xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/DecoderEmitter.cpp (revision 66fd12cf4896eb08ad8e7a2627537f84ead84dd3)
1 //===---------------- DecoderEmitter.cpp - Decoder Generator --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // It contains the tablegen backend that emits the decoder functions for
10 // targets with fixed/variable length instruction set.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenInstruction.h"
15 #include "CodeGenTarget.h"
16 #include "InfoByHwMode.h"
17 #include "VarLenCodeEmitterGen.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/CachedHashString.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/MC/MCDecoderOps.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/FormattedStream.h"
32 #include "llvm/Support/LEB128.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/TableGen/Error.h"
35 #include "llvm/TableGen/Record.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <map>
41 #include <memory>
42 #include <set>
43 #include <string>
44 #include <utility>
45 #include <vector>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "decoder-emitter"
50 
51 namespace {
52 
53 STATISTIC(NumEncodings, "Number of encodings considered");
54 STATISTIC(NumEncodingsLackingDisasm, "Number of encodings without disassembler info");
55 STATISTIC(NumInstructions, "Number of instructions considered");
56 STATISTIC(NumEncodingsSupported, "Number of encodings supported");
57 STATISTIC(NumEncodingsOmitted, "Number of encodings omitted");
58 
59 struct EncodingField {
60   unsigned Base, Width, Offset;
61   EncodingField(unsigned B, unsigned W, unsigned O)
62     : Base(B), Width(W), Offset(O) { }
63 };
64 
65 struct OperandInfo {
66   std::vector<EncodingField> Fields;
67   std::string Decoder;
68   bool HasCompleteDecoder;
69   uint64_t InitValue;
70 
71   OperandInfo(std::string D, bool HCD)
72       : Decoder(std::move(D)), HasCompleteDecoder(HCD), InitValue(0) {}
73 
74   void addField(unsigned Base, unsigned Width, unsigned Offset) {
75     Fields.push_back(EncodingField(Base, Width, Offset));
76   }
77 
78   unsigned numFields() const { return Fields.size(); }
79 
80   typedef std::vector<EncodingField>::const_iterator const_iterator;
81 
82   const_iterator begin() const { return Fields.begin(); }
83   const_iterator end() const   { return Fields.end();   }
84 };
85 
86 typedef std::vector<uint8_t> DecoderTable;
87 typedef uint32_t DecoderFixup;
88 typedef std::vector<DecoderFixup> FixupList;
89 typedef std::vector<FixupList> FixupScopeList;
90 typedef SmallSetVector<CachedHashString, 16> PredicateSet;
91 typedef SmallSetVector<CachedHashString, 16> DecoderSet;
92 struct DecoderTableInfo {
93   DecoderTable Table;
94   FixupScopeList FixupStack;
95   PredicateSet Predicates;
96   DecoderSet Decoders;
97 };
98 
99 struct EncodingAndInst {
100   const Record *EncodingDef;
101   const CodeGenInstruction *Inst;
102   StringRef HwModeName;
103 
104   EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst,
105                   StringRef HwModeName = "")
106       : EncodingDef(EncodingDef), Inst(Inst), HwModeName(HwModeName) {}
107 };
108 
109 struct EncodingIDAndOpcode {
110   unsigned EncodingID;
111   unsigned Opcode;
112 
113   EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {}
114   EncodingIDAndOpcode(unsigned EncodingID, unsigned Opcode)
115       : EncodingID(EncodingID), Opcode(Opcode) {}
116 };
117 
118 raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) {
119   if (Value.EncodingDef != Value.Inst->TheDef)
120     OS << Value.EncodingDef->getName() << ":";
121   OS << Value.Inst->TheDef->getName();
122   return OS;
123 }
124 
125 class DecoderEmitter {
126   RecordKeeper &RK;
127   std::vector<EncodingAndInst> NumberedEncodings;
128 
129 public:
130   DecoderEmitter(RecordKeeper &R, std::string PredicateNamespace)
131       : RK(R), Target(R), PredicateNamespace(std::move(PredicateNamespace)) {}
132 
133   // Emit the decoder state machine table.
134   void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
135                  unsigned Indentation, unsigned BitWidth,
136                  StringRef Namespace) const;
137   void emitInstrLenTable(formatted_raw_ostream &OS,
138                          std::vector<unsigned> &InstrLen) const;
139   void emitPredicateFunction(formatted_raw_ostream &OS,
140                              PredicateSet &Predicates,
141                              unsigned Indentation) const;
142   void emitDecoderFunction(formatted_raw_ostream &OS,
143                            DecoderSet &Decoders,
144                            unsigned Indentation) const;
145 
146   // run - Output the code emitter
147   void run(raw_ostream &o);
148 
149 private:
150   CodeGenTarget Target;
151 
152 public:
153   std::string PredicateNamespace;
154 };
155 
156 } // end anonymous namespace
157 
158 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
159 // for a bit value.
160 //
161 // BIT_UNFILTERED is used as the init value for a filter position.  It is used
162 // only for filter processings.
163 typedef enum {
164   BIT_TRUE,      // '1'
165   BIT_FALSE,     // '0'
166   BIT_UNSET,     // '?'
167   BIT_UNFILTERED // unfiltered
168 } bit_value_t;
169 
170 static bool ValueSet(bit_value_t V) {
171   return (V == BIT_TRUE || V == BIT_FALSE);
172 }
173 
174 static bool ValueNotSet(bit_value_t V) {
175   return (V == BIT_UNSET);
176 }
177 
178 static int Value(bit_value_t V) {
179   return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
180 }
181 
182 static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
183   if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
184     return bit->getValue() ? BIT_TRUE : BIT_FALSE;
185 
186   // The bit is uninitialized.
187   return BIT_UNSET;
188 }
189 
190 // Prints the bit value for each position.
191 static void dumpBits(raw_ostream &o, const BitsInit &bits) {
192   for (unsigned index = bits.getNumBits(); index > 0; --index) {
193     switch (bitFromBits(bits, index - 1)) {
194     case BIT_TRUE:
195       o << "1";
196       break;
197     case BIT_FALSE:
198       o << "0";
199       break;
200     case BIT_UNSET:
201       o << "_";
202       break;
203     default:
204       llvm_unreachable("unexpected return value from bitFromBits");
205     }
206   }
207 }
208 
209 static BitsInit &getBitsField(const Record &def, StringRef str) {
210   const RecordVal *RV = def.getValue(str);
211   if (BitsInit *Bits = dyn_cast<BitsInit>(RV->getValue()))
212     return *Bits;
213 
214   // variable length instruction
215   VarLenInst VLI = VarLenInst(cast<DagInit>(RV->getValue()), RV);
216   SmallVector<Init *, 16> Bits;
217 
218   for (auto &SI : VLI) {
219     if (const BitsInit *BI = dyn_cast<BitsInit>(SI.Value)) {
220       for (unsigned Idx = 0U; Idx < BI->getNumBits(); ++Idx) {
221         Bits.push_back(BI->getBit(Idx));
222       }
223     } else if (const BitInit *BI = dyn_cast<BitInit>(SI.Value)) {
224       Bits.push_back(const_cast<BitInit *>(BI));
225     } else {
226       for (unsigned Idx = 0U; Idx < SI.BitWidth; ++Idx)
227         Bits.push_back(UnsetInit::get(def.getRecords()));
228     }
229   }
230 
231   return *BitsInit::get(def.getRecords(), Bits);
232 }
233 
234 // Representation of the instruction to work on.
235 typedef std::vector<bit_value_t> insn_t;
236 
237 namespace {
238 
239 static const uint64_t NO_FIXED_SEGMENTS_SENTINEL = -1ULL;
240 
241 class FilterChooser;
242 
243 /// Filter - Filter works with FilterChooser to produce the decoding tree for
244 /// the ISA.
245 ///
246 /// It is useful to think of a Filter as governing the switch stmts of the
247 /// decoding tree in a certain level.  Each case stmt delegates to an inferior
248 /// FilterChooser to decide what further decoding logic to employ, or in another
249 /// words, what other remaining bits to look at.  The FilterChooser eventually
250 /// chooses a best Filter to do its job.
251 ///
252 /// This recursive scheme ends when the number of Opcodes assigned to the
253 /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
254 /// the Filter/FilterChooser combo does not know how to distinguish among the
255 /// Opcodes assigned.
256 ///
257 /// An example of a conflict is
258 ///
259 /// Conflict:
260 ///                     111101000.00........00010000....
261 ///                     111101000.00........0001........
262 ///                     1111010...00........0001........
263 ///                     1111010...00....................
264 ///                     1111010.........................
265 ///                     1111............................
266 ///                     ................................
267 ///     VST4q8a         111101000_00________00010000____
268 ///     VST4q8b         111101000_00________00010000____
269 ///
270 /// The Debug output shows the path that the decoding tree follows to reach the
271 /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
272 /// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
273 ///
274 /// The encoding info in the .td files does not specify this meta information,
275 /// which could have been used by the decoder to resolve the conflict.  The
276 /// decoder could try to decode the even/odd register numbering and assign to
277 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
278 /// version and return the Opcode since the two have the same Asm format string.
279 class Filter {
280 protected:
281   const FilterChooser *Owner;// points to the FilterChooser who owns this filter
282   unsigned StartBit; // the starting bit position
283   unsigned NumBits; // number of bits to filter
284   bool Mixed; // a mixed region contains both set and unset bits
285 
286   // Map of well-known segment value to the set of uid's with that value.
287   std::map<uint64_t, std::vector<EncodingIDAndOpcode>>
288       FilteredInstructions;
289 
290   // Set of uid's with non-constant segment values.
291   std::vector<EncodingIDAndOpcode> VariableInstructions;
292 
293   // Map of well-known segment value to its delegate.
294   std::map<uint64_t, std::unique_ptr<const FilterChooser>> FilterChooserMap;
295 
296   // Number of instructions which fall under FilteredInstructions category.
297   unsigned NumFiltered;
298 
299   // Keeps track of the last opcode in the filtered bucket.
300   EncodingIDAndOpcode LastOpcFiltered;
301 
302 public:
303   Filter(Filter &&f);
304   Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
305 
306   ~Filter() = default;
307 
308   unsigned getNumFiltered() const { return NumFiltered; }
309 
310   EncodingIDAndOpcode getSingletonOpc() const {
311     assert(NumFiltered == 1);
312     return LastOpcFiltered;
313   }
314 
315   // Return the filter chooser for the group of instructions without constant
316   // segment values.
317   const FilterChooser &getVariableFC() const {
318     assert(NumFiltered == 1);
319     assert(FilterChooserMap.size() == 1);
320     return *(FilterChooserMap.find(NO_FIXED_SEGMENTS_SENTINEL)->second);
321   }
322 
323   // Divides the decoding task into sub tasks and delegates them to the
324   // inferior FilterChooser's.
325   //
326   // A special case arises when there's only one entry in the filtered
327   // instructions.  In order to unambiguously decode the singleton, we need to
328   // match the remaining undecoded encoding bits against the singleton.
329   void recurse();
330 
331   // Emit table entries to decode instructions given a segment or segments of
332   // bits.
333   void emitTableEntry(DecoderTableInfo &TableInfo) const;
334 
335   // Returns the number of fanout produced by the filter.  More fanout implies
336   // the filter distinguishes more categories of instructions.
337   unsigned usefulness() const;
338 }; // end class Filter
339 
340 } // end anonymous namespace
341 
342 // These are states of our finite state machines used in FilterChooser's
343 // filterProcessor() which produces the filter candidates to use.
344 typedef enum {
345   ATTR_NONE,
346   ATTR_FILTERED,
347   ATTR_ALL_SET,
348   ATTR_ALL_UNSET,
349   ATTR_MIXED
350 } bitAttr_t;
351 
352 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
353 /// in order to perform the decoding of instructions at the current level.
354 ///
355 /// Decoding proceeds from the top down.  Based on the well-known encoding bits
356 /// of instructions available, FilterChooser builds up the possible Filters that
357 /// can further the task of decoding by distinguishing among the remaining
358 /// candidate instructions.
359 ///
360 /// Once a filter has been chosen, it is called upon to divide the decoding task
361 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
362 /// processings.
363 ///
364 /// It is useful to think of a Filter as governing the switch stmts of the
365 /// decoding tree.  And each case is delegated to an inferior FilterChooser to
366 /// decide what further remaining bits to look at.
367 namespace {
368 
369 class FilterChooser {
370 protected:
371   friend class Filter;
372 
373   // Vector of codegen instructions to choose our filter.
374   ArrayRef<EncodingAndInst> AllInstructions;
375 
376   // Vector of uid's for this filter chooser to work on.
377   // The first member of the pair is the opcode id being decoded, the second is
378   // the opcode id that should be emitted.
379   const std::vector<EncodingIDAndOpcode> &Opcodes;
380 
381   // Lookup table for the operand decoding of instructions.
382   const std::map<unsigned, std::vector<OperandInfo>> &Operands;
383 
384   // Vector of candidate filters.
385   std::vector<Filter> Filters;
386 
387   // Array of bit values passed down from our parent.
388   // Set to all BIT_UNFILTERED's for Parent == NULL.
389   std::vector<bit_value_t> FilterBitValues;
390 
391   // Links to the FilterChooser above us in the decoding tree.
392   const FilterChooser *Parent;
393 
394   // Index of the best filter from Filters.
395   int BestIndex;
396 
397   // Width of instructions
398   unsigned BitWidth;
399 
400   // Parent emitter
401   const DecoderEmitter *Emitter;
402 
403 public:
404   FilterChooser(ArrayRef<EncodingAndInst> Insts,
405                 const std::vector<EncodingIDAndOpcode> &IDs,
406                 const std::map<unsigned, std::vector<OperandInfo>> &Ops,
407                 unsigned BW, const DecoderEmitter *E)
408       : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
409         FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
410         BitWidth(BW), Emitter(E) {
411     doFilter();
412   }
413 
414   FilterChooser(ArrayRef<EncodingAndInst> Insts,
415                 const std::vector<EncodingIDAndOpcode> &IDs,
416                 const std::map<unsigned, std::vector<OperandInfo>> &Ops,
417                 const std::vector<bit_value_t> &ParentFilterBitValues,
418                 const FilterChooser &parent)
419       : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
420         FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1),
421         BitWidth(parent.BitWidth), Emitter(parent.Emitter) {
422     doFilter();
423   }
424 
425   FilterChooser(const FilterChooser &) = delete;
426   void operator=(const FilterChooser &) = delete;
427 
428   unsigned getBitWidth() const { return BitWidth; }
429 
430 protected:
431   // Populates the insn given the uid.
432   void insnWithID(insn_t &Insn, unsigned Opcode) const {
433     BitsInit &Bits = getBitsField(*AllInstructions[Opcode].EncodingDef, "Inst");
434     Insn.resize(BitWidth > Bits.getNumBits() ? BitWidth : Bits.getNumBits(),
435                 BIT_UNSET);
436     // We may have a SoftFail bitmask, which specifies a mask where an encoding
437     // may differ from the value in "Inst" and yet still be valid, but the
438     // disassembler should return SoftFail instead of Success.
439     //
440     // This is used for marking UNPREDICTABLE instructions in the ARM world.
441     const RecordVal *RV =
442         AllInstructions[Opcode].EncodingDef->getValue("SoftFail");
443     const BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr;
444     for (unsigned i = 0; i < Bits.getNumBits(); ++i) {
445       if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
446         Insn[i] = BIT_UNSET;
447       else
448         Insn[i] = bitFromBits(Bits, i);
449     }
450   }
451 
452   // Emit the name of the encoding/instruction pair.
453   void emitNameWithID(raw_ostream &OS, unsigned Opcode) const {
454     const Record *EncodingDef = AllInstructions[Opcode].EncodingDef;
455     const Record *InstDef = AllInstructions[Opcode].Inst->TheDef;
456     if (EncodingDef != InstDef)
457       OS << EncodingDef->getName() << ":";
458     OS << InstDef->getName();
459   }
460 
461   // Populates the field of the insn given the start position and the number of
462   // consecutive bits to scan for.
463   //
464   // Returns false if there exists any uninitialized bit value in the range.
465   // Returns true, otherwise.
466   bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
467                      unsigned NumBits) const;
468 
469   /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
470   /// filter array as a series of chars.
471   void dumpFilterArray(raw_ostream &o,
472                        const std::vector<bit_value_t> & filter) const;
473 
474   /// dumpStack - dumpStack traverses the filter chooser chain and calls
475   /// dumpFilterArray on each filter chooser up to the top level one.
476   void dumpStack(raw_ostream &o, const char *prefix) const;
477 
478   Filter &bestFilter() {
479     assert(BestIndex != -1 && "BestIndex not set");
480     return Filters[BestIndex];
481   }
482 
483   bool PositionFiltered(unsigned i) const {
484     return ValueSet(FilterBitValues[i]);
485   }
486 
487   // Calculates the island(s) needed to decode the instruction.
488   // This returns a lit of undecoded bits of an instructions, for example,
489   // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
490   // decoded bits in order to verify that the instruction matches the Opcode.
491   unsigned getIslands(std::vector<unsigned> &StartBits,
492                       std::vector<unsigned> &EndBits,
493                       std::vector<uint64_t> &FieldVals,
494                       const insn_t &Insn) const;
495 
496   // Emits code to check the Predicates member of an instruction are true.
497   // Returns true if predicate matches were emitted, false otherwise.
498   bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
499                           unsigned Opc) const;
500   bool emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp,
501                              raw_ostream &OS) const;
502 
503   bool doesOpcodeNeedPredicate(unsigned Opc) const;
504   unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
505   void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
506                                unsigned Opc) const;
507 
508   void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
509                               unsigned Opc) const;
510 
511   // Emits table entries to decode the singleton.
512   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
513                                EncodingIDAndOpcode Opc) const;
514 
515   // Emits code to decode the singleton, and then to decode the rest.
516   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
517                                const Filter &Best) const;
518 
519   void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
520                         const OperandInfo &OpInfo,
521                         bool &OpHasCompleteDecoder) const;
522 
523   void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc,
524                    bool &HasCompleteDecoder) const;
525   unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc,
526                            bool &HasCompleteDecoder) const;
527 
528   // Assign a single filter and run with it.
529   void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
530 
531   // reportRegion is a helper function for filterProcessor to mark a region as
532   // eligible for use as a filter region.
533   void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
534                     bool AllowMixed);
535 
536   // FilterProcessor scans the well-known encoding bits of the instructions and
537   // builds up a list of candidate filters.  It chooses the best filter and
538   // recursively descends down the decoding tree.
539   bool filterProcessor(bool AllowMixed, bool Greedy = true);
540 
541   // Decides on the best configuration of filter(s) to use in order to decode
542   // the instructions.  A conflict of instructions may occur, in which case we
543   // dump the conflict set to the standard error.
544   void doFilter();
545 
546 public:
547   // emitTableEntries - Emit state machine entries to decode our share of
548   // instructions.
549   void emitTableEntries(DecoderTableInfo &TableInfo) const;
550 };
551 
552 } // end anonymous namespace
553 
554 ///////////////////////////
555 //                       //
556 // Filter Implementation //
557 //                       //
558 ///////////////////////////
559 
560 Filter::Filter(Filter &&f)
561   : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
562     FilteredInstructions(std::move(f.FilteredInstructions)),
563     VariableInstructions(std::move(f.VariableInstructions)),
564     FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
565     LastOpcFiltered(f.LastOpcFiltered) {
566 }
567 
568 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
569                bool mixed)
570   : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
571   assert(StartBit + NumBits - 1 < Owner->BitWidth);
572 
573   NumFiltered = 0;
574   LastOpcFiltered = {0, 0};
575 
576   for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
577     insn_t Insn;
578 
579     // Populates the insn given the uid.
580     Owner->insnWithID(Insn, Owner->Opcodes[i].EncodingID);
581 
582     uint64_t Field;
583     // Scans the segment for possibly well-specified encoding bits.
584     bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
585 
586     if (ok) {
587       // The encoding bits are well-known.  Lets add the uid of the
588       // instruction into the bucket keyed off the constant field value.
589       LastOpcFiltered = Owner->Opcodes[i];
590       FilteredInstructions[Field].push_back(LastOpcFiltered);
591       ++NumFiltered;
592     } else {
593       // Some of the encoding bit(s) are unspecified.  This contributes to
594       // one additional member of "Variable" instructions.
595       VariableInstructions.push_back(Owner->Opcodes[i]);
596     }
597   }
598 
599   assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
600          && "Filter returns no instruction categories");
601 }
602 
603 // Divides the decoding task into sub tasks and delegates them to the
604 // inferior FilterChooser's.
605 //
606 // A special case arises when there's only one entry in the filtered
607 // instructions.  In order to unambiguously decode the singleton, we need to
608 // match the remaining undecoded encoding bits against the singleton.
609 void Filter::recurse() {
610   // Starts by inheriting our parent filter chooser's filter bit values.
611   std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
612 
613   if (!VariableInstructions.empty()) {
614     // Conservatively marks each segment position as BIT_UNSET.
615     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
616       BitValueArray[StartBit + bitIndex] = BIT_UNSET;
617 
618     // Delegates to an inferior filter chooser for further processing on this
619     // group of instructions whose segment values are variable.
620     FilterChooserMap.insert(std::make_pair(NO_FIXED_SEGMENTS_SENTINEL,
621         std::make_unique<FilterChooser>(Owner->AllInstructions,
622             VariableInstructions, Owner->Operands, BitValueArray, *Owner)));
623   }
624 
625   // No need to recurse for a singleton filtered instruction.
626   // See also Filter::emit*().
627   if (getNumFiltered() == 1) {
628     assert(FilterChooserMap.size() == 1);
629     return;
630   }
631 
632   // Otherwise, create sub choosers.
633   for (const auto &Inst : FilteredInstructions) {
634 
635     // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
636     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
637       if (Inst.first & (1ULL << bitIndex))
638         BitValueArray[StartBit + bitIndex] = BIT_TRUE;
639       else
640         BitValueArray[StartBit + bitIndex] = BIT_FALSE;
641     }
642 
643     // Delegates to an inferior filter chooser for further processing on this
644     // category of instructions.
645     FilterChooserMap.insert(std::make_pair(
646         Inst.first, std::make_unique<FilterChooser>(
647                                 Owner->AllInstructions, Inst.second,
648                                 Owner->Operands, BitValueArray, *Owner)));
649   }
650 }
651 
652 static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
653                                uint32_t DestIdx) {
654   // Any NumToSkip fixups in the current scope can resolve to the
655   // current location.
656   for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
657                                          E = Fixups.rend();
658        I != E; ++I) {
659     // Calculate the distance from the byte following the fixup entry byte
660     // to the destination. The Target is calculated from after the 16-bit
661     // NumToSkip entry itself, so subtract two  from the displacement here
662     // to account for that.
663     uint32_t FixupIdx = *I;
664     uint32_t Delta = DestIdx - FixupIdx - 3;
665     // Our NumToSkip entries are 24-bits. Make sure our table isn't too
666     // big.
667     assert(Delta < (1u << 24));
668     Table[FixupIdx] = (uint8_t)Delta;
669     Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
670     Table[FixupIdx + 2] = (uint8_t)(Delta >> 16);
671   }
672 }
673 
674 // Emit table entries to decode instructions given a segment or segments
675 // of bits.
676 void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
677   TableInfo.Table.push_back(MCD::OPC_ExtractField);
678   TableInfo.Table.push_back(StartBit);
679   TableInfo.Table.push_back(NumBits);
680 
681   // A new filter entry begins a new scope for fixup resolution.
682   TableInfo.FixupStack.emplace_back();
683 
684   DecoderTable &Table = TableInfo.Table;
685 
686   size_t PrevFilter = 0;
687   bool HasFallthrough = false;
688   for (auto &Filter : FilterChooserMap) {
689     // Field value -1 implies a non-empty set of variable instructions.
690     // See also recurse().
691     if (Filter.first == NO_FIXED_SEGMENTS_SENTINEL) {
692       HasFallthrough = true;
693 
694       // Each scope should always have at least one filter value to check
695       // for.
696       assert(PrevFilter != 0 && "empty filter set!");
697       FixupList &CurScope = TableInfo.FixupStack.back();
698       // Resolve any NumToSkip fixups in the current scope.
699       resolveTableFixups(Table, CurScope, Table.size());
700       CurScope.clear();
701       PrevFilter = 0;  // Don't re-process the filter's fallthrough.
702     } else {
703       Table.push_back(MCD::OPC_FilterValue);
704       // Encode and emit the value to filter against.
705       uint8_t Buffer[16];
706       unsigned Len = encodeULEB128(Filter.first, Buffer);
707       Table.insert(Table.end(), Buffer, Buffer + Len);
708       // Reserve space for the NumToSkip entry. We'll backpatch the value
709       // later.
710       PrevFilter = Table.size();
711       Table.push_back(0);
712       Table.push_back(0);
713       Table.push_back(0);
714     }
715 
716     // We arrive at a category of instructions with the same segment value.
717     // Now delegate to the sub filter chooser for further decodings.
718     // The case may fallthrough, which happens if the remaining well-known
719     // encoding bits do not match exactly.
720     Filter.second->emitTableEntries(TableInfo);
721 
722     // Now that we've emitted the body of the handler, update the NumToSkip
723     // of the filter itself to be able to skip forward when false. Subtract
724     // two as to account for the width of the NumToSkip field itself.
725     if (PrevFilter) {
726       uint32_t NumToSkip = Table.size() - PrevFilter - 3;
727       assert(NumToSkip < (1u << 24) && "disassembler decoding table too large!");
728       Table[PrevFilter] = (uint8_t)NumToSkip;
729       Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
730       Table[PrevFilter + 2] = (uint8_t)(NumToSkip >> 16);
731     }
732   }
733 
734   // Any remaining unresolved fixups bubble up to the parent fixup scope.
735   assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
736   FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
737   FixupScopeList::iterator Dest = Source - 1;
738   llvm::append_range(*Dest, *Source);
739   TableInfo.FixupStack.pop_back();
740 
741   // If there is no fallthrough, then the final filter should get fixed
742   // up according to the enclosing scope rather than the current position.
743   if (!HasFallthrough)
744     TableInfo.FixupStack.back().push_back(PrevFilter);
745 }
746 
747 // Returns the number of fanout produced by the filter.  More fanout implies
748 // the filter distinguishes more categories of instructions.
749 unsigned Filter::usefulness() const {
750   if (!VariableInstructions.empty())
751     return FilteredInstructions.size();
752   else
753     return FilteredInstructions.size() + 1;
754 }
755 
756 //////////////////////////////////
757 //                              //
758 // Filterchooser Implementation //
759 //                              //
760 //////////////////////////////////
761 
762 // Emit the decoder state machine table.
763 void DecoderEmitter::emitTable(formatted_raw_ostream &OS, DecoderTable &Table,
764                                unsigned Indentation, unsigned BitWidth,
765                                StringRef Namespace) const {
766   OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
767     << BitWidth << "[] = {\n";
768 
769   Indentation += 2;
770 
771   // FIXME: We may be able to use the NumToSkip values to recover
772   // appropriate indentation levels.
773   DecoderTable::const_iterator I = Table.begin();
774   DecoderTable::const_iterator E = Table.end();
775   while (I != E) {
776     assert (I < E && "incomplete decode table entry!");
777 
778     uint64_t Pos = I - Table.begin();
779     OS << "/* " << Pos << " */";
780     OS.PadToColumn(12);
781 
782     switch (*I) {
783     default:
784       PrintFatalError("invalid decode table opcode");
785     case MCD::OPC_ExtractField: {
786       ++I;
787       unsigned Start = *I++;
788       unsigned Len = *I++;
789       OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
790         << Len << ",  // Inst{";
791       if (Len > 1)
792         OS << (Start + Len - 1) << "-";
793       OS << Start << "} ...\n";
794       break;
795     }
796     case MCD::OPC_FilterValue: {
797       ++I;
798       OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
799       // The filter value is ULEB128 encoded.
800       while (*I >= 128)
801         OS << (unsigned)*I++ << ", ";
802       OS << (unsigned)*I++ << ", ";
803 
804       // 24-bit numtoskip value.
805       uint8_t Byte = *I++;
806       uint32_t NumToSkip = Byte;
807       OS << (unsigned)Byte << ", ";
808       Byte = *I++;
809       OS << (unsigned)Byte << ", ";
810       NumToSkip |= Byte << 8;
811       Byte = *I++;
812       OS << utostr(Byte) << ", ";
813       NumToSkip |= Byte << 16;
814       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
815       break;
816     }
817     case MCD::OPC_CheckField: {
818       ++I;
819       unsigned Start = *I++;
820       unsigned Len = *I++;
821       OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
822         << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
823       // ULEB128 encoded field value.
824       for (; *I >= 128; ++I)
825         OS << (unsigned)*I << ", ";
826       OS << (unsigned)*I++ << ", ";
827       // 24-bit numtoskip value.
828       uint8_t Byte = *I++;
829       uint32_t NumToSkip = Byte;
830       OS << (unsigned)Byte << ", ";
831       Byte = *I++;
832       OS << (unsigned)Byte << ", ";
833       NumToSkip |= Byte << 8;
834       Byte = *I++;
835       OS << utostr(Byte) << ", ";
836       NumToSkip |= Byte << 16;
837       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
838       break;
839     }
840     case MCD::OPC_CheckPredicate: {
841       ++I;
842       OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
843       for (; *I >= 128; ++I)
844         OS << (unsigned)*I << ", ";
845       OS << (unsigned)*I++ << ", ";
846 
847       // 24-bit numtoskip value.
848       uint8_t Byte = *I++;
849       uint32_t NumToSkip = Byte;
850       OS << (unsigned)Byte << ", ";
851       Byte = *I++;
852       OS << (unsigned)Byte << ", ";
853       NumToSkip |= Byte << 8;
854       Byte = *I++;
855       OS << utostr(Byte) << ", ";
856       NumToSkip |= Byte << 16;
857       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
858       break;
859     }
860     case MCD::OPC_Decode:
861     case MCD::OPC_TryDecode: {
862       bool IsTry = *I == MCD::OPC_TryDecode;
863       ++I;
864       // Extract the ULEB128 encoded Opcode to a buffer.
865       uint8_t Buffer[16], *p = Buffer;
866       while ((*p++ = *I++) >= 128)
867         assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
868                && "ULEB128 value too large!");
869       // Decode the Opcode value.
870       unsigned Opc = decodeULEB128(Buffer);
871       OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "")
872         << "Decode, ";
873       for (p = Buffer; *p >= 128; ++p)
874         OS << (unsigned)*p << ", ";
875       OS << (unsigned)*p << ", ";
876 
877       // Decoder index.
878       for (; *I >= 128; ++I)
879         OS << (unsigned)*I << ", ";
880       OS << (unsigned)*I++ << ", ";
881 
882       if (!IsTry) {
883         OS << "// Opcode: " << NumberedEncodings[Opc] << "\n";
884         break;
885       }
886 
887       // Fallthrough for OPC_TryDecode.
888 
889       // 24-bit numtoskip value.
890       uint8_t Byte = *I++;
891       uint32_t NumToSkip = Byte;
892       OS << (unsigned)Byte << ", ";
893       Byte = *I++;
894       OS << (unsigned)Byte << ", ";
895       NumToSkip |= Byte << 8;
896       Byte = *I++;
897       OS << utostr(Byte) << ", ";
898       NumToSkip |= Byte << 16;
899 
900       OS << "// Opcode: " << NumberedEncodings[Opc]
901          << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
902       break;
903     }
904     case MCD::OPC_SoftFail: {
905       ++I;
906       OS.indent(Indentation) << "MCD::OPC_SoftFail";
907       // Positive mask
908       uint64_t Value = 0;
909       unsigned Shift = 0;
910       do {
911         OS << ", " << (unsigned)*I;
912         Value += (*I & 0x7f) << Shift;
913         Shift += 7;
914       } while (*I++ >= 128);
915       if (Value > 127) {
916         OS << " /* 0x";
917         OS.write_hex(Value);
918         OS << " */";
919       }
920       // Negative mask
921       Value = 0;
922       Shift = 0;
923       do {
924         OS << ", " << (unsigned)*I;
925         Value += (*I & 0x7f) << Shift;
926         Shift += 7;
927       } while (*I++ >= 128);
928       if (Value > 127) {
929         OS << " /* 0x";
930         OS.write_hex(Value);
931         OS << " */";
932       }
933       OS << ",\n";
934       break;
935     }
936     case MCD::OPC_Fail: {
937       ++I;
938       OS.indent(Indentation) << "MCD::OPC_Fail,\n";
939       break;
940     }
941     }
942   }
943   OS.indent(Indentation) << "0\n";
944 
945   Indentation -= 2;
946 
947   OS.indent(Indentation) << "};\n\n";
948 }
949 
950 void DecoderEmitter::emitInstrLenTable(formatted_raw_ostream &OS,
951                                        std::vector<unsigned> &InstrLen) const {
952   OS << "static const uint8_t InstrLenTable[] = {\n";
953   for (unsigned &Len : InstrLen) {
954     OS << Len << ",\n";
955   }
956   OS << "};\n\n";
957 }
958 
959 void DecoderEmitter::emitPredicateFunction(formatted_raw_ostream &OS,
960                                            PredicateSet &Predicates,
961                                            unsigned Indentation) const {
962   // The predicate function is just a big switch statement based on the
963   // input predicate index.
964   OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
965     << "const FeatureBitset &Bits) {\n";
966   Indentation += 2;
967   if (!Predicates.empty()) {
968     OS.indent(Indentation) << "switch (Idx) {\n";
969     OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
970     unsigned Index = 0;
971     for (const auto &Predicate : Predicates) {
972       OS.indent(Indentation) << "case " << Index++ << ":\n";
973       OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
974     }
975     OS.indent(Indentation) << "}\n";
976   } else {
977     // No case statement to emit
978     OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
979   }
980   Indentation -= 2;
981   OS.indent(Indentation) << "}\n\n";
982 }
983 
984 void DecoderEmitter::emitDecoderFunction(formatted_raw_ostream &OS,
985                                          DecoderSet &Decoders,
986                                          unsigned Indentation) const {
987   // The decoder function is just a big switch statement based on the
988   // input decoder index.
989   OS.indent(Indentation) << "template <typename InsnType>\n";
990   OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
991     << " unsigned Idx, InsnType insn, MCInst &MI,\n";
992   OS.indent(Indentation)
993       << "                                   uint64_t "
994       << "Address, const MCDisassembler *Decoder, bool &DecodeComplete) {\n";
995   Indentation += 2;
996   OS.indent(Indentation) << "DecodeComplete = true;\n";
997   // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits
998   // It would be better for emitBinaryParser to use a 64-bit tmp whenever
999   // possible but fall back to an InsnType-sized tmp for truly large fields.
1000   OS.indent(Indentation) << "using TmpType = "
1001                             "std::conditional_t<std::is_integral<InsnType>::"
1002                             "value, InsnType, uint64_t>;\n";
1003   OS.indent(Indentation) << "TmpType tmp;\n";
1004   OS.indent(Indentation) << "switch (Idx) {\n";
1005   OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
1006   unsigned Index = 0;
1007   for (const auto &Decoder : Decoders) {
1008     OS.indent(Indentation) << "case " << Index++ << ":\n";
1009     OS << Decoder;
1010     OS.indent(Indentation+2) << "return S;\n";
1011   }
1012   OS.indent(Indentation) << "}\n";
1013   Indentation -= 2;
1014   OS.indent(Indentation) << "}\n\n";
1015 }
1016 
1017 // Populates the field of the insn given the start position and the number of
1018 // consecutive bits to scan for.
1019 //
1020 // Returns false if and on the first uninitialized bit value encountered.
1021 // Returns true, otherwise.
1022 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
1023                                   unsigned StartBit, unsigned NumBits) const {
1024   Field = 0;
1025 
1026   for (unsigned i = 0; i < NumBits; ++i) {
1027     if (Insn[StartBit + i] == BIT_UNSET)
1028       return false;
1029 
1030     if (Insn[StartBit + i] == BIT_TRUE)
1031       Field = Field | (1ULL << i);
1032   }
1033 
1034   return true;
1035 }
1036 
1037 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
1038 /// filter array as a series of chars.
1039 void FilterChooser::dumpFilterArray(raw_ostream &o,
1040                                  const std::vector<bit_value_t> &filter) const {
1041   for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
1042     switch (filter[bitIndex - 1]) {
1043     case BIT_UNFILTERED:
1044       o << ".";
1045       break;
1046     case BIT_UNSET:
1047       o << "_";
1048       break;
1049     case BIT_TRUE:
1050       o << "1";
1051       break;
1052     case BIT_FALSE:
1053       o << "0";
1054       break;
1055     }
1056   }
1057 }
1058 
1059 /// dumpStack - dumpStack traverses the filter chooser chain and calls
1060 /// dumpFilterArray on each filter chooser up to the top level one.
1061 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
1062   const FilterChooser *current = this;
1063 
1064   while (current) {
1065     o << prefix;
1066     dumpFilterArray(o, current->FilterBitValues);
1067     o << '\n';
1068     current = current->Parent;
1069   }
1070 }
1071 
1072 // Calculates the island(s) needed to decode the instruction.
1073 // This returns a list of undecoded bits of an instructions, for example,
1074 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
1075 // decoded bits in order to verify that the instruction matches the Opcode.
1076 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
1077                                    std::vector<unsigned> &EndBits,
1078                                    std::vector<uint64_t> &FieldVals,
1079                                    const insn_t &Insn) const {
1080   unsigned Num, BitNo;
1081   Num = BitNo = 0;
1082 
1083   uint64_t FieldVal = 0;
1084 
1085   // 0: Init
1086   // 1: Water (the bit value does not affect decoding)
1087   // 2: Island (well-known bit value needed for decoding)
1088   int State = 0;
1089 
1090   for (unsigned i = 0; i < BitWidth; ++i) {
1091     int64_t Val = Value(Insn[i]);
1092     bool Filtered = PositionFiltered(i);
1093     switch (State) {
1094     default: llvm_unreachable("Unreachable code!");
1095     case 0:
1096     case 1:
1097       if (Filtered || Val == -1)
1098         State = 1; // Still in Water
1099       else {
1100         State = 2; // Into the Island
1101         BitNo = 0;
1102         StartBits.push_back(i);
1103         FieldVal = Val;
1104       }
1105       break;
1106     case 2:
1107       if (Filtered || Val == -1) {
1108         State = 1; // Into the Water
1109         EndBits.push_back(i - 1);
1110         FieldVals.push_back(FieldVal);
1111         ++Num;
1112       } else {
1113         State = 2; // Still in Island
1114         ++BitNo;
1115         FieldVal = FieldVal | Val << BitNo;
1116       }
1117       break;
1118     }
1119   }
1120   // If we are still in Island after the loop, do some housekeeping.
1121   if (State == 2) {
1122     EndBits.push_back(BitWidth - 1);
1123     FieldVals.push_back(FieldVal);
1124     ++Num;
1125   }
1126 
1127   assert(StartBits.size() == Num && EndBits.size() == Num &&
1128          FieldVals.size() == Num);
1129   return Num;
1130 }
1131 
1132 void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
1133                                      const OperandInfo &OpInfo,
1134                                      bool &OpHasCompleteDecoder) const {
1135   const std::string &Decoder = OpInfo.Decoder;
1136 
1137   bool UseInsertBits = OpInfo.numFields() != 1 || OpInfo.InitValue != 0;
1138 
1139   if (UseInsertBits) {
1140     o.indent(Indentation) << "tmp = 0x";
1141     o.write_hex(OpInfo.InitValue);
1142     o << ";\n";
1143   }
1144 
1145   for (const EncodingField &EF : OpInfo) {
1146     o.indent(Indentation);
1147     if (UseInsertBits)
1148       o << "insertBits(tmp, ";
1149     else
1150       o << "tmp = ";
1151     o << "fieldFromInstruction(insn, " << EF.Base << ", " << EF.Width << ')';
1152     if (UseInsertBits)
1153       o << ", " << EF.Offset << ", " << EF.Width << ')';
1154     else if (EF.Offset != 0)
1155       o << " << " << EF.Offset;
1156     o << ";\n";
1157   }
1158 
1159   if (Decoder != "") {
1160     OpHasCompleteDecoder = OpInfo.HasCompleteDecoder;
1161     o.indent(Indentation) << "if (!Check(S, " << Decoder
1162                           << "(MI, tmp, Address, Decoder))) { "
1163                           << (OpHasCompleteDecoder ? ""
1164                                                    : "DecodeComplete = false; ")
1165                           << "return MCDisassembler::Fail; }\n";
1166   } else {
1167     OpHasCompleteDecoder = true;
1168     o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n";
1169   }
1170 }
1171 
1172 void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
1173                                 unsigned Opc, bool &HasCompleteDecoder) const {
1174   HasCompleteDecoder = true;
1175 
1176   for (const auto &Op : Operands.find(Opc)->second) {
1177     // If a custom instruction decoder was specified, use that.
1178     if (Op.numFields() == 0 && !Op.Decoder.empty()) {
1179       HasCompleteDecoder = Op.HasCompleteDecoder;
1180       OS.indent(Indentation)
1181           << "if (!Check(S, " << Op.Decoder
1182           << "(MI, insn, Address, Decoder))) { "
1183           << (HasCompleteDecoder ? "" : "DecodeComplete = false; ")
1184           << "return MCDisassembler::Fail; }\n";
1185       break;
1186     }
1187 
1188     bool OpHasCompleteDecoder;
1189     emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder);
1190     if (!OpHasCompleteDecoder)
1191       HasCompleteDecoder = false;
1192   }
1193 }
1194 
1195 unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
1196                                         unsigned Opc,
1197                                         bool &HasCompleteDecoder) const {
1198   // Build up the predicate string.
1199   SmallString<256> Decoder;
1200   // FIXME: emitDecoder() function can take a buffer directly rather than
1201   // a stream.
1202   raw_svector_ostream S(Decoder);
1203   unsigned I = 4;
1204   emitDecoder(S, I, Opc, HasCompleteDecoder);
1205 
1206   // Using the full decoder string as the key value here is a bit
1207   // heavyweight, but is effective. If the string comparisons become a
1208   // performance concern, we can implement a mangling of the predicate
1209   // data easily enough with a map back to the actual string. That's
1210   // overkill for now, though.
1211 
1212   // Make sure the predicate is in the table.
1213   Decoders.insert(CachedHashString(Decoder));
1214   // Now figure out the index for when we write out the table.
1215   DecoderSet::const_iterator P = find(Decoders, Decoder.str());
1216   return (unsigned)(P - Decoders.begin());
1217 }
1218 
1219 // If ParenIfBinOp is true, print a surrounding () if Val uses && or ||.
1220 bool FilterChooser::emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp,
1221                                           raw_ostream &OS) const {
1222   if (auto *D = dyn_cast<DefInit>(&Val)) {
1223     if (!D->getDef()->isSubClassOf("SubtargetFeature"))
1224       return true;
1225     OS << "Bits[" << Emitter->PredicateNamespace << "::" << D->getAsString()
1226        << "]";
1227     return false;
1228   }
1229   if (auto *D = dyn_cast<DagInit>(&Val)) {
1230     std::string Op = D->getOperator()->getAsString();
1231     if (Op == "not" && D->getNumArgs() == 1) {
1232       OS << '!';
1233       return emitPredicateMatchAux(*D->getArg(0), true, OS);
1234     }
1235     if ((Op == "any_of" || Op == "all_of") && D->getNumArgs() > 0) {
1236       bool Paren = D->getNumArgs() > 1 && std::exchange(ParenIfBinOp, true);
1237       if (Paren)
1238         OS << '(';
1239       ListSeparator LS(Op == "any_of" ? " || " : " && ");
1240       for (auto *Arg : D->getArgs()) {
1241         OS << LS;
1242         if (emitPredicateMatchAux(*Arg, ParenIfBinOp, OS))
1243           return true;
1244       }
1245       if (Paren)
1246         OS << ')';
1247       return false;
1248     }
1249   }
1250   return true;
1251 }
1252 
1253 bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
1254                                        unsigned Opc) const {
1255   ListInit *Predicates =
1256       AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1257   bool IsFirstEmission = true;
1258   for (unsigned i = 0; i < Predicates->size(); ++i) {
1259     Record *Pred = Predicates->getElementAsRecord(i);
1260     if (!Pred->getValue("AssemblerMatcherPredicate"))
1261       continue;
1262 
1263     if (!isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
1264       continue;
1265 
1266     if (!IsFirstEmission)
1267       o << " && ";
1268     if (emitPredicateMatchAux(*Pred->getValueAsDag("AssemblerCondDag"),
1269                               Predicates->size() > 1, o))
1270       PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
1271     IsFirstEmission = false;
1272   }
1273   return !Predicates->empty();
1274 }
1275 
1276 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
1277   ListInit *Predicates =
1278       AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1279   for (unsigned i = 0; i < Predicates->size(); ++i) {
1280     Record *Pred = Predicates->getElementAsRecord(i);
1281     if (!Pred->getValue("AssemblerMatcherPredicate"))
1282       continue;
1283 
1284     if (isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
1285       return true;
1286   }
1287   return false;
1288 }
1289 
1290 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
1291                                           StringRef Predicate) const {
1292   // Using the full predicate string as the key value here is a bit
1293   // heavyweight, but is effective. If the string comparisons become a
1294   // performance concern, we can implement a mangling of the predicate
1295   // data easily enough with a map back to the actual string. That's
1296   // overkill for now, though.
1297 
1298   // Make sure the predicate is in the table.
1299   TableInfo.Predicates.insert(CachedHashString(Predicate));
1300   // Now figure out the index for when we write out the table.
1301   PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate);
1302   return (unsigned)(P - TableInfo.Predicates.begin());
1303 }
1304 
1305 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
1306                                             unsigned Opc) const {
1307   if (!doesOpcodeNeedPredicate(Opc))
1308     return;
1309 
1310   // Build up the predicate string.
1311   SmallString<256> Predicate;
1312   // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1313   // than a stream.
1314   raw_svector_ostream PS(Predicate);
1315   unsigned I = 0;
1316   emitPredicateMatch(PS, I, Opc);
1317 
1318   // Figure out the index into the predicate table for the predicate just
1319   // computed.
1320   unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
1321   SmallString<16> PBytes;
1322   raw_svector_ostream S(PBytes);
1323   encodeULEB128(PIdx, S);
1324 
1325   TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
1326   // Predicate index
1327   for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
1328     TableInfo.Table.push_back(PBytes[i]);
1329   // Push location for NumToSkip backpatching.
1330   TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1331   TableInfo.Table.push_back(0);
1332   TableInfo.Table.push_back(0);
1333   TableInfo.Table.push_back(0);
1334 }
1335 
1336 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
1337                                            unsigned Opc) const {
1338   const RecordVal *RV = AllInstructions[Opc].EncodingDef->getValue("SoftFail");
1339   BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr;
1340 
1341   if (!SFBits) return;
1342   BitsInit *InstBits =
1343       AllInstructions[Opc].EncodingDef->getValueAsBitsInit("Inst");
1344 
1345   APInt PositiveMask(BitWidth, 0ULL);
1346   APInt NegativeMask(BitWidth, 0ULL);
1347   for (unsigned i = 0; i < BitWidth; ++i) {
1348     bit_value_t B = bitFromBits(*SFBits, i);
1349     bit_value_t IB = bitFromBits(*InstBits, i);
1350 
1351     if (B != BIT_TRUE) continue;
1352 
1353     switch (IB) {
1354     case BIT_FALSE:
1355       // The bit is meant to be false, so emit a check to see if it is true.
1356       PositiveMask.setBit(i);
1357       break;
1358     case BIT_TRUE:
1359       // The bit is meant to be true, so emit a check to see if it is false.
1360       NegativeMask.setBit(i);
1361       break;
1362     default:
1363       // The bit is not set; this must be an error!
1364       errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
1365              << AllInstructions[Opc] << " is set but Inst{" << i
1366              << "} is unset!\n"
1367              << "  - You can only mark a bit as SoftFail if it is fully defined"
1368              << " (1/0 - not '?') in Inst\n";
1369       return;
1370     }
1371   }
1372 
1373   bool NeedPositiveMask = PositiveMask.getBoolValue();
1374   bool NeedNegativeMask = NegativeMask.getBoolValue();
1375 
1376   if (!NeedPositiveMask && !NeedNegativeMask)
1377     return;
1378 
1379   TableInfo.Table.push_back(MCD::OPC_SoftFail);
1380 
1381   SmallString<16> MaskBytes;
1382   raw_svector_ostream S(MaskBytes);
1383   if (NeedPositiveMask) {
1384     encodeULEB128(PositiveMask.getZExtValue(), S);
1385     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1386       TableInfo.Table.push_back(MaskBytes[i]);
1387   } else
1388     TableInfo.Table.push_back(0);
1389   if (NeedNegativeMask) {
1390     MaskBytes.clear();
1391     encodeULEB128(NegativeMask.getZExtValue(), S);
1392     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1393       TableInfo.Table.push_back(MaskBytes[i]);
1394   } else
1395     TableInfo.Table.push_back(0);
1396 }
1397 
1398 // Emits table entries to decode the singleton.
1399 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1400                                             EncodingIDAndOpcode Opc) const {
1401   std::vector<unsigned> StartBits;
1402   std::vector<unsigned> EndBits;
1403   std::vector<uint64_t> FieldVals;
1404   insn_t Insn;
1405   insnWithID(Insn, Opc.EncodingID);
1406 
1407   // Look for islands of undecoded bits of the singleton.
1408   getIslands(StartBits, EndBits, FieldVals, Insn);
1409 
1410   unsigned Size = StartBits.size();
1411 
1412   // Emit the predicate table entry if one is needed.
1413   emitPredicateTableEntry(TableInfo, Opc.EncodingID);
1414 
1415   // Check any additional encoding fields needed.
1416   for (unsigned I = Size; I != 0; --I) {
1417     unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1418     TableInfo.Table.push_back(MCD::OPC_CheckField);
1419     TableInfo.Table.push_back(StartBits[I-1]);
1420     TableInfo.Table.push_back(NumBits);
1421     uint8_t Buffer[16], *p;
1422     encodeULEB128(FieldVals[I-1], Buffer);
1423     for (p = Buffer; *p >= 128 ; ++p)
1424       TableInfo.Table.push_back(*p);
1425     TableInfo.Table.push_back(*p);
1426     // Push location for NumToSkip backpatching.
1427     TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1428     // The fixup is always 24-bits, so go ahead and allocate the space
1429     // in the table so all our relative position calculations work OK even
1430     // before we fully resolve the real value here.
1431     TableInfo.Table.push_back(0);
1432     TableInfo.Table.push_back(0);
1433     TableInfo.Table.push_back(0);
1434   }
1435 
1436   // Check for soft failure of the match.
1437   emitSoftFailTableEntry(TableInfo, Opc.EncodingID);
1438 
1439   bool HasCompleteDecoder;
1440   unsigned DIdx =
1441       getDecoderIndex(TableInfo.Decoders, Opc.EncodingID, HasCompleteDecoder);
1442 
1443   // Produce OPC_Decode or OPC_TryDecode opcode based on the information
1444   // whether the instruction decoder is complete or not. If it is complete
1445   // then it handles all possible values of remaining variable/unfiltered bits
1446   // and for any value can determine if the bitpattern is a valid instruction
1447   // or not. This means OPC_Decode will be the final step in the decoding
1448   // process. If it is not complete, then the Fail return code from the
1449   // decoder method indicates that additional processing should be done to see
1450   // if there is any other instruction that also matches the bitpattern and
1451   // can decode it.
1452   TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode :
1453       MCD::OPC_TryDecode);
1454   NumEncodingsSupported++;
1455   uint8_t Buffer[16], *p;
1456   encodeULEB128(Opc.Opcode, Buffer);
1457   for (p = Buffer; *p >= 128 ; ++p)
1458     TableInfo.Table.push_back(*p);
1459   TableInfo.Table.push_back(*p);
1460 
1461   SmallString<16> Bytes;
1462   raw_svector_ostream S(Bytes);
1463   encodeULEB128(DIdx, S);
1464 
1465   // Decoder index
1466   for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
1467     TableInfo.Table.push_back(Bytes[i]);
1468 
1469   if (!HasCompleteDecoder) {
1470     // Push location for NumToSkip backpatching.
1471     TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1472     // Allocate the space for the fixup.
1473     TableInfo.Table.push_back(0);
1474     TableInfo.Table.push_back(0);
1475     TableInfo.Table.push_back(0);
1476   }
1477 }
1478 
1479 // Emits table entries to decode the singleton, and then to decode the rest.
1480 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1481                                             const Filter &Best) const {
1482   EncodingIDAndOpcode Opc = Best.getSingletonOpc();
1483 
1484   // complex singletons need predicate checks from the first singleton
1485   // to refer forward to the variable filterchooser that follows.
1486   TableInfo.FixupStack.emplace_back();
1487 
1488   emitSingletonTableEntry(TableInfo, Opc);
1489 
1490   resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
1491                      TableInfo.Table.size());
1492   TableInfo.FixupStack.pop_back();
1493 
1494   Best.getVariableFC().emitTableEntries(TableInfo);
1495 }
1496 
1497 // Assign a single filter and run with it.  Top level API client can initialize
1498 // with a single filter to start the filtering process.
1499 void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
1500                                     bool mixed) {
1501   Filters.clear();
1502   Filters.emplace_back(*this, startBit, numBit, true);
1503   BestIndex = 0; // Sole Filter instance to choose from.
1504   bestFilter().recurse();
1505 }
1506 
1507 // reportRegion is a helper function for filterProcessor to mark a region as
1508 // eligible for use as a filter region.
1509 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1510                                  unsigned BitIndex, bool AllowMixed) {
1511   if (RA == ATTR_MIXED && AllowMixed)
1512     Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true);
1513   else if (RA == ATTR_ALL_SET && !AllowMixed)
1514     Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false);
1515 }
1516 
1517 // FilterProcessor scans the well-known encoding bits of the instructions and
1518 // builds up a list of candidate filters.  It chooses the best filter and
1519 // recursively descends down the decoding tree.
1520 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1521   Filters.clear();
1522   BestIndex = -1;
1523   unsigned numInstructions = Opcodes.size();
1524 
1525   assert(numInstructions && "Filter created with no instructions");
1526 
1527   // No further filtering is necessary.
1528   if (numInstructions == 1)
1529     return true;
1530 
1531   // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
1532   // instructions is 3.
1533   if (AllowMixed && !Greedy) {
1534     assert(numInstructions == 3);
1535 
1536     for (auto Opcode : Opcodes) {
1537       std::vector<unsigned> StartBits;
1538       std::vector<unsigned> EndBits;
1539       std::vector<uint64_t> FieldVals;
1540       insn_t Insn;
1541 
1542       insnWithID(Insn, Opcode.EncodingID);
1543 
1544       // Look for islands of undecoded bits of any instruction.
1545       if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1546         // Found an instruction with island(s).  Now just assign a filter.
1547         runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
1548         return true;
1549       }
1550     }
1551   }
1552 
1553   unsigned BitIndex;
1554 
1555   // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1556   // The automaton consumes the corresponding bit from each
1557   // instruction.
1558   //
1559   //   Input symbols: 0, 1, and _ (unset).
1560   //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1561   //   Initial state: NONE.
1562   //
1563   // (NONE) ------- [01] -> (ALL_SET)
1564   // (NONE) ------- _ ----> (ALL_UNSET)
1565   // (ALL_SET) ---- [01] -> (ALL_SET)
1566   // (ALL_SET) ---- _ ----> (MIXED)
1567   // (ALL_UNSET) -- [01] -> (MIXED)
1568   // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1569   // (MIXED) ------ . ----> (MIXED)
1570   // (FILTERED)---- . ----> (FILTERED)
1571 
1572   std::vector<bitAttr_t> bitAttrs;
1573 
1574   // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1575   // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1576   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
1577     if (FilterBitValues[BitIndex] == BIT_TRUE ||
1578         FilterBitValues[BitIndex] == BIT_FALSE)
1579       bitAttrs.push_back(ATTR_FILTERED);
1580     else
1581       bitAttrs.push_back(ATTR_NONE);
1582 
1583   for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1584     insn_t insn;
1585 
1586     insnWithID(insn, Opcodes[InsnIndex].EncodingID);
1587 
1588     for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1589       switch (bitAttrs[BitIndex]) {
1590       case ATTR_NONE:
1591         if (insn[BitIndex] == BIT_UNSET)
1592           bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1593         else
1594           bitAttrs[BitIndex] = ATTR_ALL_SET;
1595         break;
1596       case ATTR_ALL_SET:
1597         if (insn[BitIndex] == BIT_UNSET)
1598           bitAttrs[BitIndex] = ATTR_MIXED;
1599         break;
1600       case ATTR_ALL_UNSET:
1601         if (insn[BitIndex] != BIT_UNSET)
1602           bitAttrs[BitIndex] = ATTR_MIXED;
1603         break;
1604       case ATTR_MIXED:
1605       case ATTR_FILTERED:
1606         break;
1607       }
1608     }
1609   }
1610 
1611   // The regionAttr automaton consumes the bitAttrs automatons' state,
1612   // lowest-to-highest.
1613   //
1614   //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1615   //   States:        NONE, ALL_SET, MIXED
1616   //   Initial state: NONE
1617   //
1618   // (NONE) ----- F --> (NONE)
1619   // (NONE) ----- S --> (ALL_SET)     ; and set region start
1620   // (NONE) ----- U --> (NONE)
1621   // (NONE) ----- M --> (MIXED)       ; and set region start
1622   // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
1623   // (ALL_SET) -- S --> (ALL_SET)
1624   // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
1625   // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
1626   // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
1627   // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
1628   // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
1629   // (MIXED) ---- M --> (MIXED)
1630 
1631   bitAttr_t RA = ATTR_NONE;
1632   unsigned StartBit = 0;
1633 
1634   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1635     bitAttr_t bitAttr = bitAttrs[BitIndex];
1636 
1637     assert(bitAttr != ATTR_NONE && "Bit without attributes");
1638 
1639     switch (RA) {
1640     case ATTR_NONE:
1641       switch (bitAttr) {
1642       case ATTR_FILTERED:
1643         break;
1644       case ATTR_ALL_SET:
1645         StartBit = BitIndex;
1646         RA = ATTR_ALL_SET;
1647         break;
1648       case ATTR_ALL_UNSET:
1649         break;
1650       case ATTR_MIXED:
1651         StartBit = BitIndex;
1652         RA = ATTR_MIXED;
1653         break;
1654       default:
1655         llvm_unreachable("Unexpected bitAttr!");
1656       }
1657       break;
1658     case ATTR_ALL_SET:
1659       switch (bitAttr) {
1660       case ATTR_FILTERED:
1661         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1662         RA = ATTR_NONE;
1663         break;
1664       case ATTR_ALL_SET:
1665         break;
1666       case ATTR_ALL_UNSET:
1667         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1668         RA = ATTR_NONE;
1669         break;
1670       case ATTR_MIXED:
1671         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1672         StartBit = BitIndex;
1673         RA = ATTR_MIXED;
1674         break;
1675       default:
1676         llvm_unreachable("Unexpected bitAttr!");
1677       }
1678       break;
1679     case ATTR_MIXED:
1680       switch (bitAttr) {
1681       case ATTR_FILTERED:
1682         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1683         StartBit = BitIndex;
1684         RA = ATTR_NONE;
1685         break;
1686       case ATTR_ALL_SET:
1687         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1688         StartBit = BitIndex;
1689         RA = ATTR_ALL_SET;
1690         break;
1691       case ATTR_ALL_UNSET:
1692         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1693         RA = ATTR_NONE;
1694         break;
1695       case ATTR_MIXED:
1696         break;
1697       default:
1698         llvm_unreachable("Unexpected bitAttr!");
1699       }
1700       break;
1701     case ATTR_ALL_UNSET:
1702       llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1703     case ATTR_FILTERED:
1704       llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1705     }
1706   }
1707 
1708   // At the end, if we're still in ALL_SET or MIXED states, report a region
1709   switch (RA) {
1710   case ATTR_NONE:
1711     break;
1712   case ATTR_FILTERED:
1713     break;
1714   case ATTR_ALL_SET:
1715     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1716     break;
1717   case ATTR_ALL_UNSET:
1718     break;
1719   case ATTR_MIXED:
1720     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1721     break;
1722   }
1723 
1724   // We have finished with the filter processings.  Now it's time to choose
1725   // the best performing filter.
1726   BestIndex = 0;
1727   bool AllUseless = true;
1728   unsigned BestScore = 0;
1729 
1730   for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1731     unsigned Usefulness = Filters[i].usefulness();
1732 
1733     if (Usefulness)
1734       AllUseless = false;
1735 
1736     if (Usefulness > BestScore) {
1737       BestIndex = i;
1738       BestScore = Usefulness;
1739     }
1740   }
1741 
1742   if (!AllUseless)
1743     bestFilter().recurse();
1744 
1745   return !AllUseless;
1746 } // end of FilterChooser::filterProcessor(bool)
1747 
1748 // Decides on the best configuration of filter(s) to use in order to decode
1749 // the instructions.  A conflict of instructions may occur, in which case we
1750 // dump the conflict set to the standard error.
1751 void FilterChooser::doFilter() {
1752   unsigned Num = Opcodes.size();
1753   assert(Num && "FilterChooser created with no instructions");
1754 
1755   // Try regions of consecutive known bit values first.
1756   if (filterProcessor(false))
1757     return;
1758 
1759   // Then regions of mixed bits (both known and unitialized bit values allowed).
1760   if (filterProcessor(true))
1761     return;
1762 
1763   // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1764   // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1765   // well-known encoding pattern.  In such case, we backtrack and scan for the
1766   // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1767   if (Num == 3 && filterProcessor(true, false))
1768     return;
1769 
1770   // If we come to here, the instruction decoding has failed.
1771   // Set the BestIndex to -1 to indicate so.
1772   BestIndex = -1;
1773 }
1774 
1775 // emitTableEntries - Emit state machine entries to decode our share of
1776 // instructions.
1777 void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
1778   if (Opcodes.size() == 1) {
1779     // There is only one instruction in the set, which is great!
1780     // Call emitSingletonDecoder() to see whether there are any remaining
1781     // encodings bits.
1782     emitSingletonTableEntry(TableInfo, Opcodes[0]);
1783     return;
1784   }
1785 
1786   // Choose the best filter to do the decodings!
1787   if (BestIndex != -1) {
1788     const Filter &Best = Filters[BestIndex];
1789     if (Best.getNumFiltered() == 1)
1790       emitSingletonTableEntry(TableInfo, Best);
1791     else
1792       Best.emitTableEntry(TableInfo);
1793     return;
1794   }
1795 
1796   // We don't know how to decode these instructions!  Dump the
1797   // conflict set and bail.
1798 
1799   // Print out useful conflict information for postmortem analysis.
1800   errs() << "Decoding Conflict:\n";
1801 
1802   dumpStack(errs(), "\t\t");
1803 
1804   for (auto Opcode : Opcodes) {
1805     errs() << '\t';
1806     emitNameWithID(errs(), Opcode.EncodingID);
1807     errs() << " ";
1808     dumpBits(
1809         errs(),
1810         getBitsField(*AllInstructions[Opcode.EncodingID].EncodingDef, "Inst"));
1811     errs() << '\n';
1812   }
1813 }
1814 
1815 static std::string findOperandDecoderMethod(Record *Record) {
1816   std::string Decoder;
1817 
1818   RecordVal *DecoderString = Record->getValue("DecoderMethod");
1819   StringInit *String = DecoderString ?
1820     dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1821   if (String) {
1822     Decoder = std::string(String->getValue());
1823     if (!Decoder.empty())
1824       return Decoder;
1825   }
1826 
1827   if (Record->isSubClassOf("RegisterOperand"))
1828     Record = Record->getValueAsDef("RegClass");
1829 
1830   if (Record->isSubClassOf("RegisterClass")) {
1831     Decoder = "Decode" + Record->getName().str() + "RegisterClass";
1832   } else if (Record->isSubClassOf("PointerLikeRegClass")) {
1833     Decoder = "DecodePointerLikeRegClass" +
1834       utostr(Record->getValueAsInt("RegClassKind"));
1835   }
1836 
1837   return Decoder;
1838 }
1839 
1840 OperandInfo getOpInfo(Record *TypeRecord) {
1841   std::string Decoder = findOperandDecoderMethod(TypeRecord);
1842 
1843   RecordVal *HasCompleteDecoderVal = TypeRecord->getValue("hasCompleteDecoder");
1844   BitInit *HasCompleteDecoderBit =
1845       HasCompleteDecoderVal
1846           ? dyn_cast<BitInit>(HasCompleteDecoderVal->getValue())
1847           : nullptr;
1848   bool HasCompleteDecoder =
1849       HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true;
1850 
1851   return OperandInfo(Decoder, HasCompleteDecoder);
1852 }
1853 
1854 void parseVarLenInstOperand(const Record &Def,
1855                             std::vector<OperandInfo> &Operands,
1856                             const CodeGenInstruction &CGI) {
1857 
1858   const RecordVal *RV = Def.getValue("Inst");
1859   VarLenInst VLI(cast<DagInit>(RV->getValue()), RV);
1860   SmallVector<int> TiedTo;
1861 
1862   for (unsigned Idx = 0; Idx < CGI.Operands.size(); ++Idx) {
1863     auto &Op = CGI.Operands[Idx];
1864     if (Op.MIOperandInfo && Op.MIOperandInfo->getNumArgs() > 0)
1865       for (auto *Arg : Op.MIOperandInfo->getArgs())
1866         Operands.push_back(getOpInfo(cast<DefInit>(Arg)->getDef()));
1867     else
1868       Operands.push_back(getOpInfo(Op.Rec));
1869 
1870     int TiedReg = Op.getTiedRegister();
1871     TiedTo.push_back(-1);
1872     if (TiedReg != -1) {
1873       TiedTo[Idx] = TiedReg;
1874       TiedTo[TiedReg] = Idx;
1875     }
1876   }
1877 
1878   unsigned CurrBitPos = 0;
1879   for (auto &EncodingSegment : VLI) {
1880     unsigned Offset = 0;
1881     StringRef OpName;
1882 
1883     if (const StringInit *SI = dyn_cast<StringInit>(EncodingSegment.Value)) {
1884       OpName = SI->getValue();
1885     } else if (const DagInit *DI = dyn_cast<DagInit>(EncodingSegment.Value)) {
1886       OpName = cast<StringInit>(DI->getArg(0))->getValue();
1887       Offset = cast<IntInit>(DI->getArg(2))->getValue();
1888     }
1889 
1890     if (!OpName.empty()) {
1891       auto OpSubOpPair =
1892           const_cast<CodeGenInstruction &>(CGI).Operands.ParseOperandName(
1893               OpName);
1894       unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(OpSubOpPair);
1895       Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset);
1896       if (!EncodingSegment.CustomDecoder.empty())
1897         Operands[OpIdx].Decoder = EncodingSegment.CustomDecoder.str();
1898 
1899       int TiedReg = TiedTo[OpSubOpPair.first];
1900       if (TiedReg != -1) {
1901         unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(
1902             std::make_pair(TiedReg, OpSubOpPair.second));
1903         Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset);
1904       }
1905     }
1906 
1907     CurrBitPos += EncodingSegment.BitWidth;
1908   }
1909 }
1910 
1911 static void debugDumpRecord(const Record &Rec) {
1912   // Dump the record, so we can see what's going on...
1913   std::string E;
1914   raw_string_ostream S(E);
1915   S << "Dumping record for previous error:\n";
1916   S << Rec;
1917   PrintNote(E);
1918 }
1919 
1920 /// For an operand field named OpName: populate OpInfo.InitValue with the
1921 /// constant-valued bit values, and OpInfo.Fields with the ranges of bits to
1922 /// insert from the decoded instruction.
1923 static void addOneOperandFields(const Record &EncodingDef, const BitsInit &Bits,
1924                                 std::map<std::string, std::string> &TiedNames,
1925                                 StringRef OpName, OperandInfo &OpInfo) {
1926   // Some bits of the operand may be required to be 1 depending on the
1927   // instruction's encoding. Collect those bits.
1928   if (const RecordVal *EncodedValue = EncodingDef.getValue(OpName))
1929     if (const BitsInit *OpBits = dyn_cast<BitsInit>(EncodedValue->getValue()))
1930       for (unsigned I = 0; I < OpBits->getNumBits(); ++I)
1931         if (const BitInit *OpBit = dyn_cast<BitInit>(OpBits->getBit(I)))
1932           if (OpBit->getValue())
1933             OpInfo.InitValue |= 1ULL << I;
1934 
1935   for (unsigned I = 0, J = 0; I != Bits.getNumBits(); I = J) {
1936     VarInit *Var;
1937     unsigned Offset = 0;
1938     for (; J != Bits.getNumBits(); ++J) {
1939       VarBitInit *BJ = dyn_cast<VarBitInit>(Bits.getBit(J));
1940       if (BJ) {
1941         Var = dyn_cast<VarInit>(BJ->getBitVar());
1942         if (I == J)
1943           Offset = BJ->getBitNum();
1944         else if (BJ->getBitNum() != Offset + J - I)
1945           break;
1946       } else {
1947         Var = dyn_cast<VarInit>(Bits.getBit(J));
1948       }
1949       if (!Var || (Var->getName() != OpName &&
1950                    Var->getName() != TiedNames[std::string(OpName)]))
1951         break;
1952     }
1953     if (I == J)
1954       ++J;
1955     else
1956       OpInfo.addField(I, J - I, Offset);
1957   }
1958 }
1959 
1960 static unsigned
1961 populateInstruction(CodeGenTarget &Target, const Record &EncodingDef,
1962                     const CodeGenInstruction &CGI, unsigned Opc,
1963                     std::map<unsigned, std::vector<OperandInfo>> &Operands,
1964                     bool IsVarLenInst) {
1965   const Record &Def = *CGI.TheDef;
1966   // If all the bit positions are not specified; do not decode this instruction.
1967   // We are bound to fail!  For proper disassembly, the well-known encoding bits
1968   // of the instruction must be fully specified.
1969 
1970   BitsInit &Bits = getBitsField(EncodingDef, "Inst");
1971   if (Bits.allInComplete())
1972     return 0;
1973 
1974   std::vector<OperandInfo> InsnOperands;
1975 
1976   // If the instruction has specified a custom decoding hook, use that instead
1977   // of trying to auto-generate the decoder.
1978   StringRef InstDecoder = EncodingDef.getValueAsString("DecoderMethod");
1979   if (InstDecoder != "") {
1980     bool HasCompleteInstDecoder = EncodingDef.getValueAsBit("hasCompleteDecoder");
1981     InsnOperands.push_back(
1982         OperandInfo(std::string(InstDecoder), HasCompleteInstDecoder));
1983     Operands[Opc] = InsnOperands;
1984     return Bits.getNumBits();
1985   }
1986 
1987   // Generate a description of the operand of the instruction that we know
1988   // how to decode automatically.
1989   // FIXME: We'll need to have a way to manually override this as needed.
1990 
1991   // Gather the outputs/inputs of the instruction, so we can find their
1992   // positions in the encoding.  This assumes for now that they appear in the
1993   // MCInst in the order that they're listed.
1994   std::vector<std::pair<Init*, StringRef>> InOutOperands;
1995   DagInit *Out  = Def.getValueAsDag("OutOperandList");
1996   DagInit *In  = Def.getValueAsDag("InOperandList");
1997   for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1998     InOutOperands.push_back(
1999         std::make_pair(Out->getArg(i), Out->getArgNameStr(i)));
2000   for (unsigned i = 0; i < In->getNumArgs(); ++i)
2001     InOutOperands.push_back(
2002         std::make_pair(In->getArg(i), In->getArgNameStr(i)));
2003 
2004   // Search for tied operands, so that we can correctly instantiate
2005   // operands that are not explicitly represented in the encoding.
2006   std::map<std::string, std::string> TiedNames;
2007   for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
2008     auto &Op = CGI.Operands[i];
2009     for (unsigned j = 0; j < Op.Constraints.size(); ++j) {
2010       const CGIOperandList::ConstraintInfo &CI = Op.Constraints[j];
2011       if (CI.isTied()) {
2012         int tiedTo = CI.getTiedOperand();
2013         std::pair<unsigned, unsigned> SO =
2014             CGI.Operands.getSubOperandNumber(tiedTo);
2015         std::string TiedName = CGI.Operands[SO.first].SubOpNames[SO.second];
2016         if (TiedName.empty())
2017           TiedName = CGI.Operands[SO.first].Name;
2018         std::string MyName = Op.SubOpNames[j];
2019         if (MyName.empty())
2020           MyName = Op.Name;
2021 
2022         TiedNames[MyName] = TiedName;
2023         TiedNames[TiedName] = MyName;
2024       }
2025     }
2026   }
2027 
2028   if (IsVarLenInst) {
2029     parseVarLenInstOperand(EncodingDef, InsnOperands, CGI);
2030   } else {
2031     std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands;
2032     std::set<std::string> NumberedInsnOperandsNoTie;
2033     bool SupportPositionalDecoding =
2034         Target.getInstructionSet()->getValueAsBit(
2035             "useDeprecatedPositionallyEncodedOperands") &&
2036         Target.getInstructionSet()->getValueAsBit(
2037             "decodePositionallyEncodedOperands");
2038     if (SupportPositionalDecoding) {
2039       const std::vector<RecordVal> &Vals = Def.getValues();
2040       unsigned NumberedOp = 0;
2041 
2042       std::set<unsigned> NamedOpIndices;
2043       if (Target.getInstructionSet()->getValueAsBit(
2044               "noNamedPositionallyEncodedOperands"))
2045         // Collect the set of operand indices that might correspond to named
2046         // operand, and skip these when assigning operands based on position.
2047         for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2048           unsigned OpIdx;
2049           if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
2050             continue;
2051 
2052           NamedOpIndices.insert(OpIdx);
2053         }
2054 
2055       for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2056         // Ignore fixed fields in the record, we're looking for values like:
2057         //    bits<5> RST = { ?, ?, ?, ?, ? };
2058         if (Vals[i].isNonconcreteOK() || Vals[i].getValue()->isComplete())
2059           continue;
2060 
2061         // Determine if Vals[i] actually contributes to the Inst encoding.
2062         unsigned bi = 0;
2063         for (; bi < Bits.getNumBits(); ++bi) {
2064           VarInit *Var = nullptr;
2065           VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2066           if (BI)
2067             Var = dyn_cast<VarInit>(BI->getBitVar());
2068           else
2069             Var = dyn_cast<VarInit>(Bits.getBit(bi));
2070 
2071           if (Var && Var->getName() == Vals[i].getName())
2072             break;
2073         }
2074 
2075         if (bi == Bits.getNumBits())
2076           continue;
2077 
2078         // Skip variables that correspond to explicitly-named operands.
2079         unsigned OpIdx;
2080         std::pair<unsigned, unsigned> SubOp;
2081         if (CGI.Operands.hasSubOperandAlias(Vals[i].getName(), SubOp) ||
2082             CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
2083           continue;
2084 
2085         // Get the bit range for this operand:
2086         unsigned bitStart = bi++, bitWidth = 1;
2087         for (; bi < Bits.getNumBits(); ++bi) {
2088           VarInit *Var = nullptr;
2089           VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2090           if (BI)
2091             Var = dyn_cast<VarInit>(BI->getBitVar());
2092           else
2093             Var = dyn_cast<VarInit>(Bits.getBit(bi));
2094 
2095           if (!Var)
2096             break;
2097 
2098           if (Var->getName() != Vals[i].getName())
2099             break;
2100 
2101           ++bitWidth;
2102         }
2103 
2104         unsigned NumberOps = CGI.Operands.size();
2105         while (NumberedOp < NumberOps &&
2106                (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
2107                 (!NamedOpIndices.empty() &&
2108                  NamedOpIndices.count(
2109                      CGI.Operands.getSubOperandNumber(NumberedOp).first))))
2110           ++NumberedOp;
2111 
2112         OpIdx = NumberedOp++;
2113 
2114         // OpIdx now holds the ordered operand number of Vals[i].
2115         std::pair<unsigned, unsigned> SO =
2116             CGI.Operands.getSubOperandNumber(OpIdx);
2117         const std::string &Name = CGI.Operands[SO.first].Name;
2118 
2119         LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName()
2120                           << ": " << Name << "(" << SO.first << ", "
2121                           << SO.second << ") => " << Vals[i].getName() << "\n");
2122 
2123         std::string Decoder;
2124         Record *TypeRecord = CGI.Operands[SO.first].Rec;
2125 
2126         RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
2127         StringInit *String =
2128             DecoderString ? dyn_cast<StringInit>(DecoderString->getValue())
2129                           : nullptr;
2130         if (String && String->getValue() != "")
2131           Decoder = std::string(String->getValue());
2132 
2133         if (Decoder == "" && CGI.Operands[SO.first].MIOperandInfo &&
2134             CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
2135           Init *Arg = CGI.Operands[SO.first].MIOperandInfo->getArg(SO.second);
2136           if (DefInit *DI = cast<DefInit>(Arg))
2137             TypeRecord = DI->getDef();
2138         }
2139 
2140         bool isReg = false;
2141         if (TypeRecord->isSubClassOf("RegisterOperand"))
2142           TypeRecord = TypeRecord->getValueAsDef("RegClass");
2143         if (TypeRecord->isSubClassOf("RegisterClass")) {
2144           Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass";
2145           isReg = true;
2146         } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
2147           Decoder = "DecodePointerLikeRegClass" +
2148                     utostr(TypeRecord->getValueAsInt("RegClassKind"));
2149           isReg = true;
2150         }
2151 
2152         DecoderString = TypeRecord->getValue("DecoderMethod");
2153         String = DecoderString ? dyn_cast<StringInit>(DecoderString->getValue())
2154                                : nullptr;
2155         if (!isReg && String && String->getValue() != "")
2156           Decoder = std::string(String->getValue());
2157 
2158         RecordVal *HasCompleteDecoderVal =
2159             TypeRecord->getValue("hasCompleteDecoder");
2160         BitInit *HasCompleteDecoderBit =
2161             HasCompleteDecoderVal
2162                 ? dyn_cast<BitInit>(HasCompleteDecoderVal->getValue())
2163                 : nullptr;
2164         bool HasCompleteDecoder =
2165             HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true;
2166 
2167         OperandInfo OpInfo(Decoder, HasCompleteDecoder);
2168         OpInfo.addField(bitStart, bitWidth, 0);
2169 
2170         NumberedInsnOperands[Name].push_back(OpInfo);
2171 
2172         // FIXME: For complex operands with custom decoders we can't handle tied
2173         // sub-operands automatically. Skip those here and assume that this is
2174         // fixed up elsewhere.
2175         if (CGI.Operands[SO.first].MIOperandInfo &&
2176             CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 && String &&
2177             String->getValue() != "")
2178           NumberedInsnOperandsNoTie.insert(Name);
2179       }
2180     }
2181 
2182     // For each operand, see if we can figure out where it is encoded.
2183     for (const auto &Op : InOutOperands) {
2184       Init *OpInit = Op.first;
2185       StringRef OpName = Op.second;
2186 
2187       if (SupportPositionalDecoding) {
2188         if (!NumberedInsnOperands[std::string(OpName)].empty()) {
2189           llvm::append_range(InsnOperands,
2190                              NumberedInsnOperands[std::string(OpName)]);
2191           continue;
2192         }
2193         if (!NumberedInsnOperands[TiedNames[std::string(OpName)]].empty()) {
2194           if (!NumberedInsnOperandsNoTie.count(
2195                   TiedNames[std::string(OpName)])) {
2196             // Figure out to which (sub)operand we're tied.
2197             unsigned i =
2198                 CGI.Operands.getOperandNamed(TiedNames[std::string(OpName)]);
2199             int tiedTo = CGI.Operands[i].getTiedRegister();
2200             if (tiedTo == -1) {
2201               i = CGI.Operands.getOperandNamed(OpName);
2202               tiedTo = CGI.Operands[i].getTiedRegister();
2203             }
2204 
2205             if (tiedTo != -1) {
2206               std::pair<unsigned, unsigned> SO =
2207                   CGI.Operands.getSubOperandNumber(tiedTo);
2208 
2209               InsnOperands.push_back(
2210                   NumberedInsnOperands[TiedNames[std::string(OpName)]]
2211                                       [SO.second]);
2212             }
2213           }
2214           continue;
2215         }
2216       }
2217 
2218       // We're ready to find the instruction encoding locations for this operand.
2219 
2220       // First, find the operand type ("OpInit"), and sub-op names
2221       // ("SubArgDag") if present.
2222       DagInit *SubArgDag = dyn_cast<DagInit>(OpInit);
2223       if (SubArgDag)
2224         OpInit = SubArgDag->getOperator();
2225       Record *OpTypeRec = cast<DefInit>(OpInit)->getDef();
2226       // Lookup the sub-operands from the operand type record (note that only
2227       // Operand subclasses have MIOperandInfo, see CodeGenInstruction.cpp).
2228       DagInit *SubOps = OpTypeRec->isSubClassOf("Operand")
2229                             ? OpTypeRec->getValueAsDag("MIOperandInfo")
2230                             : nullptr;
2231 
2232       // Lookup the decoder method and construct a new OperandInfo to hold our result.
2233       OperandInfo OpInfo = getOpInfo(OpTypeRec);
2234 
2235       // If we have named sub-operands...
2236       if (SubArgDag) {
2237         // Then there should not be a custom decoder specified on the top-level
2238         // type.
2239         if (!OpInfo.Decoder.empty()) {
2240           PrintError(EncodingDef.getLoc(),
2241                      "DecoderEmitter: operand \"" + OpName + "\" has type \"" +
2242                          OpInit->getAsString() +
2243                          "\" with a custom DecoderMethod, but also named "
2244                          "sub-operands.");
2245           continue;
2246         }
2247 
2248         // Decode each of the sub-ops separately.
2249         assert(SubOps && SubArgDag->getNumArgs() == SubOps->getNumArgs());
2250         for (unsigned i = 0; i < SubOps->getNumArgs(); ++i) {
2251           StringRef SubOpName = SubArgDag->getArgNameStr(i);
2252           OperandInfo SubOpInfo =
2253               getOpInfo(cast<DefInit>(SubOps->getArg(i))->getDef());
2254 
2255           addOneOperandFields(EncodingDef, Bits, TiedNames, SubOpName,
2256                               SubOpInfo);
2257           InsnOperands.push_back(SubOpInfo);
2258         }
2259         continue;
2260       }
2261 
2262       // Otherwise, if we have an operand with sub-operands, but they aren't
2263       // named...
2264       if (SubOps && OpInfo.Decoder.empty()) {
2265         // If it's a single sub-operand, and no custom decoder, use the decoder
2266         // from the one sub-operand.
2267         if (SubOps->getNumArgs() == 1)
2268           OpInfo = getOpInfo(cast<DefInit>(SubOps->getArg(0))->getDef());
2269 
2270         // If we have multiple sub-ops, there'd better have a custom
2271         // decoder. (Otherwise we don't know how to populate them properly...)
2272         if (SubOps->getNumArgs() > 1) {
2273           PrintError(EncodingDef.getLoc(),
2274                      "DecoderEmitter: operand \"" + OpName +
2275                          "\" uses MIOperandInfo with multiple ops, but doesn't "
2276                          "have a custom decoder!");
2277           debugDumpRecord(EncodingDef);
2278           continue;
2279         }
2280       }
2281 
2282       addOneOperandFields(EncodingDef, Bits, TiedNames, OpName, OpInfo);
2283       // FIXME: it should be an error not to find a definition for a given
2284       // operand, rather than just failing to add it to the resulting
2285       // instruction! (This is a longstanding bug, which will be addressed in an
2286       // upcoming change.)
2287       if (OpInfo.numFields() > 0)
2288         InsnOperands.push_back(OpInfo);
2289     }
2290   }
2291   Operands[Opc] = InsnOperands;
2292 
2293 #if 0
2294   LLVM_DEBUG({
2295       // Dumps the instruction encoding bits.
2296       dumpBits(errs(), Bits);
2297 
2298       errs() << '\n';
2299 
2300       // Dumps the list of operand info.
2301       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
2302         const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
2303         const std::string &OperandName = Info.Name;
2304         const Record &OperandDef = *Info.Rec;
2305 
2306         errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
2307       }
2308     });
2309 #endif
2310 
2311   return Bits.getNumBits();
2312 }
2313 
2314 // emitFieldFromInstruction - Emit the templated helper function
2315 // fieldFromInstruction().
2316 // On Windows we make sure that this function is not inlined when
2317 // using the VS compiler. It has a bug which causes the function
2318 // to be optimized out in some circumstances. See llvm.org/pr38292
2319 static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
2320   OS << "// Helper functions for extracting fields from encoded instructions.\n"
2321      << "// InsnType must either be integral or an APInt-like object that "
2322         "must:\n"
2323      << "// * be default-constructible and copy-constructible\n"
2324      << "// * be constructible from an APInt (this can be private)\n"
2325      << "// * Support insertBits(bits, startBit, numBits)\n"
2326      << "// * Support extractBitsAsZExtValue(numBits, startBit)\n"
2327      << "// * Support the ~, &, ==, and != operators with other objects of "
2328         "the same type\n"
2329      << "// * Support the != and bitwise & with uint64_t\n"
2330      << "// * Support put (<<) to raw_ostream&\n"
2331      << "template <typename InsnType>\n"
2332      << "#if defined(_MSC_VER) && !defined(__clang__)\n"
2333      << "__declspec(noinline)\n"
2334      << "#endif\n"
2335      << "static std::enable_if_t<std::is_integral<InsnType>::value, InsnType>\n"
2336      << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
2337      << "                     unsigned numBits) {\n"
2338      << "  assert(startBit + numBits <= 64 && \"Cannot support >64-bit "
2339         "extractions!\");\n"
2340      << "  assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n"
2341      << "         \"Instruction field out of bounds!\");\n"
2342      << "  InsnType fieldMask;\n"
2343      << "  if (numBits == sizeof(InsnType) * 8)\n"
2344      << "    fieldMask = (InsnType)(-1LL);\n"
2345      << "  else\n"
2346      << "    fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
2347      << "  return (insn & fieldMask) >> startBit;\n"
2348      << "}\n"
2349      << "\n"
2350      << "template <typename InsnType>\n"
2351      << "static std::enable_if_t<!std::is_integral<InsnType>::value, "
2352         "uint64_t>\n"
2353      << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
2354      << "                     unsigned numBits) {\n"
2355      << "  return insn.extractBitsAsZExtValue(numBits, startBit);\n"
2356      << "}\n\n";
2357 }
2358 
2359 // emitInsertBits - Emit the templated helper function insertBits().
2360 static void emitInsertBits(formatted_raw_ostream &OS) {
2361   OS << "// Helper function for inserting bits extracted from an encoded "
2362         "instruction into\n"
2363      << "// a field.\n"
2364      << "template <typename InsnType>\n"
2365      << "static std::enable_if_t<std::is_integral<InsnType>::value>\n"
2366      << "insertBits(InsnType &field, InsnType bits, unsigned startBit, "
2367         "unsigned numBits) {\n"
2368      << "  assert(startBit + numBits <= sizeof field * 8);\n"
2369      << "  field |= (InsnType)bits << startBit;\n"
2370      << "}\n"
2371      << "\n"
2372      << "template <typename InsnType>\n"
2373      << "static std::enable_if_t<!std::is_integral<InsnType>::value>\n"
2374      << "insertBits(InsnType &field, uint64_t bits, unsigned startBit, "
2375         "unsigned numBits) {\n"
2376      << "  field.insertBits(bits, startBit, numBits);\n"
2377      << "}\n\n";
2378 }
2379 
2380 // emitDecodeInstruction - Emit the templated helper function
2381 // decodeInstruction().
2382 static void emitDecodeInstruction(formatted_raw_ostream &OS,
2383                                   bool IsVarLenInst) {
2384   OS << "template <typename InsnType>\n"
2385      << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], "
2386         "MCInst &MI,\n"
2387      << "                                      InsnType insn, uint64_t "
2388         "Address,\n"
2389      << "                                      const MCDisassembler *DisAsm,\n"
2390      << "                                      const MCSubtargetInfo &STI";
2391   if (IsVarLenInst) {
2392     OS << ",\n"
2393        << "                                      llvm::function_ref<void(APInt "
2394           "&,"
2395        << " uint64_t)> makeUp";
2396   }
2397   OS << ") {\n"
2398      << "  const FeatureBitset &Bits = STI.getFeatureBits();\n"
2399      << "\n"
2400      << "  const uint8_t *Ptr = DecodeTable;\n"
2401      << "  uint64_t CurFieldValue = 0;\n"
2402      << "  DecodeStatus S = MCDisassembler::Success;\n"
2403      << "  while (true) {\n"
2404      << "    ptrdiff_t Loc = Ptr - DecodeTable;\n"
2405      << "    switch (*Ptr) {\n"
2406      << "    default:\n"
2407      << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
2408      << "      return MCDisassembler::Fail;\n"
2409      << "    case MCD::OPC_ExtractField: {\n"
2410      << "      unsigned Start = *++Ptr;\n"
2411      << "      unsigned Len = *++Ptr;\n"
2412      << "      ++Ptr;\n";
2413   if (IsVarLenInst)
2414     OS << "      makeUp(insn, Start + Len);\n";
2415   OS << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
2416      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << "
2417         "\", \"\n"
2418      << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n"
2419      << "      break;\n"
2420      << "    }\n"
2421      << "    case MCD::OPC_FilterValue: {\n"
2422      << "      // Decode the field value.\n"
2423      << "      unsigned Len;\n"
2424      << "      uint64_t Val = decodeULEB128(++Ptr, &Len);\n"
2425      << "      Ptr += Len;\n"
2426      << "      // NumToSkip is a plain 24-bit integer.\n"
2427      << "      unsigned NumToSkip = *Ptr++;\n"
2428      << "      NumToSkip |= (*Ptr++) << 8;\n"
2429      << "      NumToSkip |= (*Ptr++) << 16;\n"
2430      << "\n"
2431      << "      // Perform the filter operation.\n"
2432      << "      if (Val != CurFieldValue)\n"
2433      << "        Ptr += NumToSkip;\n"
2434      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << "
2435         "\", \" << NumToSkip\n"
2436      << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" "
2437         ": \"PASS:\")\n"
2438      << "                   << \" continuing at \" << (Ptr - DecodeTable) << "
2439         "\"\\n\");\n"
2440      << "\n"
2441      << "      break;\n"
2442      << "    }\n"
2443      << "    case MCD::OPC_CheckField: {\n"
2444      << "      unsigned Start = *++Ptr;\n"
2445      << "      unsigned Len = *++Ptr;\n";
2446   if (IsVarLenInst)
2447     OS << "      makeUp(insn, Start + Len);\n";
2448   OS << "      uint64_t FieldValue = fieldFromInstruction(insn, Start, Len);\n"
2449      << "      // Decode the field value.\n"
2450      << "      unsigned PtrLen = 0;\n"
2451      << "      uint64_t ExpectedValue = decodeULEB128(++Ptr, &PtrLen);\n"
2452      << "      Ptr += PtrLen;\n"
2453      << "      // NumToSkip is a plain 24-bit integer.\n"
2454      << "      unsigned NumToSkip = *Ptr++;\n"
2455      << "      NumToSkip |= (*Ptr++) << 8;\n"
2456      << "      NumToSkip |= (*Ptr++) << 16;\n"
2457      << "\n"
2458      << "      // If the actual and expected values don't match, skip.\n"
2459      << "      if (ExpectedValue != FieldValue)\n"
2460      << "        Ptr += NumToSkip;\n"
2461      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << "
2462         "\", \"\n"
2463      << "                   << Len << \", \" << ExpectedValue << \", \" << "
2464         "NumToSkip\n"
2465      << "                   << \"): FieldValue = \" << FieldValue << \", "
2466         "ExpectedValue = \"\n"
2467      << "                   << ExpectedValue << \": \"\n"
2468      << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : "
2469         "\"FAIL\\n\"));\n"
2470      << "      break;\n"
2471      << "    }\n"
2472      << "    case MCD::OPC_CheckPredicate: {\n"
2473      << "      unsigned Len;\n"
2474      << "      // Decode the Predicate Index value.\n"
2475      << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
2476      << "      Ptr += Len;\n"
2477      << "      // NumToSkip is a plain 24-bit integer.\n"
2478      << "      unsigned NumToSkip = *Ptr++;\n"
2479      << "      NumToSkip |= (*Ptr++) << 8;\n"
2480      << "      NumToSkip |= (*Ptr++) << 16;\n"
2481      << "      // Check the predicate.\n"
2482      << "      bool Pred;\n"
2483      << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
2484      << "        Ptr += NumToSkip;\n"
2485      << "      (void)Pred;\n"
2486      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx "
2487         "<< \"): \"\n"
2488      << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2489      << "\n"
2490      << "      break;\n"
2491      << "    }\n"
2492      << "    case MCD::OPC_Decode: {\n"
2493      << "      unsigned Len;\n"
2494      << "      // Decode the Opcode value.\n"
2495      << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2496      << "      Ptr += Len;\n"
2497      << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2498      << "      Ptr += Len;\n"
2499      << "\n"
2500      << "      MI.clear();\n"
2501      << "      MI.setOpcode(Opc);\n"
2502      << "      bool DecodeComplete;\n";
2503   if (IsVarLenInst) {
2504     OS << "      Len = InstrLenTable[Opc];\n"
2505        << "      makeUp(insn, Len);\n";
2506   }
2507   OS << "      S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, "
2508         "DecodeComplete);\n"
2509      << "      assert(DecodeComplete);\n"
2510      << "\n"
2511      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
2512      << "                   << \", using decoder \" << DecodeIdx << \": \"\n"
2513      << "                   << (S != MCDisassembler::Fail ? \"PASS\" : "
2514         "\"FAIL\") << \"\\n\");\n"
2515      << "      return S;\n"
2516      << "    }\n"
2517      << "    case MCD::OPC_TryDecode: {\n"
2518      << "      unsigned Len;\n"
2519      << "      // Decode the Opcode value.\n"
2520      << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2521      << "      Ptr += Len;\n"
2522      << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2523      << "      Ptr += Len;\n"
2524      << "      // NumToSkip is a plain 24-bit integer.\n"
2525      << "      unsigned NumToSkip = *Ptr++;\n"
2526      << "      NumToSkip |= (*Ptr++) << 8;\n"
2527      << "      NumToSkip |= (*Ptr++) << 16;\n"
2528      << "\n"
2529      << "      // Perform the decode operation.\n"
2530      << "      MCInst TmpMI;\n"
2531      << "      TmpMI.setOpcode(Opc);\n"
2532      << "      bool DecodeComplete;\n"
2533      << "      S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, "
2534         "DecodeComplete);\n"
2535      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << "
2536         "Opc\n"
2537      << "                   << \", using decoder \" << DecodeIdx << \": \");\n"
2538      << "\n"
2539      << "      if (DecodeComplete) {\n"
2540      << "        // Decoding complete.\n"
2541      << "        LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : "
2542         "\"FAIL\") << \"\\n\");\n"
2543      << "        MI = TmpMI;\n"
2544      << "        return S;\n"
2545      << "      } else {\n"
2546      << "        assert(S == MCDisassembler::Fail);\n"
2547      << "        // If the decoding was incomplete, skip.\n"
2548      << "        Ptr += NumToSkip;\n"
2549      << "        LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - "
2550         "DecodeTable) << \"\\n\");\n"
2551      << "        // Reset decode status. This also drops a SoftFail status "
2552         "that could be\n"
2553      << "        // set before the decode attempt.\n"
2554      << "        S = MCDisassembler::Success;\n"
2555      << "      }\n"
2556      << "      break;\n"
2557      << "    }\n"
2558      << "    case MCD::OPC_SoftFail: {\n"
2559      << "      // Decode the mask values.\n"
2560      << "      unsigned Len;\n"
2561      << "      uint64_t PositiveMask = decodeULEB128(++Ptr, &Len);\n"
2562      << "      Ptr += Len;\n"
2563      << "      uint64_t NegativeMask = decodeULEB128(Ptr, &Len);\n"
2564      << "      Ptr += Len;\n"
2565      << "      bool Fail = (insn & PositiveMask) != 0 || (~insn & "
2566         "NegativeMask) != 0;\n"
2567      << "      if (Fail)\n"
2568      << "        S = MCDisassembler::SoftFail;\n"
2569      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? "
2570         "\"FAIL\\n\" : \"PASS\\n\"));\n"
2571      << "      break;\n"
2572      << "    }\n"
2573      << "    case MCD::OPC_Fail: {\n"
2574      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
2575      << "      return MCDisassembler::Fail;\n"
2576      << "    }\n"
2577      << "    }\n"
2578      << "  }\n"
2579      << "  llvm_unreachable(\"bogosity detected in disassembler state "
2580         "machine!\");\n"
2581      << "}\n\n";
2582 }
2583 
2584 // Helper to propagate SoftFail status. Returns false if the status is Fail;
2585 // callers are expected to early-exit in that condition. (Note, the '&' operator
2586 // is correct to propagate the values of this enum; see comment on 'enum
2587 // DecodeStatus'.)
2588 static void emitCheck(formatted_raw_ostream &OS) {
2589   OS << "static bool Check(DecodeStatus &Out, DecodeStatus In) {\n"
2590      << "  Out = static_cast<DecodeStatus>(Out & In);\n"
2591      << "  return Out != MCDisassembler::Fail;\n"
2592      << "}\n\n";
2593 }
2594 
2595 // Emits disassembler code for instruction decoding.
2596 void DecoderEmitter::run(raw_ostream &o) {
2597   formatted_raw_ostream OS(o);
2598   OS << "#include \"llvm/MC/MCInst.h\"\n";
2599   OS << "#include \"llvm/MC/MCSubtargetInfo.h\"\n";
2600   OS << "#include \"llvm/MC/SubtargetFeature.h\"\n";
2601   OS << "#include \"llvm/Support/DataTypes.h\"\n";
2602   OS << "#include \"llvm/Support/Debug.h\"\n";
2603   OS << "#include \"llvm/Support/LEB128.h\"\n";
2604   OS << "#include \"llvm/Support/raw_ostream.h\"\n";
2605   OS << "#include <assert.h>\n";
2606   OS << '\n';
2607   OS << "namespace llvm {\n\n";
2608 
2609   emitFieldFromInstruction(OS);
2610   emitInsertBits(OS);
2611   emitCheck(OS);
2612 
2613   Target.reverseBitsForLittleEndianEncoding();
2614 
2615   // Parameterize the decoders based on namespace and instruction width.
2616   std::set<StringRef> HwModeNames;
2617   const auto &NumberedInstructions = Target.getInstructionsByEnumValue();
2618   NumberedEncodings.reserve(NumberedInstructions.size());
2619   DenseMap<Record *, unsigned> IndexOfInstruction;
2620   // First, collect all HwModes referenced by the target.
2621   for (const auto &NumberedInstruction : NumberedInstructions) {
2622     IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();
2623 
2624     if (const RecordVal *RV =
2625             NumberedInstruction->TheDef->getValue("EncodingInfos")) {
2626       if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
2627         const CodeGenHwModes &HWM = Target.getHwModes();
2628         EncodingInfoByHwMode EBM(DI->getDef(), HWM);
2629         for (auto &KV : EBM)
2630           HwModeNames.insert(HWM.getMode(KV.first).Name);
2631       }
2632     }
2633   }
2634 
2635   // If HwModeNames is empty, add the empty string so we always have one HwMode.
2636   if (HwModeNames.empty())
2637     HwModeNames.insert("");
2638 
2639   for (const auto &NumberedInstruction : NumberedInstructions) {
2640     IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();
2641 
2642     if (const RecordVal *RV =
2643             NumberedInstruction->TheDef->getValue("EncodingInfos")) {
2644       if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
2645         const CodeGenHwModes &HWM = Target.getHwModes();
2646         EncodingInfoByHwMode EBM(DI->getDef(), HWM);
2647         for (auto &KV : EBM) {
2648           NumberedEncodings.emplace_back(KV.second, NumberedInstruction,
2649                                          HWM.getMode(KV.first).Name);
2650           HwModeNames.insert(HWM.getMode(KV.first).Name);
2651         }
2652         continue;
2653       }
2654     }
2655     // This instruction is encoded the same on all HwModes. Emit it for all
2656     // HwModes.
2657     for (StringRef HwModeName : HwModeNames)
2658       NumberedEncodings.emplace_back(NumberedInstruction->TheDef,
2659                                      NumberedInstruction, HwModeName);
2660   }
2661   for (const auto &NumberedAlias : RK.getAllDerivedDefinitions("AdditionalEncoding"))
2662     NumberedEncodings.emplace_back(
2663         NumberedAlias,
2664         &Target.getInstruction(NumberedAlias->getValueAsDef("AliasOf")));
2665 
2666   std::map<std::pair<std::string, unsigned>, std::vector<EncodingIDAndOpcode>>
2667       OpcMap;
2668   std::map<unsigned, std::vector<OperandInfo>> Operands;
2669   std::vector<unsigned> InstrLen;
2670 
2671   bool IsVarLenInst =
2672       any_of(NumberedInstructions, [](const CodeGenInstruction *CGI) {
2673         RecordVal *RV = CGI->TheDef->getValue("Inst");
2674         return RV && isa<DagInit>(RV->getValue());
2675       });
2676   unsigned MaxInstLen = 0;
2677 
2678   for (unsigned i = 0; i < NumberedEncodings.size(); ++i) {
2679     const Record *EncodingDef = NumberedEncodings[i].EncodingDef;
2680     const CodeGenInstruction *Inst = NumberedEncodings[i].Inst;
2681     const Record *Def = Inst->TheDef;
2682     unsigned Size = EncodingDef->getValueAsInt("Size");
2683     if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
2684         Def->getValueAsBit("isPseudo") ||
2685         Def->getValueAsBit("isAsmParserOnly") ||
2686         Def->getValueAsBit("isCodeGenOnly")) {
2687       NumEncodingsLackingDisasm++;
2688       continue;
2689     }
2690 
2691     if (i < NumberedInstructions.size())
2692       NumInstructions++;
2693     NumEncodings++;
2694 
2695     if (!Size && !IsVarLenInst)
2696       continue;
2697 
2698     if (IsVarLenInst)
2699       InstrLen.resize(NumberedInstructions.size(), 0);
2700 
2701     if (unsigned Len = populateInstruction(Target, *EncodingDef, *Inst, i,
2702                                            Operands, IsVarLenInst)) {
2703       if (IsVarLenInst) {
2704         MaxInstLen = std::max(MaxInstLen, Len);
2705         InstrLen[i] = Len;
2706       }
2707       std::string DecoderNamespace =
2708           std::string(EncodingDef->getValueAsString("DecoderNamespace"));
2709       if (!NumberedEncodings[i].HwModeName.empty())
2710         DecoderNamespace +=
2711             std::string("_") + NumberedEncodings[i].HwModeName.str();
2712       OpcMap[std::make_pair(DecoderNamespace, Size)].emplace_back(
2713           i, IndexOfInstruction.find(Def)->second);
2714     } else {
2715       NumEncodingsOmitted++;
2716     }
2717   }
2718 
2719   DecoderTableInfo TableInfo;
2720   for (const auto &Opc : OpcMap) {
2721     // Emit the decoder for this namespace+width combination.
2722     ArrayRef<EncodingAndInst> NumberedEncodingsRef(
2723         NumberedEncodings.data(), NumberedEncodings.size());
2724     FilterChooser FC(NumberedEncodingsRef, Opc.second, Operands,
2725                      IsVarLenInst ? MaxInstLen : 8 * Opc.first.second, this);
2726 
2727     // The decode table is cleared for each top level decoder function. The
2728     // predicates and decoders themselves, however, are shared across all
2729     // decoders to give more opportunities for uniqueing.
2730     TableInfo.Table.clear();
2731     TableInfo.FixupStack.clear();
2732     TableInfo.Table.reserve(16384);
2733     TableInfo.FixupStack.emplace_back();
2734     FC.emitTableEntries(TableInfo);
2735     // Any NumToSkip fixups in the top level scope can resolve to the
2736     // OPC_Fail at the end of the table.
2737     assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
2738     // Resolve any NumToSkip fixups in the current scope.
2739     resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
2740                        TableInfo.Table.size());
2741     TableInfo.FixupStack.clear();
2742 
2743     TableInfo.Table.push_back(MCD::OPC_Fail);
2744 
2745     // Print the table to the output stream.
2746     emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
2747   }
2748 
2749   // For variable instruction, we emit a instruction length table
2750   // to let the decoder know how long the instructions are.
2751   // You can see example usage in M68k's disassembler.
2752   if (IsVarLenInst)
2753     emitInstrLenTable(OS, InstrLen);
2754   // Emit the predicate function.
2755   emitPredicateFunction(OS, TableInfo.Predicates, 0);
2756 
2757   // Emit the decoder function.
2758   emitDecoderFunction(OS, TableInfo.Decoders, 0);
2759 
2760   // Emit the main entry point for the decoder, decodeInstruction().
2761   emitDecodeInstruction(OS, IsVarLenInst);
2762 
2763   OS << "\n} // end namespace llvm\n";
2764 }
2765 
2766 namespace llvm {
2767 
2768 void EmitDecoder(RecordKeeper &RK, raw_ostream &OS,
2769                  const std::string &PredicateNamespace) {
2770   DecoderEmitter(RK, PredicateNamespace).run(OS);
2771 }
2772 
2773 } // end namespace llvm
2774