1 ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits code for use by the "fast" instruction 10 // selection algorithm. See the comments at the top of 11 // lib/CodeGen/SelectionDAG/FastISel.cpp for background. 12 // 13 // This file scans through the target's tablegen instruction-info files 14 // and extracts instructions with obvious-looking patterns, and it emits 15 // code to look up these instructions by type and operator. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "CodeGenDAGPatterns.h" 20 #include "CodeGenInstruction.h" 21 #include "CodeGenRegisters.h" 22 #include "CodeGenTarget.h" 23 #include "InfoByHwMode.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include "llvm/TableGen/TableGenBackend.h" 29 #include <set> 30 #include <utility> 31 using namespace llvm; 32 33 34 /// InstructionMemo - This class holds additional information about an 35 /// instruction needed to emit code for it. 36 /// 37 namespace { 38 struct InstructionMemo { 39 std::string Name; 40 const CodeGenRegisterClass *RC; 41 std::string SubRegNo; 42 std::vector<std::string> PhysRegs; 43 std::string PredicateCheck; 44 45 InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC, 46 std::string SubRegNo, std::vector<std::string> PhysRegs, 47 std::string PredicateCheck) 48 : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)), 49 PhysRegs(std::move(PhysRegs)), 50 PredicateCheck(std::move(PredicateCheck)) {} 51 52 // Make sure we do not copy InstructionMemo. 53 InstructionMemo(const InstructionMemo &Other) = delete; 54 InstructionMemo(InstructionMemo &&Other) = default; 55 }; 56 } // End anonymous namespace 57 58 /// ImmPredicateSet - This uniques predicates (represented as a string) and 59 /// gives them unique (small) integer ID's that start at 0. 60 namespace { 61 class ImmPredicateSet { 62 DenseMap<TreePattern *, unsigned> ImmIDs; 63 std::vector<TreePredicateFn> PredsByName; 64 public: 65 66 unsigned getIDFor(TreePredicateFn Pred) { 67 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; 68 if (Entry == 0) { 69 PredsByName.push_back(Pred); 70 Entry = PredsByName.size(); 71 } 72 return Entry-1; 73 } 74 75 const TreePredicateFn &getPredicate(unsigned i) { 76 assert(i < PredsByName.size()); 77 return PredsByName[i]; 78 } 79 80 typedef std::vector<TreePredicateFn>::const_iterator iterator; 81 iterator begin() const { return PredsByName.begin(); } 82 iterator end() const { return PredsByName.end(); } 83 84 }; 85 } // End anonymous namespace 86 87 /// OperandsSignature - This class holds a description of a list of operand 88 /// types. It has utility methods for emitting text based on the operands. 89 /// 90 namespace { 91 struct OperandsSignature { 92 class OpKind { 93 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; 94 char Repr; 95 public: 96 97 OpKind() : Repr(OK_Invalid) {} 98 99 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } 100 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } 101 102 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; } 103 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; } 104 static OpKind getImm(unsigned V) { 105 assert((unsigned)OK_Imm+V < 128 && 106 "Too many integer predicates for the 'Repr' char"); 107 OpKind K; K.Repr = OK_Imm+V; return K; 108 } 109 110 bool isReg() const { return Repr == OK_Reg; } 111 bool isFP() const { return Repr == OK_FP; } 112 bool isImm() const { return Repr >= OK_Imm; } 113 114 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; } 115 116 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 117 bool StripImmCodes) const { 118 if (isReg()) 119 OS << 'r'; 120 else if (isFP()) 121 OS << 'f'; 122 else { 123 OS << 'i'; 124 if (!StripImmCodes) 125 if (unsigned Code = getImmCode()) 126 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName(); 127 } 128 } 129 }; 130 131 132 SmallVector<OpKind, 3> Operands; 133 134 bool operator<(const OperandsSignature &O) const { 135 return Operands < O.Operands; 136 } 137 bool operator==(const OperandsSignature &O) const { 138 return Operands == O.Operands; 139 } 140 141 bool empty() const { return Operands.empty(); } 142 143 bool hasAnyImmediateCodes() const { 144 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 145 if (Operands[i].isImm() && Operands[i].getImmCode() != 0) 146 return true; 147 return false; 148 } 149 150 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced 151 /// to zero. 152 OperandsSignature getWithoutImmCodes() const { 153 OperandsSignature Result; 154 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 155 if (!Operands[i].isImm()) 156 Result.Operands.push_back(Operands[i]); 157 else 158 Result.Operands.push_back(OpKind::getImm(0)); 159 return Result; 160 } 161 162 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) { 163 bool EmittedAnything = false; 164 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 165 if (!Operands[i].isImm()) continue; 166 167 unsigned Code = Operands[i].getImmCode(); 168 if (Code == 0) continue; 169 170 if (EmittedAnything) 171 OS << " &&\n "; 172 173 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1); 174 175 // Emit the type check. 176 TreePattern *TP = PredFn.getOrigPatFragRecord(); 177 ValueTypeByHwMode VVT = TP->getTree(0)->getType(0); 178 assert(VVT.isSimple() && 179 "Cannot use variable value types with fast isel"); 180 OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && "; 181 182 OS << PredFn.getFnName() << "(imm" << i <<')'; 183 EmittedAnything = true; 184 } 185 } 186 187 /// initialize - Examine the given pattern and initialize the contents 188 /// of the Operands array accordingly. Return true if all the operands 189 /// are supported, false otherwise. 190 /// 191 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target, 192 MVT::SimpleValueType VT, 193 ImmPredicateSet &ImmediatePredicates, 194 const CodeGenRegisterClass *OrigDstRC) { 195 if (InstPatNode->isLeaf()) 196 return false; 197 198 if (InstPatNode->getOperator()->getName() == "imm") { 199 Operands.push_back(OpKind::getImm(0)); 200 return true; 201 } 202 203 if (InstPatNode->getOperator()->getName() == "fpimm") { 204 Operands.push_back(OpKind::getFP()); 205 return true; 206 } 207 208 const CodeGenRegisterClass *DstRC = nullptr; 209 210 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 211 TreePatternNode *Op = InstPatNode->getChild(i); 212 213 // Handle imm operands specially. 214 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") { 215 unsigned PredNo = 0; 216 if (!Op->getPredicateCalls().empty()) { 217 TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn; 218 // If there is more than one predicate weighing in on this operand 219 // then we don't handle it. This doesn't typically happen for 220 // immediates anyway. 221 if (Op->getPredicateCalls().size() > 1 || 222 !PredFn.isImmediatePattern() || PredFn.usesOperands()) 223 return false; 224 // Ignore any instruction with 'FastIselShouldIgnore', these are 225 // not needed and just bloat the fast instruction selector. For 226 // example, X86 doesn't need to generate code to match ADD16ri8 since 227 // ADD16ri will do just fine. 228 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); 229 if (Rec->getValueAsBit("FastIselShouldIgnore")) 230 return false; 231 232 PredNo = ImmediatePredicates.getIDFor(PredFn)+1; 233 } 234 235 Operands.push_back(OpKind::getImm(PredNo)); 236 continue; 237 } 238 239 240 // For now, filter out any operand with a predicate. 241 // For now, filter out any operand with multiple values. 242 if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1) 243 return false; 244 245 if (!Op->isLeaf()) { 246 if (Op->getOperator()->getName() == "fpimm") { 247 Operands.push_back(OpKind::getFP()); 248 continue; 249 } 250 // For now, ignore other non-leaf nodes. 251 return false; 252 } 253 254 assert(Op->hasConcreteType(0) && "Type infererence not done?"); 255 256 // For now, all the operands must have the same type (if they aren't 257 // immediates). Note that this causes us to reject variable sized shifts 258 // on X86. 259 if (Op->getSimpleType(0) != VT) 260 return false; 261 262 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue()); 263 if (!OpDI) 264 return false; 265 Record *OpLeafRec = OpDI->getDef(); 266 267 // For now, the only other thing we accept is register operands. 268 const CodeGenRegisterClass *RC = nullptr; 269 if (OpLeafRec->isSubClassOf("RegisterOperand")) 270 OpLeafRec = OpLeafRec->getValueAsDef("RegClass"); 271 if (OpLeafRec->isSubClassOf("RegisterClass")) 272 RC = &Target.getRegisterClass(OpLeafRec); 273 else if (OpLeafRec->isSubClassOf("Register")) 274 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec); 275 else if (OpLeafRec->isSubClassOf("ValueType")) { 276 RC = OrigDstRC; 277 } else 278 return false; 279 280 // For now, this needs to be a register class of some sort. 281 if (!RC) 282 return false; 283 284 // For now, all the operands must have the same register class or be 285 // a strict subclass of the destination. 286 if (DstRC) { 287 if (DstRC != RC && !DstRC->hasSubClass(RC)) 288 return false; 289 } else 290 DstRC = RC; 291 Operands.push_back(OpKind::getReg()); 292 } 293 return true; 294 } 295 296 void PrintParameters(raw_ostream &OS) const { 297 ListSeparator LS; 298 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 299 OS << LS; 300 if (Operands[i].isReg()) { 301 OS << "unsigned Op" << i; 302 } else if (Operands[i].isImm()) { 303 OS << "uint64_t imm" << i; 304 } else if (Operands[i].isFP()) { 305 OS << "const ConstantFP *f" << i; 306 } else { 307 llvm_unreachable("Unknown operand kind!"); 308 } 309 } 310 } 311 312 void PrintArguments(raw_ostream &OS, 313 const std::vector<std::string> &PR) const { 314 assert(PR.size() == Operands.size()); 315 ListSeparator LS; 316 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 317 if (PR[i] != "") 318 // Implicit physical register operand. 319 continue; 320 321 OS << LS; 322 if (Operands[i].isReg()) { 323 OS << "Op" << i; 324 } else if (Operands[i].isImm()) { 325 OS << "imm" << i; 326 } else if (Operands[i].isFP()) { 327 OS << "f" << i; 328 } else { 329 llvm_unreachable("Unknown operand kind!"); 330 } 331 } 332 } 333 334 void PrintArguments(raw_ostream &OS) const { 335 ListSeparator LS; 336 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 337 OS << LS; 338 if (Operands[i].isReg()) { 339 OS << "Op" << i; 340 } else if (Operands[i].isImm()) { 341 OS << "imm" << i; 342 } else if (Operands[i].isFP()) { 343 OS << "f" << i; 344 } else { 345 llvm_unreachable("Unknown operand kind!"); 346 } 347 } 348 } 349 350 351 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR, 352 ImmPredicateSet &ImmPredicates, 353 bool StripImmCodes = false) const { 354 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 355 if (PR[i] != "") 356 // Implicit physical register operand. e.g. Instruction::Mul expect to 357 // select to a binary op. On x86, mul may take a single operand with 358 // the other operand being implicit. We must emit something that looks 359 // like a binary instruction except for the very inner fastEmitInst_* 360 // call. 361 continue; 362 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 363 } 364 } 365 366 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 367 bool StripImmCodes = false) const { 368 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 369 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 370 } 371 }; 372 } // End anonymous namespace 373 374 namespace { 375 class FastISelMap { 376 // A multimap is needed instead of a "plain" map because the key is 377 // the instruction's complexity (an int) and they are not unique. 378 typedef std::multimap<int, InstructionMemo> PredMap; 379 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; 380 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; 381 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; 382 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> 383 OperandsOpcodeTypeRetPredMap; 384 385 OperandsOpcodeTypeRetPredMap SimplePatterns; 386 387 // This is used to check that there are no duplicate predicates 388 std::set<std::tuple<OperandsSignature, std::string, MVT::SimpleValueType, 389 MVT::SimpleValueType, std::string>> 390 SimplePatternsCheck; 391 392 std::map<OperandsSignature, std::vector<OperandsSignature> > 393 SignaturesWithConstantForms; 394 395 StringRef InstNS; 396 ImmPredicateSet ImmediatePredicates; 397 public: 398 explicit FastISelMap(StringRef InstNS); 399 400 void collectPatterns(CodeGenDAGPatterns &CGP); 401 void printImmediatePredicates(raw_ostream &OS); 402 void printFunctionDefinitions(raw_ostream &OS); 403 private: 404 void emitInstructionCode(raw_ostream &OS, 405 const OperandsSignature &Operands, 406 const PredMap &PM, 407 const std::string &RetVTName); 408 }; 409 } // End anonymous namespace 410 411 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { 412 return std::string(CGP.getSDNodeInfo(Op).getEnumName()); 413 } 414 415 static std::string getLegalCName(std::string OpName) { 416 std::string::size_type pos = OpName.find("::"); 417 if (pos != std::string::npos) 418 OpName.replace(pos, 2, "_"); 419 return OpName; 420 } 421 422 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {} 423 424 static std::string PhyRegForNode(TreePatternNode *Op, 425 const CodeGenTarget &Target) { 426 std::string PhysReg; 427 428 if (!Op->isLeaf()) 429 return PhysReg; 430 431 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef(); 432 if (!OpLeafRec->isSubClassOf("Register")) 433 return PhysReg; 434 435 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) 436 ->getValue(); 437 PhysReg += "::"; 438 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); 439 return PhysReg; 440 } 441 442 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) { 443 const CodeGenTarget &Target = CGP.getTargetInfo(); 444 445 // Scan through all the patterns and record the simple ones. 446 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), 447 E = CGP.ptm_end(); I != E; ++I) { 448 const PatternToMatch &Pattern = *I; 449 450 // For now, just look at Instructions, so that we don't have to worry 451 // about emitting multiple instructions for a pattern. 452 TreePatternNode *Dst = Pattern.getDstPattern(); 453 if (Dst->isLeaf()) continue; 454 Record *Op = Dst->getOperator(); 455 if (!Op->isSubClassOf("Instruction")) 456 continue; 457 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); 458 if (II.Operands.empty()) 459 continue; 460 461 // Allow instructions to be marked as unavailable for FastISel for 462 // certain cases, i.e. an ISA has two 'and' instruction which differ 463 // by what registers they can use but are otherwise identical for 464 // codegen purposes. 465 if (II.FastISelShouldIgnore) 466 continue; 467 468 // For now, ignore multi-instruction patterns. 469 bool MultiInsts = false; 470 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { 471 TreePatternNode *ChildOp = Dst->getChild(i); 472 if (ChildOp->isLeaf()) 473 continue; 474 if (ChildOp->getOperator()->isSubClassOf("Instruction")) { 475 MultiInsts = true; 476 break; 477 } 478 } 479 if (MultiInsts) 480 continue; 481 482 // For now, ignore instructions where the first operand is not an 483 // output register. 484 const CodeGenRegisterClass *DstRC = nullptr; 485 std::string SubRegNo; 486 if (Op->getName() != "EXTRACT_SUBREG") { 487 Record *Op0Rec = II.Operands[0].Rec; 488 if (Op0Rec->isSubClassOf("RegisterOperand")) 489 Op0Rec = Op0Rec->getValueAsDef("RegClass"); 490 if (!Op0Rec->isSubClassOf("RegisterClass")) 491 continue; 492 DstRC = &Target.getRegisterClass(Op0Rec); 493 if (!DstRC) 494 continue; 495 } else { 496 // If this isn't a leaf, then continue since the register classes are 497 // a bit too complicated for now. 498 if (!Dst->getChild(1)->isLeaf()) continue; 499 500 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 501 if (SR) 502 SubRegNo = getQualifiedName(SR->getDef()); 503 else 504 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString(); 505 } 506 507 // Inspect the pattern. 508 TreePatternNode *InstPatNode = Pattern.getSrcPattern(); 509 if (!InstPatNode) continue; 510 if (InstPatNode->isLeaf()) continue; 511 512 // Ignore multiple result nodes for now. 513 if (InstPatNode->getNumTypes() > 1) continue; 514 515 Record *InstPatOp = InstPatNode->getOperator(); 516 std::string OpcodeName = getOpcodeName(InstPatOp, CGP); 517 MVT::SimpleValueType RetVT = MVT::isVoid; 518 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0); 519 MVT::SimpleValueType VT = RetVT; 520 if (InstPatNode->getNumChildren()) { 521 assert(InstPatNode->getChild(0)->getNumTypes() == 1); 522 VT = InstPatNode->getChild(0)->getSimpleType(0); 523 } 524 525 // For now, filter out any instructions with predicates. 526 if (!InstPatNode->getPredicateCalls().empty()) 527 continue; 528 529 // Check all the operands. 530 OperandsSignature Operands; 531 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, 532 DstRC)) 533 continue; 534 535 std::vector<std::string> PhysRegInputs; 536 if (InstPatNode->getOperator()->getName() == "imm" || 537 InstPatNode->getOperator()->getName() == "fpimm") 538 PhysRegInputs.push_back(""); 539 else { 540 // Compute the PhysRegs used by the given pattern, and check that 541 // the mapping from the src to dst patterns is simple. 542 bool FoundNonSimplePattern = false; 543 unsigned DstIndex = 0; 544 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 545 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target); 546 if (PhysReg.empty()) { 547 if (DstIndex >= Dst->getNumChildren() || 548 Dst->getChild(DstIndex)->getName() != 549 InstPatNode->getChild(i)->getName()) { 550 FoundNonSimplePattern = true; 551 break; 552 } 553 ++DstIndex; 554 } 555 556 PhysRegInputs.push_back(PhysReg); 557 } 558 559 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren()) 560 FoundNonSimplePattern = true; 561 562 if (FoundNonSimplePattern) 563 continue; 564 } 565 566 // Check if the operands match one of the patterns handled by FastISel. 567 std::string ManglingSuffix; 568 raw_string_ostream SuffixOS(ManglingSuffix); 569 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true); 570 if (!StringSwitch<bool>(ManglingSuffix) 571 .Cases("", "r", "rr", "ri", "i", "f", true) 572 .Default(false)) 573 continue; 574 575 // Get the predicate that guards this pattern. 576 std::string PredicateCheck = Pattern.getPredicateCheck(); 577 578 // Ok, we found a pattern that we can handle. Remember it. 579 InstructionMemo Memo( 580 Pattern.getDstPattern()->getOperator()->getName(), 581 DstRC, 582 SubRegNo, 583 PhysRegInputs, 584 PredicateCheck 585 ); 586 587 int complexity = Pattern.getPatternComplexity(CGP); 588 589 auto inserted_simple_pattern = SimplePatternsCheck.insert( 590 std::make_tuple(Operands, OpcodeName, VT, RetVT, PredicateCheck)); 591 if (!inserted_simple_pattern.second) { 592 PrintFatalError(Pattern.getSrcRecord()->getLoc(), 593 "Duplicate predicate in FastISel table!"); 594 } 595 596 // Note: Instructions with the same complexity will appear in the order 597 // that they are encountered. 598 SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity, 599 std::move(Memo)); 600 601 // If any of the operands were immediates with predicates on them, strip 602 // them down to a signature that doesn't have predicates so that we can 603 // associate them with the stripped predicate version. 604 if (Operands.hasAnyImmediateCodes()) { 605 SignaturesWithConstantForms[Operands.getWithoutImmCodes()] 606 .push_back(Operands); 607 } 608 } 609 } 610 611 void FastISelMap::printImmediatePredicates(raw_ostream &OS) { 612 if (ImmediatePredicates.begin() == ImmediatePredicates.end()) 613 return; 614 615 OS << "\n// FastEmit Immediate Predicate functions.\n"; 616 for (auto ImmediatePredicate : ImmediatePredicates) { 617 OS << "static bool " << ImmediatePredicate.getFnName() 618 << "(int64_t Imm) {\n"; 619 OS << ImmediatePredicate.getImmediatePredicateCode() << "\n}\n"; 620 } 621 622 OS << "\n\n"; 623 } 624 625 void FastISelMap::emitInstructionCode(raw_ostream &OS, 626 const OperandsSignature &Operands, 627 const PredMap &PM, 628 const std::string &RetVTName) { 629 // Emit code for each possible instruction. There may be 630 // multiple if there are subtarget concerns. A reverse iterator 631 // is used to produce the ones with highest complexity first. 632 633 bool OneHadNoPredicate = false; 634 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend(); 635 PI != PE; ++PI) { 636 const InstructionMemo &Memo = PI->second; 637 std::string PredicateCheck = Memo.PredicateCheck; 638 639 if (PredicateCheck.empty()) { 640 assert(!OneHadNoPredicate && 641 "Multiple instructions match and more than one had " 642 "no predicate!"); 643 OneHadNoPredicate = true; 644 } else { 645 if (OneHadNoPredicate) { 646 PrintFatalError("Multiple instructions match and one with no " 647 "predicate came before one with a predicate! " 648 "name:" + Memo.Name + " predicate: " + PredicateCheck); 649 } 650 OS << " if (" + PredicateCheck + ") {\n"; 651 OS << " "; 652 } 653 654 for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) { 655 if (Memo.PhysRegs[i] != "") 656 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, " 657 << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i] 658 << ").addReg(Op" << i << ");\n"; 659 } 660 661 OS << " return fastEmitInst_"; 662 if (Memo.SubRegNo.empty()) { 663 Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates, 664 true); 665 OS << "(" << InstNS << "::" << Memo.Name << ", "; 666 OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass"; 667 if (!Operands.empty()) 668 OS << ", "; 669 Operands.PrintArguments(OS, Memo.PhysRegs); 670 OS << ");\n"; 671 } else { 672 OS << "extractsubreg(" << RetVTName 673 << ", Op0, " << Memo.SubRegNo << ");\n"; 674 } 675 676 if (!PredicateCheck.empty()) { 677 OS << " }\n"; 678 } 679 } 680 // Return 0 if all of the possibilities had predicates but none 681 // were satisfied. 682 if (!OneHadNoPredicate) 683 OS << " return 0;\n"; 684 OS << "}\n"; 685 OS << "\n"; 686 } 687 688 689 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { 690 // Now emit code for all the patterns that we collected. 691 for (const auto &SimplePattern : SimplePatterns) { 692 const OperandsSignature &Operands = SimplePattern.first; 693 const OpcodeTypeRetPredMap &OTM = SimplePattern.second; 694 695 for (const auto &I : OTM) { 696 const std::string &Opcode = I.first; 697 const TypeRetPredMap &TM = I.second; 698 699 OS << "// FastEmit functions for " << Opcode << ".\n"; 700 OS << "\n"; 701 702 // Emit one function for each opcode,type pair. 703 for (const auto &TI : TM) { 704 MVT::SimpleValueType VT = TI.first; 705 const RetPredMap &RM = TI.second; 706 if (RM.size() != 1) { 707 for (const auto &RI : RM) { 708 MVT::SimpleValueType RetVT = RI.first; 709 const PredMap &PM = RI.second; 710 711 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 712 << getLegalCName(std::string(getName(VT))) << "_" 713 << getLegalCName(std::string(getName(RetVT))) << "_"; 714 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 715 OS << "("; 716 Operands.PrintParameters(OS); 717 OS << ") {\n"; 718 719 emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT))); 720 } 721 722 // Emit one function for the type that demultiplexes on return type. 723 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 724 << getLegalCName(std::string(getName(VT))) << "_"; 725 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 726 OS << "(MVT RetVT"; 727 if (!Operands.empty()) 728 OS << ", "; 729 Operands.PrintParameters(OS); 730 OS << ") {\nswitch (RetVT.SimpleTy) {\n"; 731 for (const auto &RI : RM) { 732 MVT::SimpleValueType RetVT = RI.first; 733 OS << " case " << getName(RetVT) << ": return fastEmit_" 734 << getLegalCName(Opcode) << "_" 735 << getLegalCName(std::string(getName(VT))) << "_" 736 << getLegalCName(std::string(getName(RetVT))) << "_"; 737 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 738 OS << "("; 739 Operands.PrintArguments(OS); 740 OS << ");\n"; 741 } 742 OS << " default: return 0;\n}\n}\n\n"; 743 744 } else { 745 // Non-variadic return type. 746 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 747 << getLegalCName(std::string(getName(VT))) << "_"; 748 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 749 OS << "(MVT RetVT"; 750 if (!Operands.empty()) 751 OS << ", "; 752 Operands.PrintParameters(OS); 753 OS << ") {\n"; 754 755 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) 756 << ")\n return 0;\n"; 757 758 const PredMap &PM = RM.begin()->second; 759 760 emitInstructionCode(OS, Operands, PM, "RetVT"); 761 } 762 } 763 764 // Emit one function for the opcode that demultiplexes based on the type. 765 OS << "unsigned fastEmit_" 766 << getLegalCName(Opcode) << "_"; 767 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 768 OS << "(MVT VT, MVT RetVT"; 769 if (!Operands.empty()) 770 OS << ", "; 771 Operands.PrintParameters(OS); 772 OS << ") {\n"; 773 OS << " switch (VT.SimpleTy) {\n"; 774 for (const auto &TI : TM) { 775 MVT::SimpleValueType VT = TI.first; 776 std::string TypeName = std::string(getName(VT)); 777 OS << " case " << TypeName << ": return fastEmit_" 778 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; 779 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 780 OS << "(RetVT"; 781 if (!Operands.empty()) 782 OS << ", "; 783 Operands.PrintArguments(OS); 784 OS << ");\n"; 785 } 786 OS << " default: return 0;\n"; 787 OS << " }\n"; 788 OS << "}\n"; 789 OS << "\n"; 790 } 791 792 OS << "// Top-level FastEmit function.\n"; 793 OS << "\n"; 794 795 // Emit one function for the operand signature that demultiplexes based 796 // on opcode and type. 797 OS << "unsigned fastEmit_"; 798 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 799 OS << "(MVT VT, MVT RetVT, unsigned Opcode"; 800 if (!Operands.empty()) 801 OS << ", "; 802 Operands.PrintParameters(OS); 803 OS << ") "; 804 if (!Operands.hasAnyImmediateCodes()) 805 OS << "override "; 806 OS << "{\n"; 807 808 // If there are any forms of this signature available that operate on 809 // constrained forms of the immediate (e.g., 32-bit sext immediate in a 810 // 64-bit operand), check them first. 811 812 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI 813 = SignaturesWithConstantForms.find(Operands); 814 if (MI != SignaturesWithConstantForms.end()) { 815 // Unique any duplicates out of the list. 816 llvm::sort(MI->second); 817 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()), 818 MI->second.end()); 819 820 // Check each in order it was seen. It would be nice to have a good 821 // relative ordering between them, but we're not going for optimality 822 // here. 823 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) { 824 OS << " if ("; 825 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates); 826 OS << ")\n if (unsigned Reg = fastEmit_"; 827 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates); 828 OS << "(VT, RetVT, Opcode"; 829 if (!MI->second[i].empty()) 830 OS << ", "; 831 MI->second[i].PrintArguments(OS); 832 OS << "))\n return Reg;\n\n"; 833 } 834 835 // Done with this, remove it. 836 SignaturesWithConstantForms.erase(MI); 837 } 838 839 OS << " switch (Opcode) {\n"; 840 for (const auto &I : OTM) { 841 const std::string &Opcode = I.first; 842 843 OS << " case " << Opcode << ": return fastEmit_" 844 << getLegalCName(Opcode) << "_"; 845 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 846 OS << "(VT, RetVT"; 847 if (!Operands.empty()) 848 OS << ", "; 849 Operands.PrintArguments(OS); 850 OS << ");\n"; 851 } 852 OS << " default: return 0;\n"; 853 OS << " }\n"; 854 OS << "}\n"; 855 OS << "\n"; 856 } 857 858 // TODO: SignaturesWithConstantForms should be empty here. 859 } 860 861 static void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) { 862 CodeGenDAGPatterns CGP(RK); 863 const CodeGenTarget &Target = CGP.getTargetInfo(); 864 emitSourceFileHeader("\"Fast\" Instruction Selector for the " + 865 Target.getName().str() + " target", OS); 866 867 // Determine the target's namespace name. 868 StringRef InstNS = Target.getInstNamespace(); 869 assert(!InstNS.empty() && "Can't determine target-specific namespace!"); 870 871 FastISelMap F(InstNS); 872 F.collectPatterns(CGP); 873 F.printImmediatePredicates(OS); 874 F.printFunctionDefinitions(OS); 875 } 876 877 static TableGen::Emitter::Opt X("gen-fast-isel", EmitFastISel, 878 "Generate a \"fast\" instruction selector"); 879