1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the DAG Matcher optimizer. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenDAGPatterns.h" 14 #include "DAGISelMatcher.h" 15 #include "SDNodeProperties.h" 16 #include "llvm/ADT/StringSet.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Support/raw_ostream.h" 19 using namespace llvm; 20 21 #define DEBUG_TYPE "isel-opt" 22 23 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record' 24 /// into single compound nodes like RecordChild. 25 static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr, 26 const CodeGenDAGPatterns &CGP) { 27 // If we reached the end of the chain, we're done. 28 Matcher *N = MatcherPtr.get(); 29 if (!N) 30 return; 31 32 // If we have a scope node, walk down all of the children. 33 if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) { 34 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { 35 std::unique_ptr<Matcher> Child(Scope->takeChild(i)); 36 ContractNodes(Child, CGP); 37 Scope->resetChild(i, Child.release()); 38 } 39 return; 40 } 41 42 // If we found a movechild node with a node that comes in a 'foochild' form, 43 // transform it. 44 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) { 45 Matcher *New = nullptr; 46 if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext())) 47 if (MC->getChildNo() < 8) // Only have RecordChild0...7 48 New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(), 49 RM->getResultNo()); 50 51 if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext())) 52 if (MC->getChildNo() < 8 && // Only have CheckChildType0...7 53 CT->getResNo() == 0) // CheckChildType checks res #0 54 New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType()); 55 56 if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext())) 57 if (MC->getChildNo() < 4) // Only have CheckChildSame0...3 58 New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber()); 59 60 if (CheckIntegerMatcher *CI = dyn_cast<CheckIntegerMatcher>(MC->getNext())) 61 if (MC->getChildNo() < 5) // Only have CheckChildInteger0...4 62 New = new CheckChildIntegerMatcher(MC->getChildNo(), CI->getValue()); 63 64 if (auto *CCC = dyn_cast<CheckCondCodeMatcher>(MC->getNext())) 65 if (MC->getChildNo() == 2) // Only have CheckChild2CondCode 66 New = new CheckChild2CondCodeMatcher(CCC->getCondCodeName()); 67 68 if (New) { 69 // Insert the new node. 70 New->setNext(MatcherPtr.release()); 71 MatcherPtr.reset(New); 72 // Remove the old one. 73 MC->setNext(MC->getNext()->takeNext()); 74 return ContractNodes(MatcherPtr, CGP); 75 } 76 } 77 78 // Zap movechild -> moveparent. 79 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) 80 if (MoveParentMatcher *MP = dyn_cast<MoveParentMatcher>(MC->getNext())) { 81 MatcherPtr.reset(MP->takeNext()); 82 return ContractNodes(MatcherPtr, CGP); 83 } 84 85 // Turn EmitNode->CompleteMatch into MorphNodeTo if we can. 86 if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N)) 87 if (CompleteMatchMatcher *CM = 88 dyn_cast<CompleteMatchMatcher>(EN->getNext())) { 89 // We can only use MorphNodeTo if the result values match up. 90 unsigned RootResultFirst = EN->getFirstResultSlot(); 91 bool ResultsMatch = true; 92 for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i) 93 if (CM->getResult(i) != RootResultFirst + i) 94 ResultsMatch = false; 95 96 // If the selected node defines a subset of the glue/chain results, we 97 // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the 98 // matched pattern has a chain but the root node doesn't. 99 const PatternToMatch &Pattern = CM->getPattern(); 100 101 if (!EN->hasChain() && 102 Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP)) 103 ResultsMatch = false; 104 105 // If the matched node has glue and the output root doesn't, we can't 106 // use MorphNodeTo. 107 // 108 // NOTE: Strictly speaking, we don't have to check for glue here 109 // because the code in the pattern generator doesn't handle it right. We 110 // do it anyway for thoroughness. 111 if (!EN->hasOutGlue() && 112 Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP)) 113 ResultsMatch = false; 114 115 #if 0 116 // If the root result node defines more results than the source root node 117 // *and* has a chain or glue input, then we can't match it because it 118 // would end up replacing the extra result with the chain/glue. 119 if ((EN->hasGlue() || EN->hasChain()) && 120 EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...) 121 ResultMatch = false; 122 #endif 123 124 if (ResultsMatch) { 125 const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList(); 126 const SmallVectorImpl<unsigned> &Operands = EN->getOperandList(); 127 MatcherPtr.reset(new MorphNodeToMatcher( 128 EN->getInstruction(), VTs, Operands, EN->hasChain(), 129 EN->hasInGlue(), EN->hasOutGlue(), EN->hasMemRefs(), 130 EN->getNumFixedArityOperands(), Pattern)); 131 return; 132 } 133 134 // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode 135 // variants. 136 } 137 138 ContractNodes(N->getNextPtr(), CGP); 139 140 // If we have a CheckType/CheckChildType/Record node followed by a 141 // CheckOpcode, invert the two nodes. We prefer to do structural checks 142 // before type checks, as this opens opportunities for factoring on targets 143 // like X86 where many operations are valid on multiple types. 144 if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) || 145 isa<RecordMatcher>(N)) && 146 isa<CheckOpcodeMatcher>(N->getNext())) { 147 // Unlink the two nodes from the list. 148 Matcher *CheckType = MatcherPtr.release(); 149 Matcher *CheckOpcode = CheckType->takeNext(); 150 Matcher *Tail = CheckOpcode->takeNext(); 151 152 // Relink them. 153 MatcherPtr.reset(CheckOpcode); 154 CheckOpcode->setNext(CheckType); 155 CheckType->setNext(Tail); 156 return ContractNodes(MatcherPtr, CGP); 157 } 158 } 159 160 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a 161 /// specified kind. Return null if we didn't find one otherwise return the 162 /// matcher. 163 static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) { 164 for (; M; M = M->getNext()) 165 if (M->getKind() == Kind) 166 return M; 167 return nullptr; 168 } 169 170 /// FactorNodes - Turn matches like this: 171 /// Scope 172 /// OPC_CheckType i32 173 /// ABC 174 /// OPC_CheckType i32 175 /// XYZ 176 /// into: 177 /// OPC_CheckType i32 178 /// Scope 179 /// ABC 180 /// XYZ 181 /// 182 static void FactorNodes(std::unique_ptr<Matcher> &InputMatcherPtr) { 183 // Look for a push node. Iterates instead of recurses to reduce stack usage. 184 ScopeMatcher *Scope = nullptr; 185 std::unique_ptr<Matcher> *RebindableMatcherPtr = &InputMatcherPtr; 186 while (!Scope) { 187 // If we reached the end of the chain, we're done. 188 Matcher *N = RebindableMatcherPtr->get(); 189 if (!N) 190 return; 191 192 // If this is not a push node, just scan for one. 193 Scope = dyn_cast<ScopeMatcher>(N); 194 if (!Scope) 195 RebindableMatcherPtr = &(N->getNextPtr()); 196 } 197 std::unique_ptr<Matcher> &MatcherPtr = *RebindableMatcherPtr; 198 199 // Okay, pull together the children of the scope node into a vector so we can 200 // inspect it more easily. 201 SmallVector<Matcher *, 32> OptionsToMatch; 202 203 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { 204 // Factor the subexpression. 205 std::unique_ptr<Matcher> Child(Scope->takeChild(i)); 206 FactorNodes(Child); 207 208 // If the child is a ScopeMatcher we can just merge its contents. 209 if (auto *SM = dyn_cast<ScopeMatcher>(Child.get())) { 210 for (unsigned j = 0, e = SM->getNumChildren(); j != e; ++j) 211 OptionsToMatch.push_back(SM->takeChild(j)); 212 } else { 213 OptionsToMatch.push_back(Child.release()); 214 } 215 } 216 217 // Loop over options to match, merging neighboring patterns with identical 218 // starting nodes into a shared matcher. 219 auto E = OptionsToMatch.end(); 220 for (auto I = OptionsToMatch.begin(); I != E; ++I) { 221 // If there are no other matchers left, there's nothing to merge with. 222 auto J = std::next(I); 223 if (J == E) 224 break; 225 226 // Remember where we started. We'll use this to move non-equal elements. 227 auto K = J; 228 229 // Find the set of matchers that start with this node. 230 Matcher *Optn = *I; 231 232 // See if the next option starts with the same matcher. If the two 233 // neighbors *do* start with the same matcher, we can factor the matcher out 234 // of at least these two patterns. See what the maximal set we can merge 235 // together is. 236 SmallVector<Matcher *, 8> EqualMatchers; 237 EqualMatchers.push_back(Optn); 238 239 // Factor all of the known-equal matchers after this one into the same 240 // group. 241 while (J != E && (*J)->isEqual(Optn)) 242 EqualMatchers.push_back(*J++); 243 244 // If we found a non-equal matcher, see if it is contradictory with the 245 // current node. If so, we know that the ordering relation between the 246 // current sets of nodes and this node don't matter. Look past it to see if 247 // we can merge anything else into this matching group. 248 while (J != E) { 249 Matcher *ScanMatcher = *J; 250 251 // If we found an entry that matches out matcher, merge it into the set to 252 // handle. 253 if (Optn->isEqual(ScanMatcher)) { 254 // It is equal after all, add the option to EqualMatchers. 255 EqualMatchers.push_back(ScanMatcher); 256 ++J; 257 continue; 258 } 259 260 // If the option we're checking for contradicts the start of the list, 261 // move it earlier in OptionsToMatch for the next iteration of the outer 262 // loop. Then continue searching for equal or contradictory matchers. 263 if (Optn->isContradictory(ScanMatcher)) { 264 *K++ = *J++; 265 continue; 266 } 267 268 // If we're scanning for a simple node, see if it occurs later in the 269 // sequence. If so, and if we can move it up, it might be contradictory 270 // or the same as what we're looking for. If so, reorder it. 271 if (Optn->isSimplePredicateOrRecordNode()) { 272 Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind()); 273 if (M2 && M2 != ScanMatcher && M2->canMoveBefore(ScanMatcher) && 274 (M2->isEqual(Optn) || M2->isContradictory(Optn))) { 275 Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2); 276 M2->setNext(MatcherWithoutM2); 277 *J = M2; 278 continue; 279 } 280 } 281 282 // Otherwise, we don't know how to handle this entry, we have to bail. 283 break; 284 } 285 286 if (J != E && 287 // Don't print if it's obvious nothing extract could be merged anyway. 288 std::next(J) != E) { 289 LLVM_DEBUG(errs() << "Couldn't merge this:\n"; Optn->print(errs(), 4); 290 errs() << "into this:\n"; 291 (*J)->print(errs(), 4); 292 (*std::next(J))->printOne(errs()); 293 if (std::next(J, 2) != E) (*std::next(J, 2))->printOne(errs()); 294 errs() << "\n"); 295 } 296 297 // If we removed any equal matchers, we may need to slide the rest of the 298 // elements down for the next iteration of the outer loop. 299 if (J != K) { 300 while (J != E) 301 *K++ = *J++; 302 303 // Update end pointer for outer loop. 304 E = K; 305 } 306 307 // If we only found one option starting with this matcher, no factoring is 308 // possible. Put the Matcher back in OptionsToMatch. 309 if (EqualMatchers.size() == 1) { 310 *I = EqualMatchers[0]; 311 continue; 312 } 313 314 // Factor these checks by pulling the first node off each entry and 315 // discarding it. Take the first one off the first entry to reuse. 316 Matcher *Shared = Optn; 317 Optn = Optn->takeNext(); 318 EqualMatchers[0] = Optn; 319 320 // Remove and delete the first node from the other matchers we're factoring. 321 for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) { 322 Matcher *Tmp = EqualMatchers[i]->takeNext(); 323 delete EqualMatchers[i]; 324 EqualMatchers[i] = Tmp; 325 assert(!Optn == !Tmp && "Expected all to be null if any are null"); 326 } 327 328 if (EqualMatchers[0]) { 329 Shared->setNext(new ScopeMatcher(std::move(EqualMatchers))); 330 331 // Recursively factor the newly created node. 332 FactorNodes(Shared->getNextPtr()); 333 } 334 335 // Put the new Matcher where we started in OptionsToMatch. 336 *I = Shared; 337 } 338 339 // Trim the array to match the updated end. 340 if (E != OptionsToMatch.end()) 341 OptionsToMatch.erase(E, OptionsToMatch.end()); 342 343 // If we're down to a single pattern to match, then we don't need this scope 344 // anymore. 345 if (OptionsToMatch.size() == 1) { 346 MatcherPtr.reset(OptionsToMatch[0]); 347 return; 348 } 349 350 if (OptionsToMatch.empty()) { 351 MatcherPtr.reset(); 352 return; 353 } 354 355 // If our factoring failed (didn't achieve anything) see if we can simplify in 356 // other ways. 357 358 // Check to see if all of the leading entries are now opcode checks. If so, 359 // we can convert this Scope to be a OpcodeSwitch instead. 360 bool AllOpcodeChecks = true, AllTypeChecks = true; 361 for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) { 362 // Check to see if this breaks a series of CheckOpcodeMatchers. 363 if (AllOpcodeChecks && !isa<CheckOpcodeMatcher>(OptionsToMatch[i])) { 364 #if 0 365 if (i > 3) { 366 errs() << "FAILING OPC #" << i << "\n"; 367 OptionsToMatch[i]->dump(); 368 } 369 #endif 370 AllOpcodeChecks = false; 371 } 372 373 // Check to see if this breaks a series of CheckTypeMatcher's. 374 if (AllTypeChecks) { 375 CheckTypeMatcher *CTM = cast_or_null<CheckTypeMatcher>( 376 FindNodeWithKind(OptionsToMatch[i], Matcher::CheckType)); 377 if (!CTM || 378 // iPTR checks could alias any other case without us knowing, don't 379 // bother with them. 380 CTM->getType() == MVT::iPTR || 381 // SwitchType only works for result #0. 382 CTM->getResNo() != 0 || 383 // If the CheckType isn't at the start of the list, see if we can move 384 // it there. 385 !CTM->canMoveBefore(OptionsToMatch[i])) { 386 #if 0 387 if (i > 3 && AllTypeChecks) { 388 errs() << "FAILING TYPE #" << i << "\n"; 389 OptionsToMatch[i]->dump(); 390 } 391 #endif 392 AllTypeChecks = false; 393 } 394 } 395 } 396 397 // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot. 398 if (AllOpcodeChecks) { 399 StringSet<> Opcodes; 400 SmallVector<std::pair<const SDNodeInfo *, Matcher *>, 8> Cases; 401 for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) { 402 CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(OptionsToMatch[i]); 403 assert(Opcodes.insert(COM->getOpcode().getEnumName()).second && 404 "Duplicate opcodes not factored?"); 405 Cases.push_back(std::make_pair(&COM->getOpcode(), COM->takeNext())); 406 delete COM; 407 } 408 409 MatcherPtr.reset(new SwitchOpcodeMatcher(std::move(Cases))); 410 return; 411 } 412 413 // If all the options are CheckType's, we can form the SwitchType, woot. 414 if (AllTypeChecks) { 415 DenseMap<unsigned, unsigned> TypeEntry; 416 SmallVector<std::pair<MVT::SimpleValueType, Matcher *>, 8> Cases; 417 for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) { 418 Matcher *M = FindNodeWithKind(OptionsToMatch[i], Matcher::CheckType); 419 assert(M && isa<CheckTypeMatcher>(M) && "Unknown Matcher type"); 420 421 auto *CTM = cast<CheckTypeMatcher>(M); 422 Matcher *MatcherWithoutCTM = OptionsToMatch[i]->unlinkNode(CTM); 423 MVT::SimpleValueType CTMTy = CTM->getType(); 424 delete CTM; 425 426 unsigned &Entry = TypeEntry[CTMTy]; 427 if (Entry != 0) { 428 // If we have unfactored duplicate types, then we should factor them. 429 Matcher *PrevMatcher = Cases[Entry - 1].second; 430 if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) { 431 SM->setNumChildren(SM->getNumChildren() + 1); 432 SM->resetChild(SM->getNumChildren() - 1, MatcherWithoutCTM); 433 continue; 434 } 435 436 SmallVector<Matcher *, 2> Entries = {PrevMatcher, MatcherWithoutCTM}; 437 Cases[Entry - 1].second = new ScopeMatcher(std::move(Entries)); 438 continue; 439 } 440 441 Entry = Cases.size() + 1; 442 Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM)); 443 } 444 445 // Make sure we recursively factor any scopes we may have created. 446 for (auto &M : Cases) { 447 if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(M.second)) { 448 std::unique_ptr<Matcher> Scope(SM); 449 FactorNodes(Scope); 450 M.second = Scope.release(); 451 assert(M.second && "null matcher"); 452 } 453 } 454 455 if (Cases.size() != 1) { 456 MatcherPtr.reset(new SwitchTypeMatcher(std::move(Cases))); 457 } else { 458 // If we factored and ended up with one case, create it now. 459 MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0)); 460 MatcherPtr->setNext(Cases[0].second); 461 } 462 return; 463 } 464 465 // Reassemble the Scope node with the adjusted children. 466 Scope->setNumChildren(OptionsToMatch.size()); 467 for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) 468 Scope->resetChild(i, OptionsToMatch[i]); 469 } 470 471 void llvm::OptimizeMatcher(std::unique_ptr<Matcher> &MatcherPtr, 472 const CodeGenDAGPatterns &CGP) { 473 ContractNodes(MatcherPtr, CGP); 474 FactorNodes(MatcherPtr); 475 } 476