1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "CodeGenDAGPatterns.h" 10 #include "CodeGenInstruction.h" 11 #include "CodeGenRegisters.h" 12 #include "CodeGenTarget.h" 13 #include "DAGISelMatcher.h" 14 #include "InfoByHwMode.h" 15 #include "SDNodeProperties.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/TableGen/Error.h" 19 #include "llvm/TableGen/Record.h" 20 #include <utility> 21 using namespace llvm; 22 23 24 /// getRegisterValueType - Look up and return the ValueType of the specified 25 /// register. If the register is a member of multiple register classes, they 26 /// must all have the same type. 27 static MVT::SimpleValueType getRegisterValueType(Record *R, 28 const CodeGenTarget &T) { 29 bool FoundRC = false; 30 MVT::SimpleValueType VT = MVT::Other; 31 const CodeGenRegister *Reg = T.getRegBank().getReg(R); 32 33 for (const auto &RC : T.getRegBank().getRegClasses()) { 34 if (!RC.contains(Reg)) 35 continue; 36 37 if (!FoundRC) { 38 FoundRC = true; 39 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0); 40 assert(VVT.isSimple()); 41 VT = VVT.getSimple().SimpleTy; 42 continue; 43 } 44 45 #ifndef NDEBUG 46 // If this occurs in multiple register classes, they all have to agree. 47 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0); 48 assert(VVT.isSimple() && VVT.getSimple().SimpleTy == VT && 49 "ValueType mismatch between register classes for this register"); 50 #endif 51 } 52 return VT; 53 } 54 55 56 namespace { 57 class MatcherGen { 58 const PatternToMatch &Pattern; 59 const CodeGenDAGPatterns &CGP; 60 61 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts 62 /// out with all of the types removed. This allows us to insert type checks 63 /// as we scan the tree. 64 TreePatternNodePtr PatWithNoTypes; 65 66 /// VariableMap - A map from variable names ('$dst') to the recorded operand 67 /// number that they were captured as. These are biased by 1 to make 68 /// insertion easier. 69 StringMap<unsigned> VariableMap; 70 71 /// This maintains the recorded operand number that OPC_CheckComplexPattern 72 /// drops each sub-operand into. We don't want to insert these into 73 /// VariableMap because that leads to identity checking if they are 74 /// encountered multiple times. Biased by 1 like VariableMap for 75 /// consistency. 76 StringMap<unsigned> NamedComplexPatternOperands; 77 78 /// NextRecordedOperandNo - As we emit opcodes to record matched values in 79 /// the RecordedNodes array, this keeps track of which slot will be next to 80 /// record into. 81 unsigned NextRecordedOperandNo; 82 83 /// MatchedChainNodes - This maintains the position in the recorded nodes 84 /// array of all of the recorded input nodes that have chains. 85 SmallVector<unsigned, 2> MatchedChainNodes; 86 87 /// MatchedComplexPatterns - This maintains a list of all of the 88 /// ComplexPatterns that we need to check. The second element of each pair 89 /// is the recorded operand number of the input node. 90 SmallVector<std::pair<const TreePatternNode*, 91 unsigned>, 2> MatchedComplexPatterns; 92 93 /// PhysRegInputs - List list has an entry for each explicitly specified 94 /// physreg input to the pattern. The first elt is the Register node, the 95 /// second is the recorded slot number the input pattern match saved it in. 96 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs; 97 98 /// Matcher - This is the top level of the generated matcher, the result. 99 Matcher *TheMatcher; 100 101 /// CurPredicate - As we emit matcher nodes, this points to the latest check 102 /// which should have future checks stuck into its Next position. 103 Matcher *CurPredicate; 104 public: 105 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); 106 107 bool EmitMatcherCode(unsigned Variant); 108 void EmitResultCode(); 109 110 Matcher *GetMatcher() const { return TheMatcher; } 111 private: 112 void AddMatcher(Matcher *NewNode); 113 void InferPossibleTypes(); 114 115 // Matcher Generation. 116 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); 117 void EmitLeafMatchCode(const TreePatternNode *N); 118 void EmitOperatorMatchCode(const TreePatternNode *N, 119 TreePatternNode *NodeNoTypes); 120 121 /// If this is the first time a node with unique identifier Name has been 122 /// seen, record it. Otherwise, emit a check to make sure this is the same 123 /// node. Returns true if this is the first encounter. 124 bool recordUniqueNode(ArrayRef<std::string> Names); 125 126 // Result Code Generation. 127 unsigned getNamedArgumentSlot(StringRef Name) { 128 unsigned VarMapEntry = VariableMap[Name]; 129 assert(VarMapEntry != 0 && 130 "Variable referenced but not defined and not caught earlier!"); 131 return VarMapEntry-1; 132 } 133 134 void EmitResultOperand(const TreePatternNode *N, 135 SmallVectorImpl<unsigned> &ResultOps); 136 void EmitResultOfNamedOperand(const TreePatternNode *N, 137 SmallVectorImpl<unsigned> &ResultOps); 138 void EmitResultLeafAsOperand(const TreePatternNode *N, 139 SmallVectorImpl<unsigned> &ResultOps); 140 void EmitResultInstructionAsOperand(const TreePatternNode *N, 141 SmallVectorImpl<unsigned> &ResultOps); 142 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 143 SmallVectorImpl<unsigned> &ResultOps); 144 }; 145 146 } // end anonymous namespace 147 148 MatcherGen::MatcherGen(const PatternToMatch &pattern, 149 const CodeGenDAGPatterns &cgp) 150 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), TheMatcher(nullptr), 151 CurPredicate(nullptr) { 152 // We need to produce the matcher tree for the patterns source pattern. To 153 // do this we need to match the structure as well as the types. To do the 154 // type matching, we want to figure out the fewest number of type checks we 155 // need to emit. For example, if there is only one integer type supported 156 // by a target, there should be no type comparisons at all for integer 157 // patterns! 158 // 159 // To figure out the fewest number of type checks needed, clone the pattern, 160 // remove the types, then perform type inference on the pattern as a whole. 161 // If there are unresolved types, emit an explicit check for those types, 162 // apply the type to the tree, then rerun type inference. Iterate until all 163 // types are resolved. 164 // 165 PatWithNoTypes = Pattern.getSrcPattern()->clone(); 166 PatWithNoTypes->RemoveAllTypes(); 167 168 // If there are types that are manifestly known, infer them. 169 InferPossibleTypes(); 170 } 171 172 /// InferPossibleTypes - As we emit the pattern, we end up generating type 173 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we 174 /// want to propagate implied types as far throughout the tree as possible so 175 /// that we avoid doing redundant type checks. This does the type propagation. 176 void MatcherGen::InferPossibleTypes() { 177 // TP - Get *SOME* tree pattern, we don't care which. It is only used for 178 // diagnostics, which we know are impossible at this point. 179 TreePattern &TP = *CGP.pf_begin()->second; 180 181 bool MadeChange = true; 182 while (MadeChange) 183 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, 184 true/*Ignore reg constraints*/); 185 } 186 187 188 /// AddMatcher - Add a matcher node to the current graph we're building. 189 void MatcherGen::AddMatcher(Matcher *NewNode) { 190 if (CurPredicate) 191 CurPredicate->setNext(NewNode); 192 else 193 TheMatcher = NewNode; 194 CurPredicate = NewNode; 195 } 196 197 198 //===----------------------------------------------------------------------===// 199 // Pattern Match Generation 200 //===----------------------------------------------------------------------===// 201 202 /// EmitLeafMatchCode - Generate matching code for leaf nodes. 203 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { 204 assert(N->isLeaf() && "Not a leaf?"); 205 206 // Direct match against an integer constant. 207 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 208 // If this is the root of the dag we're matching, we emit a redundant opcode 209 // check to ensure that this gets folded into the normal top-level 210 // OpcodeSwitch. 211 if (N == Pattern.getSrcPattern()) { 212 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm")); 213 AddMatcher(new CheckOpcodeMatcher(NI)); 214 } 215 216 return AddMatcher(new CheckIntegerMatcher(II->getValue())); 217 } 218 219 // An UnsetInit represents a named node without any constraints. 220 if (isa<UnsetInit>(N->getLeafValue())) { 221 assert(N->hasName() && "Unnamed ? leaf"); 222 return; 223 } 224 225 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 226 if (!DI) { 227 errs() << "Unknown leaf kind: " << *N << "\n"; 228 abort(); 229 } 230 231 Record *LeafRec = DI->getDef(); 232 233 // A ValueType leaf node can represent a register when named, or itself when 234 // unnamed. 235 if (LeafRec->isSubClassOf("ValueType")) { 236 // A named ValueType leaf always matches: (add i32:$a, i32:$b). 237 if (N->hasName()) 238 return; 239 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). 240 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); 241 } 242 243 if (// Handle register references. Nothing to do here, they always match. 244 LeafRec->isSubClassOf("RegisterClass") || 245 LeafRec->isSubClassOf("RegisterOperand") || 246 LeafRec->isSubClassOf("PointerLikeRegClass") || 247 LeafRec->isSubClassOf("SubRegIndex") || 248 // Place holder for SRCVALUE nodes. Nothing to do here. 249 LeafRec->getName() == "srcvalue") 250 return; 251 252 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to 253 // record the register 254 if (LeafRec->isSubClassOf("Register")) { 255 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(), 256 NextRecordedOperandNo)); 257 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); 258 return; 259 } 260 261 if (LeafRec->isSubClassOf("CondCode")) 262 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); 263 264 if (LeafRec->isSubClassOf("ComplexPattern")) { 265 // We can't model ComplexPattern uses that don't have their name taken yet. 266 // The OPC_CheckComplexPattern operation implicitly records the results. 267 if (N->getName().empty()) { 268 std::string S; 269 raw_string_ostream OS(S); 270 OS << "We expect complex pattern uses to have names: " << *N; 271 PrintFatalError(S); 272 } 273 274 // Remember this ComplexPattern so that we can emit it after all the other 275 // structural matches are done. 276 unsigned InputOperand = VariableMap[N->getName()] - 1; 277 MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand)); 278 return; 279 } 280 281 if (LeafRec->getName() == "immAllOnesV" || 282 LeafRec->getName() == "immAllZerosV") { 283 // If this is the root of the dag we're matching, we emit a redundant opcode 284 // check to ensure that this gets folded into the normal top-level 285 // OpcodeSwitch. 286 if (N == Pattern.getSrcPattern()) { 287 MVT VT = N->getSimpleType(0); 288 StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector"; 289 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name)); 290 AddMatcher(new CheckOpcodeMatcher(NI)); 291 } 292 if (LeafRec->getName() == "immAllOnesV") 293 AddMatcher(new CheckImmAllOnesVMatcher()); 294 else 295 AddMatcher(new CheckImmAllZerosVMatcher()); 296 return; 297 } 298 299 errs() << "Unknown leaf kind: " << *N << "\n"; 300 abort(); 301 } 302 303 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, 304 TreePatternNode *NodeNoTypes) { 305 assert(!N->isLeaf() && "Not an operator?"); 306 307 if (N->getOperator()->isSubClassOf("ComplexPattern")) { 308 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is 309 // "MY_PAT:op1:op2". We should already have validated that the uses are 310 // consistent. 311 std::string PatternName = std::string(N->getOperator()->getName()); 312 for (unsigned i = 0; i < N->getNumChildren(); ++i) { 313 PatternName += ":"; 314 PatternName += N->getChild(i)->getName(); 315 } 316 317 if (recordUniqueNode(PatternName)) { 318 auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1); 319 MatchedComplexPatterns.push_back(NodeAndOpNum); 320 } 321 322 return; 323 } 324 325 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); 326 327 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is 328 // a constant without a predicate fn that has more than one bit set, handle 329 // this as a special case. This is usually for targets that have special 330 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit 331 // handling stuff). Using these instructions is often far more efficient 332 // than materializing the constant. Unfortunately, both the instcombiner 333 // and the dag combiner can often infer that bits are dead, and thus drop 334 // them from the mask in the dag. For example, it might turn 'AND X, 255' 335 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks 336 // to handle this. 337 if ((N->getOperator()->getName() == "and" || 338 N->getOperator()->getName() == "or") && 339 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() && 340 N->getPredicateCalls().empty()) { 341 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) { 342 if (!llvm::has_single_bit<uint32_t>( 343 II->getValue())) { // Don't bother with single bits. 344 // If this is at the root of the pattern, we emit a redundant 345 // CheckOpcode so that the following checks get factored properly under 346 // a single opcode check. 347 if (N == Pattern.getSrcPattern()) 348 AddMatcher(new CheckOpcodeMatcher(CInfo)); 349 350 // Emit the CheckAndImm/CheckOrImm node. 351 if (N->getOperator()->getName() == "and") 352 AddMatcher(new CheckAndImmMatcher(II->getValue())); 353 else 354 AddMatcher(new CheckOrImmMatcher(II->getValue())); 355 356 // Match the LHS of the AND as appropriate. 357 AddMatcher(new MoveChildMatcher(0)); 358 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0)); 359 AddMatcher(new MoveParentMatcher()); 360 return; 361 } 362 } 363 } 364 365 // Check that the current opcode lines up. 366 AddMatcher(new CheckOpcodeMatcher(CInfo)); 367 368 // If this node has memory references (i.e. is a load or store), tell the 369 // interpreter to capture them in the memref array. 370 if (N->NodeHasProperty(SDNPMemOperand, CGP)) 371 AddMatcher(new RecordMemRefMatcher()); 372 373 // If this node has a chain, then the chain is operand #0 is the SDNode, and 374 // the child numbers of the node are all offset by one. 375 unsigned OpNo = 0; 376 if (N->NodeHasProperty(SDNPHasChain, CGP)) { 377 // Record the node and remember it in our chained nodes list. 378 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() + 379 "' chained node", 380 NextRecordedOperandNo)); 381 // Remember all of the input chains our pattern will match. 382 MatchedChainNodes.push_back(NextRecordedOperandNo++); 383 384 // Don't look at the input chain when matching the tree pattern to the 385 // SDNode. 386 OpNo = 1; 387 388 // If this node is not the root and the subtree underneath it produces a 389 // chain, then the result of matching the node is also produce a chain. 390 // Beyond that, this means that we're also folding (at least) the root node 391 // into the node that produce the chain (for example, matching 392 // "(add reg, (load ptr))" as a add_with_memory on X86). This is 393 // problematic, if the 'reg' node also uses the load (say, its chain). 394 // Graphically: 395 // 396 // [LD] 397 // ^ ^ 398 // | \ DAG's like cheese. 399 // / | 400 // / [YY] 401 // | ^ 402 // [XX]--/ 403 // 404 // It would be invalid to fold XX and LD. In this case, folding the two 405 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG' 406 // To prevent this, we emit a dynamic check for legality before allowing 407 // this to be folded. 408 // 409 const TreePatternNode *Root = Pattern.getSrcPattern(); 410 if (N != Root) { // Not the root of the pattern. 411 // If there is a node between the root and this node, then we definitely 412 // need to emit the check. 413 bool NeedCheck = !Root->hasChild(N); 414 415 // If it *is* an immediate child of the root, we can still need a check if 416 // the root SDNode has multiple inputs. For us, this means that it is an 417 // intrinsic, has multiple operands, or has other inputs like chain or 418 // glue). 419 if (!NeedCheck) { 420 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); 421 NeedCheck = 422 Root->getOperator() == CGP.get_intrinsic_void_sdnode() || 423 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || 424 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || 425 PInfo.getNumOperands() > 1 || 426 PInfo.hasProperty(SDNPHasChain) || 427 PInfo.hasProperty(SDNPInGlue) || 428 PInfo.hasProperty(SDNPOptInGlue); 429 } 430 431 if (NeedCheck) 432 AddMatcher(new CheckFoldableChainNodeMatcher()); 433 } 434 } 435 436 // If this node has an output glue and isn't the root, remember it. 437 if (N->NodeHasProperty(SDNPOutGlue, CGP) && 438 N != Pattern.getSrcPattern()) { 439 // TODO: This redundantly records nodes with both glues and chains. 440 441 // Record the node and remember it in our chained nodes list. 442 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() + 443 "' glue output node", 444 NextRecordedOperandNo)); 445 } 446 447 // If this node is known to have an input glue or if it *might* have an input 448 // glue, capture it as the glue input of the pattern. 449 if (N->NodeHasProperty(SDNPOptInGlue, CGP) || 450 N->NodeHasProperty(SDNPInGlue, CGP)) 451 AddMatcher(new CaptureGlueInputMatcher()); 452 453 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { 454 // Get the code suitable for matching this child. Move to the child, check 455 // it then move back to the parent. 456 AddMatcher(new MoveChildMatcher(OpNo)); 457 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i)); 458 AddMatcher(new MoveParentMatcher()); 459 } 460 } 461 462 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) { 463 unsigned Entry = 0; 464 for (const std::string &Name : Names) { 465 unsigned &VarMapEntry = VariableMap[Name]; 466 if (!Entry) 467 Entry = VarMapEntry; 468 assert(Entry == VarMapEntry); 469 } 470 471 bool NewRecord = false; 472 if (Entry == 0) { 473 // If it is a named node, we must emit a 'Record' opcode. 474 std::string WhatFor; 475 for (const std::string &Name : Names) { 476 if (!WhatFor.empty()) 477 WhatFor += ','; 478 WhatFor += "$" + Name; 479 } 480 AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo)); 481 Entry = ++NextRecordedOperandNo; 482 NewRecord = true; 483 } else { 484 // If we get here, this is a second reference to a specific name. Since 485 // we already have checked that the first reference is valid, we don't 486 // have to recursively match it, just check that it's the same as the 487 // previously named thing. 488 AddMatcher(new CheckSameMatcher(Entry-1)); 489 } 490 491 for (const std::string &Name : Names) 492 VariableMap[Name] = Entry; 493 494 return NewRecord; 495 } 496 497 void MatcherGen::EmitMatchCode(const TreePatternNode *N, 498 TreePatternNode *NodeNoTypes) { 499 // If N and NodeNoTypes don't agree on a type, then this is a case where we 500 // need to do a type check. Emit the check, apply the type to NodeNoTypes and 501 // reinfer any correlated types. 502 SmallVector<unsigned, 2> ResultsToTypeCheck; 503 504 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) { 505 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue; 506 NodeNoTypes->setType(i, N->getExtType(i)); 507 InferPossibleTypes(); 508 ResultsToTypeCheck.push_back(i); 509 } 510 511 // If this node has a name associated with it, capture it in VariableMap. If 512 // we already saw this in the pattern, emit code to verify dagness. 513 SmallVector<std::string, 4> Names; 514 if (!N->getName().empty()) 515 Names.push_back(N->getName()); 516 517 for (const ScopedName &Name : N->getNamesAsPredicateArg()) { 518 Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str()); 519 } 520 521 if (!Names.empty()) { 522 if (!recordUniqueNode(Names)) 523 return; 524 } 525 526 if (N->isLeaf()) 527 EmitLeafMatchCode(N); 528 else 529 EmitOperatorMatchCode(N, NodeNoTypes); 530 531 // If there are node predicates for this node, generate their checks. 532 for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) { 533 const TreePredicateCall &Pred = N->getPredicateCalls()[i]; 534 SmallVector<unsigned, 4> Operands; 535 if (Pred.Fn.usesOperands()) { 536 TreePattern *TP = Pred.Fn.getOrigPatFragRecord(); 537 for (unsigned i = 0; i < TP->getNumArgs(); ++i) { 538 std::string Name = 539 ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str(); 540 Operands.push_back(getNamedArgumentSlot(Name)); 541 } 542 } 543 AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands)); 544 } 545 546 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) 547 AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]), 548 ResultsToTypeCheck[i])); 549 } 550 551 /// EmitMatcherCode - Generate the code that matches the predicate of this 552 /// pattern for the specified Variant. If the variant is invalid this returns 553 /// true and does not generate code, if it is valid, it returns false. 554 bool MatcherGen::EmitMatcherCode(unsigned Variant) { 555 // If the root of the pattern is a ComplexPattern and if it is specified to 556 // match some number of root opcodes, these are considered to be our variants. 557 // Depending on which variant we're generating code for, emit the root opcode 558 // check. 559 if (const ComplexPattern *CP = 560 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) { 561 const std::vector<Record*> &OpNodes = CP->getRootNodes(); 562 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match"); 563 if (Variant >= OpNodes.size()) return true; 564 565 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); 566 } else { 567 if (Variant != 0) return true; 568 } 569 570 // Emit the matcher for the pattern structure and types. 571 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get()); 572 573 // If the pattern has a predicate on it (e.g. only enabled when a subtarget 574 // feature is around, do the check). 575 std::string PredicateCheck = Pattern.getPredicateCheck(); 576 if (!PredicateCheck.empty()) 577 AddMatcher(new CheckPatternPredicateMatcher(PredicateCheck)); 578 579 // Now that we've completed the structural type match, emit any ComplexPattern 580 // checks (e.g. addrmode matches). We emit this after the structural match 581 // because they are generally more expensive to evaluate and more difficult to 582 // factor. 583 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { 584 auto N = MatchedComplexPatterns[i].first; 585 586 // Remember where the results of this match get stuck. 587 if (N->isLeaf()) { 588 NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1; 589 } else { 590 unsigned CurOp = NextRecordedOperandNo; 591 for (unsigned i = 0; i < N->getNumChildren(); ++i) { 592 NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1; 593 CurOp += N->getChild(i)->getNumMIResults(CGP); 594 } 595 } 596 597 // Get the slot we recorded the value in from the name on the node. 598 unsigned RecNodeEntry = MatchedComplexPatterns[i].second; 599 600 const ComplexPattern *CP = N->getComplexPatternInfo(CGP); 601 assert(CP && "Not a valid ComplexPattern!"); 602 603 // Emit a CheckComplexPat operation, which does the match (aborting if it 604 // fails) and pushes the matched operands onto the recorded nodes list. 605 AddMatcher(new CheckComplexPatMatcher(*CP, RecNodeEntry, N->getName(), 606 NextRecordedOperandNo)); 607 608 // Record the right number of operands. 609 NextRecordedOperandNo += CP->getNumOperands(); 610 if (CP->hasProperty(SDNPHasChain)) { 611 // If the complex pattern has a chain, then we need to keep track of the 612 // fact that we just recorded a chain input. The chain input will be 613 // matched as the last operand of the predicate if it was successful. 614 ++NextRecordedOperandNo; // Chained node operand. 615 616 // It is the last operand recorded. 617 assert(NextRecordedOperandNo > 1 && 618 "Should have recorded input/result chains at least!"); 619 MatchedChainNodes.push_back(NextRecordedOperandNo-1); 620 } 621 622 // TODO: Complex patterns can't have output glues, if they did, we'd want 623 // to record them. 624 } 625 626 return false; 627 } 628 629 630 //===----------------------------------------------------------------------===// 631 // Node Result Generation 632 //===----------------------------------------------------------------------===// 633 634 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, 635 SmallVectorImpl<unsigned> &ResultOps){ 636 assert(!N->getName().empty() && "Operand not named!"); 637 638 if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) { 639 // Complex operands have already been completely selected, just find the 640 // right slot ant add the arguments directly. 641 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) 642 ResultOps.push_back(SlotNo - 1 + i); 643 644 return; 645 } 646 647 unsigned SlotNo = getNamedArgumentSlot(N->getName()); 648 649 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target 650 // version of the immediate so that it doesn't get selected due to some other 651 // node use. 652 if (!N->isLeaf()) { 653 StringRef OperatorName = N->getOperator()->getName(); 654 if (OperatorName == "imm" || OperatorName == "fpimm") { 655 AddMatcher(new EmitConvertToTargetMatcher(SlotNo)); 656 ResultOps.push_back(NextRecordedOperandNo++); 657 return; 658 } 659 } 660 661 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) 662 ResultOps.push_back(SlotNo + i); 663 } 664 665 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, 666 SmallVectorImpl<unsigned> &ResultOps) { 667 assert(N->isLeaf() && "Must be a leaf"); 668 669 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 670 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0))); 671 ResultOps.push_back(NextRecordedOperandNo++); 672 return; 673 } 674 675 // If this is an explicit register reference, handle it. 676 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 677 Record *Def = DI->getDef(); 678 if (Def->isSubClassOf("Register")) { 679 const CodeGenRegister *Reg = 680 CGP.getTargetInfo().getRegBank().getReg(Def); 681 AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0))); 682 ResultOps.push_back(NextRecordedOperandNo++); 683 return; 684 } 685 686 if (Def->getName() == "zero_reg") { 687 AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0))); 688 ResultOps.push_back(NextRecordedOperandNo++); 689 return; 690 } 691 692 if (Def->getName() == "undef_tied_input") { 693 MVT::SimpleValueType ResultVT = N->getSimpleType(0); 694 auto IDOperandNo = NextRecordedOperandNo++; 695 Record *ImpDef = Def->getRecords().getDef("IMPLICIT_DEF"); 696 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(ImpDef); 697 AddMatcher(new EmitNodeMatcher(II, ResultVT, std::nullopt, false, false, 698 false, false, -1, IDOperandNo)); 699 ResultOps.push_back(IDOperandNo); 700 return; 701 } 702 703 // Handle a reference to a register class. This is used 704 // in COPY_TO_SUBREG instructions. 705 if (Def->isSubClassOf("RegisterOperand")) 706 Def = Def->getValueAsDef("RegClass"); 707 if (Def->isSubClassOf("RegisterClass")) { 708 // If the register class has an enum integer value greater than 127, the 709 // encoding overflows the limit of 7 bits, which precludes the use of 710 // StringIntegerMatcher. In this case, fallback to using IntegerMatcher. 711 const CodeGenRegisterClass &RC = 712 CGP.getTargetInfo().getRegisterClass(Def); 713 if (RC.EnumValue <= 127) { 714 std::string Value = RC.getQualifiedIdName(); 715 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 716 ResultOps.push_back(NextRecordedOperandNo++); 717 } else { 718 AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32)); 719 ResultOps.push_back(NextRecordedOperandNo++); 720 } 721 return; 722 } 723 724 // Handle a subregister index. This is used for INSERT_SUBREG etc. 725 if (Def->isSubClassOf("SubRegIndex")) { 726 const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank(); 727 // If we have more than 127 subreg indices the encoding can overflow 728 // 7 bit and we cannot use StringInteger. 729 if (RB.getSubRegIndices().size() > 127) { 730 const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def); 731 assert(I && "Cannot find subreg index by name!"); 732 if (I->EnumValue > 127) { 733 AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32)); 734 ResultOps.push_back(NextRecordedOperandNo++); 735 return; 736 } 737 } 738 std::string Value = getQualifiedName(Def); 739 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 740 ResultOps.push_back(NextRecordedOperandNo++); 741 return; 742 } 743 } 744 745 errs() << "unhandled leaf node:\n"; 746 N->dump(); 747 } 748 749 static bool 750 mayInstNodeLoadOrStore(const TreePatternNode *N, 751 const CodeGenDAGPatterns &CGP) { 752 Record *Op = N->getOperator(); 753 const CodeGenTarget &CGT = CGP.getTargetInfo(); 754 CodeGenInstruction &II = CGT.getInstruction(Op); 755 return II.mayLoad || II.mayStore; 756 } 757 758 static unsigned 759 numNodesThatMayLoadOrStore(const TreePatternNode *N, 760 const CodeGenDAGPatterns &CGP) { 761 if (N->isLeaf()) 762 return 0; 763 764 Record *OpRec = N->getOperator(); 765 if (!OpRec->isSubClassOf("Instruction")) 766 return 0; 767 768 unsigned Count = 0; 769 if (mayInstNodeLoadOrStore(N, CGP)) 770 ++Count; 771 772 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 773 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP); 774 775 return Count; 776 } 777 778 void MatcherGen:: 779 EmitResultInstructionAsOperand(const TreePatternNode *N, 780 SmallVectorImpl<unsigned> &OutputOps) { 781 Record *Op = N->getOperator(); 782 const CodeGenTarget &CGT = CGP.getTargetInfo(); 783 CodeGenInstruction &II = CGT.getInstruction(Op); 784 const DAGInstruction &Inst = CGP.getInstruction(Op); 785 786 bool isRoot = N == Pattern.getDstPattern(); 787 788 // TreeHasOutGlue - True if this tree has glue. 789 bool TreeHasInGlue = false, TreeHasOutGlue = false; 790 if (isRoot) { 791 const TreePatternNode *SrcPat = Pattern.getSrcPattern(); 792 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) || 793 SrcPat->TreeHasProperty(SDNPInGlue, CGP); 794 795 // FIXME2: this is checking the entire pattern, not just the node in 796 // question, doing this just for the root seems like a total hack. 797 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP); 798 } 799 800 // NumResults - This is the number of results produced by the instruction in 801 // the "outs" list. 802 unsigned NumResults = Inst.getNumResults(); 803 804 // Number of operands we know the output instruction must have. If it is 805 // variadic, we could have more operands. 806 unsigned NumFixedOperands = II.Operands.size(); 807 808 SmallVector<unsigned, 8> InstOps; 809 810 // Loop over all of the fixed operands of the instruction pattern, emitting 811 // code to fill them all in. The node 'N' usually has number children equal to 812 // the number of input operands of the instruction. However, in cases where 813 // there are predicate operands for an instruction, we need to fill in the 814 // 'execute always' values. Match up the node operands to the instruction 815 // operands to do this. 816 unsigned ChildNo = 0; 817 818 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the 819 // number of operands at the end of the list which have default values. 820 // Those can come from the pattern if it provides enough arguments, or be 821 // filled in with the default if the pattern hasn't provided them. But any 822 // operand with a default value _before_ the last mandatory one will be 823 // filled in with their defaults unconditionally. 824 unsigned NonOverridableOperands = NumFixedOperands; 825 while (NonOverridableOperands > NumResults && 826 CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec)) 827 --NonOverridableOperands; 828 829 for (unsigned InstOpNo = NumResults, e = NumFixedOperands; 830 InstOpNo != e; ++InstOpNo) { 831 // Determine what to emit for this operand. 832 Record *OperandNode = II.Operands[InstOpNo].Rec; 833 if (CGP.operandHasDefault(OperandNode) && 834 (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) { 835 // This is a predicate or optional def operand which the pattern has not 836 // overridden, or which we aren't letting it override; emit the 'default 837 // ops' operands. 838 const DAGDefaultOperand &DefaultOp 839 = CGP.getDefaultOperand(OperandNode); 840 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) 841 EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps); 842 continue; 843 } 844 845 // Otherwise this is a normal operand or a predicate operand without 846 // 'execute always'; emit it. 847 848 // For operands with multiple sub-operands we may need to emit 849 // multiple child patterns to cover them all. However, ComplexPattern 850 // children may themselves emit multiple MI operands. 851 unsigned NumSubOps = 1; 852 if (OperandNode->isSubClassOf("Operand")) { 853 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 854 if (unsigned NumArgs = MIOpInfo->getNumArgs()) 855 NumSubOps = NumArgs; 856 } 857 858 unsigned FinalNumOps = InstOps.size() + NumSubOps; 859 while (InstOps.size() < FinalNumOps) { 860 const TreePatternNode *Child = N->getChild(ChildNo); 861 unsigned BeforeAddingNumOps = InstOps.size(); 862 EmitResultOperand(Child, InstOps); 863 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); 864 865 // If the operand is an instruction and it produced multiple results, just 866 // take the first one. 867 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) 868 InstOps.resize(BeforeAddingNumOps+1); 869 870 ++ChildNo; 871 } 872 } 873 874 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't 875 // expand suboperands, use default operands, or other features determined from 876 // the CodeGenInstruction after the fixed operands, which were handled 877 // above. Emit the remaining instructions implicitly added by the use for 878 // variable_ops. 879 if (II.Operands.isVariadic) { 880 for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I) 881 EmitResultOperand(N->getChild(I), InstOps); 882 } 883 884 // If this node has input glue or explicitly specified input physregs, we 885 // need to add chained and glued copyfromreg nodes and materialize the glue 886 // input. 887 if (isRoot && !PhysRegInputs.empty()) { 888 // Emit all of the CopyToReg nodes for the input physical registers. These 889 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). 890 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) { 891 const CodeGenRegister *Reg = 892 CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first); 893 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, 894 Reg)); 895 } 896 897 // Even if the node has no other glue inputs, the resultant node must be 898 // glued to the CopyFromReg nodes we just generated. 899 TreeHasInGlue = true; 900 } 901 902 // Result order: node results, chain, glue 903 904 // Determine the result types. 905 SmallVector<MVT::SimpleValueType, 4> ResultVTs; 906 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) 907 ResultVTs.push_back(N->getSimpleType(i)); 908 909 // If this is the root instruction of a pattern that has physical registers in 910 // its result pattern, add output VTs for them. For example, X86 has: 911 // (set AL, (mul ...)) 912 // This also handles implicit results like: 913 // (implicit EFLAGS) 914 if (isRoot && !Pattern.getDstRegs().empty()) { 915 // If the root came from an implicit def in the instruction handling stuff, 916 // don't re-add it. 917 Record *HandledReg = nullptr; 918 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 919 HandledReg = II.ImplicitDefs[0]; 920 921 for (Record *Reg : Pattern.getDstRegs()) { 922 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 923 ResultVTs.push_back(getRegisterValueType(Reg, CGT)); 924 } 925 } 926 927 // If this is the root of the pattern and the pattern we're matching includes 928 // a node that is variadic, mark the generated node as variadic so that it 929 // gets the excess operands from the input DAG. 930 int NumFixedArityOperands = -1; 931 if (isRoot && 932 Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)) 933 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); 934 935 // If this is the root node and multiple matched nodes in the input pattern 936 // have MemRefs in them, have the interpreter collect them and plop them onto 937 // this node. If there is just one node with MemRefs, leave them on that node 938 // even if it is not the root. 939 // 940 // FIXME3: This is actively incorrect for result patterns with multiple 941 // memory-referencing instructions. 942 bool PatternHasMemOperands = 943 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); 944 945 bool NodeHasMemRefs = false; 946 if (PatternHasMemOperands) { 947 unsigned NumNodesThatLoadOrStore = 948 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); 949 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) && 950 NumNodesThatLoadOrStore == 1; 951 NodeHasMemRefs = 952 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || 953 NumNodesThatLoadOrStore != 1)); 954 } 955 956 // Determine whether we need to attach a chain to this node. 957 bool NodeHasChain = false; 958 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) { 959 // For some instructions, we were able to infer from the pattern whether 960 // they should have a chain. Otherwise, attach the chain to the root. 961 // 962 // FIXME2: This is extremely dubious for several reasons, not the least of 963 // which it gives special status to instructions with patterns that Pat<> 964 // nodes can't duplicate. 965 if (II.hasChain_Inferred) 966 NodeHasChain = II.hasChain; 967 else 968 NodeHasChain = isRoot; 969 // Instructions which load and store from memory should have a chain, 970 // regardless of whether they happen to have a pattern saying so. 971 if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || 972 II.hasSideEffects) 973 NodeHasChain = true; 974 } 975 976 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && 977 "Node has no result"); 978 979 AddMatcher(new EmitNodeMatcher(II, ResultVTs, InstOps, NodeHasChain, 980 TreeHasInGlue, TreeHasOutGlue, NodeHasMemRefs, 981 NumFixedArityOperands, NextRecordedOperandNo)); 982 983 // The non-chain and non-glue results of the newly emitted node get recorded. 984 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { 985 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break; 986 OutputOps.push_back(NextRecordedOperandNo++); 987 } 988 } 989 990 void MatcherGen:: 991 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 992 SmallVectorImpl<unsigned> &ResultOps) { 993 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); 994 995 // Emit the operand. 996 SmallVector<unsigned, 8> InputOps; 997 998 // FIXME2: Could easily generalize this to support multiple inputs and outputs 999 // to the SDNodeXForm. For now we just support one input and one output like 1000 // the old instruction selector. 1001 assert(N->getNumChildren() == 1); 1002 EmitResultOperand(N->getChild(0), InputOps); 1003 1004 // The input currently must have produced exactly one result. 1005 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); 1006 1007 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator())); 1008 ResultOps.push_back(NextRecordedOperandNo++); 1009 } 1010 1011 void MatcherGen::EmitResultOperand(const TreePatternNode *N, 1012 SmallVectorImpl<unsigned> &ResultOps) { 1013 // This is something selected from the pattern we matched. 1014 if (!N->getName().empty()) 1015 return EmitResultOfNamedOperand(N, ResultOps); 1016 1017 if (N->isLeaf()) 1018 return EmitResultLeafAsOperand(N, ResultOps); 1019 1020 Record *OpRec = N->getOperator(); 1021 if (OpRec->isSubClassOf("Instruction")) 1022 return EmitResultInstructionAsOperand(N, ResultOps); 1023 if (OpRec->isSubClassOf("SDNodeXForm")) 1024 return EmitResultSDNodeXFormAsOperand(N, ResultOps); 1025 errs() << "Unknown result node to emit code for: " << *N << '\n'; 1026 PrintFatalError("Unknown node in result pattern!"); 1027 } 1028 1029 void MatcherGen::EmitResultCode() { 1030 // Patterns that match nodes with (potentially multiple) chain inputs have to 1031 // merge them together into a token factor. This informs the generated code 1032 // what all the chained nodes are. 1033 if (!MatchedChainNodes.empty()) 1034 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes)); 1035 1036 // Codegen the root of the result pattern, capturing the resulting values. 1037 SmallVector<unsigned, 8> Ops; 1038 EmitResultOperand(Pattern.getDstPattern(), Ops); 1039 1040 // At this point, we have however many values the result pattern produces. 1041 // However, the input pattern might not need all of these. If there are 1042 // excess values at the end (such as implicit defs of condition codes etc) 1043 // just lop them off. This doesn't need to worry about glue or chains, just 1044 // explicit results. 1045 // 1046 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes(); 1047 1048 // If the pattern also has (implicit) results, count them as well. 1049 if (!Pattern.getDstRegs().empty()) { 1050 // If the root came from an implicit def in the instruction handling stuff, 1051 // don't re-add it. 1052 Record *HandledReg = nullptr; 1053 const TreePatternNode *DstPat = Pattern.getDstPattern(); 1054 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){ 1055 const CodeGenTarget &CGT = CGP.getTargetInfo(); 1056 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator()); 1057 1058 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 1059 HandledReg = II.ImplicitDefs[0]; 1060 } 1061 1062 for (Record *Reg : Pattern.getDstRegs()) { 1063 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 1064 ++NumSrcResults; 1065 } 1066 } 1067 1068 SmallVector<unsigned, 8> Results(Ops); 1069 1070 // Apply result permutation. 1071 for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults(); 1072 ++ResNo) { 1073 Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)]; 1074 } 1075 1076 Results.resize(NumSrcResults); 1077 AddMatcher(new CompleteMatchMatcher(Results, Pattern)); 1078 } 1079 1080 1081 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with 1082 /// the specified variant. If the variant number is invalid, this returns null. 1083 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, 1084 unsigned Variant, 1085 const CodeGenDAGPatterns &CGP) { 1086 MatcherGen Gen(Pattern, CGP); 1087 1088 // Generate the code for the matcher. 1089 if (Gen.EmitMatcherCode(Variant)) 1090 return nullptr; 1091 1092 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. 1093 // FIXME2: Split result code out to another table, and make the matcher end 1094 // with an "Emit <index>" command. This allows result generation stuff to be 1095 // shared and factored? 1096 1097 // If the match succeeds, then we generate Pattern. 1098 Gen.EmitResultCode(); 1099 1100 // Unconditional match. 1101 return Gen.GetMatcher(); 1102 } 1103