xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/FastISelEmitter.cpp (revision 2a9021898c4ee2154787da862c238cfeccd655df)
1 ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits code for use by the "fast" instruction
10 // selection algorithm. See the comments at the top of
11 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
12 //
13 // This file scans through the target's tablegen instruction-info files
14 // and extracts instructions with obvious-looking patterns, and it emits
15 // code to look up these instructions by type and operator.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "CodeGenDAGPatterns.h"
20 #include "CodeGenInstruction.h"
21 #include "llvm/ADT/StringSwitch.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/TableGen/Error.h"
24 #include "llvm/TableGen/Record.h"
25 #include "llvm/TableGen/TableGenBackend.h"
26 #include <utility>
27 using namespace llvm;
28 
29 
30 /// InstructionMemo - This class holds additional information about an
31 /// instruction needed to emit code for it.
32 ///
33 namespace {
34 struct InstructionMemo {
35   std::string Name;
36   const CodeGenRegisterClass *RC;
37   std::string SubRegNo;
38   std::vector<std::string> PhysRegs;
39   std::string PredicateCheck;
40 
41   InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
42                   std::string SubRegNo, std::vector<std::string> PhysRegs,
43                   std::string PredicateCheck)
44       : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
45         PhysRegs(std::move(PhysRegs)),
46         PredicateCheck(std::move(PredicateCheck)) {}
47 
48   // Make sure we do not copy InstructionMemo.
49   InstructionMemo(const InstructionMemo &Other) = delete;
50   InstructionMemo(InstructionMemo &&Other) = default;
51 };
52 } // End anonymous namespace
53 
54 /// ImmPredicateSet - This uniques predicates (represented as a string) and
55 /// gives them unique (small) integer ID's that start at 0.
56 namespace {
57 class ImmPredicateSet {
58   DenseMap<TreePattern *, unsigned> ImmIDs;
59   std::vector<TreePredicateFn> PredsByName;
60 public:
61 
62   unsigned getIDFor(TreePredicateFn Pred) {
63     unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
64     if (Entry == 0) {
65       PredsByName.push_back(Pred);
66       Entry = PredsByName.size();
67     }
68     return Entry-1;
69   }
70 
71   const TreePredicateFn &getPredicate(unsigned i) {
72     assert(i < PredsByName.size());
73     return PredsByName[i];
74   }
75 
76   typedef std::vector<TreePredicateFn>::const_iterator iterator;
77   iterator begin() const { return PredsByName.begin(); }
78   iterator end() const { return PredsByName.end(); }
79 
80 };
81 } // End anonymous namespace
82 
83 /// OperandsSignature - This class holds a description of a list of operand
84 /// types. It has utility methods for emitting text based on the operands.
85 ///
86 namespace {
87 struct OperandsSignature {
88   class OpKind {
89     enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
90     char Repr;
91   public:
92 
93     OpKind() : Repr(OK_Invalid) {}
94 
95     bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
96     bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
97 
98     static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
99     static OpKind getFP()  { OpKind K; K.Repr = OK_FP; return K; }
100     static OpKind getImm(unsigned V) {
101       assert((unsigned)OK_Imm+V < 128 &&
102              "Too many integer predicates for the 'Repr' char");
103       OpKind K; K.Repr = OK_Imm+V; return K;
104     }
105 
106     bool isReg() const { return Repr == OK_Reg; }
107     bool isFP() const  { return Repr == OK_FP; }
108     bool isImm() const { return Repr >= OK_Imm; }
109 
110     unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
111 
112     void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
113                              bool StripImmCodes) const {
114       if (isReg())
115         OS << 'r';
116       else if (isFP())
117         OS << 'f';
118       else {
119         OS << 'i';
120         if (!StripImmCodes)
121           if (unsigned Code = getImmCode())
122             OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
123       }
124     }
125   };
126 
127 
128   SmallVector<OpKind, 3> Operands;
129 
130   bool operator<(const OperandsSignature &O) const {
131     return Operands < O.Operands;
132   }
133   bool operator==(const OperandsSignature &O) const {
134     return Operands == O.Operands;
135   }
136 
137   bool empty() const { return Operands.empty(); }
138 
139   bool hasAnyImmediateCodes() const {
140     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
141       if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
142         return true;
143     return false;
144   }
145 
146   /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
147   /// to zero.
148   OperandsSignature getWithoutImmCodes() const {
149     OperandsSignature Result;
150     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
151       if (!Operands[i].isImm())
152         Result.Operands.push_back(Operands[i]);
153       else
154         Result.Operands.push_back(OpKind::getImm(0));
155     return Result;
156   }
157 
158   void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
159     bool EmittedAnything = false;
160     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
161       if (!Operands[i].isImm()) continue;
162 
163       unsigned Code = Operands[i].getImmCode();
164       if (Code == 0) continue;
165 
166       if (EmittedAnything)
167         OS << " &&\n        ";
168 
169       TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
170 
171       // Emit the type check.
172       TreePattern *TP = PredFn.getOrigPatFragRecord();
173       ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
174       assert(VVT.isSimple() &&
175              "Cannot use variable value types with fast isel");
176       OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";
177 
178       OS << PredFn.getFnName() << "(imm" << i <<')';
179       EmittedAnything = true;
180     }
181   }
182 
183   /// initialize - Examine the given pattern and initialize the contents
184   /// of the Operands array accordingly. Return true if all the operands
185   /// are supported, false otherwise.
186   ///
187   bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
188                   MVT::SimpleValueType VT,
189                   ImmPredicateSet &ImmediatePredicates,
190                   const CodeGenRegisterClass *OrigDstRC) {
191     if (InstPatNode->isLeaf())
192       return false;
193 
194     if (InstPatNode->getOperator()->getName() == "imm") {
195       Operands.push_back(OpKind::getImm(0));
196       return true;
197     }
198 
199     if (InstPatNode->getOperator()->getName() == "fpimm") {
200       Operands.push_back(OpKind::getFP());
201       return true;
202     }
203 
204     const CodeGenRegisterClass *DstRC = nullptr;
205 
206     for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
207       TreePatternNode *Op = InstPatNode->getChild(i);
208 
209       // Handle imm operands specially.
210       if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
211         unsigned PredNo = 0;
212         if (!Op->getPredicateCalls().empty()) {
213           TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn;
214           // If there is more than one predicate weighing in on this operand
215           // then we don't handle it.  This doesn't typically happen for
216           // immediates anyway.
217           if (Op->getPredicateCalls().size() > 1 ||
218               !PredFn.isImmediatePattern() || PredFn.usesOperands())
219             return false;
220           // Ignore any instruction with 'FastIselShouldIgnore', these are
221           // not needed and just bloat the fast instruction selector.  For
222           // example, X86 doesn't need to generate code to match ADD16ri8 since
223           // ADD16ri will do just fine.
224           Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
225           if (Rec->getValueAsBit("FastIselShouldIgnore"))
226             return false;
227 
228           PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
229         }
230 
231         Operands.push_back(OpKind::getImm(PredNo));
232         continue;
233       }
234 
235 
236       // For now, filter out any operand with a predicate.
237       // For now, filter out any operand with multiple values.
238       if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1)
239         return false;
240 
241       if (!Op->isLeaf()) {
242          if (Op->getOperator()->getName() == "fpimm") {
243           Operands.push_back(OpKind::getFP());
244           continue;
245         }
246         // For now, ignore other non-leaf nodes.
247         return false;
248       }
249 
250       assert(Op->hasConcreteType(0) && "Type infererence not done?");
251 
252       // For now, all the operands must have the same type (if they aren't
253       // immediates).  Note that this causes us to reject variable sized shifts
254       // on X86.
255       if (Op->getSimpleType(0) != VT)
256         return false;
257 
258       DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
259       if (!OpDI)
260         return false;
261       Record *OpLeafRec = OpDI->getDef();
262 
263       // For now, the only other thing we accept is register operands.
264       const CodeGenRegisterClass *RC = nullptr;
265       if (OpLeafRec->isSubClassOf("RegisterOperand"))
266         OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
267       if (OpLeafRec->isSubClassOf("RegisterClass"))
268         RC = &Target.getRegisterClass(OpLeafRec);
269       else if (OpLeafRec->isSubClassOf("Register"))
270         RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
271       else if (OpLeafRec->isSubClassOf("ValueType")) {
272         RC = OrigDstRC;
273       } else
274         return false;
275 
276       // For now, this needs to be a register class of some sort.
277       if (!RC)
278         return false;
279 
280       // For now, all the operands must have the same register class or be
281       // a strict subclass of the destination.
282       if (DstRC) {
283         if (DstRC != RC && !DstRC->hasSubClass(RC))
284           return false;
285       } else
286         DstRC = RC;
287       Operands.push_back(OpKind::getReg());
288     }
289     return true;
290   }
291 
292   void PrintParameters(raw_ostream &OS) const {
293     ListSeparator LS;
294     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
295       OS << LS;
296       if (Operands[i].isReg()) {
297         OS << "unsigned Op" << i;
298       } else if (Operands[i].isImm()) {
299         OS << "uint64_t imm" << i;
300       } else if (Operands[i].isFP()) {
301         OS << "const ConstantFP *f" << i;
302       } else {
303         llvm_unreachable("Unknown operand kind!");
304       }
305     }
306   }
307 
308   void PrintArguments(raw_ostream &OS,
309                       const std::vector<std::string> &PR) const {
310     assert(PR.size() == Operands.size());
311     ListSeparator LS;
312     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
313       if (PR[i] != "")
314         // Implicit physical register operand.
315         continue;
316 
317       OS << LS;
318       if (Operands[i].isReg()) {
319         OS << "Op" << i;
320       } else if (Operands[i].isImm()) {
321         OS << "imm" << i;
322       } else if (Operands[i].isFP()) {
323         OS << "f" << i;
324       } else {
325         llvm_unreachable("Unknown operand kind!");
326       }
327     }
328   }
329 
330   void PrintArguments(raw_ostream &OS) const {
331     ListSeparator LS;
332     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
333       OS << LS;
334       if (Operands[i].isReg()) {
335         OS << "Op" << i;
336       } else if (Operands[i].isImm()) {
337         OS << "imm" << i;
338       } else if (Operands[i].isFP()) {
339         OS << "f" << i;
340       } else {
341         llvm_unreachable("Unknown operand kind!");
342       }
343     }
344   }
345 
346 
347   void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
348                            ImmPredicateSet &ImmPredicates,
349                            bool StripImmCodes = false) const {
350     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
351       if (PR[i] != "")
352         // Implicit physical register operand. e.g. Instruction::Mul expect to
353         // select to a binary op. On x86, mul may take a single operand with
354         // the other operand being implicit. We must emit something that looks
355         // like a binary instruction except for the very inner fastEmitInst_*
356         // call.
357         continue;
358       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
359     }
360   }
361 
362   void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
363                            bool StripImmCodes = false) const {
364     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
365       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
366   }
367 };
368 } // End anonymous namespace
369 
370 namespace {
371 class FastISelMap {
372   // A multimap is needed instead of a "plain" map because the key is
373   // the instruction's complexity (an int) and they are not unique.
374   typedef std::multimap<int, InstructionMemo> PredMap;
375   typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
376   typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
377   typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
378   typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
379             OperandsOpcodeTypeRetPredMap;
380 
381   OperandsOpcodeTypeRetPredMap SimplePatterns;
382 
383   // This is used to check that there are no duplicate predicates
384   std::set<std::tuple<OperandsSignature, std::string, MVT::SimpleValueType,
385                       MVT::SimpleValueType, std::string>>
386       SimplePatternsCheck;
387 
388   std::map<OperandsSignature, std::vector<OperandsSignature> >
389     SignaturesWithConstantForms;
390 
391   StringRef InstNS;
392   ImmPredicateSet ImmediatePredicates;
393 public:
394   explicit FastISelMap(StringRef InstNS);
395 
396   void collectPatterns(CodeGenDAGPatterns &CGP);
397   void printImmediatePredicates(raw_ostream &OS);
398   void printFunctionDefinitions(raw_ostream &OS);
399 private:
400   void emitInstructionCode(raw_ostream &OS,
401                            const OperandsSignature &Operands,
402                            const PredMap &PM,
403                            const std::string &RetVTName);
404 };
405 } // End anonymous namespace
406 
407 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
408   return std::string(CGP.getSDNodeInfo(Op).getEnumName());
409 }
410 
411 static std::string getLegalCName(std::string OpName) {
412   std::string::size_type pos = OpName.find("::");
413   if (pos != std::string::npos)
414     OpName.replace(pos, 2, "_");
415   return OpName;
416 }
417 
418 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}
419 
420 static std::string PhyRegForNode(TreePatternNode *Op,
421                                  const CodeGenTarget &Target) {
422   std::string PhysReg;
423 
424   if (!Op->isLeaf())
425     return PhysReg;
426 
427   Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
428   if (!OpLeafRec->isSubClassOf("Register"))
429     return PhysReg;
430 
431   PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
432                ->getValue();
433   PhysReg += "::";
434   PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
435   return PhysReg;
436 }
437 
438 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
439   const CodeGenTarget &Target = CGP.getTargetInfo();
440 
441   // Scan through all the patterns and record the simple ones.
442   for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
443        E = CGP.ptm_end(); I != E; ++I) {
444     const PatternToMatch &Pattern = *I;
445 
446     // For now, just look at Instructions, so that we don't have to worry
447     // about emitting multiple instructions for a pattern.
448     TreePatternNode *Dst = Pattern.getDstPattern();
449     if (Dst->isLeaf()) continue;
450     Record *Op = Dst->getOperator();
451     if (!Op->isSubClassOf("Instruction"))
452       continue;
453     CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
454     if (II.Operands.empty())
455       continue;
456 
457     // Allow instructions to be marked as unavailable for FastISel for
458     // certain cases, i.e. an ISA has two 'and' instruction which differ
459     // by what registers they can use but are otherwise identical for
460     // codegen purposes.
461     if (II.FastISelShouldIgnore)
462       continue;
463 
464     // For now, ignore multi-instruction patterns.
465     bool MultiInsts = false;
466     for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
467       TreePatternNode *ChildOp = Dst->getChild(i);
468       if (ChildOp->isLeaf())
469         continue;
470       if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
471         MultiInsts = true;
472         break;
473       }
474     }
475     if (MultiInsts)
476       continue;
477 
478     // For now, ignore instructions where the first operand is not an
479     // output register.
480     const CodeGenRegisterClass *DstRC = nullptr;
481     std::string SubRegNo;
482     if (Op->getName() != "EXTRACT_SUBREG") {
483       Record *Op0Rec = II.Operands[0].Rec;
484       if (Op0Rec->isSubClassOf("RegisterOperand"))
485         Op0Rec = Op0Rec->getValueAsDef("RegClass");
486       if (!Op0Rec->isSubClassOf("RegisterClass"))
487         continue;
488       DstRC = &Target.getRegisterClass(Op0Rec);
489       if (!DstRC)
490         continue;
491     } else {
492       // If this isn't a leaf, then continue since the register classes are
493       // a bit too complicated for now.
494       if (!Dst->getChild(1)->isLeaf()) continue;
495 
496       DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
497       if (SR)
498         SubRegNo = getQualifiedName(SR->getDef());
499       else
500         SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
501     }
502 
503     // Inspect the pattern.
504     TreePatternNode *InstPatNode = Pattern.getSrcPattern();
505     if (!InstPatNode) continue;
506     if (InstPatNode->isLeaf()) continue;
507 
508     // Ignore multiple result nodes for now.
509     if (InstPatNode->getNumTypes() > 1) continue;
510 
511     Record *InstPatOp = InstPatNode->getOperator();
512     std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
513     MVT::SimpleValueType RetVT = MVT::isVoid;
514     if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0);
515     MVT::SimpleValueType VT = RetVT;
516     if (InstPatNode->getNumChildren()) {
517       assert(InstPatNode->getChild(0)->getNumTypes() == 1);
518       VT = InstPatNode->getChild(0)->getSimpleType(0);
519     }
520 
521     // For now, filter out any instructions with predicates.
522     if (!InstPatNode->getPredicateCalls().empty())
523       continue;
524 
525     // Check all the operands.
526     OperandsSignature Operands;
527     if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
528                              DstRC))
529       continue;
530 
531     std::vector<std::string> PhysRegInputs;
532     if (InstPatNode->getOperator()->getName() == "imm" ||
533         InstPatNode->getOperator()->getName() == "fpimm")
534       PhysRegInputs.push_back("");
535     else {
536       // Compute the PhysRegs used by the given pattern, and check that
537       // the mapping from the src to dst patterns is simple.
538       bool FoundNonSimplePattern = false;
539       unsigned DstIndex = 0;
540       for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
541         std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
542         if (PhysReg.empty()) {
543           if (DstIndex >= Dst->getNumChildren() ||
544               Dst->getChild(DstIndex)->getName() !=
545               InstPatNode->getChild(i)->getName()) {
546             FoundNonSimplePattern = true;
547             break;
548           }
549           ++DstIndex;
550         }
551 
552         PhysRegInputs.push_back(PhysReg);
553       }
554 
555       if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
556         FoundNonSimplePattern = true;
557 
558       if (FoundNonSimplePattern)
559         continue;
560     }
561 
562     // Check if the operands match one of the patterns handled by FastISel.
563     std::string ManglingSuffix;
564     raw_string_ostream SuffixOS(ManglingSuffix);
565     Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
566     if (!StringSwitch<bool>(ManglingSuffix)
567         .Cases("", "r", "rr", "ri", "i", "f", true)
568         .Default(false))
569       continue;
570 
571     // Get the predicate that guards this pattern.
572     std::string PredicateCheck = Pattern.getPredicateCheck();
573 
574     // Ok, we found a pattern that we can handle. Remember it.
575     InstructionMemo Memo(
576       Pattern.getDstPattern()->getOperator()->getName(),
577       DstRC,
578       SubRegNo,
579       PhysRegInputs,
580       PredicateCheck
581     );
582 
583     int complexity = Pattern.getPatternComplexity(CGP);
584 
585     auto inserted_simple_pattern = SimplePatternsCheck.insert(
586         std::make_tuple(Operands, OpcodeName, VT, RetVT, PredicateCheck));
587     if (!inserted_simple_pattern.second) {
588       PrintFatalError(Pattern.getSrcRecord()->getLoc(),
589                     "Duplicate predicate in FastISel table!");
590     }
591 
592     // Note: Instructions with the same complexity will appear in the order
593     // that they are encountered.
594     SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
595                                                             std::move(Memo));
596 
597     // If any of the operands were immediates with predicates on them, strip
598     // them down to a signature that doesn't have predicates so that we can
599     // associate them with the stripped predicate version.
600     if (Operands.hasAnyImmediateCodes()) {
601       SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
602         .push_back(Operands);
603     }
604   }
605 }
606 
607 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
608   if (ImmediatePredicates.begin() == ImmediatePredicates.end())
609     return;
610 
611   OS << "\n// FastEmit Immediate Predicate functions.\n";
612   for (auto ImmediatePredicate : ImmediatePredicates) {
613     OS << "static bool " << ImmediatePredicate.getFnName()
614        << "(int64_t Imm) {\n";
615     OS << ImmediatePredicate.getImmediatePredicateCode() << "\n}\n";
616   }
617 
618   OS << "\n\n";
619 }
620 
621 void FastISelMap::emitInstructionCode(raw_ostream &OS,
622                                       const OperandsSignature &Operands,
623                                       const PredMap &PM,
624                                       const std::string &RetVTName) {
625   // Emit code for each possible instruction. There may be
626   // multiple if there are subtarget concerns.  A reverse iterator
627   // is used to produce the ones with highest complexity first.
628 
629   bool OneHadNoPredicate = false;
630   for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
631        PI != PE; ++PI) {
632     const InstructionMemo &Memo = PI->second;
633     std::string PredicateCheck = Memo.PredicateCheck;
634 
635     if (PredicateCheck.empty()) {
636       assert(!OneHadNoPredicate &&
637              "Multiple instructions match and more than one had "
638              "no predicate!");
639       OneHadNoPredicate = true;
640     } else {
641       if (OneHadNoPredicate) {
642         PrintFatalError("Multiple instructions match and one with no "
643                         "predicate came before one with a predicate!  "
644                         "name:" + Memo.Name + "  predicate: " + PredicateCheck);
645       }
646       OS << "  if (" + PredicateCheck + ") {\n";
647       OS << "  ";
648     }
649 
650     for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
651       if (Memo.PhysRegs[i] != "")
652         OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, "
653            << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
654            << ").addReg(Op" << i << ");\n";
655     }
656 
657     OS << "  return fastEmitInst_";
658     if (Memo.SubRegNo.empty()) {
659       Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
660                                    true);
661       OS << "(" << InstNS << "::" << Memo.Name << ", ";
662       OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
663       if (!Operands.empty())
664         OS << ", ";
665       Operands.PrintArguments(OS, Memo.PhysRegs);
666       OS << ");\n";
667     } else {
668       OS << "extractsubreg(" << RetVTName
669          << ", Op0, " << Memo.SubRegNo << ");\n";
670     }
671 
672     if (!PredicateCheck.empty()) {
673       OS << "  }\n";
674     }
675   }
676   // Return 0 if all of the possibilities had predicates but none
677   // were satisfied.
678   if (!OneHadNoPredicate)
679     OS << "  return 0;\n";
680   OS << "}\n";
681   OS << "\n";
682 }
683 
684 
685 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
686   // Now emit code for all the patterns that we collected.
687   for (const auto &SimplePattern : SimplePatterns) {
688     const OperandsSignature &Operands = SimplePattern.first;
689     const OpcodeTypeRetPredMap &OTM = SimplePattern.second;
690 
691     for (const auto &I : OTM) {
692       const std::string &Opcode = I.first;
693       const TypeRetPredMap &TM = I.second;
694 
695       OS << "// FastEmit functions for " << Opcode << ".\n";
696       OS << "\n";
697 
698       // Emit one function for each opcode,type pair.
699       for (const auto &TI : TM) {
700         MVT::SimpleValueType VT = TI.first;
701         const RetPredMap &RM = TI.second;
702         if (RM.size() != 1) {
703           for (const auto &RI : RM) {
704             MVT::SimpleValueType RetVT = RI.first;
705             const PredMap &PM = RI.second;
706 
707             OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
708                << getLegalCName(std::string(getName(VT))) << "_"
709                << getLegalCName(std::string(getName(RetVT))) << "_";
710             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
711             OS << "(";
712             Operands.PrintParameters(OS);
713             OS << ") {\n";
714 
715             emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT)));
716           }
717 
718           // Emit one function for the type that demultiplexes on return type.
719           OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
720              << getLegalCName(std::string(getName(VT))) << "_";
721           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
722           OS << "(MVT RetVT";
723           if (!Operands.empty())
724             OS << ", ";
725           Operands.PrintParameters(OS);
726           OS << ") {\nswitch (RetVT.SimpleTy) {\n";
727           for (const auto &RI : RM) {
728             MVT::SimpleValueType RetVT = RI.first;
729             OS << "  case " << getName(RetVT) << ": return fastEmit_"
730                << getLegalCName(Opcode) << "_"
731                << getLegalCName(std::string(getName(VT))) << "_"
732                << getLegalCName(std::string(getName(RetVT))) << "_";
733             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
734             OS << "(";
735             Operands.PrintArguments(OS);
736             OS << ");\n";
737           }
738           OS << "  default: return 0;\n}\n}\n\n";
739 
740         } else {
741           // Non-variadic return type.
742           OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
743              << getLegalCName(std::string(getName(VT))) << "_";
744           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
745           OS << "(MVT RetVT";
746           if (!Operands.empty())
747             OS << ", ";
748           Operands.PrintParameters(OS);
749           OS << ") {\n";
750 
751           OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first)
752              << ")\n    return 0;\n";
753 
754           const PredMap &PM = RM.begin()->second;
755 
756           emitInstructionCode(OS, Operands, PM, "RetVT");
757         }
758       }
759 
760       // Emit one function for the opcode that demultiplexes based on the type.
761       OS << "unsigned fastEmit_"
762          << getLegalCName(Opcode) << "_";
763       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
764       OS << "(MVT VT, MVT RetVT";
765       if (!Operands.empty())
766         OS << ", ";
767       Operands.PrintParameters(OS);
768       OS << ") {\n";
769       OS << "  switch (VT.SimpleTy) {\n";
770       for (const auto &TI : TM) {
771         MVT::SimpleValueType VT = TI.first;
772         std::string TypeName = std::string(getName(VT));
773         OS << "  case " << TypeName << ": return fastEmit_"
774            << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
775         Operands.PrintManglingSuffix(OS, ImmediatePredicates);
776         OS << "(RetVT";
777         if (!Operands.empty())
778           OS << ", ";
779         Operands.PrintArguments(OS);
780         OS << ");\n";
781       }
782       OS << "  default: return 0;\n";
783       OS << "  }\n";
784       OS << "}\n";
785       OS << "\n";
786     }
787 
788     OS << "// Top-level FastEmit function.\n";
789     OS << "\n";
790 
791     // Emit one function for the operand signature that demultiplexes based
792     // on opcode and type.
793     OS << "unsigned fastEmit_";
794     Operands.PrintManglingSuffix(OS, ImmediatePredicates);
795     OS << "(MVT VT, MVT RetVT, unsigned Opcode";
796     if (!Operands.empty())
797       OS << ", ";
798     Operands.PrintParameters(OS);
799     OS << ") ";
800     if (!Operands.hasAnyImmediateCodes())
801       OS << "override ";
802     OS << "{\n";
803 
804     // If there are any forms of this signature available that operate on
805     // constrained forms of the immediate (e.g., 32-bit sext immediate in a
806     // 64-bit operand), check them first.
807 
808     std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
809       = SignaturesWithConstantForms.find(Operands);
810     if (MI != SignaturesWithConstantForms.end()) {
811       // Unique any duplicates out of the list.
812       llvm::sort(MI->second);
813       MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
814                        MI->second.end());
815 
816       // Check each in order it was seen.  It would be nice to have a good
817       // relative ordering between them, but we're not going for optimality
818       // here.
819       for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
820         OS << "  if (";
821         MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
822         OS << ")\n    if (unsigned Reg = fastEmit_";
823         MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
824         OS << "(VT, RetVT, Opcode";
825         if (!MI->second[i].empty())
826           OS << ", ";
827         MI->second[i].PrintArguments(OS);
828         OS << "))\n      return Reg;\n\n";
829       }
830 
831       // Done with this, remove it.
832       SignaturesWithConstantForms.erase(MI);
833     }
834 
835     OS << "  switch (Opcode) {\n";
836     for (const auto &I : OTM) {
837       const std::string &Opcode = I.first;
838 
839       OS << "  case " << Opcode << ": return fastEmit_"
840          << getLegalCName(Opcode) << "_";
841       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
842       OS << "(VT, RetVT";
843       if (!Operands.empty())
844         OS << ", ";
845       Operands.PrintArguments(OS);
846       OS << ");\n";
847     }
848     OS << "  default: return 0;\n";
849     OS << "  }\n";
850     OS << "}\n";
851     OS << "\n";
852   }
853 
854   // TODO: SignaturesWithConstantForms should be empty here.
855 }
856 
857 namespace llvm {
858 
859 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
860   CodeGenDAGPatterns CGP(RK);
861   const CodeGenTarget &Target = CGP.getTargetInfo();
862   emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
863                        Target.getName().str() + " target", OS);
864 
865   // Determine the target's namespace name.
866   StringRef InstNS = Target.getInstNamespace();
867   assert(!InstNS.empty() && "Can't determine target-specific namespace!");
868 
869   FastISelMap F(InstNS);
870   F.collectPatterns(CGP);
871   F.printImmediatePredicates(OS);
872   F.printFunctionDefinitions(OS);
873 }
874 
875 } // End llvm namespace
876