1 //===- DFAEmitter.cpp - Finite state automaton emitter --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class can produce a generic deterministic finite state automaton (DFA), 10 // given a set of possible states and transitions. 11 // 12 // The input transitions can be nondeterministic - this class will produce the 13 // deterministic equivalent state machine. 14 // 15 // The generated code can run the DFA and produce an accepted / not accepted 16 // state and also produce, given a sequence of transitions that results in an 17 // accepted state, the sequence of intermediate states. This is useful if the 18 // initial automaton was nondeterministic - it allows mapping back from the DFA 19 // to the NFA. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "DFAEmitter.h" 24 #include "Basic/SequenceToOffsetTable.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/UniqueVector.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/TableGen/Record.h" 31 #include "llvm/TableGen/TableGenBackend.h" 32 #include <cassert> 33 #include <cstdint> 34 #include <deque> 35 #include <map> 36 #include <set> 37 #include <string> 38 #include <variant> 39 #include <vector> 40 41 #define DEBUG_TYPE "dfa-emitter" 42 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // DfaEmitter implementation. This is independent of the GenAutomaton backend. 47 //===----------------------------------------------------------------------===// 48 49 void DfaEmitter::addTransition(state_type From, state_type To, action_type A) { 50 Actions.insert(A); 51 NfaStates.insert(From); 52 NfaStates.insert(To); 53 NfaTransitions[{From, A}].push_back(To); 54 ++NumNfaTransitions; 55 } 56 57 void DfaEmitter::visitDfaState(const DfaState &DS) { 58 // For every possible action... 59 auto FromId = DfaStates.idFor(DS); 60 for (action_type A : Actions) { 61 DfaState NewStates; 62 DfaTransitionInfo TI; 63 // For every represented state, word pair in the original NFA... 64 for (state_type FromState : DS) { 65 // If this action is possible from this state add the transitioned-to 66 // states to NewStates. 67 auto I = NfaTransitions.find({FromState, A}); 68 if (I == NfaTransitions.end()) 69 continue; 70 for (state_type &ToState : I->second) { 71 NewStates.push_back(ToState); 72 TI.emplace_back(FromState, ToState); 73 } 74 } 75 if (NewStates.empty()) 76 continue; 77 // Sort and unique. 78 sort(NewStates); 79 NewStates.erase(llvm::unique(NewStates), NewStates.end()); 80 sort(TI); 81 TI.erase(llvm::unique(TI), TI.end()); 82 unsigned ToId = DfaStates.insert(NewStates); 83 DfaTransitions.emplace(std::pair(FromId, A), std::pair(ToId, TI)); 84 } 85 } 86 87 void DfaEmitter::constructDfa() { 88 DfaState Initial(1, /*NFA initial state=*/0); 89 DfaStates.insert(Initial); 90 91 // Note that UniqueVector starts indices at 1, not zero. 92 unsigned DfaStateId = 1; 93 while (DfaStateId <= DfaStates.size()) { 94 DfaState S = DfaStates[DfaStateId]; 95 visitDfaState(S); 96 DfaStateId++; 97 } 98 } 99 100 void DfaEmitter::emit(StringRef Name, raw_ostream &OS) { 101 constructDfa(); 102 103 OS << "// Input NFA has " << NfaStates.size() << " states with " 104 << NumNfaTransitions << " transitions.\n"; 105 OS << "// Generated DFA has " << DfaStates.size() << " states with " 106 << DfaTransitions.size() << " transitions.\n\n"; 107 108 // Implementation note: We don't bake a simple std::pair<> here as it requires 109 // significantly more effort to parse. A simple test with a large array of 110 // struct-pairs (N=100000) took clang-10 6s to parse. The same array of 111 // std::pair<uint64_t, uint64_t> took 242s. Instead we allow the user to 112 // define the pair type. 113 // 114 // FIXME: It may make sense to emit these as ULEB sequences instead of 115 // pairs of uint64_t. 116 OS << "// A zero-terminated sequence of NFA state transitions. Every DFA\n"; 117 OS << "// transition implies a set of NFA transitions. These are referred\n"; 118 OS << "// to by index in " << Name << "Transitions[].\n"; 119 120 SequenceToOffsetTable<DfaTransitionInfo> Table; 121 std::map<DfaTransitionInfo, unsigned> EmittedIndices; 122 for (auto &T : DfaTransitions) 123 Table.add(T.second.second); 124 Table.layout(); 125 OS << "const std::array<NfaStatePair, " << Table.size() << "> " << Name 126 << "TransitionInfo = {{\n"; 127 Table.emit( 128 OS, 129 [](raw_ostream &OS, std::pair<uint64_t, uint64_t> P) { 130 OS << "{" << P.first << ", " << P.second << "}"; 131 }, 132 "{0ULL, 0ULL}"); 133 134 OS << "}};\n\n"; 135 136 OS << "// A transition in the generated " << Name << " DFA.\n"; 137 OS << "struct " << Name << "Transition {\n"; 138 OS << " unsigned FromDfaState; // The transitioned-from DFA state.\n"; 139 OS << " "; 140 printActionType(OS); 141 OS << " Action; // The input symbol that causes this transition.\n"; 142 OS << " unsigned ToDfaState; // The transitioned-to DFA state.\n"; 143 OS << " unsigned InfoIdx; // Start index into " << Name 144 << "TransitionInfo.\n"; 145 OS << "};\n\n"; 146 147 OS << "// A table of DFA transitions, ordered by {FromDfaState, Action}.\n"; 148 OS << "// The initial state is 1, not zero.\n"; 149 OS << "const std::array<" << Name << "Transition, " << DfaTransitions.size() 150 << "> " << Name << "Transitions = {{\n"; 151 for (auto &KV : DfaTransitions) { 152 dfa_state_type From = KV.first.first; 153 dfa_state_type To = KV.second.first; 154 action_type A = KV.first.second; 155 unsigned InfoIdx = Table.get(KV.second.second); 156 OS << " {" << From << ", "; 157 printActionValue(A, OS); 158 OS << ", " << To << ", " << InfoIdx << "},\n"; 159 } 160 OS << "\n}};\n\n"; 161 } 162 163 void DfaEmitter::printActionType(raw_ostream &OS) { OS << "uint64_t"; } 164 165 void DfaEmitter::printActionValue(action_type A, raw_ostream &OS) { OS << A; } 166 167 //===----------------------------------------------------------------------===// 168 // AutomatonEmitter implementation 169 //===----------------------------------------------------------------------===// 170 171 namespace { 172 173 using Action = std::variant<Record *, unsigned, std::string>; 174 using ActionTuple = std::vector<Action>; 175 class Automaton; 176 177 class Transition { 178 uint64_t NewState; 179 // The tuple of actions that causes this transition. 180 ActionTuple Actions; 181 // The types of the actions; this is the same across all transitions. 182 SmallVector<std::string, 4> Types; 183 184 public: 185 Transition(Record *R, Automaton *Parent); 186 const ActionTuple &getActions() { return Actions; } 187 SmallVector<std::string, 4> getTypes() { return Types; } 188 189 bool canTransitionFrom(uint64_t State); 190 uint64_t transitionFrom(uint64_t State); 191 }; 192 193 class Automaton { 194 RecordKeeper &Records; 195 Record *R; 196 std::vector<Transition> Transitions; 197 /// All possible action tuples, uniqued. 198 UniqueVector<ActionTuple> Actions; 199 /// The fields within each Transition object to find the action symbols. 200 std::vector<StringRef> ActionSymbolFields; 201 202 public: 203 Automaton(RecordKeeper &Records, Record *R); 204 void emit(raw_ostream &OS); 205 206 ArrayRef<StringRef> getActionSymbolFields() { return ActionSymbolFields; } 207 /// If the type of action A has been overridden (there exists a field 208 /// "TypeOf_A") return that, otherwise return the empty string. 209 StringRef getActionSymbolType(StringRef A); 210 }; 211 212 class AutomatonEmitter { 213 RecordKeeper &Records; 214 215 public: 216 AutomatonEmitter(RecordKeeper &R) : Records(R) {} 217 void run(raw_ostream &OS); 218 }; 219 220 /// A DfaEmitter implementation that can print our variant action type. 221 class CustomDfaEmitter : public DfaEmitter { 222 const UniqueVector<ActionTuple> &Actions; 223 std::string TypeName; 224 225 public: 226 CustomDfaEmitter(const UniqueVector<ActionTuple> &Actions, StringRef TypeName) 227 : Actions(Actions), TypeName(TypeName) {} 228 229 void printActionType(raw_ostream &OS) override; 230 void printActionValue(action_type A, raw_ostream &OS) override; 231 }; 232 } // namespace 233 234 void AutomatonEmitter::run(raw_ostream &OS) { 235 for (Record *R : Records.getAllDerivedDefinitions("GenericAutomaton")) { 236 Automaton A(Records, R); 237 OS << "#ifdef GET_" << R->getName() << "_DECL\n"; 238 A.emit(OS); 239 OS << "#endif // GET_" << R->getName() << "_DECL\n"; 240 } 241 } 242 243 Automaton::Automaton(RecordKeeper &Records, Record *R) 244 : Records(Records), R(R) { 245 LLVM_DEBUG(dbgs() << "Emitting automaton for " << R->getName() << "\n"); 246 ActionSymbolFields = R->getValueAsListOfStrings("SymbolFields"); 247 } 248 249 void Automaton::emit(raw_ostream &OS) { 250 StringRef TransitionClass = R->getValueAsString("TransitionClass"); 251 for (Record *T : Records.getAllDerivedDefinitions(TransitionClass)) { 252 assert(T->isSubClassOf("Transition")); 253 Transitions.emplace_back(T, this); 254 Actions.insert(Transitions.back().getActions()); 255 } 256 257 LLVM_DEBUG(dbgs() << " Action alphabet cardinality: " << Actions.size() 258 << "\n"); 259 LLVM_DEBUG(dbgs() << " Each state has " << Transitions.size() 260 << " potential transitions.\n"); 261 262 StringRef Name = R->getName(); 263 264 CustomDfaEmitter Emitter(Actions, std::string(Name) + "Action"); 265 // Starting from the initial state, build up a list of possible states and 266 // transitions. 267 std::deque<uint64_t> Worklist(1, 0); 268 std::set<uint64_t> SeenStates; 269 unsigned NumTransitions = 0; 270 SeenStates.insert(Worklist.front()); 271 while (!Worklist.empty()) { 272 uint64_t State = Worklist.front(); 273 Worklist.pop_front(); 274 for (Transition &T : Transitions) { 275 if (!T.canTransitionFrom(State)) 276 continue; 277 uint64_t NewState = T.transitionFrom(State); 278 if (SeenStates.emplace(NewState).second) 279 Worklist.emplace_back(NewState); 280 ++NumTransitions; 281 Emitter.addTransition(State, NewState, Actions.idFor(T.getActions())); 282 } 283 } 284 LLVM_DEBUG(dbgs() << " NFA automaton has " << SeenStates.size() 285 << " states with " << NumTransitions << " transitions.\n"); 286 (void)NumTransitions; 287 288 const auto &ActionTypes = Transitions.back().getTypes(); 289 OS << "// The type of an action in the " << Name << " automaton.\n"; 290 if (ActionTypes.size() == 1) { 291 OS << "using " << Name << "Action = " << ActionTypes[0] << ";\n"; 292 } else { 293 OS << "using " << Name << "Action = std::tuple<" << join(ActionTypes, ", ") 294 << ">;\n"; 295 } 296 OS << "\n"; 297 298 Emitter.emit(Name, OS); 299 } 300 301 StringRef Automaton::getActionSymbolType(StringRef A) { 302 Twine Ty = "TypeOf_" + A; 303 if (!R->getValue(Ty.str())) 304 return ""; 305 return R->getValueAsString(Ty.str()); 306 } 307 308 Transition::Transition(Record *R, Automaton *Parent) { 309 BitsInit *NewStateInit = R->getValueAsBitsInit("NewState"); 310 NewState = 0; 311 assert(NewStateInit->getNumBits() <= sizeof(uint64_t) * 8 && 312 "State cannot be represented in 64 bits!"); 313 for (unsigned I = 0; I < NewStateInit->getNumBits(); ++I) { 314 if (auto *Bit = dyn_cast<BitInit>(NewStateInit->getBit(I))) { 315 if (Bit->getValue()) 316 NewState |= 1ULL << I; 317 } 318 } 319 320 for (StringRef A : Parent->getActionSymbolFields()) { 321 RecordVal *SymbolV = R->getValue(A); 322 if (auto *Ty = dyn_cast<RecordRecTy>(SymbolV->getType())) { 323 Actions.emplace_back(R->getValueAsDef(A)); 324 Types.emplace_back(Ty->getAsString()); 325 } else if (isa<IntRecTy>(SymbolV->getType())) { 326 Actions.emplace_back(static_cast<unsigned>(R->getValueAsInt(A))); 327 Types.emplace_back("unsigned"); 328 } else if (isa<StringRecTy>(SymbolV->getType())) { 329 Actions.emplace_back(std::string(R->getValueAsString(A))); 330 Types.emplace_back("std::string"); 331 } else { 332 report_fatal_error("Unhandled symbol type!"); 333 } 334 335 StringRef TypeOverride = Parent->getActionSymbolType(A); 336 if (!TypeOverride.empty()) 337 Types.back() = std::string(TypeOverride); 338 } 339 } 340 341 bool Transition::canTransitionFrom(uint64_t State) { 342 if ((State & NewState) == 0) 343 // The bits we want to set are not set; 344 return true; 345 return false; 346 } 347 348 uint64_t Transition::transitionFrom(uint64_t State) { return State | NewState; } 349 350 void CustomDfaEmitter::printActionType(raw_ostream &OS) { OS << TypeName; } 351 352 void CustomDfaEmitter::printActionValue(action_type A, raw_ostream &OS) { 353 const ActionTuple &AT = Actions[A]; 354 if (AT.size() > 1) 355 OS << "std::tuple("; 356 ListSeparator LS; 357 for (const auto &SingleAction : AT) { 358 OS << LS; 359 if (const auto *R = std::get_if<Record *>(&SingleAction)) 360 OS << (*R)->getName(); 361 else if (const auto *S = std::get_if<std::string>(&SingleAction)) 362 OS << '"' << *S << '"'; 363 else 364 OS << std::get<unsigned>(SingleAction); 365 } 366 if (AT.size() > 1) 367 OS << ")"; 368 } 369 370 static TableGen::Emitter::OptClass<AutomatonEmitter> 371 X("gen-automata", "Generate generic automata"); 372