xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/DAGISelMatcherGen.cpp (revision f5b7695d2d5abd735064870ad43f4b9c723940c1)
1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "DAGISelMatcher.h"
10 #include "CodeGenDAGPatterns.h"
11 #include "CodeGenRegisters.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/StringMap.h"
14 #include "llvm/TableGen/Error.h"
15 #include "llvm/TableGen/Record.h"
16 #include <utility>
17 using namespace llvm;
18 
19 
20 /// getRegisterValueType - Look up and return the ValueType of the specified
21 /// register. If the register is a member of multiple register classes which
22 /// have different associated types, return MVT::Other.
23 static MVT::SimpleValueType getRegisterValueType(Record *R,
24                                                  const CodeGenTarget &T) {
25   bool FoundRC = false;
26   MVT::SimpleValueType VT = MVT::Other;
27   const CodeGenRegister *Reg = T.getRegBank().getReg(R);
28 
29   for (const auto &RC : T.getRegBank().getRegClasses()) {
30     if (!RC.contains(Reg))
31       continue;
32 
33     if (!FoundRC) {
34       FoundRC = true;
35       const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
36       if (VVT.isSimple())
37         VT = VVT.getSimple().SimpleTy;
38       continue;
39     }
40 
41 #ifndef NDEBUG
42     // If this occurs in multiple register classes, they all have to agree.
43     const ValueTypeByHwMode &T = RC.getValueTypeNum(0);
44     assert((!T.isSimple() || T.getSimple().SimpleTy == VT) &&
45            "ValueType mismatch between register classes for this register");
46 #endif
47   }
48   return VT;
49 }
50 
51 
52 namespace {
53   class MatcherGen {
54     const PatternToMatch &Pattern;
55     const CodeGenDAGPatterns &CGP;
56 
57     /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
58     /// out with all of the types removed.  This allows us to insert type checks
59     /// as we scan the tree.
60     TreePatternNodePtr PatWithNoTypes;
61 
62     /// VariableMap - A map from variable names ('$dst') to the recorded operand
63     /// number that they were captured as.  These are biased by 1 to make
64     /// insertion easier.
65     StringMap<unsigned> VariableMap;
66 
67     /// This maintains the recorded operand number that OPC_CheckComplexPattern
68     /// drops each sub-operand into. We don't want to insert these into
69     /// VariableMap because that leads to identity checking if they are
70     /// encountered multiple times. Biased by 1 like VariableMap for
71     /// consistency.
72     StringMap<unsigned> NamedComplexPatternOperands;
73 
74     /// NextRecordedOperandNo - As we emit opcodes to record matched values in
75     /// the RecordedNodes array, this keeps track of which slot will be next to
76     /// record into.
77     unsigned NextRecordedOperandNo;
78 
79     /// MatchedChainNodes - This maintains the position in the recorded nodes
80     /// array of all of the recorded input nodes that have chains.
81     SmallVector<unsigned, 2> MatchedChainNodes;
82 
83     /// MatchedComplexPatterns - This maintains a list of all of the
84     /// ComplexPatterns that we need to check. The second element of each pair
85     /// is the recorded operand number of the input node.
86     SmallVector<std::pair<const TreePatternNode*,
87                           unsigned>, 2> MatchedComplexPatterns;
88 
89     /// PhysRegInputs - List list has an entry for each explicitly specified
90     /// physreg input to the pattern.  The first elt is the Register node, the
91     /// second is the recorded slot number the input pattern match saved it in.
92     SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
93 
94     /// Matcher - This is the top level of the generated matcher, the result.
95     Matcher *TheMatcher;
96 
97     /// CurPredicate - As we emit matcher nodes, this points to the latest check
98     /// which should have future checks stuck into its Next position.
99     Matcher *CurPredicate;
100   public:
101     MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
102 
103     bool EmitMatcherCode(unsigned Variant);
104     void EmitResultCode();
105 
106     Matcher *GetMatcher() const { return TheMatcher; }
107   private:
108     void AddMatcher(Matcher *NewNode);
109     void InferPossibleTypes(unsigned ForceMode);
110 
111     // Matcher Generation.
112     void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes,
113                        unsigned ForceMode);
114     void EmitLeafMatchCode(const TreePatternNode *N);
115     void EmitOperatorMatchCode(const TreePatternNode *N,
116                                TreePatternNode *NodeNoTypes,
117                                unsigned ForceMode);
118 
119     /// If this is the first time a node with unique identifier Name has been
120     /// seen, record it. Otherwise, emit a check to make sure this is the same
121     /// node. Returns true if this is the first encounter.
122     bool recordUniqueNode(ArrayRef<std::string> Names);
123 
124     // Result Code Generation.
125     unsigned getNamedArgumentSlot(StringRef Name) {
126       unsigned VarMapEntry = VariableMap[Name];
127       assert(VarMapEntry != 0 &&
128              "Variable referenced but not defined and not caught earlier!");
129       return VarMapEntry-1;
130     }
131 
132     void EmitResultOperand(const TreePatternNode *N,
133                            SmallVectorImpl<unsigned> &ResultOps);
134     void EmitResultOfNamedOperand(const TreePatternNode *N,
135                                   SmallVectorImpl<unsigned> &ResultOps);
136     void EmitResultLeafAsOperand(const TreePatternNode *N,
137                                  SmallVectorImpl<unsigned> &ResultOps);
138     void EmitResultInstructionAsOperand(const TreePatternNode *N,
139                                         SmallVectorImpl<unsigned> &ResultOps);
140     void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
141                                         SmallVectorImpl<unsigned> &ResultOps);
142     };
143 
144 } // end anonymous namespace
145 
146 MatcherGen::MatcherGen(const PatternToMatch &pattern,
147                        const CodeGenDAGPatterns &cgp)
148 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
149   TheMatcher(nullptr), CurPredicate(nullptr) {
150   // We need to produce the matcher tree for the patterns source pattern.  To do
151   // this we need to match the structure as well as the types.  To do the type
152   // matching, we want to figure out the fewest number of type checks we need to
153   // emit.  For example, if there is only one integer type supported by a
154   // target, there should be no type comparisons at all for integer patterns!
155   //
156   // To figure out the fewest number of type checks needed, clone the pattern,
157   // remove the types, then perform type inference on the pattern as a whole.
158   // If there are unresolved types, emit an explicit check for those types,
159   // apply the type to the tree, then rerun type inference.  Iterate until all
160   // types are resolved.
161   //
162   PatWithNoTypes = Pattern.getSrcPattern()->clone();
163   PatWithNoTypes->RemoveAllTypes();
164 
165   // If there are types that are manifestly known, infer them.
166   InferPossibleTypes(Pattern.ForceMode);
167 }
168 
169 /// InferPossibleTypes - As we emit the pattern, we end up generating type
170 /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
171 /// want to propagate implied types as far throughout the tree as possible so
172 /// that we avoid doing redundant type checks.  This does the type propagation.
173 void MatcherGen::InferPossibleTypes(unsigned ForceMode) {
174   // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
175   // diagnostics, which we know are impossible at this point.
176   TreePattern &TP = *CGP.pf_begin()->second;
177   TP.getInfer().CodeGen = true;
178   TP.getInfer().ForceMode = ForceMode;
179 
180   bool MadeChange = true;
181   while (MadeChange)
182     MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
183                                               true/*Ignore reg constraints*/);
184 }
185 
186 
187 /// AddMatcher - Add a matcher node to the current graph we're building.
188 void MatcherGen::AddMatcher(Matcher *NewNode) {
189   if (CurPredicate)
190     CurPredicate->setNext(NewNode);
191   else
192     TheMatcher = NewNode;
193   CurPredicate = NewNode;
194 }
195 
196 
197 //===----------------------------------------------------------------------===//
198 // Pattern Match Generation
199 //===----------------------------------------------------------------------===//
200 
201 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
202 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
203   assert(N->isLeaf() && "Not a leaf?");
204 
205   // Direct match against an integer constant.
206   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
207     // If this is the root of the dag we're matching, we emit a redundant opcode
208     // check to ensure that this gets folded into the normal top-level
209     // OpcodeSwitch.
210     if (N == Pattern.getSrcPattern()) {
211       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
212       AddMatcher(new CheckOpcodeMatcher(NI));
213     }
214 
215     return AddMatcher(new CheckIntegerMatcher(II->getValue()));
216   }
217 
218   // An UnsetInit represents a named node without any constraints.
219   if (isa<UnsetInit>(N->getLeafValue())) {
220     assert(N->hasName() && "Unnamed ? leaf");
221     return;
222   }
223 
224   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
225   if (!DI) {
226     errs() << "Unknown leaf kind: " << *N << "\n";
227     abort();
228   }
229 
230   Record *LeafRec = DI->getDef();
231 
232   // A ValueType leaf node can represent a register when named, or itself when
233   // unnamed.
234   if (LeafRec->isSubClassOf("ValueType")) {
235     // A named ValueType leaf always matches: (add i32:$a, i32:$b).
236     if (N->hasName())
237       return;
238     // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
239     return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
240   }
241 
242   if (// Handle register references.  Nothing to do here, they always match.
243       LeafRec->isSubClassOf("RegisterClass") ||
244       LeafRec->isSubClassOf("RegisterOperand") ||
245       LeafRec->isSubClassOf("PointerLikeRegClass") ||
246       LeafRec->isSubClassOf("SubRegIndex") ||
247       // Place holder for SRCVALUE nodes. Nothing to do here.
248       LeafRec->getName() == "srcvalue")
249     return;
250 
251   // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
252   // record the register
253   if (LeafRec->isSubClassOf("Register")) {
254     AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
255                                  NextRecordedOperandNo));
256     PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
257     return;
258   }
259 
260   if (LeafRec->isSubClassOf("CondCode"))
261     return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
262 
263   if (LeafRec->isSubClassOf("ComplexPattern")) {
264     // We can't model ComplexPattern uses that don't have their name taken yet.
265     // The OPC_CheckComplexPattern operation implicitly records the results.
266     if (N->getName().empty()) {
267       std::string S;
268       raw_string_ostream OS(S);
269       OS << "We expect complex pattern uses to have names: " << *N;
270       PrintFatalError(OS.str());
271     }
272 
273     // Remember this ComplexPattern so that we can emit it after all the other
274     // structural matches are done.
275     unsigned InputOperand = VariableMap[N->getName()] - 1;
276     MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
277     return;
278   }
279 
280   if (LeafRec->getName() == "immAllOnesV") {
281     // If this is the root of the dag we're matching, we emit a redundant opcode
282     // check to ensure that this gets folded into the normal top-level
283     // OpcodeSwitch.
284     if (N == Pattern.getSrcPattern()) {
285       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("build_vector"));
286       AddMatcher(new CheckOpcodeMatcher(NI));
287     }
288     return AddMatcher(new CheckImmAllOnesVMatcher());
289   }
290   if (LeafRec->getName() == "immAllZerosV") {
291     // If this is the root of the dag we're matching, we emit a redundant opcode
292     // check to ensure that this gets folded into the normal top-level
293     // OpcodeSwitch.
294     if (N == Pattern.getSrcPattern()) {
295       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("build_vector"));
296       AddMatcher(new CheckOpcodeMatcher(NI));
297     }
298     return AddMatcher(new CheckImmAllZerosVMatcher());
299   }
300 
301   errs() << "Unknown leaf kind: " << *N << "\n";
302   abort();
303 }
304 
305 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
306                                        TreePatternNode *NodeNoTypes,
307                                        unsigned ForceMode) {
308   assert(!N->isLeaf() && "Not an operator?");
309 
310   if (N->getOperator()->isSubClassOf("ComplexPattern")) {
311     // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
312     // "MY_PAT:op1:op2". We should already have validated that the uses are
313     // consistent.
314     std::string PatternName = N->getOperator()->getName();
315     for (unsigned i = 0; i < N->getNumChildren(); ++i) {
316       PatternName += ":";
317       PatternName += N->getChild(i)->getName();
318     }
319 
320     if (recordUniqueNode(PatternName)) {
321       auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
322       MatchedComplexPatterns.push_back(NodeAndOpNum);
323     }
324 
325     return;
326   }
327 
328   const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
329 
330   // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
331   // a constant without a predicate fn that has more than one bit set, handle
332   // this as a special case.  This is usually for targets that have special
333   // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
334   // handling stuff).  Using these instructions is often far more efficient
335   // than materializing the constant.  Unfortunately, both the instcombiner
336   // and the dag combiner can often infer that bits are dead, and thus drop
337   // them from the mask in the dag.  For example, it might turn 'AND X, 255'
338   // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
339   // to handle this.
340   if ((N->getOperator()->getName() == "and" ||
341        N->getOperator()->getName() == "or") &&
342       N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() &&
343       N->getPredicateCalls().empty()) {
344     if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
345       if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
346         // If this is at the root of the pattern, we emit a redundant
347         // CheckOpcode so that the following checks get factored properly under
348         // a single opcode check.
349         if (N == Pattern.getSrcPattern())
350           AddMatcher(new CheckOpcodeMatcher(CInfo));
351 
352         // Emit the CheckAndImm/CheckOrImm node.
353         if (N->getOperator()->getName() == "and")
354           AddMatcher(new CheckAndImmMatcher(II->getValue()));
355         else
356           AddMatcher(new CheckOrImmMatcher(II->getValue()));
357 
358         // Match the LHS of the AND as appropriate.
359         AddMatcher(new MoveChildMatcher(0));
360         EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode);
361         AddMatcher(new MoveParentMatcher());
362         return;
363       }
364     }
365   }
366 
367   // Check that the current opcode lines up.
368   AddMatcher(new CheckOpcodeMatcher(CInfo));
369 
370   // If this node has memory references (i.e. is a load or store), tell the
371   // interpreter to capture them in the memref array.
372   if (N->NodeHasProperty(SDNPMemOperand, CGP))
373     AddMatcher(new RecordMemRefMatcher());
374 
375   // If this node has a chain, then the chain is operand #0 is the SDNode, and
376   // the child numbers of the node are all offset by one.
377   unsigned OpNo = 0;
378   if (N->NodeHasProperty(SDNPHasChain, CGP)) {
379     // Record the node and remember it in our chained nodes list.
380     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
381                                          "' chained node",
382                                  NextRecordedOperandNo));
383     // Remember all of the input chains our pattern will match.
384     MatchedChainNodes.push_back(NextRecordedOperandNo++);
385 
386     // Don't look at the input chain when matching the tree pattern to the
387     // SDNode.
388     OpNo = 1;
389 
390     // If this node is not the root and the subtree underneath it produces a
391     // chain, then the result of matching the node is also produce a chain.
392     // Beyond that, this means that we're also folding (at least) the root node
393     // into the node that produce the chain (for example, matching
394     // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
395     // problematic, if the 'reg' node also uses the load (say, its chain).
396     // Graphically:
397     //
398     //         [LD]
399     //         ^  ^
400     //         |  \                              DAG's like cheese.
401     //        /    |
402     //       /    [YY]
403     //       |     ^
404     //      [XX]--/
405     //
406     // It would be invalid to fold XX and LD.  In this case, folding the two
407     // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
408     // To prevent this, we emit a dynamic check for legality before allowing
409     // this to be folded.
410     //
411     const TreePatternNode *Root = Pattern.getSrcPattern();
412     if (N != Root) {                             // Not the root of the pattern.
413       // If there is a node between the root and this node, then we definitely
414       // need to emit the check.
415       bool NeedCheck = !Root->hasChild(N);
416 
417       // If it *is* an immediate child of the root, we can still need a check if
418       // the root SDNode has multiple inputs.  For us, this means that it is an
419       // intrinsic, has multiple operands, or has other inputs like chain or
420       // glue).
421       if (!NeedCheck) {
422         const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
423         NeedCheck =
424           Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
425           Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
426           Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
427           PInfo.getNumOperands() > 1 ||
428           PInfo.hasProperty(SDNPHasChain) ||
429           PInfo.hasProperty(SDNPInGlue) ||
430           PInfo.hasProperty(SDNPOptInGlue);
431       }
432 
433       if (NeedCheck)
434         AddMatcher(new CheckFoldableChainNodeMatcher());
435     }
436   }
437 
438   // If this node has an output glue and isn't the root, remember it.
439   if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
440       N != Pattern.getSrcPattern()) {
441     // TODO: This redundantly records nodes with both glues and chains.
442 
443     // Record the node and remember it in our chained nodes list.
444     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
445                                          "' glue output node",
446                                  NextRecordedOperandNo));
447   }
448 
449   // If this node is known to have an input glue or if it *might* have an input
450   // glue, capture it as the glue input of the pattern.
451   if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
452       N->NodeHasProperty(SDNPInGlue, CGP))
453     AddMatcher(new CaptureGlueInputMatcher());
454 
455   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
456     // Get the code suitable for matching this child.  Move to the child, check
457     // it then move back to the parent.
458     AddMatcher(new MoveChildMatcher(OpNo));
459     EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode);
460     AddMatcher(new MoveParentMatcher());
461   }
462 }
463 
464 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
465   unsigned Entry = 0;
466   for (const std::string &Name : Names) {
467     unsigned &VarMapEntry = VariableMap[Name];
468     if (!Entry)
469       Entry = VarMapEntry;
470     assert(Entry == VarMapEntry);
471   }
472 
473   bool NewRecord = false;
474   if (Entry == 0) {
475     // If it is a named node, we must emit a 'Record' opcode.
476     std::string WhatFor;
477     for (const std::string &Name : Names) {
478       if (!WhatFor.empty())
479         WhatFor += ',';
480       WhatFor += "$" + Name;
481     }
482     AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
483     Entry = ++NextRecordedOperandNo;
484     NewRecord = true;
485   } else {
486     // If we get here, this is a second reference to a specific name.  Since
487     // we already have checked that the first reference is valid, we don't
488     // have to recursively match it, just check that it's the same as the
489     // previously named thing.
490     AddMatcher(new CheckSameMatcher(Entry-1));
491   }
492 
493   for (const std::string &Name : Names)
494     VariableMap[Name] = Entry;
495 
496   return NewRecord;
497 }
498 
499 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
500                                TreePatternNode *NodeNoTypes,
501                                unsigned ForceMode) {
502   // If N and NodeNoTypes don't agree on a type, then this is a case where we
503   // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
504   // reinfer any correlated types.
505   SmallVector<unsigned, 2> ResultsToTypeCheck;
506 
507   for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
508     if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
509     NodeNoTypes->setType(i, N->getExtType(i));
510     InferPossibleTypes(ForceMode);
511     ResultsToTypeCheck.push_back(i);
512   }
513 
514   // If this node has a name associated with it, capture it in VariableMap. If
515   // we already saw this in the pattern, emit code to verify dagness.
516   SmallVector<std::string, 4> Names;
517   if (!N->getName().empty())
518     Names.push_back(N->getName());
519 
520   for (const ScopedName &Name : N->getNamesAsPredicateArg()) {
521     Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
522   }
523 
524   if (!Names.empty()) {
525     if (!recordUniqueNode(Names))
526       return;
527   }
528 
529   if (N->isLeaf())
530     EmitLeafMatchCode(N);
531   else
532     EmitOperatorMatchCode(N, NodeNoTypes, ForceMode);
533 
534   // If there are node predicates for this node, generate their checks.
535   for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) {
536     const TreePredicateCall &Pred = N->getPredicateCalls()[i];
537     SmallVector<unsigned, 4> Operands;
538     if (Pred.Fn.usesOperands()) {
539       TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
540       for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
541         std::string Name =
542             ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
543         Operands.push_back(getNamedArgumentSlot(Name));
544       }
545     }
546     AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
547   }
548 
549   for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
550     AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
551                                     ResultsToTypeCheck[i]));
552 }
553 
554 /// EmitMatcherCode - Generate the code that matches the predicate of this
555 /// pattern for the specified Variant.  If the variant is invalid this returns
556 /// true and does not generate code, if it is valid, it returns false.
557 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
558   // If the root of the pattern is a ComplexPattern and if it is specified to
559   // match some number of root opcodes, these are considered to be our variants.
560   // Depending on which variant we're generating code for, emit the root opcode
561   // check.
562   if (const ComplexPattern *CP =
563                    Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
564     const std::vector<Record*> &OpNodes = CP->getRootNodes();
565     assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
566     if (Variant >= OpNodes.size()) return true;
567 
568     AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
569   } else {
570     if (Variant != 0) return true;
571   }
572 
573   // Emit the matcher for the pattern structure and types.
574   EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(),
575                 Pattern.ForceMode);
576 
577   // If the pattern has a predicate on it (e.g. only enabled when a subtarget
578   // feature is around, do the check).
579   if (!Pattern.getPredicateCheck().empty())
580     AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
581 
582   // Now that we've completed the structural type match, emit any ComplexPattern
583   // checks (e.g. addrmode matches).  We emit this after the structural match
584   // because they are generally more expensive to evaluate and more difficult to
585   // factor.
586   for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
587     auto N = MatchedComplexPatterns[i].first;
588 
589     // Remember where the results of this match get stuck.
590     if (N->isLeaf()) {
591       NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
592     } else {
593       unsigned CurOp = NextRecordedOperandNo;
594       for (unsigned i = 0; i < N->getNumChildren(); ++i) {
595         NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
596         CurOp += N->getChild(i)->getNumMIResults(CGP);
597       }
598     }
599 
600     // Get the slot we recorded the value in from the name on the node.
601     unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
602 
603     const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
604 
605     // Emit a CheckComplexPat operation, which does the match (aborting if it
606     // fails) and pushes the matched operands onto the recorded nodes list.
607     AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
608                                           N->getName(), NextRecordedOperandNo));
609 
610     // Record the right number of operands.
611     NextRecordedOperandNo += CP.getNumOperands();
612     if (CP.hasProperty(SDNPHasChain)) {
613       // If the complex pattern has a chain, then we need to keep track of the
614       // fact that we just recorded a chain input.  The chain input will be
615       // matched as the last operand of the predicate if it was successful.
616       ++NextRecordedOperandNo; // Chained node operand.
617 
618       // It is the last operand recorded.
619       assert(NextRecordedOperandNo > 1 &&
620              "Should have recorded input/result chains at least!");
621       MatchedChainNodes.push_back(NextRecordedOperandNo-1);
622     }
623 
624     // TODO: Complex patterns can't have output glues, if they did, we'd want
625     // to record them.
626   }
627 
628   return false;
629 }
630 
631 
632 //===----------------------------------------------------------------------===//
633 // Node Result Generation
634 //===----------------------------------------------------------------------===//
635 
636 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
637                                           SmallVectorImpl<unsigned> &ResultOps){
638   assert(!N->getName().empty() && "Operand not named!");
639 
640   if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
641     // Complex operands have already been completely selected, just find the
642     // right slot ant add the arguments directly.
643     for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
644       ResultOps.push_back(SlotNo - 1 + i);
645 
646     return;
647   }
648 
649   unsigned SlotNo = getNamedArgumentSlot(N->getName());
650 
651   // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
652   // version of the immediate so that it doesn't get selected due to some other
653   // node use.
654   if (!N->isLeaf()) {
655     StringRef OperatorName = N->getOperator()->getName();
656     if (OperatorName == "imm" || OperatorName == "fpimm") {
657       AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
658       ResultOps.push_back(NextRecordedOperandNo++);
659       return;
660     }
661   }
662 
663   for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
664     ResultOps.push_back(SlotNo + i);
665 }
666 
667 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
668                                          SmallVectorImpl<unsigned> &ResultOps) {
669   assert(N->isLeaf() && "Must be a leaf");
670 
671   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
672     AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
673     ResultOps.push_back(NextRecordedOperandNo++);
674     return;
675   }
676 
677   // If this is an explicit register reference, handle it.
678   if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
679     Record *Def = DI->getDef();
680     if (Def->isSubClassOf("Register")) {
681       const CodeGenRegister *Reg =
682         CGP.getTargetInfo().getRegBank().getReg(Def);
683       AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
684       ResultOps.push_back(NextRecordedOperandNo++);
685       return;
686     }
687 
688     if (Def->getName() == "zero_reg") {
689       AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
690       ResultOps.push_back(NextRecordedOperandNo++);
691       return;
692     }
693 
694     if (Def->getName() == "undef_tied_input") {
695       std::array<MVT::SimpleValueType, 1> ResultVTs = {{ N->getSimpleType(0) }};
696       std::array<unsigned, 0> InstOps;
697       auto IDOperandNo = NextRecordedOperandNo++;
698       AddMatcher(new EmitNodeMatcher("TargetOpcode::IMPLICIT_DEF",
699                                      ResultVTs, InstOps, false, false, false,
700                                      false, -1, IDOperandNo));
701       ResultOps.push_back(IDOperandNo);
702       return;
703     }
704 
705     // Handle a reference to a register class. This is used
706     // in COPY_TO_SUBREG instructions.
707     if (Def->isSubClassOf("RegisterOperand"))
708       Def = Def->getValueAsDef("RegClass");
709     if (Def->isSubClassOf("RegisterClass")) {
710       std::string Value = getQualifiedName(Def) + "RegClassID";
711       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
712       ResultOps.push_back(NextRecordedOperandNo++);
713       return;
714     }
715 
716     // Handle a subregister index. This is used for INSERT_SUBREG etc.
717     if (Def->isSubClassOf("SubRegIndex")) {
718       std::string Value = getQualifiedName(Def);
719       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
720       ResultOps.push_back(NextRecordedOperandNo++);
721       return;
722     }
723   }
724 
725   errs() << "unhandled leaf node: \n";
726   N->dump();
727 }
728 
729 static bool
730 mayInstNodeLoadOrStore(const TreePatternNode *N,
731                        const CodeGenDAGPatterns &CGP) {
732   Record *Op = N->getOperator();
733   const CodeGenTarget &CGT = CGP.getTargetInfo();
734   CodeGenInstruction &II = CGT.getInstruction(Op);
735   return II.mayLoad || II.mayStore;
736 }
737 
738 static unsigned
739 numNodesThatMayLoadOrStore(const TreePatternNode *N,
740                            const CodeGenDAGPatterns &CGP) {
741   if (N->isLeaf())
742     return 0;
743 
744   Record *OpRec = N->getOperator();
745   if (!OpRec->isSubClassOf("Instruction"))
746     return 0;
747 
748   unsigned Count = 0;
749   if (mayInstNodeLoadOrStore(N, CGP))
750     ++Count;
751 
752   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
753     Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
754 
755   return Count;
756 }
757 
758 void MatcherGen::
759 EmitResultInstructionAsOperand(const TreePatternNode *N,
760                                SmallVectorImpl<unsigned> &OutputOps) {
761   Record *Op = N->getOperator();
762   const CodeGenTarget &CGT = CGP.getTargetInfo();
763   CodeGenInstruction &II = CGT.getInstruction(Op);
764   const DAGInstruction &Inst = CGP.getInstruction(Op);
765 
766   bool isRoot = N == Pattern.getDstPattern();
767 
768   // TreeHasOutGlue - True if this tree has glue.
769   bool TreeHasInGlue = false, TreeHasOutGlue = false;
770   if (isRoot) {
771     const TreePatternNode *SrcPat = Pattern.getSrcPattern();
772     TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
773                     SrcPat->TreeHasProperty(SDNPInGlue, CGP);
774 
775     // FIXME2: this is checking the entire pattern, not just the node in
776     // question, doing this just for the root seems like a total hack.
777     TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
778   }
779 
780   // NumResults - This is the number of results produced by the instruction in
781   // the "outs" list.
782   unsigned NumResults = Inst.getNumResults();
783 
784   // Number of operands we know the output instruction must have. If it is
785   // variadic, we could have more operands.
786   unsigned NumFixedOperands = II.Operands.size();
787 
788   SmallVector<unsigned, 8> InstOps;
789 
790   // Loop over all of the fixed operands of the instruction pattern, emitting
791   // code to fill them all in. The node 'N' usually has number children equal to
792   // the number of input operands of the instruction.  However, in cases where
793   // there are predicate operands for an instruction, we need to fill in the
794   // 'execute always' values. Match up the node operands to the instruction
795   // operands to do this.
796   unsigned ChildNo = 0;
797 
798   // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
799   // number of operands at the end of the list which have default values.
800   // Those can come from the pattern if it provides enough arguments, or be
801   // filled in with the default if the pattern hasn't provided them. But any
802   // operand with a default value _before_ the last mandatory one will be
803   // filled in with their defaults unconditionally.
804   unsigned NonOverridableOperands = NumFixedOperands;
805   while (NonOverridableOperands > NumResults &&
806          CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec))
807     --NonOverridableOperands;
808 
809   for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
810        InstOpNo != e; ++InstOpNo) {
811     // Determine what to emit for this operand.
812     Record *OperandNode = II.Operands[InstOpNo].Rec;
813     if (CGP.operandHasDefault(OperandNode) &&
814         (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) {
815       // This is a predicate or optional def operand which the pattern has not
816       // overridden, or which we aren't letting it override; emit the 'default
817       // ops' operands.
818       const DAGDefaultOperand &DefaultOp
819         = CGP.getDefaultOperand(OperandNode);
820       for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
821         EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
822       continue;
823     }
824 
825     // Otherwise this is a normal operand or a predicate operand without
826     // 'execute always'; emit it.
827 
828     // For operands with multiple sub-operands we may need to emit
829     // multiple child patterns to cover them all.  However, ComplexPattern
830     // children may themselves emit multiple MI operands.
831     unsigned NumSubOps = 1;
832     if (OperandNode->isSubClassOf("Operand")) {
833       DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
834       if (unsigned NumArgs = MIOpInfo->getNumArgs())
835         NumSubOps = NumArgs;
836     }
837 
838     unsigned FinalNumOps = InstOps.size() + NumSubOps;
839     while (InstOps.size() < FinalNumOps) {
840       const TreePatternNode *Child = N->getChild(ChildNo);
841       unsigned BeforeAddingNumOps = InstOps.size();
842       EmitResultOperand(Child, InstOps);
843       assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
844 
845       // If the operand is an instruction and it produced multiple results, just
846       // take the first one.
847       if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
848         InstOps.resize(BeforeAddingNumOps+1);
849 
850       ++ChildNo;
851     }
852   }
853 
854   // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
855   // expand suboperands, use default operands, or other features determined from
856   // the CodeGenInstruction after the fixed operands, which were handled
857   // above. Emit the remaining instructions implicitly added by the use for
858   // variable_ops.
859   if (II.Operands.isVariadic) {
860     for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
861       EmitResultOperand(N->getChild(I), InstOps);
862   }
863 
864   // If this node has input glue or explicitly specified input physregs, we
865   // need to add chained and glued copyfromreg nodes and materialize the glue
866   // input.
867   if (isRoot && !PhysRegInputs.empty()) {
868     // Emit all of the CopyToReg nodes for the input physical registers.  These
869     // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
870     for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) {
871       const CodeGenRegister *Reg =
872         CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first);
873       AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
874                                           Reg));
875     }
876 
877     // Even if the node has no other glue inputs, the resultant node must be
878     // glued to the CopyFromReg nodes we just generated.
879     TreeHasInGlue = true;
880   }
881 
882   // Result order: node results, chain, glue
883 
884   // Determine the result types.
885   SmallVector<MVT::SimpleValueType, 4> ResultVTs;
886   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
887     ResultVTs.push_back(N->getSimpleType(i));
888 
889   // If this is the root instruction of a pattern that has physical registers in
890   // its result pattern, add output VTs for them.  For example, X86 has:
891   //   (set AL, (mul ...))
892   // This also handles implicit results like:
893   //   (implicit EFLAGS)
894   if (isRoot && !Pattern.getDstRegs().empty()) {
895     // If the root came from an implicit def in the instruction handling stuff,
896     // don't re-add it.
897     Record *HandledReg = nullptr;
898     if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
899       HandledReg = II.ImplicitDefs[0];
900 
901     for (Record *Reg : Pattern.getDstRegs()) {
902       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
903       ResultVTs.push_back(getRegisterValueType(Reg, CGT));
904     }
905   }
906 
907   // If this is the root of the pattern and the pattern we're matching includes
908   // a node that is variadic, mark the generated node as variadic so that it
909   // gets the excess operands from the input DAG.
910   int NumFixedArityOperands = -1;
911   if (isRoot &&
912       Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
913     NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
914 
915   // If this is the root node and multiple matched nodes in the input pattern
916   // have MemRefs in them, have the interpreter collect them and plop them onto
917   // this node. If there is just one node with MemRefs, leave them on that node
918   // even if it is not the root.
919   //
920   // FIXME3: This is actively incorrect for result patterns with multiple
921   // memory-referencing instructions.
922   bool PatternHasMemOperands =
923     Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
924 
925   bool NodeHasMemRefs = false;
926   if (PatternHasMemOperands) {
927     unsigned NumNodesThatLoadOrStore =
928       numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
929     bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
930                                    NumNodesThatLoadOrStore == 1;
931     NodeHasMemRefs =
932       NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
933                                              NumNodesThatLoadOrStore != 1));
934   }
935 
936   // Determine whether we need to attach a chain to this node.
937   bool NodeHasChain = false;
938   if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
939     // For some instructions, we were able to infer from the pattern whether
940     // they should have a chain.  Otherwise, attach the chain to the root.
941     //
942     // FIXME2: This is extremely dubious for several reasons, not the least of
943     // which it gives special status to instructions with patterns that Pat<>
944     // nodes can't duplicate.
945     if (II.hasChain_Inferred)
946       NodeHasChain = II.hasChain;
947     else
948       NodeHasChain = isRoot;
949     // Instructions which load and store from memory should have a chain,
950     // regardless of whether they happen to have a pattern saying so.
951     if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
952         II.hasSideEffects)
953       NodeHasChain = true;
954   }
955 
956   assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
957          "Node has no result");
958 
959   AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(),
960                                  ResultVTs, InstOps,
961                                  NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
962                                  NodeHasMemRefs, NumFixedArityOperands,
963                                  NextRecordedOperandNo));
964 
965   // The non-chain and non-glue results of the newly emitted node get recorded.
966   for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
967     if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
968     OutputOps.push_back(NextRecordedOperandNo++);
969   }
970 }
971 
972 void MatcherGen::
973 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
974                                SmallVectorImpl<unsigned> &ResultOps) {
975   assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
976 
977   // Emit the operand.
978   SmallVector<unsigned, 8> InputOps;
979 
980   // FIXME2: Could easily generalize this to support multiple inputs and outputs
981   // to the SDNodeXForm.  For now we just support one input and one output like
982   // the old instruction selector.
983   assert(N->getNumChildren() == 1);
984   EmitResultOperand(N->getChild(0), InputOps);
985 
986   // The input currently must have produced exactly one result.
987   assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
988 
989   AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
990   ResultOps.push_back(NextRecordedOperandNo++);
991 }
992 
993 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
994                                    SmallVectorImpl<unsigned> &ResultOps) {
995   // This is something selected from the pattern we matched.
996   if (!N->getName().empty())
997     return EmitResultOfNamedOperand(N, ResultOps);
998 
999   if (N->isLeaf())
1000     return EmitResultLeafAsOperand(N, ResultOps);
1001 
1002   Record *OpRec = N->getOperator();
1003   if (OpRec->isSubClassOf("Instruction"))
1004     return EmitResultInstructionAsOperand(N, ResultOps);
1005   if (OpRec->isSubClassOf("SDNodeXForm"))
1006     return EmitResultSDNodeXFormAsOperand(N, ResultOps);
1007   errs() << "Unknown result node to emit code for: " << *N << '\n';
1008   PrintFatalError("Unknown node in result pattern!");
1009 }
1010 
1011 void MatcherGen::EmitResultCode() {
1012   // Patterns that match nodes with (potentially multiple) chain inputs have to
1013   // merge them together into a token factor.  This informs the generated code
1014   // what all the chained nodes are.
1015   if (!MatchedChainNodes.empty())
1016     AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
1017 
1018   // Codegen the root of the result pattern, capturing the resulting values.
1019   SmallVector<unsigned, 8> Ops;
1020   EmitResultOperand(Pattern.getDstPattern(), Ops);
1021 
1022   // At this point, we have however many values the result pattern produces.
1023   // However, the input pattern might not need all of these.  If there are
1024   // excess values at the end (such as implicit defs of condition codes etc)
1025   // just lop them off.  This doesn't need to worry about glue or chains, just
1026   // explicit results.
1027   //
1028   unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
1029 
1030   // If the pattern also has (implicit) results, count them as well.
1031   if (!Pattern.getDstRegs().empty()) {
1032     // If the root came from an implicit def in the instruction handling stuff,
1033     // don't re-add it.
1034     Record *HandledReg = nullptr;
1035     const TreePatternNode *DstPat = Pattern.getDstPattern();
1036     if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
1037       const CodeGenTarget &CGT = CGP.getTargetInfo();
1038       CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
1039 
1040       if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
1041         HandledReg = II.ImplicitDefs[0];
1042     }
1043 
1044     for (Record *Reg : Pattern.getDstRegs()) {
1045       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
1046       ++NumSrcResults;
1047     }
1048   }
1049 
1050   SmallVector<unsigned, 8> Results(Ops);
1051 
1052   // Apply result permutation.
1053   for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults();
1054        ++ResNo) {
1055     Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)];
1056   }
1057 
1058   Results.resize(NumSrcResults);
1059   AddMatcher(new CompleteMatchMatcher(Results, Pattern));
1060 }
1061 
1062 
1063 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1064 /// the specified variant.  If the variant number is invalid, this returns null.
1065 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1066                                        unsigned Variant,
1067                                        const CodeGenDAGPatterns &CGP) {
1068   MatcherGen Gen(Pattern, CGP);
1069 
1070   // Generate the code for the matcher.
1071   if (Gen.EmitMatcherCode(Variant))
1072     return nullptr;
1073 
1074   // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1075   // FIXME2: Split result code out to another table, and make the matcher end
1076   // with an "Emit <index>" command.  This allows result generation stuff to be
1077   // shared and factored?
1078 
1079   // If the match succeeds, then we generate Pattern.
1080   Gen.EmitResultCode();
1081 
1082   // Unconditional match.
1083   return Gen.GetMatcher();
1084 }
1085