xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/FastISelEmitter.cpp (revision 3e8eb5c7f4909209c042403ddee340b2ee7003a5)
1 ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits code for use by the "fast" instruction
10 // selection algorithm. See the comments at the top of
11 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
12 //
13 // This file scans through the target's tablegen instruction-info files
14 // and extracts instructions with obvious-looking patterns, and it emits
15 // code to look up these instructions by type and operator.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "CodeGenDAGPatterns.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/TableGen/Error.h"
24 #include "llvm/TableGen/Record.h"
25 #include "llvm/TableGen/TableGenBackend.h"
26 #include <utility>
27 using namespace llvm;
28 
29 
30 /// InstructionMemo - This class holds additional information about an
31 /// instruction needed to emit code for it.
32 ///
33 namespace {
34 struct InstructionMemo {
35   std::string Name;
36   const CodeGenRegisterClass *RC;
37   std::string SubRegNo;
38   std::vector<std::string> PhysRegs;
39   std::string PredicateCheck;
40 
41   InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
42                   std::string SubRegNo, std::vector<std::string> PhysRegs,
43                   std::string PredicateCheck)
44       : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
45         PhysRegs(std::move(PhysRegs)),
46         PredicateCheck(std::move(PredicateCheck)) {}
47 
48   // Make sure we do not copy InstructionMemo.
49   InstructionMemo(const InstructionMemo &Other) = delete;
50   InstructionMemo(InstructionMemo &&Other) = default;
51 };
52 } // End anonymous namespace
53 
54 /// ImmPredicateSet - This uniques predicates (represented as a string) and
55 /// gives them unique (small) integer ID's that start at 0.
56 namespace {
57 class ImmPredicateSet {
58   DenseMap<TreePattern *, unsigned> ImmIDs;
59   std::vector<TreePredicateFn> PredsByName;
60 public:
61 
62   unsigned getIDFor(TreePredicateFn Pred) {
63     unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
64     if (Entry == 0) {
65       PredsByName.push_back(Pred);
66       Entry = PredsByName.size();
67     }
68     return Entry-1;
69   }
70 
71   const TreePredicateFn &getPredicate(unsigned i) {
72     assert(i < PredsByName.size());
73     return PredsByName[i];
74   }
75 
76   typedef std::vector<TreePredicateFn>::const_iterator iterator;
77   iterator begin() const { return PredsByName.begin(); }
78   iterator end() const { return PredsByName.end(); }
79 
80 };
81 } // End anonymous namespace
82 
83 /// OperandsSignature - This class holds a description of a list of operand
84 /// types. It has utility methods for emitting text based on the operands.
85 ///
86 namespace {
87 struct OperandsSignature {
88   class OpKind {
89     enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
90     char Repr;
91   public:
92 
93     OpKind() : Repr(OK_Invalid) {}
94 
95     bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
96     bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
97 
98     static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
99     static OpKind getFP()  { OpKind K; K.Repr = OK_FP; return K; }
100     static OpKind getImm(unsigned V) {
101       assert((unsigned)OK_Imm+V < 128 &&
102              "Too many integer predicates for the 'Repr' char");
103       OpKind K; K.Repr = OK_Imm+V; return K;
104     }
105 
106     bool isReg() const { return Repr == OK_Reg; }
107     bool isFP() const  { return Repr == OK_FP; }
108     bool isImm() const { return Repr >= OK_Imm; }
109 
110     unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
111 
112     void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
113                              bool StripImmCodes) const {
114       if (isReg())
115         OS << 'r';
116       else if (isFP())
117         OS << 'f';
118       else {
119         OS << 'i';
120         if (!StripImmCodes)
121           if (unsigned Code = getImmCode())
122             OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
123       }
124     }
125   };
126 
127 
128   SmallVector<OpKind, 3> Operands;
129 
130   bool operator<(const OperandsSignature &O) const {
131     return Operands < O.Operands;
132   }
133   bool operator==(const OperandsSignature &O) const {
134     return Operands == O.Operands;
135   }
136 
137   bool empty() const { return Operands.empty(); }
138 
139   bool hasAnyImmediateCodes() const {
140     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
141       if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
142         return true;
143     return false;
144   }
145 
146   /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
147   /// to zero.
148   OperandsSignature getWithoutImmCodes() const {
149     OperandsSignature Result;
150     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
151       if (!Operands[i].isImm())
152         Result.Operands.push_back(Operands[i]);
153       else
154         Result.Operands.push_back(OpKind::getImm(0));
155     return Result;
156   }
157 
158   void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
159     bool EmittedAnything = false;
160     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
161       if (!Operands[i].isImm()) continue;
162 
163       unsigned Code = Operands[i].getImmCode();
164       if (Code == 0) continue;
165 
166       if (EmittedAnything)
167         OS << " &&\n        ";
168 
169       TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
170 
171       // Emit the type check.
172       TreePattern *TP = PredFn.getOrigPatFragRecord();
173       ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
174       assert(VVT.isSimple() &&
175              "Cannot use variable value types with fast isel");
176       OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";
177 
178       OS << PredFn.getFnName() << "(imm" << i <<')';
179       EmittedAnything = true;
180     }
181   }
182 
183   /// initialize - Examine the given pattern and initialize the contents
184   /// of the Operands array accordingly. Return true if all the operands
185   /// are supported, false otherwise.
186   ///
187   bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
188                   MVT::SimpleValueType VT,
189                   ImmPredicateSet &ImmediatePredicates,
190                   const CodeGenRegisterClass *OrigDstRC) {
191     if (InstPatNode->isLeaf())
192       return false;
193 
194     if (InstPatNode->getOperator()->getName() == "imm") {
195       Operands.push_back(OpKind::getImm(0));
196       return true;
197     }
198 
199     if (InstPatNode->getOperator()->getName() == "fpimm") {
200       Operands.push_back(OpKind::getFP());
201       return true;
202     }
203 
204     const CodeGenRegisterClass *DstRC = nullptr;
205 
206     for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
207       TreePatternNode *Op = InstPatNode->getChild(i);
208 
209       // Handle imm operands specially.
210       if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
211         unsigned PredNo = 0;
212         if (!Op->getPredicateCalls().empty()) {
213           TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn;
214           // If there is more than one predicate weighing in on this operand
215           // then we don't handle it.  This doesn't typically happen for
216           // immediates anyway.
217           if (Op->getPredicateCalls().size() > 1 ||
218               !PredFn.isImmediatePattern() || PredFn.usesOperands())
219             return false;
220           // Ignore any instruction with 'FastIselShouldIgnore', these are
221           // not needed and just bloat the fast instruction selector.  For
222           // example, X86 doesn't need to generate code to match ADD16ri8 since
223           // ADD16ri will do just fine.
224           Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
225           if (Rec->getValueAsBit("FastIselShouldIgnore"))
226             return false;
227 
228           PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
229         }
230 
231         Operands.push_back(OpKind::getImm(PredNo));
232         continue;
233       }
234 
235 
236       // For now, filter out any operand with a predicate.
237       // For now, filter out any operand with multiple values.
238       if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1)
239         return false;
240 
241       if (!Op->isLeaf()) {
242          if (Op->getOperator()->getName() == "fpimm") {
243           Operands.push_back(OpKind::getFP());
244           continue;
245         }
246         // For now, ignore other non-leaf nodes.
247         return false;
248       }
249 
250       assert(Op->hasConcreteType(0) && "Type infererence not done?");
251 
252       // For now, all the operands must have the same type (if they aren't
253       // immediates).  Note that this causes us to reject variable sized shifts
254       // on X86.
255       if (Op->getSimpleType(0) != VT)
256         return false;
257 
258       DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
259       if (!OpDI)
260         return false;
261       Record *OpLeafRec = OpDI->getDef();
262 
263       // For now, the only other thing we accept is register operands.
264       const CodeGenRegisterClass *RC = nullptr;
265       if (OpLeafRec->isSubClassOf("RegisterOperand"))
266         OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
267       if (OpLeafRec->isSubClassOf("RegisterClass"))
268         RC = &Target.getRegisterClass(OpLeafRec);
269       else if (OpLeafRec->isSubClassOf("Register"))
270         RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
271       else if (OpLeafRec->isSubClassOf("ValueType")) {
272         RC = OrigDstRC;
273       } else
274         return false;
275 
276       // For now, this needs to be a register class of some sort.
277       if (!RC)
278         return false;
279 
280       // For now, all the operands must have the same register class or be
281       // a strict subclass of the destination.
282       if (DstRC) {
283         if (DstRC != RC && !DstRC->hasSubClass(RC))
284           return false;
285       } else
286         DstRC = RC;
287       Operands.push_back(OpKind::getReg());
288     }
289     return true;
290   }
291 
292   void PrintParameters(raw_ostream &OS) const {
293     ListSeparator LS;
294     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
295       OS << LS;
296       if (Operands[i].isReg()) {
297         OS << "unsigned Op" << i;
298       } else if (Operands[i].isImm()) {
299         OS << "uint64_t imm" << i;
300       } else if (Operands[i].isFP()) {
301         OS << "const ConstantFP *f" << i;
302       } else {
303         llvm_unreachable("Unknown operand kind!");
304       }
305     }
306   }
307 
308   void PrintArguments(raw_ostream &OS,
309                       const std::vector<std::string> &PR) const {
310     assert(PR.size() == Operands.size());
311     ListSeparator LS;
312     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
313       if (PR[i] != "")
314         // Implicit physical register operand.
315         continue;
316 
317       OS << LS;
318       if (Operands[i].isReg()) {
319         OS << "Op" << i;
320       } else if (Operands[i].isImm()) {
321         OS << "imm" << i;
322       } else if (Operands[i].isFP()) {
323         OS << "f" << i;
324       } else {
325         llvm_unreachable("Unknown operand kind!");
326       }
327     }
328   }
329 
330   void PrintArguments(raw_ostream &OS) const {
331     ListSeparator LS;
332     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
333       OS << LS;
334       if (Operands[i].isReg()) {
335         OS << "Op" << i;
336       } else if (Operands[i].isImm()) {
337         OS << "imm" << i;
338       } else if (Operands[i].isFP()) {
339         OS << "f" << i;
340       } else {
341         llvm_unreachable("Unknown operand kind!");
342       }
343     }
344   }
345 
346 
347   void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
348                            ImmPredicateSet &ImmPredicates,
349                            bool StripImmCodes = false) const {
350     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
351       if (PR[i] != "")
352         // Implicit physical register operand. e.g. Instruction::Mul expect to
353         // select to a binary op. On x86, mul may take a single operand with
354         // the other operand being implicit. We must emit something that looks
355         // like a binary instruction except for the very inner fastEmitInst_*
356         // call.
357         continue;
358       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
359     }
360   }
361 
362   void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
363                            bool StripImmCodes = false) const {
364     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
365       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
366   }
367 };
368 } // End anonymous namespace
369 
370 namespace {
371 class FastISelMap {
372   // A multimap is needed instead of a "plain" map because the key is
373   // the instruction's complexity (an int) and they are not unique.
374   typedef std::multimap<int, InstructionMemo> PredMap;
375   typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
376   typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
377   typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
378   typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
379             OperandsOpcodeTypeRetPredMap;
380 
381   OperandsOpcodeTypeRetPredMap SimplePatterns;
382 
383   // This is used to check that there are no duplicate predicates
384   typedef std::multimap<std::string, bool> PredCheckMap;
385   typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
386   typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
387   typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
388   typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
389             OperandsOpcodeTypeRetPredCheckMap;
390 
391   OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;
392 
393   std::map<OperandsSignature, std::vector<OperandsSignature> >
394     SignaturesWithConstantForms;
395 
396   StringRef InstNS;
397   ImmPredicateSet ImmediatePredicates;
398 public:
399   explicit FastISelMap(StringRef InstNS);
400 
401   void collectPatterns(CodeGenDAGPatterns &CGP);
402   void printImmediatePredicates(raw_ostream &OS);
403   void printFunctionDefinitions(raw_ostream &OS);
404 private:
405   void emitInstructionCode(raw_ostream &OS,
406                            const OperandsSignature &Operands,
407                            const PredMap &PM,
408                            const std::string &RetVTName);
409 };
410 } // End anonymous namespace
411 
412 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
413   return std::string(CGP.getSDNodeInfo(Op).getEnumName());
414 }
415 
416 static std::string getLegalCName(std::string OpName) {
417   std::string::size_type pos = OpName.find("::");
418   if (pos != std::string::npos)
419     OpName.replace(pos, 2, "_");
420   return OpName;
421 }
422 
423 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}
424 
425 static std::string PhyRegForNode(TreePatternNode *Op,
426                                  const CodeGenTarget &Target) {
427   std::string PhysReg;
428 
429   if (!Op->isLeaf())
430     return PhysReg;
431 
432   Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
433   if (!OpLeafRec->isSubClassOf("Register"))
434     return PhysReg;
435 
436   PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
437                ->getValue();
438   PhysReg += "::";
439   PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
440   return PhysReg;
441 }
442 
443 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
444   const CodeGenTarget &Target = CGP.getTargetInfo();
445 
446   // Scan through all the patterns and record the simple ones.
447   for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
448        E = CGP.ptm_end(); I != E; ++I) {
449     const PatternToMatch &Pattern = *I;
450 
451     // For now, just look at Instructions, so that we don't have to worry
452     // about emitting multiple instructions for a pattern.
453     TreePatternNode *Dst = Pattern.getDstPattern();
454     if (Dst->isLeaf()) continue;
455     Record *Op = Dst->getOperator();
456     if (!Op->isSubClassOf("Instruction"))
457       continue;
458     CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
459     if (II.Operands.empty())
460       continue;
461 
462     // Allow instructions to be marked as unavailable for FastISel for
463     // certain cases, i.e. an ISA has two 'and' instruction which differ
464     // by what registers they can use but are otherwise identical for
465     // codegen purposes.
466     if (II.FastISelShouldIgnore)
467       continue;
468 
469     // For now, ignore multi-instruction patterns.
470     bool MultiInsts = false;
471     for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
472       TreePatternNode *ChildOp = Dst->getChild(i);
473       if (ChildOp->isLeaf())
474         continue;
475       if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
476         MultiInsts = true;
477         break;
478       }
479     }
480     if (MultiInsts)
481       continue;
482 
483     // For now, ignore instructions where the first operand is not an
484     // output register.
485     const CodeGenRegisterClass *DstRC = nullptr;
486     std::string SubRegNo;
487     if (Op->getName() != "EXTRACT_SUBREG") {
488       Record *Op0Rec = II.Operands[0].Rec;
489       if (Op0Rec->isSubClassOf("RegisterOperand"))
490         Op0Rec = Op0Rec->getValueAsDef("RegClass");
491       if (!Op0Rec->isSubClassOf("RegisterClass"))
492         continue;
493       DstRC = &Target.getRegisterClass(Op0Rec);
494       if (!DstRC)
495         continue;
496     } else {
497       // If this isn't a leaf, then continue since the register classes are
498       // a bit too complicated for now.
499       if (!Dst->getChild(1)->isLeaf()) continue;
500 
501       DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
502       if (SR)
503         SubRegNo = getQualifiedName(SR->getDef());
504       else
505         SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
506     }
507 
508     // Inspect the pattern.
509     TreePatternNode *InstPatNode = Pattern.getSrcPattern();
510     if (!InstPatNode) continue;
511     if (InstPatNode->isLeaf()) continue;
512 
513     // Ignore multiple result nodes for now.
514     if (InstPatNode->getNumTypes() > 1) continue;
515 
516     Record *InstPatOp = InstPatNode->getOperator();
517     std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
518     MVT::SimpleValueType RetVT = MVT::isVoid;
519     if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0);
520     MVT::SimpleValueType VT = RetVT;
521     if (InstPatNode->getNumChildren()) {
522       assert(InstPatNode->getChild(0)->getNumTypes() == 1);
523       VT = InstPatNode->getChild(0)->getSimpleType(0);
524     }
525 
526     // For now, filter out any instructions with predicates.
527     if (!InstPatNode->getPredicateCalls().empty())
528       continue;
529 
530     // Check all the operands.
531     OperandsSignature Operands;
532     if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
533                              DstRC))
534       continue;
535 
536     std::vector<std::string> PhysRegInputs;
537     if (InstPatNode->getOperator()->getName() == "imm" ||
538         InstPatNode->getOperator()->getName() == "fpimm")
539       PhysRegInputs.push_back("");
540     else {
541       // Compute the PhysRegs used by the given pattern, and check that
542       // the mapping from the src to dst patterns is simple.
543       bool FoundNonSimplePattern = false;
544       unsigned DstIndex = 0;
545       for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
546         std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
547         if (PhysReg.empty()) {
548           if (DstIndex >= Dst->getNumChildren() ||
549               Dst->getChild(DstIndex)->getName() !=
550               InstPatNode->getChild(i)->getName()) {
551             FoundNonSimplePattern = true;
552             break;
553           }
554           ++DstIndex;
555         }
556 
557         PhysRegInputs.push_back(PhysReg);
558       }
559 
560       if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
561         FoundNonSimplePattern = true;
562 
563       if (FoundNonSimplePattern)
564         continue;
565     }
566 
567     // Check if the operands match one of the patterns handled by FastISel.
568     std::string ManglingSuffix;
569     raw_string_ostream SuffixOS(ManglingSuffix);
570     Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
571     if (!StringSwitch<bool>(ManglingSuffix)
572         .Cases("", "r", "rr", "ri", "i", "f", true)
573         .Default(false))
574       continue;
575 
576     // Get the predicate that guards this pattern.
577     std::string PredicateCheck = Pattern.getPredicateCheck();
578 
579     // Ok, we found a pattern that we can handle. Remember it.
580     InstructionMemo Memo(
581       Pattern.getDstPattern()->getOperator()->getName(),
582       DstRC,
583       SubRegNo,
584       PhysRegInputs,
585       PredicateCheck
586     );
587 
588     int complexity = Pattern.getPatternComplexity(CGP);
589 
590     if (SimplePatternsCheck[Operands][OpcodeName][VT]
591          [RetVT].count(PredicateCheck)) {
592       PrintFatalError(Pattern.getSrcRecord()->getLoc(),
593                     "Duplicate predicate in FastISel table!");
594     }
595     SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
596             std::make_pair(PredicateCheck, true));
597 
598        // Note: Instructions with the same complexity will appear in the order
599           // that they are encountered.
600     SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
601                                                             std::move(Memo));
602 
603     // If any of the operands were immediates with predicates on them, strip
604     // them down to a signature that doesn't have predicates so that we can
605     // associate them with the stripped predicate version.
606     if (Operands.hasAnyImmediateCodes()) {
607       SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
608         .push_back(Operands);
609     }
610   }
611 }
612 
613 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
614   if (ImmediatePredicates.begin() == ImmediatePredicates.end())
615     return;
616 
617   OS << "\n// FastEmit Immediate Predicate functions.\n";
618   for (auto ImmediatePredicate : ImmediatePredicates) {
619     OS << "static bool " << ImmediatePredicate.getFnName()
620        << "(int64_t Imm) {\n";
621     OS << ImmediatePredicate.getImmediatePredicateCode() << "\n}\n";
622   }
623 
624   OS << "\n\n";
625 }
626 
627 void FastISelMap::emitInstructionCode(raw_ostream &OS,
628                                       const OperandsSignature &Operands,
629                                       const PredMap &PM,
630                                       const std::string &RetVTName) {
631   // Emit code for each possible instruction. There may be
632   // multiple if there are subtarget concerns.  A reverse iterator
633   // is used to produce the ones with highest complexity first.
634 
635   bool OneHadNoPredicate = false;
636   for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
637        PI != PE; ++PI) {
638     const InstructionMemo &Memo = PI->second;
639     std::string PredicateCheck = Memo.PredicateCheck;
640 
641     if (PredicateCheck.empty()) {
642       assert(!OneHadNoPredicate &&
643              "Multiple instructions match and more than one had "
644              "no predicate!");
645       OneHadNoPredicate = true;
646     } else {
647       if (OneHadNoPredicate) {
648         PrintFatalError("Multiple instructions match and one with no "
649                         "predicate came before one with a predicate!  "
650                         "name:" + Memo.Name + "  predicate: " + PredicateCheck);
651       }
652       OS << "  if (" + PredicateCheck + ") {\n";
653       OS << "  ";
654     }
655 
656     for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
657       if (Memo.PhysRegs[i] != "")
658         OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
659            << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
660            << ").addReg(Op" << i << ");\n";
661     }
662 
663     OS << "  return fastEmitInst_";
664     if (Memo.SubRegNo.empty()) {
665       Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
666                                    true);
667       OS << "(" << InstNS << "::" << Memo.Name << ", ";
668       OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
669       if (!Operands.empty())
670         OS << ", ";
671       Operands.PrintArguments(OS, Memo.PhysRegs);
672       OS << ");\n";
673     } else {
674       OS << "extractsubreg(" << RetVTName
675          << ", Op0, " << Memo.SubRegNo << ");\n";
676     }
677 
678     if (!PredicateCheck.empty()) {
679       OS << "  }\n";
680     }
681   }
682   // Return 0 if all of the possibilities had predicates but none
683   // were satisfied.
684   if (!OneHadNoPredicate)
685     OS << "  return 0;\n";
686   OS << "}\n";
687   OS << "\n";
688 }
689 
690 
691 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
692   // Now emit code for all the patterns that we collected.
693   for (const auto &SimplePattern : SimplePatterns) {
694     const OperandsSignature &Operands = SimplePattern.first;
695     const OpcodeTypeRetPredMap &OTM = SimplePattern.second;
696 
697     for (const auto &I : OTM) {
698       const std::string &Opcode = I.first;
699       const TypeRetPredMap &TM = I.second;
700 
701       OS << "// FastEmit functions for " << Opcode << ".\n";
702       OS << "\n";
703 
704       // Emit one function for each opcode,type pair.
705       for (const auto &TI : TM) {
706         MVT::SimpleValueType VT = TI.first;
707         const RetPredMap &RM = TI.second;
708         if (RM.size() != 1) {
709           for (const auto &RI : RM) {
710             MVT::SimpleValueType RetVT = RI.first;
711             const PredMap &PM = RI.second;
712 
713             OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
714                << getLegalCName(std::string(getName(VT))) << "_"
715                << getLegalCName(std::string(getName(RetVT))) << "_";
716             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
717             OS << "(";
718             Operands.PrintParameters(OS);
719             OS << ") {\n";
720 
721             emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT)));
722           }
723 
724           // Emit one function for the type that demultiplexes on return type.
725           OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
726              << getLegalCName(std::string(getName(VT))) << "_";
727           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
728           OS << "(MVT RetVT";
729           if (!Operands.empty())
730             OS << ", ";
731           Operands.PrintParameters(OS);
732           OS << ") {\nswitch (RetVT.SimpleTy) {\n";
733           for (const auto &RI : RM) {
734             MVT::SimpleValueType RetVT = RI.first;
735             OS << "  case " << getName(RetVT) << ": return fastEmit_"
736                << getLegalCName(Opcode) << "_"
737                << getLegalCName(std::string(getName(VT))) << "_"
738                << getLegalCName(std::string(getName(RetVT))) << "_";
739             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
740             OS << "(";
741             Operands.PrintArguments(OS);
742             OS << ");\n";
743           }
744           OS << "  default: return 0;\n}\n}\n\n";
745 
746         } else {
747           // Non-variadic return type.
748           OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
749              << getLegalCName(std::string(getName(VT))) << "_";
750           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
751           OS << "(MVT RetVT";
752           if (!Operands.empty())
753             OS << ", ";
754           Operands.PrintParameters(OS);
755           OS << ") {\n";
756 
757           OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first)
758              << ")\n    return 0;\n";
759 
760           const PredMap &PM = RM.begin()->second;
761 
762           emitInstructionCode(OS, Operands, PM, "RetVT");
763         }
764       }
765 
766       // Emit one function for the opcode that demultiplexes based on the type.
767       OS << "unsigned fastEmit_"
768          << getLegalCName(Opcode) << "_";
769       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
770       OS << "(MVT VT, MVT RetVT";
771       if (!Operands.empty())
772         OS << ", ";
773       Operands.PrintParameters(OS);
774       OS << ") {\n";
775       OS << "  switch (VT.SimpleTy) {\n";
776       for (const auto &TI : TM) {
777         MVT::SimpleValueType VT = TI.first;
778         std::string TypeName = std::string(getName(VT));
779         OS << "  case " << TypeName << ": return fastEmit_"
780            << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
781         Operands.PrintManglingSuffix(OS, ImmediatePredicates);
782         OS << "(RetVT";
783         if (!Operands.empty())
784           OS << ", ";
785         Operands.PrintArguments(OS);
786         OS << ");\n";
787       }
788       OS << "  default: return 0;\n";
789       OS << "  }\n";
790       OS << "}\n";
791       OS << "\n";
792     }
793 
794     OS << "// Top-level FastEmit function.\n";
795     OS << "\n";
796 
797     // Emit one function for the operand signature that demultiplexes based
798     // on opcode and type.
799     OS << "unsigned fastEmit_";
800     Operands.PrintManglingSuffix(OS, ImmediatePredicates);
801     OS << "(MVT VT, MVT RetVT, unsigned Opcode";
802     if (!Operands.empty())
803       OS << ", ";
804     Operands.PrintParameters(OS);
805     OS << ") ";
806     if (!Operands.hasAnyImmediateCodes())
807       OS << "override ";
808     OS << "{\n";
809 
810     // If there are any forms of this signature available that operate on
811     // constrained forms of the immediate (e.g., 32-bit sext immediate in a
812     // 64-bit operand), check them first.
813 
814     std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
815       = SignaturesWithConstantForms.find(Operands);
816     if (MI != SignaturesWithConstantForms.end()) {
817       // Unique any duplicates out of the list.
818       llvm::sort(MI->second);
819       MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
820                        MI->second.end());
821 
822       // Check each in order it was seen.  It would be nice to have a good
823       // relative ordering between them, but we're not going for optimality
824       // here.
825       for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
826         OS << "  if (";
827         MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
828         OS << ")\n    if (unsigned Reg = fastEmit_";
829         MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
830         OS << "(VT, RetVT, Opcode";
831         if (!MI->second[i].empty())
832           OS << ", ";
833         MI->second[i].PrintArguments(OS);
834         OS << "))\n      return Reg;\n\n";
835       }
836 
837       // Done with this, remove it.
838       SignaturesWithConstantForms.erase(MI);
839     }
840 
841     OS << "  switch (Opcode) {\n";
842     for (const auto &I : OTM) {
843       const std::string &Opcode = I.first;
844 
845       OS << "  case " << Opcode << ": return fastEmit_"
846          << getLegalCName(Opcode) << "_";
847       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
848       OS << "(VT, RetVT";
849       if (!Operands.empty())
850         OS << ", ";
851       Operands.PrintArguments(OS);
852       OS << ");\n";
853     }
854     OS << "  default: return 0;\n";
855     OS << "  }\n";
856     OS << "}\n";
857     OS << "\n";
858   }
859 
860   // TODO: SignaturesWithConstantForms should be empty here.
861 }
862 
863 namespace llvm {
864 
865 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
866   CodeGenDAGPatterns CGP(RK);
867   const CodeGenTarget &Target = CGP.getTargetInfo();
868   emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
869                        Target.getName().str() + " target", OS);
870 
871   // Determine the target's namespace name.
872   StringRef InstNS = Target.getInstNamespace();
873   assert(!InstNS.empty() && "Can't determine target-specific namespace!");
874 
875   FastISelMap F(InstNS);
876   F.collectPatterns(CGP);
877   F.printImmediatePredicates(OS);
878   F.printFunctionDefinitions(OS);
879 }
880 
881 } // End llvm namespace
882