1 //===- DFAEmitter.cpp - Finite state automaton emitter --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class can produce a generic deterministic finite state automaton (DFA), 10 // given a set of possible states and transitions. 11 // 12 // The input transitions can be nondeterministic - this class will produce the 13 // deterministic equivalent state machine. 14 // 15 // The generated code can run the DFA and produce an accepted / not accepted 16 // state and also produce, given a sequence of transitions that results in an 17 // accepted state, the sequence of intermediate states. This is useful if the 18 // initial automaton was nondeterministic - it allows mapping back from the DFA 19 // to the NFA. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "DFAEmitter.h" 24 #include "SequenceToOffsetTable.h" 25 #include "TableGenBackends.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/UniqueVector.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/TableGen/Record.h" 32 #include <cassert> 33 #include <cstdint> 34 #include <deque> 35 #include <map> 36 #include <set> 37 #include <string> 38 #include <vector> 39 40 #define DEBUG_TYPE "dfa-emitter" 41 42 using namespace llvm; 43 44 //===----------------------------------------------------------------------===// 45 // DfaEmitter implementation. This is independent of the GenAutomaton backend. 46 //===----------------------------------------------------------------------===// 47 48 void DfaEmitter::addTransition(state_type From, state_type To, action_type A) { 49 Actions.insert(A); 50 NfaStates.insert(From); 51 NfaStates.insert(To); 52 NfaTransitions[{From, A}].push_back(To); 53 ++NumNfaTransitions; 54 } 55 56 void DfaEmitter::visitDfaState(const DfaState &DS) { 57 // For every possible action... 58 auto FromId = DfaStates.idFor(DS); 59 for (action_type A : Actions) { 60 DfaState NewStates; 61 DfaTransitionInfo TI; 62 // For every represented state, word pair in the original NFA... 63 for (state_type FromState : DS) { 64 // If this action is possible from this state add the transitioned-to 65 // states to NewStates. 66 auto I = NfaTransitions.find({FromState, A}); 67 if (I == NfaTransitions.end()) 68 continue; 69 for (state_type &ToState : I->second) { 70 NewStates.push_back(ToState); 71 TI.emplace_back(FromState, ToState); 72 } 73 } 74 if (NewStates.empty()) 75 continue; 76 // Sort and unique. 77 sort(NewStates); 78 NewStates.erase(std::unique(NewStates.begin(), NewStates.end()), 79 NewStates.end()); 80 sort(TI); 81 TI.erase(std::unique(TI.begin(), TI.end()), TI.end()); 82 unsigned ToId = DfaStates.insert(NewStates); 83 DfaTransitions.emplace(std::make_pair(FromId, A), std::make_pair(ToId, TI)); 84 } 85 } 86 87 void DfaEmitter::constructDfa() { 88 DfaState Initial(1, /*NFA initial state=*/0); 89 DfaStates.insert(Initial); 90 91 // Note that UniqueVector starts indices at 1, not zero. 92 unsigned DfaStateId = 1; 93 while (DfaStateId <= DfaStates.size()) { 94 DfaState S = DfaStates[DfaStateId]; 95 visitDfaState(S); 96 DfaStateId++; 97 } 98 } 99 100 void DfaEmitter::emit(StringRef Name, raw_ostream &OS) { 101 constructDfa(); 102 103 OS << "// Input NFA has " << NfaStates.size() << " states with " 104 << NumNfaTransitions << " transitions.\n"; 105 OS << "// Generated DFA has " << DfaStates.size() << " states with " 106 << DfaTransitions.size() << " transitions.\n\n"; 107 108 // Implementation note: We don't bake a simple std::pair<> here as it requires 109 // significantly more effort to parse. A simple test with a large array of 110 // struct-pairs (N=100000) took clang-10 6s to parse. The same array of 111 // std::pair<uint64_t, uint64_t> took 242s. Instead we allow the user to 112 // define the pair type. 113 // 114 // FIXME: It may make sense to emit these as ULEB sequences instead of 115 // pairs of uint64_t. 116 OS << "// A zero-terminated sequence of NFA state transitions. Every DFA\n"; 117 OS << "// transition implies a set of NFA transitions. These are referred\n"; 118 OS << "// to by index in " << Name << "Transitions[].\n"; 119 120 SequenceToOffsetTable<DfaTransitionInfo> Table; 121 std::map<DfaTransitionInfo, unsigned> EmittedIndices; 122 for (auto &T : DfaTransitions) 123 Table.add(T.second.second); 124 Table.layout(); 125 OS << "const std::array<NfaStatePair, " << Table.size() << "> " << Name 126 << "TransitionInfo = {{\n"; 127 Table.emit( 128 OS, 129 [](raw_ostream &OS, std::pair<uint64_t, uint64_t> P) { 130 OS << "{" << P.first << ", " << P.second << "}"; 131 }, 132 "{0ULL, 0ULL}"); 133 134 OS << "}};\n\n"; 135 136 OS << "// A transition in the generated " << Name << " DFA.\n"; 137 OS << "struct " << Name << "Transition {\n"; 138 OS << " unsigned FromDfaState; // The transitioned-from DFA state.\n"; 139 OS << " "; 140 printActionType(OS); 141 OS << " Action; // The input symbol that causes this transition.\n"; 142 OS << " unsigned ToDfaState; // The transitioned-to DFA state.\n"; 143 OS << " unsigned InfoIdx; // Start index into " << Name 144 << "TransitionInfo.\n"; 145 OS << "};\n\n"; 146 147 OS << "// A table of DFA transitions, ordered by {FromDfaState, Action}.\n"; 148 OS << "// The initial state is 1, not zero.\n"; 149 OS << "const std::array<" << Name << "Transition, " 150 << DfaTransitions.size() << "> " << Name << "Transitions = {{\n"; 151 for (auto &KV : DfaTransitions) { 152 dfa_state_type From = KV.first.first; 153 dfa_state_type To = KV.second.first; 154 action_type A = KV.first.second; 155 unsigned InfoIdx = Table.get(KV.second.second); 156 OS << " {" << From << ", "; 157 printActionValue(A, OS); 158 OS << ", " << To << ", " << InfoIdx << "},\n"; 159 } 160 OS << "\n}};\n\n"; 161 } 162 163 void DfaEmitter::printActionType(raw_ostream &OS) { OS << "uint64_t"; } 164 165 void DfaEmitter::printActionValue(action_type A, raw_ostream &OS) { OS << A; } 166 167 //===----------------------------------------------------------------------===// 168 // AutomatonEmitter implementation 169 //===----------------------------------------------------------------------===// 170 171 namespace { 172 // FIXME: This entire discriminated union could be removed with c++17: 173 // using Action = std::variant<Record *, unsigned, std::string>; 174 struct Action { 175 Record *R = nullptr; 176 unsigned I = 0; 177 std::string S; 178 179 Action() = default; 180 Action(Record *R, unsigned I, std::string S) : R(R), I(I), S(S) {} 181 182 void print(raw_ostream &OS) const { 183 if (R) 184 OS << R->getName(); 185 else if (!S.empty()) 186 OS << '"' << S << '"'; 187 else 188 OS << I; 189 } 190 bool operator<(const Action &Other) const { 191 return std::make_tuple(R, I, S) < 192 std::make_tuple(Other.R, Other.I, Other.S); 193 } 194 }; 195 196 using ActionTuple = std::vector<Action>; 197 class Automaton; 198 199 class Transition { 200 uint64_t NewState; 201 // The tuple of actions that causes this transition. 202 ActionTuple Actions; 203 // The types of the actions; this is the same across all transitions. 204 SmallVector<std::string, 4> Types; 205 206 public: 207 Transition(Record *R, Automaton *Parent); 208 const ActionTuple &getActions() { return Actions; } 209 SmallVector<std::string, 4> getTypes() { return Types; } 210 211 bool canTransitionFrom(uint64_t State); 212 uint64_t transitionFrom(uint64_t State); 213 }; 214 215 class Automaton { 216 RecordKeeper &Records; 217 Record *R; 218 std::vector<Transition> Transitions; 219 /// All possible action tuples, uniqued. 220 UniqueVector<ActionTuple> Actions; 221 /// The fields within each Transition object to find the action symbols. 222 std::vector<StringRef> ActionSymbolFields; 223 224 public: 225 Automaton(RecordKeeper &Records, Record *R); 226 void emit(raw_ostream &OS); 227 228 ArrayRef<StringRef> getActionSymbolFields() { return ActionSymbolFields; } 229 /// If the type of action A has been overridden (there exists a field 230 /// "TypeOf_A") return that, otherwise return the empty string. 231 StringRef getActionSymbolType(StringRef A); 232 }; 233 234 class AutomatonEmitter { 235 RecordKeeper &Records; 236 237 public: 238 AutomatonEmitter(RecordKeeper &R) : Records(R) {} 239 void run(raw_ostream &OS); 240 }; 241 242 /// A DfaEmitter implementation that can print our variant action type. 243 class CustomDfaEmitter : public DfaEmitter { 244 const UniqueVector<ActionTuple> &Actions; 245 std::string TypeName; 246 247 public: 248 CustomDfaEmitter(const UniqueVector<ActionTuple> &Actions, StringRef TypeName) 249 : Actions(Actions), TypeName(TypeName) {} 250 251 void printActionType(raw_ostream &OS) override; 252 void printActionValue(action_type A, raw_ostream &OS) override; 253 }; 254 } // namespace 255 256 void AutomatonEmitter::run(raw_ostream &OS) { 257 for (Record *R : Records.getAllDerivedDefinitions("GenericAutomaton")) { 258 Automaton A(Records, R); 259 OS << "#ifdef GET_" << R->getName() << "_DECL\n"; 260 A.emit(OS); 261 OS << "#endif // GET_" << R->getName() << "_DECL\n"; 262 } 263 } 264 265 Automaton::Automaton(RecordKeeper &Records, Record *R) 266 : Records(Records), R(R) { 267 LLVM_DEBUG(dbgs() << "Emitting automaton for " << R->getName() << "\n"); 268 ActionSymbolFields = R->getValueAsListOfStrings("SymbolFields"); 269 } 270 271 void Automaton::emit(raw_ostream &OS) { 272 StringRef TransitionClass = R->getValueAsString("TransitionClass"); 273 for (Record *T : Records.getAllDerivedDefinitions(TransitionClass)) { 274 assert(T->isSubClassOf("Transition")); 275 Transitions.emplace_back(T, this); 276 Actions.insert(Transitions.back().getActions()); 277 } 278 279 LLVM_DEBUG(dbgs() << " Action alphabet cardinality: " << Actions.size() 280 << "\n"); 281 LLVM_DEBUG(dbgs() << " Each state has " << Transitions.size() 282 << " potential transitions.\n"); 283 284 StringRef Name = R->getName(); 285 286 CustomDfaEmitter Emitter(Actions, std::string(Name) + "Action"); 287 // Starting from the initial state, build up a list of possible states and 288 // transitions. 289 std::deque<uint64_t> Worklist(1, 0); 290 std::set<uint64_t> SeenStates; 291 unsigned NumTransitions = 0; 292 SeenStates.insert(Worklist.front()); 293 while (!Worklist.empty()) { 294 uint64_t State = Worklist.front(); 295 Worklist.pop_front(); 296 for (Transition &T : Transitions) { 297 if (!T.canTransitionFrom(State)) 298 continue; 299 uint64_t NewState = T.transitionFrom(State); 300 if (SeenStates.emplace(NewState).second) 301 Worklist.emplace_back(NewState); 302 ++NumTransitions; 303 Emitter.addTransition(State, NewState, Actions.idFor(T.getActions())); 304 } 305 } 306 LLVM_DEBUG(dbgs() << " NFA automaton has " << SeenStates.size() 307 << " states with " << NumTransitions << " transitions.\n"); 308 (void) NumTransitions; 309 310 const auto &ActionTypes = Transitions.back().getTypes(); 311 OS << "// The type of an action in the " << Name << " automaton.\n"; 312 if (ActionTypes.size() == 1) { 313 OS << "using " << Name << "Action = " << ActionTypes[0] << ";\n"; 314 } else { 315 OS << "using " << Name << "Action = std::tuple<" << join(ActionTypes, ", ") 316 << ">;\n"; 317 } 318 OS << "\n"; 319 320 Emitter.emit(Name, OS); 321 } 322 323 StringRef Automaton::getActionSymbolType(StringRef A) { 324 Twine Ty = "TypeOf_" + A; 325 if (!R->getValue(Ty.str())) 326 return ""; 327 return R->getValueAsString(Ty.str()); 328 } 329 330 Transition::Transition(Record *R, Automaton *Parent) { 331 BitsInit *NewStateInit = R->getValueAsBitsInit("NewState"); 332 NewState = 0; 333 assert(NewStateInit->getNumBits() <= sizeof(uint64_t) * 8 && 334 "State cannot be represented in 64 bits!"); 335 for (unsigned I = 0; I < NewStateInit->getNumBits(); ++I) { 336 if (auto *Bit = dyn_cast<BitInit>(NewStateInit->getBit(I))) { 337 if (Bit->getValue()) 338 NewState |= 1ULL << I; 339 } 340 } 341 342 for (StringRef A : Parent->getActionSymbolFields()) { 343 RecordVal *SymbolV = R->getValue(A); 344 if (auto *Ty = dyn_cast<RecordRecTy>(SymbolV->getType())) { 345 Actions.emplace_back(R->getValueAsDef(A), 0, ""); 346 Types.emplace_back(Ty->getAsString()); 347 } else if (isa<IntRecTy>(SymbolV->getType())) { 348 Actions.emplace_back(nullptr, R->getValueAsInt(A), ""); 349 Types.emplace_back("unsigned"); 350 } else if (isa<StringRecTy>(SymbolV->getType())) { 351 Actions.emplace_back(nullptr, 0, std::string(R->getValueAsString(A))); 352 Types.emplace_back("std::string"); 353 } else { 354 report_fatal_error("Unhandled symbol type!"); 355 } 356 357 StringRef TypeOverride = Parent->getActionSymbolType(A); 358 if (!TypeOverride.empty()) 359 Types.back() = std::string(TypeOverride); 360 } 361 } 362 363 bool Transition::canTransitionFrom(uint64_t State) { 364 if ((State & NewState) == 0) 365 // The bits we want to set are not set; 366 return true; 367 return false; 368 } 369 370 uint64_t Transition::transitionFrom(uint64_t State) { 371 return State | NewState; 372 } 373 374 void CustomDfaEmitter::printActionType(raw_ostream &OS) { OS << TypeName; } 375 376 void CustomDfaEmitter::printActionValue(action_type A, raw_ostream &OS) { 377 const ActionTuple &AT = Actions[A]; 378 if (AT.size() > 1) 379 OS << "std::make_tuple("; 380 ListSeparator LS; 381 for (const auto &SingleAction : AT) { 382 OS << LS; 383 SingleAction.print(OS); 384 } 385 if (AT.size() > 1) 386 OS << ")"; 387 } 388 389 namespace llvm { 390 391 void EmitAutomata(RecordKeeper &RK, raw_ostream &OS) { 392 AutomatonEmitter(RK).run(OS); 393 } 394 395 } // namespace llvm 396