1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "DAGISelMatcher.h" 10 #include "CodeGenDAGPatterns.h" 11 #include "CodeGenRegisters.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/StringMap.h" 14 #include "llvm/TableGen/Error.h" 15 #include "llvm/TableGen/Record.h" 16 #include <utility> 17 using namespace llvm; 18 19 20 /// getRegisterValueType - Look up and return the ValueType of the specified 21 /// register. If the register is a member of multiple register classes which 22 /// have different associated types, return MVT::Other. 23 static MVT::SimpleValueType getRegisterValueType(Record *R, 24 const CodeGenTarget &T) { 25 bool FoundRC = false; 26 MVT::SimpleValueType VT = MVT::Other; 27 const CodeGenRegister *Reg = T.getRegBank().getReg(R); 28 29 for (const auto &RC : T.getRegBank().getRegClasses()) { 30 if (!RC.contains(Reg)) 31 continue; 32 33 if (!FoundRC) { 34 FoundRC = true; 35 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0); 36 if (VVT.isSimple()) 37 VT = VVT.getSimple().SimpleTy; 38 continue; 39 } 40 41 #ifndef NDEBUG 42 // If this occurs in multiple register classes, they all have to agree. 43 const ValueTypeByHwMode &T = RC.getValueTypeNum(0); 44 assert((!T.isSimple() || T.getSimple().SimpleTy == VT) && 45 "ValueType mismatch between register classes for this register"); 46 #endif 47 } 48 return VT; 49 } 50 51 52 namespace { 53 class MatcherGen { 54 const PatternToMatch &Pattern; 55 const CodeGenDAGPatterns &CGP; 56 57 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts 58 /// out with all of the types removed. This allows us to insert type checks 59 /// as we scan the tree. 60 TreePatternNodePtr PatWithNoTypes; 61 62 /// VariableMap - A map from variable names ('$dst') to the recorded operand 63 /// number that they were captured as. These are biased by 1 to make 64 /// insertion easier. 65 StringMap<unsigned> VariableMap; 66 67 /// This maintains the recorded operand number that OPC_CheckComplexPattern 68 /// drops each sub-operand into. We don't want to insert these into 69 /// VariableMap because that leads to identity checking if they are 70 /// encountered multiple times. Biased by 1 like VariableMap for 71 /// consistency. 72 StringMap<unsigned> NamedComplexPatternOperands; 73 74 /// NextRecordedOperandNo - As we emit opcodes to record matched values in 75 /// the RecordedNodes array, this keeps track of which slot will be next to 76 /// record into. 77 unsigned NextRecordedOperandNo; 78 79 /// MatchedChainNodes - This maintains the position in the recorded nodes 80 /// array of all of the recorded input nodes that have chains. 81 SmallVector<unsigned, 2> MatchedChainNodes; 82 83 /// MatchedComplexPatterns - This maintains a list of all of the 84 /// ComplexPatterns that we need to check. The second element of each pair 85 /// is the recorded operand number of the input node. 86 SmallVector<std::pair<const TreePatternNode*, 87 unsigned>, 2> MatchedComplexPatterns; 88 89 /// PhysRegInputs - List list has an entry for each explicitly specified 90 /// physreg input to the pattern. The first elt is the Register node, the 91 /// second is the recorded slot number the input pattern match saved it in. 92 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs; 93 94 /// Matcher - This is the top level of the generated matcher, the result. 95 Matcher *TheMatcher; 96 97 /// CurPredicate - As we emit matcher nodes, this points to the latest check 98 /// which should have future checks stuck into its Next position. 99 Matcher *CurPredicate; 100 public: 101 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); 102 103 bool EmitMatcherCode(unsigned Variant); 104 void EmitResultCode(); 105 106 Matcher *GetMatcher() const { return TheMatcher; } 107 private: 108 void AddMatcher(Matcher *NewNode); 109 void InferPossibleTypes(unsigned ForceMode); 110 111 // Matcher Generation. 112 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes, 113 unsigned ForceMode); 114 void EmitLeafMatchCode(const TreePatternNode *N); 115 void EmitOperatorMatchCode(const TreePatternNode *N, 116 TreePatternNode *NodeNoTypes, 117 unsigned ForceMode); 118 119 /// If this is the first time a node with unique identifier Name has been 120 /// seen, record it. Otherwise, emit a check to make sure this is the same 121 /// node. Returns true if this is the first encounter. 122 bool recordUniqueNode(ArrayRef<std::string> Names); 123 124 // Result Code Generation. 125 unsigned getNamedArgumentSlot(StringRef Name) { 126 unsigned VarMapEntry = VariableMap[Name]; 127 assert(VarMapEntry != 0 && 128 "Variable referenced but not defined and not caught earlier!"); 129 return VarMapEntry-1; 130 } 131 132 void EmitResultOperand(const TreePatternNode *N, 133 SmallVectorImpl<unsigned> &ResultOps); 134 void EmitResultOfNamedOperand(const TreePatternNode *N, 135 SmallVectorImpl<unsigned> &ResultOps); 136 void EmitResultLeafAsOperand(const TreePatternNode *N, 137 SmallVectorImpl<unsigned> &ResultOps); 138 void EmitResultInstructionAsOperand(const TreePatternNode *N, 139 SmallVectorImpl<unsigned> &ResultOps); 140 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 141 SmallVectorImpl<unsigned> &ResultOps); 142 }; 143 144 } // end anonymous namespace 145 146 MatcherGen::MatcherGen(const PatternToMatch &pattern, 147 const CodeGenDAGPatterns &cgp) 148 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), 149 TheMatcher(nullptr), CurPredicate(nullptr) { 150 // We need to produce the matcher tree for the patterns source pattern. To do 151 // this we need to match the structure as well as the types. To do the type 152 // matching, we want to figure out the fewest number of type checks we need to 153 // emit. For example, if there is only one integer type supported by a 154 // target, there should be no type comparisons at all for integer patterns! 155 // 156 // To figure out the fewest number of type checks needed, clone the pattern, 157 // remove the types, then perform type inference on the pattern as a whole. 158 // If there are unresolved types, emit an explicit check for those types, 159 // apply the type to the tree, then rerun type inference. Iterate until all 160 // types are resolved. 161 // 162 PatWithNoTypes = Pattern.getSrcPattern()->clone(); 163 PatWithNoTypes->RemoveAllTypes(); 164 165 // If there are types that are manifestly known, infer them. 166 InferPossibleTypes(Pattern.getForceMode()); 167 } 168 169 /// InferPossibleTypes - As we emit the pattern, we end up generating type 170 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we 171 /// want to propagate implied types as far throughout the tree as possible so 172 /// that we avoid doing redundant type checks. This does the type propagation. 173 void MatcherGen::InferPossibleTypes(unsigned ForceMode) { 174 // TP - Get *SOME* tree pattern, we don't care which. It is only used for 175 // diagnostics, which we know are impossible at this point. 176 TreePattern &TP = *CGP.pf_begin()->second; 177 TP.getInfer().CodeGen = true; 178 TP.getInfer().ForceMode = ForceMode; 179 180 bool MadeChange = true; 181 while (MadeChange) 182 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, 183 true/*Ignore reg constraints*/); 184 } 185 186 187 /// AddMatcher - Add a matcher node to the current graph we're building. 188 void MatcherGen::AddMatcher(Matcher *NewNode) { 189 if (CurPredicate) 190 CurPredicate->setNext(NewNode); 191 else 192 TheMatcher = NewNode; 193 CurPredicate = NewNode; 194 } 195 196 197 //===----------------------------------------------------------------------===// 198 // Pattern Match Generation 199 //===----------------------------------------------------------------------===// 200 201 /// EmitLeafMatchCode - Generate matching code for leaf nodes. 202 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { 203 assert(N->isLeaf() && "Not a leaf?"); 204 205 // Direct match against an integer constant. 206 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 207 // If this is the root of the dag we're matching, we emit a redundant opcode 208 // check to ensure that this gets folded into the normal top-level 209 // OpcodeSwitch. 210 if (N == Pattern.getSrcPattern()) { 211 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm")); 212 AddMatcher(new CheckOpcodeMatcher(NI)); 213 } 214 215 return AddMatcher(new CheckIntegerMatcher(II->getValue())); 216 } 217 218 // An UnsetInit represents a named node without any constraints. 219 if (isa<UnsetInit>(N->getLeafValue())) { 220 assert(N->hasName() && "Unnamed ? leaf"); 221 return; 222 } 223 224 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 225 if (!DI) { 226 errs() << "Unknown leaf kind: " << *N << "\n"; 227 abort(); 228 } 229 230 Record *LeafRec = DI->getDef(); 231 232 // A ValueType leaf node can represent a register when named, or itself when 233 // unnamed. 234 if (LeafRec->isSubClassOf("ValueType")) { 235 // A named ValueType leaf always matches: (add i32:$a, i32:$b). 236 if (N->hasName()) 237 return; 238 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). 239 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); 240 } 241 242 if (// Handle register references. Nothing to do here, they always match. 243 LeafRec->isSubClassOf("RegisterClass") || 244 LeafRec->isSubClassOf("RegisterOperand") || 245 LeafRec->isSubClassOf("PointerLikeRegClass") || 246 LeafRec->isSubClassOf("SubRegIndex") || 247 // Place holder for SRCVALUE nodes. Nothing to do here. 248 LeafRec->getName() == "srcvalue") 249 return; 250 251 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to 252 // record the register 253 if (LeafRec->isSubClassOf("Register")) { 254 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(), 255 NextRecordedOperandNo)); 256 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); 257 return; 258 } 259 260 if (LeafRec->isSubClassOf("CondCode")) 261 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); 262 263 if (LeafRec->isSubClassOf("ComplexPattern")) { 264 // We can't model ComplexPattern uses that don't have their name taken yet. 265 // The OPC_CheckComplexPattern operation implicitly records the results. 266 if (N->getName().empty()) { 267 std::string S; 268 raw_string_ostream OS(S); 269 OS << "We expect complex pattern uses to have names: " << *N; 270 PrintFatalError(S); 271 } 272 273 // Remember this ComplexPattern so that we can emit it after all the other 274 // structural matches are done. 275 unsigned InputOperand = VariableMap[N->getName()] - 1; 276 MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand)); 277 return; 278 } 279 280 if (LeafRec->getName() == "immAllOnesV") { 281 // If this is the root of the dag we're matching, we emit a redundant opcode 282 // check to ensure that this gets folded into the normal top-level 283 // OpcodeSwitch. 284 if (N == Pattern.getSrcPattern()) { 285 MVT VT = N->getSimpleType(0); 286 StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector"; 287 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name)); 288 AddMatcher(new CheckOpcodeMatcher(NI)); 289 } 290 return AddMatcher(new CheckImmAllOnesVMatcher()); 291 } 292 if (LeafRec->getName() == "immAllZerosV") { 293 // If this is the root of the dag we're matching, we emit a redundant opcode 294 // check to ensure that this gets folded into the normal top-level 295 // OpcodeSwitch. 296 if (N == Pattern.getSrcPattern()) { 297 MVT VT = N->getSimpleType(0); 298 StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector"; 299 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name)); 300 AddMatcher(new CheckOpcodeMatcher(NI)); 301 } 302 return AddMatcher(new CheckImmAllZerosVMatcher()); 303 } 304 305 errs() << "Unknown leaf kind: " << *N << "\n"; 306 abort(); 307 } 308 309 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, 310 TreePatternNode *NodeNoTypes, 311 unsigned ForceMode) { 312 assert(!N->isLeaf() && "Not an operator?"); 313 314 if (N->getOperator()->isSubClassOf("ComplexPattern")) { 315 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is 316 // "MY_PAT:op1:op2". We should already have validated that the uses are 317 // consistent. 318 std::string PatternName = std::string(N->getOperator()->getName()); 319 for (unsigned i = 0; i < N->getNumChildren(); ++i) { 320 PatternName += ":"; 321 PatternName += N->getChild(i)->getName(); 322 } 323 324 if (recordUniqueNode(PatternName)) { 325 auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1); 326 MatchedComplexPatterns.push_back(NodeAndOpNum); 327 } 328 329 return; 330 } 331 332 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); 333 334 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is 335 // a constant without a predicate fn that has more than one bit set, handle 336 // this as a special case. This is usually for targets that have special 337 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit 338 // handling stuff). Using these instructions is often far more efficient 339 // than materializing the constant. Unfortunately, both the instcombiner 340 // and the dag combiner can often infer that bits are dead, and thus drop 341 // them from the mask in the dag. For example, it might turn 'AND X, 255' 342 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks 343 // to handle this. 344 if ((N->getOperator()->getName() == "and" || 345 N->getOperator()->getName() == "or") && 346 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() && 347 N->getPredicateCalls().empty()) { 348 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) { 349 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. 350 // If this is at the root of the pattern, we emit a redundant 351 // CheckOpcode so that the following checks get factored properly under 352 // a single opcode check. 353 if (N == Pattern.getSrcPattern()) 354 AddMatcher(new CheckOpcodeMatcher(CInfo)); 355 356 // Emit the CheckAndImm/CheckOrImm node. 357 if (N->getOperator()->getName() == "and") 358 AddMatcher(new CheckAndImmMatcher(II->getValue())); 359 else 360 AddMatcher(new CheckOrImmMatcher(II->getValue())); 361 362 // Match the LHS of the AND as appropriate. 363 AddMatcher(new MoveChildMatcher(0)); 364 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode); 365 AddMatcher(new MoveParentMatcher()); 366 return; 367 } 368 } 369 } 370 371 // Check that the current opcode lines up. 372 AddMatcher(new CheckOpcodeMatcher(CInfo)); 373 374 // If this node has memory references (i.e. is a load or store), tell the 375 // interpreter to capture them in the memref array. 376 if (N->NodeHasProperty(SDNPMemOperand, CGP)) 377 AddMatcher(new RecordMemRefMatcher()); 378 379 // If this node has a chain, then the chain is operand #0 is the SDNode, and 380 // the child numbers of the node are all offset by one. 381 unsigned OpNo = 0; 382 if (N->NodeHasProperty(SDNPHasChain, CGP)) { 383 // Record the node and remember it in our chained nodes list. 384 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() + 385 "' chained node", 386 NextRecordedOperandNo)); 387 // Remember all of the input chains our pattern will match. 388 MatchedChainNodes.push_back(NextRecordedOperandNo++); 389 390 // Don't look at the input chain when matching the tree pattern to the 391 // SDNode. 392 OpNo = 1; 393 394 // If this node is not the root and the subtree underneath it produces a 395 // chain, then the result of matching the node is also produce a chain. 396 // Beyond that, this means that we're also folding (at least) the root node 397 // into the node that produce the chain (for example, matching 398 // "(add reg, (load ptr))" as a add_with_memory on X86). This is 399 // problematic, if the 'reg' node also uses the load (say, its chain). 400 // Graphically: 401 // 402 // [LD] 403 // ^ ^ 404 // | \ DAG's like cheese. 405 // / | 406 // / [YY] 407 // | ^ 408 // [XX]--/ 409 // 410 // It would be invalid to fold XX and LD. In this case, folding the two 411 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG' 412 // To prevent this, we emit a dynamic check for legality before allowing 413 // this to be folded. 414 // 415 const TreePatternNode *Root = Pattern.getSrcPattern(); 416 if (N != Root) { // Not the root of the pattern. 417 // If there is a node between the root and this node, then we definitely 418 // need to emit the check. 419 bool NeedCheck = !Root->hasChild(N); 420 421 // If it *is* an immediate child of the root, we can still need a check if 422 // the root SDNode has multiple inputs. For us, this means that it is an 423 // intrinsic, has multiple operands, or has other inputs like chain or 424 // glue). 425 if (!NeedCheck) { 426 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); 427 NeedCheck = 428 Root->getOperator() == CGP.get_intrinsic_void_sdnode() || 429 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || 430 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || 431 PInfo.getNumOperands() > 1 || 432 PInfo.hasProperty(SDNPHasChain) || 433 PInfo.hasProperty(SDNPInGlue) || 434 PInfo.hasProperty(SDNPOptInGlue); 435 } 436 437 if (NeedCheck) 438 AddMatcher(new CheckFoldableChainNodeMatcher()); 439 } 440 } 441 442 // If this node has an output glue and isn't the root, remember it. 443 if (N->NodeHasProperty(SDNPOutGlue, CGP) && 444 N != Pattern.getSrcPattern()) { 445 // TODO: This redundantly records nodes with both glues and chains. 446 447 // Record the node and remember it in our chained nodes list. 448 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() + 449 "' glue output node", 450 NextRecordedOperandNo)); 451 } 452 453 // If this node is known to have an input glue or if it *might* have an input 454 // glue, capture it as the glue input of the pattern. 455 if (N->NodeHasProperty(SDNPOptInGlue, CGP) || 456 N->NodeHasProperty(SDNPInGlue, CGP)) 457 AddMatcher(new CaptureGlueInputMatcher()); 458 459 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { 460 // Get the code suitable for matching this child. Move to the child, check 461 // it then move back to the parent. 462 AddMatcher(new MoveChildMatcher(OpNo)); 463 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode); 464 AddMatcher(new MoveParentMatcher()); 465 } 466 } 467 468 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) { 469 unsigned Entry = 0; 470 for (const std::string &Name : Names) { 471 unsigned &VarMapEntry = VariableMap[Name]; 472 if (!Entry) 473 Entry = VarMapEntry; 474 assert(Entry == VarMapEntry); 475 } 476 477 bool NewRecord = false; 478 if (Entry == 0) { 479 // If it is a named node, we must emit a 'Record' opcode. 480 std::string WhatFor; 481 for (const std::string &Name : Names) { 482 if (!WhatFor.empty()) 483 WhatFor += ','; 484 WhatFor += "$" + Name; 485 } 486 AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo)); 487 Entry = ++NextRecordedOperandNo; 488 NewRecord = true; 489 } else { 490 // If we get here, this is a second reference to a specific name. Since 491 // we already have checked that the first reference is valid, we don't 492 // have to recursively match it, just check that it's the same as the 493 // previously named thing. 494 AddMatcher(new CheckSameMatcher(Entry-1)); 495 } 496 497 for (const std::string &Name : Names) 498 VariableMap[Name] = Entry; 499 500 return NewRecord; 501 } 502 503 void MatcherGen::EmitMatchCode(const TreePatternNode *N, 504 TreePatternNode *NodeNoTypes, 505 unsigned ForceMode) { 506 // If N and NodeNoTypes don't agree on a type, then this is a case where we 507 // need to do a type check. Emit the check, apply the type to NodeNoTypes and 508 // reinfer any correlated types. 509 SmallVector<unsigned, 2> ResultsToTypeCheck; 510 511 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) { 512 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue; 513 NodeNoTypes->setType(i, N->getExtType(i)); 514 InferPossibleTypes(ForceMode); 515 ResultsToTypeCheck.push_back(i); 516 } 517 518 // If this node has a name associated with it, capture it in VariableMap. If 519 // we already saw this in the pattern, emit code to verify dagness. 520 SmallVector<std::string, 4> Names; 521 if (!N->getName().empty()) 522 Names.push_back(N->getName()); 523 524 for (const ScopedName &Name : N->getNamesAsPredicateArg()) { 525 Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str()); 526 } 527 528 if (!Names.empty()) { 529 if (!recordUniqueNode(Names)) 530 return; 531 } 532 533 if (N->isLeaf()) 534 EmitLeafMatchCode(N); 535 else 536 EmitOperatorMatchCode(N, NodeNoTypes, ForceMode); 537 538 // If there are node predicates for this node, generate their checks. 539 for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) { 540 const TreePredicateCall &Pred = N->getPredicateCalls()[i]; 541 SmallVector<unsigned, 4> Operands; 542 if (Pred.Fn.usesOperands()) { 543 TreePattern *TP = Pred.Fn.getOrigPatFragRecord(); 544 for (unsigned i = 0; i < TP->getNumArgs(); ++i) { 545 std::string Name = 546 ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str(); 547 Operands.push_back(getNamedArgumentSlot(Name)); 548 } 549 } 550 AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands)); 551 } 552 553 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) 554 AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]), 555 ResultsToTypeCheck[i])); 556 } 557 558 /// EmitMatcherCode - Generate the code that matches the predicate of this 559 /// pattern for the specified Variant. If the variant is invalid this returns 560 /// true and does not generate code, if it is valid, it returns false. 561 bool MatcherGen::EmitMatcherCode(unsigned Variant) { 562 // If the root of the pattern is a ComplexPattern and if it is specified to 563 // match some number of root opcodes, these are considered to be our variants. 564 // Depending on which variant we're generating code for, emit the root opcode 565 // check. 566 if (const ComplexPattern *CP = 567 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) { 568 const std::vector<Record*> &OpNodes = CP->getRootNodes(); 569 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match"); 570 if (Variant >= OpNodes.size()) return true; 571 572 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); 573 } else { 574 if (Variant != 0) return true; 575 } 576 577 // Emit the matcher for the pattern structure and types. 578 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(), 579 Pattern.getForceMode()); 580 581 // If the pattern has a predicate on it (e.g. only enabled when a subtarget 582 // feature is around, do the check). 583 if (!Pattern.getPredicateCheck().empty()) 584 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck())); 585 586 // Now that we've completed the structural type match, emit any ComplexPattern 587 // checks (e.g. addrmode matches). We emit this after the structural match 588 // because they are generally more expensive to evaluate and more difficult to 589 // factor. 590 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { 591 auto N = MatchedComplexPatterns[i].first; 592 593 // Remember where the results of this match get stuck. 594 if (N->isLeaf()) { 595 NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1; 596 } else { 597 unsigned CurOp = NextRecordedOperandNo; 598 for (unsigned i = 0; i < N->getNumChildren(); ++i) { 599 NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1; 600 CurOp += N->getChild(i)->getNumMIResults(CGP); 601 } 602 } 603 604 // Get the slot we recorded the value in from the name on the node. 605 unsigned RecNodeEntry = MatchedComplexPatterns[i].second; 606 607 const ComplexPattern &CP = *N->getComplexPatternInfo(CGP); 608 609 // Emit a CheckComplexPat operation, which does the match (aborting if it 610 // fails) and pushes the matched operands onto the recorded nodes list. 611 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry, 612 N->getName(), NextRecordedOperandNo)); 613 614 // Record the right number of operands. 615 NextRecordedOperandNo += CP.getNumOperands(); 616 if (CP.hasProperty(SDNPHasChain)) { 617 // If the complex pattern has a chain, then we need to keep track of the 618 // fact that we just recorded a chain input. The chain input will be 619 // matched as the last operand of the predicate if it was successful. 620 ++NextRecordedOperandNo; // Chained node operand. 621 622 // It is the last operand recorded. 623 assert(NextRecordedOperandNo > 1 && 624 "Should have recorded input/result chains at least!"); 625 MatchedChainNodes.push_back(NextRecordedOperandNo-1); 626 } 627 628 // TODO: Complex patterns can't have output glues, if they did, we'd want 629 // to record them. 630 } 631 632 return false; 633 } 634 635 636 //===----------------------------------------------------------------------===// 637 // Node Result Generation 638 //===----------------------------------------------------------------------===// 639 640 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, 641 SmallVectorImpl<unsigned> &ResultOps){ 642 assert(!N->getName().empty() && "Operand not named!"); 643 644 if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) { 645 // Complex operands have already been completely selected, just find the 646 // right slot ant add the arguments directly. 647 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) 648 ResultOps.push_back(SlotNo - 1 + i); 649 650 return; 651 } 652 653 unsigned SlotNo = getNamedArgumentSlot(N->getName()); 654 655 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target 656 // version of the immediate so that it doesn't get selected due to some other 657 // node use. 658 if (!N->isLeaf()) { 659 StringRef OperatorName = N->getOperator()->getName(); 660 if (OperatorName == "imm" || OperatorName == "fpimm") { 661 AddMatcher(new EmitConvertToTargetMatcher(SlotNo)); 662 ResultOps.push_back(NextRecordedOperandNo++); 663 return; 664 } 665 } 666 667 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) 668 ResultOps.push_back(SlotNo + i); 669 } 670 671 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, 672 SmallVectorImpl<unsigned> &ResultOps) { 673 assert(N->isLeaf() && "Must be a leaf"); 674 675 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 676 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0))); 677 ResultOps.push_back(NextRecordedOperandNo++); 678 return; 679 } 680 681 // If this is an explicit register reference, handle it. 682 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 683 Record *Def = DI->getDef(); 684 if (Def->isSubClassOf("Register")) { 685 const CodeGenRegister *Reg = 686 CGP.getTargetInfo().getRegBank().getReg(Def); 687 AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0))); 688 ResultOps.push_back(NextRecordedOperandNo++); 689 return; 690 } 691 692 if (Def->getName() == "zero_reg") { 693 AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0))); 694 ResultOps.push_back(NextRecordedOperandNo++); 695 return; 696 } 697 698 if (Def->getName() == "undef_tied_input") { 699 std::array<MVT::SimpleValueType, 1> ResultVTs = {{ N->getSimpleType(0) }}; 700 std::array<unsigned, 0> InstOps; 701 auto IDOperandNo = NextRecordedOperandNo++; 702 AddMatcher(new EmitNodeMatcher("TargetOpcode::IMPLICIT_DEF", 703 ResultVTs, InstOps, false, false, false, 704 false, -1, IDOperandNo)); 705 ResultOps.push_back(IDOperandNo); 706 return; 707 } 708 709 // Handle a reference to a register class. This is used 710 // in COPY_TO_SUBREG instructions. 711 if (Def->isSubClassOf("RegisterOperand")) 712 Def = Def->getValueAsDef("RegClass"); 713 if (Def->isSubClassOf("RegisterClass")) { 714 // If the register class has an enum integer value greater than 127, the 715 // encoding overflows the limit of 7 bits, which precludes the use of 716 // StringIntegerMatcher. In this case, fallback to using IntegerMatcher. 717 const CodeGenRegisterClass &RC = 718 CGP.getTargetInfo().getRegisterClass(Def); 719 if (RC.EnumValue <= 127) { 720 std::string Value = getQualifiedName(Def) + "RegClassID"; 721 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 722 ResultOps.push_back(NextRecordedOperandNo++); 723 } else { 724 AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32)); 725 ResultOps.push_back(NextRecordedOperandNo++); 726 } 727 return; 728 } 729 730 // Handle a subregister index. This is used for INSERT_SUBREG etc. 731 if (Def->isSubClassOf("SubRegIndex")) { 732 const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank(); 733 // If we have more than 127 subreg indices the encoding can overflow 734 // 7 bit and we cannot use StringInteger. 735 if (RB.getSubRegIndices().size() > 127) { 736 const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def); 737 assert(I && "Cannot find subreg index by name!"); 738 if (I->EnumValue > 127) { 739 AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32)); 740 ResultOps.push_back(NextRecordedOperandNo++); 741 return; 742 } 743 } 744 std::string Value = getQualifiedName(Def); 745 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 746 ResultOps.push_back(NextRecordedOperandNo++); 747 return; 748 } 749 } 750 751 errs() << "unhandled leaf node:\n"; 752 N->dump(); 753 } 754 755 static bool 756 mayInstNodeLoadOrStore(const TreePatternNode *N, 757 const CodeGenDAGPatterns &CGP) { 758 Record *Op = N->getOperator(); 759 const CodeGenTarget &CGT = CGP.getTargetInfo(); 760 CodeGenInstruction &II = CGT.getInstruction(Op); 761 return II.mayLoad || II.mayStore; 762 } 763 764 static unsigned 765 numNodesThatMayLoadOrStore(const TreePatternNode *N, 766 const CodeGenDAGPatterns &CGP) { 767 if (N->isLeaf()) 768 return 0; 769 770 Record *OpRec = N->getOperator(); 771 if (!OpRec->isSubClassOf("Instruction")) 772 return 0; 773 774 unsigned Count = 0; 775 if (mayInstNodeLoadOrStore(N, CGP)) 776 ++Count; 777 778 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 779 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP); 780 781 return Count; 782 } 783 784 void MatcherGen:: 785 EmitResultInstructionAsOperand(const TreePatternNode *N, 786 SmallVectorImpl<unsigned> &OutputOps) { 787 Record *Op = N->getOperator(); 788 const CodeGenTarget &CGT = CGP.getTargetInfo(); 789 CodeGenInstruction &II = CGT.getInstruction(Op); 790 const DAGInstruction &Inst = CGP.getInstruction(Op); 791 792 bool isRoot = N == Pattern.getDstPattern(); 793 794 // TreeHasOutGlue - True if this tree has glue. 795 bool TreeHasInGlue = false, TreeHasOutGlue = false; 796 if (isRoot) { 797 const TreePatternNode *SrcPat = Pattern.getSrcPattern(); 798 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) || 799 SrcPat->TreeHasProperty(SDNPInGlue, CGP); 800 801 // FIXME2: this is checking the entire pattern, not just the node in 802 // question, doing this just for the root seems like a total hack. 803 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP); 804 } 805 806 // NumResults - This is the number of results produced by the instruction in 807 // the "outs" list. 808 unsigned NumResults = Inst.getNumResults(); 809 810 // Number of operands we know the output instruction must have. If it is 811 // variadic, we could have more operands. 812 unsigned NumFixedOperands = II.Operands.size(); 813 814 SmallVector<unsigned, 8> InstOps; 815 816 // Loop over all of the fixed operands of the instruction pattern, emitting 817 // code to fill them all in. The node 'N' usually has number children equal to 818 // the number of input operands of the instruction. However, in cases where 819 // there are predicate operands for an instruction, we need to fill in the 820 // 'execute always' values. Match up the node operands to the instruction 821 // operands to do this. 822 unsigned ChildNo = 0; 823 824 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the 825 // number of operands at the end of the list which have default values. 826 // Those can come from the pattern if it provides enough arguments, or be 827 // filled in with the default if the pattern hasn't provided them. But any 828 // operand with a default value _before_ the last mandatory one will be 829 // filled in with their defaults unconditionally. 830 unsigned NonOverridableOperands = NumFixedOperands; 831 while (NonOverridableOperands > NumResults && 832 CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec)) 833 --NonOverridableOperands; 834 835 for (unsigned InstOpNo = NumResults, e = NumFixedOperands; 836 InstOpNo != e; ++InstOpNo) { 837 // Determine what to emit for this operand. 838 Record *OperandNode = II.Operands[InstOpNo].Rec; 839 if (CGP.operandHasDefault(OperandNode) && 840 (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) { 841 // This is a predicate or optional def operand which the pattern has not 842 // overridden, or which we aren't letting it override; emit the 'default 843 // ops' operands. 844 const DAGDefaultOperand &DefaultOp 845 = CGP.getDefaultOperand(OperandNode); 846 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) 847 EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps); 848 continue; 849 } 850 851 // Otherwise this is a normal operand or a predicate operand without 852 // 'execute always'; emit it. 853 854 // For operands with multiple sub-operands we may need to emit 855 // multiple child patterns to cover them all. However, ComplexPattern 856 // children may themselves emit multiple MI operands. 857 unsigned NumSubOps = 1; 858 if (OperandNode->isSubClassOf("Operand")) { 859 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 860 if (unsigned NumArgs = MIOpInfo->getNumArgs()) 861 NumSubOps = NumArgs; 862 } 863 864 unsigned FinalNumOps = InstOps.size() + NumSubOps; 865 while (InstOps.size() < FinalNumOps) { 866 const TreePatternNode *Child = N->getChild(ChildNo); 867 unsigned BeforeAddingNumOps = InstOps.size(); 868 EmitResultOperand(Child, InstOps); 869 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); 870 871 // If the operand is an instruction and it produced multiple results, just 872 // take the first one. 873 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) 874 InstOps.resize(BeforeAddingNumOps+1); 875 876 ++ChildNo; 877 } 878 } 879 880 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't 881 // expand suboperands, use default operands, or other features determined from 882 // the CodeGenInstruction after the fixed operands, which were handled 883 // above. Emit the remaining instructions implicitly added by the use for 884 // variable_ops. 885 if (II.Operands.isVariadic) { 886 for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I) 887 EmitResultOperand(N->getChild(I), InstOps); 888 } 889 890 // If this node has input glue or explicitly specified input physregs, we 891 // need to add chained and glued copyfromreg nodes and materialize the glue 892 // input. 893 if (isRoot && !PhysRegInputs.empty()) { 894 // Emit all of the CopyToReg nodes for the input physical registers. These 895 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). 896 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) { 897 const CodeGenRegister *Reg = 898 CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first); 899 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, 900 Reg)); 901 } 902 903 // Even if the node has no other glue inputs, the resultant node must be 904 // glued to the CopyFromReg nodes we just generated. 905 TreeHasInGlue = true; 906 } 907 908 // Result order: node results, chain, glue 909 910 // Determine the result types. 911 SmallVector<MVT::SimpleValueType, 4> ResultVTs; 912 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) 913 ResultVTs.push_back(N->getSimpleType(i)); 914 915 // If this is the root instruction of a pattern that has physical registers in 916 // its result pattern, add output VTs for them. For example, X86 has: 917 // (set AL, (mul ...)) 918 // This also handles implicit results like: 919 // (implicit EFLAGS) 920 if (isRoot && !Pattern.getDstRegs().empty()) { 921 // If the root came from an implicit def in the instruction handling stuff, 922 // don't re-add it. 923 Record *HandledReg = nullptr; 924 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 925 HandledReg = II.ImplicitDefs[0]; 926 927 for (Record *Reg : Pattern.getDstRegs()) { 928 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 929 ResultVTs.push_back(getRegisterValueType(Reg, CGT)); 930 } 931 } 932 933 // If this is the root of the pattern and the pattern we're matching includes 934 // a node that is variadic, mark the generated node as variadic so that it 935 // gets the excess operands from the input DAG. 936 int NumFixedArityOperands = -1; 937 if (isRoot && 938 Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)) 939 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); 940 941 // If this is the root node and multiple matched nodes in the input pattern 942 // have MemRefs in them, have the interpreter collect them and plop them onto 943 // this node. If there is just one node with MemRefs, leave them on that node 944 // even if it is not the root. 945 // 946 // FIXME3: This is actively incorrect for result patterns with multiple 947 // memory-referencing instructions. 948 bool PatternHasMemOperands = 949 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); 950 951 bool NodeHasMemRefs = false; 952 if (PatternHasMemOperands) { 953 unsigned NumNodesThatLoadOrStore = 954 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); 955 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) && 956 NumNodesThatLoadOrStore == 1; 957 NodeHasMemRefs = 958 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || 959 NumNodesThatLoadOrStore != 1)); 960 } 961 962 // Determine whether we need to attach a chain to this node. 963 bool NodeHasChain = false; 964 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) { 965 // For some instructions, we were able to infer from the pattern whether 966 // they should have a chain. Otherwise, attach the chain to the root. 967 // 968 // FIXME2: This is extremely dubious for several reasons, not the least of 969 // which it gives special status to instructions with patterns that Pat<> 970 // nodes can't duplicate. 971 if (II.hasChain_Inferred) 972 NodeHasChain = II.hasChain; 973 else 974 NodeHasChain = isRoot; 975 // Instructions which load and store from memory should have a chain, 976 // regardless of whether they happen to have a pattern saying so. 977 if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || 978 II.hasSideEffects) 979 NodeHasChain = true; 980 } 981 982 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && 983 "Node has no result"); 984 985 AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(), 986 ResultVTs, InstOps, 987 NodeHasChain, TreeHasInGlue, TreeHasOutGlue, 988 NodeHasMemRefs, NumFixedArityOperands, 989 NextRecordedOperandNo)); 990 991 // The non-chain and non-glue results of the newly emitted node get recorded. 992 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { 993 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break; 994 OutputOps.push_back(NextRecordedOperandNo++); 995 } 996 } 997 998 void MatcherGen:: 999 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 1000 SmallVectorImpl<unsigned> &ResultOps) { 1001 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); 1002 1003 // Emit the operand. 1004 SmallVector<unsigned, 8> InputOps; 1005 1006 // FIXME2: Could easily generalize this to support multiple inputs and outputs 1007 // to the SDNodeXForm. For now we just support one input and one output like 1008 // the old instruction selector. 1009 assert(N->getNumChildren() == 1); 1010 EmitResultOperand(N->getChild(0), InputOps); 1011 1012 // The input currently must have produced exactly one result. 1013 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); 1014 1015 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator())); 1016 ResultOps.push_back(NextRecordedOperandNo++); 1017 } 1018 1019 void MatcherGen::EmitResultOperand(const TreePatternNode *N, 1020 SmallVectorImpl<unsigned> &ResultOps) { 1021 // This is something selected from the pattern we matched. 1022 if (!N->getName().empty()) 1023 return EmitResultOfNamedOperand(N, ResultOps); 1024 1025 if (N->isLeaf()) 1026 return EmitResultLeafAsOperand(N, ResultOps); 1027 1028 Record *OpRec = N->getOperator(); 1029 if (OpRec->isSubClassOf("Instruction")) 1030 return EmitResultInstructionAsOperand(N, ResultOps); 1031 if (OpRec->isSubClassOf("SDNodeXForm")) 1032 return EmitResultSDNodeXFormAsOperand(N, ResultOps); 1033 errs() << "Unknown result node to emit code for: " << *N << '\n'; 1034 PrintFatalError("Unknown node in result pattern!"); 1035 } 1036 1037 void MatcherGen::EmitResultCode() { 1038 // Patterns that match nodes with (potentially multiple) chain inputs have to 1039 // merge them together into a token factor. This informs the generated code 1040 // what all the chained nodes are. 1041 if (!MatchedChainNodes.empty()) 1042 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes)); 1043 1044 // Codegen the root of the result pattern, capturing the resulting values. 1045 SmallVector<unsigned, 8> Ops; 1046 EmitResultOperand(Pattern.getDstPattern(), Ops); 1047 1048 // At this point, we have however many values the result pattern produces. 1049 // However, the input pattern might not need all of these. If there are 1050 // excess values at the end (such as implicit defs of condition codes etc) 1051 // just lop them off. This doesn't need to worry about glue or chains, just 1052 // explicit results. 1053 // 1054 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes(); 1055 1056 // If the pattern also has (implicit) results, count them as well. 1057 if (!Pattern.getDstRegs().empty()) { 1058 // If the root came from an implicit def in the instruction handling stuff, 1059 // don't re-add it. 1060 Record *HandledReg = nullptr; 1061 const TreePatternNode *DstPat = Pattern.getDstPattern(); 1062 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){ 1063 const CodeGenTarget &CGT = CGP.getTargetInfo(); 1064 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator()); 1065 1066 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 1067 HandledReg = II.ImplicitDefs[0]; 1068 } 1069 1070 for (Record *Reg : Pattern.getDstRegs()) { 1071 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 1072 ++NumSrcResults; 1073 } 1074 } 1075 1076 SmallVector<unsigned, 8> Results(Ops); 1077 1078 // Apply result permutation. 1079 for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults(); 1080 ++ResNo) { 1081 Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)]; 1082 } 1083 1084 Results.resize(NumSrcResults); 1085 AddMatcher(new CompleteMatchMatcher(Results, Pattern)); 1086 } 1087 1088 1089 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with 1090 /// the specified variant. If the variant number is invalid, this returns null. 1091 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, 1092 unsigned Variant, 1093 const CodeGenDAGPatterns &CGP) { 1094 MatcherGen Gen(Pattern, CGP); 1095 1096 // Generate the code for the matcher. 1097 if (Gen.EmitMatcherCode(Variant)) 1098 return nullptr; 1099 1100 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. 1101 // FIXME2: Split result code out to another table, and make the matcher end 1102 // with an "Emit <index>" command. This allows result generation stuff to be 1103 // shared and factored? 1104 1105 // If the match succeeds, then we generate Pattern. 1106 Gen.EmitResultCode(); 1107 1108 // Unconditional match. 1109 return Gen.GetMatcher(); 1110 } 1111