1 ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits code for use by the "fast" instruction 10 // selection algorithm. See the comments at the top of 11 // lib/CodeGen/SelectionDAG/FastISel.cpp for background. 12 // 13 // This file scans through the target's tablegen instruction-info files 14 // and extracts instructions with obvious-looking patterns, and it emits 15 // code to look up these instructions by type and operator. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "CodeGenDAGPatterns.h" 20 #include "CodeGenInstruction.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/TableGen/Error.h" 24 #include "llvm/TableGen/Record.h" 25 #include "llvm/TableGen/TableGenBackend.h" 26 #include <utility> 27 using namespace llvm; 28 29 30 /// InstructionMemo - This class holds additional information about an 31 /// instruction needed to emit code for it. 32 /// 33 namespace { 34 struct InstructionMemo { 35 std::string Name; 36 const CodeGenRegisterClass *RC; 37 std::string SubRegNo; 38 std::vector<std::string> PhysRegs; 39 std::string PredicateCheck; 40 41 InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC, 42 std::string SubRegNo, std::vector<std::string> PhysRegs, 43 std::string PredicateCheck) 44 : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)), 45 PhysRegs(std::move(PhysRegs)), 46 PredicateCheck(std::move(PredicateCheck)) {} 47 48 // Make sure we do not copy InstructionMemo. 49 InstructionMemo(const InstructionMemo &Other) = delete; 50 InstructionMemo(InstructionMemo &&Other) = default; 51 }; 52 } // End anonymous namespace 53 54 /// ImmPredicateSet - This uniques predicates (represented as a string) and 55 /// gives them unique (small) integer ID's that start at 0. 56 namespace { 57 class ImmPredicateSet { 58 DenseMap<TreePattern *, unsigned> ImmIDs; 59 std::vector<TreePredicateFn> PredsByName; 60 public: 61 62 unsigned getIDFor(TreePredicateFn Pred) { 63 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; 64 if (Entry == 0) { 65 PredsByName.push_back(Pred); 66 Entry = PredsByName.size(); 67 } 68 return Entry-1; 69 } 70 71 const TreePredicateFn &getPredicate(unsigned i) { 72 assert(i < PredsByName.size()); 73 return PredsByName[i]; 74 } 75 76 typedef std::vector<TreePredicateFn>::const_iterator iterator; 77 iterator begin() const { return PredsByName.begin(); } 78 iterator end() const { return PredsByName.end(); } 79 80 }; 81 } // End anonymous namespace 82 83 /// OperandsSignature - This class holds a description of a list of operand 84 /// types. It has utility methods for emitting text based on the operands. 85 /// 86 namespace { 87 struct OperandsSignature { 88 class OpKind { 89 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; 90 char Repr; 91 public: 92 93 OpKind() : Repr(OK_Invalid) {} 94 95 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } 96 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } 97 98 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; } 99 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; } 100 static OpKind getImm(unsigned V) { 101 assert((unsigned)OK_Imm+V < 128 && 102 "Too many integer predicates for the 'Repr' char"); 103 OpKind K; K.Repr = OK_Imm+V; return K; 104 } 105 106 bool isReg() const { return Repr == OK_Reg; } 107 bool isFP() const { return Repr == OK_FP; } 108 bool isImm() const { return Repr >= OK_Imm; } 109 110 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; } 111 112 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 113 bool StripImmCodes) const { 114 if (isReg()) 115 OS << 'r'; 116 else if (isFP()) 117 OS << 'f'; 118 else { 119 OS << 'i'; 120 if (!StripImmCodes) 121 if (unsigned Code = getImmCode()) 122 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName(); 123 } 124 } 125 }; 126 127 128 SmallVector<OpKind, 3> Operands; 129 130 bool operator<(const OperandsSignature &O) const { 131 return Operands < O.Operands; 132 } 133 bool operator==(const OperandsSignature &O) const { 134 return Operands == O.Operands; 135 } 136 137 bool empty() const { return Operands.empty(); } 138 139 bool hasAnyImmediateCodes() const { 140 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 141 if (Operands[i].isImm() && Operands[i].getImmCode() != 0) 142 return true; 143 return false; 144 } 145 146 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced 147 /// to zero. 148 OperandsSignature getWithoutImmCodes() const { 149 OperandsSignature Result; 150 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 151 if (!Operands[i].isImm()) 152 Result.Operands.push_back(Operands[i]); 153 else 154 Result.Operands.push_back(OpKind::getImm(0)); 155 return Result; 156 } 157 158 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) { 159 bool EmittedAnything = false; 160 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 161 if (!Operands[i].isImm()) continue; 162 163 unsigned Code = Operands[i].getImmCode(); 164 if (Code == 0) continue; 165 166 if (EmittedAnything) 167 OS << " &&\n "; 168 169 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1); 170 171 // Emit the type check. 172 TreePattern *TP = PredFn.getOrigPatFragRecord(); 173 ValueTypeByHwMode VVT = TP->getTree(0)->getType(0); 174 assert(VVT.isSimple() && 175 "Cannot use variable value types with fast isel"); 176 OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && "; 177 178 OS << PredFn.getFnName() << "(imm" << i <<')'; 179 EmittedAnything = true; 180 } 181 } 182 183 /// initialize - Examine the given pattern and initialize the contents 184 /// of the Operands array accordingly. Return true if all the operands 185 /// are supported, false otherwise. 186 /// 187 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target, 188 MVT::SimpleValueType VT, 189 ImmPredicateSet &ImmediatePredicates, 190 const CodeGenRegisterClass *OrigDstRC) { 191 if (InstPatNode->isLeaf()) 192 return false; 193 194 if (InstPatNode->getOperator()->getName() == "imm") { 195 Operands.push_back(OpKind::getImm(0)); 196 return true; 197 } 198 199 if (InstPatNode->getOperator()->getName() == "fpimm") { 200 Operands.push_back(OpKind::getFP()); 201 return true; 202 } 203 204 const CodeGenRegisterClass *DstRC = nullptr; 205 206 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 207 TreePatternNode *Op = InstPatNode->getChild(i); 208 209 // Handle imm operands specially. 210 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") { 211 unsigned PredNo = 0; 212 if (!Op->getPredicateCalls().empty()) { 213 TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn; 214 // If there is more than one predicate weighing in on this operand 215 // then we don't handle it. This doesn't typically happen for 216 // immediates anyway. 217 if (Op->getPredicateCalls().size() > 1 || 218 !PredFn.isImmediatePattern() || PredFn.usesOperands()) 219 return false; 220 // Ignore any instruction with 'FastIselShouldIgnore', these are 221 // not needed and just bloat the fast instruction selector. For 222 // example, X86 doesn't need to generate code to match ADD16ri8 since 223 // ADD16ri will do just fine. 224 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); 225 if (Rec->getValueAsBit("FastIselShouldIgnore")) 226 return false; 227 228 PredNo = ImmediatePredicates.getIDFor(PredFn)+1; 229 } 230 231 Operands.push_back(OpKind::getImm(PredNo)); 232 continue; 233 } 234 235 236 // For now, filter out any operand with a predicate. 237 // For now, filter out any operand with multiple values. 238 if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1) 239 return false; 240 241 if (!Op->isLeaf()) { 242 if (Op->getOperator()->getName() == "fpimm") { 243 Operands.push_back(OpKind::getFP()); 244 continue; 245 } 246 // For now, ignore other non-leaf nodes. 247 return false; 248 } 249 250 assert(Op->hasConcreteType(0) && "Type infererence not done?"); 251 252 // For now, all the operands must have the same type (if they aren't 253 // immediates). Note that this causes us to reject variable sized shifts 254 // on X86. 255 if (Op->getSimpleType(0) != VT) 256 return false; 257 258 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue()); 259 if (!OpDI) 260 return false; 261 Record *OpLeafRec = OpDI->getDef(); 262 263 // For now, the only other thing we accept is register operands. 264 const CodeGenRegisterClass *RC = nullptr; 265 if (OpLeafRec->isSubClassOf("RegisterOperand")) 266 OpLeafRec = OpLeafRec->getValueAsDef("RegClass"); 267 if (OpLeafRec->isSubClassOf("RegisterClass")) 268 RC = &Target.getRegisterClass(OpLeafRec); 269 else if (OpLeafRec->isSubClassOf("Register")) 270 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec); 271 else if (OpLeafRec->isSubClassOf("ValueType")) { 272 RC = OrigDstRC; 273 } else 274 return false; 275 276 // For now, this needs to be a register class of some sort. 277 if (!RC) 278 return false; 279 280 // For now, all the operands must have the same register class or be 281 // a strict subclass of the destination. 282 if (DstRC) { 283 if (DstRC != RC && !DstRC->hasSubClass(RC)) 284 return false; 285 } else 286 DstRC = RC; 287 Operands.push_back(OpKind::getReg()); 288 } 289 return true; 290 } 291 292 void PrintParameters(raw_ostream &OS) const { 293 ListSeparator LS; 294 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 295 OS << LS; 296 if (Operands[i].isReg()) { 297 OS << "unsigned Op" << i; 298 } else if (Operands[i].isImm()) { 299 OS << "uint64_t imm" << i; 300 } else if (Operands[i].isFP()) { 301 OS << "const ConstantFP *f" << i; 302 } else { 303 llvm_unreachable("Unknown operand kind!"); 304 } 305 } 306 } 307 308 void PrintArguments(raw_ostream &OS, 309 const std::vector<std::string> &PR) const { 310 assert(PR.size() == Operands.size()); 311 ListSeparator LS; 312 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 313 if (PR[i] != "") 314 // Implicit physical register operand. 315 continue; 316 317 OS << LS; 318 if (Operands[i].isReg()) { 319 OS << "Op" << i; 320 } else if (Operands[i].isImm()) { 321 OS << "imm" << i; 322 } else if (Operands[i].isFP()) { 323 OS << "f" << i; 324 } else { 325 llvm_unreachable("Unknown operand kind!"); 326 } 327 } 328 } 329 330 void PrintArguments(raw_ostream &OS) const { 331 ListSeparator LS; 332 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 333 OS << LS; 334 if (Operands[i].isReg()) { 335 OS << "Op" << i; 336 } else if (Operands[i].isImm()) { 337 OS << "imm" << i; 338 } else if (Operands[i].isFP()) { 339 OS << "f" << i; 340 } else { 341 llvm_unreachable("Unknown operand kind!"); 342 } 343 } 344 } 345 346 347 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR, 348 ImmPredicateSet &ImmPredicates, 349 bool StripImmCodes = false) const { 350 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 351 if (PR[i] != "") 352 // Implicit physical register operand. e.g. Instruction::Mul expect to 353 // select to a binary op. On x86, mul may take a single operand with 354 // the other operand being implicit. We must emit something that looks 355 // like a binary instruction except for the very inner fastEmitInst_* 356 // call. 357 continue; 358 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 359 } 360 } 361 362 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 363 bool StripImmCodes = false) const { 364 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 365 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 366 } 367 }; 368 } // End anonymous namespace 369 370 namespace { 371 class FastISelMap { 372 // A multimap is needed instead of a "plain" map because the key is 373 // the instruction's complexity (an int) and they are not unique. 374 typedef std::multimap<int, InstructionMemo> PredMap; 375 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; 376 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; 377 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; 378 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> 379 OperandsOpcodeTypeRetPredMap; 380 381 OperandsOpcodeTypeRetPredMap SimplePatterns; 382 383 // This is used to check that there are no duplicate predicates 384 std::set<std::tuple<OperandsSignature, std::string, MVT::SimpleValueType, 385 MVT::SimpleValueType, std::string>> 386 SimplePatternsCheck; 387 388 std::map<OperandsSignature, std::vector<OperandsSignature> > 389 SignaturesWithConstantForms; 390 391 StringRef InstNS; 392 ImmPredicateSet ImmediatePredicates; 393 public: 394 explicit FastISelMap(StringRef InstNS); 395 396 void collectPatterns(CodeGenDAGPatterns &CGP); 397 void printImmediatePredicates(raw_ostream &OS); 398 void printFunctionDefinitions(raw_ostream &OS); 399 private: 400 void emitInstructionCode(raw_ostream &OS, 401 const OperandsSignature &Operands, 402 const PredMap &PM, 403 const std::string &RetVTName); 404 }; 405 } // End anonymous namespace 406 407 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { 408 return std::string(CGP.getSDNodeInfo(Op).getEnumName()); 409 } 410 411 static std::string getLegalCName(std::string OpName) { 412 std::string::size_type pos = OpName.find("::"); 413 if (pos != std::string::npos) 414 OpName.replace(pos, 2, "_"); 415 return OpName; 416 } 417 418 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {} 419 420 static std::string PhyRegForNode(TreePatternNode *Op, 421 const CodeGenTarget &Target) { 422 std::string PhysReg; 423 424 if (!Op->isLeaf()) 425 return PhysReg; 426 427 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef(); 428 if (!OpLeafRec->isSubClassOf("Register")) 429 return PhysReg; 430 431 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) 432 ->getValue(); 433 PhysReg += "::"; 434 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); 435 return PhysReg; 436 } 437 438 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) { 439 const CodeGenTarget &Target = CGP.getTargetInfo(); 440 441 // Scan through all the patterns and record the simple ones. 442 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), 443 E = CGP.ptm_end(); I != E; ++I) { 444 const PatternToMatch &Pattern = *I; 445 446 // For now, just look at Instructions, so that we don't have to worry 447 // about emitting multiple instructions for a pattern. 448 TreePatternNode *Dst = Pattern.getDstPattern(); 449 if (Dst->isLeaf()) continue; 450 Record *Op = Dst->getOperator(); 451 if (!Op->isSubClassOf("Instruction")) 452 continue; 453 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); 454 if (II.Operands.empty()) 455 continue; 456 457 // Allow instructions to be marked as unavailable for FastISel for 458 // certain cases, i.e. an ISA has two 'and' instruction which differ 459 // by what registers they can use but are otherwise identical for 460 // codegen purposes. 461 if (II.FastISelShouldIgnore) 462 continue; 463 464 // For now, ignore multi-instruction patterns. 465 bool MultiInsts = false; 466 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { 467 TreePatternNode *ChildOp = Dst->getChild(i); 468 if (ChildOp->isLeaf()) 469 continue; 470 if (ChildOp->getOperator()->isSubClassOf("Instruction")) { 471 MultiInsts = true; 472 break; 473 } 474 } 475 if (MultiInsts) 476 continue; 477 478 // For now, ignore instructions where the first operand is not an 479 // output register. 480 const CodeGenRegisterClass *DstRC = nullptr; 481 std::string SubRegNo; 482 if (Op->getName() != "EXTRACT_SUBREG") { 483 Record *Op0Rec = II.Operands[0].Rec; 484 if (Op0Rec->isSubClassOf("RegisterOperand")) 485 Op0Rec = Op0Rec->getValueAsDef("RegClass"); 486 if (!Op0Rec->isSubClassOf("RegisterClass")) 487 continue; 488 DstRC = &Target.getRegisterClass(Op0Rec); 489 if (!DstRC) 490 continue; 491 } else { 492 // If this isn't a leaf, then continue since the register classes are 493 // a bit too complicated for now. 494 if (!Dst->getChild(1)->isLeaf()) continue; 495 496 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 497 if (SR) 498 SubRegNo = getQualifiedName(SR->getDef()); 499 else 500 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString(); 501 } 502 503 // Inspect the pattern. 504 TreePatternNode *InstPatNode = Pattern.getSrcPattern(); 505 if (!InstPatNode) continue; 506 if (InstPatNode->isLeaf()) continue; 507 508 // Ignore multiple result nodes for now. 509 if (InstPatNode->getNumTypes() > 1) continue; 510 511 Record *InstPatOp = InstPatNode->getOperator(); 512 std::string OpcodeName = getOpcodeName(InstPatOp, CGP); 513 MVT::SimpleValueType RetVT = MVT::isVoid; 514 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0); 515 MVT::SimpleValueType VT = RetVT; 516 if (InstPatNode->getNumChildren()) { 517 assert(InstPatNode->getChild(0)->getNumTypes() == 1); 518 VT = InstPatNode->getChild(0)->getSimpleType(0); 519 } 520 521 // For now, filter out any instructions with predicates. 522 if (!InstPatNode->getPredicateCalls().empty()) 523 continue; 524 525 // Check all the operands. 526 OperandsSignature Operands; 527 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, 528 DstRC)) 529 continue; 530 531 std::vector<std::string> PhysRegInputs; 532 if (InstPatNode->getOperator()->getName() == "imm" || 533 InstPatNode->getOperator()->getName() == "fpimm") 534 PhysRegInputs.push_back(""); 535 else { 536 // Compute the PhysRegs used by the given pattern, and check that 537 // the mapping from the src to dst patterns is simple. 538 bool FoundNonSimplePattern = false; 539 unsigned DstIndex = 0; 540 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 541 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target); 542 if (PhysReg.empty()) { 543 if (DstIndex >= Dst->getNumChildren() || 544 Dst->getChild(DstIndex)->getName() != 545 InstPatNode->getChild(i)->getName()) { 546 FoundNonSimplePattern = true; 547 break; 548 } 549 ++DstIndex; 550 } 551 552 PhysRegInputs.push_back(PhysReg); 553 } 554 555 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren()) 556 FoundNonSimplePattern = true; 557 558 if (FoundNonSimplePattern) 559 continue; 560 } 561 562 // Check if the operands match one of the patterns handled by FastISel. 563 std::string ManglingSuffix; 564 raw_string_ostream SuffixOS(ManglingSuffix); 565 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true); 566 if (!StringSwitch<bool>(ManglingSuffix) 567 .Cases("", "r", "rr", "ri", "i", "f", true) 568 .Default(false)) 569 continue; 570 571 // Get the predicate that guards this pattern. 572 std::string PredicateCheck = Pattern.getPredicateCheck(); 573 574 // Ok, we found a pattern that we can handle. Remember it. 575 InstructionMemo Memo( 576 Pattern.getDstPattern()->getOperator()->getName(), 577 DstRC, 578 SubRegNo, 579 PhysRegInputs, 580 PredicateCheck 581 ); 582 583 int complexity = Pattern.getPatternComplexity(CGP); 584 585 auto inserted_simple_pattern = SimplePatternsCheck.insert( 586 std::make_tuple(Operands, OpcodeName, VT, RetVT, PredicateCheck)); 587 if (!inserted_simple_pattern.second) { 588 PrintFatalError(Pattern.getSrcRecord()->getLoc(), 589 "Duplicate predicate in FastISel table!"); 590 } 591 592 // Note: Instructions with the same complexity will appear in the order 593 // that they are encountered. 594 SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity, 595 std::move(Memo)); 596 597 // If any of the operands were immediates with predicates on them, strip 598 // them down to a signature that doesn't have predicates so that we can 599 // associate them with the stripped predicate version. 600 if (Operands.hasAnyImmediateCodes()) { 601 SignaturesWithConstantForms[Operands.getWithoutImmCodes()] 602 .push_back(Operands); 603 } 604 } 605 } 606 607 void FastISelMap::printImmediatePredicates(raw_ostream &OS) { 608 if (ImmediatePredicates.begin() == ImmediatePredicates.end()) 609 return; 610 611 OS << "\n// FastEmit Immediate Predicate functions.\n"; 612 for (auto ImmediatePredicate : ImmediatePredicates) { 613 OS << "static bool " << ImmediatePredicate.getFnName() 614 << "(int64_t Imm) {\n"; 615 OS << ImmediatePredicate.getImmediatePredicateCode() << "\n}\n"; 616 } 617 618 OS << "\n\n"; 619 } 620 621 void FastISelMap::emitInstructionCode(raw_ostream &OS, 622 const OperandsSignature &Operands, 623 const PredMap &PM, 624 const std::string &RetVTName) { 625 // Emit code for each possible instruction. There may be 626 // multiple if there are subtarget concerns. A reverse iterator 627 // is used to produce the ones with highest complexity first. 628 629 bool OneHadNoPredicate = false; 630 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend(); 631 PI != PE; ++PI) { 632 const InstructionMemo &Memo = PI->second; 633 std::string PredicateCheck = Memo.PredicateCheck; 634 635 if (PredicateCheck.empty()) { 636 assert(!OneHadNoPredicate && 637 "Multiple instructions match and more than one had " 638 "no predicate!"); 639 OneHadNoPredicate = true; 640 } else { 641 if (OneHadNoPredicate) { 642 PrintFatalError("Multiple instructions match and one with no " 643 "predicate came before one with a predicate! " 644 "name:" + Memo.Name + " predicate: " + PredicateCheck); 645 } 646 OS << " if (" + PredicateCheck + ") {\n"; 647 OS << " "; 648 } 649 650 for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) { 651 if (Memo.PhysRegs[i] != "") 652 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, " 653 << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i] 654 << ").addReg(Op" << i << ");\n"; 655 } 656 657 OS << " return fastEmitInst_"; 658 if (Memo.SubRegNo.empty()) { 659 Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates, 660 true); 661 OS << "(" << InstNS << "::" << Memo.Name << ", "; 662 OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass"; 663 if (!Operands.empty()) 664 OS << ", "; 665 Operands.PrintArguments(OS, Memo.PhysRegs); 666 OS << ");\n"; 667 } else { 668 OS << "extractsubreg(" << RetVTName 669 << ", Op0, " << Memo.SubRegNo << ");\n"; 670 } 671 672 if (!PredicateCheck.empty()) { 673 OS << " }\n"; 674 } 675 } 676 // Return 0 if all of the possibilities had predicates but none 677 // were satisfied. 678 if (!OneHadNoPredicate) 679 OS << " return 0;\n"; 680 OS << "}\n"; 681 OS << "\n"; 682 } 683 684 685 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { 686 // Now emit code for all the patterns that we collected. 687 for (const auto &SimplePattern : SimplePatterns) { 688 const OperandsSignature &Operands = SimplePattern.first; 689 const OpcodeTypeRetPredMap &OTM = SimplePattern.second; 690 691 for (const auto &I : OTM) { 692 const std::string &Opcode = I.first; 693 const TypeRetPredMap &TM = I.second; 694 695 OS << "// FastEmit functions for " << Opcode << ".\n"; 696 OS << "\n"; 697 698 // Emit one function for each opcode,type pair. 699 for (const auto &TI : TM) { 700 MVT::SimpleValueType VT = TI.first; 701 const RetPredMap &RM = TI.second; 702 if (RM.size() != 1) { 703 for (const auto &RI : RM) { 704 MVT::SimpleValueType RetVT = RI.first; 705 const PredMap &PM = RI.second; 706 707 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 708 << getLegalCName(std::string(getName(VT))) << "_" 709 << getLegalCName(std::string(getName(RetVT))) << "_"; 710 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 711 OS << "("; 712 Operands.PrintParameters(OS); 713 OS << ") {\n"; 714 715 emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT))); 716 } 717 718 // Emit one function for the type that demultiplexes on return type. 719 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 720 << getLegalCName(std::string(getName(VT))) << "_"; 721 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 722 OS << "(MVT RetVT"; 723 if (!Operands.empty()) 724 OS << ", "; 725 Operands.PrintParameters(OS); 726 OS << ") {\nswitch (RetVT.SimpleTy) {\n"; 727 for (const auto &RI : RM) { 728 MVT::SimpleValueType RetVT = RI.first; 729 OS << " case " << getName(RetVT) << ": return fastEmit_" 730 << getLegalCName(Opcode) << "_" 731 << getLegalCName(std::string(getName(VT))) << "_" 732 << getLegalCName(std::string(getName(RetVT))) << "_"; 733 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 734 OS << "("; 735 Operands.PrintArguments(OS); 736 OS << ");\n"; 737 } 738 OS << " default: return 0;\n}\n}\n\n"; 739 740 } else { 741 // Non-variadic return type. 742 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" 743 << getLegalCName(std::string(getName(VT))) << "_"; 744 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 745 OS << "(MVT RetVT"; 746 if (!Operands.empty()) 747 OS << ", "; 748 Operands.PrintParameters(OS); 749 OS << ") {\n"; 750 751 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) 752 << ")\n return 0;\n"; 753 754 const PredMap &PM = RM.begin()->second; 755 756 emitInstructionCode(OS, Operands, PM, "RetVT"); 757 } 758 } 759 760 // Emit one function for the opcode that demultiplexes based on the type. 761 OS << "unsigned fastEmit_" 762 << getLegalCName(Opcode) << "_"; 763 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 764 OS << "(MVT VT, MVT RetVT"; 765 if (!Operands.empty()) 766 OS << ", "; 767 Operands.PrintParameters(OS); 768 OS << ") {\n"; 769 OS << " switch (VT.SimpleTy) {\n"; 770 for (const auto &TI : TM) { 771 MVT::SimpleValueType VT = TI.first; 772 std::string TypeName = std::string(getName(VT)); 773 OS << " case " << TypeName << ": return fastEmit_" 774 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; 775 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 776 OS << "(RetVT"; 777 if (!Operands.empty()) 778 OS << ", "; 779 Operands.PrintArguments(OS); 780 OS << ");\n"; 781 } 782 OS << " default: return 0;\n"; 783 OS << " }\n"; 784 OS << "}\n"; 785 OS << "\n"; 786 } 787 788 OS << "// Top-level FastEmit function.\n"; 789 OS << "\n"; 790 791 // Emit one function for the operand signature that demultiplexes based 792 // on opcode and type. 793 OS << "unsigned fastEmit_"; 794 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 795 OS << "(MVT VT, MVT RetVT, unsigned Opcode"; 796 if (!Operands.empty()) 797 OS << ", "; 798 Operands.PrintParameters(OS); 799 OS << ") "; 800 if (!Operands.hasAnyImmediateCodes()) 801 OS << "override "; 802 OS << "{\n"; 803 804 // If there are any forms of this signature available that operate on 805 // constrained forms of the immediate (e.g., 32-bit sext immediate in a 806 // 64-bit operand), check them first. 807 808 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI 809 = SignaturesWithConstantForms.find(Operands); 810 if (MI != SignaturesWithConstantForms.end()) { 811 // Unique any duplicates out of the list. 812 llvm::sort(MI->second); 813 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()), 814 MI->second.end()); 815 816 // Check each in order it was seen. It would be nice to have a good 817 // relative ordering between them, but we're not going for optimality 818 // here. 819 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) { 820 OS << " if ("; 821 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates); 822 OS << ")\n if (unsigned Reg = fastEmit_"; 823 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates); 824 OS << "(VT, RetVT, Opcode"; 825 if (!MI->second[i].empty()) 826 OS << ", "; 827 MI->second[i].PrintArguments(OS); 828 OS << "))\n return Reg;\n\n"; 829 } 830 831 // Done with this, remove it. 832 SignaturesWithConstantForms.erase(MI); 833 } 834 835 OS << " switch (Opcode) {\n"; 836 for (const auto &I : OTM) { 837 const std::string &Opcode = I.first; 838 839 OS << " case " << Opcode << ": return fastEmit_" 840 << getLegalCName(Opcode) << "_"; 841 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 842 OS << "(VT, RetVT"; 843 if (!Operands.empty()) 844 OS << ", "; 845 Operands.PrintArguments(OS); 846 OS << ");\n"; 847 } 848 OS << " default: return 0;\n"; 849 OS << " }\n"; 850 OS << "}\n"; 851 OS << "\n"; 852 } 853 854 // TODO: SignaturesWithConstantForms should be empty here. 855 } 856 857 namespace llvm { 858 859 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) { 860 CodeGenDAGPatterns CGP(RK); 861 const CodeGenTarget &Target = CGP.getTargetInfo(); 862 emitSourceFileHeader("\"Fast\" Instruction Selector for the " + 863 Target.getName().str() + " target", OS); 864 865 // Determine the target's namespace name. 866 StringRef InstNS = Target.getInstNamespace(); 867 assert(!InstNS.empty() && "Can't determine target-specific namespace!"); 868 869 FastISelMap F(InstNS); 870 F.collectPatterns(CGP); 871 F.printImmediatePredicates(OS); 872 F.printFunctionDefinitions(OS); 873 } 874 875 } // End llvm namespace 876