1*0fca6ea1SDimitry Andric //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2*0fca6ea1SDimitry Andric //
3*0fca6ea1SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*0fca6ea1SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5*0fca6ea1SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*0fca6ea1SDimitry Andric //
7*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
8*0fca6ea1SDimitry Andric //
9*0fca6ea1SDimitry Andric // This file defines structures to encapsulate information gleaned from the
10*0fca6ea1SDimitry Andric // target register and register class definitions.
11*0fca6ea1SDimitry Andric //
12*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
13*0fca6ea1SDimitry Andric
14*0fca6ea1SDimitry Andric #include "CodeGenRegisters.h"
15*0fca6ea1SDimitry Andric #include "llvm/ADT/ArrayRef.h"
16*0fca6ea1SDimitry Andric #include "llvm/ADT/BitVector.h"
17*0fca6ea1SDimitry Andric #include "llvm/ADT/DenseMap.h"
18*0fca6ea1SDimitry Andric #include "llvm/ADT/IntEqClasses.h"
19*0fca6ea1SDimitry Andric #include "llvm/ADT/STLExtras.h"
20*0fca6ea1SDimitry Andric #include "llvm/ADT/SetVector.h"
21*0fca6ea1SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
22*0fca6ea1SDimitry Andric #include "llvm/ADT/SmallSet.h"
23*0fca6ea1SDimitry Andric #include "llvm/ADT/SmallVector.h"
24*0fca6ea1SDimitry Andric #include "llvm/ADT/StringRef.h"
25*0fca6ea1SDimitry Andric #include "llvm/ADT/StringSet.h"
26*0fca6ea1SDimitry Andric #include "llvm/ADT/Twine.h"
27*0fca6ea1SDimitry Andric #include "llvm/Support/Debug.h"
28*0fca6ea1SDimitry Andric #include "llvm/Support/raw_ostream.h"
29*0fca6ea1SDimitry Andric #include "llvm/TableGen/Error.h"
30*0fca6ea1SDimitry Andric #include "llvm/TableGen/Record.h"
31*0fca6ea1SDimitry Andric #include <algorithm>
32*0fca6ea1SDimitry Andric #include <cassert>
33*0fca6ea1SDimitry Andric #include <cstdint>
34*0fca6ea1SDimitry Andric #include <iterator>
35*0fca6ea1SDimitry Andric #include <map>
36*0fca6ea1SDimitry Andric #include <queue>
37*0fca6ea1SDimitry Andric #include <set>
38*0fca6ea1SDimitry Andric #include <string>
39*0fca6ea1SDimitry Andric #include <tuple>
40*0fca6ea1SDimitry Andric #include <utility>
41*0fca6ea1SDimitry Andric #include <vector>
42*0fca6ea1SDimitry Andric
43*0fca6ea1SDimitry Andric using namespace llvm;
44*0fca6ea1SDimitry Andric
45*0fca6ea1SDimitry Andric #define DEBUG_TYPE "regalloc-emitter"
46*0fca6ea1SDimitry Andric
47*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
48*0fca6ea1SDimitry Andric // CodeGenSubRegIndex
49*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
50*0fca6ea1SDimitry Andric
CodeGenSubRegIndex(Record * R,unsigned Enum,const CodeGenHwModes & CGH)51*0fca6ea1SDimitry Andric CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum,
52*0fca6ea1SDimitry Andric const CodeGenHwModes &CGH)
53*0fca6ea1SDimitry Andric : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
54*0fca6ea1SDimitry Andric Name = std::string(R->getName());
55*0fca6ea1SDimitry Andric if (R->getValue("Namespace"))
56*0fca6ea1SDimitry Andric Namespace = std::string(R->getValueAsString("Namespace"));
57*0fca6ea1SDimitry Andric
58*0fca6ea1SDimitry Andric if (const RecordVal *RV = R->getValue("SubRegRanges"))
59*0fca6ea1SDimitry Andric if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
60*0fca6ea1SDimitry Andric Range = SubRegRangeByHwMode(DI->getDef(), CGH);
61*0fca6ea1SDimitry Andric if (!Range.hasDefault())
62*0fca6ea1SDimitry Andric Range.insertSubRegRangeForMode(DefaultMode, SubRegRange(R));
63*0fca6ea1SDimitry Andric }
64*0fca6ea1SDimitry Andric
CodeGenSubRegIndex(StringRef N,StringRef Nspace,unsigned Enum)65*0fca6ea1SDimitry Andric CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
66*0fca6ea1SDimitry Andric unsigned Enum)
67*0fca6ea1SDimitry Andric : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
68*0fca6ea1SDimitry Andric Range(SubRegRange(-1, -1)), EnumValue(Enum), AllSuperRegsCovered(true),
69*0fca6ea1SDimitry Andric Artificial(true) {}
70*0fca6ea1SDimitry Andric
getQualifiedName() const71*0fca6ea1SDimitry Andric std::string CodeGenSubRegIndex::getQualifiedName() const {
72*0fca6ea1SDimitry Andric std::string N = getNamespace();
73*0fca6ea1SDimitry Andric if (!N.empty())
74*0fca6ea1SDimitry Andric N += "::";
75*0fca6ea1SDimitry Andric N += getName();
76*0fca6ea1SDimitry Andric return N;
77*0fca6ea1SDimitry Andric }
78*0fca6ea1SDimitry Andric
updateComponents(CodeGenRegBank & RegBank)79*0fca6ea1SDimitry Andric void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
80*0fca6ea1SDimitry Andric if (!TheDef)
81*0fca6ea1SDimitry Andric return;
82*0fca6ea1SDimitry Andric
83*0fca6ea1SDimitry Andric std::vector<Record *> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
84*0fca6ea1SDimitry Andric if (!Comps.empty()) {
85*0fca6ea1SDimitry Andric if (Comps.size() != 2)
86*0fca6ea1SDimitry Andric PrintFatalError(TheDef->getLoc(),
87*0fca6ea1SDimitry Andric "ComposedOf must have exactly two entries");
88*0fca6ea1SDimitry Andric CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
89*0fca6ea1SDimitry Andric CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
90*0fca6ea1SDimitry Andric CodeGenSubRegIndex *X = A->addComposite(B, this, RegBank.getHwModes());
91*0fca6ea1SDimitry Andric if (X)
92*0fca6ea1SDimitry Andric PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
93*0fca6ea1SDimitry Andric }
94*0fca6ea1SDimitry Andric
95*0fca6ea1SDimitry Andric std::vector<Record *> Parts =
96*0fca6ea1SDimitry Andric TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
97*0fca6ea1SDimitry Andric if (!Parts.empty()) {
98*0fca6ea1SDimitry Andric if (Parts.size() < 2)
99*0fca6ea1SDimitry Andric PrintFatalError(TheDef->getLoc(),
100*0fca6ea1SDimitry Andric "CoveredBySubRegs must have two or more entries");
101*0fca6ea1SDimitry Andric SmallVector<CodeGenSubRegIndex *, 8> IdxParts;
102*0fca6ea1SDimitry Andric for (Record *Part : Parts)
103*0fca6ea1SDimitry Andric IdxParts.push_back(RegBank.getSubRegIdx(Part));
104*0fca6ea1SDimitry Andric setConcatenationOf(IdxParts);
105*0fca6ea1SDimitry Andric }
106*0fca6ea1SDimitry Andric }
107*0fca6ea1SDimitry Andric
computeLaneMask() const108*0fca6ea1SDimitry Andric LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
109*0fca6ea1SDimitry Andric // Already computed?
110*0fca6ea1SDimitry Andric if (LaneMask.any())
111*0fca6ea1SDimitry Andric return LaneMask;
112*0fca6ea1SDimitry Andric
113*0fca6ea1SDimitry Andric // Recursion guard, shouldn't be required.
114*0fca6ea1SDimitry Andric LaneMask = LaneBitmask::getAll();
115*0fca6ea1SDimitry Andric
116*0fca6ea1SDimitry Andric // The lane mask is simply the union of all sub-indices.
117*0fca6ea1SDimitry Andric LaneBitmask M;
118*0fca6ea1SDimitry Andric for (const auto &C : Composed)
119*0fca6ea1SDimitry Andric M |= C.second->computeLaneMask();
120*0fca6ea1SDimitry Andric assert(M.any() && "Missing lane mask, sub-register cycle?");
121*0fca6ea1SDimitry Andric LaneMask = M;
122*0fca6ea1SDimitry Andric return LaneMask;
123*0fca6ea1SDimitry Andric }
124*0fca6ea1SDimitry Andric
setConcatenationOf(ArrayRef<CodeGenSubRegIndex * > Parts)125*0fca6ea1SDimitry Andric void CodeGenSubRegIndex::setConcatenationOf(
126*0fca6ea1SDimitry Andric ArrayRef<CodeGenSubRegIndex *> Parts) {
127*0fca6ea1SDimitry Andric if (ConcatenationOf.empty())
128*0fca6ea1SDimitry Andric ConcatenationOf.assign(Parts.begin(), Parts.end());
129*0fca6ea1SDimitry Andric else
130*0fca6ea1SDimitry Andric assert(std::equal(Parts.begin(), Parts.end(), ConcatenationOf.begin()) &&
131*0fca6ea1SDimitry Andric "parts consistent");
132*0fca6ea1SDimitry Andric }
133*0fca6ea1SDimitry Andric
computeConcatTransitiveClosure()134*0fca6ea1SDimitry Andric void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
135*0fca6ea1SDimitry Andric for (SmallVectorImpl<CodeGenSubRegIndex *>::iterator I =
136*0fca6ea1SDimitry Andric ConcatenationOf.begin();
137*0fca6ea1SDimitry Andric I != ConcatenationOf.end();
138*0fca6ea1SDimitry Andric /*empty*/) {
139*0fca6ea1SDimitry Andric CodeGenSubRegIndex *SubIdx = *I;
140*0fca6ea1SDimitry Andric SubIdx->computeConcatTransitiveClosure();
141*0fca6ea1SDimitry Andric #ifndef NDEBUG
142*0fca6ea1SDimitry Andric for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
143*0fca6ea1SDimitry Andric assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
144*0fca6ea1SDimitry Andric #endif
145*0fca6ea1SDimitry Andric
146*0fca6ea1SDimitry Andric if (SubIdx->ConcatenationOf.empty()) {
147*0fca6ea1SDimitry Andric ++I;
148*0fca6ea1SDimitry Andric } else {
149*0fca6ea1SDimitry Andric I = ConcatenationOf.erase(I);
150*0fca6ea1SDimitry Andric I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
151*0fca6ea1SDimitry Andric SubIdx->ConcatenationOf.end());
152*0fca6ea1SDimitry Andric I += SubIdx->ConcatenationOf.size();
153*0fca6ea1SDimitry Andric }
154*0fca6ea1SDimitry Andric }
155*0fca6ea1SDimitry Andric }
156*0fca6ea1SDimitry Andric
157*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
158*0fca6ea1SDimitry Andric // CodeGenRegister
159*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
160*0fca6ea1SDimitry Andric
CodeGenRegister(Record * R,unsigned Enum)161*0fca6ea1SDimitry Andric CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
162*0fca6ea1SDimitry Andric : TheDef(R), EnumValue(Enum),
163*0fca6ea1SDimitry Andric CostPerUse(R->getValueAsListOfInts("CostPerUse")),
164*0fca6ea1SDimitry Andric CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
165*0fca6ea1SDimitry Andric HasDisjunctSubRegs(false), Constant(R->getValueAsBit("isConstant")),
166*0fca6ea1SDimitry Andric SubRegsComplete(false), SuperRegsComplete(false), TopoSig(~0u) {
167*0fca6ea1SDimitry Andric Artificial = R->getValueAsBit("isArtificial");
168*0fca6ea1SDimitry Andric }
169*0fca6ea1SDimitry Andric
buildObjectGraph(CodeGenRegBank & RegBank)170*0fca6ea1SDimitry Andric void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
171*0fca6ea1SDimitry Andric std::vector<Record *> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
172*0fca6ea1SDimitry Andric std::vector<Record *> SRs = TheDef->getValueAsListOfDefs("SubRegs");
173*0fca6ea1SDimitry Andric
174*0fca6ea1SDimitry Andric if (SRIs.size() != SRs.size())
175*0fca6ea1SDimitry Andric PrintFatalError(TheDef->getLoc(),
176*0fca6ea1SDimitry Andric "SubRegs and SubRegIndices must have the same size");
177*0fca6ea1SDimitry Andric
178*0fca6ea1SDimitry Andric for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
179*0fca6ea1SDimitry Andric ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
180*0fca6ea1SDimitry Andric ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
181*0fca6ea1SDimitry Andric }
182*0fca6ea1SDimitry Andric
183*0fca6ea1SDimitry Andric // Also compute leading super-registers. Each register has a list of
184*0fca6ea1SDimitry Andric // covered-by-subregs super-registers where it appears as the first explicit
185*0fca6ea1SDimitry Andric // sub-register.
186*0fca6ea1SDimitry Andric //
187*0fca6ea1SDimitry Andric // This is used by computeSecondarySubRegs() to find candidates.
188*0fca6ea1SDimitry Andric if (CoveredBySubRegs && !ExplicitSubRegs.empty())
189*0fca6ea1SDimitry Andric ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
190*0fca6ea1SDimitry Andric
191*0fca6ea1SDimitry Andric // Add ad hoc alias links. This is a symmetric relationship between two
192*0fca6ea1SDimitry Andric // registers, so build a symmetric graph by adding links in both ends.
193*0fca6ea1SDimitry Andric std::vector<Record *> Aliases = TheDef->getValueAsListOfDefs("Aliases");
194*0fca6ea1SDimitry Andric for (Record *Alias : Aliases) {
195*0fca6ea1SDimitry Andric CodeGenRegister *Reg = RegBank.getReg(Alias);
196*0fca6ea1SDimitry Andric ExplicitAliases.push_back(Reg);
197*0fca6ea1SDimitry Andric Reg->ExplicitAliases.push_back(this);
198*0fca6ea1SDimitry Andric }
199*0fca6ea1SDimitry Andric }
200*0fca6ea1SDimitry Andric
getName() const201*0fca6ea1SDimitry Andric StringRef CodeGenRegister::getName() const {
202*0fca6ea1SDimitry Andric assert(TheDef && "no def");
203*0fca6ea1SDimitry Andric return TheDef->getName();
204*0fca6ea1SDimitry Andric }
205*0fca6ea1SDimitry Andric
206*0fca6ea1SDimitry Andric namespace {
207*0fca6ea1SDimitry Andric
208*0fca6ea1SDimitry Andric // Iterate over all register units in a set of registers.
209*0fca6ea1SDimitry Andric class RegUnitIterator {
210*0fca6ea1SDimitry Andric CodeGenRegister::Vec::const_iterator RegI, RegE;
211*0fca6ea1SDimitry Andric CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
212*0fca6ea1SDimitry Andric static CodeGenRegister::RegUnitList Sentinel;
213*0fca6ea1SDimitry Andric
214*0fca6ea1SDimitry Andric public:
RegUnitIterator(const CodeGenRegister::Vec & Regs)215*0fca6ea1SDimitry Andric RegUnitIterator(const CodeGenRegister::Vec &Regs)
216*0fca6ea1SDimitry Andric : RegI(Regs.begin()), RegE(Regs.end()) {
217*0fca6ea1SDimitry Andric
218*0fca6ea1SDimitry Andric if (RegI == RegE) {
219*0fca6ea1SDimitry Andric UnitI = Sentinel.end();
220*0fca6ea1SDimitry Andric UnitE = Sentinel.end();
221*0fca6ea1SDimitry Andric } else {
222*0fca6ea1SDimitry Andric UnitI = (*RegI)->getRegUnits().begin();
223*0fca6ea1SDimitry Andric UnitE = (*RegI)->getRegUnits().end();
224*0fca6ea1SDimitry Andric advance();
225*0fca6ea1SDimitry Andric }
226*0fca6ea1SDimitry Andric }
227*0fca6ea1SDimitry Andric
isValid() const228*0fca6ea1SDimitry Andric bool isValid() const { return UnitI != UnitE; }
229*0fca6ea1SDimitry Andric
operator *() const230*0fca6ea1SDimitry Andric unsigned operator*() const {
231*0fca6ea1SDimitry Andric assert(isValid());
232*0fca6ea1SDimitry Andric return *UnitI;
233*0fca6ea1SDimitry Andric }
234*0fca6ea1SDimitry Andric
getReg() const235*0fca6ea1SDimitry Andric const CodeGenRegister *getReg() const {
236*0fca6ea1SDimitry Andric assert(isValid());
237*0fca6ea1SDimitry Andric return *RegI;
238*0fca6ea1SDimitry Andric }
239*0fca6ea1SDimitry Andric
240*0fca6ea1SDimitry Andric /// Preincrement. Move to the next unit.
operator ++()241*0fca6ea1SDimitry Andric void operator++() {
242*0fca6ea1SDimitry Andric assert(isValid() && "Cannot advance beyond the last operand");
243*0fca6ea1SDimitry Andric ++UnitI;
244*0fca6ea1SDimitry Andric advance();
245*0fca6ea1SDimitry Andric }
246*0fca6ea1SDimitry Andric
247*0fca6ea1SDimitry Andric protected:
advance()248*0fca6ea1SDimitry Andric void advance() {
249*0fca6ea1SDimitry Andric while (UnitI == UnitE) {
250*0fca6ea1SDimitry Andric if (++RegI == RegE)
251*0fca6ea1SDimitry Andric break;
252*0fca6ea1SDimitry Andric UnitI = (*RegI)->getRegUnits().begin();
253*0fca6ea1SDimitry Andric UnitE = (*RegI)->getRegUnits().end();
254*0fca6ea1SDimitry Andric }
255*0fca6ea1SDimitry Andric }
256*0fca6ea1SDimitry Andric };
257*0fca6ea1SDimitry Andric
258*0fca6ea1SDimitry Andric CodeGenRegister::RegUnitList RegUnitIterator::Sentinel;
259*0fca6ea1SDimitry Andric
260*0fca6ea1SDimitry Andric } // end anonymous namespace
261*0fca6ea1SDimitry Andric
262*0fca6ea1SDimitry Andric // Inherit register units from subregisters.
263*0fca6ea1SDimitry Andric // Return true if the RegUnits changed.
inheritRegUnits(CodeGenRegBank & RegBank)264*0fca6ea1SDimitry Andric bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
265*0fca6ea1SDimitry Andric bool changed = false;
266*0fca6ea1SDimitry Andric for (const auto &SubReg : SubRegs) {
267*0fca6ea1SDimitry Andric CodeGenRegister *SR = SubReg.second;
268*0fca6ea1SDimitry Andric // Merge the subregister's units into this register's RegUnits.
269*0fca6ea1SDimitry Andric changed |= (RegUnits |= SR->RegUnits);
270*0fca6ea1SDimitry Andric }
271*0fca6ea1SDimitry Andric
272*0fca6ea1SDimitry Andric return changed;
273*0fca6ea1SDimitry Andric }
274*0fca6ea1SDimitry Andric
275*0fca6ea1SDimitry Andric const CodeGenRegister::SubRegMap &
computeSubRegs(CodeGenRegBank & RegBank)276*0fca6ea1SDimitry Andric CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
277*0fca6ea1SDimitry Andric // Only compute this map once.
278*0fca6ea1SDimitry Andric if (SubRegsComplete)
279*0fca6ea1SDimitry Andric return SubRegs;
280*0fca6ea1SDimitry Andric SubRegsComplete = true;
281*0fca6ea1SDimitry Andric
282*0fca6ea1SDimitry Andric HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
283*0fca6ea1SDimitry Andric
284*0fca6ea1SDimitry Andric // First insert the explicit subregs and make sure they are fully indexed.
285*0fca6ea1SDimitry Andric for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
286*0fca6ea1SDimitry Andric CodeGenRegister *SR = ExplicitSubRegs[i];
287*0fca6ea1SDimitry Andric CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
288*0fca6ea1SDimitry Andric if (!SR->Artificial)
289*0fca6ea1SDimitry Andric Idx->Artificial = false;
290*0fca6ea1SDimitry Andric if (!SubRegs.insert(std::pair(Idx, SR)).second)
291*0fca6ea1SDimitry Andric PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
292*0fca6ea1SDimitry Andric " appears twice in Register " +
293*0fca6ea1SDimitry Andric getName());
294*0fca6ea1SDimitry Andric // Map explicit sub-registers first, so the names take precedence.
295*0fca6ea1SDimitry Andric // The inherited sub-registers are mapped below.
296*0fca6ea1SDimitry Andric SubReg2Idx.insert(std::pair(SR, Idx));
297*0fca6ea1SDimitry Andric }
298*0fca6ea1SDimitry Andric
299*0fca6ea1SDimitry Andric // Keep track of inherited subregs and how they can be reached.
300*0fca6ea1SDimitry Andric SmallPtrSet<CodeGenRegister *, 8> Orphans;
301*0fca6ea1SDimitry Andric
302*0fca6ea1SDimitry Andric // Clone inherited subregs and place duplicate entries in Orphans.
303*0fca6ea1SDimitry Andric // Here the order is important - earlier subregs take precedence.
304*0fca6ea1SDimitry Andric for (CodeGenRegister *ESR : ExplicitSubRegs) {
305*0fca6ea1SDimitry Andric const SubRegMap &Map = ESR->computeSubRegs(RegBank);
306*0fca6ea1SDimitry Andric HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
307*0fca6ea1SDimitry Andric
308*0fca6ea1SDimitry Andric for (const auto &SR : Map) {
309*0fca6ea1SDimitry Andric if (!SubRegs.insert(SR).second)
310*0fca6ea1SDimitry Andric Orphans.insert(SR.second);
311*0fca6ea1SDimitry Andric }
312*0fca6ea1SDimitry Andric }
313*0fca6ea1SDimitry Andric
314*0fca6ea1SDimitry Andric // Expand any composed subreg indices.
315*0fca6ea1SDimitry Andric // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
316*0fca6ea1SDimitry Andric // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
317*0fca6ea1SDimitry Andric // expanded subreg indices recursively.
318*0fca6ea1SDimitry Andric SmallVector<CodeGenSubRegIndex *, 8> Indices = ExplicitSubRegIndices;
319*0fca6ea1SDimitry Andric for (unsigned i = 0; i != Indices.size(); ++i) {
320*0fca6ea1SDimitry Andric CodeGenSubRegIndex *Idx = Indices[i];
321*0fca6ea1SDimitry Andric const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
322*0fca6ea1SDimitry Andric CodeGenRegister *SR = SubRegs[Idx];
323*0fca6ea1SDimitry Andric const SubRegMap &Map = SR->computeSubRegs(RegBank);
324*0fca6ea1SDimitry Andric
325*0fca6ea1SDimitry Andric // Look at the possible compositions of Idx.
326*0fca6ea1SDimitry Andric // They may not all be supported by SR.
327*0fca6ea1SDimitry Andric for (auto Comp : Comps) {
328*0fca6ea1SDimitry Andric SubRegMap::const_iterator SRI = Map.find(Comp.first);
329*0fca6ea1SDimitry Andric if (SRI == Map.end())
330*0fca6ea1SDimitry Andric continue; // Idx + I->first doesn't exist in SR.
331*0fca6ea1SDimitry Andric // Add I->second as a name for the subreg SRI->second, assuming it is
332*0fca6ea1SDimitry Andric // orphaned, and the name isn't already used for something else.
333*0fca6ea1SDimitry Andric if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second))
334*0fca6ea1SDimitry Andric continue;
335*0fca6ea1SDimitry Andric // We found a new name for the orphaned sub-register.
336*0fca6ea1SDimitry Andric SubRegs.insert(std::pair(Comp.second, SRI->second));
337*0fca6ea1SDimitry Andric Indices.push_back(Comp.second);
338*0fca6ea1SDimitry Andric }
339*0fca6ea1SDimitry Andric }
340*0fca6ea1SDimitry Andric
341*0fca6ea1SDimitry Andric // Now Orphans contains the inherited subregisters without a direct index.
342*0fca6ea1SDimitry Andric // Create inferred indexes for all missing entries.
343*0fca6ea1SDimitry Andric // Work backwards in the Indices vector in order to compose subregs bottom-up.
344*0fca6ea1SDimitry Andric // Consider this subreg sequence:
345*0fca6ea1SDimitry Andric //
346*0fca6ea1SDimitry Andric // qsub_1 -> dsub_0 -> ssub_0
347*0fca6ea1SDimitry Andric //
348*0fca6ea1SDimitry Andric // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
349*0fca6ea1SDimitry Andric // can be reached in two different ways:
350*0fca6ea1SDimitry Andric //
351*0fca6ea1SDimitry Andric // qsub_1 -> ssub_0
352*0fca6ea1SDimitry Andric // dsub_2 -> ssub_0
353*0fca6ea1SDimitry Andric //
354*0fca6ea1SDimitry Andric // We pick the latter composition because another register may have [dsub_0,
355*0fca6ea1SDimitry Andric // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
356*0fca6ea1SDimitry Andric // dsub_2 -> ssub_0 composition can be shared.
357*0fca6ea1SDimitry Andric while (!Indices.empty() && !Orphans.empty()) {
358*0fca6ea1SDimitry Andric CodeGenSubRegIndex *Idx = Indices.pop_back_val();
359*0fca6ea1SDimitry Andric CodeGenRegister *SR = SubRegs[Idx];
360*0fca6ea1SDimitry Andric const SubRegMap &Map = SR->computeSubRegs(RegBank);
361*0fca6ea1SDimitry Andric for (const auto &SubReg : Map)
362*0fca6ea1SDimitry Andric if (Orphans.erase(SubReg.second))
363*0fca6ea1SDimitry Andric SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] =
364*0fca6ea1SDimitry Andric SubReg.second;
365*0fca6ea1SDimitry Andric }
366*0fca6ea1SDimitry Andric
367*0fca6ea1SDimitry Andric // Compute the inverse SubReg -> Idx map.
368*0fca6ea1SDimitry Andric for (const auto &SubReg : SubRegs) {
369*0fca6ea1SDimitry Andric if (SubReg.second == this) {
370*0fca6ea1SDimitry Andric ArrayRef<SMLoc> Loc;
371*0fca6ea1SDimitry Andric if (TheDef)
372*0fca6ea1SDimitry Andric Loc = TheDef->getLoc();
373*0fca6ea1SDimitry Andric PrintFatalError(Loc, "Register " + getName() +
374*0fca6ea1SDimitry Andric " has itself as a sub-register");
375*0fca6ea1SDimitry Andric }
376*0fca6ea1SDimitry Andric
377*0fca6ea1SDimitry Andric // Compute AllSuperRegsCovered.
378*0fca6ea1SDimitry Andric if (!CoveredBySubRegs)
379*0fca6ea1SDimitry Andric SubReg.first->AllSuperRegsCovered = false;
380*0fca6ea1SDimitry Andric
381*0fca6ea1SDimitry Andric // Ensure that every sub-register has a unique name.
382*0fca6ea1SDimitry Andric DenseMap<const CodeGenRegister *, CodeGenSubRegIndex *>::iterator Ins =
383*0fca6ea1SDimitry Andric SubReg2Idx.insert(std::pair(SubReg.second, SubReg.first)).first;
384*0fca6ea1SDimitry Andric if (Ins->second == SubReg.first)
385*0fca6ea1SDimitry Andric continue;
386*0fca6ea1SDimitry Andric // Trouble: Two different names for SubReg.second.
387*0fca6ea1SDimitry Andric ArrayRef<SMLoc> Loc;
388*0fca6ea1SDimitry Andric if (TheDef)
389*0fca6ea1SDimitry Andric Loc = TheDef->getLoc();
390*0fca6ea1SDimitry Andric PrintFatalError(
391*0fca6ea1SDimitry Andric Loc, "Sub-register can't have two names: " + SubReg.second->getName() +
392*0fca6ea1SDimitry Andric " available as " + SubReg.first->getName() + " and " +
393*0fca6ea1SDimitry Andric Ins->second->getName());
394*0fca6ea1SDimitry Andric }
395*0fca6ea1SDimitry Andric
396*0fca6ea1SDimitry Andric // Derive possible names for sub-register concatenations from any explicit
397*0fca6ea1SDimitry Andric // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
398*0fca6ea1SDimitry Andric // that getConcatSubRegIndex() won't invent any concatenated indices that the
399*0fca6ea1SDimitry Andric // user already specified.
400*0fca6ea1SDimitry Andric for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
401*0fca6ea1SDimitry Andric CodeGenRegister *SR = ExplicitSubRegs[i];
402*0fca6ea1SDimitry Andric if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
403*0fca6ea1SDimitry Andric SR->Artificial)
404*0fca6ea1SDimitry Andric continue;
405*0fca6ea1SDimitry Andric
406*0fca6ea1SDimitry Andric // SR is composed of multiple sub-regs. Find their names in this register.
407*0fca6ea1SDimitry Andric SmallVector<CodeGenSubRegIndex *, 8> Parts;
408*0fca6ea1SDimitry Andric for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
409*0fca6ea1SDimitry Andric CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
410*0fca6ea1SDimitry Andric if (!I.Artificial)
411*0fca6ea1SDimitry Andric Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
412*0fca6ea1SDimitry Andric }
413*0fca6ea1SDimitry Andric
414*0fca6ea1SDimitry Andric // Offer this as an existing spelling for the concatenation of Parts.
415*0fca6ea1SDimitry Andric CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
416*0fca6ea1SDimitry Andric Idx.setConcatenationOf(Parts);
417*0fca6ea1SDimitry Andric }
418*0fca6ea1SDimitry Andric
419*0fca6ea1SDimitry Andric // Initialize RegUnitList. Because getSubRegs is called recursively, this
420*0fca6ea1SDimitry Andric // processes the register hierarchy in postorder.
421*0fca6ea1SDimitry Andric //
422*0fca6ea1SDimitry Andric // Inherit all sub-register units. It is good enough to look at the explicit
423*0fca6ea1SDimitry Andric // sub-registers, the other registers won't contribute any more units.
424*0fca6ea1SDimitry Andric for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
425*0fca6ea1SDimitry Andric CodeGenRegister *SR = ExplicitSubRegs[i];
426*0fca6ea1SDimitry Andric RegUnits |= SR->RegUnits;
427*0fca6ea1SDimitry Andric }
428*0fca6ea1SDimitry Andric
429*0fca6ea1SDimitry Andric // Absent any ad hoc aliasing, we create one register unit per leaf register.
430*0fca6ea1SDimitry Andric // These units correspond to the maximal cliques in the register overlap
431*0fca6ea1SDimitry Andric // graph which is optimal.
432*0fca6ea1SDimitry Andric //
433*0fca6ea1SDimitry Andric // When there is ad hoc aliasing, we simply create one unit per edge in the
434*0fca6ea1SDimitry Andric // undirected ad hoc aliasing graph. Technically, we could do better by
435*0fca6ea1SDimitry Andric // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
436*0fca6ea1SDimitry Andric // are extremely rare anyway (I've never seen one), so we don't bother with
437*0fca6ea1SDimitry Andric // the added complexity.
438*0fca6ea1SDimitry Andric for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
439*0fca6ea1SDimitry Andric CodeGenRegister *AR = ExplicitAliases[i];
440*0fca6ea1SDimitry Andric // Only visit each edge once.
441*0fca6ea1SDimitry Andric if (AR->SubRegsComplete)
442*0fca6ea1SDimitry Andric continue;
443*0fca6ea1SDimitry Andric // Create a RegUnit representing this alias edge, and add it to both
444*0fca6ea1SDimitry Andric // registers.
445*0fca6ea1SDimitry Andric unsigned Unit = RegBank.newRegUnit(this, AR);
446*0fca6ea1SDimitry Andric RegUnits.set(Unit);
447*0fca6ea1SDimitry Andric AR->RegUnits.set(Unit);
448*0fca6ea1SDimitry Andric }
449*0fca6ea1SDimitry Andric
450*0fca6ea1SDimitry Andric // Finally, create units for leaf registers without ad hoc aliases. Note that
451*0fca6ea1SDimitry Andric // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
452*0fca6ea1SDimitry Andric // necessary. This means the aliasing leaf registers can share a single unit.
453*0fca6ea1SDimitry Andric if (RegUnits.empty())
454*0fca6ea1SDimitry Andric RegUnits.set(RegBank.newRegUnit(this));
455*0fca6ea1SDimitry Andric
456*0fca6ea1SDimitry Andric // We have now computed the native register units. More may be adopted later
457*0fca6ea1SDimitry Andric // for balancing purposes.
458*0fca6ea1SDimitry Andric NativeRegUnits = RegUnits;
459*0fca6ea1SDimitry Andric
460*0fca6ea1SDimitry Andric return SubRegs;
461*0fca6ea1SDimitry Andric }
462*0fca6ea1SDimitry Andric
463*0fca6ea1SDimitry Andric // In a register that is covered by its sub-registers, try to find redundant
464*0fca6ea1SDimitry Andric // sub-registers. For example:
465*0fca6ea1SDimitry Andric //
466*0fca6ea1SDimitry Andric // QQ0 = {Q0, Q1}
467*0fca6ea1SDimitry Andric // Q0 = {D0, D1}
468*0fca6ea1SDimitry Andric // Q1 = {D2, D3}
469*0fca6ea1SDimitry Andric //
470*0fca6ea1SDimitry Andric // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
471*0fca6ea1SDimitry Andric // the register definition.
472*0fca6ea1SDimitry Andric //
473*0fca6ea1SDimitry Andric // The explicitly specified registers form a tree. This function discovers
474*0fca6ea1SDimitry Andric // sub-register relationships that would force a DAG.
475*0fca6ea1SDimitry Andric //
computeSecondarySubRegs(CodeGenRegBank & RegBank)476*0fca6ea1SDimitry Andric void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
477*0fca6ea1SDimitry Andric SmallVector<SubRegMap::value_type, 8> NewSubRegs;
478*0fca6ea1SDimitry Andric
479*0fca6ea1SDimitry Andric std::queue<std::pair<CodeGenSubRegIndex *, CodeGenRegister *>> SubRegQueue;
480*0fca6ea1SDimitry Andric for (std::pair<CodeGenSubRegIndex *, CodeGenRegister *> P : SubRegs)
481*0fca6ea1SDimitry Andric SubRegQueue.push(P);
482*0fca6ea1SDimitry Andric
483*0fca6ea1SDimitry Andric // Look at the leading super-registers of each sub-register. Those are the
484*0fca6ea1SDimitry Andric // candidates for new sub-registers, assuming they are fully contained in
485*0fca6ea1SDimitry Andric // this register.
486*0fca6ea1SDimitry Andric while (!SubRegQueue.empty()) {
487*0fca6ea1SDimitry Andric CodeGenSubRegIndex *SubRegIdx;
488*0fca6ea1SDimitry Andric const CodeGenRegister *SubReg;
489*0fca6ea1SDimitry Andric std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
490*0fca6ea1SDimitry Andric SubRegQueue.pop();
491*0fca6ea1SDimitry Andric
492*0fca6ea1SDimitry Andric const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
493*0fca6ea1SDimitry Andric for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
494*0fca6ea1SDimitry Andric CodeGenRegister *Cand = const_cast<CodeGenRegister *>(Leads[i]);
495*0fca6ea1SDimitry Andric // Already got this sub-register?
496*0fca6ea1SDimitry Andric if (Cand == this || getSubRegIndex(Cand))
497*0fca6ea1SDimitry Andric continue;
498*0fca6ea1SDimitry Andric // Check if each component of Cand is already a sub-register.
499*0fca6ea1SDimitry Andric assert(!Cand->ExplicitSubRegs.empty() &&
500*0fca6ea1SDimitry Andric "Super-register has no sub-registers");
501*0fca6ea1SDimitry Andric if (Cand->ExplicitSubRegs.size() == 1)
502*0fca6ea1SDimitry Andric continue;
503*0fca6ea1SDimitry Andric SmallVector<CodeGenSubRegIndex *, 8> Parts;
504*0fca6ea1SDimitry Andric // We know that the first component is (SubRegIdx,SubReg). However we
505*0fca6ea1SDimitry Andric // may still need to split it into smaller subregister parts.
506*0fca6ea1SDimitry Andric assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
507*0fca6ea1SDimitry Andric assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
508*0fca6ea1SDimitry Andric for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
509*0fca6ea1SDimitry Andric if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
510*0fca6ea1SDimitry Andric if (SubRegIdx->ConcatenationOf.empty())
511*0fca6ea1SDimitry Andric Parts.push_back(SubRegIdx);
512*0fca6ea1SDimitry Andric else
513*0fca6ea1SDimitry Andric append_range(Parts, SubRegIdx->ConcatenationOf);
514*0fca6ea1SDimitry Andric } else {
515*0fca6ea1SDimitry Andric // Sub-register doesn't exist.
516*0fca6ea1SDimitry Andric Parts.clear();
517*0fca6ea1SDimitry Andric break;
518*0fca6ea1SDimitry Andric }
519*0fca6ea1SDimitry Andric }
520*0fca6ea1SDimitry Andric // There is nothing to do if some Cand sub-register is not part of this
521*0fca6ea1SDimitry Andric // register.
522*0fca6ea1SDimitry Andric if (Parts.empty())
523*0fca6ea1SDimitry Andric continue;
524*0fca6ea1SDimitry Andric
525*0fca6ea1SDimitry Andric // Each part of Cand is a sub-register of this. Make the full Cand also
526*0fca6ea1SDimitry Andric // a sub-register with a concatenated sub-register index.
527*0fca6ea1SDimitry Andric CodeGenSubRegIndex *Concat =
528*0fca6ea1SDimitry Andric RegBank.getConcatSubRegIndex(Parts, RegBank.getHwModes());
529*0fca6ea1SDimitry Andric std::pair<CodeGenSubRegIndex *, CodeGenRegister *> NewSubReg =
530*0fca6ea1SDimitry Andric std::pair(Concat, Cand);
531*0fca6ea1SDimitry Andric
532*0fca6ea1SDimitry Andric if (!SubRegs.insert(NewSubReg).second)
533*0fca6ea1SDimitry Andric continue;
534*0fca6ea1SDimitry Andric
535*0fca6ea1SDimitry Andric // We inserted a new subregister.
536*0fca6ea1SDimitry Andric NewSubRegs.push_back(NewSubReg);
537*0fca6ea1SDimitry Andric SubRegQueue.push(NewSubReg);
538*0fca6ea1SDimitry Andric SubReg2Idx.insert(std::pair(Cand, Concat));
539*0fca6ea1SDimitry Andric }
540*0fca6ea1SDimitry Andric }
541*0fca6ea1SDimitry Andric
542*0fca6ea1SDimitry Andric // Create sub-register index composition maps for the synthesized indices.
543*0fca6ea1SDimitry Andric for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
544*0fca6ea1SDimitry Andric CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
545*0fca6ea1SDimitry Andric CodeGenRegister *NewSubReg = NewSubRegs[i].second;
546*0fca6ea1SDimitry Andric for (auto SubReg : NewSubReg->SubRegs) {
547*0fca6ea1SDimitry Andric CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second);
548*0fca6ea1SDimitry Andric if (!SubIdx)
549*0fca6ea1SDimitry Andric PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
550*0fca6ea1SDimitry Andric SubReg.second->getName() +
551*0fca6ea1SDimitry Andric " in " + getName());
552*0fca6ea1SDimitry Andric NewIdx->addComposite(SubReg.first, SubIdx, RegBank.getHwModes());
553*0fca6ea1SDimitry Andric }
554*0fca6ea1SDimitry Andric }
555*0fca6ea1SDimitry Andric }
556*0fca6ea1SDimitry Andric
computeSuperRegs(CodeGenRegBank & RegBank)557*0fca6ea1SDimitry Andric void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
558*0fca6ea1SDimitry Andric // Only visit each register once.
559*0fca6ea1SDimitry Andric if (SuperRegsComplete)
560*0fca6ea1SDimitry Andric return;
561*0fca6ea1SDimitry Andric SuperRegsComplete = true;
562*0fca6ea1SDimitry Andric
563*0fca6ea1SDimitry Andric // Make sure all sub-registers have been visited first, so the super-reg
564*0fca6ea1SDimitry Andric // lists will be topologically ordered.
565*0fca6ea1SDimitry Andric for (auto SubReg : SubRegs)
566*0fca6ea1SDimitry Andric SubReg.second->computeSuperRegs(RegBank);
567*0fca6ea1SDimitry Andric
568*0fca6ea1SDimitry Andric // Now add this as a super-register on all sub-registers.
569*0fca6ea1SDimitry Andric // Also compute the TopoSigId in post-order.
570*0fca6ea1SDimitry Andric TopoSigId Id;
571*0fca6ea1SDimitry Andric for (auto SubReg : SubRegs) {
572*0fca6ea1SDimitry Andric // Topological signature computed from SubIdx, TopoId(SubReg).
573*0fca6ea1SDimitry Andric // Loops and idempotent indices have TopoSig = ~0u.
574*0fca6ea1SDimitry Andric Id.push_back(SubReg.first->EnumValue);
575*0fca6ea1SDimitry Andric Id.push_back(SubReg.second->TopoSig);
576*0fca6ea1SDimitry Andric
577*0fca6ea1SDimitry Andric // Don't add duplicate entries.
578*0fca6ea1SDimitry Andric if (!SubReg.second->SuperRegs.empty() &&
579*0fca6ea1SDimitry Andric SubReg.second->SuperRegs.back() == this)
580*0fca6ea1SDimitry Andric continue;
581*0fca6ea1SDimitry Andric SubReg.second->SuperRegs.push_back(this);
582*0fca6ea1SDimitry Andric }
583*0fca6ea1SDimitry Andric TopoSig = RegBank.getTopoSig(Id);
584*0fca6ea1SDimitry Andric }
585*0fca6ea1SDimitry Andric
addSubRegsPreOrder(SetVector<const CodeGenRegister * > & OSet,CodeGenRegBank & RegBank) const586*0fca6ea1SDimitry Andric void CodeGenRegister::addSubRegsPreOrder(
587*0fca6ea1SDimitry Andric SetVector<const CodeGenRegister *> &OSet, CodeGenRegBank &RegBank) const {
588*0fca6ea1SDimitry Andric assert(SubRegsComplete && "Must precompute sub-registers");
589*0fca6ea1SDimitry Andric for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
590*0fca6ea1SDimitry Andric CodeGenRegister *SR = ExplicitSubRegs[i];
591*0fca6ea1SDimitry Andric if (OSet.insert(SR))
592*0fca6ea1SDimitry Andric SR->addSubRegsPreOrder(OSet, RegBank);
593*0fca6ea1SDimitry Andric }
594*0fca6ea1SDimitry Andric // Add any secondary sub-registers that weren't part of the explicit tree.
595*0fca6ea1SDimitry Andric for (auto SubReg : SubRegs)
596*0fca6ea1SDimitry Andric OSet.insert(SubReg.second);
597*0fca6ea1SDimitry Andric }
598*0fca6ea1SDimitry Andric
599*0fca6ea1SDimitry Andric // Get the sum of this register's unit weights.
getWeight(const CodeGenRegBank & RegBank) const600*0fca6ea1SDimitry Andric unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
601*0fca6ea1SDimitry Andric unsigned Weight = 0;
602*0fca6ea1SDimitry Andric for (unsigned RegUnit : RegUnits) {
603*0fca6ea1SDimitry Andric Weight += RegBank.getRegUnit(RegUnit).Weight;
604*0fca6ea1SDimitry Andric }
605*0fca6ea1SDimitry Andric return Weight;
606*0fca6ea1SDimitry Andric }
607*0fca6ea1SDimitry Andric
608*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
609*0fca6ea1SDimitry Andric // RegisterTuples
610*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
611*0fca6ea1SDimitry Andric
612*0fca6ea1SDimitry Andric // A RegisterTuples def is used to generate pseudo-registers from lists of
613*0fca6ea1SDimitry Andric // sub-registers. We provide a SetTheory expander class that returns the new
614*0fca6ea1SDimitry Andric // registers.
615*0fca6ea1SDimitry Andric namespace {
616*0fca6ea1SDimitry Andric
617*0fca6ea1SDimitry Andric struct TupleExpander : SetTheory::Expander {
618*0fca6ea1SDimitry Andric // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
619*0fca6ea1SDimitry Andric // the synthesized definitions for their lifetime.
620*0fca6ea1SDimitry Andric std::vector<std::unique_ptr<Record>> &SynthDefs;
621*0fca6ea1SDimitry Andric
622*0fca6ea1SDimitry Andric // Track all synthesized tuple names in order to detect duplicate definitions.
623*0fca6ea1SDimitry Andric llvm::StringSet<> TupleNames;
624*0fca6ea1SDimitry Andric
TupleExpander__anon90463ec00211::TupleExpander625*0fca6ea1SDimitry Andric TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
626*0fca6ea1SDimitry Andric : SynthDefs(SynthDefs) {}
627*0fca6ea1SDimitry Andric
expand__anon90463ec00211::TupleExpander628*0fca6ea1SDimitry Andric void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
629*0fca6ea1SDimitry Andric std::vector<Record *> Indices = Def->getValueAsListOfDefs("SubRegIndices");
630*0fca6ea1SDimitry Andric unsigned Dim = Indices.size();
631*0fca6ea1SDimitry Andric ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
632*0fca6ea1SDimitry Andric if (Dim != SubRegs->size())
633*0fca6ea1SDimitry Andric PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
634*0fca6ea1SDimitry Andric if (Dim < 2)
635*0fca6ea1SDimitry Andric PrintFatalError(Def->getLoc(),
636*0fca6ea1SDimitry Andric "Tuples must have at least 2 sub-registers");
637*0fca6ea1SDimitry Andric
638*0fca6ea1SDimitry Andric // Evaluate the sub-register lists to be zipped.
639*0fca6ea1SDimitry Andric unsigned Length = ~0u;
640*0fca6ea1SDimitry Andric SmallVector<SetTheory::RecSet, 4> Lists(Dim);
641*0fca6ea1SDimitry Andric for (unsigned i = 0; i != Dim; ++i) {
642*0fca6ea1SDimitry Andric ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
643*0fca6ea1SDimitry Andric Length = std::min(Length, unsigned(Lists[i].size()));
644*0fca6ea1SDimitry Andric }
645*0fca6ea1SDimitry Andric
646*0fca6ea1SDimitry Andric if (Length == 0)
647*0fca6ea1SDimitry Andric return;
648*0fca6ea1SDimitry Andric
649*0fca6ea1SDimitry Andric // Precompute some types.
650*0fca6ea1SDimitry Andric Record *RegisterCl = Def->getRecords().getClass("Register");
651*0fca6ea1SDimitry Andric RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
652*0fca6ea1SDimitry Andric std::vector<StringRef> RegNames =
653*0fca6ea1SDimitry Andric Def->getValueAsListOfStrings("RegAsmNames");
654*0fca6ea1SDimitry Andric
655*0fca6ea1SDimitry Andric // Zip them up.
656*0fca6ea1SDimitry Andric RecordKeeper &RK = Def->getRecords();
657*0fca6ea1SDimitry Andric for (unsigned n = 0; n != Length; ++n) {
658*0fca6ea1SDimitry Andric std::string Name;
659*0fca6ea1SDimitry Andric Record *Proto = Lists[0][n];
660*0fca6ea1SDimitry Andric std::vector<Init *> Tuple;
661*0fca6ea1SDimitry Andric for (unsigned i = 0; i != Dim; ++i) {
662*0fca6ea1SDimitry Andric Record *Reg = Lists[i][n];
663*0fca6ea1SDimitry Andric if (i)
664*0fca6ea1SDimitry Andric Name += '_';
665*0fca6ea1SDimitry Andric Name += Reg->getName();
666*0fca6ea1SDimitry Andric Tuple.push_back(DefInit::get(Reg));
667*0fca6ea1SDimitry Andric }
668*0fca6ea1SDimitry Andric
669*0fca6ea1SDimitry Andric // Take the cost list of the first register in the tuple.
670*0fca6ea1SDimitry Andric ListInit *CostList = Proto->getValueAsListInit("CostPerUse");
671*0fca6ea1SDimitry Andric SmallVector<Init *, 2> CostPerUse;
672*0fca6ea1SDimitry Andric CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end());
673*0fca6ea1SDimitry Andric
674*0fca6ea1SDimitry Andric StringInit *AsmName = StringInit::get(RK, "");
675*0fca6ea1SDimitry Andric if (!RegNames.empty()) {
676*0fca6ea1SDimitry Andric if (RegNames.size() <= n)
677*0fca6ea1SDimitry Andric PrintFatalError(Def->getLoc(),
678*0fca6ea1SDimitry Andric "Register tuple definition missing name for '" +
679*0fca6ea1SDimitry Andric Name + "'.");
680*0fca6ea1SDimitry Andric AsmName = StringInit::get(RK, RegNames[n]);
681*0fca6ea1SDimitry Andric }
682*0fca6ea1SDimitry Andric
683*0fca6ea1SDimitry Andric // Create a new Record representing the synthesized register. This record
684*0fca6ea1SDimitry Andric // is only for consumption by CodeGenRegister, it is not added to the
685*0fca6ea1SDimitry Andric // RecordKeeper.
686*0fca6ea1SDimitry Andric SynthDefs.emplace_back(
687*0fca6ea1SDimitry Andric std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
688*0fca6ea1SDimitry Andric Record *NewReg = SynthDefs.back().get();
689*0fca6ea1SDimitry Andric Elts.insert(NewReg);
690*0fca6ea1SDimitry Andric
691*0fca6ea1SDimitry Andric // Detect duplicates among synthesized registers.
692*0fca6ea1SDimitry Andric const auto Res = TupleNames.insert(NewReg->getName());
693*0fca6ea1SDimitry Andric if (!Res.second)
694*0fca6ea1SDimitry Andric PrintFatalError(Def->getLoc(),
695*0fca6ea1SDimitry Andric "Register tuple redefines register '" + Name + "'.");
696*0fca6ea1SDimitry Andric
697*0fca6ea1SDimitry Andric // Copy Proto super-classes.
698*0fca6ea1SDimitry Andric ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
699*0fca6ea1SDimitry Andric for (const auto &SuperPair : Supers)
700*0fca6ea1SDimitry Andric NewReg->addSuperClass(SuperPair.first, SuperPair.second);
701*0fca6ea1SDimitry Andric
702*0fca6ea1SDimitry Andric // Copy Proto fields.
703*0fca6ea1SDimitry Andric for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
704*0fca6ea1SDimitry Andric RecordVal RV = Proto->getValues()[i];
705*0fca6ea1SDimitry Andric
706*0fca6ea1SDimitry Andric // Skip existing fields, like NAME.
707*0fca6ea1SDimitry Andric if (NewReg->getValue(RV.getNameInit()))
708*0fca6ea1SDimitry Andric continue;
709*0fca6ea1SDimitry Andric
710*0fca6ea1SDimitry Andric StringRef Field = RV.getName();
711*0fca6ea1SDimitry Andric
712*0fca6ea1SDimitry Andric // Replace the sub-register list with Tuple.
713*0fca6ea1SDimitry Andric if (Field == "SubRegs")
714*0fca6ea1SDimitry Andric RV.setValue(ListInit::get(Tuple, RegisterRecTy));
715*0fca6ea1SDimitry Andric
716*0fca6ea1SDimitry Andric if (Field == "AsmName")
717*0fca6ea1SDimitry Andric RV.setValue(AsmName);
718*0fca6ea1SDimitry Andric
719*0fca6ea1SDimitry Andric // CostPerUse is aggregated from all Tuple members.
720*0fca6ea1SDimitry Andric if (Field == "CostPerUse")
721*0fca6ea1SDimitry Andric RV.setValue(ListInit::get(CostPerUse, CostList->getElementType()));
722*0fca6ea1SDimitry Andric
723*0fca6ea1SDimitry Andric // Composite registers are always covered by sub-registers.
724*0fca6ea1SDimitry Andric if (Field == "CoveredBySubRegs")
725*0fca6ea1SDimitry Andric RV.setValue(BitInit::get(RK, true));
726*0fca6ea1SDimitry Andric
727*0fca6ea1SDimitry Andric // Copy fields from the RegisterTuples def.
728*0fca6ea1SDimitry Andric if (Field == "SubRegIndices" || Field == "CompositeIndices") {
729*0fca6ea1SDimitry Andric NewReg->addValue(*Def->getValue(Field));
730*0fca6ea1SDimitry Andric continue;
731*0fca6ea1SDimitry Andric }
732*0fca6ea1SDimitry Andric
733*0fca6ea1SDimitry Andric // Some fields get their default uninitialized value.
734*0fca6ea1SDimitry Andric if (Field == "DwarfNumbers" || Field == "DwarfAlias" ||
735*0fca6ea1SDimitry Andric Field == "Aliases") {
736*0fca6ea1SDimitry Andric if (const RecordVal *DefRV = RegisterCl->getValue(Field))
737*0fca6ea1SDimitry Andric NewReg->addValue(*DefRV);
738*0fca6ea1SDimitry Andric continue;
739*0fca6ea1SDimitry Andric }
740*0fca6ea1SDimitry Andric
741*0fca6ea1SDimitry Andric // Everything else is copied from Proto.
742*0fca6ea1SDimitry Andric NewReg->addValue(RV);
743*0fca6ea1SDimitry Andric }
744*0fca6ea1SDimitry Andric }
745*0fca6ea1SDimitry Andric }
746*0fca6ea1SDimitry Andric };
747*0fca6ea1SDimitry Andric
748*0fca6ea1SDimitry Andric } // end anonymous namespace
749*0fca6ea1SDimitry Andric
750*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
751*0fca6ea1SDimitry Andric // CodeGenRegisterClass
752*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
753*0fca6ea1SDimitry Andric
sortAndUniqueRegisters(CodeGenRegister::Vec & M)754*0fca6ea1SDimitry Andric static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
755*0fca6ea1SDimitry Andric llvm::sort(M, deref<std::less<>>());
756*0fca6ea1SDimitry Andric M.erase(llvm::unique(M, deref<std::equal_to<>>()), M.end());
757*0fca6ea1SDimitry Andric }
758*0fca6ea1SDimitry Andric
CodeGenRegisterClass(CodeGenRegBank & RegBank,Record * R)759*0fca6ea1SDimitry Andric CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
760*0fca6ea1SDimitry Andric : TheDef(R), Name(std::string(R->getName())),
761*0fca6ea1SDimitry Andric TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) {
762*0fca6ea1SDimitry Andric GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
763*0fca6ea1SDimitry Andric std::vector<Record *> TypeList = R->getValueAsListOfDefs("RegTypes");
764*0fca6ea1SDimitry Andric if (TypeList.empty())
765*0fca6ea1SDimitry Andric PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
766*0fca6ea1SDimitry Andric for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
767*0fca6ea1SDimitry Andric Record *Type = TypeList[i];
768*0fca6ea1SDimitry Andric if (!Type->isSubClassOf("ValueType"))
769*0fca6ea1SDimitry Andric PrintFatalError(R->getLoc(),
770*0fca6ea1SDimitry Andric "RegTypes list member '" + Type->getName() +
771*0fca6ea1SDimitry Andric "' does not derive from the ValueType class!");
772*0fca6ea1SDimitry Andric VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
773*0fca6ea1SDimitry Andric }
774*0fca6ea1SDimitry Andric
775*0fca6ea1SDimitry Andric // Allocation order 0 is the full set. AltOrders provides others.
776*0fca6ea1SDimitry Andric const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
777*0fca6ea1SDimitry Andric ListInit *AltOrders = R->getValueAsListInit("AltOrders");
778*0fca6ea1SDimitry Andric Orders.resize(1 + AltOrders->size());
779*0fca6ea1SDimitry Andric
780*0fca6ea1SDimitry Andric // Default allocation order always contains all registers.
781*0fca6ea1SDimitry Andric Artificial = true;
782*0fca6ea1SDimitry Andric for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
783*0fca6ea1SDimitry Andric Orders[0].push_back((*Elements)[i]);
784*0fca6ea1SDimitry Andric const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
785*0fca6ea1SDimitry Andric Members.push_back(Reg);
786*0fca6ea1SDimitry Andric Artificial &= Reg->Artificial;
787*0fca6ea1SDimitry Andric TopoSigs.set(Reg->getTopoSig());
788*0fca6ea1SDimitry Andric }
789*0fca6ea1SDimitry Andric sortAndUniqueRegisters(Members);
790*0fca6ea1SDimitry Andric
791*0fca6ea1SDimitry Andric // Alternative allocation orders may be subsets.
792*0fca6ea1SDimitry Andric SetTheory::RecSet Order;
793*0fca6ea1SDimitry Andric for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
794*0fca6ea1SDimitry Andric RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
795*0fca6ea1SDimitry Andric Orders[1 + i].append(Order.begin(), Order.end());
796*0fca6ea1SDimitry Andric // Verify that all altorder members are regclass members.
797*0fca6ea1SDimitry Andric while (!Order.empty()) {
798*0fca6ea1SDimitry Andric CodeGenRegister *Reg = RegBank.getReg(Order.back());
799*0fca6ea1SDimitry Andric Order.pop_back();
800*0fca6ea1SDimitry Andric if (!contains(Reg))
801*0fca6ea1SDimitry Andric PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
802*0fca6ea1SDimitry Andric " is not a class member");
803*0fca6ea1SDimitry Andric }
804*0fca6ea1SDimitry Andric }
805*0fca6ea1SDimitry Andric
806*0fca6ea1SDimitry Andric Namespace = R->getValueAsString("Namespace");
807*0fca6ea1SDimitry Andric
808*0fca6ea1SDimitry Andric if (const RecordVal *RV = R->getValue("RegInfos"))
809*0fca6ea1SDimitry Andric if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
810*0fca6ea1SDimitry Andric RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
811*0fca6ea1SDimitry Andric unsigned Size = R->getValueAsInt("Size");
812*0fca6ea1SDimitry Andric assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
813*0fca6ea1SDimitry Andric "Impossible to determine register size");
814*0fca6ea1SDimitry Andric if (!RSI.hasDefault()) {
815*0fca6ea1SDimitry Andric RegSizeInfo RI;
816*0fca6ea1SDimitry Andric RI.RegSize = RI.SpillSize =
817*0fca6ea1SDimitry Andric Size ? Size : VTs[0].getSimple().getSizeInBits();
818*0fca6ea1SDimitry Andric RI.SpillAlignment = R->getValueAsInt("Alignment");
819*0fca6ea1SDimitry Andric RSI.insertRegSizeForMode(DefaultMode, RI);
820*0fca6ea1SDimitry Andric }
821*0fca6ea1SDimitry Andric
822*0fca6ea1SDimitry Andric CopyCost = R->getValueAsInt("CopyCost");
823*0fca6ea1SDimitry Andric Allocatable = R->getValueAsBit("isAllocatable");
824*0fca6ea1SDimitry Andric AltOrderSelect = R->getValueAsString("AltOrderSelect");
825*0fca6ea1SDimitry Andric int AllocationPriority = R->getValueAsInt("AllocationPriority");
826*0fca6ea1SDimitry Andric if (!isUInt<5>(AllocationPriority))
827*0fca6ea1SDimitry Andric PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,31]");
828*0fca6ea1SDimitry Andric this->AllocationPriority = AllocationPriority;
829*0fca6ea1SDimitry Andric
830*0fca6ea1SDimitry Andric GlobalPriority = R->getValueAsBit("GlobalPriority");
831*0fca6ea1SDimitry Andric
832*0fca6ea1SDimitry Andric BitsInit *TSF = R->getValueAsBitsInit("TSFlags");
833*0fca6ea1SDimitry Andric for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) {
834*0fca6ea1SDimitry Andric BitInit *Bit = cast<BitInit>(TSF->getBit(I));
835*0fca6ea1SDimitry Andric TSFlags |= uint8_t(Bit->getValue()) << I;
836*0fca6ea1SDimitry Andric }
837*0fca6ea1SDimitry Andric }
838*0fca6ea1SDimitry Andric
839*0fca6ea1SDimitry Andric // Create an inferred register class that was missing from the .td files.
840*0fca6ea1SDimitry Andric // Most properties will be inherited from the closest super-class after the
841*0fca6ea1SDimitry Andric // class structure has been computed.
CodeGenRegisterClass(CodeGenRegBank & RegBank,StringRef Name,Key Props)842*0fca6ea1SDimitry Andric CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
843*0fca6ea1SDimitry Andric StringRef Name, Key Props)
844*0fca6ea1SDimitry Andric : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
845*0fca6ea1SDimitry Andric TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
846*0fca6ea1SDimitry Andric CopyCost(0), Allocatable(true), AllocationPriority(0),
847*0fca6ea1SDimitry Andric GlobalPriority(false), TSFlags(0) {
848*0fca6ea1SDimitry Andric Artificial = true;
849*0fca6ea1SDimitry Andric GeneratePressureSet = false;
850*0fca6ea1SDimitry Andric for (const auto R : Members) {
851*0fca6ea1SDimitry Andric TopoSigs.set(R->getTopoSig());
852*0fca6ea1SDimitry Andric Artificial &= R->Artificial;
853*0fca6ea1SDimitry Andric }
854*0fca6ea1SDimitry Andric }
855*0fca6ea1SDimitry Andric
856*0fca6ea1SDimitry Andric // Compute inherited propertied for a synthesized register class.
inheritProperties(CodeGenRegBank & RegBank)857*0fca6ea1SDimitry Andric void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
858*0fca6ea1SDimitry Andric assert(!getDef() && "Only synthesized classes can inherit properties");
859*0fca6ea1SDimitry Andric assert(!SuperClasses.empty() && "Synthesized class without super class");
860*0fca6ea1SDimitry Andric
861*0fca6ea1SDimitry Andric // The last super-class is the smallest one.
862*0fca6ea1SDimitry Andric CodeGenRegisterClass &Super = *SuperClasses.back();
863*0fca6ea1SDimitry Andric
864*0fca6ea1SDimitry Andric // Most properties are copied directly.
865*0fca6ea1SDimitry Andric // Exceptions are members, size, and alignment
866*0fca6ea1SDimitry Andric Namespace = Super.Namespace;
867*0fca6ea1SDimitry Andric VTs = Super.VTs;
868*0fca6ea1SDimitry Andric CopyCost = Super.CopyCost;
869*0fca6ea1SDimitry Andric // Check for allocatable superclasses.
870*0fca6ea1SDimitry Andric Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) {
871*0fca6ea1SDimitry Andric return S->Allocatable;
872*0fca6ea1SDimitry Andric });
873*0fca6ea1SDimitry Andric AltOrderSelect = Super.AltOrderSelect;
874*0fca6ea1SDimitry Andric AllocationPriority = Super.AllocationPriority;
875*0fca6ea1SDimitry Andric GlobalPriority = Super.GlobalPriority;
876*0fca6ea1SDimitry Andric TSFlags = Super.TSFlags;
877*0fca6ea1SDimitry Andric GeneratePressureSet |= Super.GeneratePressureSet;
878*0fca6ea1SDimitry Andric
879*0fca6ea1SDimitry Andric // Copy all allocation orders, filter out foreign registers from the larger
880*0fca6ea1SDimitry Andric // super-class.
881*0fca6ea1SDimitry Andric Orders.resize(Super.Orders.size());
882*0fca6ea1SDimitry Andric for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
883*0fca6ea1SDimitry Andric for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
884*0fca6ea1SDimitry Andric if (contains(RegBank.getReg(Super.Orders[i][j])))
885*0fca6ea1SDimitry Andric Orders[i].push_back(Super.Orders[i][j]);
886*0fca6ea1SDimitry Andric }
887*0fca6ea1SDimitry Andric
hasType(const ValueTypeByHwMode & VT) const888*0fca6ea1SDimitry Andric bool CodeGenRegisterClass::hasType(const ValueTypeByHwMode &VT) const {
889*0fca6ea1SDimitry Andric if (llvm::is_contained(VTs, VT))
890*0fca6ea1SDimitry Andric return true;
891*0fca6ea1SDimitry Andric
892*0fca6ea1SDimitry Andric // If VT is not identical to any of this class's types, but is a simple
893*0fca6ea1SDimitry Andric // type, check if any of the types for this class contain it under some
894*0fca6ea1SDimitry Andric // mode.
895*0fca6ea1SDimitry Andric // The motivating example came from RISC-V, where (likely because of being
896*0fca6ea1SDimitry Andric // guarded by "64-bit" predicate), the type of X5 was {*:[i64]}, but the
897*0fca6ea1SDimitry Andric // type in GRC was {*:[i32], m1:[i64]}.
898*0fca6ea1SDimitry Andric if (VT.isSimple()) {
899*0fca6ea1SDimitry Andric MVT T = VT.getSimple();
900*0fca6ea1SDimitry Andric for (const ValueTypeByHwMode &OurVT : VTs) {
901*0fca6ea1SDimitry Andric if (llvm::count_if(OurVT, [T](auto &&P) { return P.second == T; }))
902*0fca6ea1SDimitry Andric return true;
903*0fca6ea1SDimitry Andric }
904*0fca6ea1SDimitry Andric }
905*0fca6ea1SDimitry Andric return false;
906*0fca6ea1SDimitry Andric }
907*0fca6ea1SDimitry Andric
contains(const CodeGenRegister * Reg) const908*0fca6ea1SDimitry Andric bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
909*0fca6ea1SDimitry Andric return std::binary_search(Members.begin(), Members.end(), Reg,
910*0fca6ea1SDimitry Andric deref<std::less<>>());
911*0fca6ea1SDimitry Andric }
912*0fca6ea1SDimitry Andric
getWeight(const CodeGenRegBank & RegBank) const913*0fca6ea1SDimitry Andric unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank &RegBank) const {
914*0fca6ea1SDimitry Andric if (TheDef && !TheDef->isValueUnset("Weight"))
915*0fca6ea1SDimitry Andric return TheDef->getValueAsInt("Weight");
916*0fca6ea1SDimitry Andric
917*0fca6ea1SDimitry Andric if (Members.empty() || Artificial)
918*0fca6ea1SDimitry Andric return 0;
919*0fca6ea1SDimitry Andric
920*0fca6ea1SDimitry Andric return (*Members.begin())->getWeight(RegBank);
921*0fca6ea1SDimitry Andric }
922*0fca6ea1SDimitry Andric
923*0fca6ea1SDimitry Andric namespace llvm {
924*0fca6ea1SDimitry Andric
operator <<(raw_ostream & OS,const CodeGenRegisterClass::Key & K)925*0fca6ea1SDimitry Andric raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
926*0fca6ea1SDimitry Andric OS << "{ " << K.RSI;
927*0fca6ea1SDimitry Andric for (const auto R : *K.Members)
928*0fca6ea1SDimitry Andric OS << ", " << R->getName();
929*0fca6ea1SDimitry Andric return OS << " }";
930*0fca6ea1SDimitry Andric }
931*0fca6ea1SDimitry Andric
932*0fca6ea1SDimitry Andric } // end namespace llvm
933*0fca6ea1SDimitry Andric
934*0fca6ea1SDimitry Andric // This is a simple lexicographical order that can be used to search for sets.
935*0fca6ea1SDimitry Andric // It is not the same as the topological order provided by TopoOrderRC.
operator <(const CodeGenRegisterClass::Key & B) const936*0fca6ea1SDimitry Andric bool CodeGenRegisterClass::Key::operator<(
937*0fca6ea1SDimitry Andric const CodeGenRegisterClass::Key &B) const {
938*0fca6ea1SDimitry Andric assert(Members && B.Members);
939*0fca6ea1SDimitry Andric return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
940*0fca6ea1SDimitry Andric }
941*0fca6ea1SDimitry Andric
942*0fca6ea1SDimitry Andric // Returns true if RC is a strict subclass.
943*0fca6ea1SDimitry Andric // RC is a sub-class of this class if it is a valid replacement for any
944*0fca6ea1SDimitry Andric // instruction operand where a register of this classis required. It must
945*0fca6ea1SDimitry Andric // satisfy these conditions:
946*0fca6ea1SDimitry Andric //
947*0fca6ea1SDimitry Andric // 1. All RC registers are also in this.
948*0fca6ea1SDimitry Andric // 2. The RC spill size must not be smaller than our spill size.
949*0fca6ea1SDimitry Andric // 3. RC spill alignment must be compatible with ours.
950*0fca6ea1SDimitry Andric //
testSubClass(const CodeGenRegisterClass * A,const CodeGenRegisterClass * B)951*0fca6ea1SDimitry Andric static bool testSubClass(const CodeGenRegisterClass *A,
952*0fca6ea1SDimitry Andric const CodeGenRegisterClass *B) {
953*0fca6ea1SDimitry Andric return A->RSI.isSubClassOf(B->RSI) &&
954*0fca6ea1SDimitry Andric std::includes(A->getMembers().begin(), A->getMembers().end(),
955*0fca6ea1SDimitry Andric B->getMembers().begin(), B->getMembers().end(),
956*0fca6ea1SDimitry Andric deref<std::less<>>());
957*0fca6ea1SDimitry Andric }
958*0fca6ea1SDimitry Andric
959*0fca6ea1SDimitry Andric /// Sorting predicate for register classes. This provides a topological
960*0fca6ea1SDimitry Andric /// ordering that arranges all register classes before their sub-classes.
961*0fca6ea1SDimitry Andric ///
962*0fca6ea1SDimitry Andric /// Register classes with the same registers, spill size, and alignment form a
963*0fca6ea1SDimitry Andric /// clique. They will be ordered alphabetically.
964*0fca6ea1SDimitry Andric ///
TopoOrderRC(const CodeGenRegisterClass & PA,const CodeGenRegisterClass & PB)965*0fca6ea1SDimitry Andric static bool TopoOrderRC(const CodeGenRegisterClass &PA,
966*0fca6ea1SDimitry Andric const CodeGenRegisterClass &PB) {
967*0fca6ea1SDimitry Andric auto *A = &PA;
968*0fca6ea1SDimitry Andric auto *B = &PB;
969*0fca6ea1SDimitry Andric if (A == B)
970*0fca6ea1SDimitry Andric return false;
971*0fca6ea1SDimitry Andric
972*0fca6ea1SDimitry Andric if (A->RSI < B->RSI)
973*0fca6ea1SDimitry Andric return true;
974*0fca6ea1SDimitry Andric if (A->RSI != B->RSI)
975*0fca6ea1SDimitry Andric return false;
976*0fca6ea1SDimitry Andric
977*0fca6ea1SDimitry Andric // Order by descending set size. Note that the classes' allocation order may
978*0fca6ea1SDimitry Andric // not have been computed yet. The Members set is always vaild.
979*0fca6ea1SDimitry Andric if (A->getMembers().size() > B->getMembers().size())
980*0fca6ea1SDimitry Andric return true;
981*0fca6ea1SDimitry Andric if (A->getMembers().size() < B->getMembers().size())
982*0fca6ea1SDimitry Andric return false;
983*0fca6ea1SDimitry Andric
984*0fca6ea1SDimitry Andric // Finally order by name as a tie breaker.
985*0fca6ea1SDimitry Andric return StringRef(A->getName()) < B->getName();
986*0fca6ea1SDimitry Andric }
987*0fca6ea1SDimitry Andric
getNamespaceQualification() const988*0fca6ea1SDimitry Andric std::string CodeGenRegisterClass::getNamespaceQualification() const {
989*0fca6ea1SDimitry Andric return Namespace.empty() ? "" : (Namespace + "::").str();
990*0fca6ea1SDimitry Andric }
991*0fca6ea1SDimitry Andric
getQualifiedName() const992*0fca6ea1SDimitry Andric std::string CodeGenRegisterClass::getQualifiedName() const {
993*0fca6ea1SDimitry Andric return getNamespaceQualification() + getName();
994*0fca6ea1SDimitry Andric }
995*0fca6ea1SDimitry Andric
getIdName() const996*0fca6ea1SDimitry Andric std::string CodeGenRegisterClass::getIdName() const {
997*0fca6ea1SDimitry Andric return getName() + "RegClassID";
998*0fca6ea1SDimitry Andric }
999*0fca6ea1SDimitry Andric
getQualifiedIdName() const1000*0fca6ea1SDimitry Andric std::string CodeGenRegisterClass::getQualifiedIdName() const {
1001*0fca6ea1SDimitry Andric return getNamespaceQualification() + getIdName();
1002*0fca6ea1SDimitry Andric }
1003*0fca6ea1SDimitry Andric
1004*0fca6ea1SDimitry Andric // Compute sub-classes of all register classes.
1005*0fca6ea1SDimitry Andric // Assume the classes are ordered topologically.
computeSubClasses(CodeGenRegBank & RegBank)1006*0fca6ea1SDimitry Andric void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
1007*0fca6ea1SDimitry Andric auto &RegClasses = RegBank.getRegClasses();
1008*0fca6ea1SDimitry Andric
1009*0fca6ea1SDimitry Andric // Visit backwards so sub-classes are seen first.
1010*0fca6ea1SDimitry Andric for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
1011*0fca6ea1SDimitry Andric CodeGenRegisterClass &RC = *I;
1012*0fca6ea1SDimitry Andric RC.SubClasses.resize(RegClasses.size());
1013*0fca6ea1SDimitry Andric RC.SubClasses.set(RC.EnumValue);
1014*0fca6ea1SDimitry Andric if (RC.Artificial)
1015*0fca6ea1SDimitry Andric continue;
1016*0fca6ea1SDimitry Andric
1017*0fca6ea1SDimitry Andric // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
1018*0fca6ea1SDimitry Andric for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
1019*0fca6ea1SDimitry Andric CodeGenRegisterClass &SubRC = *I2;
1020*0fca6ea1SDimitry Andric if (RC.SubClasses.test(SubRC.EnumValue))
1021*0fca6ea1SDimitry Andric continue;
1022*0fca6ea1SDimitry Andric if (!testSubClass(&RC, &SubRC))
1023*0fca6ea1SDimitry Andric continue;
1024*0fca6ea1SDimitry Andric // SubRC is a sub-class. Grap all its sub-classes so we won't have to
1025*0fca6ea1SDimitry Andric // check them again.
1026*0fca6ea1SDimitry Andric RC.SubClasses |= SubRC.SubClasses;
1027*0fca6ea1SDimitry Andric }
1028*0fca6ea1SDimitry Andric
1029*0fca6ea1SDimitry Andric // Sweep up missed clique members. They will be immediately preceding RC.
1030*0fca6ea1SDimitry Andric for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
1031*0fca6ea1SDimitry Andric RC.SubClasses.set(I2->EnumValue);
1032*0fca6ea1SDimitry Andric }
1033*0fca6ea1SDimitry Andric
1034*0fca6ea1SDimitry Andric // Compute the SuperClasses lists from the SubClasses vectors.
1035*0fca6ea1SDimitry Andric for (auto &RC : RegClasses) {
1036*0fca6ea1SDimitry Andric const BitVector &SC = RC.getSubClasses();
1037*0fca6ea1SDimitry Andric auto I = RegClasses.begin();
1038*0fca6ea1SDimitry Andric for (int s = 0, next_s = SC.find_first(); next_s != -1;
1039*0fca6ea1SDimitry Andric next_s = SC.find_next(s)) {
1040*0fca6ea1SDimitry Andric std::advance(I, next_s - s);
1041*0fca6ea1SDimitry Andric s = next_s;
1042*0fca6ea1SDimitry Andric if (&*I == &RC)
1043*0fca6ea1SDimitry Andric continue;
1044*0fca6ea1SDimitry Andric I->SuperClasses.push_back(&RC);
1045*0fca6ea1SDimitry Andric }
1046*0fca6ea1SDimitry Andric }
1047*0fca6ea1SDimitry Andric
1048*0fca6ea1SDimitry Andric // With the class hierarchy in place, let synthesized register classes inherit
1049*0fca6ea1SDimitry Andric // properties from their closest super-class. The iteration order here can
1050*0fca6ea1SDimitry Andric // propagate properties down multiple levels.
1051*0fca6ea1SDimitry Andric for (auto &RC : RegClasses)
1052*0fca6ea1SDimitry Andric if (!RC.getDef())
1053*0fca6ea1SDimitry Andric RC.inheritProperties(RegBank);
1054*0fca6ea1SDimitry Andric }
1055*0fca6ea1SDimitry Andric
1056*0fca6ea1SDimitry Andric std::optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
getMatchingSubClassWithSubRegs(CodeGenRegBank & RegBank,const CodeGenSubRegIndex * SubIdx) const1057*0fca6ea1SDimitry Andric CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
1058*0fca6ea1SDimitry Andric CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
1059*0fca6ea1SDimitry Andric auto WeakSizeOrder = [this](const CodeGenRegisterClass *A,
1060*0fca6ea1SDimitry Andric const CodeGenRegisterClass *B) {
1061*0fca6ea1SDimitry Andric // If there are multiple, identical register classes, prefer the original
1062*0fca6ea1SDimitry Andric // register class.
1063*0fca6ea1SDimitry Andric if (A == B)
1064*0fca6ea1SDimitry Andric return false;
1065*0fca6ea1SDimitry Andric if (A->getMembers().size() == B->getMembers().size())
1066*0fca6ea1SDimitry Andric return A == this;
1067*0fca6ea1SDimitry Andric return A->getMembers().size() > B->getMembers().size();
1068*0fca6ea1SDimitry Andric };
1069*0fca6ea1SDimitry Andric
1070*0fca6ea1SDimitry Andric auto &RegClasses = RegBank.getRegClasses();
1071*0fca6ea1SDimitry Andric
1072*0fca6ea1SDimitry Andric // Find all the subclasses of this one that fully support the sub-register
1073*0fca6ea1SDimitry Andric // index and order them by size. BiggestSuperRC should always be first.
1074*0fca6ea1SDimitry Andric CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1075*0fca6ea1SDimitry Andric if (!BiggestSuperRegRC)
1076*0fca6ea1SDimitry Andric return std::nullopt;
1077*0fca6ea1SDimitry Andric BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1078*0fca6ea1SDimitry Andric std::vector<CodeGenRegisterClass *> SuperRegRCs;
1079*0fca6ea1SDimitry Andric for (auto &RC : RegClasses)
1080*0fca6ea1SDimitry Andric if (SuperRegRCsBV[RC.EnumValue])
1081*0fca6ea1SDimitry Andric SuperRegRCs.emplace_back(&RC);
1082*0fca6ea1SDimitry Andric llvm::stable_sort(SuperRegRCs, WeakSizeOrder);
1083*0fca6ea1SDimitry Andric
1084*0fca6ea1SDimitry Andric assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1085*0fca6ea1SDimitry Andric "Biggest class wasn't first");
1086*0fca6ea1SDimitry Andric
1087*0fca6ea1SDimitry Andric // Find all the subreg classes and order them by size too.
1088*0fca6ea1SDimitry Andric std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1089*0fca6ea1SDimitry Andric for (auto &RC : RegClasses) {
1090*0fca6ea1SDimitry Andric BitVector SuperRegClassesBV(RegClasses.size());
1091*0fca6ea1SDimitry Andric RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1092*0fca6ea1SDimitry Andric if (SuperRegClassesBV.any())
1093*0fca6ea1SDimitry Andric SuperRegClasses.push_back(std::pair(&RC, SuperRegClassesBV));
1094*0fca6ea1SDimitry Andric }
1095*0fca6ea1SDimitry Andric llvm::stable_sort(SuperRegClasses,
1096*0fca6ea1SDimitry Andric [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1097*0fca6ea1SDimitry Andric const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1098*0fca6ea1SDimitry Andric return WeakSizeOrder(A.first, B.first);
1099*0fca6ea1SDimitry Andric });
1100*0fca6ea1SDimitry Andric
1101*0fca6ea1SDimitry Andric // Find the biggest subclass and subreg class such that R:subidx is in the
1102*0fca6ea1SDimitry Andric // subreg class for all R in subclass.
1103*0fca6ea1SDimitry Andric //
1104*0fca6ea1SDimitry Andric // For example:
1105*0fca6ea1SDimitry Andric // All registers in X86's GR64 have a sub_32bit subregister but no class
1106*0fca6ea1SDimitry Andric // exists that contains all the 32-bit subregisters because GR64 contains RIP
1107*0fca6ea1SDimitry Andric // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1108*0fca6ea1SDimitry Andric // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1109*0fca6ea1SDimitry Andric // having excluded RIP, we are able to find a SubRegRC (GR32).
1110*0fca6ea1SDimitry Andric CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1111*0fca6ea1SDimitry Andric CodeGenRegisterClass *SubRegRC = nullptr;
1112*0fca6ea1SDimitry Andric for (auto *SuperRegRC : SuperRegRCs) {
1113*0fca6ea1SDimitry Andric for (const auto &SuperRegClassPair : SuperRegClasses) {
1114*0fca6ea1SDimitry Andric const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1115*0fca6ea1SDimitry Andric if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1116*0fca6ea1SDimitry Andric SubRegRC = SuperRegClassPair.first;
1117*0fca6ea1SDimitry Andric ChosenSuperRegClass = SuperRegRC;
1118*0fca6ea1SDimitry Andric
1119*0fca6ea1SDimitry Andric // If SubRegRC is bigger than SuperRegRC then there are members of
1120*0fca6ea1SDimitry Andric // SubRegRC that don't have super registers via SubIdx. Keep looking to
1121*0fca6ea1SDimitry Andric // find a better fit and fall back on this one if there isn't one.
1122*0fca6ea1SDimitry Andric //
1123*0fca6ea1SDimitry Andric // This is intended to prevent X86 from making odd choices such as
1124*0fca6ea1SDimitry Andric // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1125*0fca6ea1SDimitry Andric // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1126*0fca6ea1SDimitry Andric // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1127*0fca6ea1SDimitry Andric // mapping.
1128*0fca6ea1SDimitry Andric if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1129*0fca6ea1SDimitry Andric return std::pair(ChosenSuperRegClass, SubRegRC);
1130*0fca6ea1SDimitry Andric }
1131*0fca6ea1SDimitry Andric }
1132*0fca6ea1SDimitry Andric
1133*0fca6ea1SDimitry Andric // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1134*0fca6ea1SDimitry Andric // registers, then we're done.
1135*0fca6ea1SDimitry Andric if (ChosenSuperRegClass)
1136*0fca6ea1SDimitry Andric return std::pair(ChosenSuperRegClass, SubRegRC);
1137*0fca6ea1SDimitry Andric }
1138*0fca6ea1SDimitry Andric
1139*0fca6ea1SDimitry Andric return std::nullopt;
1140*0fca6ea1SDimitry Andric }
1141*0fca6ea1SDimitry Andric
getSuperRegClasses(const CodeGenSubRegIndex * SubIdx,BitVector & Out) const1142*0fca6ea1SDimitry Andric void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1143*0fca6ea1SDimitry Andric BitVector &Out) const {
1144*0fca6ea1SDimitry Andric auto FindI = SuperRegClasses.find(SubIdx);
1145*0fca6ea1SDimitry Andric if (FindI == SuperRegClasses.end())
1146*0fca6ea1SDimitry Andric return;
1147*0fca6ea1SDimitry Andric for (CodeGenRegisterClass *RC : FindI->second)
1148*0fca6ea1SDimitry Andric Out.set(RC->EnumValue);
1149*0fca6ea1SDimitry Andric }
1150*0fca6ea1SDimitry Andric
1151*0fca6ea1SDimitry Andric // Populate a unique sorted list of units from a register set.
buildRegUnitSet(const CodeGenRegBank & RegBank,std::vector<unsigned> & RegUnits) const1152*0fca6ea1SDimitry Andric void CodeGenRegisterClass::buildRegUnitSet(
1153*0fca6ea1SDimitry Andric const CodeGenRegBank &RegBank, std::vector<unsigned> &RegUnits) const {
1154*0fca6ea1SDimitry Andric std::vector<unsigned> TmpUnits;
1155*0fca6ea1SDimitry Andric for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1156*0fca6ea1SDimitry Andric const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1157*0fca6ea1SDimitry Andric if (!RU.Artificial)
1158*0fca6ea1SDimitry Andric TmpUnits.push_back(*UnitI);
1159*0fca6ea1SDimitry Andric }
1160*0fca6ea1SDimitry Andric llvm::sort(TmpUnits);
1161*0fca6ea1SDimitry Andric std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1162*0fca6ea1SDimitry Andric std::back_inserter(RegUnits));
1163*0fca6ea1SDimitry Andric }
1164*0fca6ea1SDimitry Andric
1165*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
1166*0fca6ea1SDimitry Andric // CodeGenRegisterCategory
1167*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
1168*0fca6ea1SDimitry Andric
CodeGenRegisterCategory(CodeGenRegBank & RegBank,Record * R)1169*0fca6ea1SDimitry Andric CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank,
1170*0fca6ea1SDimitry Andric Record *R)
1171*0fca6ea1SDimitry Andric : TheDef(R), Name(std::string(R->getName())) {
1172*0fca6ea1SDimitry Andric for (Record *RegClass : R->getValueAsListOfDefs("Classes"))
1173*0fca6ea1SDimitry Andric Classes.push_back(RegBank.getRegClass(RegClass));
1174*0fca6ea1SDimitry Andric }
1175*0fca6ea1SDimitry Andric
1176*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
1177*0fca6ea1SDimitry Andric // CodeGenRegBank
1178*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
1179*0fca6ea1SDimitry Andric
CodeGenRegBank(RecordKeeper & Records,const CodeGenHwModes & Modes)1180*0fca6ea1SDimitry Andric CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1181*0fca6ea1SDimitry Andric const CodeGenHwModes &Modes)
1182*0fca6ea1SDimitry Andric : CGH(Modes) {
1183*0fca6ea1SDimitry Andric // Configure register Sets to understand register classes and tuples.
1184*0fca6ea1SDimitry Andric Sets.addFieldExpander("RegisterClass", "MemberList");
1185*0fca6ea1SDimitry Andric Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1186*0fca6ea1SDimitry Andric Sets.addExpander("RegisterTuples",
1187*0fca6ea1SDimitry Andric std::make_unique<TupleExpander>(SynthDefs));
1188*0fca6ea1SDimitry Andric
1189*0fca6ea1SDimitry Andric // Read in the user-defined (named) sub-register indices.
1190*0fca6ea1SDimitry Andric // More indices will be synthesized later.
1191*0fca6ea1SDimitry Andric std::vector<Record *> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1192*0fca6ea1SDimitry Andric llvm::sort(SRIs, LessRecord());
1193*0fca6ea1SDimitry Andric for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1194*0fca6ea1SDimitry Andric getSubRegIdx(SRIs[i]);
1195*0fca6ea1SDimitry Andric // Build composite maps from ComposedOf fields.
1196*0fca6ea1SDimitry Andric for (auto &Idx : SubRegIndices)
1197*0fca6ea1SDimitry Andric Idx.updateComponents(*this);
1198*0fca6ea1SDimitry Andric
1199*0fca6ea1SDimitry Andric // Read in the register and register tuple definitions.
1200*0fca6ea1SDimitry Andric std::vector<Record *> Regs = Records.getAllDerivedDefinitions("Register");
1201*0fca6ea1SDimitry Andric if (!Regs.empty() && Regs[0]->isSubClassOf("X86Reg")) {
1202*0fca6ea1SDimitry Andric // For X86, we need to sort Registers and RegisterTuples together to list
1203*0fca6ea1SDimitry Andric // new registers and register tuples at a later position. So that we can
1204*0fca6ea1SDimitry Andric // reduce unnecessary iterations on unsupported registers in LiveVariables.
1205*0fca6ea1SDimitry Andric // TODO: Remove this logic when migrate from LiveVariables to LiveIntervals
1206*0fca6ea1SDimitry Andric // completely.
1207*0fca6ea1SDimitry Andric std::vector<Record *> Tups =
1208*0fca6ea1SDimitry Andric Records.getAllDerivedDefinitions("RegisterTuples");
1209*0fca6ea1SDimitry Andric for (Record *R : Tups) {
1210*0fca6ea1SDimitry Andric // Expand tuples and merge the vectors
1211*0fca6ea1SDimitry Andric std::vector<Record *> TupRegs = *Sets.expand(R);
1212*0fca6ea1SDimitry Andric Regs.insert(Regs.end(), TupRegs.begin(), TupRegs.end());
1213*0fca6ea1SDimitry Andric }
1214*0fca6ea1SDimitry Andric
1215*0fca6ea1SDimitry Andric llvm::sort(Regs, LessRecordRegister());
1216*0fca6ea1SDimitry Andric // Assign the enumeration values.
1217*0fca6ea1SDimitry Andric for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1218*0fca6ea1SDimitry Andric getReg(Regs[i]);
1219*0fca6ea1SDimitry Andric } else {
1220*0fca6ea1SDimitry Andric llvm::sort(Regs, LessRecordRegister());
1221*0fca6ea1SDimitry Andric // Assign the enumeration values.
1222*0fca6ea1SDimitry Andric for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1223*0fca6ea1SDimitry Andric getReg(Regs[i]);
1224*0fca6ea1SDimitry Andric
1225*0fca6ea1SDimitry Andric // Expand tuples and number the new registers.
1226*0fca6ea1SDimitry Andric std::vector<Record *> Tups =
1227*0fca6ea1SDimitry Andric Records.getAllDerivedDefinitions("RegisterTuples");
1228*0fca6ea1SDimitry Andric
1229*0fca6ea1SDimitry Andric for (Record *R : Tups) {
1230*0fca6ea1SDimitry Andric std::vector<Record *> TupRegs = *Sets.expand(R);
1231*0fca6ea1SDimitry Andric llvm::sort(TupRegs, LessRecordRegister());
1232*0fca6ea1SDimitry Andric for (Record *RC : TupRegs)
1233*0fca6ea1SDimitry Andric getReg(RC);
1234*0fca6ea1SDimitry Andric }
1235*0fca6ea1SDimitry Andric }
1236*0fca6ea1SDimitry Andric
1237*0fca6ea1SDimitry Andric // Now all the registers are known. Build the object graph of explicit
1238*0fca6ea1SDimitry Andric // register-register references.
1239*0fca6ea1SDimitry Andric for (auto &Reg : Registers)
1240*0fca6ea1SDimitry Andric Reg.buildObjectGraph(*this);
1241*0fca6ea1SDimitry Andric
1242*0fca6ea1SDimitry Andric // Compute register name map.
1243*0fca6ea1SDimitry Andric for (auto &Reg : Registers)
1244*0fca6ea1SDimitry Andric // FIXME: This could just be RegistersByName[name] = register, except that
1245*0fca6ea1SDimitry Andric // causes some failures in MIPS - perhaps they have duplicate register name
1246*0fca6ea1SDimitry Andric // entries? (or maybe there's a reason for it - I don't know much about this
1247*0fca6ea1SDimitry Andric // code, just drive-by refactoring)
1248*0fca6ea1SDimitry Andric RegistersByName.insert(
1249*0fca6ea1SDimitry Andric std::pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1250*0fca6ea1SDimitry Andric
1251*0fca6ea1SDimitry Andric // Precompute all sub-register maps.
1252*0fca6ea1SDimitry Andric // This will create Composite entries for all inferred sub-register indices.
1253*0fca6ea1SDimitry Andric for (auto &Reg : Registers)
1254*0fca6ea1SDimitry Andric Reg.computeSubRegs(*this);
1255*0fca6ea1SDimitry Andric
1256*0fca6ea1SDimitry Andric // Compute transitive closure of subregister index ConcatenationOf vectors
1257*0fca6ea1SDimitry Andric // and initialize ConcatIdx map.
1258*0fca6ea1SDimitry Andric for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1259*0fca6ea1SDimitry Andric SRI.computeConcatTransitiveClosure();
1260*0fca6ea1SDimitry Andric if (!SRI.ConcatenationOf.empty())
1261*0fca6ea1SDimitry Andric ConcatIdx.insert(
1262*0fca6ea1SDimitry Andric std::pair(SmallVector<CodeGenSubRegIndex *, 8>(
1263*0fca6ea1SDimitry Andric SRI.ConcatenationOf.begin(), SRI.ConcatenationOf.end()),
1264*0fca6ea1SDimitry Andric &SRI));
1265*0fca6ea1SDimitry Andric }
1266*0fca6ea1SDimitry Andric
1267*0fca6ea1SDimitry Andric // Infer even more sub-registers by combining leading super-registers.
1268*0fca6ea1SDimitry Andric for (auto &Reg : Registers)
1269*0fca6ea1SDimitry Andric if (Reg.CoveredBySubRegs)
1270*0fca6ea1SDimitry Andric Reg.computeSecondarySubRegs(*this);
1271*0fca6ea1SDimitry Andric
1272*0fca6ea1SDimitry Andric // After the sub-register graph is complete, compute the topologically
1273*0fca6ea1SDimitry Andric // ordered SuperRegs list.
1274*0fca6ea1SDimitry Andric for (auto &Reg : Registers)
1275*0fca6ea1SDimitry Andric Reg.computeSuperRegs(*this);
1276*0fca6ea1SDimitry Andric
1277*0fca6ea1SDimitry Andric // For each pair of Reg:SR, if both are non-artificial, mark the
1278*0fca6ea1SDimitry Andric // corresponding sub-register index as non-artificial.
1279*0fca6ea1SDimitry Andric for (auto &Reg : Registers) {
1280*0fca6ea1SDimitry Andric if (Reg.Artificial)
1281*0fca6ea1SDimitry Andric continue;
1282*0fca6ea1SDimitry Andric for (auto P : Reg.getSubRegs()) {
1283*0fca6ea1SDimitry Andric const CodeGenRegister *SR = P.second;
1284*0fca6ea1SDimitry Andric if (!SR->Artificial)
1285*0fca6ea1SDimitry Andric P.first->Artificial = false;
1286*0fca6ea1SDimitry Andric }
1287*0fca6ea1SDimitry Andric }
1288*0fca6ea1SDimitry Andric
1289*0fca6ea1SDimitry Andric // Native register units are associated with a leaf register. They've all been
1290*0fca6ea1SDimitry Andric // discovered now.
1291*0fca6ea1SDimitry Andric NumNativeRegUnits = RegUnits.size();
1292*0fca6ea1SDimitry Andric
1293*0fca6ea1SDimitry Andric // Read in register class definitions.
1294*0fca6ea1SDimitry Andric std::vector<Record *> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1295*0fca6ea1SDimitry Andric if (RCs.empty())
1296*0fca6ea1SDimitry Andric PrintFatalError("No 'RegisterClass' subclasses defined!");
1297*0fca6ea1SDimitry Andric
1298*0fca6ea1SDimitry Andric // Allocate user-defined register classes.
1299*0fca6ea1SDimitry Andric for (auto *R : RCs) {
1300*0fca6ea1SDimitry Andric RegClasses.emplace_back(*this, R);
1301*0fca6ea1SDimitry Andric CodeGenRegisterClass &RC = RegClasses.back();
1302*0fca6ea1SDimitry Andric if (!RC.Artificial)
1303*0fca6ea1SDimitry Andric addToMaps(&RC);
1304*0fca6ea1SDimitry Andric }
1305*0fca6ea1SDimitry Andric
1306*0fca6ea1SDimitry Andric // Infer missing classes to create a full algebra.
1307*0fca6ea1SDimitry Andric computeInferredRegisterClasses();
1308*0fca6ea1SDimitry Andric
1309*0fca6ea1SDimitry Andric // Order register classes topologically and assign enum values.
1310*0fca6ea1SDimitry Andric RegClasses.sort(TopoOrderRC);
1311*0fca6ea1SDimitry Andric unsigned i = 0;
1312*0fca6ea1SDimitry Andric for (auto &RC : RegClasses)
1313*0fca6ea1SDimitry Andric RC.EnumValue = i++;
1314*0fca6ea1SDimitry Andric CodeGenRegisterClass::computeSubClasses(*this);
1315*0fca6ea1SDimitry Andric
1316*0fca6ea1SDimitry Andric // Read in the register category definitions.
1317*0fca6ea1SDimitry Andric std::vector<Record *> RCats =
1318*0fca6ea1SDimitry Andric Records.getAllDerivedDefinitions("RegisterCategory");
1319*0fca6ea1SDimitry Andric for (auto *R : RCats)
1320*0fca6ea1SDimitry Andric RegCategories.emplace_back(*this, R);
1321*0fca6ea1SDimitry Andric }
1322*0fca6ea1SDimitry Andric
1323*0fca6ea1SDimitry Andric // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
createSubRegIndex(StringRef Name,StringRef Namespace)1324*0fca6ea1SDimitry Andric CodeGenSubRegIndex *CodeGenRegBank::createSubRegIndex(StringRef Name,
1325*0fca6ea1SDimitry Andric StringRef Namespace) {
1326*0fca6ea1SDimitry Andric SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1327*0fca6ea1SDimitry Andric return &SubRegIndices.back();
1328*0fca6ea1SDimitry Andric }
1329*0fca6ea1SDimitry Andric
getSubRegIdx(Record * Def)1330*0fca6ea1SDimitry Andric CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1331*0fca6ea1SDimitry Andric CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1332*0fca6ea1SDimitry Andric if (Idx)
1333*0fca6ea1SDimitry Andric return Idx;
1334*0fca6ea1SDimitry Andric SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1, getHwModes());
1335*0fca6ea1SDimitry Andric Idx = &SubRegIndices.back();
1336*0fca6ea1SDimitry Andric return Idx;
1337*0fca6ea1SDimitry Andric }
1338*0fca6ea1SDimitry Andric
1339*0fca6ea1SDimitry Andric const CodeGenSubRegIndex *
findSubRegIdx(const Record * Def) const1340*0fca6ea1SDimitry Andric CodeGenRegBank::findSubRegIdx(const Record *Def) const {
1341*0fca6ea1SDimitry Andric return Def2SubRegIdx.lookup(Def);
1342*0fca6ea1SDimitry Andric }
1343*0fca6ea1SDimitry Andric
getReg(Record * Def)1344*0fca6ea1SDimitry Andric CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1345*0fca6ea1SDimitry Andric CodeGenRegister *&Reg = Def2Reg[Def];
1346*0fca6ea1SDimitry Andric if (Reg)
1347*0fca6ea1SDimitry Andric return Reg;
1348*0fca6ea1SDimitry Andric Registers.emplace_back(Def, Registers.size() + 1);
1349*0fca6ea1SDimitry Andric Reg = &Registers.back();
1350*0fca6ea1SDimitry Andric return Reg;
1351*0fca6ea1SDimitry Andric }
1352*0fca6ea1SDimitry Andric
addToMaps(CodeGenRegisterClass * RC)1353*0fca6ea1SDimitry Andric void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1354*0fca6ea1SDimitry Andric if (Record *Def = RC->getDef())
1355*0fca6ea1SDimitry Andric Def2RC.insert(std::pair(Def, RC));
1356*0fca6ea1SDimitry Andric
1357*0fca6ea1SDimitry Andric // Duplicate classes are rejected by insert().
1358*0fca6ea1SDimitry Andric // That's OK, we only care about the properties handled by CGRC::Key.
1359*0fca6ea1SDimitry Andric CodeGenRegisterClass::Key K(*RC);
1360*0fca6ea1SDimitry Andric Key2RC.insert(std::pair(K, RC));
1361*0fca6ea1SDimitry Andric }
1362*0fca6ea1SDimitry Andric
1363*0fca6ea1SDimitry Andric // Create a synthetic sub-class if it is missing.
1364*0fca6ea1SDimitry Andric CodeGenRegisterClass *
getOrCreateSubClass(const CodeGenRegisterClass * RC,const CodeGenRegister::Vec * Members,StringRef Name)1365*0fca6ea1SDimitry Andric CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1366*0fca6ea1SDimitry Andric const CodeGenRegister::Vec *Members,
1367*0fca6ea1SDimitry Andric StringRef Name) {
1368*0fca6ea1SDimitry Andric // Synthetic sub-class has the same size and alignment as RC.
1369*0fca6ea1SDimitry Andric CodeGenRegisterClass::Key K(Members, RC->RSI);
1370*0fca6ea1SDimitry Andric RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1371*0fca6ea1SDimitry Andric if (FoundI != Key2RC.end())
1372*0fca6ea1SDimitry Andric return FoundI->second;
1373*0fca6ea1SDimitry Andric
1374*0fca6ea1SDimitry Andric // Sub-class doesn't exist, create a new one.
1375*0fca6ea1SDimitry Andric RegClasses.emplace_back(*this, Name, K);
1376*0fca6ea1SDimitry Andric addToMaps(&RegClasses.back());
1377*0fca6ea1SDimitry Andric return &RegClasses.back();
1378*0fca6ea1SDimitry Andric }
1379*0fca6ea1SDimitry Andric
getRegClass(const Record * Def) const1380*0fca6ea1SDimitry Andric CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
1381*0fca6ea1SDimitry Andric if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
1382*0fca6ea1SDimitry Andric return RC;
1383*0fca6ea1SDimitry Andric
1384*0fca6ea1SDimitry Andric PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1385*0fca6ea1SDimitry Andric }
1386*0fca6ea1SDimitry Andric
1387*0fca6ea1SDimitry Andric CodeGenSubRegIndex *
getCompositeSubRegIndex(CodeGenSubRegIndex * A,CodeGenSubRegIndex * B)1388*0fca6ea1SDimitry Andric CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1389*0fca6ea1SDimitry Andric CodeGenSubRegIndex *B) {
1390*0fca6ea1SDimitry Andric // Look for an existing entry.
1391*0fca6ea1SDimitry Andric CodeGenSubRegIndex *Comp = A->compose(B);
1392*0fca6ea1SDimitry Andric if (Comp)
1393*0fca6ea1SDimitry Andric return Comp;
1394*0fca6ea1SDimitry Andric
1395*0fca6ea1SDimitry Andric // None exists, synthesize one.
1396*0fca6ea1SDimitry Andric std::string Name = A->getName() + "_then_" + B->getName();
1397*0fca6ea1SDimitry Andric Comp = createSubRegIndex(Name, A->getNamespace());
1398*0fca6ea1SDimitry Andric A->addComposite(B, Comp, getHwModes());
1399*0fca6ea1SDimitry Andric return Comp;
1400*0fca6ea1SDimitry Andric }
1401*0fca6ea1SDimitry Andric
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *,8> & Parts,const CodeGenHwModes & CGH)1402*0fca6ea1SDimitry Andric CodeGenSubRegIndex *CodeGenRegBank::getConcatSubRegIndex(
1403*0fca6ea1SDimitry Andric const SmallVector<CodeGenSubRegIndex *, 8> &Parts,
1404*0fca6ea1SDimitry Andric const CodeGenHwModes &CGH) {
1405*0fca6ea1SDimitry Andric assert(Parts.size() > 1 && "Need two parts to concatenate");
1406*0fca6ea1SDimitry Andric #ifndef NDEBUG
1407*0fca6ea1SDimitry Andric for (CodeGenSubRegIndex *Idx : Parts) {
1408*0fca6ea1SDimitry Andric assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1409*0fca6ea1SDimitry Andric }
1410*0fca6ea1SDimitry Andric #endif
1411*0fca6ea1SDimitry Andric
1412*0fca6ea1SDimitry Andric // Look for an existing entry.
1413*0fca6ea1SDimitry Andric CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1414*0fca6ea1SDimitry Andric if (Idx)
1415*0fca6ea1SDimitry Andric return Idx;
1416*0fca6ea1SDimitry Andric
1417*0fca6ea1SDimitry Andric // None exists, synthesize one.
1418*0fca6ea1SDimitry Andric std::string Name = Parts.front()->getName();
1419*0fca6ea1SDimitry Andric const unsigned UnknownSize = (uint16_t)-1;
1420*0fca6ea1SDimitry Andric
1421*0fca6ea1SDimitry Andric for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1422*0fca6ea1SDimitry Andric Name += '_';
1423*0fca6ea1SDimitry Andric Name += Parts[i]->getName();
1424*0fca6ea1SDimitry Andric }
1425*0fca6ea1SDimitry Andric
1426*0fca6ea1SDimitry Andric Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1427*0fca6ea1SDimitry Andric Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1428*0fca6ea1SDimitry Andric
1429*0fca6ea1SDimitry Andric unsigned NumModes = CGH.getNumModeIds();
1430*0fca6ea1SDimitry Andric for (unsigned M = 0; M < NumModes; ++M) {
1431*0fca6ea1SDimitry Andric const CodeGenSubRegIndex *Part = Parts.front();
1432*0fca6ea1SDimitry Andric
1433*0fca6ea1SDimitry Andric // Determine whether all parts are contiguous.
1434*0fca6ea1SDimitry Andric bool IsContinuous = true;
1435*0fca6ea1SDimitry Andric const SubRegRange &FirstPartRange = Part->Range.get(M);
1436*0fca6ea1SDimitry Andric unsigned Size = FirstPartRange.Size;
1437*0fca6ea1SDimitry Andric unsigned LastOffset = FirstPartRange.Offset;
1438*0fca6ea1SDimitry Andric unsigned LastSize = FirstPartRange.Size;
1439*0fca6ea1SDimitry Andric
1440*0fca6ea1SDimitry Andric for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1441*0fca6ea1SDimitry Andric Part = Parts[i];
1442*0fca6ea1SDimitry Andric Name += '_';
1443*0fca6ea1SDimitry Andric Name += Part->getName();
1444*0fca6ea1SDimitry Andric
1445*0fca6ea1SDimitry Andric const SubRegRange &PartRange = Part->Range.get(M);
1446*0fca6ea1SDimitry Andric if (Size == UnknownSize || PartRange.Size == UnknownSize)
1447*0fca6ea1SDimitry Andric Size = UnknownSize;
1448*0fca6ea1SDimitry Andric else
1449*0fca6ea1SDimitry Andric Size += PartRange.Size;
1450*0fca6ea1SDimitry Andric if (LastSize == UnknownSize ||
1451*0fca6ea1SDimitry Andric PartRange.Offset != (LastOffset + LastSize))
1452*0fca6ea1SDimitry Andric IsContinuous = false;
1453*0fca6ea1SDimitry Andric LastOffset = PartRange.Offset;
1454*0fca6ea1SDimitry Andric LastSize = PartRange.Size;
1455*0fca6ea1SDimitry Andric }
1456*0fca6ea1SDimitry Andric unsigned Offset = IsContinuous ? FirstPartRange.Offset : -1;
1457*0fca6ea1SDimitry Andric Idx->Range.get(M) = SubRegRange(Size, Offset);
1458*0fca6ea1SDimitry Andric }
1459*0fca6ea1SDimitry Andric
1460*0fca6ea1SDimitry Andric return Idx;
1461*0fca6ea1SDimitry Andric }
1462*0fca6ea1SDimitry Andric
computeComposites()1463*0fca6ea1SDimitry Andric void CodeGenRegBank::computeComposites() {
1464*0fca6ea1SDimitry Andric using RegMap = std::map<const CodeGenRegister *, const CodeGenRegister *>;
1465*0fca6ea1SDimitry Andric
1466*0fca6ea1SDimitry Andric // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1467*0fca6ea1SDimitry Andric // register to (sub)register associated with the action of the left-hand
1468*0fca6ea1SDimitry Andric // side subregister.
1469*0fca6ea1SDimitry Andric std::map<const CodeGenSubRegIndex *, RegMap> SubRegAction;
1470*0fca6ea1SDimitry Andric for (const CodeGenRegister &R : Registers) {
1471*0fca6ea1SDimitry Andric const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1472*0fca6ea1SDimitry Andric for (std::pair<const CodeGenSubRegIndex *, const CodeGenRegister *> P : SM)
1473*0fca6ea1SDimitry Andric SubRegAction[P.first].insert({&R, P.second});
1474*0fca6ea1SDimitry Andric }
1475*0fca6ea1SDimitry Andric
1476*0fca6ea1SDimitry Andric // Calculate the composition of two subregisters as compositions of their
1477*0fca6ea1SDimitry Andric // associated actions.
1478*0fca6ea1SDimitry Andric auto compose = [&SubRegAction](const CodeGenSubRegIndex *Sub1,
1479*0fca6ea1SDimitry Andric const CodeGenSubRegIndex *Sub2) {
1480*0fca6ea1SDimitry Andric RegMap C;
1481*0fca6ea1SDimitry Andric const RegMap &Img1 = SubRegAction.at(Sub1);
1482*0fca6ea1SDimitry Andric const RegMap &Img2 = SubRegAction.at(Sub2);
1483*0fca6ea1SDimitry Andric for (std::pair<const CodeGenRegister *, const CodeGenRegister *> P : Img1) {
1484*0fca6ea1SDimitry Andric auto F = Img2.find(P.second);
1485*0fca6ea1SDimitry Andric if (F != Img2.end())
1486*0fca6ea1SDimitry Andric C.insert({P.first, F->second});
1487*0fca6ea1SDimitry Andric }
1488*0fca6ea1SDimitry Andric return C;
1489*0fca6ea1SDimitry Andric };
1490*0fca6ea1SDimitry Andric
1491*0fca6ea1SDimitry Andric // Check if the two maps agree on the intersection of their domains.
1492*0fca6ea1SDimitry Andric auto agree = [](const RegMap &Map1, const RegMap &Map2) {
1493*0fca6ea1SDimitry Andric // Technically speaking, an empty map agrees with any other map, but
1494*0fca6ea1SDimitry Andric // this could flag false positives. We're interested in non-vacuous
1495*0fca6ea1SDimitry Andric // agreements.
1496*0fca6ea1SDimitry Andric if (Map1.empty() || Map2.empty())
1497*0fca6ea1SDimitry Andric return false;
1498*0fca6ea1SDimitry Andric for (std::pair<const CodeGenRegister *, const CodeGenRegister *> P : Map1) {
1499*0fca6ea1SDimitry Andric auto F = Map2.find(P.first);
1500*0fca6ea1SDimitry Andric if (F == Map2.end() || P.second != F->second)
1501*0fca6ea1SDimitry Andric return false;
1502*0fca6ea1SDimitry Andric }
1503*0fca6ea1SDimitry Andric return true;
1504*0fca6ea1SDimitry Andric };
1505*0fca6ea1SDimitry Andric
1506*0fca6ea1SDimitry Andric using CompositePair =
1507*0fca6ea1SDimitry Andric std::pair<const CodeGenSubRegIndex *, const CodeGenSubRegIndex *>;
1508*0fca6ea1SDimitry Andric SmallSet<CompositePair, 4> UserDefined;
1509*0fca6ea1SDimitry Andric for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1510*0fca6ea1SDimitry Andric for (auto P : Idx.getComposites())
1511*0fca6ea1SDimitry Andric UserDefined.insert(std::pair(&Idx, P.first));
1512*0fca6ea1SDimitry Andric
1513*0fca6ea1SDimitry Andric // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1514*0fca6ea1SDimitry Andric // and many registers will share TopoSigs on regular architectures.
1515*0fca6ea1SDimitry Andric BitVector TopoSigs(getNumTopoSigs());
1516*0fca6ea1SDimitry Andric
1517*0fca6ea1SDimitry Andric for (const auto &Reg1 : Registers) {
1518*0fca6ea1SDimitry Andric // Skip identical subreg structures already processed.
1519*0fca6ea1SDimitry Andric if (TopoSigs.test(Reg1.getTopoSig()))
1520*0fca6ea1SDimitry Andric continue;
1521*0fca6ea1SDimitry Andric TopoSigs.set(Reg1.getTopoSig());
1522*0fca6ea1SDimitry Andric
1523*0fca6ea1SDimitry Andric const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1524*0fca6ea1SDimitry Andric for (auto I1 : SRM1) {
1525*0fca6ea1SDimitry Andric CodeGenSubRegIndex *Idx1 = I1.first;
1526*0fca6ea1SDimitry Andric CodeGenRegister *Reg2 = I1.second;
1527*0fca6ea1SDimitry Andric // Ignore identity compositions.
1528*0fca6ea1SDimitry Andric if (&Reg1 == Reg2)
1529*0fca6ea1SDimitry Andric continue;
1530*0fca6ea1SDimitry Andric const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1531*0fca6ea1SDimitry Andric // Try composing Idx1 with another SubRegIndex.
1532*0fca6ea1SDimitry Andric for (auto I2 : SRM2) {
1533*0fca6ea1SDimitry Andric CodeGenSubRegIndex *Idx2 = I2.first;
1534*0fca6ea1SDimitry Andric CodeGenRegister *Reg3 = I2.second;
1535*0fca6ea1SDimitry Andric // Ignore identity compositions.
1536*0fca6ea1SDimitry Andric if (Reg2 == Reg3)
1537*0fca6ea1SDimitry Andric continue;
1538*0fca6ea1SDimitry Andric // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1539*0fca6ea1SDimitry Andric CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1540*0fca6ea1SDimitry Andric assert(Idx3 && "Sub-register doesn't have an index");
1541*0fca6ea1SDimitry Andric
1542*0fca6ea1SDimitry Andric // Conflicting composition? Emit a warning but allow it.
1543*0fca6ea1SDimitry Andric if (CodeGenSubRegIndex *Prev =
1544*0fca6ea1SDimitry Andric Idx1->addComposite(Idx2, Idx3, getHwModes())) {
1545*0fca6ea1SDimitry Andric // If the composition was not user-defined, always emit a warning.
1546*0fca6ea1SDimitry Andric if (!UserDefined.count({Idx1, Idx2}) ||
1547*0fca6ea1SDimitry Andric agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1548*0fca6ea1SDimitry Andric PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1549*0fca6ea1SDimitry Andric " and " + Idx2->getQualifiedName() +
1550*0fca6ea1SDimitry Andric " compose ambiguously as " + Prev->getQualifiedName() +
1551*0fca6ea1SDimitry Andric " or " + Idx3->getQualifiedName());
1552*0fca6ea1SDimitry Andric }
1553*0fca6ea1SDimitry Andric }
1554*0fca6ea1SDimitry Andric }
1555*0fca6ea1SDimitry Andric }
1556*0fca6ea1SDimitry Andric }
1557*0fca6ea1SDimitry Andric
1558*0fca6ea1SDimitry Andric // Compute lane masks. This is similar to register units, but at the
1559*0fca6ea1SDimitry Andric // sub-register index level. Each bit in the lane mask is like a register unit
1560*0fca6ea1SDimitry Andric // class, and two lane masks will have a bit in common if two sub-register
1561*0fca6ea1SDimitry Andric // indices overlap in some register.
1562*0fca6ea1SDimitry Andric //
1563*0fca6ea1SDimitry Andric // Conservatively share a lane mask bit if two sub-register indices overlap in
1564*0fca6ea1SDimitry Andric // some registers, but not in others. That shouldn't happen a lot.
computeSubRegLaneMasks()1565*0fca6ea1SDimitry Andric void CodeGenRegBank::computeSubRegLaneMasks() {
1566*0fca6ea1SDimitry Andric // First assign individual bits to all the leaf indices.
1567*0fca6ea1SDimitry Andric unsigned Bit = 0;
1568*0fca6ea1SDimitry Andric // Determine mask of lanes that cover their registers.
1569*0fca6ea1SDimitry Andric CoveringLanes = LaneBitmask::getAll();
1570*0fca6ea1SDimitry Andric for (auto &Idx : SubRegIndices) {
1571*0fca6ea1SDimitry Andric if (Idx.getComposites().empty()) {
1572*0fca6ea1SDimitry Andric if (Bit > LaneBitmask::BitWidth) {
1573*0fca6ea1SDimitry Andric PrintFatalError(
1574*0fca6ea1SDimitry Andric Twine("Ran out of lanemask bits to represent subregister ") +
1575*0fca6ea1SDimitry Andric Idx.getName());
1576*0fca6ea1SDimitry Andric }
1577*0fca6ea1SDimitry Andric Idx.LaneMask = LaneBitmask::getLane(Bit);
1578*0fca6ea1SDimitry Andric ++Bit;
1579*0fca6ea1SDimitry Andric } else {
1580*0fca6ea1SDimitry Andric Idx.LaneMask = LaneBitmask::getNone();
1581*0fca6ea1SDimitry Andric }
1582*0fca6ea1SDimitry Andric }
1583*0fca6ea1SDimitry Andric
1584*0fca6ea1SDimitry Andric // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1585*0fca6ea1SDimitry Andric // here is that for each possible target subregister we look at the leafs
1586*0fca6ea1SDimitry Andric // in the subregister graph that compose for this target and create
1587*0fca6ea1SDimitry Andric // transformation sequences for the lanemasks. Each step in the sequence
1588*0fca6ea1SDimitry Andric // consists of a bitmask and a bitrotate operation. As the rotation amounts
1589*0fca6ea1SDimitry Andric // are usually the same for many subregisters we can easily combine the steps
1590*0fca6ea1SDimitry Andric // by combining the masks.
1591*0fca6ea1SDimitry Andric for (const auto &Idx : SubRegIndices) {
1592*0fca6ea1SDimitry Andric const auto &Composites = Idx.getComposites();
1593*0fca6ea1SDimitry Andric auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1594*0fca6ea1SDimitry Andric
1595*0fca6ea1SDimitry Andric if (Composites.empty()) {
1596*0fca6ea1SDimitry Andric // Moving from a class with no subregisters we just had a single lane:
1597*0fca6ea1SDimitry Andric // The subregister must be a leaf subregister and only occupies 1 bit.
1598*0fca6ea1SDimitry Andric // Move the bit from the class without subregisters into that position.
1599*0fca6ea1SDimitry Andric unsigned DstBit = Idx.LaneMask.getHighestLane();
1600*0fca6ea1SDimitry Andric assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1601*0fca6ea1SDimitry Andric "Must be a leaf subregister");
1602*0fca6ea1SDimitry Andric MaskRolPair MaskRol = {LaneBitmask::getLane(0), (uint8_t)DstBit};
1603*0fca6ea1SDimitry Andric LaneTransforms.push_back(MaskRol);
1604*0fca6ea1SDimitry Andric } else {
1605*0fca6ea1SDimitry Andric // Go through all leaf subregisters and find the ones that compose with
1606*0fca6ea1SDimitry Andric // Idx. These make out all possible valid bits in the lane mask we want to
1607*0fca6ea1SDimitry Andric // transform. Looking only at the leafs ensure that only a single bit in
1608*0fca6ea1SDimitry Andric // the mask is set.
1609*0fca6ea1SDimitry Andric unsigned NextBit = 0;
1610*0fca6ea1SDimitry Andric for (auto &Idx2 : SubRegIndices) {
1611*0fca6ea1SDimitry Andric // Skip non-leaf subregisters.
1612*0fca6ea1SDimitry Andric if (!Idx2.getComposites().empty())
1613*0fca6ea1SDimitry Andric continue;
1614*0fca6ea1SDimitry Andric // Replicate the behaviour from the lane mask generation loop above.
1615*0fca6ea1SDimitry Andric unsigned SrcBit = NextBit;
1616*0fca6ea1SDimitry Andric LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1617*0fca6ea1SDimitry Andric if (NextBit < LaneBitmask::BitWidth - 1)
1618*0fca6ea1SDimitry Andric ++NextBit;
1619*0fca6ea1SDimitry Andric assert(Idx2.LaneMask == SrcMask);
1620*0fca6ea1SDimitry Andric
1621*0fca6ea1SDimitry Andric // Get the composed subregister if there is any.
1622*0fca6ea1SDimitry Andric auto C = Composites.find(&Idx2);
1623*0fca6ea1SDimitry Andric if (C == Composites.end())
1624*0fca6ea1SDimitry Andric continue;
1625*0fca6ea1SDimitry Andric const CodeGenSubRegIndex *Composite = C->second;
1626*0fca6ea1SDimitry Andric // The Composed subreg should be a leaf subreg too
1627*0fca6ea1SDimitry Andric assert(Composite->getComposites().empty());
1628*0fca6ea1SDimitry Andric
1629*0fca6ea1SDimitry Andric // Create Mask+Rotate operation and merge with existing ops if possible.
1630*0fca6ea1SDimitry Andric unsigned DstBit = Composite->LaneMask.getHighestLane();
1631*0fca6ea1SDimitry Andric int Shift = DstBit - SrcBit;
1632*0fca6ea1SDimitry Andric uint8_t RotateLeft =
1633*0fca6ea1SDimitry Andric Shift >= 0 ? (uint8_t)Shift : LaneBitmask::BitWidth + Shift;
1634*0fca6ea1SDimitry Andric for (auto &I : LaneTransforms) {
1635*0fca6ea1SDimitry Andric if (I.RotateLeft == RotateLeft) {
1636*0fca6ea1SDimitry Andric I.Mask |= SrcMask;
1637*0fca6ea1SDimitry Andric SrcMask = LaneBitmask::getNone();
1638*0fca6ea1SDimitry Andric }
1639*0fca6ea1SDimitry Andric }
1640*0fca6ea1SDimitry Andric if (SrcMask.any()) {
1641*0fca6ea1SDimitry Andric MaskRolPair MaskRol = {SrcMask, RotateLeft};
1642*0fca6ea1SDimitry Andric LaneTransforms.push_back(MaskRol);
1643*0fca6ea1SDimitry Andric }
1644*0fca6ea1SDimitry Andric }
1645*0fca6ea1SDimitry Andric }
1646*0fca6ea1SDimitry Andric
1647*0fca6ea1SDimitry Andric // Optimize if the transformation consists of one step only: Set mask to
1648*0fca6ea1SDimitry Andric // 0xffffffff (including some irrelevant invalid bits) so that it should
1649*0fca6ea1SDimitry Andric // merge with more entries later while compressing the table.
1650*0fca6ea1SDimitry Andric if (LaneTransforms.size() == 1)
1651*0fca6ea1SDimitry Andric LaneTransforms[0].Mask = LaneBitmask::getAll();
1652*0fca6ea1SDimitry Andric
1653*0fca6ea1SDimitry Andric // Further compression optimization: For invalid compositions resulting
1654*0fca6ea1SDimitry Andric // in a sequence with 0 entries we can just pick any other. Choose
1655*0fca6ea1SDimitry Andric // Mask 0xffffffff with Rotation 0.
1656*0fca6ea1SDimitry Andric if (LaneTransforms.size() == 0) {
1657*0fca6ea1SDimitry Andric MaskRolPair P = {LaneBitmask::getAll(), 0};
1658*0fca6ea1SDimitry Andric LaneTransforms.push_back(P);
1659*0fca6ea1SDimitry Andric }
1660*0fca6ea1SDimitry Andric }
1661*0fca6ea1SDimitry Andric
1662*0fca6ea1SDimitry Andric // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1663*0fca6ea1SDimitry Andric // by the sub-register graph? This doesn't occur in any known targets.
1664*0fca6ea1SDimitry Andric
1665*0fca6ea1SDimitry Andric // Inherit lanes from composites.
1666*0fca6ea1SDimitry Andric for (const auto &Idx : SubRegIndices) {
1667*0fca6ea1SDimitry Andric LaneBitmask Mask = Idx.computeLaneMask();
1668*0fca6ea1SDimitry Andric // If some super-registers without CoveredBySubRegs use this index, we can
1669*0fca6ea1SDimitry Andric // no longer assume that the lanes are covering their registers.
1670*0fca6ea1SDimitry Andric if (!Idx.AllSuperRegsCovered)
1671*0fca6ea1SDimitry Andric CoveringLanes &= ~Mask;
1672*0fca6ea1SDimitry Andric }
1673*0fca6ea1SDimitry Andric
1674*0fca6ea1SDimitry Andric // Compute lane mask combinations for register classes.
1675*0fca6ea1SDimitry Andric for (auto &RegClass : RegClasses) {
1676*0fca6ea1SDimitry Andric LaneBitmask LaneMask;
1677*0fca6ea1SDimitry Andric for (const auto &SubRegIndex : SubRegIndices) {
1678*0fca6ea1SDimitry Andric if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1679*0fca6ea1SDimitry Andric continue;
1680*0fca6ea1SDimitry Andric LaneMask |= SubRegIndex.LaneMask;
1681*0fca6ea1SDimitry Andric }
1682*0fca6ea1SDimitry Andric
1683*0fca6ea1SDimitry Andric // For classes without any subregisters set LaneMask to 1 instead of 0.
1684*0fca6ea1SDimitry Andric // This makes it easier for client code to handle classes uniformly.
1685*0fca6ea1SDimitry Andric if (LaneMask.none())
1686*0fca6ea1SDimitry Andric LaneMask = LaneBitmask::getLane(0);
1687*0fca6ea1SDimitry Andric
1688*0fca6ea1SDimitry Andric RegClass.LaneMask = LaneMask;
1689*0fca6ea1SDimitry Andric }
1690*0fca6ea1SDimitry Andric }
1691*0fca6ea1SDimitry Andric
1692*0fca6ea1SDimitry Andric namespace {
1693*0fca6ea1SDimitry Andric
1694*0fca6ea1SDimitry Andric // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1695*0fca6ea1SDimitry Andric // the transitive closure of the union of overlapping register
1696*0fca6ea1SDimitry Andric // classes. Together, the UberRegSets form a partition of the registers. If we
1697*0fca6ea1SDimitry Andric // consider overlapping register classes to be connected, then each UberRegSet
1698*0fca6ea1SDimitry Andric // is a set of connected components.
1699*0fca6ea1SDimitry Andric //
1700*0fca6ea1SDimitry Andric // An UberRegSet will likely be a horizontal slice of register names of
1701*0fca6ea1SDimitry Andric // the same width. Nontrivial subregisters should then be in a separate
1702*0fca6ea1SDimitry Andric // UberRegSet. But this property isn't required for valid computation of
1703*0fca6ea1SDimitry Andric // register unit weights.
1704*0fca6ea1SDimitry Andric //
1705*0fca6ea1SDimitry Andric // A Weight field caches the max per-register unit weight in each UberRegSet.
1706*0fca6ea1SDimitry Andric //
1707*0fca6ea1SDimitry Andric // A set of SingularDeterminants flags single units of some register in this set
1708*0fca6ea1SDimitry Andric // for which the unit weight equals the set weight. These units should not have
1709*0fca6ea1SDimitry Andric // their weight increased.
1710*0fca6ea1SDimitry Andric struct UberRegSet {
1711*0fca6ea1SDimitry Andric CodeGenRegister::Vec Regs;
1712*0fca6ea1SDimitry Andric unsigned Weight = 0;
1713*0fca6ea1SDimitry Andric CodeGenRegister::RegUnitList SingularDeterminants;
1714*0fca6ea1SDimitry Andric
1715*0fca6ea1SDimitry Andric UberRegSet() = default;
1716*0fca6ea1SDimitry Andric };
1717*0fca6ea1SDimitry Andric
1718*0fca6ea1SDimitry Andric } // end anonymous namespace
1719*0fca6ea1SDimitry Andric
1720*0fca6ea1SDimitry Andric // Partition registers into UberRegSets, where each set is the transitive
1721*0fca6ea1SDimitry Andric // closure of the union of overlapping register classes.
1722*0fca6ea1SDimitry Andric //
1723*0fca6ea1SDimitry Andric // UberRegSets[0] is a special non-allocatable set.
computeUberSets(std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,CodeGenRegBank & RegBank)1724*0fca6ea1SDimitry Andric static void computeUberSets(std::vector<UberRegSet> &UberSets,
1725*0fca6ea1SDimitry Andric std::vector<UberRegSet *> &RegSets,
1726*0fca6ea1SDimitry Andric CodeGenRegBank &RegBank) {
1727*0fca6ea1SDimitry Andric const auto &Registers = RegBank.getRegisters();
1728*0fca6ea1SDimitry Andric
1729*0fca6ea1SDimitry Andric // The Register EnumValue is one greater than its index into Registers.
1730*0fca6ea1SDimitry Andric assert(Registers.size() == Registers.back().EnumValue &&
1731*0fca6ea1SDimitry Andric "register enum value mismatch");
1732*0fca6ea1SDimitry Andric
1733*0fca6ea1SDimitry Andric // For simplicitly make the SetID the same as EnumValue.
1734*0fca6ea1SDimitry Andric IntEqClasses UberSetIDs(Registers.size() + 1);
1735*0fca6ea1SDimitry Andric BitVector AllocatableRegs(Registers.size() + 1);
1736*0fca6ea1SDimitry Andric for (auto &RegClass : RegBank.getRegClasses()) {
1737*0fca6ea1SDimitry Andric if (!RegClass.Allocatable)
1738*0fca6ea1SDimitry Andric continue;
1739*0fca6ea1SDimitry Andric
1740*0fca6ea1SDimitry Andric const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1741*0fca6ea1SDimitry Andric if (Regs.empty())
1742*0fca6ea1SDimitry Andric continue;
1743*0fca6ea1SDimitry Andric
1744*0fca6ea1SDimitry Andric unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1745*0fca6ea1SDimitry Andric assert(USetID && "register number 0 is invalid");
1746*0fca6ea1SDimitry Andric
1747*0fca6ea1SDimitry Andric AllocatableRegs.set((*Regs.begin())->EnumValue);
1748*0fca6ea1SDimitry Andric for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) {
1749*0fca6ea1SDimitry Andric AllocatableRegs.set(CGR->EnumValue);
1750*0fca6ea1SDimitry Andric UberSetIDs.join(USetID, CGR->EnumValue);
1751*0fca6ea1SDimitry Andric }
1752*0fca6ea1SDimitry Andric }
1753*0fca6ea1SDimitry Andric // Combine non-allocatable regs.
1754*0fca6ea1SDimitry Andric for (const auto &Reg : Registers) {
1755*0fca6ea1SDimitry Andric unsigned RegNum = Reg.EnumValue;
1756*0fca6ea1SDimitry Andric if (AllocatableRegs.test(RegNum))
1757*0fca6ea1SDimitry Andric continue;
1758*0fca6ea1SDimitry Andric
1759*0fca6ea1SDimitry Andric UberSetIDs.join(0, RegNum);
1760*0fca6ea1SDimitry Andric }
1761*0fca6ea1SDimitry Andric UberSetIDs.compress();
1762*0fca6ea1SDimitry Andric
1763*0fca6ea1SDimitry Andric // Make the first UberSet a special unallocatable set.
1764*0fca6ea1SDimitry Andric unsigned ZeroID = UberSetIDs[0];
1765*0fca6ea1SDimitry Andric
1766*0fca6ea1SDimitry Andric // Insert Registers into the UberSets formed by union-find.
1767*0fca6ea1SDimitry Andric // Do not resize after this.
1768*0fca6ea1SDimitry Andric UberSets.resize(UberSetIDs.getNumClasses());
1769*0fca6ea1SDimitry Andric unsigned i = 0;
1770*0fca6ea1SDimitry Andric for (const CodeGenRegister &Reg : Registers) {
1771*0fca6ea1SDimitry Andric unsigned USetID = UberSetIDs[Reg.EnumValue];
1772*0fca6ea1SDimitry Andric if (!USetID)
1773*0fca6ea1SDimitry Andric USetID = ZeroID;
1774*0fca6ea1SDimitry Andric else if (USetID == ZeroID)
1775*0fca6ea1SDimitry Andric USetID = 0;
1776*0fca6ea1SDimitry Andric
1777*0fca6ea1SDimitry Andric UberRegSet *USet = &UberSets[USetID];
1778*0fca6ea1SDimitry Andric USet->Regs.push_back(&Reg);
1779*0fca6ea1SDimitry Andric RegSets[i++] = USet;
1780*0fca6ea1SDimitry Andric }
1781*0fca6ea1SDimitry Andric }
1782*0fca6ea1SDimitry Andric
1783*0fca6ea1SDimitry Andric // Recompute each UberSet weight after changing unit weights.
computeUberWeights(std::vector<UberRegSet> & UberSets,CodeGenRegBank & RegBank)1784*0fca6ea1SDimitry Andric static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1785*0fca6ea1SDimitry Andric CodeGenRegBank &RegBank) {
1786*0fca6ea1SDimitry Andric // Skip the first unallocatable set.
1787*0fca6ea1SDimitry Andric for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1788*0fca6ea1SDimitry Andric E = UberSets.end();
1789*0fca6ea1SDimitry Andric I != E; ++I) {
1790*0fca6ea1SDimitry Andric
1791*0fca6ea1SDimitry Andric // Initialize all unit weights in this set, and remember the max units/reg.
1792*0fca6ea1SDimitry Andric const CodeGenRegister *Reg = nullptr;
1793*0fca6ea1SDimitry Andric unsigned MaxWeight = 0, Weight = 0;
1794*0fca6ea1SDimitry Andric for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1795*0fca6ea1SDimitry Andric if (Reg != UnitI.getReg()) {
1796*0fca6ea1SDimitry Andric if (Weight > MaxWeight)
1797*0fca6ea1SDimitry Andric MaxWeight = Weight;
1798*0fca6ea1SDimitry Andric Reg = UnitI.getReg();
1799*0fca6ea1SDimitry Andric Weight = 0;
1800*0fca6ea1SDimitry Andric }
1801*0fca6ea1SDimitry Andric if (!RegBank.getRegUnit(*UnitI).Artificial) {
1802*0fca6ea1SDimitry Andric unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1803*0fca6ea1SDimitry Andric if (!UWeight) {
1804*0fca6ea1SDimitry Andric UWeight = 1;
1805*0fca6ea1SDimitry Andric RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1806*0fca6ea1SDimitry Andric }
1807*0fca6ea1SDimitry Andric Weight += UWeight;
1808*0fca6ea1SDimitry Andric }
1809*0fca6ea1SDimitry Andric }
1810*0fca6ea1SDimitry Andric if (Weight > MaxWeight)
1811*0fca6ea1SDimitry Andric MaxWeight = Weight;
1812*0fca6ea1SDimitry Andric if (I->Weight != MaxWeight) {
1813*0fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1814*0fca6ea1SDimitry Andric << MaxWeight;
1815*0fca6ea1SDimitry Andric for (auto &Unit
1816*0fca6ea1SDimitry Andric : I->Regs) dbgs()
1817*0fca6ea1SDimitry Andric << " " << Unit->getName();
1818*0fca6ea1SDimitry Andric dbgs() << "\n");
1819*0fca6ea1SDimitry Andric // Update the set weight.
1820*0fca6ea1SDimitry Andric I->Weight = MaxWeight;
1821*0fca6ea1SDimitry Andric }
1822*0fca6ea1SDimitry Andric
1823*0fca6ea1SDimitry Andric // Find singular determinants.
1824*0fca6ea1SDimitry Andric for (const auto R : I->Regs) {
1825*0fca6ea1SDimitry Andric if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1826*0fca6ea1SDimitry Andric I->SingularDeterminants |= R->getRegUnits();
1827*0fca6ea1SDimitry Andric }
1828*0fca6ea1SDimitry Andric }
1829*0fca6ea1SDimitry Andric }
1830*0fca6ea1SDimitry Andric }
1831*0fca6ea1SDimitry Andric
1832*0fca6ea1SDimitry Andric // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1833*0fca6ea1SDimitry Andric // a register and its subregisters so that they have the same weight as their
1834*0fca6ea1SDimitry Andric // UberSet. Self-recursion processes the subregister tree in postorder so
1835*0fca6ea1SDimitry Andric // subregisters are normalized first.
1836*0fca6ea1SDimitry Andric //
1837*0fca6ea1SDimitry Andric // Side effects:
1838*0fca6ea1SDimitry Andric // - creates new adopted register units
1839*0fca6ea1SDimitry Andric // - causes superregisters to inherit adopted units
1840*0fca6ea1SDimitry Andric // - increases the weight of "singular" units
1841*0fca6ea1SDimitry Andric // - induces recomputation of UberWeights.
normalizeWeight(CodeGenRegister * Reg,std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,BitVector & NormalRegs,CodeGenRegister::RegUnitList & NormalUnits,CodeGenRegBank & RegBank)1842*0fca6ea1SDimitry Andric static bool normalizeWeight(CodeGenRegister *Reg,
1843*0fca6ea1SDimitry Andric std::vector<UberRegSet> &UberSets,
1844*0fca6ea1SDimitry Andric std::vector<UberRegSet *> &RegSets,
1845*0fca6ea1SDimitry Andric BitVector &NormalRegs,
1846*0fca6ea1SDimitry Andric CodeGenRegister::RegUnitList &NormalUnits,
1847*0fca6ea1SDimitry Andric CodeGenRegBank &RegBank) {
1848*0fca6ea1SDimitry Andric NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1849*0fca6ea1SDimitry Andric if (NormalRegs.test(Reg->EnumValue))
1850*0fca6ea1SDimitry Andric return false;
1851*0fca6ea1SDimitry Andric NormalRegs.set(Reg->EnumValue);
1852*0fca6ea1SDimitry Andric
1853*0fca6ea1SDimitry Andric bool Changed = false;
1854*0fca6ea1SDimitry Andric const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1855*0fca6ea1SDimitry Andric for (auto SRI : SRM) {
1856*0fca6ea1SDimitry Andric if (SRI.second == Reg)
1857*0fca6ea1SDimitry Andric continue; // self-cycles happen
1858*0fca6ea1SDimitry Andric
1859*0fca6ea1SDimitry Andric Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs,
1860*0fca6ea1SDimitry Andric NormalUnits, RegBank);
1861*0fca6ea1SDimitry Andric }
1862*0fca6ea1SDimitry Andric // Postorder register normalization.
1863*0fca6ea1SDimitry Andric
1864*0fca6ea1SDimitry Andric // Inherit register units newly adopted by subregisters.
1865*0fca6ea1SDimitry Andric if (Reg->inheritRegUnits(RegBank))
1866*0fca6ea1SDimitry Andric computeUberWeights(UberSets, RegBank);
1867*0fca6ea1SDimitry Andric
1868*0fca6ea1SDimitry Andric // Check if this register is too skinny for its UberRegSet.
1869*0fca6ea1SDimitry Andric UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1870*0fca6ea1SDimitry Andric
1871*0fca6ea1SDimitry Andric unsigned RegWeight = Reg->getWeight(RegBank);
1872*0fca6ea1SDimitry Andric if (UberSet->Weight > RegWeight) {
1873*0fca6ea1SDimitry Andric // A register unit's weight can be adjusted only if it is the singular unit
1874*0fca6ea1SDimitry Andric // for this register, has not been used to normalize a subregister's set,
1875*0fca6ea1SDimitry Andric // and has not already been used to singularly determine this UberRegSet.
1876*0fca6ea1SDimitry Andric unsigned AdjustUnit = *Reg->getRegUnits().begin();
1877*0fca6ea1SDimitry Andric if (Reg->getRegUnits().count() != 1 || NormalUnits.test(AdjustUnit) ||
1878*0fca6ea1SDimitry Andric UberSet->SingularDeterminants.test(AdjustUnit)) {
1879*0fca6ea1SDimitry Andric // We don't have an adjustable unit, so adopt a new one.
1880*0fca6ea1SDimitry Andric AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1881*0fca6ea1SDimitry Andric Reg->adoptRegUnit(AdjustUnit);
1882*0fca6ea1SDimitry Andric // Adopting a unit does not immediately require recomputing set weights.
1883*0fca6ea1SDimitry Andric } else {
1884*0fca6ea1SDimitry Andric // Adjust the existing single unit.
1885*0fca6ea1SDimitry Andric if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1886*0fca6ea1SDimitry Andric RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1887*0fca6ea1SDimitry Andric // The unit may be shared among sets and registers within this set.
1888*0fca6ea1SDimitry Andric computeUberWeights(UberSets, RegBank);
1889*0fca6ea1SDimitry Andric }
1890*0fca6ea1SDimitry Andric Changed = true;
1891*0fca6ea1SDimitry Andric }
1892*0fca6ea1SDimitry Andric
1893*0fca6ea1SDimitry Andric // Mark these units normalized so superregisters can't change their weights.
1894*0fca6ea1SDimitry Andric NormalUnits |= Reg->getRegUnits();
1895*0fca6ea1SDimitry Andric
1896*0fca6ea1SDimitry Andric return Changed;
1897*0fca6ea1SDimitry Andric }
1898*0fca6ea1SDimitry Andric
1899*0fca6ea1SDimitry Andric // Compute a weight for each register unit created during getSubRegs.
1900*0fca6ea1SDimitry Andric //
1901*0fca6ea1SDimitry Andric // The goal is that two registers in the same class will have the same weight,
1902*0fca6ea1SDimitry Andric // where each register's weight is defined as sum of its units' weights.
computeRegUnitWeights()1903*0fca6ea1SDimitry Andric void CodeGenRegBank::computeRegUnitWeights() {
1904*0fca6ea1SDimitry Andric std::vector<UberRegSet> UberSets;
1905*0fca6ea1SDimitry Andric std::vector<UberRegSet *> RegSets(Registers.size());
1906*0fca6ea1SDimitry Andric computeUberSets(UberSets, RegSets, *this);
1907*0fca6ea1SDimitry Andric // UberSets and RegSets are now immutable.
1908*0fca6ea1SDimitry Andric
1909*0fca6ea1SDimitry Andric computeUberWeights(UberSets, *this);
1910*0fca6ea1SDimitry Andric
1911*0fca6ea1SDimitry Andric // Iterate over each Register, normalizing the unit weights until reaching
1912*0fca6ea1SDimitry Andric // a fix point.
1913*0fca6ea1SDimitry Andric unsigned NumIters = 0;
1914*0fca6ea1SDimitry Andric for (bool Changed = true; Changed; ++NumIters) {
1915*0fca6ea1SDimitry Andric assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1916*0fca6ea1SDimitry Andric (void)NumIters;
1917*0fca6ea1SDimitry Andric Changed = false;
1918*0fca6ea1SDimitry Andric for (auto &Reg : Registers) {
1919*0fca6ea1SDimitry Andric CodeGenRegister::RegUnitList NormalUnits;
1920*0fca6ea1SDimitry Andric BitVector NormalRegs;
1921*0fca6ea1SDimitry Andric Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1922*0fca6ea1SDimitry Andric NormalUnits, *this);
1923*0fca6ea1SDimitry Andric }
1924*0fca6ea1SDimitry Andric }
1925*0fca6ea1SDimitry Andric }
1926*0fca6ea1SDimitry Andric
1927*0fca6ea1SDimitry Andric // Find a set in UniqueSets with the same elements as Set.
1928*0fca6ea1SDimitry Andric // Return an iterator into UniqueSets.
1929*0fca6ea1SDimitry Andric static std::vector<RegUnitSet>::const_iterator
findRegUnitSet(const std::vector<RegUnitSet> & UniqueSets,const RegUnitSet & Set)1930*0fca6ea1SDimitry Andric findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1931*0fca6ea1SDimitry Andric const RegUnitSet &Set) {
1932*0fca6ea1SDimitry Andric return find_if(UniqueSets,
1933*0fca6ea1SDimitry Andric [&Set](const RegUnitSet &I) { return I.Units == Set.Units; });
1934*0fca6ea1SDimitry Andric }
1935*0fca6ea1SDimitry Andric
1936*0fca6ea1SDimitry Andric // Return true if the RUSubSet is a subset of RUSuperSet.
isRegUnitSubSet(const std::vector<unsigned> & RUSubSet,const std::vector<unsigned> & RUSuperSet)1937*0fca6ea1SDimitry Andric static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1938*0fca6ea1SDimitry Andric const std::vector<unsigned> &RUSuperSet) {
1939*0fca6ea1SDimitry Andric return std::includes(RUSuperSet.begin(), RUSuperSet.end(), RUSubSet.begin(),
1940*0fca6ea1SDimitry Andric RUSubSet.end());
1941*0fca6ea1SDimitry Andric }
1942*0fca6ea1SDimitry Andric
1943*0fca6ea1SDimitry Andric /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1944*0fca6ea1SDimitry Andric /// but with one or two registers removed. We occasionally have registers like
1945*0fca6ea1SDimitry Andric /// APSR and PC thrown in with the general registers. We also see many
1946*0fca6ea1SDimitry Andric /// special-purpose register subsets, such as tail-call and Thumb
1947*0fca6ea1SDimitry Andric /// encodings. Generating all possible overlapping sets is combinatorial and
1948*0fca6ea1SDimitry Andric /// overkill for modeling pressure. Ideally we could fix this statically in
1949*0fca6ea1SDimitry Andric /// tablegen by (1) having the target define register classes that only include
1950*0fca6ea1SDimitry Andric /// the allocatable registers and marking other classes as non-allocatable and
1951*0fca6ea1SDimitry Andric /// (2) having a way to mark special purpose classes as "don't-care" classes for
1952*0fca6ea1SDimitry Andric /// the purpose of pressure. However, we make an attempt to handle targets that
1953*0fca6ea1SDimitry Andric /// are not nicely defined by merging nearly identical register unit sets
1954*0fca6ea1SDimitry Andric /// statically. This generates smaller tables. Then, dynamically, we adjust the
1955*0fca6ea1SDimitry Andric /// set limit by filtering the reserved registers.
1956*0fca6ea1SDimitry Andric ///
1957*0fca6ea1SDimitry Andric /// Merge sets only if the units have the same weight. For example, on ARM,
1958*0fca6ea1SDimitry Andric /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1959*0fca6ea1SDimitry Andric /// should not expand the S set to include D regs.
pruneUnitSets()1960*0fca6ea1SDimitry Andric void CodeGenRegBank::pruneUnitSets() {
1961*0fca6ea1SDimitry Andric assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1962*0fca6ea1SDimitry Andric
1963*0fca6ea1SDimitry Andric // Form an equivalence class of UnitSets with no significant difference.
1964*0fca6ea1SDimitry Andric std::vector<unsigned> SuperSetIDs;
1965*0fca6ea1SDimitry Andric for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); SubIdx != EndIdx;
1966*0fca6ea1SDimitry Andric ++SubIdx) {
1967*0fca6ea1SDimitry Andric const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1968*0fca6ea1SDimitry Andric unsigned SuperIdx = 0;
1969*0fca6ea1SDimitry Andric for (; SuperIdx != EndIdx; ++SuperIdx) {
1970*0fca6ea1SDimitry Andric if (SuperIdx == SubIdx)
1971*0fca6ea1SDimitry Andric continue;
1972*0fca6ea1SDimitry Andric
1973*0fca6ea1SDimitry Andric unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1974*0fca6ea1SDimitry Andric const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1975*0fca6ea1SDimitry Andric if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) &&
1976*0fca6ea1SDimitry Andric (SubSet.Units.size() + 3 > SuperSet.Units.size()) &&
1977*0fca6ea1SDimitry Andric UnitWeight == RegUnits[SuperSet.Units[0]].Weight &&
1978*0fca6ea1SDimitry Andric UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1979*0fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1980*0fca6ea1SDimitry Andric << "\n");
1981*0fca6ea1SDimitry Andric // We can pick any of the set names for the merged set. Go for the
1982*0fca6ea1SDimitry Andric // shortest one to avoid picking the name of one of the classes that are
1983*0fca6ea1SDimitry Andric // artificially created by tablegen. So "FPR128_lo" instead of
1984*0fca6ea1SDimitry Andric // "QQQQ_with_qsub3_in_FPR128_lo".
1985*0fca6ea1SDimitry Andric if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1986*0fca6ea1SDimitry Andric RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1987*0fca6ea1SDimitry Andric break;
1988*0fca6ea1SDimitry Andric }
1989*0fca6ea1SDimitry Andric }
1990*0fca6ea1SDimitry Andric if (SuperIdx == EndIdx)
1991*0fca6ea1SDimitry Andric SuperSetIDs.push_back(SubIdx);
1992*0fca6ea1SDimitry Andric }
1993*0fca6ea1SDimitry Andric // Populate PrunedUnitSets with each equivalence class's superset.
1994*0fca6ea1SDimitry Andric std::vector<RegUnitSet> PrunedUnitSets;
1995*0fca6ea1SDimitry Andric PrunedUnitSets.reserve(SuperSetIDs.size());
1996*0fca6ea1SDimitry Andric for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1997*0fca6ea1SDimitry Andric unsigned SuperIdx = SuperSetIDs[i];
1998*0fca6ea1SDimitry Andric PrunedUnitSets.emplace_back(RegUnitSets[SuperIdx].Name);
1999*0fca6ea1SDimitry Andric PrunedUnitSets.back().Units = std::move(RegUnitSets[SuperIdx].Units);
2000*0fca6ea1SDimitry Andric }
2001*0fca6ea1SDimitry Andric RegUnitSets = std::move(PrunedUnitSets);
2002*0fca6ea1SDimitry Andric }
2003*0fca6ea1SDimitry Andric
2004*0fca6ea1SDimitry Andric // Create a RegUnitSet for each RegClass that contains all units in the class
2005*0fca6ea1SDimitry Andric // including adopted units that are necessary to model register pressure. Then
2006*0fca6ea1SDimitry Andric // iteratively compute RegUnitSets such that the union of any two overlapping
2007*0fca6ea1SDimitry Andric // RegUnitSets is repreresented.
2008*0fca6ea1SDimitry Andric //
2009*0fca6ea1SDimitry Andric // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
2010*0fca6ea1SDimitry Andric // RegUnitSet that is a superset of that RegUnitClass.
computeRegUnitSets()2011*0fca6ea1SDimitry Andric void CodeGenRegBank::computeRegUnitSets() {
2012*0fca6ea1SDimitry Andric assert(RegUnitSets.empty() && "dirty RegUnitSets");
2013*0fca6ea1SDimitry Andric
2014*0fca6ea1SDimitry Andric // Compute a unique RegUnitSet for each RegClass.
2015*0fca6ea1SDimitry Andric auto &RegClasses = getRegClasses();
2016*0fca6ea1SDimitry Andric for (auto &RC : RegClasses) {
2017*0fca6ea1SDimitry Andric if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
2018*0fca6ea1SDimitry Andric continue;
2019*0fca6ea1SDimitry Andric
2020*0fca6ea1SDimitry Andric // Compute a sorted list of units in this class.
2021*0fca6ea1SDimitry Andric RegUnitSet RUSet(RC.getName());
2022*0fca6ea1SDimitry Andric RC.buildRegUnitSet(*this, RUSet.Units);
2023*0fca6ea1SDimitry Andric
2024*0fca6ea1SDimitry Andric // Find an existing RegUnitSet.
2025*0fca6ea1SDimitry Andric if (findRegUnitSet(RegUnitSets, RUSet) == RegUnitSets.end())
2026*0fca6ea1SDimitry Andric RegUnitSets.push_back(std::move(RUSet));
2027*0fca6ea1SDimitry Andric }
2028*0fca6ea1SDimitry Andric
2029*0fca6ea1SDimitry Andric if (RegUnitSets.empty())
2030*0fca6ea1SDimitry Andric PrintFatalError("RegUnitSets cannot be empty!");
2031*0fca6ea1SDimitry Andric
2032*0fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
2033*0fca6ea1SDimitry Andric USEnd = RegUnitSets.size();
2034*0fca6ea1SDimitry Andric USIdx < USEnd; ++USIdx) {
2035*0fca6ea1SDimitry Andric dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2036*0fca6ea1SDimitry Andric for (auto &U : RegUnitSets[USIdx].Units)
2037*0fca6ea1SDimitry Andric printRegUnitName(U);
2038*0fca6ea1SDimitry Andric dbgs() << "\n";
2039*0fca6ea1SDimitry Andric });
2040*0fca6ea1SDimitry Andric
2041*0fca6ea1SDimitry Andric // Iteratively prune unit sets.
2042*0fca6ea1SDimitry Andric pruneUnitSets();
2043*0fca6ea1SDimitry Andric
2044*0fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
2045*0fca6ea1SDimitry Andric USEnd = RegUnitSets.size();
2046*0fca6ea1SDimitry Andric USIdx < USEnd; ++USIdx) {
2047*0fca6ea1SDimitry Andric dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2048*0fca6ea1SDimitry Andric for (auto &U : RegUnitSets[USIdx].Units)
2049*0fca6ea1SDimitry Andric printRegUnitName(U);
2050*0fca6ea1SDimitry Andric dbgs() << "\n";
2051*0fca6ea1SDimitry Andric } dbgs() << "\nUnion sets:\n");
2052*0fca6ea1SDimitry Andric
2053*0fca6ea1SDimitry Andric // Iterate over all unit sets, including new ones added by this loop.
2054*0fca6ea1SDimitry Andric unsigned NumRegUnitSubSets = RegUnitSets.size();
2055*0fca6ea1SDimitry Andric for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2056*0fca6ea1SDimitry Andric // In theory, this is combinatorial. In practice, it needs to be bounded
2057*0fca6ea1SDimitry Andric // by a small number of sets for regpressure to be efficient.
2058*0fca6ea1SDimitry Andric // If the assert is hit, we need to implement pruning.
2059*0fca6ea1SDimitry Andric assert(Idx < (2 * NumRegUnitSubSets) && "runaway unit set inference");
2060*0fca6ea1SDimitry Andric
2061*0fca6ea1SDimitry Andric // Compare new sets with all original classes.
2062*0fca6ea1SDimitry Andric for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx + 1;
2063*0fca6ea1SDimitry Andric SearchIdx != EndIdx; ++SearchIdx) {
2064*0fca6ea1SDimitry Andric std::vector<unsigned> Intersection;
2065*0fca6ea1SDimitry Andric std::set_intersection(
2066*0fca6ea1SDimitry Andric RegUnitSets[Idx].Units.begin(), RegUnitSets[Idx].Units.end(),
2067*0fca6ea1SDimitry Andric RegUnitSets[SearchIdx].Units.begin(),
2068*0fca6ea1SDimitry Andric RegUnitSets[SearchIdx].Units.end(), std::back_inserter(Intersection));
2069*0fca6ea1SDimitry Andric if (Intersection.empty())
2070*0fca6ea1SDimitry Andric continue;
2071*0fca6ea1SDimitry Andric
2072*0fca6ea1SDimitry Andric RegUnitSet RUSet(RegUnitSets[Idx].Name + "_with_" +
2073*0fca6ea1SDimitry Andric RegUnitSets[SearchIdx].Name);
2074*0fca6ea1SDimitry Andric std::set_union(RegUnitSets[Idx].Units.begin(),
2075*0fca6ea1SDimitry Andric RegUnitSets[Idx].Units.end(),
2076*0fca6ea1SDimitry Andric RegUnitSets[SearchIdx].Units.begin(),
2077*0fca6ea1SDimitry Andric RegUnitSets[SearchIdx].Units.end(),
2078*0fca6ea1SDimitry Andric std::inserter(RUSet.Units, RUSet.Units.begin()));
2079*0fca6ea1SDimitry Andric
2080*0fca6ea1SDimitry Andric // Find an existing RegUnitSet, or add the union to the unique sets.
2081*0fca6ea1SDimitry Andric if (findRegUnitSet(RegUnitSets, RUSet) == RegUnitSets.end()) {
2082*0fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() << " "
2083*0fca6ea1SDimitry Andric << RUSet.Name << ":";
2084*0fca6ea1SDimitry Andric for (auto &U
2085*0fca6ea1SDimitry Andric : RUSet.Units) printRegUnitName(U);
2086*0fca6ea1SDimitry Andric dbgs() << "\n";);
2087*0fca6ea1SDimitry Andric RegUnitSets.push_back(std::move(RUSet));
2088*0fca6ea1SDimitry Andric }
2089*0fca6ea1SDimitry Andric }
2090*0fca6ea1SDimitry Andric }
2091*0fca6ea1SDimitry Andric
2092*0fca6ea1SDimitry Andric // Iteratively prune unit sets after inferring supersets.
2093*0fca6ea1SDimitry Andric pruneUnitSets();
2094*0fca6ea1SDimitry Andric
2095*0fca6ea1SDimitry Andric LLVM_DEBUG(
2096*0fca6ea1SDimitry Andric dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2097*0fca6ea1SDimitry Andric USIdx < USEnd; ++USIdx) {
2098*0fca6ea1SDimitry Andric dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2099*0fca6ea1SDimitry Andric for (auto &U : RegUnitSets[USIdx].Units)
2100*0fca6ea1SDimitry Andric printRegUnitName(U);
2101*0fca6ea1SDimitry Andric dbgs() << "\n";
2102*0fca6ea1SDimitry Andric });
2103*0fca6ea1SDimitry Andric
2104*0fca6ea1SDimitry Andric // For each register class, list the UnitSets that are supersets.
2105*0fca6ea1SDimitry Andric RegClassUnitSets.resize(RegClasses.size());
2106*0fca6ea1SDimitry Andric int RCIdx = -1;
2107*0fca6ea1SDimitry Andric for (auto &RC : RegClasses) {
2108*0fca6ea1SDimitry Andric ++RCIdx;
2109*0fca6ea1SDimitry Andric if (!RC.Allocatable)
2110*0fca6ea1SDimitry Andric continue;
2111*0fca6ea1SDimitry Andric
2112*0fca6ea1SDimitry Andric // Recompute the sorted list of units in this class.
2113*0fca6ea1SDimitry Andric std::vector<unsigned> RCRegUnits;
2114*0fca6ea1SDimitry Andric RC.buildRegUnitSet(*this, RCRegUnits);
2115*0fca6ea1SDimitry Andric
2116*0fca6ea1SDimitry Andric // Don't increase pressure for unallocatable regclasses.
2117*0fca6ea1SDimitry Andric if (RCRegUnits.empty())
2118*0fca6ea1SDimitry Andric continue;
2119*0fca6ea1SDimitry Andric
2120*0fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n";
2121*0fca6ea1SDimitry Andric for (auto U
2122*0fca6ea1SDimitry Andric : RCRegUnits) printRegUnitName(U);
2123*0fca6ea1SDimitry Andric dbgs() << "\n UnitSetIDs:");
2124*0fca6ea1SDimitry Andric
2125*0fca6ea1SDimitry Andric // Find all supersets.
2126*0fca6ea1SDimitry Andric for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); USIdx != USEnd;
2127*0fca6ea1SDimitry Andric ++USIdx) {
2128*0fca6ea1SDimitry Andric if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2129*0fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << " " << USIdx);
2130*0fca6ea1SDimitry Andric RegClassUnitSets[RCIdx].push_back(USIdx);
2131*0fca6ea1SDimitry Andric }
2132*0fca6ea1SDimitry Andric }
2133*0fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "\n");
2134*0fca6ea1SDimitry Andric assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) &&
2135*0fca6ea1SDimitry Andric "missing unit set for regclass");
2136*0fca6ea1SDimitry Andric }
2137*0fca6ea1SDimitry Andric
2138*0fca6ea1SDimitry Andric // For each register unit, ensure that we have the list of UnitSets that
2139*0fca6ea1SDimitry Andric // contain the unit. Normally, this matches an existing list of UnitSets for a
2140*0fca6ea1SDimitry Andric // register class. If not, we create a new entry in RegClassUnitSets as a
2141*0fca6ea1SDimitry Andric // "fake" register class.
2142*0fca6ea1SDimitry Andric for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; UnitIdx < UnitEnd;
2143*0fca6ea1SDimitry Andric ++UnitIdx) {
2144*0fca6ea1SDimitry Andric std::vector<unsigned> RUSets;
2145*0fca6ea1SDimitry Andric for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2146*0fca6ea1SDimitry Andric if (is_contained(RegUnitSets[i].Units, UnitIdx))
2147*0fca6ea1SDimitry Andric RUSets.push_back(i);
2148*0fca6ea1SDimitry Andric }
2149*0fca6ea1SDimitry Andric unsigned RCUnitSetsIdx = 0;
2150*0fca6ea1SDimitry Andric for (unsigned e = RegClassUnitSets.size(); RCUnitSetsIdx != e;
2151*0fca6ea1SDimitry Andric ++RCUnitSetsIdx) {
2152*0fca6ea1SDimitry Andric if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2153*0fca6ea1SDimitry Andric break;
2154*0fca6ea1SDimitry Andric }
2155*0fca6ea1SDimitry Andric }
2156*0fca6ea1SDimitry Andric RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2157*0fca6ea1SDimitry Andric if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2158*0fca6ea1SDimitry Andric // Create a new list of UnitSets as a "fake" register class.
2159*0fca6ea1SDimitry Andric RegClassUnitSets.push_back(std::move(RUSets));
2160*0fca6ea1SDimitry Andric }
2161*0fca6ea1SDimitry Andric }
2162*0fca6ea1SDimitry Andric }
2163*0fca6ea1SDimitry Andric
computeRegUnitLaneMasks()2164*0fca6ea1SDimitry Andric void CodeGenRegBank::computeRegUnitLaneMasks() {
2165*0fca6ea1SDimitry Andric for (auto &Register : Registers) {
2166*0fca6ea1SDimitry Andric // Create an initial lane mask for all register units.
2167*0fca6ea1SDimitry Andric const auto &RegUnits = Register.getRegUnits();
2168*0fca6ea1SDimitry Andric CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(
2169*0fca6ea1SDimitry Andric RegUnits.count(), LaneBitmask::getAll());
2170*0fca6ea1SDimitry Andric // Iterate through SubRegisters.
2171*0fca6ea1SDimitry Andric typedef CodeGenRegister::SubRegMap SubRegMap;
2172*0fca6ea1SDimitry Andric const SubRegMap &SubRegs = Register.getSubRegs();
2173*0fca6ea1SDimitry Andric for (auto S : SubRegs) {
2174*0fca6ea1SDimitry Andric CodeGenRegister *SubReg = S.second;
2175*0fca6ea1SDimitry Andric // Ignore non-leaf subregisters, their lane masks are fully covered by
2176*0fca6ea1SDimitry Andric // the leaf subregisters anyway.
2177*0fca6ea1SDimitry Andric if (!SubReg->getSubRegs().empty())
2178*0fca6ea1SDimitry Andric continue;
2179*0fca6ea1SDimitry Andric CodeGenSubRegIndex *SubRegIndex = S.first;
2180*0fca6ea1SDimitry Andric const CodeGenRegister *SubRegister = S.second;
2181*0fca6ea1SDimitry Andric LaneBitmask LaneMask = SubRegIndex->LaneMask;
2182*0fca6ea1SDimitry Andric // Distribute LaneMask to Register Units touched.
2183*0fca6ea1SDimitry Andric for (unsigned SUI : SubRegister->getRegUnits()) {
2184*0fca6ea1SDimitry Andric bool Found = false;
2185*0fca6ea1SDimitry Andric unsigned u = 0;
2186*0fca6ea1SDimitry Andric for (unsigned RU : RegUnits) {
2187*0fca6ea1SDimitry Andric if (SUI == RU) {
2188*0fca6ea1SDimitry Andric RegUnitLaneMasks[u] &= LaneMask;
2189*0fca6ea1SDimitry Andric assert(!Found);
2190*0fca6ea1SDimitry Andric Found = true;
2191*0fca6ea1SDimitry Andric }
2192*0fca6ea1SDimitry Andric ++u;
2193*0fca6ea1SDimitry Andric }
2194*0fca6ea1SDimitry Andric (void)Found;
2195*0fca6ea1SDimitry Andric assert(Found);
2196*0fca6ea1SDimitry Andric }
2197*0fca6ea1SDimitry Andric }
2198*0fca6ea1SDimitry Andric Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2199*0fca6ea1SDimitry Andric }
2200*0fca6ea1SDimitry Andric }
2201*0fca6ea1SDimitry Andric
computeDerivedInfo()2202*0fca6ea1SDimitry Andric void CodeGenRegBank::computeDerivedInfo() {
2203*0fca6ea1SDimitry Andric computeComposites();
2204*0fca6ea1SDimitry Andric computeSubRegLaneMasks();
2205*0fca6ea1SDimitry Andric
2206*0fca6ea1SDimitry Andric // Compute a weight for each register unit created during getSubRegs.
2207*0fca6ea1SDimitry Andric // This may create adopted register units (with unit # >= NumNativeRegUnits).
2208*0fca6ea1SDimitry Andric computeRegUnitWeights();
2209*0fca6ea1SDimitry Andric
2210*0fca6ea1SDimitry Andric // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2211*0fca6ea1SDimitry Andric // supersets for the union of overlapping sets.
2212*0fca6ea1SDimitry Andric computeRegUnitSets();
2213*0fca6ea1SDimitry Andric
2214*0fca6ea1SDimitry Andric computeRegUnitLaneMasks();
2215*0fca6ea1SDimitry Andric
2216*0fca6ea1SDimitry Andric // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2217*0fca6ea1SDimitry Andric for (CodeGenRegisterClass &RC : RegClasses) {
2218*0fca6ea1SDimitry Andric RC.HasDisjunctSubRegs = false;
2219*0fca6ea1SDimitry Andric RC.CoveredBySubRegs = true;
2220*0fca6ea1SDimitry Andric for (const CodeGenRegister *Reg : RC.getMembers()) {
2221*0fca6ea1SDimitry Andric RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2222*0fca6ea1SDimitry Andric RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2223*0fca6ea1SDimitry Andric }
2224*0fca6ea1SDimitry Andric }
2225*0fca6ea1SDimitry Andric
2226*0fca6ea1SDimitry Andric // Get the weight of each set.
2227*0fca6ea1SDimitry Andric for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2228*0fca6ea1SDimitry Andric RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2229*0fca6ea1SDimitry Andric
2230*0fca6ea1SDimitry Andric // Find the order of each set.
2231*0fca6ea1SDimitry Andric RegUnitSetOrder.reserve(RegUnitSets.size());
2232*0fca6ea1SDimitry Andric for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2233*0fca6ea1SDimitry Andric RegUnitSetOrder.push_back(Idx);
2234*0fca6ea1SDimitry Andric
2235*0fca6ea1SDimitry Andric llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2236*0fca6ea1SDimitry Andric return getRegPressureSet(ID1).Units.size() <
2237*0fca6ea1SDimitry Andric getRegPressureSet(ID2).Units.size();
2238*0fca6ea1SDimitry Andric });
2239*0fca6ea1SDimitry Andric for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2240*0fca6ea1SDimitry Andric RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2241*0fca6ea1SDimitry Andric }
2242*0fca6ea1SDimitry Andric }
2243*0fca6ea1SDimitry Andric
2244*0fca6ea1SDimitry Andric //
2245*0fca6ea1SDimitry Andric // Synthesize missing register class intersections.
2246*0fca6ea1SDimitry Andric //
2247*0fca6ea1SDimitry Andric // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2248*0fca6ea1SDimitry Andric // returns a maximal register class for all X.
2249*0fca6ea1SDimitry Andric //
inferCommonSubClass(CodeGenRegisterClass * RC)2250*0fca6ea1SDimitry Andric void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2251*0fca6ea1SDimitry Andric assert(!RegClasses.empty());
2252*0fca6ea1SDimitry Andric // Stash the iterator to the last element so that this loop doesn't visit
2253*0fca6ea1SDimitry Andric // elements added by the getOrCreateSubClass call within it.
2254*0fca6ea1SDimitry Andric for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2255*0fca6ea1SDimitry Andric I != std::next(E); ++I) {
2256*0fca6ea1SDimitry Andric CodeGenRegisterClass *RC1 = RC;
2257*0fca6ea1SDimitry Andric CodeGenRegisterClass *RC2 = &*I;
2258*0fca6ea1SDimitry Andric if (RC1 == RC2)
2259*0fca6ea1SDimitry Andric continue;
2260*0fca6ea1SDimitry Andric
2261*0fca6ea1SDimitry Andric // Compute the set intersection of RC1 and RC2.
2262*0fca6ea1SDimitry Andric const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2263*0fca6ea1SDimitry Andric const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2264*0fca6ea1SDimitry Andric CodeGenRegister::Vec Intersection;
2265*0fca6ea1SDimitry Andric std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2266*0fca6ea1SDimitry Andric Memb2.end(),
2267*0fca6ea1SDimitry Andric std::inserter(Intersection, Intersection.begin()),
2268*0fca6ea1SDimitry Andric deref<std::less<>>());
2269*0fca6ea1SDimitry Andric
2270*0fca6ea1SDimitry Andric // Skip disjoint class pairs.
2271*0fca6ea1SDimitry Andric if (Intersection.empty())
2272*0fca6ea1SDimitry Andric continue;
2273*0fca6ea1SDimitry Andric
2274*0fca6ea1SDimitry Andric // If RC1 and RC2 have different spill sizes or alignments, use the
2275*0fca6ea1SDimitry Andric // stricter one for sub-classing. If they are equal, prefer RC1.
2276*0fca6ea1SDimitry Andric if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2277*0fca6ea1SDimitry Andric std::swap(RC1, RC2);
2278*0fca6ea1SDimitry Andric
2279*0fca6ea1SDimitry Andric getOrCreateSubClass(RC1, &Intersection,
2280*0fca6ea1SDimitry Andric RC1->getName() + "_and_" + RC2->getName());
2281*0fca6ea1SDimitry Andric }
2282*0fca6ea1SDimitry Andric }
2283*0fca6ea1SDimitry Andric
2284*0fca6ea1SDimitry Andric //
2285*0fca6ea1SDimitry Andric // Synthesize missing sub-classes for getSubClassWithSubReg().
2286*0fca6ea1SDimitry Andric //
2287*0fca6ea1SDimitry Andric // Make sure that the set of registers in RC with a given SubIdx sub-register
2288*0fca6ea1SDimitry Andric // form a register class. Update RC->SubClassWithSubReg.
2289*0fca6ea1SDimitry Andric //
inferSubClassWithSubReg(CodeGenRegisterClass * RC)2290*0fca6ea1SDimitry Andric void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2291*0fca6ea1SDimitry Andric // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2292*0fca6ea1SDimitry Andric typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2293*0fca6ea1SDimitry Andric deref<std::less<>>>
2294*0fca6ea1SDimitry Andric SubReg2SetMap;
2295*0fca6ea1SDimitry Andric
2296*0fca6ea1SDimitry Andric // Compute the set of registers supporting each SubRegIndex.
2297*0fca6ea1SDimitry Andric SubReg2SetMap SRSets;
2298*0fca6ea1SDimitry Andric for (const auto R : RC->getMembers()) {
2299*0fca6ea1SDimitry Andric if (R->Artificial)
2300*0fca6ea1SDimitry Andric continue;
2301*0fca6ea1SDimitry Andric const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2302*0fca6ea1SDimitry Andric for (auto I : SRM) {
2303*0fca6ea1SDimitry Andric if (!I.first->Artificial)
2304*0fca6ea1SDimitry Andric SRSets[I.first].push_back(R);
2305*0fca6ea1SDimitry Andric }
2306*0fca6ea1SDimitry Andric }
2307*0fca6ea1SDimitry Andric
2308*0fca6ea1SDimitry Andric for (auto I : SRSets)
2309*0fca6ea1SDimitry Andric sortAndUniqueRegisters(I.second);
2310*0fca6ea1SDimitry Andric
2311*0fca6ea1SDimitry Andric // Find matching classes for all SRSets entries. Iterate in SubRegIndex
2312*0fca6ea1SDimitry Andric // numerical order to visit synthetic indices last.
2313*0fca6ea1SDimitry Andric for (const auto &SubIdx : SubRegIndices) {
2314*0fca6ea1SDimitry Andric if (SubIdx.Artificial)
2315*0fca6ea1SDimitry Andric continue;
2316*0fca6ea1SDimitry Andric SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2317*0fca6ea1SDimitry Andric // Unsupported SubRegIndex. Skip it.
2318*0fca6ea1SDimitry Andric if (I == SRSets.end())
2319*0fca6ea1SDimitry Andric continue;
2320*0fca6ea1SDimitry Andric // In most cases, all RC registers support the SubRegIndex.
2321*0fca6ea1SDimitry Andric if (I->second.size() == RC->getMembers().size()) {
2322*0fca6ea1SDimitry Andric RC->setSubClassWithSubReg(&SubIdx, RC);
2323*0fca6ea1SDimitry Andric continue;
2324*0fca6ea1SDimitry Andric }
2325*0fca6ea1SDimitry Andric // This is a real subset. See if we have a matching class.
2326*0fca6ea1SDimitry Andric CodeGenRegisterClass *SubRC = getOrCreateSubClass(
2327*0fca6ea1SDimitry Andric RC, &I->second, RC->getName() + "_with_" + I->first->getName());
2328*0fca6ea1SDimitry Andric RC->setSubClassWithSubReg(&SubIdx, SubRC);
2329*0fca6ea1SDimitry Andric }
2330*0fca6ea1SDimitry Andric }
2331*0fca6ea1SDimitry Andric
2332*0fca6ea1SDimitry Andric //
2333*0fca6ea1SDimitry Andric // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2334*0fca6ea1SDimitry Andric //
2335*0fca6ea1SDimitry Andric // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2336*0fca6ea1SDimitry Andric // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2337*0fca6ea1SDimitry Andric //
2338*0fca6ea1SDimitry Andric
inferMatchingSuperRegClass(CodeGenRegisterClass * RC,std::list<CodeGenRegisterClass>::iterator FirstSubRegRC)2339*0fca6ea1SDimitry Andric void CodeGenRegBank::inferMatchingSuperRegClass(
2340*0fca6ea1SDimitry Andric CodeGenRegisterClass *RC,
2341*0fca6ea1SDimitry Andric std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2342*0fca6ea1SDimitry Andric DenseMap<const CodeGenRegister *, std::vector<const CodeGenRegister *>>
2343*0fca6ea1SDimitry Andric SubToSuperRegs;
2344*0fca6ea1SDimitry Andric BitVector TopoSigs(getNumTopoSigs());
2345*0fca6ea1SDimitry Andric
2346*0fca6ea1SDimitry Andric // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2347*0fca6ea1SDimitry Andric for (auto &SubIdx : SubRegIndices) {
2348*0fca6ea1SDimitry Andric // Skip indexes that aren't fully supported by RC's registers. This was
2349*0fca6ea1SDimitry Andric // computed by inferSubClassWithSubReg() above which should have been
2350*0fca6ea1SDimitry Andric // called first.
2351*0fca6ea1SDimitry Andric if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2352*0fca6ea1SDimitry Andric continue;
2353*0fca6ea1SDimitry Andric
2354*0fca6ea1SDimitry Andric // Build list of (Super, Sub) pairs for this SubIdx.
2355*0fca6ea1SDimitry Andric SubToSuperRegs.clear();
2356*0fca6ea1SDimitry Andric TopoSigs.reset();
2357*0fca6ea1SDimitry Andric for (const auto Super : RC->getMembers()) {
2358*0fca6ea1SDimitry Andric const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2359*0fca6ea1SDimitry Andric assert(Sub && "Missing sub-register");
2360*0fca6ea1SDimitry Andric SubToSuperRegs[Sub].push_back(Super);
2361*0fca6ea1SDimitry Andric TopoSigs.set(Sub->getTopoSig());
2362*0fca6ea1SDimitry Andric }
2363*0fca6ea1SDimitry Andric
2364*0fca6ea1SDimitry Andric // Iterate over sub-register class candidates. Ignore classes created by
2365*0fca6ea1SDimitry Andric // this loop. They will never be useful.
2366*0fca6ea1SDimitry Andric // Store an iterator to the last element (not end) so that this loop doesn't
2367*0fca6ea1SDimitry Andric // visit newly inserted elements.
2368*0fca6ea1SDimitry Andric assert(!RegClasses.empty());
2369*0fca6ea1SDimitry Andric for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2370*0fca6ea1SDimitry Andric I != std::next(E); ++I) {
2371*0fca6ea1SDimitry Andric CodeGenRegisterClass &SubRC = *I;
2372*0fca6ea1SDimitry Andric if (SubRC.Artificial)
2373*0fca6ea1SDimitry Andric continue;
2374*0fca6ea1SDimitry Andric // Topological shortcut: SubRC members have the wrong shape.
2375*0fca6ea1SDimitry Andric if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2376*0fca6ea1SDimitry Andric continue;
2377*0fca6ea1SDimitry Andric // Compute the subset of RC that maps into SubRC.
2378*0fca6ea1SDimitry Andric CodeGenRegister::Vec SubSetVec;
2379*0fca6ea1SDimitry Andric for (const CodeGenRegister *R : SubRC.getMembers()) {
2380*0fca6ea1SDimitry Andric auto It = SubToSuperRegs.find(R);
2381*0fca6ea1SDimitry Andric if (It != SubToSuperRegs.end()) {
2382*0fca6ea1SDimitry Andric const std::vector<const CodeGenRegister *> &SuperRegs = It->second;
2383*0fca6ea1SDimitry Andric SubSetVec.insert(SubSetVec.end(), SuperRegs.begin(), SuperRegs.end());
2384*0fca6ea1SDimitry Andric }
2385*0fca6ea1SDimitry Andric }
2386*0fca6ea1SDimitry Andric
2387*0fca6ea1SDimitry Andric if (SubSetVec.empty())
2388*0fca6ea1SDimitry Andric continue;
2389*0fca6ea1SDimitry Andric
2390*0fca6ea1SDimitry Andric // RC injects completely into SubRC.
2391*0fca6ea1SDimitry Andric sortAndUniqueRegisters(SubSetVec);
2392*0fca6ea1SDimitry Andric if (SubSetVec.size() == RC->getMembers().size()) {
2393*0fca6ea1SDimitry Andric SubRC.addSuperRegClass(&SubIdx, RC);
2394*0fca6ea1SDimitry Andric continue;
2395*0fca6ea1SDimitry Andric }
2396*0fca6ea1SDimitry Andric
2397*0fca6ea1SDimitry Andric // Only a subset of RC maps into SubRC. Make sure it is represented by a
2398*0fca6ea1SDimitry Andric // class.
2399*0fca6ea1SDimitry Andric getOrCreateSubClass(RC, &SubSetVec,
2400*0fca6ea1SDimitry Andric RC->getName() + "_with_" + SubIdx.getName() + "_in_" +
2401*0fca6ea1SDimitry Andric SubRC.getName());
2402*0fca6ea1SDimitry Andric }
2403*0fca6ea1SDimitry Andric }
2404*0fca6ea1SDimitry Andric }
2405*0fca6ea1SDimitry Andric
2406*0fca6ea1SDimitry Andric //
2407*0fca6ea1SDimitry Andric // Infer missing register classes.
2408*0fca6ea1SDimitry Andric //
computeInferredRegisterClasses()2409*0fca6ea1SDimitry Andric void CodeGenRegBank::computeInferredRegisterClasses() {
2410*0fca6ea1SDimitry Andric assert(!RegClasses.empty());
2411*0fca6ea1SDimitry Andric // When this function is called, the register classes have not been sorted
2412*0fca6ea1SDimitry Andric // and assigned EnumValues yet. That means getSubClasses(),
2413*0fca6ea1SDimitry Andric // getSuperClasses(), and hasSubClass() functions are defunct.
2414*0fca6ea1SDimitry Andric
2415*0fca6ea1SDimitry Andric // Use one-before-the-end so it doesn't move forward when new elements are
2416*0fca6ea1SDimitry Andric // added.
2417*0fca6ea1SDimitry Andric auto FirstNewRC = std::prev(RegClasses.end());
2418*0fca6ea1SDimitry Andric
2419*0fca6ea1SDimitry Andric // Visit all register classes, including the ones being added by the loop.
2420*0fca6ea1SDimitry Andric // Watch out for iterator invalidation here.
2421*0fca6ea1SDimitry Andric for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2422*0fca6ea1SDimitry Andric CodeGenRegisterClass *RC = &*I;
2423*0fca6ea1SDimitry Andric if (RC->Artificial)
2424*0fca6ea1SDimitry Andric continue;
2425*0fca6ea1SDimitry Andric
2426*0fca6ea1SDimitry Andric // Synthesize answers for getSubClassWithSubReg().
2427*0fca6ea1SDimitry Andric inferSubClassWithSubReg(RC);
2428*0fca6ea1SDimitry Andric
2429*0fca6ea1SDimitry Andric // Synthesize answers for getCommonSubClass().
2430*0fca6ea1SDimitry Andric inferCommonSubClass(RC);
2431*0fca6ea1SDimitry Andric
2432*0fca6ea1SDimitry Andric // Synthesize answers for getMatchingSuperRegClass().
2433*0fca6ea1SDimitry Andric inferMatchingSuperRegClass(RC);
2434*0fca6ea1SDimitry Andric
2435*0fca6ea1SDimitry Andric // New register classes are created while this loop is running, and we need
2436*0fca6ea1SDimitry Andric // to visit all of them. I particular, inferMatchingSuperRegClass needs
2437*0fca6ea1SDimitry Andric // to match old super-register classes with sub-register classes created
2438*0fca6ea1SDimitry Andric // after inferMatchingSuperRegClass was called. At this point,
2439*0fca6ea1SDimitry Andric // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2440*0fca6ea1SDimitry Andric // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
2441*0fca6ea1SDimitry Andric if (I == FirstNewRC) {
2442*0fca6ea1SDimitry Andric auto NextNewRC = std::prev(RegClasses.end());
2443*0fca6ea1SDimitry Andric for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2444*0fca6ea1SDimitry Andric ++I2)
2445*0fca6ea1SDimitry Andric inferMatchingSuperRegClass(&*I2, E2);
2446*0fca6ea1SDimitry Andric FirstNewRC = NextNewRC;
2447*0fca6ea1SDimitry Andric }
2448*0fca6ea1SDimitry Andric }
2449*0fca6ea1SDimitry Andric }
2450*0fca6ea1SDimitry Andric
2451*0fca6ea1SDimitry Andric /// getRegisterClassForRegister - Find the register class that contains the
2452*0fca6ea1SDimitry Andric /// specified physical register. If the register is not in a register class,
2453*0fca6ea1SDimitry Andric /// return null. If the register is in multiple classes, and the classes have a
2454*0fca6ea1SDimitry Andric /// superset-subset relationship and the same set of types, return the
2455*0fca6ea1SDimitry Andric /// superclass. Otherwise return null.
getRegClassForRegister(Record * R)2456*0fca6ea1SDimitry Andric const CodeGenRegisterClass *CodeGenRegBank::getRegClassForRegister(Record *R) {
2457*0fca6ea1SDimitry Andric const CodeGenRegister *Reg = getReg(R);
2458*0fca6ea1SDimitry Andric const CodeGenRegisterClass *FoundRC = nullptr;
2459*0fca6ea1SDimitry Andric for (const auto &RC : getRegClasses()) {
2460*0fca6ea1SDimitry Andric if (!RC.contains(Reg))
2461*0fca6ea1SDimitry Andric continue;
2462*0fca6ea1SDimitry Andric
2463*0fca6ea1SDimitry Andric // If this is the first class that contains the register,
2464*0fca6ea1SDimitry Andric // make a note of it and go on to the next class.
2465*0fca6ea1SDimitry Andric if (!FoundRC) {
2466*0fca6ea1SDimitry Andric FoundRC = &RC;
2467*0fca6ea1SDimitry Andric continue;
2468*0fca6ea1SDimitry Andric }
2469*0fca6ea1SDimitry Andric
2470*0fca6ea1SDimitry Andric // If a register's classes have different types, return null.
2471*0fca6ea1SDimitry Andric if (RC.getValueTypes() != FoundRC->getValueTypes())
2472*0fca6ea1SDimitry Andric return nullptr;
2473*0fca6ea1SDimitry Andric
2474*0fca6ea1SDimitry Andric // Check to see if the previously found class that contains
2475*0fca6ea1SDimitry Andric // the register is a subclass of the current class. If so,
2476*0fca6ea1SDimitry Andric // prefer the superclass.
2477*0fca6ea1SDimitry Andric if (RC.hasSubClass(FoundRC)) {
2478*0fca6ea1SDimitry Andric FoundRC = &RC;
2479*0fca6ea1SDimitry Andric continue;
2480*0fca6ea1SDimitry Andric }
2481*0fca6ea1SDimitry Andric
2482*0fca6ea1SDimitry Andric // Check to see if the previously found class that contains
2483*0fca6ea1SDimitry Andric // the register is a superclass of the current class. If so,
2484*0fca6ea1SDimitry Andric // prefer the superclass.
2485*0fca6ea1SDimitry Andric if (FoundRC->hasSubClass(&RC))
2486*0fca6ea1SDimitry Andric continue;
2487*0fca6ea1SDimitry Andric
2488*0fca6ea1SDimitry Andric // Multiple classes, and neither is a superclass of the other.
2489*0fca6ea1SDimitry Andric // Return null.
2490*0fca6ea1SDimitry Andric return nullptr;
2491*0fca6ea1SDimitry Andric }
2492*0fca6ea1SDimitry Andric return FoundRC;
2493*0fca6ea1SDimitry Andric }
2494*0fca6ea1SDimitry Andric
2495*0fca6ea1SDimitry Andric const CodeGenRegisterClass *
getMinimalPhysRegClass(Record * RegRecord,ValueTypeByHwMode * VT)2496*0fca6ea1SDimitry Andric CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2497*0fca6ea1SDimitry Andric ValueTypeByHwMode *VT) {
2498*0fca6ea1SDimitry Andric const CodeGenRegister *Reg = getReg(RegRecord);
2499*0fca6ea1SDimitry Andric const CodeGenRegisterClass *BestRC = nullptr;
2500*0fca6ea1SDimitry Andric for (const auto &RC : getRegClasses()) {
2501*0fca6ea1SDimitry Andric if ((!VT || RC.hasType(*VT)) && RC.contains(Reg) &&
2502*0fca6ea1SDimitry Andric (!BestRC || BestRC->hasSubClass(&RC)))
2503*0fca6ea1SDimitry Andric BestRC = &RC;
2504*0fca6ea1SDimitry Andric }
2505*0fca6ea1SDimitry Andric
2506*0fca6ea1SDimitry Andric assert(BestRC && "Couldn't find the register class");
2507*0fca6ea1SDimitry Andric return BestRC;
2508*0fca6ea1SDimitry Andric }
2509*0fca6ea1SDimitry Andric
computeCoveredRegisters(ArrayRef<Record * > Regs)2510*0fca6ea1SDimitry Andric BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record *> Regs) {
2511*0fca6ea1SDimitry Andric SetVector<const CodeGenRegister *> Set;
2512*0fca6ea1SDimitry Andric
2513*0fca6ea1SDimitry Andric // First add Regs with all sub-registers.
2514*0fca6ea1SDimitry Andric for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2515*0fca6ea1SDimitry Andric CodeGenRegister *Reg = getReg(Regs[i]);
2516*0fca6ea1SDimitry Andric if (Set.insert(Reg))
2517*0fca6ea1SDimitry Andric // Reg is new, add all sub-registers.
2518*0fca6ea1SDimitry Andric // The pre-ordering is not important here.
2519*0fca6ea1SDimitry Andric Reg->addSubRegsPreOrder(Set, *this);
2520*0fca6ea1SDimitry Andric }
2521*0fca6ea1SDimitry Andric
2522*0fca6ea1SDimitry Andric // Second, find all super-registers that are completely covered by the set.
2523*0fca6ea1SDimitry Andric for (unsigned i = 0; i != Set.size(); ++i) {
2524*0fca6ea1SDimitry Andric const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2525*0fca6ea1SDimitry Andric for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2526*0fca6ea1SDimitry Andric const CodeGenRegister *Super = SR[j];
2527*0fca6ea1SDimitry Andric if (!Super->CoveredBySubRegs || Set.count(Super))
2528*0fca6ea1SDimitry Andric continue;
2529*0fca6ea1SDimitry Andric // This new super-register is covered by its sub-registers.
2530*0fca6ea1SDimitry Andric bool AllSubsInSet = true;
2531*0fca6ea1SDimitry Andric const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2532*0fca6ea1SDimitry Andric for (auto I : SRM)
2533*0fca6ea1SDimitry Andric if (!Set.count(I.second)) {
2534*0fca6ea1SDimitry Andric AllSubsInSet = false;
2535*0fca6ea1SDimitry Andric break;
2536*0fca6ea1SDimitry Andric }
2537*0fca6ea1SDimitry Andric // All sub-registers in Set, add Super as well.
2538*0fca6ea1SDimitry Andric // We will visit Super later to recheck its super-registers.
2539*0fca6ea1SDimitry Andric if (AllSubsInSet)
2540*0fca6ea1SDimitry Andric Set.insert(Super);
2541*0fca6ea1SDimitry Andric }
2542*0fca6ea1SDimitry Andric }
2543*0fca6ea1SDimitry Andric
2544*0fca6ea1SDimitry Andric // Convert to BitVector.
2545*0fca6ea1SDimitry Andric BitVector BV(Registers.size() + 1);
2546*0fca6ea1SDimitry Andric for (unsigned i = 0, e = Set.size(); i != e; ++i)
2547*0fca6ea1SDimitry Andric BV.set(Set[i]->EnumValue);
2548*0fca6ea1SDimitry Andric return BV;
2549*0fca6ea1SDimitry Andric }
2550*0fca6ea1SDimitry Andric
printRegUnitName(unsigned Unit) const2551*0fca6ea1SDimitry Andric void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2552*0fca6ea1SDimitry Andric if (Unit < NumNativeRegUnits)
2553*0fca6ea1SDimitry Andric dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2554*0fca6ea1SDimitry Andric else
2555*0fca6ea1SDimitry Andric dbgs() << " #" << Unit;
2556*0fca6ea1SDimitry Andric }
2557