fpimm") { 257 Operands.push_back(OpKind::getFP()); 258 continue; 259 } 260 // For now, ignore other non-leaf nodes. 261 return false; 262 } 263 264 assert(Op.hasConcreteType(0) && "Type infererence not done?"); 265 266 // For now, all the operands must have the same type (if they aren't 267 // immediates). Note that this causes us to reject variable sized shifts 268 // on X86. 269 if (Op.getSimpleType(0) != VT) 270 return false; 271 272 DefInit *OpDI = dyn_cast<DefInit>(Op.getLeafValue()); 273 if (!OpDI) 274 return false; 275 Record *OpLeafRec = OpDI->getDef(); 276 277 // For now, the only other thing we accept is register operands. 278 const CodeGenRegisterClass *RC = nullptr; 279 if (OpLeafRec->isSubClassOf("RegisterOperand")) 280 OpLeafRec = OpLeafRec->getValueAsDef("RegClass"); 281 if (OpLeafRec->isSubClassOf("RegisterClass")) 282 RC = &Target.getRegisterClass(OpLeafRec); 283 else if (OpLeafRec->isSubClassOf("Register")) 284 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec); 285 else if (OpLeafRec->isSubClassOf("ValueType")) { 286 RC = OrigDstRC; 287 } else 288 return false; 289 290 // For now, this needs to be a register class of some sort. 291 if (!RC) 292 return false; 293 294 // For now, all the operands must have the same register class or be 295 // a strict subclass of the destination. 296 if (DstRC) { 297 if (DstRC != RC && !DstRC->hasSubClass(RC)) 298 return false; 299 } else 300 DstRC = RC; 301 Operands.push_back(OpKind::getReg()); 302 } 303 return true; 304 } 305 306 void PrintParameters(raw_ostream &OS) const { 307 ListSeparator LS; 308 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 309 OS << LS; 310 if (Operands[i].isReg()) { 311 OS << "unsigned Op" << i; 312 } else if (Operands[i].isImm()) { 313 OS << "uint64_t imm" << i; 314 } else if (Operands[i].isFP()) { 315 OS << "const ConstantFP *f" << i; 316 } else { 317 llvm_unreachable("Unknown operand kind!"); 318 } 319 } 320 } 321 322 void PrintArguments(raw_ostream &OS, 323 const std::vector<std::string> &PR) const { 324 assert(PR.size() == Operands.size()); 325 ListSeparator LS; 326 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 327 if (PR[i] != "") 328 // Implicit physical register operand. 329 continue; 330 331 OS << LS; 332 if (Operands[i].isReg()) { 333 OS << "Op" << i; 334 } else if (Operands[i].isImm()) { 335 OS << "imm" << i; 336 } else if (Operands[i].isFP()) { 337 OS << "f" << i; 338 } else { 339 llvm_unreachable("Unknown operand kind!"); 340 } 341 } 342 } 343 344 void PrintArguments(raw_ostream &OS) const { 345 ListSeparator LS; 346 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 347 OS << LS; 348 if (Operands[i].isReg()) { 349 OS << "Op" << i; 350 } else if (Operands[i].isImm()) { 351 OS << "imm" << i; 352 } else if (Operands[i].isFP()) { 353 OS << "f" << i; 354 } else { 355 llvm_unreachable("Unknown operand kind!"); 356 } 357 } 358 } 359 360 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR, 361 ImmPredicateSet &ImmPredicates, 362 bool StripImmCodes = false) const { 363 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 364 if (PR[i] != "") 365 // Implicit physical register operand. e.g. Instruction::Mul expect to 366 // select to a binary op. On x86, mul may take a single operand with 367 // the other operand being implicit. We must emit something that looks 368 // like a binary instruction except for the very inner fastEmitInst_* 369 // call. 370 continue; 371 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 372 } 373 } 374 375 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 376 bool StripImmCodes = false) const { 377 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 378 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 379 } 380 }; 381 } // End anonymous namespace 382 383 namespace { 384 class FastISelMap { 385 // A multimap is needed instead of a "plain" map because the key is 386 // the instruction's complexity (an int) and they are not unique. 387 typedef std::multimap<int, InstructionMemo> PredMap; 388 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; 389 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; 390 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; 391 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> 392 OperandsOpcodeTypeRetPredMap; 393 394 OperandsOpcodeTypeRetPredMap SimplePatterns; 395 396 // This is used to check that there are no duplicate predicates 397 std::set<std::tuple<OperandsSignature, std::string, MVT::SimpleValueType, 398 MVT::SimpleValueType, std::string>> 399 SimplePatternsCheck; 400 401 std::map<OperandsSignature, std::vector<OperandsSignature>> 402 SignaturesWithConstantForms; 403 404 StringRef InstNS; 405 ImmPredicateSet ImmediatePredicates; 406 407 public: 408 explicit FastISelMap(StringRef InstNS); 409 410 void collectPatterns(CodeGenDAGPatterns &CGP); 411 void printImmediatePredicates(raw_ostream &OS); 412 void printFunctionDefinitions(raw_ostream &OS); 413 414 private: 415 void emitInstructionCode(raw_ostream &OS, const OperandsSignature &Operands, 416 const PredMap &PM, const std::string &RetVTName); 417 }; 418 } // End anonymous namespace 419 420 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { 421 return std::string(CGP.getSDNodeInfo(Op).getEnumName()); 422 } 423 424 static std::string getLegalCName(std::string OpName) { 425 std::string::size_type pos = OpName.find("::"); 426 if (pos != std::string::npos) 427 OpName.replace(pos, 2, "_"); 428 return OpName; 429 } 430 431 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {} 432 433 static std::string PhyRegForNode(TreePatternNode &Op, 434 const CodeGenTarget &Target) { 435 std::string PhysReg; 436 437 if (!Op.isLeaf()) 438 return PhysReg; 439 440 Record *OpLeafRec = cast<DefInit>(Op.getLeafValue())->getDef(); 441 if (!OpLeafRec->isSubClassOf("Register")) 442 return PhysReg; 443 444 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) 445 ->getValue(); 446 PhysReg += "::"; 447 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); 448 return PhysReg; 449 } 450 451 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) { 452 const CodeGenTarget &Target = CGP.getTargetInfo(); 453 454 // Scan through all the patterns and record the simple ones. 455 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); 456 I != E; ++I) { 457 const PatternToMatch &Pattern = *I; 458 459 // For now, just look at Instructions, so that we don't have to worry 460 // about emitting multiple instructions for a pattern. 461 TreePatternNode &Dst = Pattern.getDstPattern(); 462 if (Dst.isLeaf()) 463 continue; 464 Record *Op = Dst.getOperator(); 465 if (!Op->isSubClassOf("Instruction")) 466 continue; 467 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); 468 if (II.Operands.empty()) 469 continue; 470 471 // Allow instructions to be marked as unavailable for FastISel for 472 // certain cases, i.e. an ISA has two 'and' instruction which differ 473 // by what registers they can use but are otherwise identical for 474 // codegen purposes. 475 if (II.FastISelShouldIgnore) 476 continue; 477 478 // For now, ignore multi-instruction patterns. 479 bool MultiInsts = false; 480 for (unsigned i = 0, e = Dst.getNumChildren(); i != e; ++i) { 481 TreePatternNode &ChildOp = Dst.getChild(i); 482 if (ChildOp.isLeaf()) 483 continue; 484 if (ChildOp.getOperator()->isSubClassOf("Instruction")) { 485 MultiInsts = true; 486 break; 487 } 488 } 489 if (MultiInsts) 490 continue; 491 492 // For now, ignore instructions where the first operand is not an 493 // output register. 494 const CodeGenRegisterClass *DstRC = nullptr; 495 std::string SubRegNo; 496 if (Op->getName() != "EXTRACT_SUBREG") { 497 Record *Op0Rec = II.Operands[0].Rec; 498 if (Op0Rec->isSubClassOf("RegisterOperand")) 499 Op0Rec = Op0Rec->getValueAsDef("RegClass"); 500 if (!Op0Rec->isSubClassOf("RegisterClass")) 501 continue; 502 DstRC = &Target.getRegisterClass(Op0Rec); 503 if (!DstRC) 504 continue; 505 } else { 506 // If this isn't a leaf, then continue since the register classes are 507 // a bit too complicated for now. 508 if (!Dst.getChild(1).isLeaf()) 509 continue; 510 511 DefInit *SR = dyn_cast<DefInit>(Dst.getChild(1).getLeafValue()); 512 if (SR) 513 SubRegNo = getQualifiedName(SR->getDef()); 514 else 515 SubRegNo = Dst.getChild(1).getLeafValue()->getAsString(); 516 } 517 518 // Inspect the pattern. 519 TreePatternNode &InstPatNode = Pattern.getSrcPattern(); 520 if (InstPatNode.isLeaf()) 521 continue; 522 523 // Ignore multiple result nodes for now. 524 if (InstPatNode.getNumTypes() > 1) 525 continue; 526 527 Record *InstPatOp = InstPatNode.getOperator(); 528 std::string OpcodeName = getOpcodeName(InstPatOp, CGP); 529 MVT::SimpleValueType RetVT = MVT::isVoid; 530 if (InstPatNode.getNumTypes()) 531 RetVT = InstPatNode.getSimpleType(0); 532 MVT::SimpleValueType VT = RetVT; 533 if (InstPatNode.getNumChildren()) { 534 assert(InstPatNode.getChild(0).getNumTypes() == 1); 535 VT = InstPatNode.getChild(0).getSimpleType(0); 536 } 537 538 // For now, filter out any instructions with predicates. 539 if (!InstPatNode.getPredicateCalls().empty()) 540 continue; 541 542 // Check all the operands. 543 OperandsSignature Operands; 544 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, 545 DstRC)) 546 continue; 547 548 std::vector<std::string> PhysRegInputs; 549 if (InstPatNode.getOperator()->getName() == "imm" || 550 InstPatNode.getOperator()->getName() == "fpimm") 551 PhysRegInputs.push_back(""); 552 else { 553 // Compute the PhysRegs used by the given pattern, and check that 554 // the mapping from the src to dst patterns is simple. 555 bool FoundNonSimplePattern = false; 556 unsigned DstIndex = 0; 557 for (unsigned i = 0, e = InstPatNode.getNumChildren(); i != e; ++i) { 558 std::string PhysReg = PhyRegForNode(InstPatNode.getChild(i), Target); 559 if (PhysReg.empty()) { 560 if (DstIndex >= Dst.getNumChildren() || 561 Dst.getChild(DstIndex).getName() != 562 InstPatNode.getChild(i).getName()) { 563 FoundNonSimplePattern = true; 564 break; 565 } 566 ++DstIndex; 567 } 568 569 PhysRegInputs.push_back(PhysReg); 570 } 571 572 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst.getNumChildren()) 573 FoundNonSimplePattern = true; 574 575 if (FoundNonSimplePattern) 576 continue; 577 } 578 579 // Check if the operands match one of the patterns handled by FastISel. 580 std::string ManglingSuffix; 581 raw_string_ostream SuffixOS(ManglingSuffix); 582 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true); 583 if (!StringSwitch<bool>(ManglingSuffix) 584 .Cases("", "r", "rr", "ri", "i", "f", true) 585 .Default(false)) 586 continue; 587 588 // Get the predicate that guards this pattern. 589 std::string PredicateCheck = Pattern.getPredicateCheck(); 590 591 // Ok, we found a pattern that we can handle. Remember it. 592 InstructionMemo Memo(Pattern.getDstPattern().getOperator()->getName(), 593 DstRC, SubRegNo, PhysRegInputs, PredicateCheck); 594 595 int complexity = Pattern.getPatternComplexity(CGP); 596 597 auto inserted_simple_pattern = SimplePatternsCheck.insert( 598 std::tuple(Operands, OpcodeName, VT, RetVT, PredicateCheck)); 599 if (!inserted_simple_pattern.second) { 600 PrintFatalError(Pattern.getSrcRecord()->getLoc(), 601 "Duplicate predicate in FastISel table!"); 602 } 603 604 // Note: Instructions with the same complexity will appear in the order 605 // that they are encountered. 606 SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity, 607 std::move(Memo)); 608 609 // If any of the operands were immediates with predicates on them, strip 610 // them down to a signature that doesn't have predicates so that we can 611 // associate them with the stripped predicate version. 612 if (Operands.hasAnyImmediateCodes()) { 613 SignaturesWithConstantForms[Operands.getWithoutImmCodes()].push_back( 614 Operands); 615 } 616 } 617 } 618 619 void FastISelMap::printImmediatePredicates(raw_ostream &OS) { 620 if (ImmediatePredicates.begin() == ImmediatePredicates.end()) 621 return; 622 623 OS << "\n// FastEmit Immediate Predicate functions.\n"; 624 for (auto ImmediatePredicate : ImmediatePredicates) { 625 OS << "static bool " << ImmediatePredicate.getFnName() 626 << "(int64_t Imm) {\n"; 627 OS << ImmediatePredicate.getImmediatePredicateCode() << "\n}\n"; 628 } 629 630 OS << "\n\n"; 631 } 632 633 void FastISelMap::emitInstructionCode(raw_ostream &OS, 634 const OperandsSignature &Operands, 635 const PredMap &PM, 636 const std::string &RetVTName) { 637 // Emit code for each possible instruction. There may be 638 // multiple if there are subtarget concerns. A reverse iterator 639 // is used to produce the ones with highest complexity first. 640 641 bool OneHadNoPredicate = false; 642 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend(); 643 PI != PE; ++PI) { 644 const InstructionMemo &Memo = PI->second; 645 std::string PredicateCheck = Memo.PredicateCheck; 646 647 if (PredicateCheck.empty()) { 648 assert(!OneHadNoPredicate && 649 "Multiple instructions match and more than one had " 650 "no predicate!"); 651 OneHadNoPredicate = true; 652 } else { 653 if (OneHadNoPredicate) { 654 PrintFatalError("Multiple instructions match and one with no " 655 "predicate came before one with a predicate! " 656 "name:" + 657 Memo.Name + " predicate: " + PredicateCheck); 658 } 659 OS << " if (" + PredicateCheck + ") {\n"; 660 OS << " "; 661 } 662 663 for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) { 664 if (Memo.PhysRegs[i] != "") 665 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, " 666 << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i] 667 << ").addReg(Op" << i << ");\n"; 668 } 669 670 OS << " return fastEmitInst_"; 671 if (Memo.SubRegNo.empty()) { 672 Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates, 673 true); 674 OS << "(" << InstNS << "::" << Memo.Name << ", "; 675 OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass"; 676 if (!Operands.empty()) 677 OS << ", "; 678 Operands.PrintArguments(OS, Memo.PhysRegs); 679 OS << ");\n"; 680 } else { 681 OS << "extractsubreg(" << RetVTName << ", Op0, " << Memo.SubRegNo 682 << ");\n"; 683 } 684 685 if (!PredicateCheck.empty()) { 686 OS << " }\n"; 687 } 688 } 689 // Return 0 if all of the possibilities had predicates but none 690 // were satisfied. 691 if (!OneHadNoPredicate) 692 OS << " return 0;\n"; 693 OS << "}\n"; 694 OS << "\n"; 695 } 696 697 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { 698 // Now emit code for all the patterns that we collected. 699 for (const auto &SimplePattern : SimplePatterns) { 700 const OperandsSignature &Operands = SimplePattern.first; 701 const OpcodeTypeRetPredMap &OTM = SimplePattern.second; 702 703 for (const auto &I : OTM) { 704 const std::string &Opcode = I.first; 705 const TypeRetPredMap &TM = I.second; 706 707 OS << "// FastEmit functions for " << Opcode << ".\n"; 708 OS << "\n"; 709 710 // Emit one function for each opcode,type pair. 711 for (const auto &TI : TM) { 712 MVT::SimpleValueType VT = TI.first; 713 const RetPredMap &RM = TI.second; 714 if (RM.size() != 1) { 715 for (const auto &RI : RM) { 716 MVT::SimpleValueType RetVT = RI.first; 717 const PredMap &PM = RI.second; 718 719 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 720 << getLegalCName(std::string(getName(VT))) << "_" 721 << getLegalCName(std::string(getName(RetVT))) << "_"; 722 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 723 OS << "("; 724 Operands.PrintParameters(OS); 725 OS << ") {\n"; 726 727 emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT))); 728 } 729 730 // Emit one function for the type that demultiplexes on return type. 731 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 732 << getLegalCName(std::string(getName(VT))) << "_"; 733 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 734 OS << "(MVT RetVT"; 735 if (!Operands.empty()) 736 OS << ", "; 737 Operands.PrintParameters(OS); 738 OS << ") {\nswitch (RetVT.SimpleTy) {\n"; 739 for (const auto &RI : RM) { 740 MVT::SimpleValueType RetVT = RI.first; 741 OS << " case " << getName(RetVT) << ": return fastEmit_" 742 << getLegalCName(Opcode) << "_" 743 << getLegalCName(std::string(getName(VT))) << "_" 744 << getLegalCName(std::string(getName(RetVT))) << "_"; 745 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 746 OS << "("; 747 Operands.PrintArguments(OS); 748 OS << ");\n"; 749 } 750 OS << " default: return 0;\n}\n}\n\n"; 751 752 } else { 753 // Non-variadic return type. 754 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 755 << getLegalCName(std::string(getName(VT))) << "_"; 756 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 757 OS << "(MVT RetVT"; 758 if (!Operands.empty()) 759 OS << ", "; 760 Operands.PrintParameters(OS); 761 OS << ") {\n"; 762 763 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) 764 << ")\n return 0;\n"; 765 766 const PredMap &PM = RM.begin()->second; 767 768 emitInstructionCode(OS, Operands, PM, "RetVT"); 769 } 770 } 771 772 // Emit one function for the opcode that demultiplexes based on the type. 773 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"; 774 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 775 OS << "(MVT VT, MVT RetVT"; 776 if (!Operands.empty()) 777 OS << ", "; 778 Operands.PrintParameters(OS); 779 OS << ") {\n"; 780 OS << " switch (VT.SimpleTy) {\n"; 781 for (const auto &TI : TM) { 782 MVT::SimpleValueType VT = TI.first; 783 std::string TypeName = std::string(getName(VT)); 784 OS << " case " << TypeName << ": return fastEmit_" 785 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; 786 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 787 OS << "(RetVT"; 788 if (!Operands.empty()) 789 OS << ", "; 790 Operands.PrintArguments(OS); 791 OS << ");\n"; 792 } 793 OS << " default: return 0;\n"; 794 OS << " }\n"; 795 OS << "}\n"; 796 OS << "\n"; 797 } 798 799 OS << "// Top-level FastEmit function.\n"; 800 OS << "\n"; 801 802 // Emit one function for the operand signature that demultiplexes based 803 // on opcode and type. 804 OS << "unsigned fastEmit_"; 805 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 806 OS << "(MVT VT, MVT RetVT, unsigned Opcode"; 807 if (!Operands.empty()) 808 OS << ", "; 809 Operands.PrintParameters(OS); 810 OS << ") "; 811 if (!Operands.hasAnyImmediateCodes()) 812 OS << "override "; 813 OS << "{\n"; 814 815 // If there are any forms of this signature available that operate on 816 // constrained forms of the immediate (e.g., 32-bit sext immediate in a 817 // 64-bit operand), check them first. 818 819 std::map<OperandsSignature, std::vector<OperandsSignature>>::iterator MI = 820 SignaturesWithConstantForms.find(Operands); 821 if (MI != SignaturesWithConstantForms.end()) { 822 // Unique any duplicates out of the list. 823 llvm::sort(MI->second); 824 MI->second.erase(llvm::unique(MI->second), MI->second.end()); 825 826 // Check each in order it was seen. It would be nice to have a good 827 // relative ordering between them, but we're not going for optimality 828 // here. 829 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) { 830 OS << " if ("; 831 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates); 832 OS << ")\n if (unsigned Reg = fastEmit_"; 833 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates); 834 OS << "(VT, RetVT, Opcode"; 835 if (!MI->second[i].empty()) 836 OS << ", "; 837 MI->second[i].PrintArguments(OS); 838 OS << "))\n return Reg;\n\n"; 839 } 840 841 // Done with this, remove it. 842 SignaturesWithConstantForms.erase(MI); 843 } 844 845 OS << " switch (Opcode) {\n"; 846 for (const auto &I : OTM) { 847 const std::string &Opcode = I.first; 848 849 OS << " case " << Opcode << ": return fastEmit_" << getLegalCName(Opcode) 850 << "_"; 851 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 852 OS << "(VT, RetVT"; 853 if (!Operands.empty()) 854 OS << ", "; 855 Operands.PrintArguments(OS); 856 OS << ");\n"; 857 } 858 OS << " default: return 0;\n"; 859 OS << " }\n"; 860 OS << "}\n"; 861 OS << "\n"; 862 } 863 864 // TODO: SignaturesWithConstantForms should be empty here. 865 } 866 867 static void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) { 868 CodeGenDAGPatterns CGP(RK); 869 const CodeGenTarget &Target = CGP.getTargetInfo(); 870 emitSourceFileHeader("\"Fast\" Instruction Selector for the " + 871 Target.getName().str() + " target", 872 OS); 873 874 // Determine the target's namespace name. 875 StringRef InstNS = Target.getInstNamespace(); 876 assert(!InstNS.empty() && "Can't determine target-specific namespace!"); 877 878 FastISelMap F(InstNS); 879 F.collectPatterns(CGP); 880 F.printImmediatePredicates(OS); 881 F.printFunctionDefinitions(OS); 882 } 883 884 static TableGen::Emitter::Opt X("gen-fast-isel", EmitFastISel, 885 "Generate a \"fast\" instruction selector"); 886