xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/FastISelEmitter.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 ///===- FastISelEmitter.cpp - Generate an instruction selector ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits code for use by the "fast" instruction
10 // selection algorithm. See the comments at the top of
11 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
12 //
13 // This file scans through the target's tablegen instruction-info files
14 // and extracts instructions with obvious-looking patterns, and it emits
15 // code to look up these instructions by type and operator.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "Common/CodeGenDAGPatterns.h"
20 #include "Common/CodeGenInstruction.h"
21 #include "Common/CodeGenRegisters.h"
22 #include "Common/CodeGenTarget.h"
23 #include "Common/InfoByHwMode.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include "llvm/TableGen/TableGenBackend.h"
29 #include <set>
30 #include <utility>
31 using namespace llvm;
32 
33 /// InstructionMemo - This class holds additional information about an
34 /// instruction needed to emit code for it.
35 ///
36 namespace {
37 struct InstructionMemo {
38   std::string Name;
39   const CodeGenRegisterClass *RC;
40   std::string SubRegNo;
41   std::vector<std::string> PhysRegs;
42   std::string PredicateCheck;
43 
44   InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
45                   std::string SubRegNo, std::vector<std::string> PhysRegs,
46                   std::string PredicateCheck)
47       : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
48         PhysRegs(std::move(PhysRegs)),
49         PredicateCheck(std::move(PredicateCheck)) {}
50 
51   // Make sure we do not copy InstructionMemo.
52   InstructionMemo(const InstructionMemo &Other) = delete;
53   InstructionMemo(InstructionMemo &&Other) = default;
54 };
55 } // End anonymous namespace
56 
57 /// ImmPredicateSet - This uniques predicates (represented as a string) and
58 /// gives them unique (small) integer ID's that start at 0.
59 namespace {
60 class ImmPredicateSet {
61   DenseMap<TreePattern *, unsigned> ImmIDs;
62   std::vector<TreePredicateFn> PredsByName;
63 
64 public:
65   unsigned getIDFor(TreePredicateFn Pred) {
66     unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
67     if (Entry == 0) {
68       PredsByName.push_back(Pred);
69       Entry = PredsByName.size();
70     }
71     return Entry - 1;
72   }
73 
74   const TreePredicateFn &getPredicate(unsigned i) {
75     assert(i < PredsByName.size());
76     return PredsByName[i];
77   }
78 
79   typedef std::vector<TreePredicateFn>::const_iterator iterator;
80   iterator begin() const { return PredsByName.begin(); }
81   iterator end() const { return PredsByName.end(); }
82 };
83 } // End anonymous namespace
84 
85 /// OperandsSignature - This class holds a description of a list of operand
86 /// types. It has utility methods for emitting text based on the operands.
87 ///
88 namespace {
89 struct OperandsSignature {
90   class OpKind {
91     enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
92     char Repr;
93 
94   public:
95     OpKind() : Repr(OK_Invalid) {}
96 
97     bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
98     bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
99 
100     static OpKind getReg() {
101       OpKind K;
102       K.Repr = OK_Reg;
103       return K;
104     }
105     static OpKind getFP() {
106       OpKind K;
107       K.Repr = OK_FP;
108       return K;
109     }
110     static OpKind getImm(unsigned V) {
111       assert((unsigned)OK_Imm + V < 128 &&
112              "Too many integer predicates for the 'Repr' char");
113       OpKind K;
114       K.Repr = OK_Imm + V;
115       return K;
116     }
117 
118     bool isReg() const { return Repr == OK_Reg; }
119     bool isFP() const { return Repr == OK_FP; }
120     bool isImm() const { return Repr >= OK_Imm; }
121 
122     unsigned getImmCode() const {
123       assert(isImm());
124       return Repr - OK_Imm;
125     }
126 
127     void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
128                              bool StripImmCodes) const {
129       if (isReg())
130         OS << 'r';
131       else if (isFP())
132         OS << 'f';
133       else {
134         OS << 'i';
135         if (!StripImmCodes)
136           if (unsigned Code = getImmCode())
137             OS << "_" << ImmPredicates.getPredicate(Code - 1).getFnName();
138       }
139     }
140   };
141 
142   SmallVector<OpKind, 3> Operands;
143 
144   bool operator<(const OperandsSignature &O) const {
145     return Operands < O.Operands;
146   }
147   bool operator==(const OperandsSignature &O) const {
148     return Operands == O.Operands;
149   }
150 
151   bool empty() const { return Operands.empty(); }
152 
153   bool hasAnyImmediateCodes() const {
154     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
155       if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
156         return true;
157     return false;
158   }
159 
160   /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
161   /// to zero.
162   OperandsSignature getWithoutImmCodes() const {
163     OperandsSignature Result;
164     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
165       if (!Operands[i].isImm())
166         Result.Operands.push_back(Operands[i]);
167       else
168         Result.Operands.push_back(OpKind::getImm(0));
169     return Result;
170   }
171 
172   void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
173     bool EmittedAnything = false;
174     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
175       if (!Operands[i].isImm())
176         continue;
177 
178       unsigned Code = Operands[i].getImmCode();
179       if (Code == 0)
180         continue;
181 
182       if (EmittedAnything)
183         OS << " &&\n        ";
184 
185       TreePredicateFn PredFn = ImmPredicates.getPredicate(Code - 1);
186 
187       // Emit the type check.
188       TreePattern *TP = PredFn.getOrigPatFragRecord();
189       ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
190       assert(VVT.isSimple() &&
191              "Cannot use variable value types with fast isel");
192       OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";
193 
194       OS << PredFn.getFnName() << "(imm" << i << ')';
195       EmittedAnything = true;
196     }
197   }
198 
199   /// initialize - Examine the given pattern and initialize the contents
200   /// of the Operands array accordingly. Return true if all the operands
201   /// are supported, false otherwise.
202   ///
203   bool initialize(TreePatternNode &InstPatNode, const CodeGenTarget &Target,
204                   MVT::SimpleValueType VT, ImmPredicateSet &ImmediatePredicates,
205                   const CodeGenRegisterClass *OrigDstRC) {
206     if (InstPatNode.isLeaf())
207       return false;
208 
209     if (InstPatNode.getOperator()->getName() == "imm") {
210       Operands.push_back(OpKind::getImm(0));
211       return true;
212     }
213 
214     if (InstPatNode.getOperator()->getName() == "fpimm") {
215       Operands.push_back(OpKind::getFP());
216       return true;
217     }
218 
219     const CodeGenRegisterClass *DstRC = nullptr;
220 
221     for (unsigned i = 0, e = InstPatNode.getNumChildren(); i != e; ++i) {
222       TreePatternNode &Op = InstPatNode.getChild(i);
223 
224       // Handle imm operands specially.
225       if (!Op.isLeaf() && Op.getOperator()->getName() == "imm") {
226         unsigned PredNo = 0;
227         if (!Op.getPredicateCalls().empty()) {
228           TreePredicateFn PredFn = Op.getPredicateCalls()[0].Fn;
229           // If there is more than one predicate weighing in on this operand
230           // then we don't handle it.  This doesn't typically happen for
231           // immediates anyway.
232           if (Op.getPredicateCalls().size() > 1 ||
233               !PredFn.isImmediatePattern() || PredFn.usesOperands())
234             return false;
235           // Ignore any instruction with 'FastIselShouldIgnore', these are
236           // not needed and just bloat the fast instruction selector.  For
237           // example, X86 doesn't need to generate code to match ADD16ri8 since
238           // ADD16ri will do just fine.
239           Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
240           if (Rec->getValueAsBit("FastIselShouldIgnore"))
241             return false;
242 
243           PredNo = ImmediatePredicates.getIDFor(PredFn) + 1;
244         }
245 
246         Operands.push_back(OpKind::getImm(PredNo));
247         continue;
248       }
249 
250       // For now, filter out any operand with a predicate.
251       // For now, filter out any operand with multiple values.
252       if (!Op.getPredicateCalls().empty() || Op.getNumTypes() != 1)
253         return false;
254 
255       if (!Op.isLeaf()) {
256         if (Op.getOperator()->getName() == "fpimm") {
257           Operands.push_back(OpKind::getFP());
258           continue;
259         }
260         // For now, ignore other non-leaf nodes.
261         return false;
262       }
263 
264       assert(Op.hasConcreteType(0) && "Type infererence not done?");
265 
266       // For now, all the operands must have the same type (if they aren't
267       // immediates).  Note that this causes us to reject variable sized shifts
268       // on X86.
269       if (Op.getSimpleType(0) != VT)
270         return false;
271 
272       DefInit *OpDI = dyn_cast<DefInit>(Op.getLeafValue());
273       if (!OpDI)
274         return false;
275       Record *OpLeafRec = OpDI->getDef();
276 
277       // For now, the only other thing we accept is register operands.
278       const CodeGenRegisterClass *RC = nullptr;
279       if (OpLeafRec->isSubClassOf("RegisterOperand"))
280         OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
281       if (OpLeafRec->isSubClassOf("RegisterClass"))
282         RC = &Target.getRegisterClass(OpLeafRec);
283       else if (OpLeafRec->isSubClassOf("Register"))
284         RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
285       else if (OpLeafRec->isSubClassOf("ValueType")) {
286         RC = OrigDstRC;
287       } else
288         return false;
289 
290       // For now, this needs to be a register class of some sort.
291       if (!RC)
292         return false;
293 
294       // For now, all the operands must have the same register class or be
295       // a strict subclass of the destination.
296       if (DstRC) {
297         if (DstRC != RC && !DstRC->hasSubClass(RC))
298           return false;
299       } else
300         DstRC = RC;
301       Operands.push_back(OpKind::getReg());
302     }
303     return true;
304   }
305 
306   void PrintParameters(raw_ostream &OS) const {
307     ListSeparator LS;
308     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
309       OS << LS;
310       if (Operands[i].isReg()) {
311         OS << "unsigned Op" << i;
312       } else if (Operands[i].isImm()) {
313         OS << "uint64_t imm" << i;
314       } else if (Operands[i].isFP()) {
315         OS << "const ConstantFP *f" << i;
316       } else {
317         llvm_unreachable("Unknown operand kind!");
318       }
319     }
320   }
321 
322   void PrintArguments(raw_ostream &OS,
323                       const std::vector<std::string> &PR) const {
324     assert(PR.size() == Operands.size());
325     ListSeparator LS;
326     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
327       if (PR[i] != "")
328         // Implicit physical register operand.
329         continue;
330 
331       OS << LS;
332       if (Operands[i].isReg()) {
333         OS << "Op" << i;
334       } else if (Operands[i].isImm()) {
335         OS << "imm" << i;
336       } else if (Operands[i].isFP()) {
337         OS << "f" << i;
338       } else {
339         llvm_unreachable("Unknown operand kind!");
340       }
341     }
342   }
343 
344   void PrintArguments(raw_ostream &OS) const {
345     ListSeparator LS;
346     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
347       OS << LS;
348       if (Operands[i].isReg()) {
349         OS << "Op" << i;
350       } else if (Operands[i].isImm()) {
351         OS << "imm" << i;
352       } else if (Operands[i].isFP()) {
353         OS << "f" << i;
354       } else {
355         llvm_unreachable("Unknown operand kind!");
356       }
357     }
358   }
359 
360   void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
361                            ImmPredicateSet &ImmPredicates,
362                            bool StripImmCodes = false) const {
363     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
364       if (PR[i] != "")
365         // Implicit physical register operand. e.g. Instruction::Mul expect to
366         // select to a binary op. On x86, mul may take a single operand with
367         // the other operand being implicit. We must emit something that looks
368         // like a binary instruction except for the very inner fastEmitInst_*
369         // call.
370         continue;
371       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
372     }
373   }
374 
375   void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
376                            bool StripImmCodes = false) const {
377     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
378       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
379   }
380 };
381 } // End anonymous namespace
382 
383 namespace {
384 class FastISelMap {
385   // A multimap is needed instead of a "plain" map because the key is
386   // the instruction's complexity (an int) and they are not unique.
387   typedef std::multimap<int, InstructionMemo> PredMap;
388   typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
389   typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
390   typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
391   typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
392       OperandsOpcodeTypeRetPredMap;
393 
394   OperandsOpcodeTypeRetPredMap SimplePatterns;
395 
396   // This is used to check that there are no duplicate predicates
397   std::set<std::tuple<OperandsSignature, std::string, MVT::SimpleValueType,
398                       MVT::SimpleValueType, std::string>>
399       SimplePatternsCheck;
400 
401   std::map<OperandsSignature, std::vector<OperandsSignature>>
402       SignaturesWithConstantForms;
403 
404   StringRef InstNS;
405   ImmPredicateSet ImmediatePredicates;
406 
407 public:
408   explicit FastISelMap(StringRef InstNS);
409 
410   void collectPatterns(CodeGenDAGPatterns &CGP);
411   void printImmediatePredicates(raw_ostream &OS);
412   void printFunctionDefinitions(raw_ostream &OS);
413 
414 private:
415   void emitInstructionCode(raw_ostream &OS, const OperandsSignature &Operands,
416                            const PredMap &PM, const std::string &RetVTName);
417 };
418 } // End anonymous namespace
419 
420 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
421   return std::string(CGP.getSDNodeInfo(Op).getEnumName());
422 }
423 
424 static std::string getLegalCName(std::string OpName) {
425   std::string::size_type pos = OpName.find("::");
426   if (pos != std::string::npos)
427     OpName.replace(pos, 2, "_");
428   return OpName;
429 }
430 
431 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}
432 
433 static std::string PhyRegForNode(TreePatternNode &Op,
434                                  const CodeGenTarget &Target) {
435   std::string PhysReg;
436 
437   if (!Op.isLeaf())
438     return PhysReg;
439 
440   Record *OpLeafRec = cast<DefInit>(Op.getLeafValue())->getDef();
441   if (!OpLeafRec->isSubClassOf("Register"))
442     return PhysReg;
443 
444   PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
445                  ->getValue();
446   PhysReg += "::";
447   PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
448   return PhysReg;
449 }
450 
451 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
452   const CodeGenTarget &Target = CGP.getTargetInfo();
453 
454   // Scan through all the patterns and record the simple ones.
455   for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
456        I != E; ++I) {
457     const PatternToMatch &Pattern = *I;
458 
459     // For now, just look at Instructions, so that we don't have to worry
460     // about emitting multiple instructions for a pattern.
461     TreePatternNode &Dst = Pattern.getDstPattern();
462     if (Dst.isLeaf())
463       continue;
464     Record *Op = Dst.getOperator();
465     if (!Op->isSubClassOf("Instruction"))
466       continue;
467     CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
468     if (II.Operands.empty())
469       continue;
470 
471     // Allow instructions to be marked as unavailable for FastISel for
472     // certain cases, i.e. an ISA has two 'and' instruction which differ
473     // by what registers they can use but are otherwise identical for
474     // codegen purposes.
475     if (II.FastISelShouldIgnore)
476       continue;
477 
478     // For now, ignore multi-instruction patterns.
479     bool MultiInsts = false;
480     for (unsigned i = 0, e = Dst.getNumChildren(); i != e; ++i) {
481       TreePatternNode &ChildOp = Dst.getChild(i);
482       if (ChildOp.isLeaf())
483         continue;
484       if (ChildOp.getOperator()->isSubClassOf("Instruction")) {
485         MultiInsts = true;
486         break;
487       }
488     }
489     if (MultiInsts)
490       continue;
491 
492     // For now, ignore instructions where the first operand is not an
493     // output register.
494     const CodeGenRegisterClass *DstRC = nullptr;
495     std::string SubRegNo;
496     if (Op->getName() != "EXTRACT_SUBREG") {
497       Record *Op0Rec = II.Operands[0].Rec;
498       if (Op0Rec->isSubClassOf("RegisterOperand"))
499         Op0Rec = Op0Rec->getValueAsDef("RegClass");
500       if (!Op0Rec->isSubClassOf("RegisterClass"))
501         continue;
502       DstRC = &Target.getRegisterClass(Op0Rec);
503       if (!DstRC)
504         continue;
505     } else {
506       // If this isn't a leaf, then continue since the register classes are
507       // a bit too complicated for now.
508       if (!Dst.getChild(1).isLeaf())
509         continue;
510 
511       DefInit *SR = dyn_cast<DefInit>(Dst.getChild(1).getLeafValue());
512       if (SR)
513         SubRegNo = getQualifiedName(SR->getDef());
514       else
515         SubRegNo = Dst.getChild(1).getLeafValue()->getAsString();
516     }
517 
518     // Inspect the pattern.
519     TreePatternNode &InstPatNode = Pattern.getSrcPattern();
520     if (InstPatNode.isLeaf())
521       continue;
522 
523     // Ignore multiple result nodes for now.
524     if (InstPatNode.getNumTypes() > 1)
525       continue;
526 
527     Record *InstPatOp = InstPatNode.getOperator();
528     std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
529     MVT::SimpleValueType RetVT = MVT::isVoid;
530     if (InstPatNode.getNumTypes())
531       RetVT = InstPatNode.getSimpleType(0);
532     MVT::SimpleValueType VT = RetVT;
533     if (InstPatNode.getNumChildren()) {
534       assert(InstPatNode.getChild(0).getNumTypes() == 1);
535       VT = InstPatNode.getChild(0).getSimpleType(0);
536     }
537 
538     // For now, filter out any instructions with predicates.
539     if (!InstPatNode.getPredicateCalls().empty())
540       continue;
541 
542     // Check all the operands.
543     OperandsSignature Operands;
544     if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
545                              DstRC))
546       continue;
547 
548     std::vector<std::string> PhysRegInputs;
549     if (InstPatNode.getOperator()->getName() == "imm" ||
550         InstPatNode.getOperator()->getName() == "fpimm")
551       PhysRegInputs.push_back("");
552     else {
553       // Compute the PhysRegs used by the given pattern, and check that
554       // the mapping from the src to dst patterns is simple.
555       bool FoundNonSimplePattern = false;
556       unsigned DstIndex = 0;
557       for (unsigned i = 0, e = InstPatNode.getNumChildren(); i != e; ++i) {
558         std::string PhysReg = PhyRegForNode(InstPatNode.getChild(i), Target);
559         if (PhysReg.empty()) {
560           if (DstIndex >= Dst.getNumChildren() ||
561               Dst.getChild(DstIndex).getName() !=
562                   InstPatNode.getChild(i).getName()) {
563             FoundNonSimplePattern = true;
564             break;
565           }
566           ++DstIndex;
567         }
568 
569         PhysRegInputs.push_back(PhysReg);
570       }
571 
572       if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst.getNumChildren())
573         FoundNonSimplePattern = true;
574 
575       if (FoundNonSimplePattern)
576         continue;
577     }
578 
579     // Check if the operands match one of the patterns handled by FastISel.
580     std::string ManglingSuffix;
581     raw_string_ostream SuffixOS(ManglingSuffix);
582     Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
583     if (!StringSwitch<bool>(ManglingSuffix)
584              .Cases("", "r", "rr", "ri", "i", "f", true)
585              .Default(false))
586       continue;
587 
588     // Get the predicate that guards this pattern.
589     std::string PredicateCheck = Pattern.getPredicateCheck();
590 
591     // Ok, we found a pattern that we can handle. Remember it.
592     InstructionMemo Memo(Pattern.getDstPattern().getOperator()->getName(),
593                          DstRC, SubRegNo, PhysRegInputs, PredicateCheck);
594 
595     int complexity = Pattern.getPatternComplexity(CGP);
596 
597     auto inserted_simple_pattern = SimplePatternsCheck.insert(
598         std::tuple(Operands, OpcodeName, VT, RetVT, PredicateCheck));
599     if (!inserted_simple_pattern.second) {
600       PrintFatalError(Pattern.getSrcRecord()->getLoc(),
601                       "Duplicate predicate in FastISel table!");
602     }
603 
604     // Note: Instructions with the same complexity will appear in the order
605     // that they are encountered.
606     SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
607                                                             std::move(Memo));
608 
609     // If any of the operands were immediates with predicates on them, strip
610     // them down to a signature that doesn't have predicates so that we can
611     // associate them with the stripped predicate version.
612     if (Operands.hasAnyImmediateCodes()) {
613       SignaturesWithConstantForms[Operands.getWithoutImmCodes()].push_back(
614           Operands);
615     }
616   }
617 }
618 
619 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
620   if (ImmediatePredicates.begin() == ImmediatePredicates.end())
621     return;
622 
623   OS << "\n// FastEmit Immediate Predicate functions.\n";
624   for (auto ImmediatePredicate : ImmediatePredicates) {
625     OS << "static bool " << ImmediatePredicate.getFnName()
626        << "(int64_t Imm) {\n";
627     OS << ImmediatePredicate.getImmediatePredicateCode() << "\n}\n";
628   }
629 
630   OS << "\n\n";
631 }
632 
633 void FastISelMap::emitInstructionCode(raw_ostream &OS,
634                                       const OperandsSignature &Operands,
635                                       const PredMap &PM,
636                                       const std::string &RetVTName) {
637   // Emit code for each possible instruction. There may be
638   // multiple if there are subtarget concerns.  A reverse iterator
639   // is used to produce the ones with highest complexity first.
640 
641   bool OneHadNoPredicate = false;
642   for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
643        PI != PE; ++PI) {
644     const InstructionMemo &Memo = PI->second;
645     std::string PredicateCheck = Memo.PredicateCheck;
646 
647     if (PredicateCheck.empty()) {
648       assert(!OneHadNoPredicate &&
649              "Multiple instructions match and more than one had "
650              "no predicate!");
651       OneHadNoPredicate = true;
652     } else {
653       if (OneHadNoPredicate) {
654         PrintFatalError("Multiple instructions match and one with no "
655                         "predicate came before one with a predicate!  "
656                         "name:" +
657                         Memo.Name + "  predicate: " + PredicateCheck);
658       }
659       OS << "  if (" + PredicateCheck + ") {\n";
660       OS << "  ";
661     }
662 
663     for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
664       if (Memo.PhysRegs[i] != "")
665         OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, "
666            << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
667            << ").addReg(Op" << i << ");\n";
668     }
669 
670     OS << "  return fastEmitInst_";
671     if (Memo.SubRegNo.empty()) {
672       Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
673                                    true);
674       OS << "(" << InstNS << "::" << Memo.Name << ", ";
675       OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
676       if (!Operands.empty())
677         OS << ", ";
678       Operands.PrintArguments(OS, Memo.PhysRegs);
679       OS << ");\n";
680     } else {
681       OS << "extractsubreg(" << RetVTName << ", Op0, " << Memo.SubRegNo
682          << ");\n";
683     }
684 
685     if (!PredicateCheck.empty()) {
686       OS << "  }\n";
687     }
688   }
689   // Return 0 if all of the possibilities had predicates but none
690   // were satisfied.
691   if (!OneHadNoPredicate)
692     OS << "  return 0;\n";
693   OS << "}\n";
694   OS << "\n";
695 }
696 
697 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
698   // Now emit code for all the patterns that we collected.
699   for (const auto &SimplePattern : SimplePatterns) {
700     const OperandsSignature &Operands = SimplePattern.first;
701     const OpcodeTypeRetPredMap &OTM = SimplePattern.second;
702 
703     for (const auto &I : OTM) {
704       const std::string &Opcode = I.first;
705       const TypeRetPredMap &TM = I.second;
706 
707       OS << "// FastEmit functions for " << Opcode << ".\n";
708       OS << "\n";
709 
710       // Emit one function for each opcode,type pair.
711       for (const auto &TI : TM) {
712         MVT::SimpleValueType VT = TI.first;
713         const RetPredMap &RM = TI.second;
714         if (RM.size() != 1) {
715           for (const auto &RI : RM) {
716             MVT::SimpleValueType RetVT = RI.first;
717             const PredMap &PM = RI.second;
718 
719             OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
720                << getLegalCName(std::string(getName(VT))) << "_"
721                << getLegalCName(std::string(getName(RetVT))) << "_";
722             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
723             OS << "(";
724             Operands.PrintParameters(OS);
725             OS << ") {\n";
726 
727             emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT)));
728           }
729 
730           // Emit one function for the type that demultiplexes on return type.
731           OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
732              << getLegalCName(std::string(getName(VT))) << "_";
733           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
734           OS << "(MVT RetVT";
735           if (!Operands.empty())
736             OS << ", ";
737           Operands.PrintParameters(OS);
738           OS << ") {\nswitch (RetVT.SimpleTy) {\n";
739           for (const auto &RI : RM) {
740             MVT::SimpleValueType RetVT = RI.first;
741             OS << "  case " << getName(RetVT) << ": return fastEmit_"
742                << getLegalCName(Opcode) << "_"
743                << getLegalCName(std::string(getName(VT))) << "_"
744                << getLegalCName(std::string(getName(RetVT))) << "_";
745             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
746             OS << "(";
747             Operands.PrintArguments(OS);
748             OS << ");\n";
749           }
750           OS << "  default: return 0;\n}\n}\n\n";
751 
752         } else {
753           // Non-variadic return type.
754           OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
755              << getLegalCName(std::string(getName(VT))) << "_";
756           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
757           OS << "(MVT RetVT";
758           if (!Operands.empty())
759             OS << ", ";
760           Operands.PrintParameters(OS);
761           OS << ") {\n";
762 
763           OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first)
764              << ")\n    return 0;\n";
765 
766           const PredMap &PM = RM.begin()->second;
767 
768           emitInstructionCode(OS, Operands, PM, "RetVT");
769         }
770       }
771 
772       // Emit one function for the opcode that demultiplexes based on the type.
773       OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_";
774       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
775       OS << "(MVT VT, MVT RetVT";
776       if (!Operands.empty())
777         OS << ", ";
778       Operands.PrintParameters(OS);
779       OS << ") {\n";
780       OS << "  switch (VT.SimpleTy) {\n";
781       for (const auto &TI : TM) {
782         MVT::SimpleValueType VT = TI.first;
783         std::string TypeName = std::string(getName(VT));
784         OS << "  case " << TypeName << ": return fastEmit_"
785            << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
786         Operands.PrintManglingSuffix(OS, ImmediatePredicates);
787         OS << "(RetVT";
788         if (!Operands.empty())
789           OS << ", ";
790         Operands.PrintArguments(OS);
791         OS << ");\n";
792       }
793       OS << "  default: return 0;\n";
794       OS << "  }\n";
795       OS << "}\n";
796       OS << "\n";
797     }
798 
799     OS << "// Top-level FastEmit function.\n";
800     OS << "\n";
801 
802     // Emit one function for the operand signature that demultiplexes based
803     // on opcode and type.
804     OS << "unsigned fastEmit_";
805     Operands.PrintManglingSuffix(OS, ImmediatePredicates);
806     OS << "(MVT VT, MVT RetVT, unsigned Opcode";
807     if (!Operands.empty())
808       OS << ", ";
809     Operands.PrintParameters(OS);
810     OS << ") ";
811     if (!Operands.hasAnyImmediateCodes())
812       OS << "override ";
813     OS << "{\n";
814 
815     // If there are any forms of this signature available that operate on
816     // constrained forms of the immediate (e.g., 32-bit sext immediate in a
817     // 64-bit operand), check them first.
818 
819     std::map<OperandsSignature, std::vector<OperandsSignature>>::iterator MI =
820         SignaturesWithConstantForms.find(Operands);
821     if (MI != SignaturesWithConstantForms.end()) {
822       // Unique any duplicates out of the list.
823       llvm::sort(MI->second);
824       MI->second.erase(llvm::unique(MI->second), MI->second.end());
825 
826       // Check each in order it was seen.  It would be nice to have a good
827       // relative ordering between them, but we're not going for optimality
828       // here.
829       for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
830         OS << "  if (";
831         MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
832         OS << ")\n    if (unsigned Reg = fastEmit_";
833         MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
834         OS << "(VT, RetVT, Opcode";
835         if (!MI->second[i].empty())
836           OS << ", ";
837         MI->second[i].PrintArguments(OS);
838         OS << "))\n      return Reg;\n\n";
839       }
840 
841       // Done with this, remove it.
842       SignaturesWithConstantForms.erase(MI);
843     }
844 
845     OS << "  switch (Opcode) {\n";
846     for (const auto &I : OTM) {
847       const std::string &Opcode = I.first;
848 
849       OS << "  case " << Opcode << ": return fastEmit_" << getLegalCName(Opcode)
850          << "_";
851       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
852       OS << "(VT, RetVT";
853       if (!Operands.empty())
854         OS << ", ";
855       Operands.PrintArguments(OS);
856       OS << ");\n";
857     }
858     OS << "  default: return 0;\n";
859     OS << "  }\n";
860     OS << "}\n";
861     OS << "\n";
862   }
863 
864   // TODO: SignaturesWithConstantForms should be empty here.
865 }
866 
867 static void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
868   CodeGenDAGPatterns CGP(RK);
869   const CodeGenTarget &Target = CGP.getTargetInfo();
870   emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
871                            Target.getName().str() + " target",
872                        OS);
873 
874   // Determine the target's namespace name.
875   StringRef InstNS = Target.getInstNamespace();
876   assert(!InstNS.empty() && "Can't determine target-specific namespace!");
877 
878   FastISelMap F(InstNS);
879   F.collectPatterns(CGP);
880   F.printImmediatePredicates(OS);
881   F.printFunctionDefinitions(OS);
882 }
883 
884 static TableGen::Emitter::Opt X("gen-fast-isel", EmitFastISel,
885                                 "Generate a \"fast\" instruction selector");
886