1 ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits code for use by the "fast" instruction 10 // selection algorithm. See the comments at the top of 11 // lib/CodeGen/SelectionDAG/FastISel.cpp for background. 12 // 13 // This file scans through the target's tablegen instruction-info files 14 // and extracts instructions with obvious-looking patterns, and it emits 15 // code to look up these instructions by type and operator. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "CodeGenDAGPatterns.h" 20 #include "CodeGenInstruction.h" 21 #include "CodeGenRegisters.h" 22 #include "CodeGenTarget.h" 23 #include "InfoByHwMode.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include "llvm/TableGen/TableGenBackend.h" 29 #include <utility> 30 using namespace llvm; 31 32 33 /// InstructionMemo - This class holds additional information about an 34 /// instruction needed to emit code for it. 35 /// 36 namespace { 37 struct InstructionMemo { 38 std::string Name; 39 const CodeGenRegisterClass *RC; 40 std::string SubRegNo; 41 std::vector<std::string> PhysRegs; 42 std::string PredicateCheck; 43 44 InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC, 45 std::string SubRegNo, std::vector<std::string> PhysRegs, 46 std::string PredicateCheck) 47 : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)), 48 PhysRegs(std::move(PhysRegs)), 49 PredicateCheck(std::move(PredicateCheck)) {} 50 51 // Make sure we do not copy InstructionMemo. 52 InstructionMemo(const InstructionMemo &Other) = delete; 53 InstructionMemo(InstructionMemo &&Other) = default; 54 }; 55 } // End anonymous namespace 56 57 /// ImmPredicateSet - This uniques predicates (represented as a string) and 58 /// gives them unique (small) integer ID's that start at 0. 59 namespace { 60 class ImmPredicateSet { 61 DenseMap<TreePattern *, unsigned> ImmIDs; 62 std::vector<TreePredicateFn> PredsByName; 63 public: 64 65 unsigned getIDFor(TreePredicateFn Pred) { 66 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; 67 if (Entry == 0) { 68 PredsByName.push_back(Pred); 69 Entry = PredsByName.size(); 70 } 71 return Entry-1; 72 } 73 74 const TreePredicateFn &getPredicate(unsigned i) { 75 assert(i < PredsByName.size()); 76 return PredsByName[i]; 77 } 78 79 typedef std::vector<TreePredicateFn>::const_iterator iterator; 80 iterator begin() const { return PredsByName.begin(); } 81 iterator end() const { return PredsByName.end(); } 82 83 }; 84 } // End anonymous namespace 85 86 /// OperandsSignature - This class holds a description of a list of operand 87 /// types. It has utility methods for emitting text based on the operands. 88 /// 89 namespace { 90 struct OperandsSignature { 91 class OpKind { 92 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; 93 char Repr; 94 public: 95 96 OpKind() : Repr(OK_Invalid) {} 97 98 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } 99 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } 100 101 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; } 102 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; } 103 static OpKind getImm(unsigned V) { 104 assert((unsigned)OK_Imm+V < 128 && 105 "Too many integer predicates for the 'Repr' char"); 106 OpKind K; K.Repr = OK_Imm+V; return K; 107 } 108 109 bool isReg() const { return Repr == OK_Reg; } 110 bool isFP() const { return Repr == OK_FP; } 111 bool isImm() const { return Repr >= OK_Imm; } 112 113 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; } 114 115 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 116 bool StripImmCodes) const { 117 if (isReg()) 118 OS << 'r'; 119 else if (isFP()) 120 OS << 'f'; 121 else { 122 OS << 'i'; 123 if (!StripImmCodes) 124 if (unsigned Code = getImmCode()) 125 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName(); 126 } 127 } 128 }; 129 130 131 SmallVector<OpKind, 3> Operands; 132 133 bool operator<(const OperandsSignature &O) const { 134 return Operands < O.Operands; 135 } 136 bool operator==(const OperandsSignature &O) const { 137 return Operands == O.Operands; 138 } 139 140 bool empty() const { return Operands.empty(); } 141 142 bool hasAnyImmediateCodes() const { 143 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 144 if (Operands[i].isImm() && Operands[i].getImmCode() != 0) 145 return true; 146 return false; 147 } 148 149 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced 150 /// to zero. 151 OperandsSignature getWithoutImmCodes() const { 152 OperandsSignature Result; 153 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 154 if (!Operands[i].isImm()) 155 Result.Operands.push_back(Operands[i]); 156 else 157 Result.Operands.push_back(OpKind::getImm(0)); 158 return Result; 159 } 160 161 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) { 162 bool EmittedAnything = false; 163 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 164 if (!Operands[i].isImm()) continue; 165 166 unsigned Code = Operands[i].getImmCode(); 167 if (Code == 0) continue; 168 169 if (EmittedAnything) 170 OS << " &&\n "; 171 172 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1); 173 174 // Emit the type check. 175 TreePattern *TP = PredFn.getOrigPatFragRecord(); 176 ValueTypeByHwMode VVT = TP->getTree(0)->getType(0); 177 assert(VVT.isSimple() && 178 "Cannot use variable value types with fast isel"); 179 OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && "; 180 181 OS << PredFn.getFnName() << "(imm" << i <<')'; 182 EmittedAnything = true; 183 } 184 } 185 186 /// initialize - Examine the given pattern and initialize the contents 187 /// of the Operands array accordingly. Return true if all the operands 188 /// are supported, false otherwise. 189 /// 190 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target, 191 MVT::SimpleValueType VT, 192 ImmPredicateSet &ImmediatePredicates, 193 const CodeGenRegisterClass *OrigDstRC) { 194 if (InstPatNode->isLeaf()) 195 return false; 196 197 if (InstPatNode->getOperator()->getName() == "imm") { 198 Operands.push_back(OpKind::getImm(0)); 199 return true; 200 } 201 202 if (InstPatNode->getOperator()->getName() == "fpimm") { 203 Operands.push_back(OpKind::getFP()); 204 return true; 205 } 206 207 const CodeGenRegisterClass *DstRC = nullptr; 208 209 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 210 TreePatternNode *Op = InstPatNode->getChild(i); 211 212 // Handle imm operands specially. 213 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") { 214 unsigned PredNo = 0; 215 if (!Op->getPredicateCalls().empty()) { 216 TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn; 217 // If there is more than one predicate weighing in on this operand 218 // then we don't handle it. This doesn't typically happen for 219 // immediates anyway. 220 if (Op->getPredicateCalls().size() > 1 || 221 !PredFn.isImmediatePattern() || PredFn.usesOperands()) 222 return false; 223 // Ignore any instruction with 'FastIselShouldIgnore', these are 224 // not needed and just bloat the fast instruction selector. For 225 // example, X86 doesn't need to generate code to match ADD16ri8 since 226 // ADD16ri will do just fine. 227 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); 228 if (Rec->getValueAsBit("FastIselShouldIgnore")) 229 return false; 230 231 PredNo = ImmediatePredicates.getIDFor(PredFn)+1; 232 } 233 234 Operands.push_back(OpKind::getImm(PredNo)); 235 continue; 236 } 237 238 239 // For now, filter out any operand with a predicate. 240 // For now, filter out any operand with multiple values. 241 if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1) 242 return false; 243 244 if (!Op->isLeaf()) { 245 if (Op->getOperator()->getName() == "fpimm") { 246 Operands.push_back(OpKind::getFP()); 247 continue; 248 } 249 // For now, ignore other non-leaf nodes. 250 return false; 251 } 252 253 assert(Op->hasConcreteType(0) && "Type infererence not done?"); 254 255 // For now, all the operands must have the same type (if they aren't 256 // immediates). Note that this causes us to reject variable sized shifts 257 // on X86. 258 if (Op->getSimpleType(0) != VT) 259 return false; 260 261 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue()); 262 if (!OpDI) 263 return false; 264 Record *OpLeafRec = OpDI->getDef(); 265 266 // For now, the only other thing we accept is register operands. 267 const CodeGenRegisterClass *RC = nullptr; 268 if (OpLeafRec->isSubClassOf("RegisterOperand")) 269 OpLeafRec = OpLeafRec->getValueAsDef("RegClass"); 270 if (OpLeafRec->isSubClassOf("RegisterClass")) 271 RC = &Target.getRegisterClass(OpLeafRec); 272 else if (OpLeafRec->isSubClassOf("Register")) 273 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec); 274 else if (OpLeafRec->isSubClassOf("ValueType")) { 275 RC = OrigDstRC; 276 } else 277 return false; 278 279 // For now, this needs to be a register class of some sort. 280 if (!RC) 281 return false; 282 283 // For now, all the operands must have the same register class or be 284 // a strict subclass of the destination. 285 if (DstRC) { 286 if (DstRC != RC && !DstRC->hasSubClass(RC)) 287 return false; 288 } else 289 DstRC = RC; 290 Operands.push_back(OpKind::getReg()); 291 } 292 return true; 293 } 294 295 void PrintParameters(raw_ostream &OS) const { 296 ListSeparator LS; 297 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 298 OS << LS; 299 if (Operands[i].isReg()) { 300 OS << "unsigned Op" << i; 301 } else if (Operands[i].isImm()) { 302 OS << "uint64_t imm" << i; 303 } else if (Operands[i].isFP()) { 304 OS << "const ConstantFP *f" << i; 305 } else { 306 llvm_unreachable("Unknown operand kind!"); 307 } 308 } 309 } 310 311 void PrintArguments(raw_ostream &OS, 312 const std::vector<std::string> &PR) const { 313 assert(PR.size() == Operands.size()); 314 ListSeparator LS; 315 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 316 if (PR[i] != "") 317 // Implicit physical register operand. 318 continue; 319 320 OS << LS; 321 if (Operands[i].isReg()) { 322 OS << "Op" << i; 323 } else if (Operands[i].isImm()) { 324 OS << "imm" << i; 325 } else if (Operands[i].isFP()) { 326 OS << "f" << i; 327 } else { 328 llvm_unreachable("Unknown operand kind!"); 329 } 330 } 331 } 332 333 void PrintArguments(raw_ostream &OS) const { 334 ListSeparator LS; 335 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 336 OS << LS; 337 if (Operands[i].isReg()) { 338 OS << "Op" << i; 339 } else if (Operands[i].isImm()) { 340 OS << "imm" << i; 341 } else if (Operands[i].isFP()) { 342 OS << "f" << i; 343 } else { 344 llvm_unreachable("Unknown operand kind!"); 345 } 346 } 347 } 348 349 350 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR, 351 ImmPredicateSet &ImmPredicates, 352 bool StripImmCodes = false) const { 353 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 354 if (PR[i] != "") 355 // Implicit physical register operand. e.g. Instruction::Mul expect to 356 // select to a binary op. On x86, mul may take a single operand with 357 // the other operand being implicit. We must emit something that looks 358 // like a binary instruction except for the very inner fastEmitInst_* 359 // call. 360 continue; 361 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 362 } 363 } 364 365 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 366 bool StripImmCodes = false) const { 367 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 368 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 369 } 370 }; 371 } // End anonymous namespace 372 373 namespace { 374 class FastISelMap { 375 // A multimap is needed instead of a "plain" map because the key is 376 // the instruction's complexity (an int) and they are not unique. 377 typedef std::multimap<int, InstructionMemo> PredMap; 378 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; 379 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; 380 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; 381 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> 382 OperandsOpcodeTypeRetPredMap; 383 384 OperandsOpcodeTypeRetPredMap SimplePatterns; 385 386 // This is used to check that there are no duplicate predicates 387 std::set<std::tuple<OperandsSignature, std::string, MVT::SimpleValueType, 388 MVT::SimpleValueType, std::string>> 389 SimplePatternsCheck; 390 391 std::map<OperandsSignature, std::vector<OperandsSignature> > 392 SignaturesWithConstantForms; 393 394 StringRef InstNS; 395 ImmPredicateSet ImmediatePredicates; 396 public: 397 explicit FastISelMap(StringRef InstNS); 398 399 void collectPatterns(CodeGenDAGPatterns &CGP); 400 void printImmediatePredicates(raw_ostream &OS); 401 void printFunctionDefinitions(raw_ostream &OS); 402 private: 403 void emitInstructionCode(raw_ostream &OS, 404 const OperandsSignature &Operands, 405 const PredMap &PM, 406 const std::string &RetVTName); 407 }; 408 } // End anonymous namespace 409 410 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { 411 return std::string(CGP.getSDNodeInfo(Op).getEnumName()); 412 } 413 414 static std::string getLegalCName(std::string OpName) { 415 std::string::size_type pos = OpName.find("::"); 416 if (pos != std::string::npos) 417 OpName.replace(pos, 2, "_"); 418 return OpName; 419 } 420 421 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {} 422 423 static std::string PhyRegForNode(TreePatternNode *Op, 424 const CodeGenTarget &Target) { 425 std::string PhysReg; 426 427 if (!Op->isLeaf()) 428 return PhysReg; 429 430 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef(); 431 if (!OpLeafRec->isSubClassOf("Register")) 432 return PhysReg; 433 434 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) 435 ->getValue(); 436 PhysReg += "::"; 437 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); 438 return PhysReg; 439 } 440 441 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) { 442 const CodeGenTarget &Target = CGP.getTargetInfo(); 443 444 // Scan through all the patterns and record the simple ones. 445 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), 446 E = CGP.ptm_end(); I != E; ++I) { 447 const PatternToMatch &Pattern = *I; 448 449 // For now, just look at Instructions, so that we don't have to worry 450 // about emitting multiple instructions for a pattern. 451 TreePatternNode *Dst = Pattern.getDstPattern(); 452 if (Dst->isLeaf()) continue; 453 Record *Op = Dst->getOperator(); 454 if (!Op->isSubClassOf("Instruction")) 455 continue; 456 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); 457 if (II.Operands.empty()) 458 continue; 459 460 // Allow instructions to be marked as unavailable for FastISel for 461 // certain cases, i.e. an ISA has two 'and' instruction which differ 462 // by what registers they can use but are otherwise identical for 463 // codegen purposes. 464 if (II.FastISelShouldIgnore) 465 continue; 466 467 // For now, ignore multi-instruction patterns. 468 bool MultiInsts = false; 469 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { 470 TreePatternNode *ChildOp = Dst->getChild(i); 471 if (ChildOp->isLeaf()) 472 continue; 473 if (ChildOp->getOperator()->isSubClassOf("Instruction")) { 474 MultiInsts = true; 475 break; 476 } 477 } 478 if (MultiInsts) 479 continue; 480 481 // For now, ignore instructions where the first operand is not an 482 // output register. 483 const CodeGenRegisterClass *DstRC = nullptr; 484 std::string SubRegNo; 485 if (Op->getName() != "EXTRACT_SUBREG") { 486 Record *Op0Rec = II.Operands[0].Rec; 487 if (Op0Rec->isSubClassOf("RegisterOperand")) 488 Op0Rec = Op0Rec->getValueAsDef("RegClass"); 489 if (!Op0Rec->isSubClassOf("RegisterClass")) 490 continue; 491 DstRC = &Target.getRegisterClass(Op0Rec); 492 if (!DstRC) 493 continue; 494 } else { 495 // If this isn't a leaf, then continue since the register classes are 496 // a bit too complicated for now. 497 if (!Dst->getChild(1)->isLeaf()) continue; 498 499 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 500 if (SR) 501 SubRegNo = getQualifiedName(SR->getDef()); 502 else 503 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString(); 504 } 505 506 // Inspect the pattern. 507 TreePatternNode *InstPatNode = Pattern.getSrcPattern(); 508 if (!InstPatNode) continue; 509 if (InstPatNode->isLeaf()) continue; 510 511 // Ignore multiple result nodes for now. 512 if (InstPatNode->getNumTypes() > 1) continue; 513 514 Record *InstPatOp = InstPatNode->getOperator(); 515 std::string OpcodeName = getOpcodeName(InstPatOp, CGP); 516 MVT::SimpleValueType RetVT = MVT::isVoid; 517 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0); 518 MVT::SimpleValueType VT = RetVT; 519 if (InstPatNode->getNumChildren()) { 520 assert(InstPatNode->getChild(0)->getNumTypes() == 1); 521 VT = InstPatNode->getChild(0)->getSimpleType(0); 522 } 523 524 // For now, filter out any instructions with predicates. 525 if (!InstPatNode->getPredicateCalls().empty()) 526 continue; 527 528 // Check all the operands. 529 OperandsSignature Operands; 530 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, 531 DstRC)) 532 continue; 533 534 std::vector<std::string> PhysRegInputs; 535 if (InstPatNode->getOperator()->getName() == "imm" || 536 InstPatNode->getOperator()->getName() == "fpimm") 537 PhysRegInputs.push_back(""); 538 else { 539 // Compute the PhysRegs used by the given pattern, and check that 540 // the mapping from the src to dst patterns is simple. 541 bool FoundNonSimplePattern = false; 542 unsigned DstIndex = 0; 543 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 544 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target); 545 if (PhysReg.empty()) { 546 if (DstIndex >= Dst->getNumChildren() || 547 Dst->getChild(DstIndex)->getName() != 548 InstPatNode->getChild(i)->getName()) { 549 FoundNonSimplePattern = true; 550 break; 551 } 552 ++DstIndex; 553 } 554 555 PhysRegInputs.push_back(PhysReg); 556 } 557 558 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren()) 559 FoundNonSimplePattern = true; 560 561 if (FoundNonSimplePattern) 562 continue; 563 } 564 565 // Check if the operands match one of the patterns handled by FastISel. 566 std::string ManglingSuffix; 567 raw_string_ostream SuffixOS(ManglingSuffix); 568 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true); 569 if (!StringSwitch<bool>(ManglingSuffix) 570 .Cases("", "r", "rr", "ri", "i", "f", true) 571 .Default(false)) 572 continue; 573 574 // Get the predicate that guards this pattern. 575 std::string PredicateCheck = Pattern.getPredicateCheck(); 576 577 // Ok, we found a pattern that we can handle. Remember it. 578 InstructionMemo Memo( 579 Pattern.getDstPattern()->getOperator()->getName(), 580 DstRC, 581 SubRegNo, 582 PhysRegInputs, 583 PredicateCheck 584 ); 585 586 int complexity = Pattern.getPatternComplexity(CGP); 587 588 auto inserted_simple_pattern = SimplePatternsCheck.insert( 589 std::make_tuple(Operands, OpcodeName, VT, RetVT, PredicateCheck)); 590 if (!inserted_simple_pattern.second) { 591 PrintFatalError(Pattern.getSrcRecord()->getLoc(), 592 "Duplicate predicate in FastISel table!"); 593 } 594 595 // Note: Instructions with the same complexity will appear in the order 596 // that they are encountered. 597 SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity, 598 std::move(Memo)); 599 600 // If any of the operands were immediates with predicates on them, strip 601 // them down to a signature that doesn't have predicates so that we can 602 // associate them with the stripped predicate version. 603 if (Operands.hasAnyImmediateCodes()) { 604 SignaturesWithConstantForms[Operands.getWithoutImmCodes()] 605 .push_back(Operands); 606 } 607 } 608 } 609 610 void FastISelMap::printImmediatePredicates(raw_ostream &OS) { 611 if (ImmediatePredicates.begin() == ImmediatePredicates.end()) 612 return; 613 614 OS << "\n// FastEmit Immediate Predicate functions.\n"; 615 for (auto ImmediatePredicate : ImmediatePredicates) { 616 OS << "static bool " << ImmediatePredicate.getFnName() 617 << "(int64_t Imm) {\n"; 618 OS << ImmediatePredicate.getImmediatePredicateCode() << "\n}\n"; 619 } 620 621 OS << "\n\n"; 622 } 623 624 void FastISelMap::emitInstructionCode(raw_ostream &OS, 625 const OperandsSignature &Operands, 626 const PredMap &PM, 627 const std::string &RetVTName) { 628 // Emit code for each possible instruction. There may be 629 // multiple if there are subtarget concerns. A reverse iterator 630 // is used to produce the ones with highest complexity first. 631 632 bool OneHadNoPredicate = false; 633 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend(); 634 PI != PE; ++PI) { 635 const InstructionMemo &Memo = PI->second; 636 std::string PredicateCheck = Memo.PredicateCheck; 637 638 if (PredicateCheck.empty()) { 639 assert(!OneHadNoPredicate && 640 "Multiple instructions match and more than one had " 641 "no predicate!"); 642 OneHadNoPredicate = true; 643 } else { 644 if (OneHadNoPredicate) { 645 PrintFatalError("Multiple instructions match and one with no " 646 "predicate came before one with a predicate! " 647 "name:" + Memo.Name + " predicate: " + PredicateCheck); 648 } 649 OS << " if (" + PredicateCheck + ") {\n"; 650 OS << " "; 651 } 652 653 for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) { 654 if (Memo.PhysRegs[i] != "") 655 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, " 656 << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i] 657 << ").addReg(Op" << i << ");\n"; 658 } 659 660 OS << " return fastEmitInst_"; 661 if (Memo.SubRegNo.empty()) { 662 Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates, 663 true); 664 OS << "(" << InstNS << "::" << Memo.Name << ", "; 665 OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass"; 666 if (!Operands.empty()) 667 OS << ", "; 668 Operands.PrintArguments(OS, Memo.PhysRegs); 669 OS << ");\n"; 670 } else { 671 OS << "extractsubreg(" << RetVTName 672 << ", Op0, " << Memo.SubRegNo << ");\n"; 673 } 674 675 if (!PredicateCheck.empty()) { 676 OS << " }\n"; 677 } 678 } 679 // Return 0 if all of the possibilities had predicates but none 680 // were satisfied. 681 if (!OneHadNoPredicate) 682 OS << " return 0;\n"; 683 OS << "}\n"; 684 OS << "\n"; 685 } 686 687 688 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { 689 // Now emit code for all the patterns that we collected. 690 for (const auto &SimplePattern : SimplePatterns) { 691 const OperandsSignature &Operands = SimplePattern.first; 692 const OpcodeTypeRetPredMap &OTM = SimplePattern.second; 693 694 for (const auto &I : OTM) { 695 const std::string &Opcode = I.first; 696 const TypeRetPredMap &TM = I.second; 697 698 OS << "// FastEmit functions for " << Opcode << ".\n"; 699 OS << "\n"; 700 701 // Emit one function for each opcode,type pair. 702 for (const auto &TI : TM) { 703 MVT::SimpleValueType VT = TI.first; 704 const RetPredMap &RM = TI.second; 705 if (RM.size() != 1) { 706 for (const auto &RI : RM) { 707 MVT::SimpleValueType RetVT = RI.first; 708 const PredMap &PM = RI.second; 709 710 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 711 << getLegalCName(std::string(getName(VT))) << "_" 712 << getLegalCName(std::string(getName(RetVT))) << "_"; 713 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 714 OS << "("; 715 Operands.PrintParameters(OS); 716 OS << ") {\n"; 717 718 emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT))); 719 } 720 721 // Emit one function for the type that demultiplexes on return type. 722 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 723 << getLegalCName(std::string(getName(VT))) << "_"; 724 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 725 OS << "(MVT RetVT"; 726 if (!Operands.empty()) 727 OS << ", "; 728 Operands.PrintParameters(OS); 729 OS << ") {\nswitch (RetVT.SimpleTy) {\n"; 730 for (const auto &RI : RM) { 731 MVT::SimpleValueType RetVT = RI.first; 732 OS << " case " << getName(RetVT) << ": return fastEmit_" 733 << getLegalCName(Opcode) << "_" 734 << getLegalCName(std::string(getName(VT))) << "_" 735 << getLegalCName(std::string(getName(RetVT))) << "_"; 736 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 737 OS << "("; 738 Operands.PrintArguments(OS); 739 OS << ");\n"; 740 } 741 OS << " default: return 0;\n}\n}\n\n"; 742 743 } else { 744 // Non-variadic return type. 745 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 746 << getLegalCName(std::string(getName(VT))) << "_"; 747 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 748 OS << "(MVT RetVT"; 749 if (!Operands.empty()) 750 OS << ", "; 751 Operands.PrintParameters(OS); 752 OS << ") {\n"; 753 754 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) 755 << ")\n return 0;\n"; 756 757 const PredMap &PM = RM.begin()->second; 758 759 emitInstructionCode(OS, Operands, PM, "RetVT"); 760 } 761 } 762 763 // Emit one function for the opcode that demultiplexes based on the type. 764 OS << "unsigned fastEmit_" 765 << getLegalCName(Opcode) << "_"; 766 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 767 OS << "(MVT VT, MVT RetVT"; 768 if (!Operands.empty()) 769 OS << ", "; 770 Operands.PrintParameters(OS); 771 OS << ") {\n"; 772 OS << " switch (VT.SimpleTy) {\n"; 773 for (const auto &TI : TM) { 774 MVT::SimpleValueType VT = TI.first; 775 std::string TypeName = std::string(getName(VT)); 776 OS << " case " << TypeName << ": return fastEmit_" 777 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; 778 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 779 OS << "(RetVT"; 780 if (!Operands.empty()) 781 OS << ", "; 782 Operands.PrintArguments(OS); 783 OS << ");\n"; 784 } 785 OS << " default: return 0;\n"; 786 OS << " }\n"; 787 OS << "}\n"; 788 OS << "\n"; 789 } 790 791 OS << "// Top-level FastEmit function.\n"; 792 OS << "\n"; 793 794 // Emit one function for the operand signature that demultiplexes based 795 // on opcode and type. 796 OS << "unsigned fastEmit_"; 797 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 798 OS << "(MVT VT, MVT RetVT, unsigned Opcode"; 799 if (!Operands.empty()) 800 OS << ", "; 801 Operands.PrintParameters(OS); 802 OS << ") "; 803 if (!Operands.hasAnyImmediateCodes()) 804 OS << "override "; 805 OS << "{\n"; 806 807 // If there are any forms of this signature available that operate on 808 // constrained forms of the immediate (e.g., 32-bit sext immediate in a 809 // 64-bit operand), check them first. 810 811 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI 812 = SignaturesWithConstantForms.find(Operands); 813 if (MI != SignaturesWithConstantForms.end()) { 814 // Unique any duplicates out of the list. 815 llvm::sort(MI->second); 816 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()), 817 MI->second.end()); 818 819 // Check each in order it was seen. It would be nice to have a good 820 // relative ordering between them, but we're not going for optimality 821 // here. 822 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) { 823 OS << " if ("; 824 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates); 825 OS << ")\n if (unsigned Reg = fastEmit_"; 826 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates); 827 OS << "(VT, RetVT, Opcode"; 828 if (!MI->second[i].empty()) 829 OS << ", "; 830 MI->second[i].PrintArguments(OS); 831 OS << "))\n return Reg;\n\n"; 832 } 833 834 // Done with this, remove it. 835 SignaturesWithConstantForms.erase(MI); 836 } 837 838 OS << " switch (Opcode) {\n"; 839 for (const auto &I : OTM) { 840 const std::string &Opcode = I.first; 841 842 OS << " case " << Opcode << ": return fastEmit_" 843 << getLegalCName(Opcode) << "_"; 844 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 845 OS << "(VT, RetVT"; 846 if (!Operands.empty()) 847 OS << ", "; 848 Operands.PrintArguments(OS); 849 OS << ");\n"; 850 } 851 OS << " default: return 0;\n"; 852 OS << " }\n"; 853 OS << "}\n"; 854 OS << "\n"; 855 } 856 857 // TODO: SignaturesWithConstantForms should be empty here. 858 } 859 860 static void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) { 861 CodeGenDAGPatterns CGP(RK); 862 const CodeGenTarget &Target = CGP.getTargetInfo(); 863 emitSourceFileHeader("\"Fast\" Instruction Selector for the " + 864 Target.getName().str() + " target", OS); 865 866 // Determine the target's namespace name. 867 StringRef InstNS = Target.getInstNamespace(); 868 assert(!InstNS.empty() && "Can't determine target-specific namespace!"); 869 870 FastISelMap F(InstNS); 871 F.collectPatterns(CGP); 872 F.printImmediatePredicates(OS); 873 F.printFunctionDefinitions(OS); 874 } 875 876 static TableGen::Emitter::Opt X("gen-fast-isel", EmitFastISel, 877 "Generate a \"fast\" instruction selector"); 878