xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/DAGISelMatcherOpt.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the DAG Matcher optimizer.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DAGISelMatcher.h"
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/StringSet.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/raw_ostream.h"
18 using namespace llvm;
19 
20 #define DEBUG_TYPE "isel-opt"
21 
22 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
23 /// into single compound nodes like RecordChild.
24 static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr,
25                           const CodeGenDAGPatterns &CGP) {
26   // If we reached the end of the chain, we're done.
27   Matcher *N = MatcherPtr.get();
28   if (!N) return;
29 
30   // If we have a scope node, walk down all of the children.
31   if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
32     for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
33       std::unique_ptr<Matcher> Child(Scope->takeChild(i));
34       ContractNodes(Child, CGP);
35       Scope->resetChild(i, Child.release());
36     }
37     return;
38   }
39 
40   // If we found a movechild node with a node that comes in a 'foochild' form,
41   // transform it.
42   if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
43     Matcher *New = nullptr;
44     if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
45       if (MC->getChildNo() < 8)  // Only have RecordChild0...7
46         New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
47                                      RM->getResultNo());
48 
49     if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
50       if (MC->getChildNo() < 8 &&  // Only have CheckChildType0...7
51           CT->getResNo() == 0)     // CheckChildType checks res #0
52         New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
53 
54     if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext()))
55       if (MC->getChildNo() < 4)  // Only have CheckChildSame0...3
56         New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber());
57 
58     if (CheckIntegerMatcher *CI = dyn_cast<CheckIntegerMatcher>(MC->getNext()))
59       if (MC->getChildNo() < 5)  // Only have CheckChildInteger0...4
60         New = new CheckChildIntegerMatcher(MC->getChildNo(), CI->getValue());
61 
62     if (auto *CCC = dyn_cast<CheckCondCodeMatcher>(MC->getNext()))
63       if (MC->getChildNo() == 2)  // Only have CheckChild2CondCode
64         New = new CheckChild2CondCodeMatcher(CCC->getCondCodeName());
65 
66     if (New) {
67       // Insert the new node.
68       New->setNext(MatcherPtr.release());
69       MatcherPtr.reset(New);
70       // Remove the old one.
71       MC->setNext(MC->getNext()->takeNext());
72       return ContractNodes(MatcherPtr, CGP);
73     }
74   }
75 
76   // Zap movechild -> moveparent.
77   if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
78     if (MoveParentMatcher *MP =
79           dyn_cast<MoveParentMatcher>(MC->getNext())) {
80       MatcherPtr.reset(MP->takeNext());
81       return ContractNodes(MatcherPtr, CGP);
82     }
83 
84   // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
85   if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
86     if (CompleteMatchMatcher *CM =
87           dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
88       // We can only use MorphNodeTo if the result values match up.
89       unsigned RootResultFirst = EN->getFirstResultSlot();
90       bool ResultsMatch = true;
91       for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
92         if (CM->getResult(i) != RootResultFirst+i)
93           ResultsMatch = false;
94 
95       // If the selected node defines a subset of the glue/chain results, we
96       // can't use MorphNodeTo.  For example, we can't use MorphNodeTo if the
97       // matched pattern has a chain but the root node doesn't.
98       const PatternToMatch &Pattern = CM->getPattern();
99 
100       if (!EN->hasChain() &&
101           Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
102         ResultsMatch = false;
103 
104       // If the matched node has glue and the output root doesn't, we can't
105       // use MorphNodeTo.
106       //
107       // NOTE: Strictly speaking, we don't have to check for glue here
108       // because the code in the pattern generator doesn't handle it right.  We
109       // do it anyway for thoroughness.
110       if (!EN->hasOutFlag() &&
111           Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
112         ResultsMatch = false;
113 
114 
115       // If the root result node defines more results than the source root node
116       // *and* has a chain or glue input, then we can't match it because it
117       // would end up replacing the extra result with the chain/glue.
118 #if 0
119       if ((EN->hasGlue() || EN->hasChain()) &&
120           EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
121         ResultMatch = false;
122 #endif
123 
124       if (ResultsMatch) {
125         const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
126         const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
127         MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
128                                                 VTs, Operands,
129                                                 EN->hasChain(), EN->hasInFlag(),
130                                                 EN->hasOutFlag(),
131                                                 EN->hasMemRefs(),
132                                                 EN->getNumFixedArityOperands(),
133                                                 Pattern));
134         return;
135       }
136 
137       // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
138       // variants.
139     }
140 
141   ContractNodes(N->getNextPtr(), CGP);
142 
143 
144   // If we have a CheckType/CheckChildType/Record node followed by a
145   // CheckOpcode, invert the two nodes.  We prefer to do structural checks
146   // before type checks, as this opens opportunities for factoring on targets
147   // like X86 where many operations are valid on multiple types.
148   if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
149        isa<RecordMatcher>(N)) &&
150       isa<CheckOpcodeMatcher>(N->getNext())) {
151     // Unlink the two nodes from the list.
152     Matcher *CheckType = MatcherPtr.release();
153     Matcher *CheckOpcode = CheckType->takeNext();
154     Matcher *Tail = CheckOpcode->takeNext();
155 
156     // Relink them.
157     MatcherPtr.reset(CheckOpcode);
158     CheckOpcode->setNext(CheckType);
159     CheckType->setNext(Tail);
160     return ContractNodes(MatcherPtr, CGP);
161   }
162 }
163 
164 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
165 /// specified kind.  Return null if we didn't find one otherwise return the
166 /// matcher.
167 static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
168   for (; M; M = M->getNext())
169     if (M->getKind() == Kind)
170       return M;
171   return nullptr;
172 }
173 
174 
175 /// FactorNodes - Turn matches like this:
176 ///   Scope
177 ///     OPC_CheckType i32
178 ///       ABC
179 ///     OPC_CheckType i32
180 ///       XYZ
181 /// into:
182 ///   OPC_CheckType i32
183 ///     Scope
184 ///       ABC
185 ///       XYZ
186 ///
187 static void FactorNodes(std::unique_ptr<Matcher> &InputMatcherPtr) {
188   // Look for a push node. Iterates instead of recurses to reduce stack usage.
189   ScopeMatcher *Scope = nullptr;
190   std::unique_ptr<Matcher> *RebindableMatcherPtr = &InputMatcherPtr;
191   while (!Scope) {
192     // If we reached the end of the chain, we're done.
193     Matcher *N = RebindableMatcherPtr->get();
194     if (!N) return;
195 
196     // If this is not a push node, just scan for one.
197     Scope = dyn_cast<ScopeMatcher>(N);
198     if (!Scope)
199       RebindableMatcherPtr = &(N->getNextPtr());
200   }
201   std::unique_ptr<Matcher> &MatcherPtr = *RebindableMatcherPtr;
202 
203   // Okay, pull together the children of the scope node into a vector so we can
204   // inspect it more easily.
205   SmallVector<Matcher*, 32> OptionsToMatch;
206 
207   for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
208     // Factor the subexpression.
209     std::unique_ptr<Matcher> Child(Scope->takeChild(i));
210     FactorNodes(Child);
211 
212     if (Child) {
213       // If the child is a ScopeMatcher we can just merge its contents.
214       if (auto *SM = dyn_cast<ScopeMatcher>(Child.get())) {
215         for (unsigned j = 0, e = SM->getNumChildren(); j != e; ++j)
216           OptionsToMatch.push_back(SM->takeChild(j));
217       } else {
218         OptionsToMatch.push_back(Child.release());
219       }
220     }
221   }
222 
223   SmallVector<Matcher*, 32> NewOptionsToMatch;
224 
225   // Loop over options to match, merging neighboring patterns with identical
226   // starting nodes into a shared matcher.
227   for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
228     // Find the set of matchers that start with this node.
229     Matcher *Optn = OptionsToMatch[OptionIdx++];
230 
231     if (OptionIdx == e) {
232       NewOptionsToMatch.push_back(Optn);
233       continue;
234     }
235 
236     // See if the next option starts with the same matcher.  If the two
237     // neighbors *do* start with the same matcher, we can factor the matcher out
238     // of at least these two patterns.  See what the maximal set we can merge
239     // together is.
240     SmallVector<Matcher*, 8> EqualMatchers;
241     EqualMatchers.push_back(Optn);
242 
243     // Factor all of the known-equal matchers after this one into the same
244     // group.
245     while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
246       EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
247 
248     // If we found a non-equal matcher, see if it is contradictory with the
249     // current node.  If so, we know that the ordering relation between the
250     // current sets of nodes and this node don't matter.  Look past it to see if
251     // we can merge anything else into this matching group.
252     unsigned Scan = OptionIdx;
253     while (1) {
254       // If we ran out of stuff to scan, we're done.
255       if (Scan == e) break;
256 
257       Matcher *ScanMatcher = OptionsToMatch[Scan];
258 
259       // If we found an entry that matches out matcher, merge it into the set to
260       // handle.
261       if (Optn->isEqual(ScanMatcher)) {
262         // If is equal after all, add the option to EqualMatchers and remove it
263         // from OptionsToMatch.
264         EqualMatchers.push_back(ScanMatcher);
265         OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
266         --e;
267         continue;
268       }
269 
270       // If the option we're checking for contradicts the start of the list,
271       // skip over it.
272       if (Optn->isContradictory(ScanMatcher)) {
273         ++Scan;
274         continue;
275       }
276 
277       // If we're scanning for a simple node, see if it occurs later in the
278       // sequence.  If so, and if we can move it up, it might be contradictory
279       // or the same as what we're looking for.  If so, reorder it.
280       if (Optn->isSimplePredicateOrRecordNode()) {
281         Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
282         if (M2 && M2 != ScanMatcher &&
283             M2->canMoveBefore(ScanMatcher) &&
284             (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
285           Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
286           M2->setNext(MatcherWithoutM2);
287           OptionsToMatch[Scan] = M2;
288           continue;
289         }
290       }
291 
292       // Otherwise, we don't know how to handle this entry, we have to bail.
293       break;
294     }
295 
296     if (Scan != e &&
297         // Don't print it's obvious nothing extra could be merged anyway.
298         Scan+1 != e) {
299       LLVM_DEBUG(errs() << "Couldn't merge this:\n"; Optn->print(errs(), 4);
300                  errs() << "into this:\n";
301                  OptionsToMatch[Scan]->print(errs(), 4);
302                  if (Scan + 1 != e) OptionsToMatch[Scan + 1]->printOne(errs());
303                  if (Scan + 2 < e) OptionsToMatch[Scan + 2]->printOne(errs());
304                  errs() << "\n");
305     }
306 
307     // If we only found one option starting with this matcher, no factoring is
308     // possible.
309     if (EqualMatchers.size() == 1) {
310       NewOptionsToMatch.push_back(EqualMatchers[0]);
311       continue;
312     }
313 
314     // Factor these checks by pulling the first node off each entry and
315     // discarding it.  Take the first one off the first entry to reuse.
316     Matcher *Shared = Optn;
317     Optn = Optn->takeNext();
318     EqualMatchers[0] = Optn;
319 
320     // Remove and delete the first node from the other matchers we're factoring.
321     for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
322       Matcher *Tmp = EqualMatchers[i]->takeNext();
323       delete EqualMatchers[i];
324       EqualMatchers[i] = Tmp;
325     }
326 
327     Shared->setNext(new ScopeMatcher(EqualMatchers));
328 
329     // Recursively factor the newly created node.
330     FactorNodes(Shared->getNextPtr());
331 
332     NewOptionsToMatch.push_back(Shared);
333   }
334 
335   // If we're down to a single pattern to match, then we don't need this scope
336   // anymore.
337   if (NewOptionsToMatch.size() == 1) {
338     MatcherPtr.reset(NewOptionsToMatch[0]);
339     return;
340   }
341 
342   if (NewOptionsToMatch.empty()) {
343     MatcherPtr.reset();
344     return;
345   }
346 
347   // If our factoring failed (didn't achieve anything) see if we can simplify in
348   // other ways.
349 
350   // Check to see if all of the leading entries are now opcode checks.  If so,
351   // we can convert this Scope to be a OpcodeSwitch instead.
352   bool AllOpcodeChecks = true, AllTypeChecks = true;
353   for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
354     // Check to see if this breaks a series of CheckOpcodeMatchers.
355     if (AllOpcodeChecks &&
356         !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
357 #if 0
358       if (i > 3) {
359         errs() << "FAILING OPC #" << i << "\n";
360         NewOptionsToMatch[i]->dump();
361       }
362 #endif
363       AllOpcodeChecks = false;
364     }
365 
366     // Check to see if this breaks a series of CheckTypeMatcher's.
367     if (AllTypeChecks) {
368       CheckTypeMatcher *CTM =
369         cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
370                                                         Matcher::CheckType));
371       if (!CTM ||
372           // iPTR checks could alias any other case without us knowing, don't
373           // bother with them.
374           CTM->getType() == MVT::iPTR ||
375           // SwitchType only works for result #0.
376           CTM->getResNo() != 0 ||
377           // If the CheckType isn't at the start of the list, see if we can move
378           // it there.
379           !CTM->canMoveBefore(NewOptionsToMatch[i])) {
380 #if 0
381         if (i > 3 && AllTypeChecks) {
382           errs() << "FAILING TYPE #" << i << "\n";
383           NewOptionsToMatch[i]->dump();
384         }
385 #endif
386         AllTypeChecks = false;
387       }
388     }
389   }
390 
391   // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
392   if (AllOpcodeChecks) {
393     StringSet<> Opcodes;
394     SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
395     for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
396       CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
397       assert(Opcodes.insert(COM->getOpcode().getEnumName()).second &&
398              "Duplicate opcodes not factored?");
399       Cases.push_back(std::make_pair(&COM->getOpcode(), COM->takeNext()));
400       delete COM;
401     }
402 
403     MatcherPtr.reset(new SwitchOpcodeMatcher(Cases));
404     return;
405   }
406 
407   // If all the options are CheckType's, we can form the SwitchType, woot.
408   if (AllTypeChecks) {
409     DenseMap<unsigned, unsigned> TypeEntry;
410     SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
411     for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
412       Matcher* M = FindNodeWithKind(NewOptionsToMatch[i], Matcher::CheckType);
413       assert(M && isa<CheckTypeMatcher>(M) && "Unknown Matcher type");
414 
415       auto *CTM = cast<CheckTypeMatcher>(M);
416       Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
417       MVT::SimpleValueType CTMTy = CTM->getType();
418       delete CTM;
419 
420       unsigned &Entry = TypeEntry[CTMTy];
421       if (Entry != 0) {
422         // If we have unfactored duplicate types, then we should factor them.
423         Matcher *PrevMatcher = Cases[Entry-1].second;
424         if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
425           SM->setNumChildren(SM->getNumChildren()+1);
426           SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
427           continue;
428         }
429 
430         Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
431         Cases[Entry-1].second = new ScopeMatcher(Entries);
432         continue;
433       }
434 
435       Entry = Cases.size()+1;
436       Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
437     }
438 
439     // Make sure we recursively factor any scopes we may have created.
440     for (auto &M : Cases) {
441       if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(M.second)) {
442         std::unique_ptr<Matcher> Scope(SM);
443         FactorNodes(Scope);
444         M.second = Scope.release();
445         assert(M.second && "null matcher");
446       }
447     }
448 
449     if (Cases.size() != 1) {
450       MatcherPtr.reset(new SwitchTypeMatcher(Cases));
451     } else {
452       // If we factored and ended up with one case, create it now.
453       MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
454       MatcherPtr->setNext(Cases[0].second);
455     }
456     return;
457   }
458 
459 
460   // Reassemble the Scope node with the adjusted children.
461   Scope->setNumChildren(NewOptionsToMatch.size());
462   for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
463     Scope->resetChild(i, NewOptionsToMatch[i]);
464 }
465 
466 void
467 llvm::OptimizeMatcher(std::unique_ptr<Matcher> &MatcherPtr,
468                       const CodeGenDAGPatterns &CGP) {
469   ContractNodes(MatcherPtr, CGP);
470   FactorNodes(MatcherPtr);
471 }
472