xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/Common/CodeGenDAGPatterns.h (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
15 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
16 
17 #include "Basic/CodeGenIntrinsics.h"
18 #include "Basic/SDNodeProperties.h"
19 #include "CodeGenTarget.h"
20 #include "llvm/ADT/IntrusiveRefCntPtr.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PointerUnion.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/TableGen/Record.h"
30 #include <algorithm>
31 #include <array>
32 #include <functional>
33 #include <map>
34 #include <numeric>
35 #include <vector>
36 
37 namespace llvm {
38 
39 class Init;
40 class ListInit;
41 class DagInit;
42 class SDNodeInfo;
43 class TreePattern;
44 class TreePatternNode;
45 class CodeGenDAGPatterns;
46 
47 /// Shared pointer for TreePatternNode.
48 using TreePatternNodePtr = IntrusiveRefCntPtr<TreePatternNode>;
49 
50 /// This represents a set of MVTs. Since the underlying type for the MVT
51 /// is uint8_t, there are at most 256 values. To reduce the number of memory
52 /// allocations and deallocations, represent the set as a sequence of bits.
53 /// To reduce the allocations even further, make MachineValueTypeSet own
54 /// the storage and use std::array as the bit container.
55 struct MachineValueTypeSet {
56   static_assert(std::is_same<std::underlying_type_t<MVT::SimpleValueType>,
57                              uint8_t>::value,
58                 "Change uint8_t here to the SimpleValueType's type");
59   static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max() + 1;
60   using WordType = uint64_t;
61   static unsigned constexpr WordWidth = CHAR_BIT * sizeof(WordType);
62   static unsigned constexpr NumWords = Capacity / WordWidth;
63   static_assert(NumWords * WordWidth == Capacity,
64                 "Capacity should be a multiple of WordWidth");
65 
66   LLVM_ATTRIBUTE_ALWAYS_INLINE
67   MachineValueTypeSet() { clear(); }
68 
69   LLVM_ATTRIBUTE_ALWAYS_INLINE
70   unsigned size() const {
71     unsigned Count = 0;
72     for (WordType W : Words)
73       Count += llvm::popcount(W);
74     return Count;
75   }
76   LLVM_ATTRIBUTE_ALWAYS_INLINE
77   void clear() { std::memset(Words.data(), 0, NumWords * sizeof(WordType)); }
78   LLVM_ATTRIBUTE_ALWAYS_INLINE
79   bool empty() const {
80     for (WordType W : Words)
81       if (W != 0)
82         return false;
83     return true;
84   }
85   LLVM_ATTRIBUTE_ALWAYS_INLINE
86   unsigned count(MVT T) const {
87     return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
88   }
89   std::pair<MachineValueTypeSet &, bool> insert(MVT T) {
90     bool V = count(T.SimpleTy);
91     Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
92     return {*this, V};
93   }
94   MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
95     for (unsigned i = 0; i != NumWords; ++i)
96       Words[i] |= S.Words[i];
97     return *this;
98   }
99   LLVM_ATTRIBUTE_ALWAYS_INLINE
100   void erase(MVT T) {
101     Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
102   }
103 
104   void writeToStream(raw_ostream &OS) const;
105 
106   struct const_iterator {
107     // Some implementations of the C++ library require these traits to be
108     // defined.
109     using iterator_category = std::forward_iterator_tag;
110     using value_type = MVT;
111     using difference_type = ptrdiff_t;
112     using pointer = const MVT *;
113     using reference = const MVT &;
114 
115     LLVM_ATTRIBUTE_ALWAYS_INLINE
116     MVT operator*() const {
117       assert(Pos != Capacity);
118       return MVT::SimpleValueType(Pos);
119     }
120     LLVM_ATTRIBUTE_ALWAYS_INLINE
121     const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
122       Pos = End ? Capacity : find_from_pos(0);
123     }
124     LLVM_ATTRIBUTE_ALWAYS_INLINE
125     const_iterator &operator++() {
126       assert(Pos != Capacity);
127       Pos = find_from_pos(Pos + 1);
128       return *this;
129     }
130 
131     LLVM_ATTRIBUTE_ALWAYS_INLINE
132     bool operator==(const const_iterator &It) const {
133       return Set == It.Set && Pos == It.Pos;
134     }
135     LLVM_ATTRIBUTE_ALWAYS_INLINE
136     bool operator!=(const const_iterator &It) const { return !operator==(It); }
137 
138   private:
139     unsigned find_from_pos(unsigned P) const {
140       unsigned SkipWords = P / WordWidth;
141       unsigned SkipBits = P % WordWidth;
142       unsigned Count = SkipWords * WordWidth;
143 
144       // If P is in the middle of a word, process it manually here, because
145       // the trailing bits need to be masked off to use findFirstSet.
146       if (SkipBits != 0) {
147         WordType W = Set->Words[SkipWords];
148         W &= maskLeadingOnes<WordType>(WordWidth - SkipBits);
149         if (W != 0)
150           return Count + llvm::countr_zero(W);
151         Count += WordWidth;
152         SkipWords++;
153       }
154 
155       for (unsigned i = SkipWords; i != NumWords; ++i) {
156         WordType W = Set->Words[i];
157         if (W != 0)
158           return Count + llvm::countr_zero(W);
159         Count += WordWidth;
160       }
161       return Capacity;
162     }
163 
164     const MachineValueTypeSet *Set;
165     unsigned Pos;
166   };
167 
168   LLVM_ATTRIBUTE_ALWAYS_INLINE
169   const_iterator begin() const { return const_iterator(this, false); }
170   LLVM_ATTRIBUTE_ALWAYS_INLINE
171   const_iterator end() const { return const_iterator(this, true); }
172 
173   LLVM_ATTRIBUTE_ALWAYS_INLINE
174   bool operator==(const MachineValueTypeSet &S) const {
175     return Words == S.Words;
176   }
177   LLVM_ATTRIBUTE_ALWAYS_INLINE
178   bool operator!=(const MachineValueTypeSet &S) const { return !operator==(S); }
179 
180 private:
181   friend struct const_iterator;
182   std::array<WordType, NumWords> Words;
183 };
184 
185 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T);
186 
187 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
188   using SetType = MachineValueTypeSet;
189   unsigned AddrSpace = std::numeric_limits<unsigned>::max();
190 
191   TypeSetByHwMode() = default;
192   TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
193   TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default;
194   TypeSetByHwMode(MVT::SimpleValueType VT)
195       : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
196   TypeSetByHwMode(ValueTypeByHwMode VT)
197       : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
198   TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
199 
200   SetType &getOrCreate(unsigned Mode) { return Map[Mode]; }
201 
202   bool isValueTypeByHwMode(bool AllowEmpty) const;
203   ValueTypeByHwMode getValueTypeByHwMode() const;
204 
205   LLVM_ATTRIBUTE_ALWAYS_INLINE
206   bool isMachineValueType() const {
207     return isSimple() && getSimple().size() == 1;
208   }
209 
210   LLVM_ATTRIBUTE_ALWAYS_INLINE
211   MVT getMachineValueType() const {
212     assert(isMachineValueType());
213     return *getSimple().begin();
214   }
215 
216   bool isPossible() const;
217 
218   bool isPointer() const { return getValueTypeByHwMode().isPointer(); }
219 
220   unsigned getPtrAddrSpace() const {
221     assert(isPointer());
222     return getValueTypeByHwMode().PtrAddrSpace;
223   }
224 
225   bool insert(const ValueTypeByHwMode &VVT);
226   bool constrain(const TypeSetByHwMode &VTS);
227   template <typename Predicate> bool constrain(Predicate P);
228   template <typename Predicate>
229   bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
230 
231   void writeToStream(raw_ostream &OS) const;
232 
233   bool operator==(const TypeSetByHwMode &VTS) const;
234   bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
235 
236   void dump() const;
237   bool validate() const;
238 
239 private:
240   unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
241   /// Intersect two sets. Return true if anything has changed.
242   bool intersect(SetType &Out, const SetType &In);
243 };
244 
245 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
246 
247 struct TypeInfer {
248   TypeInfer(TreePattern &T) : TP(T) {}
249 
250   bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
251     return VTS.isValueTypeByHwMode(AllowEmpty);
252   }
253   ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
254                                 bool AllowEmpty) const {
255     assert(VTS.isValueTypeByHwMode(AllowEmpty));
256     return VTS.getValueTypeByHwMode();
257   }
258 
259   /// The protocol in the following functions (Merge*, force*, Enforce*,
260   /// expand*) is to return "true" if a change has been made, "false"
261   /// otherwise.
262 
263   bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In) const;
264   bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) const {
265     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
266   }
267   bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) const {
268     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
269   }
270 
271   /// Reduce the set \p Out to have at most one element for each mode.
272   bool forceArbitrary(TypeSetByHwMode &Out);
273 
274   /// The following four functions ensure that upon return the set \p Out
275   /// will only contain types of the specified kind: integer, floating-point,
276   /// scalar, or vector.
277   /// If \p Out is empty, all legal types of the specified kind will be added
278   /// to it. Otherwise, all types that are not of the specified kind will be
279   /// removed from \p Out.
280   bool EnforceInteger(TypeSetByHwMode &Out);
281   bool EnforceFloatingPoint(TypeSetByHwMode &Out);
282   bool EnforceScalar(TypeSetByHwMode &Out);
283   bool EnforceVector(TypeSetByHwMode &Out);
284 
285   /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
286   /// unchanged.
287   bool EnforceAny(TypeSetByHwMode &Out);
288   /// Make sure that for each type in \p Small, there exists a larger type
289   /// in \p Big. \p SmallIsVT indicates that this is being called for
290   /// SDTCisVTSmallerThanOp. In that case the TypeSetByHwMode is re-created for
291   /// each call and needs special consideration in how we detect changes.
292   bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
293                           bool SmallIsVT = false);
294   /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
295   ///    for each type U in \p Elem, U is a scalar type.
296   /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
297   ///    (vector) type T in \p Vec, such that U is the element type of T.
298   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
299   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
300                               const ValueTypeByHwMode &VVT);
301   /// Ensure that for each type T in \p Sub, T is a vector type, and there
302   /// exists a type U in \p Vec such that U is a vector type with the same
303   /// element type as T and at least as many elements as T.
304   bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Sub);
305   /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
306   /// 2. Ensure that for each vector type T in \p V, there exists a vector
307   ///    type U in \p W, such that T and U have the same number of elements.
308   /// 3. Ensure that for each vector type U in \p W, there exists a vector
309   ///    type T in \p V, such that T and U have the same number of elements
310   ///    (reverse of 2).
311   bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
312   /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
313   ///    such that T and U have equal size in bits.
314   /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
315   ///    such that T and U have equal size in bits (reverse of 1).
316   bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
317 
318   /// For each overloaded type (i.e. of form *Any), replace it with the
319   /// corresponding subset of legal, specific types.
320   void expandOverloads(TypeSetByHwMode &VTS) const;
321   void expandOverloads(TypeSetByHwMode::SetType &Out,
322                        const TypeSetByHwMode::SetType &Legal) const;
323 
324   struct ValidateOnExit {
325     ValidateOnExit(const TypeSetByHwMode &T, const TypeInfer &TI)
326         : Infer(TI), VTS(T) {}
327     ~ValidateOnExit();
328     const TypeInfer &Infer;
329     const TypeSetByHwMode &VTS;
330   };
331 
332   struct SuppressValidation {
333     SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
334       Infer.Validate = false;
335     }
336     ~SuppressValidation() { Infer.Validate = SavedValidate; }
337     TypeInfer &Infer;
338     bool SavedValidate;
339   };
340 
341   TreePattern &TP;
342   bool Validate = true; // Indicate whether to validate types.
343 
344 private:
345   const TypeSetByHwMode &getLegalTypes() const;
346 
347   /// Cached legal types (in default mode).
348   mutable bool LegalTypesCached = false;
349   mutable TypeSetByHwMode LegalCache;
350 };
351 
352 /// Set type used to track multiply used variables in patterns
353 typedef StringSet<> MultipleUseVarSet;
354 
355 /// SDTypeConstraint - This is a discriminated union of constraints,
356 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
357 struct SDTypeConstraint {
358   SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
359 
360   unsigned OperandNo; // The operand # this constraint applies to.
361   enum {
362     SDTCisVT,
363     SDTCisPtrTy,
364     SDTCisInt,
365     SDTCisFP,
366     SDTCisVec,
367     SDTCisSameAs,
368     SDTCisVTSmallerThanOp,
369     SDTCisOpSmallerThanOp,
370     SDTCisEltOfVec,
371     SDTCisSubVecOfVec,
372     SDTCVecEltisVT,
373     SDTCisSameNumEltsAs,
374     SDTCisSameSizeAs
375   } ConstraintType;
376 
377   union { // The discriminated union.
378     struct {
379       unsigned OtherOperandNum;
380     } SDTCisSameAs_Info;
381     struct {
382       unsigned OtherOperandNum;
383     } SDTCisVTSmallerThanOp_Info;
384     struct {
385       unsigned BigOperandNum;
386     } SDTCisOpSmallerThanOp_Info;
387     struct {
388       unsigned OtherOperandNum;
389     } SDTCisEltOfVec_Info;
390     struct {
391       unsigned OtherOperandNum;
392     } SDTCisSubVecOfVec_Info;
393     struct {
394       unsigned OtherOperandNum;
395     } SDTCisSameNumEltsAs_Info;
396     struct {
397       unsigned OtherOperandNum;
398     } SDTCisSameSizeAs_Info;
399   } x;
400 
401   // The VT for SDTCisVT and SDTCVecEltisVT.
402   // Must not be in the union because it has a non-trivial destructor.
403   ValueTypeByHwMode VVT;
404 
405   /// ApplyTypeConstraint - Given a node in a pattern, apply this type
406   /// constraint to the nodes operands.  This returns true if it makes a
407   /// change, false otherwise.  If a type contradiction is found, an error
408   /// is flagged.
409   bool ApplyTypeConstraint(TreePatternNode &N, const SDNodeInfo &NodeInfo,
410                            TreePattern &TP) const;
411 };
412 
413 /// ScopedName - A name of a node associated with a "scope" that indicates
414 /// the context (e.g. instance of Pattern or PatFrag) in which the name was
415 /// used. This enables substitution of pattern fragments while keeping track
416 /// of what name(s) were originally given to various nodes in the tree.
417 class ScopedName {
418   unsigned Scope;
419   std::string Identifier;
420 
421 public:
422   ScopedName(unsigned Scope, StringRef Identifier)
423       : Scope(Scope), Identifier(std::string(Identifier)) {
424     assert(Scope != 0 &&
425            "Scope == 0 is used to indicate predicates without arguments");
426   }
427 
428   unsigned getScope() const { return Scope; }
429   const std::string &getIdentifier() const { return Identifier; }
430 
431   bool operator==(const ScopedName &o) const;
432   bool operator!=(const ScopedName &o) const;
433 };
434 
435 /// SDNodeInfo - One of these records is created for each SDNode instance in
436 /// the target .td file.  This represents the various dag nodes we will be
437 /// processing.
438 class SDNodeInfo {
439   Record *Def;
440   StringRef EnumName;
441   StringRef SDClassName;
442   unsigned Properties;
443   unsigned NumResults;
444   int NumOperands;
445   std::vector<SDTypeConstraint> TypeConstraints;
446 
447 public:
448   // Parse the specified record.
449   SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
450 
451   unsigned getNumResults() const { return NumResults; }
452 
453   /// getNumOperands - This is the number of operands required or -1 if
454   /// variadic.
455   int getNumOperands() const { return NumOperands; }
456   Record *getRecord() const { return Def; }
457   StringRef getEnumName() const { return EnumName; }
458   StringRef getSDClassName() const { return SDClassName; }
459 
460   const std::vector<SDTypeConstraint> &getTypeConstraints() const {
461     return TypeConstraints;
462   }
463 
464   /// getKnownType - If the type constraints on this node imply a fixed type
465   /// (e.g. all stores return void, etc), then return it as an
466   /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
467   MVT::SimpleValueType getKnownType(unsigned ResNo) const;
468 
469   /// hasProperty - Return true if this node has the specified property.
470   ///
471   bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
472 
473   /// ApplyTypeConstraints - Given a node in a pattern, apply the type
474   /// constraints for this node to the operands of the node.  This returns
475   /// true if it makes a change, false otherwise.  If a type contradiction is
476   /// found, an error is flagged.
477   bool ApplyTypeConstraints(TreePatternNode &N, TreePattern &TP) const;
478 };
479 
480 /// TreePredicateFn - This is an abstraction that represents the predicates on
481 /// a PatFrag node.  This is a simple one-word wrapper around a pointer to
482 /// provide nice accessors.
483 class TreePredicateFn {
484   /// PatFragRec - This is the TreePattern for the PatFrag that we
485   /// originally came from.
486   TreePattern *PatFragRec;
487 
488 public:
489   /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
490   TreePredicateFn(TreePattern *N);
491 
492   TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
493 
494   /// isAlwaysTrue - Return true if this is a noop predicate.
495   bool isAlwaysTrue() const;
496 
497   bool isImmediatePattern() const { return hasImmCode(); }
498 
499   /// getImmediatePredicateCode - Return the code that evaluates this pattern if
500   /// this is an immediate predicate.  It is an error to call this on a
501   /// non-immediate pattern.
502   std::string getImmediatePredicateCode() const {
503     std::string Result = getImmCode();
504     assert(!Result.empty() && "Isn't an immediate pattern!");
505     return Result;
506   }
507 
508   bool operator==(const TreePredicateFn &RHS) const {
509     return PatFragRec == RHS.PatFragRec;
510   }
511 
512   bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
513 
514   /// Return the name to use in the generated code to reference this, this is
515   /// "Predicate_foo" if from a pattern fragment "foo".
516   std::string getFnName() const;
517 
518   /// getCodeToRunOnSDNode - Return the code for the function body that
519   /// evaluates this predicate.  The argument is expected to be in "Node",
520   /// not N.  This handles casting and conversion to a concrete node type as
521   /// appropriate.
522   std::string getCodeToRunOnSDNode() const;
523 
524   /// Get the data type of the argument to getImmediatePredicateCode().
525   StringRef getImmType() const;
526 
527   /// Get a string that describes the type returned by getImmType() but is
528   /// usable as part of an identifier.
529   StringRef getImmTypeIdentifier() const;
530 
531   // Predicate code uses the PatFrag's captured operands.
532   bool usesOperands() const;
533 
534   // Check if the HasNoUse predicate is set.
535   bool hasNoUse() const;
536   // Check if the HasOneUse predicate is set.
537   bool hasOneUse() const;
538 
539   // Is the desired predefined predicate for a load?
540   bool isLoad() const;
541   // Is the desired predefined predicate for a store?
542   bool isStore() const;
543   // Is the desired predefined predicate for an atomic?
544   bool isAtomic() const;
545 
546   /// Is this predicate the predefined unindexed load predicate?
547   /// Is this predicate the predefined unindexed store predicate?
548   bool isUnindexed() const;
549   /// Is this predicate the predefined non-extending load predicate?
550   bool isNonExtLoad() const;
551   /// Is this predicate the predefined any-extend load predicate?
552   bool isAnyExtLoad() const;
553   /// Is this predicate the predefined sign-extend load predicate?
554   bool isSignExtLoad() const;
555   /// Is this predicate the predefined zero-extend load predicate?
556   bool isZeroExtLoad() const;
557   /// Is this predicate the predefined non-truncating store predicate?
558   bool isNonTruncStore() const;
559   /// Is this predicate the predefined truncating store predicate?
560   bool isTruncStore() const;
561 
562   /// Is this predicate the predefined monotonic atomic predicate?
563   bool isAtomicOrderingMonotonic() const;
564   /// Is this predicate the predefined acquire atomic predicate?
565   bool isAtomicOrderingAcquire() const;
566   /// Is this predicate the predefined release atomic predicate?
567   bool isAtomicOrderingRelease() const;
568   /// Is this predicate the predefined acquire-release atomic predicate?
569   bool isAtomicOrderingAcquireRelease() const;
570   /// Is this predicate the predefined sequentially consistent atomic predicate?
571   bool isAtomicOrderingSequentiallyConsistent() const;
572 
573   /// Is this predicate the predefined acquire-or-stronger atomic predicate?
574   bool isAtomicOrderingAcquireOrStronger() const;
575   /// Is this predicate the predefined weaker-than-acquire atomic predicate?
576   bool isAtomicOrderingWeakerThanAcquire() const;
577 
578   /// Is this predicate the predefined release-or-stronger atomic predicate?
579   bool isAtomicOrderingReleaseOrStronger() const;
580   /// Is this predicate the predefined weaker-than-release atomic predicate?
581   bool isAtomicOrderingWeakerThanRelease() const;
582 
583   /// If non-null, indicates that this predicate is a predefined memory VT
584   /// predicate for a load/store and returns the ValueType record for the memory
585   /// VT.
586   Record *getMemoryVT() const;
587   /// If non-null, indicates that this predicate is a predefined memory VT
588   /// predicate (checking only the scalar type) for load/store and returns the
589   /// ValueType record for the memory VT.
590   Record *getScalarMemoryVT() const;
591 
592   ListInit *getAddressSpaces() const;
593   int64_t getMinAlignment() const;
594 
595   // If true, indicates that GlobalISel-based C++ code was supplied.
596   bool hasGISelPredicateCode() const;
597   std::string getGISelPredicateCode() const;
598 
599 private:
600   bool hasPredCode() const;
601   bool hasImmCode() const;
602   std::string getPredCode() const;
603   std::string getImmCode() const;
604   bool immCodeUsesAPInt() const;
605   bool immCodeUsesAPFloat() const;
606 
607   bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
608 };
609 
610 struct TreePredicateCall {
611   TreePredicateFn Fn;
612 
613   // Scope -- unique identifier for retrieving named arguments. 0 is used when
614   // the predicate does not use named arguments.
615   unsigned Scope;
616 
617   TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
618       : Fn(Fn), Scope(Scope) {}
619 
620   bool operator==(const TreePredicateCall &o) const {
621     return Fn == o.Fn && Scope == o.Scope;
622   }
623   bool operator!=(const TreePredicateCall &o) const { return !(*this == o); }
624 };
625 
626 class TreePatternNode : public RefCountedBase<TreePatternNode> {
627   /// The type of each node result.  Before and during type inference, each
628   /// result may be a set of possible types.  After (successful) type inference,
629   /// each is a single concrete type.
630   std::vector<TypeSetByHwMode> Types;
631 
632   /// The index of each result in results of the pattern.
633   std::vector<unsigned> ResultPerm;
634 
635   /// OperatorOrVal - The Record for the operator if this is an interior node
636   /// (not a leaf) or the init value (e.g. the "GPRC" record, or "7") for a
637   /// leaf.
638   PointerUnion<Record *, Init *> OperatorOrVal;
639 
640   /// Name - The name given to this node with the :$foo notation.
641   ///
642   std::string Name;
643 
644   std::vector<ScopedName> NamesAsPredicateArg;
645 
646   /// PredicateCalls - The predicate functions to execute on this node to check
647   /// for a match.  If this list is empty, no predicate is involved.
648   std::vector<TreePredicateCall> PredicateCalls;
649 
650   /// TransformFn - The transformation function to execute on this node before
651   /// it can be substituted into the resulting instruction on a pattern match.
652   Record *TransformFn;
653 
654   std::vector<TreePatternNodePtr> Children;
655 
656   /// If this was instantiated from a PatFrag node, and the PatFrag was derived
657   /// from "GISelFlags": the original Record derived from GISelFlags.
658   const Record *GISelFlags = nullptr;
659 
660 public:
661   TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
662                   unsigned NumResults)
663       : OperatorOrVal(Op), TransformFn(nullptr), Children(std::move(Ch)) {
664     Types.resize(NumResults);
665     ResultPerm.resize(NumResults);
666     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
667   }
668   TreePatternNode(Init *val, unsigned NumResults) // leaf ctor
669       : OperatorOrVal(val), TransformFn(nullptr) {
670     Types.resize(NumResults);
671     ResultPerm.resize(NumResults);
672     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
673   }
674 
675   bool hasName() const { return !Name.empty(); }
676   const std::string &getName() const { return Name; }
677   void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
678 
679   const std::vector<ScopedName> &getNamesAsPredicateArg() const {
680     return NamesAsPredicateArg;
681   }
682   void setNamesAsPredicateArg(const std::vector<ScopedName> &Names) {
683     NamesAsPredicateArg = Names;
684   }
685   void addNameAsPredicateArg(const ScopedName &N) {
686     NamesAsPredicateArg.push_back(N);
687   }
688 
689   bool isLeaf() const { return isa<Init *>(OperatorOrVal); }
690 
691   // Type accessors.
692   unsigned getNumTypes() const { return Types.size(); }
693   ValueTypeByHwMode getType(unsigned ResNo) const {
694     return Types[ResNo].getValueTypeByHwMode();
695   }
696   const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
697   const TypeSetByHwMode &getExtType(unsigned ResNo) const {
698     return Types[ResNo];
699   }
700   TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
701   void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
702   MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
703     return Types[ResNo].getMachineValueType().SimpleTy;
704   }
705 
706   bool hasConcreteType(unsigned ResNo) const {
707     return Types[ResNo].isValueTypeByHwMode(false);
708   }
709   bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
710     return Types[ResNo].empty();
711   }
712 
713   unsigned getNumResults() const { return ResultPerm.size(); }
714   unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
715   void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
716 
717   Init *getLeafValue() const {
718     assert(isLeaf());
719     return cast<Init *>(OperatorOrVal);
720   }
721   Record *getOperator() const {
722     assert(!isLeaf());
723     return cast<Record *>(OperatorOrVal);
724   }
725 
726   unsigned getNumChildren() const { return Children.size(); }
727   const TreePatternNode &getChild(unsigned N) const {
728     return *Children[N].get();
729   }
730   TreePatternNode &getChild(unsigned N) { return *Children[N].get(); }
731   const TreePatternNodePtr &getChildShared(unsigned N) const {
732     return Children[N];
733   }
734   TreePatternNodePtr &getChildSharedPtr(unsigned N) { return Children[N]; }
735   void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
736 
737   /// hasChild - Return true if N is any of our children.
738   bool hasChild(const TreePatternNode *N) const {
739     for (unsigned i = 0, e = Children.size(); i != e; ++i)
740       if (Children[i].get() == N)
741         return true;
742     return false;
743   }
744 
745   bool hasProperTypeByHwMode() const;
746   bool hasPossibleType() const;
747   bool setDefaultMode(unsigned Mode);
748 
749   bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
750 
751   const std::vector<TreePredicateCall> &getPredicateCalls() const {
752     return PredicateCalls;
753   }
754   void clearPredicateCalls() { PredicateCalls.clear(); }
755   void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
756     assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
757     PredicateCalls = Calls;
758   }
759   void addPredicateCall(const TreePredicateCall &Call) {
760     assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
761     assert(!is_contained(PredicateCalls, Call) &&
762            "predicate applied recursively");
763     PredicateCalls.push_back(Call);
764   }
765   void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
766     assert((Scope != 0) == Fn.usesOperands());
767     addPredicateCall(TreePredicateCall(Fn, Scope));
768   }
769 
770   Record *getTransformFn() const { return TransformFn; }
771   void setTransformFn(Record *Fn) { TransformFn = Fn; }
772 
773   /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
774   /// CodeGenIntrinsic information for it, otherwise return a null pointer.
775   const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
776 
777   /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
778   /// return the ComplexPattern information, otherwise return null.
779   const ComplexPattern *
780   getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
781 
782   /// Returns the number of MachineInstr operands that would be produced by this
783   /// node if it mapped directly to an output Instruction's
784   /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
785   /// for Operands; otherwise 1.
786   unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
787 
788   /// NodeHasProperty - Return true if this node has the specified property.
789   bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
790 
791   /// TreeHasProperty - Return true if any node in this tree has the specified
792   /// property.
793   bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
794 
795   /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
796   /// marked isCommutative.
797   bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
798 
799   void setGISelFlagsRecord(const Record *R) { GISelFlags = R; }
800   const Record *getGISelFlagsRecord() const { return GISelFlags; }
801 
802   void print(raw_ostream &OS) const;
803   void dump() const;
804 
805 public: // Higher level manipulation routines.
806   /// clone - Return a new copy of this tree.
807   ///
808   TreePatternNodePtr clone() const;
809 
810   /// RemoveAllTypes - Recursively strip all the types of this tree.
811   void RemoveAllTypes();
812 
813   /// isIsomorphicTo - Return true if this node is recursively isomorphic to
814   /// the specified node.  For this comparison, all of the state of the node
815   /// is considered, except for the assigned name.  Nodes with differing names
816   /// that are otherwise identical are considered isomorphic.
817   bool isIsomorphicTo(const TreePatternNode &N,
818                       const MultipleUseVarSet &DepVars) const;
819 
820   /// SubstituteFormalArguments - Replace the formal arguments in this tree
821   /// with actual values specified by ArgMap.
822   void
823   SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
824 
825   /// InlinePatternFragments - If \p T pattern refers to any pattern
826   /// fragments, return the set of inlined versions (this can be more than
827   /// one if a PatFrags record has multiple alternatives).
828   void InlinePatternFragments(TreePattern &TP,
829                               std::vector<TreePatternNodePtr> &OutAlternatives);
830 
831   /// ApplyTypeConstraints - Apply all of the type constraints relevant to
832   /// this node and its children in the tree.  This returns true if it makes a
833   /// change, false otherwise.  If a type contradiction is found, flag an error.
834   bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
835 
836   /// UpdateNodeType - Set the node type of N to VT if VT contains
837   /// information.  If N already contains a conflicting type, then flag an
838   /// error.  This returns true if any information was updated.
839   ///
840   bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
841                       TreePattern &TP);
842   bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
843                       TreePattern &TP);
844   bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy, TreePattern &TP);
845 
846   // Update node type with types inferred from an instruction operand or result
847   // def from the ins/outs lists.
848   // Return true if the type changed.
849   bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
850 
851   /// ContainsUnresolvedType - Return true if this tree contains any
852   /// unresolved types.
853   bool ContainsUnresolvedType(TreePattern &TP) const;
854 
855   /// canPatternMatch - If it is impossible for this pattern to match on this
856   /// target, fill in Reason and return false.  Otherwise, return true.
857   bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
858 };
859 
860 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
861   TPN.print(OS);
862   return OS;
863 }
864 
865 /// TreePattern - Represent a pattern, used for instructions, pattern
866 /// fragments, etc.
867 ///
868 class TreePattern {
869   /// Trees - The list of pattern trees which corresponds to this pattern.
870   /// Note that PatFrag's only have a single tree.
871   ///
872   std::vector<TreePatternNodePtr> Trees;
873 
874   /// NamedNodes - This is all of the nodes that have names in the trees in this
875   /// pattern.
876   StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
877 
878   /// TheRecord - The actual TableGen record corresponding to this pattern.
879   ///
880   Record *TheRecord;
881 
882   /// Args - This is a list of all of the arguments to this pattern (for
883   /// PatFrag patterns), which are the 'node' markers in this pattern.
884   std::vector<std::string> Args;
885 
886   /// CDP - the top-level object coordinating this madness.
887   ///
888   CodeGenDAGPatterns &CDP;
889 
890   /// isInputPattern - True if this is an input pattern, something to match.
891   /// False if this is an output pattern, something to emit.
892   bool isInputPattern;
893 
894   /// hasError - True if the currently processed nodes have unresolvable types
895   /// or other non-fatal errors
896   bool HasError;
897 
898   /// It's important that the usage of operands in ComplexPatterns is
899   /// consistent: each named operand can be defined by at most one
900   /// ComplexPattern. This records the ComplexPattern instance and the operand
901   /// number for each operand encountered in a ComplexPattern to aid in that
902   /// check.
903   StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
904 
905   TypeInfer Infer;
906 
907 public:
908   /// TreePattern constructor - Parse the specified DagInits into the
909   /// current record.
910   TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
911               CodeGenDAGPatterns &ise);
912   TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
913               CodeGenDAGPatterns &ise);
914   TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
915               CodeGenDAGPatterns &ise);
916 
917   /// getTrees - Return the tree patterns which corresponds to this pattern.
918   ///
919   const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
920   unsigned getNumTrees() const { return Trees.size(); }
921   const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
922   void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
923   const TreePatternNodePtr &getOnlyTree() const {
924     assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
925     return Trees[0];
926   }
927 
928   const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
929     if (NamedNodes.empty())
930       ComputeNamedNodes();
931     return NamedNodes;
932   }
933 
934   /// getRecord - Return the actual TableGen record corresponding to this
935   /// pattern.
936   ///
937   Record *getRecord() const { return TheRecord; }
938 
939   unsigned getNumArgs() const { return Args.size(); }
940   const std::string &getArgName(unsigned i) const {
941     assert(i < Args.size() && "Argument reference out of range!");
942     return Args[i];
943   }
944   std::vector<std::string> &getArgList() { return Args; }
945 
946   CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
947 
948   /// InlinePatternFragments - If this pattern refers to any pattern
949   /// fragments, inline them into place, giving us a pattern without any
950   /// PatFrags references.  This may increase the number of trees in the
951   /// pattern if a PatFrags has multiple alternatives.
952   void InlinePatternFragments() {
953     std::vector<TreePatternNodePtr> Copy;
954     Trees.swap(Copy);
955     for (const TreePatternNodePtr &C : Copy)
956       C->InlinePatternFragments(*this, Trees);
957   }
958 
959   /// InferAllTypes - Infer/propagate as many types throughout the expression
960   /// patterns as possible.  Return true if all types are inferred, false
961   /// otherwise.  Bail out if a type contradiction is found.
962   bool InferAllTypes(
963       const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
964 
965   /// error - If this is the first error in the current resolution step,
966   /// print it and set the error flag.  Otherwise, continue silently.
967   void error(const Twine &Msg);
968   bool hasError() const { return HasError; }
969   void resetError() { HasError = false; }
970 
971   TypeInfer &getInfer() { return Infer; }
972 
973   void print(raw_ostream &OS) const;
974   void dump() const;
975 
976 private:
977   TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
978   void ComputeNamedNodes();
979   void ComputeNamedNodes(TreePatternNode &N);
980 };
981 
982 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
983                                             const TypeSetByHwMode &InTy,
984                                             TreePattern &TP) {
985   TypeSetByHwMode VTS(InTy);
986   TP.getInfer().expandOverloads(VTS);
987   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
988 }
989 
990 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
991                                             MVT::SimpleValueType InTy,
992                                             TreePattern &TP) {
993   TypeSetByHwMode VTS(InTy);
994   TP.getInfer().expandOverloads(VTS);
995   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
996 }
997 
998 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
999                                             ValueTypeByHwMode InTy,
1000                                             TreePattern &TP) {
1001   TypeSetByHwMode VTS(InTy);
1002   TP.getInfer().expandOverloads(VTS);
1003   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
1004 }
1005 
1006 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
1007 /// that has a set ExecuteAlways / DefaultOps field.
1008 struct DAGDefaultOperand {
1009   std::vector<TreePatternNodePtr> DefaultOps;
1010 };
1011 
1012 class DAGInstruction {
1013   std::vector<Record *> Results;
1014   std::vector<Record *> Operands;
1015   std::vector<Record *> ImpResults;
1016   TreePatternNodePtr SrcPattern;
1017   TreePatternNodePtr ResultPattern;
1018 
1019 public:
1020   DAGInstruction(std::vector<Record *> &&results,
1021                  std::vector<Record *> &&operands,
1022                  std::vector<Record *> &&impresults,
1023                  TreePatternNodePtr srcpattern = nullptr,
1024                  TreePatternNodePtr resultpattern = nullptr)
1025       : Results(std::move(results)), Operands(std::move(operands)),
1026         ImpResults(std::move(impresults)), SrcPattern(srcpattern),
1027         ResultPattern(resultpattern) {}
1028 
1029   unsigned getNumResults() const { return Results.size(); }
1030   unsigned getNumOperands() const { return Operands.size(); }
1031   unsigned getNumImpResults() const { return ImpResults.size(); }
1032   const std::vector<Record *> &getImpResults() const { return ImpResults; }
1033 
1034   Record *getResult(unsigned RN) const {
1035     assert(RN < Results.size());
1036     return Results[RN];
1037   }
1038 
1039   Record *getOperand(unsigned ON) const {
1040     assert(ON < Operands.size());
1041     return Operands[ON];
1042   }
1043 
1044   Record *getImpResult(unsigned RN) const {
1045     assert(RN < ImpResults.size());
1046     return ImpResults[RN];
1047   }
1048 
1049   TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
1050   TreePatternNodePtr getResultPattern() const { return ResultPattern; }
1051 };
1052 
1053 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
1054 /// processed to produce isel.
1055 class PatternToMatch {
1056   Record *SrcRecord;             // Originating Record for the pattern.
1057   ListInit *Predicates;          // Top level predicate conditions to match.
1058   TreePatternNodePtr SrcPattern; // Source pattern to match.
1059   TreePatternNodePtr DstPattern; // Resulting pattern.
1060   std::vector<Record *> Dstregs; // Physical register defs being matched.
1061   std::string HwModeFeatures;
1062   int AddedComplexity;    // Add to matching pattern complexity.
1063   bool GISelShouldIgnore; // Should GlobalISel ignore importing this pattern.
1064   unsigned ID;            // Unique ID for the record.
1065 
1066 public:
1067   PatternToMatch(Record *srcrecord, ListInit *preds, TreePatternNodePtr src,
1068                  TreePatternNodePtr dst, std::vector<Record *> dstregs,
1069                  int complexity, unsigned uid, bool ignore,
1070                  const Twine &hwmodefeatures = "")
1071       : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src),
1072         DstPattern(dst), Dstregs(std::move(dstregs)),
1073         HwModeFeatures(hwmodefeatures.str()), AddedComplexity(complexity),
1074         GISelShouldIgnore(ignore), ID(uid) {}
1075 
1076   Record *getSrcRecord() const { return SrcRecord; }
1077   ListInit *getPredicates() const { return Predicates; }
1078   TreePatternNode &getSrcPattern() const { return *SrcPattern; }
1079   TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
1080   TreePatternNode &getDstPattern() const { return *DstPattern; }
1081   TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
1082   const std::vector<Record *> &getDstRegs() const { return Dstregs; }
1083   StringRef getHwModeFeatures() const { return HwModeFeatures; }
1084   int getAddedComplexity() const { return AddedComplexity; }
1085   bool getGISelShouldIgnore() const { return GISelShouldIgnore; }
1086   unsigned getID() const { return ID; }
1087 
1088   std::string getPredicateCheck() const;
1089   void getPredicateRecords(SmallVectorImpl<Record *> &PredicateRecs) const;
1090 
1091   /// Compute the complexity metric for the input pattern.  This roughly
1092   /// corresponds to the number of nodes that are covered.
1093   int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
1094 };
1095 
1096 class CodeGenDAGPatterns {
1097   RecordKeeper &Records;
1098   CodeGenTarget Target;
1099   CodeGenIntrinsicTable Intrinsics;
1100 
1101   std::map<Record *, SDNodeInfo, LessRecordByID> SDNodes;
1102   std::map<Record *, std::pair<Record *, std::string>, LessRecordByID>
1103       SDNodeXForms;
1104   std::map<Record *, ComplexPattern, LessRecordByID> ComplexPatterns;
1105   std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
1106       PatternFragments;
1107   std::map<Record *, DAGDefaultOperand, LessRecordByID> DefaultOperands;
1108   std::map<Record *, DAGInstruction, LessRecordByID> Instructions;
1109 
1110   // Specific SDNode definitions:
1111   Record *intrinsic_void_sdnode;
1112   Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
1113 
1114   /// PatternsToMatch - All of the things we are matching on the DAG.  The first
1115   /// value is the pattern to match, the second pattern is the result to
1116   /// emit.
1117   std::vector<PatternToMatch> PatternsToMatch;
1118 
1119   TypeSetByHwMode LegalVTS;
1120 
1121   using PatternRewriterFn = std::function<void(TreePattern *)>;
1122   PatternRewriterFn PatternRewriter;
1123 
1124   unsigned NumScopes = 0;
1125 
1126 public:
1127   CodeGenDAGPatterns(RecordKeeper &R,
1128                      PatternRewriterFn PatternRewriter = nullptr);
1129 
1130   CodeGenTarget &getTargetInfo() { return Target; }
1131   const CodeGenTarget &getTargetInfo() const { return Target; }
1132   const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
1133 
1134   Record *getSDNodeNamed(StringRef Name) const;
1135 
1136   const SDNodeInfo &getSDNodeInfo(Record *R) const {
1137     auto F = SDNodes.find(R);
1138     assert(F != SDNodes.end() && "Unknown node!");
1139     return F->second;
1140   }
1141 
1142   // Node transformation lookups.
1143   typedef std::pair<Record *, std::string> NodeXForm;
1144   const NodeXForm &getSDNodeTransform(Record *R) const {
1145     auto F = SDNodeXForms.find(R);
1146     assert(F != SDNodeXForms.end() && "Invalid transform!");
1147     return F->second;
1148   }
1149 
1150   const ComplexPattern &getComplexPattern(Record *R) const {
1151     auto F = ComplexPatterns.find(R);
1152     assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
1153     return F->second;
1154   }
1155 
1156   const CodeGenIntrinsic &getIntrinsic(Record *R) const {
1157     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1158       if (Intrinsics[i].TheDef == R)
1159         return Intrinsics[i];
1160     llvm_unreachable("Unknown intrinsic!");
1161   }
1162 
1163   const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
1164     if (IID - 1 < Intrinsics.size())
1165       return Intrinsics[IID - 1];
1166     llvm_unreachable("Bad intrinsic ID!");
1167   }
1168 
1169   unsigned getIntrinsicID(Record *R) const {
1170     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1171       if (Intrinsics[i].TheDef == R)
1172         return i;
1173     llvm_unreachable("Unknown intrinsic!");
1174   }
1175 
1176   const DAGDefaultOperand &getDefaultOperand(Record *R) const {
1177     auto F = DefaultOperands.find(R);
1178     assert(F != DefaultOperands.end() && "Isn't an analyzed default operand!");
1179     return F->second;
1180   }
1181 
1182   // Pattern Fragment information.
1183   TreePattern *getPatternFragment(Record *R) const {
1184     auto F = PatternFragments.find(R);
1185     assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
1186     return F->second.get();
1187   }
1188   TreePattern *getPatternFragmentIfRead(Record *R) const {
1189     auto F = PatternFragments.find(R);
1190     if (F == PatternFragments.end())
1191       return nullptr;
1192     return F->second.get();
1193   }
1194 
1195   typedef std::map<Record *, std::unique_ptr<TreePattern>,
1196                    LessRecordByID>::const_iterator pf_iterator;
1197   pf_iterator pf_begin() const { return PatternFragments.begin(); }
1198   pf_iterator pf_end() const { return PatternFragments.end(); }
1199   iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
1200 
1201   // Patterns to match information.
1202   typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
1203   ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
1204   ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
1205   iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
1206 
1207   /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
1208   typedef std::map<Record *, DAGInstruction, LessRecordByID> DAGInstMap;
1209   void parseInstructionPattern(CodeGenInstruction &CGI, ListInit *Pattern,
1210                                DAGInstMap &DAGInsts);
1211 
1212   const DAGInstruction &getInstruction(Record *R) const {
1213     auto F = Instructions.find(R);
1214     assert(F != Instructions.end() && "Unknown instruction!");
1215     return F->second;
1216   }
1217 
1218   Record *get_intrinsic_void_sdnode() const { return intrinsic_void_sdnode; }
1219   Record *get_intrinsic_w_chain_sdnode() const {
1220     return intrinsic_w_chain_sdnode;
1221   }
1222   Record *get_intrinsic_wo_chain_sdnode() const {
1223     return intrinsic_wo_chain_sdnode;
1224   }
1225 
1226   unsigned allocateScope() { return ++NumScopes; }
1227 
1228   bool operandHasDefault(Record *Op) const {
1229     return Op->isSubClassOf("OperandWithDefaultOps") &&
1230            !getDefaultOperand(Op).DefaultOps.empty();
1231   }
1232 
1233 private:
1234   void ParseNodeInfo();
1235   void ParseNodeTransforms();
1236   void ParseComplexPatterns();
1237   void ParsePatternFragments(bool OutFrags = false);
1238   void ParseDefaultOperands();
1239   void ParseInstructions();
1240   void ParsePatterns();
1241   void ExpandHwModeBasedTypes();
1242   void InferInstructionFlags();
1243   void GenerateVariants();
1244   void VerifyInstructionFlags();
1245 
1246   void ParseOnePattern(Record *TheDef, TreePattern &Pattern,
1247                        TreePattern &Result,
1248                        const std::vector<Record *> &InstImpResults,
1249                        bool ShouldIgnore = false);
1250   void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
1251   void FindPatternInputsAndOutputs(
1252       TreePattern &I, TreePatternNodePtr Pat,
1253       std::map<std::string, TreePatternNodePtr> &InstInputs,
1254       MapVector<std::string, TreePatternNodePtr,
1255                 std::map<std::string, unsigned>> &InstResults,
1256       std::vector<Record *> &InstImpResults);
1257 };
1258 
1259 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode &N,
1260                                              TreePattern &TP) const {
1261   bool MadeChange = false;
1262   for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
1263     MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
1264   return MadeChange;
1265 }
1266 
1267 } // end namespace llvm
1268 
1269 #endif
1270