1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines structures to encapsulate the machine model as described in 10 // the target description. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenSchedule.h" 15 #include "CodeGenInstruction.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Support/Casting.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/Regex.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/TableGen/Error.h" 26 #include <algorithm> 27 #include <iterator> 28 #include <utility> 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "subtarget-emitter" 33 34 #ifndef NDEBUG 35 static void dumpIdxVec(ArrayRef<unsigned> V) { 36 for (unsigned Idx : V) 37 dbgs() << Idx << ", "; 38 } 39 #endif 40 41 namespace { 42 43 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 44 struct InstrsOp : public SetTheory::Operator { 45 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 46 ArrayRef<SMLoc> Loc) override { 47 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 48 } 49 }; 50 51 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 52 struct InstRegexOp : public SetTheory::Operator { 53 const CodeGenTarget &Target; 54 InstRegexOp(const CodeGenTarget &t) : Target(t) {} 55 56 /// Remove any text inside of parentheses from S. 57 static std::string removeParens(llvm::StringRef S) { 58 std::string Result; 59 unsigned Paren = 0; 60 // NB: We don't care about escaped parens here. 61 for (char C : S) { 62 switch (C) { 63 case '(': 64 ++Paren; 65 break; 66 case ')': 67 --Paren; 68 break; 69 default: 70 if (Paren == 0) 71 Result += C; 72 } 73 } 74 return Result; 75 } 76 77 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 78 ArrayRef<SMLoc> Loc) override { 79 ArrayRef<const CodeGenInstruction *> Instructions = 80 Target.getInstructionsByEnumValue(); 81 82 unsigned NumGeneric = Target.getNumFixedInstructions(); 83 unsigned NumPseudos = Target.getNumPseudoInstructions(); 84 auto Generics = Instructions.slice(0, NumGeneric); 85 auto Pseudos = Instructions.slice(NumGeneric, NumPseudos); 86 auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos); 87 88 for (Init *Arg : Expr->getArgs()) { 89 StringInit *SI = dyn_cast<StringInit>(Arg); 90 if (!SI) 91 PrintFatalError(Loc, "instregex requires pattern string: " + 92 Expr->getAsString()); 93 StringRef Original = SI->getValue(); 94 // Drop an explicit ^ anchor to not interfere with prefix search. 95 bool HadAnchor = Original.consume_front("^"); 96 97 // Extract a prefix that we can binary search on. 98 static const char RegexMetachars[] = "()^$|*+?.[]\\{}"; 99 auto FirstMeta = Original.find_first_of(RegexMetachars); 100 if (FirstMeta != StringRef::npos && FirstMeta > 0) { 101 // If we have a regex like ABC* we can only use AB as the prefix, as 102 // the * acts on C. 103 switch (Original[FirstMeta]) { 104 case '+': 105 case '*': 106 case '?': 107 --FirstMeta; 108 break; 109 default: 110 break; 111 } 112 } 113 114 // Look for top-level | or ?. We cannot optimize them to binary search. 115 if (removeParens(Original).find_first_of("|?") != std::string::npos) 116 FirstMeta = 0; 117 118 std::optional<Regex> Regexpr; 119 StringRef Prefix = Original.substr(0, FirstMeta); 120 StringRef PatStr = Original.substr(FirstMeta); 121 if (!PatStr.empty()) { 122 // For the rest use a python-style prefix match. 123 std::string pat = std::string(PatStr); 124 // Add ^ anchor. If we had one originally, don't need the group. 125 if (HadAnchor) { 126 pat.insert(0, "^"); 127 } else { 128 pat.insert(0, "^("); 129 pat.insert(pat.end(), ')'); 130 } 131 Regexpr = Regex(pat); 132 } 133 134 int NumMatches = 0; 135 136 // The generic opcodes are unsorted, handle them manually. 137 for (auto *Inst : Generics) { 138 StringRef InstName = Inst->TheDef->getName(); 139 if (InstName.starts_with(Prefix) && 140 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) { 141 Elts.insert(Inst->TheDef); 142 NumMatches++; 143 } 144 } 145 146 // Target instructions are split into two ranges: pseudo instructions 147 // first, than non-pseudos. Each range is in lexicographical order 148 // sorted by name. Find the sub-ranges that start with our prefix. 149 struct Comp { 150 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { 151 return LHS->TheDef->getName() < RHS; 152 } 153 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { 154 return LHS < RHS->TheDef->getName() && 155 !RHS->TheDef->getName().starts_with(LHS); 156 } 157 }; 158 auto Range1 = 159 std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp()); 160 auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(), 161 Prefix, Comp()); 162 163 // For these ranges we know that instruction names start with the prefix. 164 // Check if there's a regex that needs to be checked. 165 const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) { 166 StringRef InstName = Inst->TheDef->getName(); 167 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) { 168 Elts.insert(Inst->TheDef); 169 NumMatches++; 170 } 171 }; 172 std::for_each(Range1.first, Range1.second, HandleNonGeneric); 173 std::for_each(Range2.first, Range2.second, HandleNonGeneric); 174 175 if (0 == NumMatches) 176 PrintFatalError(Loc, "instregex has no matches: " + Original); 177 } 178 } 179 }; 180 181 } // end anonymous namespace 182 183 /// CodeGenModels ctor interprets machine model records and populates maps. 184 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 185 const CodeGenTarget &TGT) 186 : Records(RK), Target(TGT) { 187 188 Sets.addFieldExpander("InstRW", "Instrs"); 189 190 // Allow Set evaluation to recognize the dags used in InstRW records: 191 // (instrs Op1, Op1...) 192 Sets.addOperator("instrs", std::make_unique<InstrsOp>()); 193 Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target)); 194 195 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 196 // that are explicitly referenced in tablegen records. Resources associated 197 // with each processor will be derived later. Populate ProcModelMap with the 198 // CodeGenProcModel instances. 199 collectProcModels(); 200 201 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 202 // defined, and populate SchedReads and SchedWrites vectors. Implicit 203 // SchedReadWrites that represent sequences derived from expanded variant will 204 // be inferred later. 205 collectSchedRW(); 206 207 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 208 // required by an instruction definition, and populate SchedClassIdxMap. Set 209 // NumItineraryClasses to the number of explicit itinerary classes referenced 210 // by instructions. Set NumInstrSchedClasses to the number of itinerary 211 // classes plus any classes implied by instructions that derive from class 212 // Sched and provide SchedRW list. This does not infer any new classes from 213 // SchedVariant. 214 collectSchedClasses(); 215 216 // Find instruction itineraries for each processor. Sort and populate 217 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 218 // all itinerary classes to be discovered. 219 collectProcItins(); 220 221 // Find ItinRW records for each processor and itinerary class. 222 // (For per-operand resources mapped to itinerary classes). 223 collectProcItinRW(); 224 225 // Find UnsupportedFeatures records for each processor. 226 // (For per-operand resources mapped to itinerary classes). 227 collectProcUnsupportedFeatures(); 228 229 // Infer new SchedClasses from SchedVariant. 230 inferSchedClasses(); 231 232 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 233 // ProcResourceDefs. 234 LLVM_DEBUG( 235 dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n"); 236 collectProcResources(); 237 238 // Collect optional processor description. 239 collectOptionalProcessorInfo(); 240 241 // Check MCInstPredicate definitions. 242 checkMCInstPredicates(); 243 244 // Check STIPredicate definitions. 245 checkSTIPredicates(); 246 247 // Find STIPredicate definitions for each processor model, and construct 248 // STIPredicateFunction objects. 249 collectSTIPredicates(); 250 251 checkCompleteness(); 252 } 253 254 void CodeGenSchedModels::checkSTIPredicates() const { 255 DenseMap<StringRef, const Record *> Declarations; 256 257 // There cannot be multiple declarations with the same name. 258 const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl"); 259 for (const Record *R : Decls) { 260 StringRef Name = R->getValueAsString("Name"); 261 const auto It = Declarations.find(Name); 262 if (It == Declarations.end()) { 263 Declarations[Name] = R; 264 continue; 265 } 266 267 PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared."); 268 PrintFatalNote(It->second->getLoc(), "Previous declaration was here."); 269 } 270 271 // Disallow InstructionEquivalenceClasses with an empty instruction list. 272 const RecVec Defs = 273 Records.getAllDerivedDefinitions("InstructionEquivalenceClass"); 274 for (const Record *R : Defs) { 275 RecVec Opcodes = R->getValueAsListOfDefs("Opcodes"); 276 if (Opcodes.empty()) { 277 PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass " 278 "defined with an empty opcode list."); 279 } 280 } 281 } 282 283 // Used by function `processSTIPredicate` to construct a mask of machine 284 // instruction operands. 285 static APInt constructOperandMask(ArrayRef<int64_t> Indices) { 286 APInt OperandMask; 287 if (Indices.empty()) 288 return OperandMask; 289 290 int64_t MaxIndex = *llvm::max_element(Indices); 291 assert(MaxIndex >= 0 && "Invalid negative indices in input!"); 292 OperandMask = OperandMask.zext(MaxIndex + 1); 293 for (const int64_t Index : Indices) { 294 assert(Index >= 0 && "Invalid negative indices!"); 295 OperandMask.setBit(Index); 296 } 297 298 return OperandMask; 299 } 300 301 static void processSTIPredicate(STIPredicateFunction &Fn, 302 const ProcModelMapTy &ProcModelMap) { 303 DenseMap<const Record *, unsigned> Opcode2Index; 304 using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>; 305 std::vector<OpcodeMapPair> OpcodeMappings; 306 std::vector<std::pair<APInt, APInt>> OpcodeMasks; 307 308 DenseMap<const Record *, unsigned> Predicate2Index; 309 unsigned NumUniquePredicates = 0; 310 311 // Number unique predicates and opcodes used by InstructionEquivalenceClass 312 // definitions. Each unique opcode will be associated with an OpcodeInfo 313 // object. 314 for (const Record *Def : Fn.getDefinitions()) { 315 RecVec Classes = Def->getValueAsListOfDefs("Classes"); 316 for (const Record *EC : Classes) { 317 const Record *Pred = EC->getValueAsDef("Predicate"); 318 if (!Predicate2Index.contains(Pred)) 319 Predicate2Index[Pred] = NumUniquePredicates++; 320 321 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes"); 322 for (const Record *Opcode : Opcodes) { 323 if (!Opcode2Index.contains(Opcode)) { 324 Opcode2Index[Opcode] = OpcodeMappings.size(); 325 OpcodeMappings.emplace_back(Opcode, OpcodeInfo()); 326 } 327 } 328 } 329 } 330 331 // Initialize vector `OpcodeMasks` with default values. We want to keep track 332 // of which processors "use" which opcodes. We also want to be able to 333 // identify predicates that are used by different processors for a same 334 // opcode. 335 // This information is used later on by this algorithm to sort OpcodeMapping 336 // elements based on their processor and predicate sets. 337 OpcodeMasks.resize(OpcodeMappings.size()); 338 APInt DefaultProcMask(ProcModelMap.size(), 0); 339 APInt DefaultPredMask(NumUniquePredicates, 0); 340 for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks) 341 MaskPair = std::pair(DefaultProcMask, DefaultPredMask); 342 343 // Construct a OpcodeInfo object for every unique opcode declared by an 344 // InstructionEquivalenceClass definition. 345 for (const Record *Def : Fn.getDefinitions()) { 346 RecVec Classes = Def->getValueAsListOfDefs("Classes"); 347 const Record *SchedModel = Def->getValueAsDef("SchedModel"); 348 unsigned ProcIndex = ProcModelMap.find(SchedModel)->second; 349 APInt ProcMask(ProcModelMap.size(), 0); 350 ProcMask.setBit(ProcIndex); 351 352 for (const Record *EC : Classes) { 353 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes"); 354 355 std::vector<int64_t> OpIndices = 356 EC->getValueAsListOfInts("OperandIndices"); 357 APInt OperandMask = constructOperandMask(OpIndices); 358 359 const Record *Pred = EC->getValueAsDef("Predicate"); 360 APInt PredMask(NumUniquePredicates, 0); 361 PredMask.setBit(Predicate2Index[Pred]); 362 363 for (const Record *Opcode : Opcodes) { 364 unsigned OpcodeIdx = Opcode2Index[Opcode]; 365 if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) { 366 std::string Message = 367 "Opcode " + Opcode->getName().str() + 368 " used by multiple InstructionEquivalenceClass definitions."; 369 PrintFatalError(EC->getLoc(), Message); 370 } 371 OpcodeMasks[OpcodeIdx].first |= ProcMask; 372 OpcodeMasks[OpcodeIdx].second |= PredMask; 373 OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second; 374 375 OI.addPredicateForProcModel(ProcMask, OperandMask, Pred); 376 } 377 } 378 } 379 380 // Sort OpcodeMappings elements based on their CPU and predicate masks. 381 // As a last resort, order elements by opcode identifier. 382 llvm::sort( 383 OpcodeMappings, [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) { 384 unsigned LhsIdx = Opcode2Index[Lhs.first]; 385 unsigned RhsIdx = Opcode2Index[Rhs.first]; 386 const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx]; 387 const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx]; 388 389 auto PopulationCountAndLeftBit = 390 [](const APInt &Other) -> std::pair<int, int> { 391 return std::pair<int, int>(Other.popcount(), -Other.countl_zero()); 392 }; 393 auto lhsmask_first = PopulationCountAndLeftBit(LhsMasks.first); 394 auto rhsmask_first = PopulationCountAndLeftBit(RhsMasks.first); 395 if (lhsmask_first != rhsmask_first) 396 return lhsmask_first < rhsmask_first; 397 398 auto lhsmask_second = PopulationCountAndLeftBit(LhsMasks.second); 399 auto rhsmask_second = PopulationCountAndLeftBit(RhsMasks.second); 400 if (lhsmask_second != rhsmask_second) 401 return lhsmask_second < rhsmask_second; 402 403 return LhsIdx < RhsIdx; 404 }); 405 406 // Now construct opcode groups. Groups are used by the SubtargetEmitter when 407 // expanding the body of a STIPredicate function. In particular, each opcode 408 // group is expanded into a sequence of labels in a switch statement. 409 // It identifies opcodes for which different processors define same predicates 410 // and same opcode masks. 411 for (OpcodeMapPair &Info : OpcodeMappings) 412 Fn.addOpcode(Info.first, std::move(Info.second)); 413 } 414 415 void CodeGenSchedModels::collectSTIPredicates() { 416 // Map STIPredicateDecl records to elements of vector 417 // CodeGenSchedModels::STIPredicates. 418 DenseMap<const Record *, unsigned> Decl2Index; 419 420 RecVec RV = Records.getAllDerivedDefinitions("STIPredicate"); 421 for (const Record *R : RV) { 422 const Record *Decl = R->getValueAsDef("Declaration"); 423 424 const auto It = Decl2Index.find(Decl); 425 if (It == Decl2Index.end()) { 426 Decl2Index[Decl] = STIPredicates.size(); 427 STIPredicateFunction Predicate(Decl); 428 Predicate.addDefinition(R); 429 STIPredicates.emplace_back(std::move(Predicate)); 430 continue; 431 } 432 433 STIPredicateFunction &PreviousDef = STIPredicates[It->second]; 434 PreviousDef.addDefinition(R); 435 } 436 437 for (STIPredicateFunction &Fn : STIPredicates) 438 processSTIPredicate(Fn, ProcModelMap); 439 } 440 441 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask, 442 const llvm::APInt &OperandMask, 443 const Record *Predicate) { 444 auto It = llvm::find_if( 445 Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) { 446 return P.Predicate == Predicate && P.OperandMask == OperandMask; 447 }); 448 if (It == Predicates.end()) { 449 Predicates.emplace_back(CpuMask, OperandMask, Predicate); 450 return; 451 } 452 It->ProcModelMask |= CpuMask; 453 } 454 455 void CodeGenSchedModels::checkMCInstPredicates() const { 456 RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate"); 457 if (MCPredicates.empty()) 458 return; 459 460 // A target cannot have multiple TIIPredicate definitions with a same name. 461 llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size()); 462 for (const Record *TIIPred : MCPredicates) { 463 StringRef Name = TIIPred->getValueAsString("FunctionName"); 464 StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name); 465 if (It == TIIPredicates.end()) { 466 TIIPredicates[Name] = TIIPred; 467 continue; 468 } 469 470 PrintError(TIIPred->getLoc(), 471 "TIIPredicate " + Name + " is multiply defined."); 472 PrintFatalNote(It->second->getLoc(), 473 " Previous definition of " + Name + " was here."); 474 } 475 } 476 477 void CodeGenSchedModels::collectRetireControlUnits() { 478 RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit"); 479 480 for (Record *RCU : Units) { 481 CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel")); 482 if (PM.RetireControlUnit) { 483 PrintError(RCU->getLoc(), 484 "Expected a single RetireControlUnit definition"); 485 PrintNote(PM.RetireControlUnit->getLoc(), 486 "Previous definition of RetireControlUnit was here"); 487 } 488 PM.RetireControlUnit = RCU; 489 } 490 } 491 492 void CodeGenSchedModels::collectLoadStoreQueueInfo() { 493 RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue"); 494 495 for (Record *Queue : Queues) { 496 CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel")); 497 if (Queue->isSubClassOf("LoadQueue")) { 498 if (PM.LoadQueue) { 499 PrintError(Queue->getLoc(), "Expected a single LoadQueue definition"); 500 PrintNote(PM.LoadQueue->getLoc(), 501 "Previous definition of LoadQueue was here"); 502 } 503 504 PM.LoadQueue = Queue; 505 } 506 507 if (Queue->isSubClassOf("StoreQueue")) { 508 if (PM.StoreQueue) { 509 PrintError(Queue->getLoc(), "Expected a single StoreQueue definition"); 510 PrintNote(PM.StoreQueue->getLoc(), 511 "Previous definition of StoreQueue was here"); 512 } 513 514 PM.StoreQueue = Queue; 515 } 516 } 517 } 518 519 /// Collect optional processor information. 520 void CodeGenSchedModels::collectOptionalProcessorInfo() { 521 // Find register file definitions for each processor. 522 collectRegisterFiles(); 523 524 // Collect processor RetireControlUnit descriptors if available. 525 collectRetireControlUnits(); 526 527 // Collect information about load/store queues. 528 collectLoadStoreQueueInfo(); 529 530 checkCompleteness(); 531 } 532 533 /// Gather all processor models. 534 void CodeGenSchedModels::collectProcModels() { 535 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 536 llvm::sort(ProcRecords, LessRecordFieldName()); 537 538 // Check for duplicated names. 539 auto I = std::adjacent_find(ProcRecords.begin(), ProcRecords.end(), 540 [](const Record *Rec1, const Record *Rec2) { 541 return Rec1->getValueAsString("Name") == 542 Rec2->getValueAsString("Name"); 543 }); 544 if (I != ProcRecords.end()) 545 PrintFatalError((*I)->getLoc(), "Duplicate processor name " + 546 (*I)->getValueAsString("Name")); 547 548 // Reserve space because we can. Reallocation would be ok. 549 ProcModels.reserve(ProcRecords.size() + 1); 550 551 // Use idx=0 for NoModel/NoItineraries. 552 Record *NoModelDef = Records.getDef("NoSchedModel"); 553 Record *NoItinsDef = Records.getDef("NoItineraries"); 554 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 555 ProcModelMap[NoModelDef] = 0; 556 557 // For each processor, find a unique machine model. 558 LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n"); 559 for (Record *ProcRecord : ProcRecords) 560 addProcModel(ProcRecord); 561 } 562 563 /// Get a unique processor model based on the defined MachineModel and 564 /// ProcessorItineraries. 565 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 566 Record *ModelKey = getModelOrItinDef(ProcDef); 567 if (!ProcModelMap.insert(std::pair(ModelKey, ProcModels.size())).second) 568 return; 569 570 std::string Name = std::string(ModelKey->getName()); 571 if (ModelKey->isSubClassOf("SchedMachineModel")) { 572 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 573 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 574 } else { 575 // An itinerary is defined without a machine model. Infer a new model. 576 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 577 Name = Name + "Model"; 578 ProcModels.emplace_back(ProcModels.size(), Name, 579 ProcDef->getValueAsDef("SchedModel"), ModelKey); 580 } 581 LLVM_DEBUG(ProcModels.back().dump()); 582 } 583 584 // Recursively find all reachable SchedReadWrite records. 585 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 586 SmallPtrSet<Record *, 16> &RWSet) { 587 if (!RWSet.insert(RWDef).second) 588 return; 589 RWDefs.push_back(RWDef); 590 // Reads don't currently have sequence records, but it can be added later. 591 if (RWDef->isSubClassOf("WriteSequence")) { 592 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 593 for (Record *WSRec : Seq) 594 scanSchedRW(WSRec, RWDefs, RWSet); 595 } else if (RWDef->isSubClassOf("SchedVariant")) { 596 // Visit each variant (guarded by a different predicate). 597 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 598 for (Record *Variant : Vars) { 599 // Visit each RW in the sequence selected by the current variant. 600 RecVec Selected = Variant->getValueAsListOfDefs("Selected"); 601 for (Record *SelDef : Selected) 602 scanSchedRW(SelDef, RWDefs, RWSet); 603 } 604 } 605 } 606 607 // Collect and sort all SchedReadWrites reachable via tablegen records. 608 // More may be inferred later when inferring new SchedClasses from variants. 609 void CodeGenSchedModels::collectSchedRW() { 610 // Reserve idx=0 for invalid writes/reads. 611 SchedWrites.resize(1); 612 SchedReads.resize(1); 613 614 SmallPtrSet<Record *, 16> RWSet; 615 616 // Find all SchedReadWrites referenced by instruction defs. 617 RecVec SWDefs, SRDefs; 618 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 619 Record *SchedDef = Inst->TheDef; 620 if (SchedDef->isValueUnset("SchedRW")) 621 continue; 622 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 623 for (Record *RW : RWs) { 624 if (RW->isSubClassOf("SchedWrite")) 625 scanSchedRW(RW, SWDefs, RWSet); 626 else { 627 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 628 scanSchedRW(RW, SRDefs, RWSet); 629 } 630 } 631 } 632 // Find all ReadWrites referenced by InstRW. 633 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 634 for (Record *InstRWDef : InstRWDefs) { 635 // For all OperandReadWrites. 636 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites"); 637 for (Record *RWDef : RWDefs) { 638 if (RWDef->isSubClassOf("SchedWrite")) 639 scanSchedRW(RWDef, SWDefs, RWSet); 640 else { 641 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 642 scanSchedRW(RWDef, SRDefs, RWSet); 643 } 644 } 645 } 646 // Find all ReadWrites referenced by ItinRW. 647 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 648 for (Record *ItinRWDef : ItinRWDefs) { 649 // For all OperandReadWrites. 650 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites"); 651 for (Record *RWDef : RWDefs) { 652 if (RWDef->isSubClassOf("SchedWrite")) 653 scanSchedRW(RWDef, SWDefs, RWSet); 654 else { 655 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 656 scanSchedRW(RWDef, SRDefs, RWSet); 657 } 658 } 659 } 660 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 661 // for the loop below that initializes Alias vectors. 662 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 663 llvm::sort(AliasDefs, LessRecord()); 664 for (Record *ADef : AliasDefs) { 665 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 666 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 667 if (MatchDef->isSubClassOf("SchedWrite")) { 668 if (!AliasDef->isSubClassOf("SchedWrite")) 669 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite"); 670 scanSchedRW(AliasDef, SWDefs, RWSet); 671 } else { 672 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 673 if (!AliasDef->isSubClassOf("SchedRead")) 674 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead"); 675 scanSchedRW(AliasDef, SRDefs, RWSet); 676 } 677 } 678 // Sort and add the SchedReadWrites directly referenced by instructions or 679 // itinerary resources. Index reads and writes in separate domains. 680 llvm::sort(SWDefs, LessRecord()); 681 for (Record *SWDef : SWDefs) { 682 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite"); 683 SchedWrites.emplace_back(SchedWrites.size(), SWDef); 684 } 685 llvm::sort(SRDefs, LessRecord()); 686 for (Record *SRDef : SRDefs) { 687 assert(!getSchedRWIdx(SRDef, /*IsRead-*/ true) && "duplicate SchedWrite"); 688 SchedReads.emplace_back(SchedReads.size(), SRDef); 689 } 690 // Initialize WriteSequence vectors. 691 for (CodeGenSchedRW &CGRW : SchedWrites) { 692 if (!CGRW.IsSequence) 693 continue; 694 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence, 695 /*IsRead=*/false); 696 } 697 // Initialize Aliases vectors. 698 for (Record *ADef : AliasDefs) { 699 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 700 getSchedRW(AliasDef).IsAlias = true; 701 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 702 CodeGenSchedRW &RW = getSchedRW(MatchDef); 703 if (RW.IsAlias) 704 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias"); 705 RW.Aliases.push_back(ADef); 706 } 707 LLVM_DEBUG( 708 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n"; 709 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 710 dbgs() << WIdx << ": "; 711 SchedWrites[WIdx].dump(); 712 dbgs() << '\n'; 713 } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; 714 ++RIdx) { 715 dbgs() << RIdx << ": "; 716 SchedReads[RIdx].dump(); 717 dbgs() << '\n'; 718 } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 719 for (Record *RWDef 720 : RWDefs) { 721 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) { 722 StringRef Name = RWDef->getName(); 723 if (Name != "NoWrite" && Name != "ReadDefault") 724 dbgs() << "Unused SchedReadWrite " << Name << '\n'; 725 } 726 }); 727 } 728 729 /// Compute a SchedWrite name from a sequence of writes. 730 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 731 std::string Name("("); 732 ListSeparator LS("_"); 733 for (unsigned I : Seq) { 734 Name += LS; 735 Name += getSchedRW(I, IsRead).Name; 736 } 737 Name += ')'; 738 return Name; 739 } 740 741 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def, 742 bool IsRead) const { 743 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 744 const auto I = find_if( 745 RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; }); 746 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); 747 } 748 749 static void splitSchedReadWrites(const RecVec &RWDefs, RecVec &WriteDefs, 750 RecVec &ReadDefs) { 751 for (Record *RWDef : RWDefs) { 752 if (RWDef->isSubClassOf("SchedWrite")) 753 WriteDefs.push_back(RWDef); 754 else { 755 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 756 ReadDefs.push_back(RWDef); 757 } 758 } 759 } 760 761 // Split the SchedReadWrites defs and call findRWs for each list. 762 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &Writes, 763 IdxVec &Reads) const { 764 RecVec WriteDefs; 765 RecVec ReadDefs; 766 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 767 findRWs(WriteDefs, Writes, false); 768 findRWs(ReadDefs, Reads, true); 769 } 770 771 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 772 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 773 bool IsRead) const { 774 for (Record *RWDef : RWDefs) { 775 unsigned Idx = getSchedRWIdx(RWDef, IsRead); 776 assert(Idx && "failed to collect SchedReadWrite"); 777 RWs.push_back(Idx); 778 } 779 } 780 781 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 782 bool IsRead) const { 783 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 784 if (!SchedRW.IsSequence) { 785 RWSeq.push_back(RWIdx); 786 return; 787 } 788 int Repeat = SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 789 for (int i = 0; i < Repeat; ++i) { 790 for (unsigned I : SchedRW.Sequence) { 791 expandRWSequence(I, RWSeq, IsRead); 792 } 793 } 794 } 795 796 // Expand a SchedWrite as a sequence following any aliases that coincide with 797 // the given processor model. 798 void CodeGenSchedModels::expandRWSeqForProc( 799 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 800 const CodeGenProcModel &ProcModel) const { 801 802 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 803 Record *AliasDef = nullptr; 804 for (const Record *Rec : SchedWrite.Aliases) { 805 const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW")); 806 if (Rec->getValueInit("SchedModel")->isComplete()) { 807 Record *ModelDef = Rec->getValueAsDef("SchedModel"); 808 if (&getProcModel(ModelDef) != &ProcModel) 809 continue; 810 } 811 if (AliasDef) 812 PrintFatalError(AliasRW.TheDef->getLoc(), 813 "Multiple aliases " 814 "defined for processor " + 815 ProcModel.ModelName + 816 " Ensure only one SchedAlias exists per RW."); 817 AliasDef = AliasRW.TheDef; 818 } 819 if (AliasDef) { 820 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), RWSeq, IsRead, 821 ProcModel); 822 return; 823 } 824 if (!SchedWrite.IsSequence) { 825 RWSeq.push_back(RWIdx); 826 return; 827 } 828 int Repeat = 829 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 830 for (int I = 0, E = Repeat; I < E; ++I) { 831 for (unsigned Idx : SchedWrite.Sequence) { 832 expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel); 833 } 834 } 835 } 836 837 // Find the existing SchedWrite that models this sequence of writes. 838 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 839 bool IsRead) { 840 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 841 842 auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) { 843 return ArrayRef(RW.Sequence) == Seq; 844 }); 845 // Index zero reserved for invalid RW. 846 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); 847 } 848 849 /// Add this ReadWrite if it doesn't already exist. 850 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 851 bool IsRead) { 852 assert(!Seq.empty() && "cannot insert empty sequence"); 853 if (Seq.size() == 1) 854 return Seq.back(); 855 856 unsigned Idx = findRWForSequence(Seq, IsRead); 857 if (Idx) 858 return Idx; 859 860 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 861 unsigned RWIdx = RWVec.size(); 862 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 863 RWVec.push_back(SchedRW); 864 return RWIdx; 865 } 866 867 /// Visit all the instruction definitions for this target to gather and 868 /// enumerate the itinerary classes. These are the explicitly specified 869 /// SchedClasses. More SchedClasses may be inferred. 870 void CodeGenSchedModels::collectSchedClasses() { 871 872 // NoItinerary is always the first class at Idx=0 873 assert(SchedClasses.empty() && "Expected empty sched class"); 874 SchedClasses.emplace_back(0, "NoInstrModel", Records.getDef("NoItinerary")); 875 SchedClasses.back().ProcIndices.push_back(0); 876 877 // Create a SchedClass for each unique combination of itinerary class and 878 // SchedRW list. 879 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 880 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 881 IdxVec Writes, Reads; 882 if (!Inst->TheDef->isValueUnset("SchedRW")) 883 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 884 885 // ProcIdx == 0 indicates the class applies to all processors. 886 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/ {0}); 887 InstrClassMap[Inst->TheDef] = SCIdx; 888 } 889 // Create classes for InstRW defs. 890 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 891 llvm::sort(InstRWDefs, LessRecord()); 892 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n"); 893 for (Record *RWDef : InstRWDefs) 894 createInstRWClass(RWDef); 895 896 NumInstrSchedClasses = SchedClasses.size(); 897 898 bool EnableDump = false; 899 LLVM_DEBUG(EnableDump = true); 900 if (!EnableDump) 901 return; 902 903 LLVM_DEBUG( 904 dbgs() 905 << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n"); 906 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 907 StringRef InstName = Inst->TheDef->getName(); 908 unsigned SCIdx = getSchedClassIdx(*Inst); 909 if (!SCIdx) { 910 LLVM_DEBUG({ 911 if (!Inst->hasNoSchedulingInfo) 912 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 913 }); 914 continue; 915 } 916 CodeGenSchedClass &SC = getSchedClass(SCIdx); 917 if (SC.ProcIndices[0] != 0) 918 PrintFatalError(Inst->TheDef->getLoc(), 919 "Instruction's sched class " 920 "must not be subtarget specific."); 921 922 IdxVec ProcIndices; 923 if (SC.ItinClassDef->getName() != "NoItinerary") { 924 ProcIndices.push_back(0); 925 dbgs() << "Itinerary for " << InstName << ": " 926 << SC.ItinClassDef->getName() << '\n'; 927 } 928 if (!SC.Writes.empty()) { 929 ProcIndices.push_back(0); 930 LLVM_DEBUG({ 931 dbgs() << "SchedRW machine model for " << InstName; 932 for (unsigned int Write : SC.Writes) 933 dbgs() << " " << SchedWrites[Write].Name; 934 for (unsigned int Read : SC.Reads) 935 dbgs() << " " << SchedReads[Read].Name; 936 dbgs() << '\n'; 937 }); 938 } 939 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 940 for (Record *RWDef : RWDefs) { 941 const CodeGenProcModel &ProcModel = 942 getProcModel(RWDef->getValueAsDef("SchedModel")); 943 ProcIndices.push_back(ProcModel.Index); 944 LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for " 945 << InstName); 946 IdxVec Writes; 947 IdxVec Reads; 948 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 949 LLVM_DEBUG({ 950 for (unsigned WIdx : Writes) 951 dbgs() << " " << SchedWrites[WIdx].Name; 952 for (unsigned RIdx : Reads) 953 dbgs() << " " << SchedReads[RIdx].Name; 954 dbgs() << '\n'; 955 }); 956 } 957 // If ProcIndices contains zero, the class applies to all processors. 958 LLVM_DEBUG({ 959 if (!llvm::is_contained(ProcIndices, 0)) { 960 for (const CodeGenProcModel &PM : ProcModels) { 961 if (!llvm::is_contained(ProcIndices, PM.Index)) 962 dbgs() << "No machine model for " << Inst->TheDef->getName() 963 << " on processor " << PM.ModelName << '\n'; 964 } 965 } 966 }); 967 } 968 } 969 970 // Get the SchedClass index for an instruction. 971 unsigned 972 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const { 973 return InstrClassMap.lookup(Inst.TheDef); 974 } 975 976 std::string 977 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 978 ArrayRef<unsigned> OperWrites, 979 ArrayRef<unsigned> OperReads) { 980 981 std::string Name; 982 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 983 Name = std::string(ItinClassDef->getName()); 984 for (unsigned Idx : OperWrites) { 985 if (!Name.empty()) 986 Name += '_'; 987 Name += SchedWrites[Idx].Name; 988 } 989 for (unsigned Idx : OperReads) { 990 Name += '_'; 991 Name += SchedReads[Idx].Name; 992 } 993 return Name; 994 } 995 996 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 997 998 std::string Name; 999 ListSeparator LS("_"); 1000 for (const Record *InstDef : InstDefs) { 1001 Name += LS; 1002 Name += InstDef->getName(); 1003 } 1004 return Name; 1005 } 1006 1007 /// Add an inferred sched class from an itinerary class and per-operand list of 1008 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 1009 /// processors that may utilize this class. 1010 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 1011 ArrayRef<unsigned> OperWrites, 1012 ArrayRef<unsigned> OperReads, 1013 ArrayRef<unsigned> ProcIndices) { 1014 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 1015 1016 auto IsKeyEqual = [=](const CodeGenSchedClass &SC) { 1017 return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads); 1018 }; 1019 1020 auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual); 1021 unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I); 1022 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 1023 IdxVec PI; 1024 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 1025 SchedClasses[Idx].ProcIndices.end(), ProcIndices.begin(), 1026 ProcIndices.end(), std::back_inserter(PI)); 1027 SchedClasses[Idx].ProcIndices = std::move(PI); 1028 return Idx; 1029 } 1030 Idx = SchedClasses.size(); 1031 SchedClasses.emplace_back( 1032 Idx, createSchedClassName(ItinClassDef, OperWrites, OperReads), 1033 ItinClassDef); 1034 CodeGenSchedClass &SC = SchedClasses.back(); 1035 SC.Writes = OperWrites; 1036 SC.Reads = OperReads; 1037 SC.ProcIndices = ProcIndices; 1038 1039 return Idx; 1040 } 1041 1042 // Create classes for each set of opcodes that are in the same InstReadWrite 1043 // definition across all processors. 1044 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 1045 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 1046 // intersects with an existing class via a previous InstRWDef. Instrs that do 1047 // not intersect with an existing class refer back to their former class as 1048 // determined from ItinDef or SchedRW. 1049 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs; 1050 // Sort Instrs into sets. 1051 const RecVec *InstDefs = Sets.expand(InstRWDef); 1052 if (InstDefs->empty()) 1053 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 1054 1055 for (Record *InstDef : *InstDefs) { 1056 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef); 1057 if (Pos == InstrClassMap.end()) 1058 PrintFatalError(InstDef->getLoc(), "No sched class for instruction."); 1059 unsigned SCIdx = Pos->second; 1060 ClassInstrs[SCIdx].push_back(InstDef); 1061 } 1062 // For each set of Instrs, create a new class if necessary, and map or remap 1063 // the Instrs to it. 1064 for (auto &Entry : ClassInstrs) { 1065 unsigned OldSCIdx = Entry.first; 1066 ArrayRef<Record *> InstDefs = Entry.second; 1067 // If the all instrs in the current class are accounted for, then leave 1068 // them mapped to their old class. 1069 if (OldSCIdx) { 1070 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 1071 if (!RWDefs.empty()) { 1072 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 1073 unsigned OrigNumInstrs = count_if(*OrigInstDefs, [&](Record *OIDef) { 1074 return InstrClassMap[OIDef] == OldSCIdx; 1075 }); 1076 if (OrigNumInstrs == InstDefs.size()) { 1077 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 1078 "expected a generic SchedClass"); 1079 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 1080 // Make sure we didn't already have a InstRW containing this 1081 // instruction on this model. 1082 for (Record *RWD : RWDefs) { 1083 if (RWD->getValueAsDef("SchedModel") == RWModelDef && 1084 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) { 1085 assert(!InstDefs.empty()); // Checked at function start. 1086 PrintError( 1087 InstRWDef->getLoc(), 1088 "Overlapping InstRW definition for \"" + 1089 InstDefs.front()->getName() + 1090 "\" also matches previous \"" + 1091 RWD->getValue("Instrs")->getValue()->getAsString() + 1092 "\"."); 1093 PrintFatalNote(RWD->getLoc(), "Previous match was here."); 1094 } 1095 } 1096 LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 1097 << SchedClasses[OldSCIdx].Name << " on " 1098 << RWModelDef->getName() << "\n"); 1099 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 1100 continue; 1101 } 1102 } 1103 } 1104 unsigned SCIdx = SchedClasses.size(); 1105 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr); 1106 CodeGenSchedClass &SC = SchedClasses.back(); 1107 LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 1108 << InstRWDef->getValueAsDef("SchedModel")->getName() 1109 << "\n"); 1110 1111 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 1112 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 1113 SC.Writes = SchedClasses[OldSCIdx].Writes; 1114 SC.Reads = SchedClasses[OldSCIdx].Reads; 1115 SC.ProcIndices.push_back(0); 1116 // If we had an old class, copy it's InstRWs to this new class. 1117 if (OldSCIdx) { 1118 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 1119 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) { 1120 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) { 1121 assert(!InstDefs.empty()); // Checked at function start. 1122 PrintError( 1123 InstRWDef->getLoc(), 1124 "Overlapping InstRW definition for \"" + 1125 InstDefs.front()->getName() + "\" also matches previous \"" + 1126 OldRWDef->getValue("Instrs")->getValue()->getAsString() + 1127 "\"."); 1128 PrintFatalNote(OldRWDef->getLoc(), "Previous match was here."); 1129 } 1130 assert(OldRWDef != InstRWDef && "SchedClass has duplicate InstRW def"); 1131 SC.InstRWs.push_back(OldRWDef); 1132 } 1133 } 1134 // Map each Instr to this new class. 1135 for (Record *InstDef : InstDefs) 1136 InstrClassMap[InstDef] = SCIdx; 1137 SC.InstRWs.push_back(InstRWDef); 1138 } 1139 } 1140 1141 // True if collectProcItins found anything. 1142 bool CodeGenSchedModels::hasItineraries() const { 1143 for (const CodeGenProcModel &PM : 1144 make_range(procModelBegin(), procModelEnd())) 1145 if (PM.hasItineraries()) 1146 return true; 1147 return false; 1148 } 1149 1150 // Gather the processor itineraries. 1151 void CodeGenSchedModels::collectProcItins() { 1152 LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n"); 1153 for (CodeGenProcModel &ProcModel : ProcModels) { 1154 if (!ProcModel.hasItineraries()) 1155 continue; 1156 1157 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 1158 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 1159 1160 // Populate ItinDefList with Itinerary records. 1161 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 1162 1163 // Insert each itinerary data record in the correct position within 1164 // the processor model's ItinDefList. 1165 for (Record *ItinData : ItinRecords) { 1166 const Record *ItinDef = ItinData->getValueAsDef("TheClass"); 1167 bool FoundClass = false; 1168 1169 for (const CodeGenSchedClass &SC : 1170 make_range(schedClassBegin(), schedClassEnd())) { 1171 // Multiple SchedClasses may share an itinerary. Update all of them. 1172 if (SC.ItinClassDef == ItinDef) { 1173 ProcModel.ItinDefList[SC.Index] = ItinData; 1174 FoundClass = true; 1175 } 1176 } 1177 if (!FoundClass) { 1178 LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName() 1179 << " missing class for itinerary " 1180 << ItinDef->getName() << '\n'); 1181 } 1182 } 1183 // Check for missing itinerary entries. 1184 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 1185 LLVM_DEBUG( 1186 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 1187 if (!ProcModel.ItinDefList[i]) 1188 dbgs() << ProcModel.ItinsDef->getName() 1189 << " missing itinerary for class " << SchedClasses[i].Name 1190 << '\n'; 1191 }); 1192 } 1193 } 1194 1195 // Gather the read/write types for each itinerary class. 1196 void CodeGenSchedModels::collectProcItinRW() { 1197 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 1198 llvm::sort(ItinRWDefs, LessRecord()); 1199 for (Record *RWDef : ItinRWDefs) { 1200 if (!RWDef->getValueInit("SchedModel")->isComplete()) 1201 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined"); 1202 Record *ModelDef = RWDef->getValueAsDef("SchedModel"); 1203 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 1204 if (I == ProcModelMap.end()) { 1205 PrintFatalError(RWDef->getLoc(), 1206 "Undefined SchedMachineModel " + ModelDef->getName()); 1207 } 1208 ProcModels[I->second].ItinRWDefs.push_back(RWDef); 1209 } 1210 } 1211 1212 // Gather the unsupported features for processor models. 1213 void CodeGenSchedModels::collectProcUnsupportedFeatures() { 1214 for (CodeGenProcModel &ProcModel : ProcModels) 1215 append_range( 1216 ProcModel.UnsupportedFeaturesDefs, 1217 ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")); 1218 } 1219 1220 /// Infer new classes from existing classes. In the process, this may create new 1221 /// SchedWrites from sequences of existing SchedWrites. 1222 void CodeGenSchedModels::inferSchedClasses() { 1223 LLVM_DEBUG( 1224 dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n"); 1225 LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 1226 1227 // Visit all existing classes and newly created classes. 1228 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 1229 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 1230 1231 if (SchedClasses[Idx].ItinClassDef) 1232 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 1233 if (!SchedClasses[Idx].InstRWs.empty()) 1234 inferFromInstRWs(Idx); 1235 if (!SchedClasses[Idx].Writes.empty()) { 1236 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, Idx, 1237 SchedClasses[Idx].ProcIndices); 1238 } 1239 assert(SchedClasses.size() < (NumInstrSchedClasses * 6) && 1240 "too many SchedVariants"); 1241 } 1242 } 1243 1244 /// Infer classes from per-processor itinerary resources. 1245 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 1246 unsigned FromClassIdx) { 1247 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1248 const CodeGenProcModel &PM = ProcModels[PIdx]; 1249 // For all ItinRW entries. 1250 bool HasMatch = false; 1251 for (const Record *Rec : PM.ItinRWDefs) { 1252 RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses"); 1253 if (!llvm::is_contained(Matched, ItinClassDef)) 1254 continue; 1255 if (HasMatch) 1256 PrintFatalError(Rec->getLoc(), 1257 "Duplicate itinerary class " + ItinClassDef->getName() + 1258 " in ItinResources for " + PM.ModelName); 1259 HasMatch = true; 1260 IdxVec Writes, Reads; 1261 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1262 inferFromRW(Writes, Reads, FromClassIdx, PIdx); 1263 } 1264 } 1265 } 1266 1267 /// Infer classes from per-processor InstReadWrite definitions. 1268 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 1269 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 1270 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 1271 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 1272 const RecVec *InstDefs = Sets.expand(Rec); 1273 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 1274 for (; II != IE; ++II) { 1275 if (InstrClassMap[*II] == SCIdx) 1276 break; 1277 } 1278 // If this class no longer has any instructions mapped to it, it has become 1279 // irrelevant. 1280 if (II == IE) 1281 continue; 1282 IdxVec Writes, Reads; 1283 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1284 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 1285 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses. 1286 SchedClasses[SCIdx].InstRWProcIndices.insert(PIdx); 1287 } 1288 } 1289 1290 namespace { 1291 1292 // Helper for substituteVariantOperand. 1293 struct TransVariant { 1294 Record *VarOrSeqDef; // Variant or sequence. 1295 unsigned RWIdx; // Index of this variant or sequence's matched type. 1296 unsigned ProcIdx; // Processor model index or zero for any. 1297 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 1298 1299 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti) 1300 : VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 1301 }; 1302 1303 // Associate a predicate with the SchedReadWrite that it guards. 1304 // RWIdx is the index of the read/write variant. 1305 struct PredCheck { 1306 bool IsRead; 1307 unsigned RWIdx; 1308 Record *Predicate; 1309 1310 PredCheck(bool r, unsigned w, Record *p) 1311 : IsRead(r), RWIdx(w), Predicate(p) {} 1312 }; 1313 1314 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 1315 struct PredTransition { 1316 // A predicate term is a conjunction of PredChecks. 1317 SmallVector<PredCheck, 4> PredTerm; 1318 SmallVector<SmallVector<unsigned, 4>, 16> WriteSequences; 1319 SmallVector<SmallVector<unsigned, 4>, 16> ReadSequences; 1320 unsigned ProcIndex = 0; 1321 1322 PredTransition() = default; 1323 PredTransition(ArrayRef<PredCheck> PT, unsigned ProcId) { 1324 PredTerm.assign(PT.begin(), PT.end()); 1325 ProcIndex = ProcId; 1326 } 1327 }; 1328 1329 // Encapsulate a set of partially constructed transitions. 1330 // The results are built by repeated calls to substituteVariants. 1331 class PredTransitions { 1332 CodeGenSchedModels &SchedModels; 1333 1334 public: 1335 std::vector<PredTransition> TransVec; 1336 1337 PredTransitions(CodeGenSchedModels &sm) : SchedModels(sm) {} 1338 1339 bool substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 1340 bool IsRead, unsigned StartIdx); 1341 1342 bool substituteVariants(const PredTransition &Trans); 1343 1344 #ifndef NDEBUG 1345 void dump() const; 1346 #endif 1347 1348 private: 1349 bool mutuallyExclusive(Record *PredDef, ArrayRef<Record *> Preds, 1350 ArrayRef<PredCheck> Term); 1351 void getIntersectingVariants(const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1352 std::vector<TransVariant> &IntersectingVariants); 1353 void pushVariant(const TransVariant &VInfo, bool IsRead); 1354 }; 1355 1356 } // end anonymous namespace 1357 1358 // Return true if this predicate is mutually exclusive with a PredTerm. This 1359 // degenerates into checking if the predicate is mutually exclusive with any 1360 // predicate in the Term's conjunction. 1361 // 1362 // All predicates associated with a given SchedRW are considered mutually 1363 // exclusive. This should work even if the conditions expressed by the 1364 // predicates are not exclusive because the predicates for a given SchedWrite 1365 // are always checked in the order they are defined in the .td file. Later 1366 // conditions implicitly negate any prior condition. 1367 bool PredTransitions::mutuallyExclusive(Record *PredDef, 1368 ArrayRef<Record *> Preds, 1369 ArrayRef<PredCheck> Term) { 1370 for (const PredCheck &PC : Term) { 1371 if (PC.Predicate == PredDef) 1372 return false; 1373 1374 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead); 1375 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 1376 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1377 if (any_of(Variants, [PredDef](const Record *R) { 1378 return R->getValueAsDef("Predicate") == PredDef; 1379 })) { 1380 // To check if PredDef is mutually exclusive with PC we also need to 1381 // check that PC.Predicate is exclusive with all predicates from variant 1382 // we're expanding. Consider following RW sequence with two variants 1383 // (1 & 2), where A, B and C are predicates from corresponding SchedVars: 1384 // 1385 // 1:A/B - 2:C/B 1386 // 1387 // Here C is not mutually exclusive with variant (1), because A doesn't 1388 // exist in variant (2). This means we have possible transitions from A 1389 // to C and from A to B, and fully expanded sequence would look like: 1390 // 1391 // if (A & C) return ...; 1392 // if (A & B) return ...; 1393 // if (B) return ...; 1394 // 1395 // Now let's consider another sequence: 1396 // 1397 // 1:A/B - 2:A/B 1398 // 1399 // Here A in variant (2) is mutually exclusive with variant (1), because 1400 // A also exists in (2). This means A->B transition is impossible and 1401 // expanded sequence would look like: 1402 // 1403 // if (A) return ...; 1404 // if (B) return ...; 1405 if (!llvm::is_contained(Preds, PC.Predicate)) 1406 continue; 1407 return true; 1408 } 1409 } 1410 return false; 1411 } 1412 1413 static std::vector<Record *> getAllPredicates(ArrayRef<TransVariant> Variants, 1414 unsigned ProcId) { 1415 std::vector<Record *> Preds; 1416 for (auto &Variant : Variants) { 1417 if (!Variant.VarOrSeqDef->isSubClassOf("SchedVar")) 1418 continue; 1419 Preds.push_back(Variant.VarOrSeqDef->getValueAsDef("Predicate")); 1420 } 1421 return Preds; 1422 } 1423 1424 // Populate IntersectingVariants with any variants or aliased sequences of the 1425 // given SchedRW whose processor indices and predicates are not mutually 1426 // exclusive with the given transition. 1427 void PredTransitions::getIntersectingVariants( 1428 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1429 std::vector<TransVariant> &IntersectingVariants) { 1430 1431 bool GenericRW = false; 1432 1433 std::vector<TransVariant> Variants; 1434 if (SchedRW.HasVariants) { 1435 unsigned VarProcIdx = 0; 1436 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1437 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1438 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1439 } 1440 if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) { 1441 // Push each variant. Assign TransVecIdx later. 1442 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1443 for (Record *VarDef : VarDefs) 1444 Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0); 1445 if (VarProcIdx == 0) 1446 GenericRW = true; 1447 } 1448 } 1449 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1450 AI != AE; ++AI) { 1451 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1452 // to is defined within a processor model, constrain all variants to 1453 // that processor. 1454 unsigned AliasProcIdx = 0; 1455 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1456 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1457 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1458 } 1459 if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex) 1460 continue; 1461 if (!Variants.empty()) { 1462 const CodeGenProcModel &PM = 1463 *(SchedModels.procModelBegin() + AliasProcIdx); 1464 PrintFatalError((*AI)->getLoc(), 1465 "Multiple variants defined for processor " + 1466 PM.ModelName + 1467 " Ensure only one SchedAlias exists per RW."); 1468 } 1469 1470 const CodeGenSchedRW &AliasRW = 1471 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1472 1473 if (AliasRW.HasVariants) { 1474 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1475 for (Record *VD : VarDefs) 1476 Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0); 1477 } 1478 if (AliasRW.IsSequence) 1479 Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0); 1480 if (AliasProcIdx == 0) 1481 GenericRW = true; 1482 } 1483 std::vector<Record *> AllPreds = 1484 getAllPredicates(Variants, TransVec[TransIdx].ProcIndex); 1485 for (TransVariant &Variant : Variants) { 1486 // Don't expand variants if the processor models don't intersect. 1487 // A zero processor index means any processor. 1488 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1489 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1490 if (mutuallyExclusive(PredDef, AllPreds, TransVec[TransIdx].PredTerm)) 1491 continue; 1492 } 1493 1494 if (IntersectingVariants.empty()) { 1495 // The first variant builds on the existing transition. 1496 Variant.TransVecIdx = TransIdx; 1497 IntersectingVariants.push_back(Variant); 1498 } else { 1499 // Push another copy of the current transition for more variants. 1500 Variant.TransVecIdx = TransVec.size(); 1501 IntersectingVariants.push_back(Variant); 1502 TransVec.push_back(TransVec[TransIdx]); 1503 } 1504 } 1505 if (GenericRW && IntersectingVariants.empty()) { 1506 PrintFatalError(SchedRW.TheDef->getLoc(), 1507 "No variant of this type has " 1508 "a matching predicate on any processor"); 1509 } 1510 } 1511 1512 // Push the Reads/Writes selected by this variant onto the PredTransition 1513 // specified by VInfo. 1514 void PredTransitions::pushVariant(const TransVariant &VInfo, bool IsRead) { 1515 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1516 1517 // If this operand transition is reached through a processor-specific alias, 1518 // then the whole transition is specific to this processor. 1519 IdxVec SelectedRWs; 1520 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1521 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1522 Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx, PredDef); 1523 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1524 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1525 } else { 1526 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1527 "variant must be a SchedVariant or aliased WriteSequence"); 1528 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1529 } 1530 1531 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1532 1533 SmallVectorImpl<SmallVector<unsigned, 4>> &RWSequences = 1534 IsRead ? Trans.ReadSequences : Trans.WriteSequences; 1535 if (SchedRW.IsVariadic) { 1536 unsigned OperIdx = RWSequences.size() - 1; 1537 // Make N-1 copies of this transition's last sequence. 1538 RWSequences.reserve(RWSequences.size() + SelectedRWs.size() - 1); 1539 RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1, 1540 RWSequences[OperIdx]); 1541 // Push each of the N elements of the SelectedRWs onto a copy of the last 1542 // sequence (split the current operand into N operands). 1543 // Note that write sequences should be expanded within this loop--the entire 1544 // sequence belongs to a single operand. 1545 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); RWI != RWE; 1546 ++RWI, ++OperIdx) { 1547 IdxVec ExpandedRWs; 1548 if (IsRead) 1549 ExpandedRWs.push_back(*RWI); 1550 else 1551 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1552 llvm::append_range(RWSequences[OperIdx], ExpandedRWs); 1553 } 1554 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1555 } else { 1556 // Push this transition's expanded sequence onto this transition's last 1557 // sequence (add to the current operand's sequence). 1558 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1559 IdxVec ExpandedRWs; 1560 for (unsigned int SelectedRW : SelectedRWs) { 1561 if (IsRead) 1562 ExpandedRWs.push_back(SelectedRW); 1563 else 1564 SchedModels.expandRWSequence(SelectedRW, ExpandedRWs, IsRead); 1565 } 1566 llvm::append_range(Seq, ExpandedRWs); 1567 } 1568 } 1569 1570 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1571 // operand. StartIdx is an index into TransVec where partial results 1572 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1573 // of TransVec. 1574 bool PredTransitions::substituteVariantOperand( 1575 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1576 bool Subst = false; 1577 // Visit each original RW within the current sequence. 1578 for (unsigned int RWI : RWSeq) { 1579 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(RWI, IsRead); 1580 // Push this RW on all partial PredTransitions or distribute variants. 1581 // New PredTransitions may be pushed within this loop which should not be 1582 // revisited (TransEnd must be loop invariant). 1583 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1584 TransIdx != TransEnd; ++TransIdx) { 1585 // Distribute this partial PredTransition across intersecting variants. 1586 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1587 std::vector<TransVariant> IntersectingVariants; 1588 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1589 // Now expand each variant on top of its copy of the transition. 1590 for (const TransVariant &IV : IntersectingVariants) 1591 pushVariant(IV, IsRead); 1592 if (IntersectingVariants.empty()) { 1593 if (IsRead) 1594 TransVec[TransIdx].ReadSequences.back().push_back(RWI); 1595 else 1596 TransVec[TransIdx].WriteSequences.back().push_back(RWI); 1597 continue; 1598 } else { 1599 Subst = true; 1600 } 1601 } 1602 } 1603 return Subst; 1604 } 1605 1606 // For each variant of a Read/Write in Trans, substitute the sequence of 1607 // Read/Writes guarded by the variant. This is exponential in the number of 1608 // variant Read/Writes, but in practice detection of mutually exclusive 1609 // predicates should result in linear growth in the total number variants. 1610 // 1611 // This is one step in a breadth-first search of nested variants. 1612 bool PredTransitions::substituteVariants(const PredTransition &Trans) { 1613 // Build up a set of partial results starting at the back of 1614 // PredTransitions. Remember the first new transition. 1615 unsigned StartIdx = TransVec.size(); 1616 bool Subst = false; 1617 assert(Trans.ProcIndex != 0); 1618 TransVec.emplace_back(Trans.PredTerm, Trans.ProcIndex); 1619 1620 // Visit each original write sequence. 1621 for (const auto &WriteSequence : Trans.WriteSequences) { 1622 // Push a new (empty) write sequence onto all partial Transitions. 1623 for (std::vector<PredTransition>::iterator I = TransVec.begin() + StartIdx, 1624 E = TransVec.end(); 1625 I != E; ++I) { 1626 I->WriteSequences.emplace_back(); 1627 } 1628 Subst |= 1629 substituteVariantOperand(WriteSequence, /*IsRead=*/false, StartIdx); 1630 } 1631 // Visit each original read sequence. 1632 for (const auto &ReadSequence : Trans.ReadSequences) { 1633 // Push a new (empty) read sequence onto all partial Transitions. 1634 for (std::vector<PredTransition>::iterator I = TransVec.begin() + StartIdx, 1635 E = TransVec.end(); 1636 I != E; ++I) { 1637 I->ReadSequences.emplace_back(); 1638 } 1639 Subst |= substituteVariantOperand(ReadSequence, /*IsRead=*/true, StartIdx); 1640 } 1641 return Subst; 1642 } 1643 1644 static void addSequences(CodeGenSchedModels &SchedModels, 1645 const SmallVectorImpl<SmallVector<unsigned, 4>> &Seqs, 1646 IdxVec &Result, bool IsRead) { 1647 for (const auto &S : Seqs) 1648 if (!S.empty()) 1649 Result.push_back(SchedModels.findOrInsertRW(S, IsRead)); 1650 } 1651 1652 #ifndef NDEBUG 1653 static void dumpRecVec(const RecVec &RV) { 1654 for (const Record *R : RV) 1655 dbgs() << R->getName() << ", "; 1656 } 1657 #endif 1658 1659 static void dumpTransition(const CodeGenSchedModels &SchedModels, 1660 const CodeGenSchedClass &FromSC, 1661 const CodeGenSchedTransition &SCTrans, 1662 const RecVec &Preds) { 1663 LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "(" 1664 << FromSC.Index << ") to " 1665 << SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "(" 1666 << SCTrans.ToClassIdx << ") on pred term: ("; 1667 dumpRecVec(Preds); 1668 dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n"); 1669 } 1670 // Create a new SchedClass for each variant found by inferFromRW. Pass 1671 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1672 unsigned FromClassIdx, 1673 CodeGenSchedModels &SchedModels) { 1674 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1675 // requires creating a new SchedClass. 1676 for (const auto &LastTransition : LastTransitions) { 1677 // Variant expansion (substituteVariants) may create unconditional 1678 // transitions. We don't need to build sched classes for them. 1679 if (LastTransition.PredTerm.empty()) 1680 continue; 1681 IdxVec OperWritesVariant, OperReadsVariant; 1682 addSequences(SchedModels, LastTransition.WriteSequences, OperWritesVariant, 1683 false); 1684 addSequences(SchedModels, LastTransition.ReadSequences, OperReadsVariant, 1685 true); 1686 CodeGenSchedTransition SCTrans; 1687 1688 // Transition should not contain processor indices already assigned to 1689 // InstRWs in this scheduling class. 1690 const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(FromClassIdx); 1691 if (FromSC.InstRWProcIndices.count(LastTransition.ProcIndex)) 1692 continue; 1693 SCTrans.ProcIndex = LastTransition.ProcIndex; 1694 SCTrans.ToClassIdx = 1695 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1696 OperReadsVariant, LastTransition.ProcIndex); 1697 1698 // The final PredTerm is unique set of predicates guarding the transition. 1699 RecVec Preds; 1700 transform(LastTransition.PredTerm, std::back_inserter(Preds), 1701 [](const PredCheck &P) { return P.Predicate; }); 1702 Preds.erase(llvm::unique(Preds), Preds.end()); 1703 dumpTransition(SchedModels, FromSC, SCTrans, Preds); 1704 SCTrans.PredTerm = std::move(Preds); 1705 SchedModels.getSchedClass(FromClassIdx) 1706 .Transitions.push_back(std::move(SCTrans)); 1707 } 1708 } 1709 1710 std::vector<unsigned> CodeGenSchedModels::getAllProcIndices() const { 1711 std::vector<unsigned> ProcIdVec; 1712 for (const auto &PM : ProcModelMap) 1713 if (PM.second != 0) 1714 ProcIdVec.push_back(PM.second); 1715 // The order of the keys (Record pointers) of ProcModelMap are not stable. 1716 // Sort to stabalize the values. 1717 llvm::sort(ProcIdVec); 1718 return ProcIdVec; 1719 } 1720 1721 static std::vector<PredTransition> 1722 makePerProcessorTransitions(const PredTransition &Trans, 1723 ArrayRef<unsigned> ProcIndices) { 1724 std::vector<PredTransition> PerCpuTransVec; 1725 for (unsigned ProcId : ProcIndices) { 1726 assert(ProcId != 0); 1727 PerCpuTransVec.push_back(Trans); 1728 PerCpuTransVec.back().ProcIndex = ProcId; 1729 } 1730 return PerCpuTransVec; 1731 } 1732 1733 // Create new SchedClasses for the given ReadWrite list. If any of the 1734 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1735 // of the ReadWrite list, following Aliases if necessary. 1736 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1737 ArrayRef<unsigned> OperReads, 1738 unsigned FromClassIdx, 1739 ArrayRef<unsigned> ProcIndices) { 1740 LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); 1741 dbgs() << ") "); 1742 // Create a seed transition with an empty PredTerm and the expanded sequences 1743 // of SchedWrites for the current SchedClass. 1744 std::vector<PredTransition> LastTransitions; 1745 LastTransitions.emplace_back(); 1746 1747 for (unsigned WriteIdx : OperWrites) { 1748 IdxVec WriteSeq; 1749 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1750 LastTransitions[0].WriteSequences.emplace_back(); 1751 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back(); 1752 Seq.append(WriteSeq.begin(), WriteSeq.end()); 1753 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1754 } 1755 LLVM_DEBUG(dbgs() << " Reads: "); 1756 for (unsigned ReadIdx : OperReads) { 1757 IdxVec ReadSeq; 1758 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1759 LastTransitions[0].ReadSequences.emplace_back(); 1760 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back(); 1761 Seq.append(ReadSeq.begin(), ReadSeq.end()); 1762 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1763 } 1764 LLVM_DEBUG(dbgs() << '\n'); 1765 1766 LastTransitions = makePerProcessorTransitions( 1767 LastTransitions[0], llvm::is_contained(ProcIndices, 0) 1768 ? ArrayRef<unsigned>(getAllProcIndices()) 1769 : ProcIndices); 1770 // Collect all PredTransitions for individual operands. 1771 // Iterate until no variant writes remain. 1772 bool SubstitutedAny; 1773 do { 1774 SubstitutedAny = false; 1775 PredTransitions Transitions(*this); 1776 for (const PredTransition &Trans : LastTransitions) 1777 SubstitutedAny |= Transitions.substituteVariants(Trans); 1778 LLVM_DEBUG(Transitions.dump()); 1779 LastTransitions = std::move(Transitions.TransVec); 1780 } while (SubstitutedAny); 1781 1782 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1783 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1784 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1785 } 1786 1787 // Check if any processor resource group contains all resource records in 1788 // SubUnits. 1789 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1790 for (Record *ProcResourceDef : PM.ProcResourceDefs) { 1791 if (!ProcResourceDef->isSubClassOf("ProcResGroup")) 1792 continue; 1793 RecVec SuperUnits = ProcResourceDef->getValueAsListOfDefs("Resources"); 1794 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1795 for (; RI != RE; ++RI) { 1796 if (!is_contained(SuperUnits, *RI)) { 1797 break; 1798 } 1799 } 1800 if (RI == RE) 1801 return true; 1802 } 1803 return false; 1804 } 1805 1806 // Verify that overlapping groups have a common supergroup. 1807 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1808 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1809 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1810 continue; 1811 RecVec CheckUnits = 1812 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1813 for (unsigned j = i + 1; j < e; ++j) { 1814 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1815 continue; 1816 RecVec OtherUnits = 1817 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1818 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1819 OtherUnits.begin(), 1820 OtherUnits.end()) != CheckUnits.end()) { 1821 // CheckUnits and OtherUnits overlap 1822 llvm::append_range(OtherUnits, CheckUnits); 1823 if (!hasSuperGroup(OtherUnits, PM)) { 1824 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1825 "proc resource group overlaps with " + 1826 PM.ProcResourceDefs[j]->getName() + 1827 " but no supergroup contains both."); 1828 } 1829 } 1830 } 1831 } 1832 } 1833 1834 // Collect all the RegisterFile definitions available in this target. 1835 void CodeGenSchedModels::collectRegisterFiles() { 1836 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile"); 1837 1838 // RegisterFiles is the vector of CodeGenRegisterFile. 1839 for (Record *RF : RegisterFileDefs) { 1840 // For each register file definition, construct a CodeGenRegisterFile object 1841 // and add it to the appropriate scheduling model. 1842 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel")); 1843 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(), RF)); 1844 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back(); 1845 CGRF.MaxMovesEliminatedPerCycle = 1846 RF->getValueAsInt("MaxMovesEliminatedPerCycle"); 1847 CGRF.AllowZeroMoveEliminationOnly = 1848 RF->getValueAsBit("AllowZeroMoveEliminationOnly"); 1849 1850 // Now set the number of physical registers as well as the cost of registers 1851 // in each register class. 1852 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs"); 1853 if (!CGRF.NumPhysRegs) { 1854 PrintFatalError(RF->getLoc(), 1855 "Invalid RegisterFile with zero physical registers"); 1856 } 1857 1858 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses"); 1859 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts"); 1860 ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination"); 1861 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) { 1862 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1; 1863 1864 bool AllowMoveElim = false; 1865 if (MoveElimInfo->size() > I) { 1866 BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I)); 1867 AllowMoveElim = Val->getValue(); 1868 } 1869 1870 CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim); 1871 } 1872 } 1873 } 1874 1875 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1876 void CodeGenSchedModels::collectProcResources() { 1877 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); 1878 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1879 1880 // Add any subtarget-specific SchedReadWrites that are directly associated 1881 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1882 // determine which processors they apply to. 1883 for (const CodeGenSchedClass &SC : 1884 make_range(schedClassBegin(), schedClassEnd())) { 1885 if (SC.ItinClassDef) { 1886 collectItinProcResources(SC.ItinClassDef); 1887 continue; 1888 } 1889 1890 // This class may have a default ReadWrite list which can be overriden by 1891 // InstRW definitions. 1892 for (Record *RW : SC.InstRWs) { 1893 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 1894 unsigned PIdx = getProcModel(RWModelDef).Index; 1895 IdxVec Writes, Reads; 1896 findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1897 collectRWResources(Writes, Reads, PIdx); 1898 } 1899 1900 collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices); 1901 } 1902 // Add resources separately defined by each subtarget. 1903 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1904 for (Record *WR : WRDefs) { 1905 Record *ModelDef = WR->getValueAsDef("SchedModel"); 1906 addWriteRes(WR, getProcModel(ModelDef).Index); 1907 } 1908 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1909 for (Record *SWR : SWRDefs) { 1910 Record *ModelDef = SWR->getValueAsDef("SchedModel"); 1911 addWriteRes(SWR, getProcModel(ModelDef).Index); 1912 } 1913 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1914 for (Record *RA : RADefs) { 1915 Record *ModelDef = RA->getValueAsDef("SchedModel"); 1916 addReadAdvance(RA, getProcModel(ModelDef).Index); 1917 } 1918 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1919 for (Record *SRA : SRADefs) { 1920 if (SRA->getValueInit("SchedModel")->isComplete()) { 1921 Record *ModelDef = SRA->getValueAsDef("SchedModel"); 1922 addReadAdvance(SRA, getProcModel(ModelDef).Index); 1923 } 1924 } 1925 // Add ProcResGroups that are defined within this processor model, which may 1926 // not be directly referenced but may directly specify a buffer size. 1927 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1928 for (Record *PRG : ProcResGroups) { 1929 if (!PRG->getValueInit("SchedModel")->isComplete()) 1930 continue; 1931 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel")); 1932 if (!is_contained(PM.ProcResourceDefs, PRG)) 1933 PM.ProcResourceDefs.push_back(PRG); 1934 } 1935 // Add ProcResourceUnits unconditionally. 1936 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) { 1937 if (!PRU->getValueInit("SchedModel")->isComplete()) 1938 continue; 1939 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel")); 1940 if (!is_contained(PM.ProcResourceDefs, PRU)) 1941 PM.ProcResourceDefs.push_back(PRU); 1942 } 1943 // Finalize each ProcModel by sorting the record arrays. 1944 for (CodeGenProcModel &PM : ProcModels) { 1945 llvm::sort(PM.WriteResDefs, LessRecord()); 1946 llvm::sort(PM.ReadAdvanceDefs, LessRecord()); 1947 llvm::sort(PM.ProcResourceDefs, LessRecord()); 1948 LLVM_DEBUG( 1949 PM.dump(); dbgs() << "WriteResDefs: "; for (auto WriteResDef 1950 : PM.WriteResDefs) { 1951 if (WriteResDef->isSubClassOf("WriteRes")) 1952 dbgs() << WriteResDef->getValueAsDef("WriteType")->getName() << " "; 1953 else 1954 dbgs() << WriteResDef->getName() << " "; 1955 } dbgs() << "\nReadAdvanceDefs: "; 1956 for (Record *ReadAdvanceDef 1957 : PM.ReadAdvanceDefs) { 1958 if (ReadAdvanceDef->isSubClassOf("ReadAdvance")) 1959 dbgs() << ReadAdvanceDef->getValueAsDef("ReadType")->getName() 1960 << " "; 1961 else 1962 dbgs() << ReadAdvanceDef->getName() << " "; 1963 } dbgs() 1964 << "\nProcResourceDefs: "; 1965 for (Record *ProcResourceDef 1966 : PM.ProcResourceDefs) { 1967 dbgs() << ProcResourceDef->getName() << " "; 1968 } dbgs() 1969 << '\n'); 1970 verifyProcResourceGroups(PM); 1971 } 1972 1973 ProcResourceDefs.clear(); 1974 ProcResGroups.clear(); 1975 } 1976 1977 void CodeGenSchedModels::checkCompleteness() { 1978 bool Complete = true; 1979 for (const CodeGenProcModel &ProcModel : procModels()) { 1980 const bool HasItineraries = ProcModel.hasItineraries(); 1981 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1982 continue; 1983 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1984 if (Inst->hasNoSchedulingInfo) 1985 continue; 1986 if (ProcModel.isUnsupported(*Inst)) 1987 continue; 1988 unsigned SCIdx = getSchedClassIdx(*Inst); 1989 if (!SCIdx) { 1990 if (Inst->TheDef->isValueUnset("SchedRW")) { 1991 PrintError(Inst->TheDef->getLoc(), 1992 "No schedule information for instruction '" + 1993 Inst->TheDef->getName() + "' in SchedMachineModel '" + 1994 ProcModel.ModelDef->getName() + "'"); 1995 Complete = false; 1996 } 1997 continue; 1998 } 1999 2000 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 2001 if (!SC.Writes.empty()) 2002 continue; 2003 if (HasItineraries && SC.ItinClassDef != nullptr && 2004 SC.ItinClassDef->getName() != "NoItinerary") 2005 continue; 2006 2007 const RecVec &InstRWs = SC.InstRWs; 2008 auto I = find_if(InstRWs, [&ProcModel](const Record *R) { 2009 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; 2010 }); 2011 if (I == InstRWs.end()) { 2012 PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName + 2013 "' lacks information for '" + 2014 Inst->TheDef->getName() + "'"); 2015 Complete = false; 2016 } 2017 } 2018 } 2019 if (!Complete) { 2020 errs() 2021 << "\n\nIncomplete schedule models found.\n" 2022 << "- Consider setting 'CompleteModel = 0' while developing new " 2023 "models.\n" 2024 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = " 2025 "1'.\n" 2026 << "- Instructions should usually have Sched<[...]> as a superclass, " 2027 "you may temporarily use an empty list.\n" 2028 << "- Instructions related to unsupported features can be excluded " 2029 "with " 2030 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " 2031 "processor model.\n\n"; 2032 PrintFatalError("Incomplete schedule model"); 2033 } 2034 } 2035 2036 // Collect itinerary class resources for each processor. 2037 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 2038 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 2039 const CodeGenProcModel &PM = ProcModels[PIdx]; 2040 // For all ItinRW entries. 2041 bool HasMatch = false; 2042 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); II != IE; 2043 ++II) { 2044 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 2045 if (!llvm::is_contained(Matched, ItinClassDef)) 2046 continue; 2047 if (HasMatch) 2048 PrintFatalError((*II)->getLoc(), 2049 "Duplicate itinerary class " + ItinClassDef->getName() + 2050 " in ItinResources for " + PM.ModelName); 2051 HasMatch = true; 2052 IdxVec Writes, Reads; 2053 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 2054 collectRWResources(Writes, Reads, PIdx); 2055 } 2056 } 2057 } 2058 2059 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 2060 ArrayRef<unsigned> ProcIndices) { 2061 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 2062 if (SchedRW.TheDef) { 2063 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 2064 for (unsigned Idx : ProcIndices) 2065 addWriteRes(SchedRW.TheDef, Idx); 2066 } else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 2067 for (unsigned Idx : ProcIndices) 2068 addReadAdvance(SchedRW.TheDef, Idx); 2069 } 2070 } 2071 for (auto *Alias : SchedRW.Aliases) { 2072 IdxVec AliasProcIndices; 2073 if (Alias->getValueInit("SchedModel")->isComplete()) { 2074 AliasProcIndices.push_back( 2075 getProcModel(Alias->getValueAsDef("SchedModel")).Index); 2076 } else 2077 AliasProcIndices = ProcIndices; 2078 const CodeGenSchedRW &AliasRW = getSchedRW(Alias->getValueAsDef("AliasRW")); 2079 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 2080 2081 IdxVec ExpandedRWs; 2082 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 2083 for (unsigned int ExpandedRW : ExpandedRWs) { 2084 collectRWResources(ExpandedRW, IsRead, AliasProcIndices); 2085 } 2086 } 2087 } 2088 2089 // Collect resources for a set of read/write types and processor indices. 2090 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 2091 ArrayRef<unsigned> Reads, 2092 ArrayRef<unsigned> ProcIndices) { 2093 for (unsigned Idx : Writes) 2094 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 2095 2096 for (unsigned Idx : Reads) 2097 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 2098 } 2099 2100 // Find the processor's resource units for this kind of resource. 2101 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 2102 const CodeGenProcModel &PM, 2103 ArrayRef<SMLoc> Loc) const { 2104 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 2105 return ProcResKind; 2106 2107 Record *ProcUnitDef = nullptr; 2108 assert(!ProcResourceDefs.empty()); 2109 assert(!ProcResGroups.empty()); 2110 2111 for (Record *ProcResDef : ProcResourceDefs) { 2112 if (ProcResDef->getValueAsDef("Kind") == ProcResKind && 2113 ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) { 2114 if (ProcUnitDef) { 2115 PrintFatalError(Loc, 2116 "Multiple ProcessorResourceUnits associated with " + 2117 ProcResKind->getName()); 2118 } 2119 ProcUnitDef = ProcResDef; 2120 } 2121 } 2122 for (Record *ProcResGroup : ProcResGroups) { 2123 if (ProcResGroup == ProcResKind && 2124 ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) { 2125 if (ProcUnitDef) { 2126 PrintFatalError(Loc, 2127 "Multiple ProcessorResourceUnits associated with " + 2128 ProcResKind->getName()); 2129 } 2130 ProcUnitDef = ProcResGroup; 2131 } 2132 } 2133 if (!ProcUnitDef) { 2134 PrintFatalError(Loc, "No ProcessorResources associated with " + 2135 ProcResKind->getName()); 2136 } 2137 return ProcUnitDef; 2138 } 2139 2140 // Iteratively add a resource and its super resources. 2141 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 2142 CodeGenProcModel &PM, 2143 ArrayRef<SMLoc> Loc) { 2144 while (true) { 2145 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); 2146 2147 // See if this ProcResource is already associated with this processor. 2148 if (is_contained(PM.ProcResourceDefs, ProcResUnits)) 2149 return; 2150 2151 PM.ProcResourceDefs.push_back(ProcResUnits); 2152 if (ProcResUnits->isSubClassOf("ProcResGroup")) 2153 return; 2154 2155 if (!ProcResUnits->getValueInit("Super")->isComplete()) 2156 return; 2157 2158 ProcResKind = ProcResUnits->getValueAsDef("Super"); 2159 } 2160 } 2161 2162 // Add resources for a SchedWrite to this processor if they don't exist. 2163 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 2164 assert(PIdx && "don't add resources to an invalid Processor model"); 2165 2166 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 2167 if (is_contained(WRDefs, ProcWriteResDef)) 2168 return; 2169 WRDefs.push_back(ProcWriteResDef); 2170 2171 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 2172 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 2173 for (auto *ProcResDef : ProcResDefs) { 2174 addProcResource(ProcResDef, ProcModels[PIdx], ProcWriteResDef->getLoc()); 2175 } 2176 } 2177 2178 // Add resources for a ReadAdvance to this processor if they don't exist. 2179 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 2180 unsigned PIdx) { 2181 for (const Record *ValidWrite : 2182 ProcReadAdvanceDef->getValueAsListOfDefs("ValidWrites")) 2183 if (getSchedRWIdx(ValidWrite, /*IsRead=*/false) == 0) 2184 PrintFatalError( 2185 ProcReadAdvanceDef->getLoc(), 2186 "ReadAdvance referencing a ValidWrite that is not used by " 2187 "any instruction (" + 2188 ValidWrite->getName() + ")"); 2189 2190 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 2191 if (is_contained(RADefs, ProcReadAdvanceDef)) 2192 return; 2193 RADefs.push_back(ProcReadAdvanceDef); 2194 } 2195 2196 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 2197 RecIter PRPos = find(ProcResourceDefs, PRDef); 2198 if (PRPos == ProcResourceDefs.end()) 2199 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 2200 "the ProcResources list for " + 2201 ModelName); 2202 // Idx=0 is reserved for invalid. 2203 return 1 + (PRPos - ProcResourceDefs.begin()); 2204 } 2205 2206 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { 2207 for (const Record *TheDef : UnsupportedFeaturesDefs) { 2208 for (const Record *PredDef : 2209 Inst.TheDef->getValueAsListOfDefs("Predicates")) { 2210 if (TheDef->getName() == PredDef->getName()) 2211 return true; 2212 } 2213 } 2214 return false; 2215 } 2216 2217 bool CodeGenProcModel::hasReadOfWrite(Record *WriteDef) const { 2218 for (auto &RADef : ReadAdvanceDefs) { 2219 RecVec ValidWrites = RADef->getValueAsListOfDefs("ValidWrites"); 2220 if (is_contained(ValidWrites, WriteDef)) 2221 return true; 2222 } 2223 return false; 2224 } 2225 2226 #ifndef NDEBUG 2227 void CodeGenProcModel::dump() const { 2228 dbgs() << Index << ": " << ModelName << " " 2229 << (ModelDef ? ModelDef->getName() : "inferred") << " " 2230 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 2231 } 2232 2233 void CodeGenSchedRW::dump() const { 2234 dbgs() << Name << (IsVariadic ? " (V) " : " "); 2235 if (IsSequence) { 2236 dbgs() << "("; 2237 dumpIdxVec(Sequence); 2238 dbgs() << ")"; 2239 } 2240 } 2241 2242 void CodeGenSchedClass::dump(const CodeGenSchedModels *SchedModels) const { 2243 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' << " Writes: "; 2244 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 2245 SchedModels->getSchedWrite(Writes[i]).dump(); 2246 if (i < N - 1) { 2247 dbgs() << '\n'; 2248 dbgs().indent(10); 2249 } 2250 } 2251 dbgs() << "\n Reads: "; 2252 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 2253 SchedModels->getSchedRead(Reads[i]).dump(); 2254 if (i < N - 1) { 2255 dbgs() << '\n'; 2256 dbgs().indent(10); 2257 } 2258 } 2259 dbgs() << "\n ProcIdx: "; 2260 dumpIdxVec(ProcIndices); 2261 if (!Transitions.empty()) { 2262 dbgs() << "\n Transitions for Proc "; 2263 for (const CodeGenSchedTransition &Transition : Transitions) { 2264 dbgs() << Transition.ProcIndex << ", "; 2265 } 2266 } 2267 dbgs() << '\n'; 2268 } 2269 2270 void PredTransitions::dump() const { 2271 dbgs() << "Expanded Variants:\n"; 2272 for (const auto &TI : TransVec) { 2273 dbgs() << "{"; 2274 ListSeparator LS; 2275 for (const PredCheck &PC : TI.PredTerm) 2276 dbgs() << LS << SchedModels.getSchedRW(PC.RWIdx, PC.IsRead).Name << ":" 2277 << PC.Predicate->getName(); 2278 dbgs() << "},\n => {"; 2279 for (SmallVectorImpl<SmallVector<unsigned, 4>>::const_iterator 2280 WSI = TI.WriteSequences.begin(), 2281 WSE = TI.WriteSequences.end(); 2282 WSI != WSE; ++WSI) { 2283 dbgs() << "("; 2284 ListSeparator LS; 2285 for (unsigned N : *WSI) 2286 dbgs() << LS << SchedModels.getSchedWrite(N).Name; 2287 dbgs() << "),"; 2288 } 2289 dbgs() << "}\n"; 2290 } 2291 } 2292 #endif // NDEBUG 2293