1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Basic/SDNodeProperties.h" 10 #include "Common/CodeGenDAGPatterns.h" 11 #include "Common/CodeGenInstruction.h" 12 #include "Common/CodeGenRegisters.h" 13 #include "Common/CodeGenTarget.h" 14 #include "Common/DAGISelMatcher.h" 15 #include "Common/InfoByHwMode.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/TableGen/Error.h" 19 #include "llvm/TableGen/Record.h" 20 #include <utility> 21 using namespace llvm; 22 23 /// getRegisterValueType - Look up and return the ValueType of the specified 24 /// register. If the register is a member of multiple register classes, they 25 /// must all have the same type. 26 static MVT::SimpleValueType getRegisterValueType(Record *R, 27 const CodeGenTarget &T) { 28 bool FoundRC = false; 29 MVT::SimpleValueType VT = MVT::Other; 30 const CodeGenRegister *Reg = T.getRegBank().getReg(R); 31 32 for (const auto &RC : T.getRegBank().getRegClasses()) { 33 if (!RC.contains(Reg)) 34 continue; 35 36 if (!FoundRC) { 37 FoundRC = true; 38 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0); 39 assert(VVT.isSimple()); 40 VT = VVT.getSimple().SimpleTy; 41 continue; 42 } 43 44 #ifndef NDEBUG 45 // If this occurs in multiple register classes, they all have to agree. 46 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0); 47 assert(VVT.isSimple() && VVT.getSimple().SimpleTy == VT && 48 "ValueType mismatch between register classes for this register"); 49 #endif 50 } 51 return VT; 52 } 53 54 namespace { 55 class MatcherGen { 56 const PatternToMatch &Pattern; 57 const CodeGenDAGPatterns &CGP; 58 59 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts 60 /// out with all of the types removed. This allows us to insert type checks 61 /// as we scan the tree. 62 TreePatternNodePtr PatWithNoTypes; 63 64 /// VariableMap - A map from variable names ('$dst') to the recorded operand 65 /// number that they were captured as. These are biased by 1 to make 66 /// insertion easier. 67 StringMap<unsigned> VariableMap; 68 69 /// This maintains the recorded operand number that OPC_CheckComplexPattern 70 /// drops each sub-operand into. We don't want to insert these into 71 /// VariableMap because that leads to identity checking if they are 72 /// encountered multiple times. Biased by 1 like VariableMap for 73 /// consistency. 74 StringMap<unsigned> NamedComplexPatternOperands; 75 76 /// NextRecordedOperandNo - As we emit opcodes to record matched values in 77 /// the RecordedNodes array, this keeps track of which slot will be next to 78 /// record into. 79 unsigned NextRecordedOperandNo; 80 81 /// MatchedChainNodes - This maintains the position in the recorded nodes 82 /// array of all of the recorded input nodes that have chains. 83 SmallVector<unsigned, 2> MatchedChainNodes; 84 85 /// MatchedComplexPatterns - This maintains a list of all of the 86 /// ComplexPatterns that we need to check. The second element of each pair 87 /// is the recorded operand number of the input node. 88 SmallVector<std::pair<const TreePatternNode *, unsigned>, 2> 89 MatchedComplexPatterns; 90 91 /// PhysRegInputs - List list has an entry for each explicitly specified 92 /// physreg input to the pattern. The first elt is the Register node, the 93 /// second is the recorded slot number the input pattern match saved it in. 94 SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs; 95 96 /// Matcher - This is the top level of the generated matcher, the result. 97 Matcher *TheMatcher; 98 99 /// CurPredicate - As we emit matcher nodes, this points to the latest check 100 /// which should have future checks stuck into its Next position. 101 Matcher *CurPredicate; 102 103 public: 104 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); 105 106 bool EmitMatcherCode(unsigned Variant); 107 void EmitResultCode(); 108 109 Matcher *GetMatcher() const { return TheMatcher; } 110 111 private: 112 void AddMatcher(Matcher *NewNode); 113 void InferPossibleTypes(); 114 115 // Matcher Generation. 116 void EmitMatchCode(const TreePatternNode &N, TreePatternNode &NodeNoTypes); 117 void EmitLeafMatchCode(const TreePatternNode &N); 118 void EmitOperatorMatchCode(const TreePatternNode &N, 119 TreePatternNode &NodeNoTypes); 120 121 /// If this is the first time a node with unique identifier Name has been 122 /// seen, record it. Otherwise, emit a check to make sure this is the same 123 /// node. Returns true if this is the first encounter. 124 bool recordUniqueNode(ArrayRef<std::string> Names); 125 126 // Result Code Generation. 127 unsigned getNamedArgumentSlot(StringRef Name) { 128 unsigned VarMapEntry = VariableMap[Name]; 129 assert(VarMapEntry != 0 && 130 "Variable referenced but not defined and not caught earlier!"); 131 return VarMapEntry - 1; 132 } 133 134 void EmitResultOperand(const TreePatternNode &N, 135 SmallVectorImpl<unsigned> &ResultOps); 136 void EmitResultOfNamedOperand(const TreePatternNode &N, 137 SmallVectorImpl<unsigned> &ResultOps); 138 void EmitResultLeafAsOperand(const TreePatternNode &N, 139 SmallVectorImpl<unsigned> &ResultOps); 140 void EmitResultInstructionAsOperand(const TreePatternNode &N, 141 SmallVectorImpl<unsigned> &ResultOps); 142 void EmitResultSDNodeXFormAsOperand(const TreePatternNode &N, 143 SmallVectorImpl<unsigned> &ResultOps); 144 }; 145 146 } // end anonymous namespace 147 148 MatcherGen::MatcherGen(const PatternToMatch &pattern, 149 const CodeGenDAGPatterns &cgp) 150 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), TheMatcher(nullptr), 151 CurPredicate(nullptr) { 152 // We need to produce the matcher tree for the patterns source pattern. To 153 // do this we need to match the structure as well as the types. To do the 154 // type matching, we want to figure out the fewest number of type checks we 155 // need to emit. For example, if there is only one integer type supported 156 // by a target, there should be no type comparisons at all for integer 157 // patterns! 158 // 159 // To figure out the fewest number of type checks needed, clone the pattern, 160 // remove the types, then perform type inference on the pattern as a whole. 161 // If there are unresolved types, emit an explicit check for those types, 162 // apply the type to the tree, then rerun type inference. Iterate until all 163 // types are resolved. 164 // 165 PatWithNoTypes = Pattern.getSrcPattern().clone(); 166 PatWithNoTypes->RemoveAllTypes(); 167 168 // If there are types that are manifestly known, infer them. 169 InferPossibleTypes(); 170 } 171 172 /// InferPossibleTypes - As we emit the pattern, we end up generating type 173 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we 174 /// want to propagate implied types as far throughout the tree as possible so 175 /// that we avoid doing redundant type checks. This does the type propagation. 176 void MatcherGen::InferPossibleTypes() { 177 // TP - Get *SOME* tree pattern, we don't care which. It is only used for 178 // diagnostics, which we know are impossible at this point. 179 TreePattern &TP = *CGP.pf_begin()->second; 180 181 bool MadeChange = true; 182 while (MadeChange) 183 MadeChange = PatWithNoTypes->ApplyTypeConstraints( 184 TP, true /*Ignore reg constraints*/); 185 } 186 187 /// AddMatcher - Add a matcher node to the current graph we're building. 188 void MatcherGen::AddMatcher(Matcher *NewNode) { 189 if (CurPredicate) 190 CurPredicate->setNext(NewNode); 191 else 192 TheMatcher = NewNode; 193 CurPredicate = NewNode; 194 } 195 196 //===----------------------------------------------------------------------===// 197 // Pattern Match Generation 198 //===----------------------------------------------------------------------===// 199 200 /// EmitLeafMatchCode - Generate matching code for leaf nodes. 201 void MatcherGen::EmitLeafMatchCode(const TreePatternNode &N) { 202 assert(N.isLeaf() && "Not a leaf?"); 203 204 // Direct match against an integer constant. 205 if (IntInit *II = dyn_cast<IntInit>(N.getLeafValue())) { 206 // If this is the root of the dag we're matching, we emit a redundant opcode 207 // check to ensure that this gets folded into the normal top-level 208 // OpcodeSwitch. 209 if (&N == &Pattern.getSrcPattern()) { 210 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm")); 211 AddMatcher(new CheckOpcodeMatcher(NI)); 212 } 213 214 return AddMatcher(new CheckIntegerMatcher(II->getValue())); 215 } 216 217 // An UnsetInit represents a named node without any constraints. 218 if (isa<UnsetInit>(N.getLeafValue())) { 219 assert(N.hasName() && "Unnamed ? leaf"); 220 return; 221 } 222 223 DefInit *DI = dyn_cast<DefInit>(N.getLeafValue()); 224 if (!DI) { 225 errs() << "Unknown leaf kind: " << N << "\n"; 226 abort(); 227 } 228 229 Record *LeafRec = DI->getDef(); 230 231 // A ValueType leaf node can represent a register when named, or itself when 232 // unnamed. 233 if (LeafRec->isSubClassOf("ValueType")) { 234 // A named ValueType leaf always matches: (add i32:$a, i32:$b). 235 if (N.hasName()) 236 return; 237 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). 238 return AddMatcher(new CheckValueTypeMatcher(llvm::getValueType(LeafRec))); 239 } 240 241 if ( // Handle register references. Nothing to do here, they always match. 242 LeafRec->isSubClassOf("RegisterClass") || 243 LeafRec->isSubClassOf("RegisterOperand") || 244 LeafRec->isSubClassOf("PointerLikeRegClass") || 245 LeafRec->isSubClassOf("SubRegIndex") || 246 // Place holder for SRCVALUE nodes. Nothing to do here. 247 LeafRec->getName() == "srcvalue") 248 return; 249 250 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to 251 // record the register 252 if (LeafRec->isSubClassOf("Register")) { 253 AddMatcher(new RecordMatcher("physreg input " + LeafRec->getName().str(), 254 NextRecordedOperandNo)); 255 PhysRegInputs.push_back(std::pair(LeafRec, NextRecordedOperandNo++)); 256 return; 257 } 258 259 if (LeafRec->isSubClassOf("CondCode")) 260 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); 261 262 if (LeafRec->isSubClassOf("ComplexPattern")) { 263 // We can't model ComplexPattern uses that don't have their name taken yet. 264 // The OPC_CheckComplexPattern operation implicitly records the results. 265 if (N.getName().empty()) { 266 std::string S; 267 raw_string_ostream OS(S); 268 OS << "We expect complex pattern uses to have names: " << N; 269 PrintFatalError(S); 270 } 271 272 // Remember this ComplexPattern so that we can emit it after all the other 273 // structural matches are done. 274 unsigned InputOperand = VariableMap[N.getName()] - 1; 275 MatchedComplexPatterns.push_back(std::pair(&N, InputOperand)); 276 return; 277 } 278 279 if (LeafRec->getName() == "immAllOnesV" || 280 LeafRec->getName() == "immAllZerosV") { 281 // If this is the root of the dag we're matching, we emit a redundant opcode 282 // check to ensure that this gets folded into the normal top-level 283 // OpcodeSwitch. 284 if (&N == &Pattern.getSrcPattern()) { 285 MVT VT = N.getSimpleType(0); 286 StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector"; 287 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name)); 288 AddMatcher(new CheckOpcodeMatcher(NI)); 289 } 290 if (LeafRec->getName() == "immAllOnesV") 291 AddMatcher(new CheckImmAllOnesVMatcher()); 292 else 293 AddMatcher(new CheckImmAllZerosVMatcher()); 294 return; 295 } 296 297 errs() << "Unknown leaf kind: " << N << "\n"; 298 abort(); 299 } 300 301 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode &N, 302 TreePatternNode &NodeNoTypes) { 303 assert(!N.isLeaf() && "Not an operator?"); 304 305 if (N.getOperator()->isSubClassOf("ComplexPattern")) { 306 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is 307 // "MY_PAT:op1:op2". We should already have validated that the uses are 308 // consistent. 309 std::string PatternName = std::string(N.getOperator()->getName()); 310 for (unsigned i = 0; i < N.getNumChildren(); ++i) { 311 PatternName += ":"; 312 PatternName += N.getChild(i).getName(); 313 } 314 315 if (recordUniqueNode(PatternName)) { 316 auto NodeAndOpNum = std::pair(&N, NextRecordedOperandNo - 1); 317 MatchedComplexPatterns.push_back(NodeAndOpNum); 318 } 319 320 return; 321 } 322 323 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N.getOperator()); 324 325 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is 326 // a constant without a predicate fn that has more than one bit set, handle 327 // this as a special case. This is usually for targets that have special 328 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit 329 // handling stuff). Using these instructions is often far more efficient 330 // than materializing the constant. Unfortunately, both the instcombiner 331 // and the dag combiner can often infer that bits are dead, and thus drop 332 // them from the mask in the dag. For example, it might turn 'AND X, 255' 333 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks 334 // to handle this. 335 if ((N.getOperator()->getName() == "and" || 336 N.getOperator()->getName() == "or") && 337 N.getChild(1).isLeaf() && N.getChild(1).getPredicateCalls().empty() && 338 N.getPredicateCalls().empty()) { 339 if (IntInit *II = dyn_cast<IntInit>(N.getChild(1).getLeafValue())) { 340 if (!llvm::has_single_bit<uint32_t>( 341 II->getValue())) { // Don't bother with single bits. 342 // If this is at the root of the pattern, we emit a redundant 343 // CheckOpcode so that the following checks get factored properly under 344 // a single opcode check. 345 if (&N == &Pattern.getSrcPattern()) 346 AddMatcher(new CheckOpcodeMatcher(CInfo)); 347 348 // Emit the CheckAndImm/CheckOrImm node. 349 if (N.getOperator()->getName() == "and") 350 AddMatcher(new CheckAndImmMatcher(II->getValue())); 351 else 352 AddMatcher(new CheckOrImmMatcher(II->getValue())); 353 354 // Match the LHS of the AND as appropriate. 355 AddMatcher(new MoveChildMatcher(0)); 356 EmitMatchCode(N.getChild(0), NodeNoTypes.getChild(0)); 357 AddMatcher(new MoveParentMatcher()); 358 return; 359 } 360 } 361 } 362 363 // Check that the current opcode lines up. 364 AddMatcher(new CheckOpcodeMatcher(CInfo)); 365 366 // If this node has memory references (i.e. is a load or store), tell the 367 // interpreter to capture them in the memref array. 368 if (N.NodeHasProperty(SDNPMemOperand, CGP)) 369 AddMatcher(new RecordMemRefMatcher()); 370 371 // If this node has a chain, then the chain is operand #0 is the SDNode, and 372 // the child numbers of the node are all offset by one. 373 unsigned OpNo = 0; 374 if (N.NodeHasProperty(SDNPHasChain, CGP)) { 375 // Record the node and remember it in our chained nodes list. 376 AddMatcher(new RecordMatcher("'" + N.getOperator()->getName().str() + 377 "' chained node", 378 NextRecordedOperandNo)); 379 // Remember all of the input chains our pattern will match. 380 MatchedChainNodes.push_back(NextRecordedOperandNo++); 381 382 // Don't look at the input chain when matching the tree pattern to the 383 // SDNode. 384 OpNo = 1; 385 386 // If this node is not the root and the subtree underneath it produces a 387 // chain, then the result of matching the node is also produce a chain. 388 // Beyond that, this means that we're also folding (at least) the root node 389 // into the node that produce the chain (for example, matching 390 // "(add reg, (load ptr))" as a add_with_memory on X86). This is 391 // problematic, if the 'reg' node also uses the load (say, its chain). 392 // Graphically: 393 // 394 // [LD] 395 // ^ ^ 396 // | \ DAG's like cheese. 397 // / | 398 // / [YY] 399 // | ^ 400 // [XX]--/ 401 // 402 // It would be invalid to fold XX and LD. In this case, folding the two 403 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG' 404 // To prevent this, we emit a dynamic check for legality before allowing 405 // this to be folded. 406 // 407 const TreePatternNode &Root = Pattern.getSrcPattern(); 408 if (&N != &Root) { // Not the root of the pattern. 409 // If there is a node between the root and this node, then we definitely 410 // need to emit the check. 411 bool NeedCheck = !Root.hasChild(&N); 412 413 // If it *is* an immediate child of the root, we can still need a check if 414 // the root SDNode has multiple inputs. For us, this means that it is an 415 // intrinsic, has multiple operands, or has other inputs like chain or 416 // glue). 417 if (!NeedCheck) { 418 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root.getOperator()); 419 NeedCheck = 420 Root.getOperator() == CGP.get_intrinsic_void_sdnode() || 421 Root.getOperator() == CGP.get_intrinsic_w_chain_sdnode() || 422 Root.getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || 423 PInfo.getNumOperands() > 1 || PInfo.hasProperty(SDNPHasChain) || 424 PInfo.hasProperty(SDNPInGlue) || PInfo.hasProperty(SDNPOptInGlue); 425 } 426 427 if (NeedCheck) 428 AddMatcher(new CheckFoldableChainNodeMatcher()); 429 } 430 } 431 432 // If this node has an output glue and isn't the root, remember it. 433 if (N.NodeHasProperty(SDNPOutGlue, CGP) && &N != &Pattern.getSrcPattern()) { 434 // TODO: This redundantly records nodes with both glues and chains. 435 436 // Record the node and remember it in our chained nodes list. 437 AddMatcher(new RecordMatcher("'" + N.getOperator()->getName().str() + 438 "' glue output node", 439 NextRecordedOperandNo)); 440 } 441 442 // If this node is known to have an input glue or if it *might* have an input 443 // glue, capture it as the glue input of the pattern. 444 if (N.NodeHasProperty(SDNPOptInGlue, CGP) || 445 N.NodeHasProperty(SDNPInGlue, CGP)) 446 AddMatcher(new CaptureGlueInputMatcher()); 447 448 for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i, ++OpNo) { 449 // Get the code suitable for matching this child. Move to the child, check 450 // it then move back to the parent. 451 AddMatcher(new MoveChildMatcher(OpNo)); 452 EmitMatchCode(N.getChild(i), NodeNoTypes.getChild(i)); 453 AddMatcher(new MoveParentMatcher()); 454 } 455 } 456 457 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) { 458 unsigned Entry = 0; 459 for (const std::string &Name : Names) { 460 unsigned &VarMapEntry = VariableMap[Name]; 461 if (!Entry) 462 Entry = VarMapEntry; 463 assert(Entry == VarMapEntry); 464 } 465 466 bool NewRecord = false; 467 if (Entry == 0) { 468 // If it is a named node, we must emit a 'Record' opcode. 469 std::string WhatFor; 470 for (const std::string &Name : Names) { 471 if (!WhatFor.empty()) 472 WhatFor += ','; 473 WhatFor += "$" + Name; 474 } 475 AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo)); 476 Entry = ++NextRecordedOperandNo; 477 NewRecord = true; 478 } else { 479 // If we get here, this is a second reference to a specific name. Since 480 // we already have checked that the first reference is valid, we don't 481 // have to recursively match it, just check that it's the same as the 482 // previously named thing. 483 AddMatcher(new CheckSameMatcher(Entry - 1)); 484 } 485 486 for (const std::string &Name : Names) 487 VariableMap[Name] = Entry; 488 489 return NewRecord; 490 } 491 492 void MatcherGen::EmitMatchCode(const TreePatternNode &N, 493 TreePatternNode &NodeNoTypes) { 494 // If N and NodeNoTypes don't agree on a type, then this is a case where we 495 // need to do a type check. Emit the check, apply the type to NodeNoTypes and 496 // reinfer any correlated types. 497 SmallVector<unsigned, 2> ResultsToTypeCheck; 498 499 for (unsigned i = 0, e = NodeNoTypes.getNumTypes(); i != e; ++i) { 500 if (NodeNoTypes.getExtType(i) == N.getExtType(i)) 501 continue; 502 NodeNoTypes.setType(i, N.getExtType(i)); 503 InferPossibleTypes(); 504 ResultsToTypeCheck.push_back(i); 505 } 506 507 // If this node has a name associated with it, capture it in VariableMap. If 508 // we already saw this in the pattern, emit code to verify dagness. 509 SmallVector<std::string, 4> Names; 510 if (!N.getName().empty()) 511 Names.push_back(N.getName()); 512 513 for (const ScopedName &Name : N.getNamesAsPredicateArg()) { 514 Names.push_back( 515 ("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str()); 516 } 517 518 if (!Names.empty()) { 519 if (!recordUniqueNode(Names)) 520 return; 521 } 522 523 if (N.isLeaf()) 524 EmitLeafMatchCode(N); 525 else 526 EmitOperatorMatchCode(N, NodeNoTypes); 527 528 // If there are node predicates for this node, generate their checks. 529 for (unsigned i = 0, e = N.getPredicateCalls().size(); i != e; ++i) { 530 const TreePredicateCall &Pred = N.getPredicateCalls()[i]; 531 SmallVector<unsigned, 4> Operands; 532 if (Pred.Fn.usesOperands()) { 533 TreePattern *TP = Pred.Fn.getOrigPatFragRecord(); 534 for (unsigned i = 0; i < TP->getNumArgs(); ++i) { 535 std::string Name = 536 ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str(); 537 Operands.push_back(getNamedArgumentSlot(Name)); 538 } 539 } 540 AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands)); 541 } 542 543 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) 544 AddMatcher(new CheckTypeMatcher(N.getSimpleType(ResultsToTypeCheck[i]), 545 ResultsToTypeCheck[i])); 546 } 547 548 /// EmitMatcherCode - Generate the code that matches the predicate of this 549 /// pattern for the specified Variant. If the variant is invalid this returns 550 /// true and does not generate code, if it is valid, it returns false. 551 bool MatcherGen::EmitMatcherCode(unsigned Variant) { 552 // If the root of the pattern is a ComplexPattern and if it is specified to 553 // match some number of root opcodes, these are considered to be our variants. 554 // Depending on which variant we're generating code for, emit the root opcode 555 // check. 556 if (const ComplexPattern *CP = 557 Pattern.getSrcPattern().getComplexPatternInfo(CGP)) { 558 const std::vector<Record *> &OpNodes = CP->getRootNodes(); 559 assert(!OpNodes.empty() && 560 "Complex Pattern must specify what it can match"); 561 if (Variant >= OpNodes.size()) 562 return true; 563 564 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); 565 } else { 566 if (Variant != 0) 567 return true; 568 } 569 570 // Emit the matcher for the pattern structure and types. 571 EmitMatchCode(Pattern.getSrcPattern(), *PatWithNoTypes); 572 573 // If the pattern has a predicate on it (e.g. only enabled when a subtarget 574 // feature is around, do the check). 575 std::string PredicateCheck = Pattern.getPredicateCheck(); 576 if (!PredicateCheck.empty()) 577 AddMatcher(new CheckPatternPredicateMatcher(PredicateCheck)); 578 579 // Now that we've completed the structural type match, emit any ComplexPattern 580 // checks (e.g. addrmode matches). We emit this after the structural match 581 // because they are generally more expensive to evaluate and more difficult to 582 // factor. 583 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { 584 auto &N = *MatchedComplexPatterns[i].first; 585 586 // Remember where the results of this match get stuck. 587 if (N.isLeaf()) { 588 NamedComplexPatternOperands[N.getName()] = NextRecordedOperandNo + 1; 589 } else { 590 unsigned CurOp = NextRecordedOperandNo; 591 for (unsigned i = 0; i < N.getNumChildren(); ++i) { 592 NamedComplexPatternOperands[N.getChild(i).getName()] = CurOp + 1; 593 CurOp += N.getChild(i).getNumMIResults(CGP); 594 } 595 } 596 597 // Get the slot we recorded the value in from the name on the node. 598 unsigned RecNodeEntry = MatchedComplexPatterns[i].second; 599 600 const ComplexPattern *CP = N.getComplexPatternInfo(CGP); 601 assert(CP && "Not a valid ComplexPattern!"); 602 603 // Emit a CheckComplexPat operation, which does the match (aborting if it 604 // fails) and pushes the matched operands onto the recorded nodes list. 605 AddMatcher(new CheckComplexPatMatcher(*CP, RecNodeEntry, N.getName(), 606 NextRecordedOperandNo)); 607 608 // Record the right number of operands. 609 NextRecordedOperandNo += CP->getNumOperands(); 610 if (CP->hasProperty(SDNPHasChain)) { 611 // If the complex pattern has a chain, then we need to keep track of the 612 // fact that we just recorded a chain input. The chain input will be 613 // matched as the last operand of the predicate if it was successful. 614 ++NextRecordedOperandNo; // Chained node operand. 615 616 // It is the last operand recorded. 617 assert(NextRecordedOperandNo > 1 && 618 "Should have recorded input/result chains at least!"); 619 MatchedChainNodes.push_back(NextRecordedOperandNo - 1); 620 } 621 622 // TODO: Complex patterns can't have output glues, if they did, we'd want 623 // to record them. 624 } 625 626 return false; 627 } 628 629 //===----------------------------------------------------------------------===// 630 // Node Result Generation 631 //===----------------------------------------------------------------------===// 632 633 void MatcherGen::EmitResultOfNamedOperand( 634 const TreePatternNode &N, SmallVectorImpl<unsigned> &ResultOps) { 635 assert(!N.getName().empty() && "Operand not named!"); 636 637 if (unsigned SlotNo = NamedComplexPatternOperands[N.getName()]) { 638 // Complex operands have already been completely selected, just find the 639 // right slot ant add the arguments directly. 640 for (unsigned i = 0; i < N.getNumMIResults(CGP); ++i) 641 ResultOps.push_back(SlotNo - 1 + i); 642 643 return; 644 } 645 646 unsigned SlotNo = getNamedArgumentSlot(N.getName()); 647 648 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target 649 // version of the immediate so that it doesn't get selected due to some other 650 // node use. 651 if (!N.isLeaf()) { 652 StringRef OperatorName = N.getOperator()->getName(); 653 if (OperatorName == "imm" || OperatorName == "fpimm") { 654 AddMatcher(new EmitConvertToTargetMatcher(SlotNo)); 655 ResultOps.push_back(NextRecordedOperandNo++); 656 return; 657 } 658 } 659 660 for (unsigned i = 0; i < N.getNumMIResults(CGP); ++i) 661 ResultOps.push_back(SlotNo + i); 662 } 663 664 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode &N, 665 SmallVectorImpl<unsigned> &ResultOps) { 666 assert(N.isLeaf() && "Must be a leaf"); 667 668 if (IntInit *II = dyn_cast<IntInit>(N.getLeafValue())) { 669 AddMatcher(new EmitIntegerMatcher(II->getValue(), N.getSimpleType(0))); 670 ResultOps.push_back(NextRecordedOperandNo++); 671 return; 672 } 673 674 // If this is an explicit register reference, handle it. 675 if (DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) { 676 Record *Def = DI->getDef(); 677 if (Def->isSubClassOf("Register")) { 678 const CodeGenRegister *Reg = CGP.getTargetInfo().getRegBank().getReg(Def); 679 AddMatcher(new EmitRegisterMatcher(Reg, N.getSimpleType(0))); 680 ResultOps.push_back(NextRecordedOperandNo++); 681 return; 682 } 683 684 if (Def->getName() == "zero_reg") { 685 AddMatcher(new EmitRegisterMatcher(nullptr, N.getSimpleType(0))); 686 ResultOps.push_back(NextRecordedOperandNo++); 687 return; 688 } 689 690 if (Def->getName() == "undef_tied_input") { 691 MVT::SimpleValueType ResultVT = N.getSimpleType(0); 692 auto IDOperandNo = NextRecordedOperandNo++; 693 Record *ImpDef = Def->getRecords().getDef("IMPLICIT_DEF"); 694 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(ImpDef); 695 AddMatcher(new EmitNodeMatcher(II, ResultVT, std::nullopt, false, false, 696 false, false, -1, IDOperandNo)); 697 ResultOps.push_back(IDOperandNo); 698 return; 699 } 700 701 // Handle a reference to a register class. This is used 702 // in COPY_TO_SUBREG instructions. 703 if (Def->isSubClassOf("RegisterOperand")) 704 Def = Def->getValueAsDef("RegClass"); 705 if (Def->isSubClassOf("RegisterClass")) { 706 // If the register class has an enum integer value greater than 127, the 707 // encoding overflows the limit of 7 bits, which precludes the use of 708 // StringIntegerMatcher. In this case, fallback to using IntegerMatcher. 709 const CodeGenRegisterClass &RC = 710 CGP.getTargetInfo().getRegisterClass(Def); 711 if (RC.EnumValue <= 127) { 712 std::string Value = RC.getQualifiedIdName(); 713 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 714 ResultOps.push_back(NextRecordedOperandNo++); 715 } else { 716 AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32)); 717 ResultOps.push_back(NextRecordedOperandNo++); 718 } 719 return; 720 } 721 722 // Handle a subregister index. This is used for INSERT_SUBREG etc. 723 if (Def->isSubClassOf("SubRegIndex")) { 724 const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank(); 725 // If we have more than 127 subreg indices the encoding can overflow 726 // 7 bit and we cannot use StringInteger. 727 if (RB.getSubRegIndices().size() > 127) { 728 const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def); 729 assert(I && "Cannot find subreg index by name!"); 730 if (I->EnumValue > 127) { 731 AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32)); 732 ResultOps.push_back(NextRecordedOperandNo++); 733 return; 734 } 735 } 736 std::string Value = getQualifiedName(Def); 737 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 738 ResultOps.push_back(NextRecordedOperandNo++); 739 return; 740 } 741 } 742 743 errs() << "unhandled leaf node:\n"; 744 N.dump(); 745 } 746 747 static bool mayInstNodeLoadOrStore(const TreePatternNode &N, 748 const CodeGenDAGPatterns &CGP) { 749 Record *Op = N.getOperator(); 750 const CodeGenTarget &CGT = CGP.getTargetInfo(); 751 CodeGenInstruction &II = CGT.getInstruction(Op); 752 return II.mayLoad || II.mayStore; 753 } 754 755 static unsigned numNodesThatMayLoadOrStore(const TreePatternNode &N, 756 const CodeGenDAGPatterns &CGP) { 757 if (N.isLeaf()) 758 return 0; 759 760 Record *OpRec = N.getOperator(); 761 if (!OpRec->isSubClassOf("Instruction")) 762 return 0; 763 764 unsigned Count = 0; 765 if (mayInstNodeLoadOrStore(N, CGP)) 766 ++Count; 767 768 for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i) 769 Count += numNodesThatMayLoadOrStore(N.getChild(i), CGP); 770 771 return Count; 772 } 773 774 void MatcherGen::EmitResultInstructionAsOperand( 775 const TreePatternNode &N, SmallVectorImpl<unsigned> &OutputOps) { 776 Record *Op = N.getOperator(); 777 const CodeGenTarget &CGT = CGP.getTargetInfo(); 778 CodeGenInstruction &II = CGT.getInstruction(Op); 779 const DAGInstruction &Inst = CGP.getInstruction(Op); 780 781 bool isRoot = &N == &Pattern.getDstPattern(); 782 783 // TreeHasOutGlue - True if this tree has glue. 784 bool TreeHasInGlue = false, TreeHasOutGlue = false; 785 if (isRoot) { 786 const TreePatternNode &SrcPat = Pattern.getSrcPattern(); 787 TreeHasInGlue = SrcPat.TreeHasProperty(SDNPOptInGlue, CGP) || 788 SrcPat.TreeHasProperty(SDNPInGlue, CGP); 789 790 // FIXME2: this is checking the entire pattern, not just the node in 791 // question, doing this just for the root seems like a total hack. 792 TreeHasOutGlue = SrcPat.TreeHasProperty(SDNPOutGlue, CGP); 793 } 794 795 // NumResults - This is the number of results produced by the instruction in 796 // the "outs" list. 797 unsigned NumResults = Inst.getNumResults(); 798 799 // Number of operands we know the output instruction must have. If it is 800 // variadic, we could have more operands. 801 unsigned NumFixedOperands = II.Operands.size(); 802 803 SmallVector<unsigned, 8> InstOps; 804 805 // Loop over all of the fixed operands of the instruction pattern, emitting 806 // code to fill them all in. The node 'N' usually has number children equal to 807 // the number of input operands of the instruction. However, in cases where 808 // there are predicate operands for an instruction, we need to fill in the 809 // 'execute always' values. Match up the node operands to the instruction 810 // operands to do this. 811 unsigned ChildNo = 0; 812 813 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the 814 // number of operands at the end of the list which have default values. 815 // Those can come from the pattern if it provides enough arguments, or be 816 // filled in with the default if the pattern hasn't provided them. But any 817 // operand with a default value _before_ the last mandatory one will be 818 // filled in with their defaults unconditionally. 819 unsigned NonOverridableOperands = NumFixedOperands; 820 while (NonOverridableOperands > NumResults && 821 CGP.operandHasDefault(II.Operands[NonOverridableOperands - 1].Rec)) 822 --NonOverridableOperands; 823 824 for (unsigned InstOpNo = NumResults, e = NumFixedOperands; InstOpNo != e; 825 ++InstOpNo) { 826 // Determine what to emit for this operand. 827 Record *OperandNode = II.Operands[InstOpNo].Rec; 828 if (CGP.operandHasDefault(OperandNode) && 829 (InstOpNo < NonOverridableOperands || ChildNo >= N.getNumChildren())) { 830 // This is a predicate or optional def operand which the pattern has not 831 // overridden, or which we aren't letting it override; emit the 'default 832 // ops' operands. 833 const DAGDefaultOperand &DefaultOp = CGP.getDefaultOperand(OperandNode); 834 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) 835 EmitResultOperand(*DefaultOp.DefaultOps[i], InstOps); 836 continue; 837 } 838 839 // Otherwise this is a normal operand or a predicate operand without 840 // 'execute always'; emit it. 841 842 // For operands with multiple sub-operands we may need to emit 843 // multiple child patterns to cover them all. However, ComplexPattern 844 // children may themselves emit multiple MI operands. 845 unsigned NumSubOps = 1; 846 if (OperandNode->isSubClassOf("Operand")) { 847 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 848 if (unsigned NumArgs = MIOpInfo->getNumArgs()) 849 NumSubOps = NumArgs; 850 } 851 852 unsigned FinalNumOps = InstOps.size() + NumSubOps; 853 while (InstOps.size() < FinalNumOps) { 854 const TreePatternNode &Child = N.getChild(ChildNo); 855 unsigned BeforeAddingNumOps = InstOps.size(); 856 EmitResultOperand(Child, InstOps); 857 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); 858 859 // If the operand is an instruction and it produced multiple results, just 860 // take the first one. 861 if (!Child.isLeaf() && Child.getOperator()->isSubClassOf("Instruction")) 862 InstOps.resize(BeforeAddingNumOps + 1); 863 864 ++ChildNo; 865 } 866 } 867 868 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't 869 // expand suboperands, use default operands, or other features determined from 870 // the CodeGenInstruction after the fixed operands, which were handled 871 // above. Emit the remaining instructions implicitly added by the use for 872 // variable_ops. 873 if (II.Operands.isVariadic) { 874 for (unsigned I = ChildNo, E = N.getNumChildren(); I < E; ++I) 875 EmitResultOperand(N.getChild(I), InstOps); 876 } 877 878 // If this node has input glue or explicitly specified input physregs, we 879 // need to add chained and glued copyfromreg nodes and materialize the glue 880 // input. 881 if (isRoot && !PhysRegInputs.empty()) { 882 // Emit all of the CopyToReg nodes for the input physical registers. These 883 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). 884 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) { 885 const CodeGenRegister *Reg = 886 CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first); 887 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, Reg)); 888 } 889 890 // Even if the node has no other glue inputs, the resultant node must be 891 // glued to the CopyFromReg nodes we just generated. 892 TreeHasInGlue = true; 893 } 894 895 // Result order: node results, chain, glue 896 897 // Determine the result types. 898 SmallVector<MVT::SimpleValueType, 4> ResultVTs; 899 for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i) 900 ResultVTs.push_back(N.getSimpleType(i)); 901 902 // If this is the root instruction of a pattern that has physical registers in 903 // its result pattern, add output VTs for them. For example, X86 has: 904 // (set AL, (mul ...)) 905 // This also handles implicit results like: 906 // (implicit EFLAGS) 907 if (isRoot && !Pattern.getDstRegs().empty()) { 908 // If the root came from an implicit def in the instruction handling stuff, 909 // don't re-add it. 910 Record *HandledReg = nullptr; 911 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 912 HandledReg = II.ImplicitDefs[0]; 913 914 for (Record *Reg : Pattern.getDstRegs()) { 915 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) 916 continue; 917 ResultVTs.push_back(getRegisterValueType(Reg, CGT)); 918 } 919 } 920 921 // If this is the root of the pattern and the pattern we're matching includes 922 // a node that is variadic, mark the generated node as variadic so that it 923 // gets the excess operands from the input DAG. 924 int NumFixedArityOperands = -1; 925 if (isRoot && Pattern.getSrcPattern().NodeHasProperty(SDNPVariadic, CGP)) 926 NumFixedArityOperands = Pattern.getSrcPattern().getNumChildren(); 927 928 // If this is the root node and multiple matched nodes in the input pattern 929 // have MemRefs in them, have the interpreter collect them and plop them onto 930 // this node. If there is just one node with MemRefs, leave them on that node 931 // even if it is not the root. 932 // 933 // FIXME3: This is actively incorrect for result patterns with multiple 934 // memory-referencing instructions. 935 bool PatternHasMemOperands = 936 Pattern.getSrcPattern().TreeHasProperty(SDNPMemOperand, CGP); 937 938 bool NodeHasMemRefs = false; 939 if (PatternHasMemOperands) { 940 unsigned NumNodesThatLoadOrStore = 941 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); 942 bool NodeIsUniqueLoadOrStore = 943 mayInstNodeLoadOrStore(N, CGP) && NumNodesThatLoadOrStore == 1; 944 NodeHasMemRefs = 945 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || 946 NumNodesThatLoadOrStore != 1)); 947 } 948 949 // Determine whether we need to attach a chain to this node. 950 bool NodeHasChain = false; 951 if (Pattern.getSrcPattern().TreeHasProperty(SDNPHasChain, CGP)) { 952 // For some instructions, we were able to infer from the pattern whether 953 // they should have a chain. Otherwise, attach the chain to the root. 954 // 955 // FIXME2: This is extremely dubious for several reasons, not the least of 956 // which it gives special status to instructions with patterns that Pat<> 957 // nodes can't duplicate. 958 if (II.hasChain_Inferred) 959 NodeHasChain = II.hasChain; 960 else 961 NodeHasChain = isRoot; 962 // Instructions which load and store from memory should have a chain, 963 // regardless of whether they happen to have a pattern saying so. 964 if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || 965 II.hasSideEffects) 966 NodeHasChain = true; 967 } 968 969 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && 970 "Node has no result"); 971 972 AddMatcher(new EmitNodeMatcher(II, ResultVTs, InstOps, NodeHasChain, 973 TreeHasInGlue, TreeHasOutGlue, NodeHasMemRefs, 974 NumFixedArityOperands, NextRecordedOperandNo)); 975 976 // The non-chain and non-glue results of the newly emitted node get recorded. 977 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { 978 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) 979 break; 980 OutputOps.push_back(NextRecordedOperandNo++); 981 } 982 } 983 984 void MatcherGen::EmitResultSDNodeXFormAsOperand( 985 const TreePatternNode &N, SmallVectorImpl<unsigned> &ResultOps) { 986 assert(N.getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); 987 988 // Emit the operand. 989 SmallVector<unsigned, 8> InputOps; 990 991 // FIXME2: Could easily generalize this to support multiple inputs and outputs 992 // to the SDNodeXForm. For now we just support one input and one output like 993 // the old instruction selector. 994 assert(N.getNumChildren() == 1); 995 EmitResultOperand(N.getChild(0), InputOps); 996 997 // The input currently must have produced exactly one result. 998 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); 999 1000 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N.getOperator())); 1001 ResultOps.push_back(NextRecordedOperandNo++); 1002 } 1003 1004 void MatcherGen::EmitResultOperand(const TreePatternNode &N, 1005 SmallVectorImpl<unsigned> &ResultOps) { 1006 // This is something selected from the pattern we matched. 1007 if (!N.getName().empty()) 1008 return EmitResultOfNamedOperand(N, ResultOps); 1009 1010 if (N.isLeaf()) 1011 return EmitResultLeafAsOperand(N, ResultOps); 1012 1013 Record *OpRec = N.getOperator(); 1014 if (OpRec->isSubClassOf("Instruction")) 1015 return EmitResultInstructionAsOperand(N, ResultOps); 1016 if (OpRec->isSubClassOf("SDNodeXForm")) 1017 return EmitResultSDNodeXFormAsOperand(N, ResultOps); 1018 errs() << "Unknown result node to emit code for: " << N << '\n'; 1019 PrintFatalError("Unknown node in result pattern!"); 1020 } 1021 1022 void MatcherGen::EmitResultCode() { 1023 // Patterns that match nodes with (potentially multiple) chain inputs have to 1024 // merge them together into a token factor. This informs the generated code 1025 // what all the chained nodes are. 1026 if (!MatchedChainNodes.empty()) 1027 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes)); 1028 1029 // Codegen the root of the result pattern, capturing the resulting values. 1030 SmallVector<unsigned, 8> Ops; 1031 EmitResultOperand(Pattern.getDstPattern(), Ops); 1032 1033 // At this point, we have however many values the result pattern produces. 1034 // However, the input pattern might not need all of these. If there are 1035 // excess values at the end (such as implicit defs of condition codes etc) 1036 // just lop them off. This doesn't need to worry about glue or chains, just 1037 // explicit results. 1038 // 1039 unsigned NumSrcResults = Pattern.getSrcPattern().getNumTypes(); 1040 1041 // If the pattern also has (implicit) results, count them as well. 1042 if (!Pattern.getDstRegs().empty()) { 1043 // If the root came from an implicit def in the instruction handling stuff, 1044 // don't re-add it. 1045 Record *HandledReg = nullptr; 1046 const TreePatternNode &DstPat = Pattern.getDstPattern(); 1047 if (!DstPat.isLeaf() && DstPat.getOperator()->isSubClassOf("Instruction")) { 1048 const CodeGenTarget &CGT = CGP.getTargetInfo(); 1049 CodeGenInstruction &II = CGT.getInstruction(DstPat.getOperator()); 1050 1051 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 1052 HandledReg = II.ImplicitDefs[0]; 1053 } 1054 1055 for (Record *Reg : Pattern.getDstRegs()) { 1056 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) 1057 continue; 1058 ++NumSrcResults; 1059 } 1060 } 1061 1062 SmallVector<unsigned, 8> Results(Ops); 1063 1064 // Apply result permutation. 1065 for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern().getNumResults(); 1066 ++ResNo) { 1067 Results[ResNo] = Ops[Pattern.getDstPattern().getResultIndex(ResNo)]; 1068 } 1069 1070 Results.resize(NumSrcResults); 1071 AddMatcher(new CompleteMatchMatcher(Results, Pattern)); 1072 } 1073 1074 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with 1075 /// the specified variant. If the variant number is invalid, this returns null. 1076 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, 1077 unsigned Variant, 1078 const CodeGenDAGPatterns &CGP) { 1079 MatcherGen Gen(Pattern, CGP); 1080 1081 // Generate the code for the matcher. 1082 if (Gen.EmitMatcherCode(Variant)) 1083 return nullptr; 1084 1085 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. 1086 // FIXME2: Split result code out to another table, and make the matcher end 1087 // with an "Emit <index>" command. This allows result generation stuff to be 1088 // shared and factored? 1089 1090 // If the match succeeds, then we generate Pattern. 1091 Gen.EmitResultCode(); 1092 1093 // Unconditional match. 1094 return Gen.GetMatcher(); 1095 } 1096