1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "CodeGenDAGPatterns.h" 10 #include "CodeGenInstruction.h" 11 #include "CodeGenRegisters.h" 12 #include "DAGISelMatcher.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/StringMap.h" 15 #include "llvm/TableGen/Error.h" 16 #include "llvm/TableGen/Record.h" 17 #include <utility> 18 using namespace llvm; 19 20 21 /// getRegisterValueType - Look up and return the ValueType of the specified 22 /// register. If the register is a member of multiple register classes which 23 /// have different associated types, return MVT::Other. 24 static MVT::SimpleValueType getRegisterValueType(Record *R, 25 const CodeGenTarget &T) { 26 bool FoundRC = false; 27 MVT::SimpleValueType VT = MVT::Other; 28 const CodeGenRegister *Reg = T.getRegBank().getReg(R); 29 30 for (const auto &RC : T.getRegBank().getRegClasses()) { 31 if (!RC.contains(Reg)) 32 continue; 33 34 if (!FoundRC) { 35 FoundRC = true; 36 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0); 37 if (VVT.isSimple()) 38 VT = VVT.getSimple().SimpleTy; 39 continue; 40 } 41 42 #ifndef NDEBUG 43 // If this occurs in multiple register classes, they all have to agree. 44 const ValueTypeByHwMode &T = RC.getValueTypeNum(0); 45 assert((!T.isSimple() || T.getSimple().SimpleTy == VT) && 46 "ValueType mismatch between register classes for this register"); 47 #endif 48 } 49 return VT; 50 } 51 52 53 namespace { 54 class MatcherGen { 55 const PatternToMatch &Pattern; 56 const CodeGenDAGPatterns &CGP; 57 58 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts 59 /// out with all of the types removed. This allows us to insert type checks 60 /// as we scan the tree. 61 TreePatternNodePtr PatWithNoTypes; 62 63 /// VariableMap - A map from variable names ('$dst') to the recorded operand 64 /// number that they were captured as. These are biased by 1 to make 65 /// insertion easier. 66 StringMap<unsigned> VariableMap; 67 68 /// This maintains the recorded operand number that OPC_CheckComplexPattern 69 /// drops each sub-operand into. We don't want to insert these into 70 /// VariableMap because that leads to identity checking if they are 71 /// encountered multiple times. Biased by 1 like VariableMap for 72 /// consistency. 73 StringMap<unsigned> NamedComplexPatternOperands; 74 75 /// NextRecordedOperandNo - As we emit opcodes to record matched values in 76 /// the RecordedNodes array, this keeps track of which slot will be next to 77 /// record into. 78 unsigned NextRecordedOperandNo; 79 80 /// MatchedChainNodes - This maintains the position in the recorded nodes 81 /// array of all of the recorded input nodes that have chains. 82 SmallVector<unsigned, 2> MatchedChainNodes; 83 84 /// MatchedComplexPatterns - This maintains a list of all of the 85 /// ComplexPatterns that we need to check. The second element of each pair 86 /// is the recorded operand number of the input node. 87 SmallVector<std::pair<const TreePatternNode*, 88 unsigned>, 2> MatchedComplexPatterns; 89 90 /// PhysRegInputs - List list has an entry for each explicitly specified 91 /// physreg input to the pattern. The first elt is the Register node, the 92 /// second is the recorded slot number the input pattern match saved it in. 93 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs; 94 95 /// Matcher - This is the top level of the generated matcher, the result. 96 Matcher *TheMatcher; 97 98 /// CurPredicate - As we emit matcher nodes, this points to the latest check 99 /// which should have future checks stuck into its Next position. 100 Matcher *CurPredicate; 101 public: 102 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); 103 104 bool EmitMatcherCode(unsigned Variant); 105 void EmitResultCode(); 106 107 Matcher *GetMatcher() const { return TheMatcher; } 108 private: 109 void AddMatcher(Matcher *NewNode); 110 void InferPossibleTypes(unsigned ForceMode); 111 112 // Matcher Generation. 113 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes, 114 unsigned ForceMode); 115 void EmitLeafMatchCode(const TreePatternNode *N); 116 void EmitOperatorMatchCode(const TreePatternNode *N, 117 TreePatternNode *NodeNoTypes, 118 unsigned ForceMode); 119 120 /// If this is the first time a node with unique identifier Name has been 121 /// seen, record it. Otherwise, emit a check to make sure this is the same 122 /// node. Returns true if this is the first encounter. 123 bool recordUniqueNode(ArrayRef<std::string> Names); 124 125 // Result Code Generation. 126 unsigned getNamedArgumentSlot(StringRef Name) { 127 unsigned VarMapEntry = VariableMap[Name]; 128 assert(VarMapEntry != 0 && 129 "Variable referenced but not defined and not caught earlier!"); 130 return VarMapEntry-1; 131 } 132 133 void EmitResultOperand(const TreePatternNode *N, 134 SmallVectorImpl<unsigned> &ResultOps); 135 void EmitResultOfNamedOperand(const TreePatternNode *N, 136 SmallVectorImpl<unsigned> &ResultOps); 137 void EmitResultLeafAsOperand(const TreePatternNode *N, 138 SmallVectorImpl<unsigned> &ResultOps); 139 void EmitResultInstructionAsOperand(const TreePatternNode *N, 140 SmallVectorImpl<unsigned> &ResultOps); 141 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 142 SmallVectorImpl<unsigned> &ResultOps); 143 }; 144 145 } // end anonymous namespace 146 147 MatcherGen::MatcherGen(const PatternToMatch &pattern, 148 const CodeGenDAGPatterns &cgp) 149 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), 150 TheMatcher(nullptr), CurPredicate(nullptr) { 151 // We need to produce the matcher tree for the patterns source pattern. To do 152 // this we need to match the structure as well as the types. To do the type 153 // matching, we want to figure out the fewest number of type checks we need to 154 // emit. For example, if there is only one integer type supported by a 155 // target, there should be no type comparisons at all for integer patterns! 156 // 157 // To figure out the fewest number of type checks needed, clone the pattern, 158 // remove the types, then perform type inference on the pattern as a whole. 159 // If there are unresolved types, emit an explicit check for those types, 160 // apply the type to the tree, then rerun type inference. Iterate until all 161 // types are resolved. 162 // 163 PatWithNoTypes = Pattern.getSrcPattern()->clone(); 164 PatWithNoTypes->RemoveAllTypes(); 165 166 // If there are types that are manifestly known, infer them. 167 InferPossibleTypes(Pattern.getForceMode()); 168 } 169 170 /// InferPossibleTypes - As we emit the pattern, we end up generating type 171 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we 172 /// want to propagate implied types as far throughout the tree as possible so 173 /// that we avoid doing redundant type checks. This does the type propagation. 174 void MatcherGen::InferPossibleTypes(unsigned ForceMode) { 175 // TP - Get *SOME* tree pattern, we don't care which. It is only used for 176 // diagnostics, which we know are impossible at this point. 177 TreePattern &TP = *CGP.pf_begin()->second; 178 TP.getInfer().CodeGen = true; 179 TP.getInfer().ForceMode = ForceMode; 180 181 bool MadeChange = true; 182 while (MadeChange) 183 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, 184 true/*Ignore reg constraints*/); 185 } 186 187 188 /// AddMatcher - Add a matcher node to the current graph we're building. 189 void MatcherGen::AddMatcher(Matcher *NewNode) { 190 if (CurPredicate) 191 CurPredicate->setNext(NewNode); 192 else 193 TheMatcher = NewNode; 194 CurPredicate = NewNode; 195 } 196 197 198 //===----------------------------------------------------------------------===// 199 // Pattern Match Generation 200 //===----------------------------------------------------------------------===// 201 202 /// EmitLeafMatchCode - Generate matching code for leaf nodes. 203 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { 204 assert(N->isLeaf() && "Not a leaf?"); 205 206 // Direct match against an integer constant. 207 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 208 // If this is the root of the dag we're matching, we emit a redundant opcode 209 // check to ensure that this gets folded into the normal top-level 210 // OpcodeSwitch. 211 if (N == Pattern.getSrcPattern()) { 212 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm")); 213 AddMatcher(new CheckOpcodeMatcher(NI)); 214 } 215 216 return AddMatcher(new CheckIntegerMatcher(II->getValue())); 217 } 218 219 // An UnsetInit represents a named node without any constraints. 220 if (isa<UnsetInit>(N->getLeafValue())) { 221 assert(N->hasName() && "Unnamed ? leaf"); 222 return; 223 } 224 225 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 226 if (!DI) { 227 errs() << "Unknown leaf kind: " << *N << "\n"; 228 abort(); 229 } 230 231 Record *LeafRec = DI->getDef(); 232 233 // A ValueType leaf node can represent a register when named, or itself when 234 // unnamed. 235 if (LeafRec->isSubClassOf("ValueType")) { 236 // A named ValueType leaf always matches: (add i32:$a, i32:$b). 237 if (N->hasName()) 238 return; 239 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). 240 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); 241 } 242 243 if (// Handle register references. Nothing to do here, they always match. 244 LeafRec->isSubClassOf("RegisterClass") || 245 LeafRec->isSubClassOf("RegisterOperand") || 246 LeafRec->isSubClassOf("PointerLikeRegClass") || 247 LeafRec->isSubClassOf("SubRegIndex") || 248 // Place holder for SRCVALUE nodes. Nothing to do here. 249 LeafRec->getName() == "srcvalue") 250 return; 251 252 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to 253 // record the register 254 if (LeafRec->isSubClassOf("Register")) { 255 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(), 256 NextRecordedOperandNo)); 257 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); 258 return; 259 } 260 261 if (LeafRec->isSubClassOf("CondCode")) 262 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); 263 264 if (LeafRec->isSubClassOf("ComplexPattern")) { 265 // We can't model ComplexPattern uses that don't have their name taken yet. 266 // The OPC_CheckComplexPattern operation implicitly records the results. 267 if (N->getName().empty()) { 268 std::string S; 269 raw_string_ostream OS(S); 270 OS << "We expect complex pattern uses to have names: " << *N; 271 PrintFatalError(S); 272 } 273 274 // Remember this ComplexPattern so that we can emit it after all the other 275 // structural matches are done. 276 unsigned InputOperand = VariableMap[N->getName()] - 1; 277 MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand)); 278 return; 279 } 280 281 if (LeafRec->getName() == "immAllOnesV") { 282 // If this is the root of the dag we're matching, we emit a redundant opcode 283 // check to ensure that this gets folded into the normal top-level 284 // OpcodeSwitch. 285 if (N == Pattern.getSrcPattern()) { 286 MVT VT = N->getSimpleType(0); 287 StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector"; 288 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name)); 289 AddMatcher(new CheckOpcodeMatcher(NI)); 290 } 291 return AddMatcher(new CheckImmAllOnesVMatcher()); 292 } 293 if (LeafRec->getName() == "immAllZerosV") { 294 // If this is the root of the dag we're matching, we emit a redundant opcode 295 // check to ensure that this gets folded into the normal top-level 296 // OpcodeSwitch. 297 if (N == Pattern.getSrcPattern()) { 298 MVT VT = N->getSimpleType(0); 299 StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector"; 300 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name)); 301 AddMatcher(new CheckOpcodeMatcher(NI)); 302 } 303 return AddMatcher(new CheckImmAllZerosVMatcher()); 304 } 305 306 errs() << "Unknown leaf kind: " << *N << "\n"; 307 abort(); 308 } 309 310 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, 311 TreePatternNode *NodeNoTypes, 312 unsigned ForceMode) { 313 assert(!N->isLeaf() && "Not an operator?"); 314 315 if (N->getOperator()->isSubClassOf("ComplexPattern")) { 316 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is 317 // "MY_PAT:op1:op2". We should already have validated that the uses are 318 // consistent. 319 std::string PatternName = std::string(N->getOperator()->getName()); 320 for (unsigned i = 0; i < N->getNumChildren(); ++i) { 321 PatternName += ":"; 322 PatternName += N->getChild(i)->getName(); 323 } 324 325 if (recordUniqueNode(PatternName)) { 326 auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1); 327 MatchedComplexPatterns.push_back(NodeAndOpNum); 328 } 329 330 return; 331 } 332 333 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); 334 335 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is 336 // a constant without a predicate fn that has more than one bit set, handle 337 // this as a special case. This is usually for targets that have special 338 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit 339 // handling stuff). Using these instructions is often far more efficient 340 // than materializing the constant. Unfortunately, both the instcombiner 341 // and the dag combiner can often infer that bits are dead, and thus drop 342 // them from the mask in the dag. For example, it might turn 'AND X, 255' 343 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks 344 // to handle this. 345 if ((N->getOperator()->getName() == "and" || 346 N->getOperator()->getName() == "or") && 347 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() && 348 N->getPredicateCalls().empty()) { 349 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) { 350 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. 351 // If this is at the root of the pattern, we emit a redundant 352 // CheckOpcode so that the following checks get factored properly under 353 // a single opcode check. 354 if (N == Pattern.getSrcPattern()) 355 AddMatcher(new CheckOpcodeMatcher(CInfo)); 356 357 // Emit the CheckAndImm/CheckOrImm node. 358 if (N->getOperator()->getName() == "and") 359 AddMatcher(new CheckAndImmMatcher(II->getValue())); 360 else 361 AddMatcher(new CheckOrImmMatcher(II->getValue())); 362 363 // Match the LHS of the AND as appropriate. 364 AddMatcher(new MoveChildMatcher(0)); 365 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode); 366 AddMatcher(new MoveParentMatcher()); 367 return; 368 } 369 } 370 } 371 372 // Check that the current opcode lines up. 373 AddMatcher(new CheckOpcodeMatcher(CInfo)); 374 375 // If this node has memory references (i.e. is a load or store), tell the 376 // interpreter to capture them in the memref array. 377 if (N->NodeHasProperty(SDNPMemOperand, CGP)) 378 AddMatcher(new RecordMemRefMatcher()); 379 380 // If this node has a chain, then the chain is operand #0 is the SDNode, and 381 // the child numbers of the node are all offset by one. 382 unsigned OpNo = 0; 383 if (N->NodeHasProperty(SDNPHasChain, CGP)) { 384 // Record the node and remember it in our chained nodes list. 385 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() + 386 "' chained node", 387 NextRecordedOperandNo)); 388 // Remember all of the input chains our pattern will match. 389 MatchedChainNodes.push_back(NextRecordedOperandNo++); 390 391 // Don't look at the input chain when matching the tree pattern to the 392 // SDNode. 393 OpNo = 1; 394 395 // If this node is not the root and the subtree underneath it produces a 396 // chain, then the result of matching the node is also produce a chain. 397 // Beyond that, this means that we're also folding (at least) the root node 398 // into the node that produce the chain (for example, matching 399 // "(add reg, (load ptr))" as a add_with_memory on X86). This is 400 // problematic, if the 'reg' node also uses the load (say, its chain). 401 // Graphically: 402 // 403 // [LD] 404 // ^ ^ 405 // | \ DAG's like cheese. 406 // / | 407 // / [YY] 408 // | ^ 409 // [XX]--/ 410 // 411 // It would be invalid to fold XX and LD. In this case, folding the two 412 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG' 413 // To prevent this, we emit a dynamic check for legality before allowing 414 // this to be folded. 415 // 416 const TreePatternNode *Root = Pattern.getSrcPattern(); 417 if (N != Root) { // Not the root of the pattern. 418 // If there is a node between the root and this node, then we definitely 419 // need to emit the check. 420 bool NeedCheck = !Root->hasChild(N); 421 422 // If it *is* an immediate child of the root, we can still need a check if 423 // the root SDNode has multiple inputs. For us, this means that it is an 424 // intrinsic, has multiple operands, or has other inputs like chain or 425 // glue). 426 if (!NeedCheck) { 427 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); 428 NeedCheck = 429 Root->getOperator() == CGP.get_intrinsic_void_sdnode() || 430 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || 431 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || 432 PInfo.getNumOperands() > 1 || 433 PInfo.hasProperty(SDNPHasChain) || 434 PInfo.hasProperty(SDNPInGlue) || 435 PInfo.hasProperty(SDNPOptInGlue); 436 } 437 438 if (NeedCheck) 439 AddMatcher(new CheckFoldableChainNodeMatcher()); 440 } 441 } 442 443 // If this node has an output glue and isn't the root, remember it. 444 if (N->NodeHasProperty(SDNPOutGlue, CGP) && 445 N != Pattern.getSrcPattern()) { 446 // TODO: This redundantly records nodes with both glues and chains. 447 448 // Record the node and remember it in our chained nodes list. 449 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() + 450 "' glue output node", 451 NextRecordedOperandNo)); 452 } 453 454 // If this node is known to have an input glue or if it *might* have an input 455 // glue, capture it as the glue input of the pattern. 456 if (N->NodeHasProperty(SDNPOptInGlue, CGP) || 457 N->NodeHasProperty(SDNPInGlue, CGP)) 458 AddMatcher(new CaptureGlueInputMatcher()); 459 460 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { 461 // Get the code suitable for matching this child. Move to the child, check 462 // it then move back to the parent. 463 AddMatcher(new MoveChildMatcher(OpNo)); 464 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode); 465 AddMatcher(new MoveParentMatcher()); 466 } 467 } 468 469 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) { 470 unsigned Entry = 0; 471 for (const std::string &Name : Names) { 472 unsigned &VarMapEntry = VariableMap[Name]; 473 if (!Entry) 474 Entry = VarMapEntry; 475 assert(Entry == VarMapEntry); 476 } 477 478 bool NewRecord = false; 479 if (Entry == 0) { 480 // If it is a named node, we must emit a 'Record' opcode. 481 std::string WhatFor; 482 for (const std::string &Name : Names) { 483 if (!WhatFor.empty()) 484 WhatFor += ','; 485 WhatFor += "$" + Name; 486 } 487 AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo)); 488 Entry = ++NextRecordedOperandNo; 489 NewRecord = true; 490 } else { 491 // If we get here, this is a second reference to a specific name. Since 492 // we already have checked that the first reference is valid, we don't 493 // have to recursively match it, just check that it's the same as the 494 // previously named thing. 495 AddMatcher(new CheckSameMatcher(Entry-1)); 496 } 497 498 for (const std::string &Name : Names) 499 VariableMap[Name] = Entry; 500 501 return NewRecord; 502 } 503 504 void MatcherGen::EmitMatchCode(const TreePatternNode *N, 505 TreePatternNode *NodeNoTypes, 506 unsigned ForceMode) { 507 // If N and NodeNoTypes don't agree on a type, then this is a case where we 508 // need to do a type check. Emit the check, apply the type to NodeNoTypes and 509 // reinfer any correlated types. 510 SmallVector<unsigned, 2> ResultsToTypeCheck; 511 512 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) { 513 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue; 514 NodeNoTypes->setType(i, N->getExtType(i)); 515 InferPossibleTypes(ForceMode); 516 ResultsToTypeCheck.push_back(i); 517 } 518 519 // If this node has a name associated with it, capture it in VariableMap. If 520 // we already saw this in the pattern, emit code to verify dagness. 521 SmallVector<std::string, 4> Names; 522 if (!N->getName().empty()) 523 Names.push_back(N->getName()); 524 525 for (const ScopedName &Name : N->getNamesAsPredicateArg()) { 526 Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str()); 527 } 528 529 if (!Names.empty()) { 530 if (!recordUniqueNode(Names)) 531 return; 532 } 533 534 if (N->isLeaf()) 535 EmitLeafMatchCode(N); 536 else 537 EmitOperatorMatchCode(N, NodeNoTypes, ForceMode); 538 539 // If there are node predicates for this node, generate their checks. 540 for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) { 541 const TreePredicateCall &Pred = N->getPredicateCalls()[i]; 542 SmallVector<unsigned, 4> Operands; 543 if (Pred.Fn.usesOperands()) { 544 TreePattern *TP = Pred.Fn.getOrigPatFragRecord(); 545 for (unsigned i = 0; i < TP->getNumArgs(); ++i) { 546 std::string Name = 547 ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str(); 548 Operands.push_back(getNamedArgumentSlot(Name)); 549 } 550 } 551 AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands)); 552 } 553 554 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) 555 AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]), 556 ResultsToTypeCheck[i])); 557 } 558 559 /// EmitMatcherCode - Generate the code that matches the predicate of this 560 /// pattern for the specified Variant. If the variant is invalid this returns 561 /// true and does not generate code, if it is valid, it returns false. 562 bool MatcherGen::EmitMatcherCode(unsigned Variant) { 563 // If the root of the pattern is a ComplexPattern and if it is specified to 564 // match some number of root opcodes, these are considered to be our variants. 565 // Depending on which variant we're generating code for, emit the root opcode 566 // check. 567 if (const ComplexPattern *CP = 568 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) { 569 const std::vector<Record*> &OpNodes = CP->getRootNodes(); 570 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match"); 571 if (Variant >= OpNodes.size()) return true; 572 573 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); 574 } else { 575 if (Variant != 0) return true; 576 } 577 578 // Emit the matcher for the pattern structure and types. 579 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(), 580 Pattern.getForceMode()); 581 582 // If the pattern has a predicate on it (e.g. only enabled when a subtarget 583 // feature is around, do the check). 584 if (!Pattern.getPredicateCheck().empty()) 585 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck())); 586 587 // Now that we've completed the structural type match, emit any ComplexPattern 588 // checks (e.g. addrmode matches). We emit this after the structural match 589 // because they are generally more expensive to evaluate and more difficult to 590 // factor. 591 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { 592 auto N = MatchedComplexPatterns[i].first; 593 594 // Remember where the results of this match get stuck. 595 if (N->isLeaf()) { 596 NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1; 597 } else { 598 unsigned CurOp = NextRecordedOperandNo; 599 for (unsigned i = 0; i < N->getNumChildren(); ++i) { 600 NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1; 601 CurOp += N->getChild(i)->getNumMIResults(CGP); 602 } 603 } 604 605 // Get the slot we recorded the value in from the name on the node. 606 unsigned RecNodeEntry = MatchedComplexPatterns[i].second; 607 608 const ComplexPattern &CP = *N->getComplexPatternInfo(CGP); 609 610 // Emit a CheckComplexPat operation, which does the match (aborting if it 611 // fails) and pushes the matched operands onto the recorded nodes list. 612 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry, 613 N->getName(), NextRecordedOperandNo)); 614 615 // Record the right number of operands. 616 NextRecordedOperandNo += CP.getNumOperands(); 617 if (CP.hasProperty(SDNPHasChain)) { 618 // If the complex pattern has a chain, then we need to keep track of the 619 // fact that we just recorded a chain input. The chain input will be 620 // matched as the last operand of the predicate if it was successful. 621 ++NextRecordedOperandNo; // Chained node operand. 622 623 // It is the last operand recorded. 624 assert(NextRecordedOperandNo > 1 && 625 "Should have recorded input/result chains at least!"); 626 MatchedChainNodes.push_back(NextRecordedOperandNo-1); 627 } 628 629 // TODO: Complex patterns can't have output glues, if they did, we'd want 630 // to record them. 631 } 632 633 return false; 634 } 635 636 637 //===----------------------------------------------------------------------===// 638 // Node Result Generation 639 //===----------------------------------------------------------------------===// 640 641 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, 642 SmallVectorImpl<unsigned> &ResultOps){ 643 assert(!N->getName().empty() && "Operand not named!"); 644 645 if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) { 646 // Complex operands have already been completely selected, just find the 647 // right slot ant add the arguments directly. 648 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) 649 ResultOps.push_back(SlotNo - 1 + i); 650 651 return; 652 } 653 654 unsigned SlotNo = getNamedArgumentSlot(N->getName()); 655 656 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target 657 // version of the immediate so that it doesn't get selected due to some other 658 // node use. 659 if (!N->isLeaf()) { 660 StringRef OperatorName = N->getOperator()->getName(); 661 if (OperatorName == "imm" || OperatorName == "fpimm") { 662 AddMatcher(new EmitConvertToTargetMatcher(SlotNo)); 663 ResultOps.push_back(NextRecordedOperandNo++); 664 return; 665 } 666 } 667 668 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) 669 ResultOps.push_back(SlotNo + i); 670 } 671 672 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, 673 SmallVectorImpl<unsigned> &ResultOps) { 674 assert(N->isLeaf() && "Must be a leaf"); 675 676 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 677 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0))); 678 ResultOps.push_back(NextRecordedOperandNo++); 679 return; 680 } 681 682 // If this is an explicit register reference, handle it. 683 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 684 Record *Def = DI->getDef(); 685 if (Def->isSubClassOf("Register")) { 686 const CodeGenRegister *Reg = 687 CGP.getTargetInfo().getRegBank().getReg(Def); 688 AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0))); 689 ResultOps.push_back(NextRecordedOperandNo++); 690 return; 691 } 692 693 if (Def->getName() == "zero_reg") { 694 AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0))); 695 ResultOps.push_back(NextRecordedOperandNo++); 696 return; 697 } 698 699 if (Def->getName() == "undef_tied_input") { 700 std::array<MVT::SimpleValueType, 1> ResultVTs = {{ N->getSimpleType(0) }}; 701 std::array<unsigned, 0> InstOps; 702 auto IDOperandNo = NextRecordedOperandNo++; 703 AddMatcher(new EmitNodeMatcher("TargetOpcode::IMPLICIT_DEF", 704 ResultVTs, InstOps, false, false, false, 705 false, -1, IDOperandNo)); 706 ResultOps.push_back(IDOperandNo); 707 return; 708 } 709 710 // Handle a reference to a register class. This is used 711 // in COPY_TO_SUBREG instructions. 712 if (Def->isSubClassOf("RegisterOperand")) 713 Def = Def->getValueAsDef("RegClass"); 714 if (Def->isSubClassOf("RegisterClass")) { 715 // If the register class has an enum integer value greater than 127, the 716 // encoding overflows the limit of 7 bits, which precludes the use of 717 // StringIntegerMatcher. In this case, fallback to using IntegerMatcher. 718 const CodeGenRegisterClass &RC = 719 CGP.getTargetInfo().getRegisterClass(Def); 720 if (RC.EnumValue <= 127) { 721 std::string Value = getQualifiedName(Def) + "RegClassID"; 722 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 723 ResultOps.push_back(NextRecordedOperandNo++); 724 } else { 725 AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32)); 726 ResultOps.push_back(NextRecordedOperandNo++); 727 } 728 return; 729 } 730 731 // Handle a subregister index. This is used for INSERT_SUBREG etc. 732 if (Def->isSubClassOf("SubRegIndex")) { 733 const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank(); 734 // If we have more than 127 subreg indices the encoding can overflow 735 // 7 bit and we cannot use StringInteger. 736 if (RB.getSubRegIndices().size() > 127) { 737 const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def); 738 assert(I && "Cannot find subreg index by name!"); 739 if (I->EnumValue > 127) { 740 AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32)); 741 ResultOps.push_back(NextRecordedOperandNo++); 742 return; 743 } 744 } 745 std::string Value = getQualifiedName(Def); 746 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 747 ResultOps.push_back(NextRecordedOperandNo++); 748 return; 749 } 750 } 751 752 errs() << "unhandled leaf node:\n"; 753 N->dump(); 754 } 755 756 static bool 757 mayInstNodeLoadOrStore(const TreePatternNode *N, 758 const CodeGenDAGPatterns &CGP) { 759 Record *Op = N->getOperator(); 760 const CodeGenTarget &CGT = CGP.getTargetInfo(); 761 CodeGenInstruction &II = CGT.getInstruction(Op); 762 return II.mayLoad || II.mayStore; 763 } 764 765 static unsigned 766 numNodesThatMayLoadOrStore(const TreePatternNode *N, 767 const CodeGenDAGPatterns &CGP) { 768 if (N->isLeaf()) 769 return 0; 770 771 Record *OpRec = N->getOperator(); 772 if (!OpRec->isSubClassOf("Instruction")) 773 return 0; 774 775 unsigned Count = 0; 776 if (mayInstNodeLoadOrStore(N, CGP)) 777 ++Count; 778 779 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 780 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP); 781 782 return Count; 783 } 784 785 void MatcherGen:: 786 EmitResultInstructionAsOperand(const TreePatternNode *N, 787 SmallVectorImpl<unsigned> &OutputOps) { 788 Record *Op = N->getOperator(); 789 const CodeGenTarget &CGT = CGP.getTargetInfo(); 790 CodeGenInstruction &II = CGT.getInstruction(Op); 791 const DAGInstruction &Inst = CGP.getInstruction(Op); 792 793 bool isRoot = N == Pattern.getDstPattern(); 794 795 // TreeHasOutGlue - True if this tree has glue. 796 bool TreeHasInGlue = false, TreeHasOutGlue = false; 797 if (isRoot) { 798 const TreePatternNode *SrcPat = Pattern.getSrcPattern(); 799 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) || 800 SrcPat->TreeHasProperty(SDNPInGlue, CGP); 801 802 // FIXME2: this is checking the entire pattern, not just the node in 803 // question, doing this just for the root seems like a total hack. 804 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP); 805 } 806 807 // NumResults - This is the number of results produced by the instruction in 808 // the "outs" list. 809 unsigned NumResults = Inst.getNumResults(); 810 811 // Number of operands we know the output instruction must have. If it is 812 // variadic, we could have more operands. 813 unsigned NumFixedOperands = II.Operands.size(); 814 815 SmallVector<unsigned, 8> InstOps; 816 817 // Loop over all of the fixed operands of the instruction pattern, emitting 818 // code to fill them all in. The node 'N' usually has number children equal to 819 // the number of input operands of the instruction. However, in cases where 820 // there are predicate operands for an instruction, we need to fill in the 821 // 'execute always' values. Match up the node operands to the instruction 822 // operands to do this. 823 unsigned ChildNo = 0; 824 825 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the 826 // number of operands at the end of the list which have default values. 827 // Those can come from the pattern if it provides enough arguments, or be 828 // filled in with the default if the pattern hasn't provided them. But any 829 // operand with a default value _before_ the last mandatory one will be 830 // filled in with their defaults unconditionally. 831 unsigned NonOverridableOperands = NumFixedOperands; 832 while (NonOverridableOperands > NumResults && 833 CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec)) 834 --NonOverridableOperands; 835 836 for (unsigned InstOpNo = NumResults, e = NumFixedOperands; 837 InstOpNo != e; ++InstOpNo) { 838 // Determine what to emit for this operand. 839 Record *OperandNode = II.Operands[InstOpNo].Rec; 840 if (CGP.operandHasDefault(OperandNode) && 841 (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) { 842 // This is a predicate or optional def operand which the pattern has not 843 // overridden, or which we aren't letting it override; emit the 'default 844 // ops' operands. 845 const DAGDefaultOperand &DefaultOp 846 = CGP.getDefaultOperand(OperandNode); 847 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) 848 EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps); 849 continue; 850 } 851 852 // Otherwise this is a normal operand or a predicate operand without 853 // 'execute always'; emit it. 854 855 // For operands with multiple sub-operands we may need to emit 856 // multiple child patterns to cover them all. However, ComplexPattern 857 // children may themselves emit multiple MI operands. 858 unsigned NumSubOps = 1; 859 if (OperandNode->isSubClassOf("Operand")) { 860 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 861 if (unsigned NumArgs = MIOpInfo->getNumArgs()) 862 NumSubOps = NumArgs; 863 } 864 865 unsigned FinalNumOps = InstOps.size() + NumSubOps; 866 while (InstOps.size() < FinalNumOps) { 867 const TreePatternNode *Child = N->getChild(ChildNo); 868 unsigned BeforeAddingNumOps = InstOps.size(); 869 EmitResultOperand(Child, InstOps); 870 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); 871 872 // If the operand is an instruction and it produced multiple results, just 873 // take the first one. 874 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) 875 InstOps.resize(BeforeAddingNumOps+1); 876 877 ++ChildNo; 878 } 879 } 880 881 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't 882 // expand suboperands, use default operands, or other features determined from 883 // the CodeGenInstruction after the fixed operands, which were handled 884 // above. Emit the remaining instructions implicitly added by the use for 885 // variable_ops. 886 if (II.Operands.isVariadic) { 887 for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I) 888 EmitResultOperand(N->getChild(I), InstOps); 889 } 890 891 // If this node has input glue or explicitly specified input physregs, we 892 // need to add chained and glued copyfromreg nodes and materialize the glue 893 // input. 894 if (isRoot && !PhysRegInputs.empty()) { 895 // Emit all of the CopyToReg nodes for the input physical registers. These 896 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). 897 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) { 898 const CodeGenRegister *Reg = 899 CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first); 900 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, 901 Reg)); 902 } 903 904 // Even if the node has no other glue inputs, the resultant node must be 905 // glued to the CopyFromReg nodes we just generated. 906 TreeHasInGlue = true; 907 } 908 909 // Result order: node results, chain, glue 910 911 // Determine the result types. 912 SmallVector<MVT::SimpleValueType, 4> ResultVTs; 913 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) 914 ResultVTs.push_back(N->getSimpleType(i)); 915 916 // If this is the root instruction of a pattern that has physical registers in 917 // its result pattern, add output VTs for them. For example, X86 has: 918 // (set AL, (mul ...)) 919 // This also handles implicit results like: 920 // (implicit EFLAGS) 921 if (isRoot && !Pattern.getDstRegs().empty()) { 922 // If the root came from an implicit def in the instruction handling stuff, 923 // don't re-add it. 924 Record *HandledReg = nullptr; 925 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 926 HandledReg = II.ImplicitDefs[0]; 927 928 for (Record *Reg : Pattern.getDstRegs()) { 929 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 930 ResultVTs.push_back(getRegisterValueType(Reg, CGT)); 931 } 932 } 933 934 // If this is the root of the pattern and the pattern we're matching includes 935 // a node that is variadic, mark the generated node as variadic so that it 936 // gets the excess operands from the input DAG. 937 int NumFixedArityOperands = -1; 938 if (isRoot && 939 Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)) 940 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); 941 942 // If this is the root node and multiple matched nodes in the input pattern 943 // have MemRefs in them, have the interpreter collect them and plop them onto 944 // this node. If there is just one node with MemRefs, leave them on that node 945 // even if it is not the root. 946 // 947 // FIXME3: This is actively incorrect for result patterns with multiple 948 // memory-referencing instructions. 949 bool PatternHasMemOperands = 950 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); 951 952 bool NodeHasMemRefs = false; 953 if (PatternHasMemOperands) { 954 unsigned NumNodesThatLoadOrStore = 955 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); 956 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) && 957 NumNodesThatLoadOrStore == 1; 958 NodeHasMemRefs = 959 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || 960 NumNodesThatLoadOrStore != 1)); 961 } 962 963 // Determine whether we need to attach a chain to this node. 964 bool NodeHasChain = false; 965 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) { 966 // For some instructions, we were able to infer from the pattern whether 967 // they should have a chain. Otherwise, attach the chain to the root. 968 // 969 // FIXME2: This is extremely dubious for several reasons, not the least of 970 // which it gives special status to instructions with patterns that Pat<> 971 // nodes can't duplicate. 972 if (II.hasChain_Inferred) 973 NodeHasChain = II.hasChain; 974 else 975 NodeHasChain = isRoot; 976 // Instructions which load and store from memory should have a chain, 977 // regardless of whether they happen to have a pattern saying so. 978 if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || 979 II.hasSideEffects) 980 NodeHasChain = true; 981 } 982 983 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && 984 "Node has no result"); 985 986 AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(), 987 ResultVTs, InstOps, 988 NodeHasChain, TreeHasInGlue, TreeHasOutGlue, 989 NodeHasMemRefs, NumFixedArityOperands, 990 NextRecordedOperandNo)); 991 992 // The non-chain and non-glue results of the newly emitted node get recorded. 993 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { 994 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break; 995 OutputOps.push_back(NextRecordedOperandNo++); 996 } 997 } 998 999 void MatcherGen:: 1000 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 1001 SmallVectorImpl<unsigned> &ResultOps) { 1002 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); 1003 1004 // Emit the operand. 1005 SmallVector<unsigned, 8> InputOps; 1006 1007 // FIXME2: Could easily generalize this to support multiple inputs and outputs 1008 // to the SDNodeXForm. For now we just support one input and one output like 1009 // the old instruction selector. 1010 assert(N->getNumChildren() == 1); 1011 EmitResultOperand(N->getChild(0), InputOps); 1012 1013 // The input currently must have produced exactly one result. 1014 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); 1015 1016 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator())); 1017 ResultOps.push_back(NextRecordedOperandNo++); 1018 } 1019 1020 void MatcherGen::EmitResultOperand(const TreePatternNode *N, 1021 SmallVectorImpl<unsigned> &ResultOps) { 1022 // This is something selected from the pattern we matched. 1023 if (!N->getName().empty()) 1024 return EmitResultOfNamedOperand(N, ResultOps); 1025 1026 if (N->isLeaf()) 1027 return EmitResultLeafAsOperand(N, ResultOps); 1028 1029 Record *OpRec = N->getOperator(); 1030 if (OpRec->isSubClassOf("Instruction")) 1031 return EmitResultInstructionAsOperand(N, ResultOps); 1032 if (OpRec->isSubClassOf("SDNodeXForm")) 1033 return EmitResultSDNodeXFormAsOperand(N, ResultOps); 1034 errs() << "Unknown result node to emit code for: " << *N << '\n'; 1035 PrintFatalError("Unknown node in result pattern!"); 1036 } 1037 1038 void MatcherGen::EmitResultCode() { 1039 // Patterns that match nodes with (potentially multiple) chain inputs have to 1040 // merge them together into a token factor. This informs the generated code 1041 // what all the chained nodes are. 1042 if (!MatchedChainNodes.empty()) 1043 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes)); 1044 1045 // Codegen the root of the result pattern, capturing the resulting values. 1046 SmallVector<unsigned, 8> Ops; 1047 EmitResultOperand(Pattern.getDstPattern(), Ops); 1048 1049 // At this point, we have however many values the result pattern produces. 1050 // However, the input pattern might not need all of these. If there are 1051 // excess values at the end (such as implicit defs of condition codes etc) 1052 // just lop them off. This doesn't need to worry about glue or chains, just 1053 // explicit results. 1054 // 1055 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes(); 1056 1057 // If the pattern also has (implicit) results, count them as well. 1058 if (!Pattern.getDstRegs().empty()) { 1059 // If the root came from an implicit def in the instruction handling stuff, 1060 // don't re-add it. 1061 Record *HandledReg = nullptr; 1062 const TreePatternNode *DstPat = Pattern.getDstPattern(); 1063 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){ 1064 const CodeGenTarget &CGT = CGP.getTargetInfo(); 1065 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator()); 1066 1067 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 1068 HandledReg = II.ImplicitDefs[0]; 1069 } 1070 1071 for (Record *Reg : Pattern.getDstRegs()) { 1072 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 1073 ++NumSrcResults; 1074 } 1075 } 1076 1077 SmallVector<unsigned, 8> Results(Ops); 1078 1079 // Apply result permutation. 1080 for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults(); 1081 ++ResNo) { 1082 Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)]; 1083 } 1084 1085 Results.resize(NumSrcResults); 1086 AddMatcher(new CompleteMatchMatcher(Results, Pattern)); 1087 } 1088 1089 1090 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with 1091 /// the specified variant. If the variant number is invalid, this returns null. 1092 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, 1093 unsigned Variant, 1094 const CodeGenDAGPatterns &CGP) { 1095 MatcherGen Gen(Pattern, CGP); 1096 1097 // Generate the code for the matcher. 1098 if (Gen.EmitMatcherCode(Variant)) 1099 return nullptr; 1100 1101 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. 1102 // FIXME2: Split result code out to another table, and make the matcher end 1103 // with an "Emit <index>" command. This allows result generation stuff to be 1104 // shared and factored? 1105 1106 // If the match succeeds, then we generate Pattern. 1107 Gen.EmitResultCode(); 1108 1109 // Unconditional match. 1110 return Gen.GetMatcher(); 1111 } 1112