1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 15 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 16 17 #include "Basic/CodeGenIntrinsics.h" 18 #include "Basic/SDNodeProperties.h" 19 #include "CodeGenTarget.h" 20 #include "llvm/ADT/IntrusiveRefCntPtr.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/PointerUnion.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/TableGen/Record.h" 30 #include <algorithm> 31 #include <array> 32 #include <functional> 33 #include <map> 34 #include <numeric> 35 #include <vector> 36 37 namespace llvm { 38 39 class Init; 40 class ListInit; 41 class DagInit; 42 class SDNodeInfo; 43 class TreePattern; 44 class TreePatternNode; 45 class CodeGenDAGPatterns; 46 47 /// Shared pointer for TreePatternNode. 48 using TreePatternNodePtr = IntrusiveRefCntPtr<TreePatternNode>; 49 50 /// This represents a set of MVTs. Since the underlying type for the MVT 51 /// is uint8_t, there are at most 256 values. To reduce the number of memory 52 /// allocations and deallocations, represent the set as a sequence of bits. 53 /// To reduce the allocations even further, make MachineValueTypeSet own 54 /// the storage and use std::array as the bit container. 55 struct MachineValueTypeSet { 56 static_assert(std::is_same<std::underlying_type_t<MVT::SimpleValueType>, 57 uint8_t>::value, 58 "Change uint8_t here to the SimpleValueType's type"); 59 static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max() + 1; 60 using WordType = uint64_t; 61 static unsigned constexpr WordWidth = CHAR_BIT * sizeof(WordType); 62 static unsigned constexpr NumWords = Capacity / WordWidth; 63 static_assert(NumWords * WordWidth == Capacity, 64 "Capacity should be a multiple of WordWidth"); 65 66 LLVM_ATTRIBUTE_ALWAYS_INLINE 67 MachineValueTypeSet() { clear(); } 68 69 LLVM_ATTRIBUTE_ALWAYS_INLINE 70 unsigned size() const { 71 unsigned Count = 0; 72 for (WordType W : Words) 73 Count += llvm::popcount(W); 74 return Count; 75 } 76 LLVM_ATTRIBUTE_ALWAYS_INLINE 77 void clear() { std::memset(Words.data(), 0, NumWords * sizeof(WordType)); } 78 LLVM_ATTRIBUTE_ALWAYS_INLINE 79 bool empty() const { 80 for (WordType W : Words) 81 if (W != 0) 82 return false; 83 return true; 84 } 85 LLVM_ATTRIBUTE_ALWAYS_INLINE 86 unsigned count(MVT T) const { 87 return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1; 88 } 89 std::pair<MachineValueTypeSet &, bool> insert(MVT T) { 90 bool V = count(T.SimpleTy); 91 Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth); 92 return {*this, V}; 93 } 94 MachineValueTypeSet &insert(const MachineValueTypeSet &S) { 95 for (unsigned i = 0; i != NumWords; ++i) 96 Words[i] |= S.Words[i]; 97 return *this; 98 } 99 LLVM_ATTRIBUTE_ALWAYS_INLINE 100 void erase(MVT T) { 101 Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth)); 102 } 103 104 void writeToStream(raw_ostream &OS) const; 105 106 struct const_iterator { 107 // Some implementations of the C++ library require these traits to be 108 // defined. 109 using iterator_category = std::forward_iterator_tag; 110 using value_type = MVT; 111 using difference_type = ptrdiff_t; 112 using pointer = const MVT *; 113 using reference = const MVT &; 114 115 LLVM_ATTRIBUTE_ALWAYS_INLINE 116 MVT operator*() const { 117 assert(Pos != Capacity); 118 return MVT::SimpleValueType(Pos); 119 } 120 LLVM_ATTRIBUTE_ALWAYS_INLINE 121 const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) { 122 Pos = End ? Capacity : find_from_pos(0); 123 } 124 LLVM_ATTRIBUTE_ALWAYS_INLINE 125 const_iterator &operator++() { 126 assert(Pos != Capacity); 127 Pos = find_from_pos(Pos + 1); 128 return *this; 129 } 130 131 LLVM_ATTRIBUTE_ALWAYS_INLINE 132 bool operator==(const const_iterator &It) const { 133 return Set == It.Set && Pos == It.Pos; 134 } 135 LLVM_ATTRIBUTE_ALWAYS_INLINE 136 bool operator!=(const const_iterator &It) const { return !operator==(It); } 137 138 private: 139 unsigned find_from_pos(unsigned P) const { 140 unsigned SkipWords = P / WordWidth; 141 unsigned SkipBits = P % WordWidth; 142 unsigned Count = SkipWords * WordWidth; 143 144 // If P is in the middle of a word, process it manually here, because 145 // the trailing bits need to be masked off to use findFirstSet. 146 if (SkipBits != 0) { 147 WordType W = Set->Words[SkipWords]; 148 W &= maskLeadingOnes<WordType>(WordWidth - SkipBits); 149 if (W != 0) 150 return Count + llvm::countr_zero(W); 151 Count += WordWidth; 152 SkipWords++; 153 } 154 155 for (unsigned i = SkipWords; i != NumWords; ++i) { 156 WordType W = Set->Words[i]; 157 if (W != 0) 158 return Count + llvm::countr_zero(W); 159 Count += WordWidth; 160 } 161 return Capacity; 162 } 163 164 const MachineValueTypeSet *Set; 165 unsigned Pos; 166 }; 167 168 LLVM_ATTRIBUTE_ALWAYS_INLINE 169 const_iterator begin() const { return const_iterator(this, false); } 170 LLVM_ATTRIBUTE_ALWAYS_INLINE 171 const_iterator end() const { return const_iterator(this, true); } 172 173 LLVM_ATTRIBUTE_ALWAYS_INLINE 174 bool operator==(const MachineValueTypeSet &S) const { 175 return Words == S.Words; 176 } 177 LLVM_ATTRIBUTE_ALWAYS_INLINE 178 bool operator!=(const MachineValueTypeSet &S) const { return !operator==(S); } 179 180 private: 181 friend struct const_iterator; 182 std::array<WordType, NumWords> Words; 183 }; 184 185 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T); 186 187 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> { 188 using SetType = MachineValueTypeSet; 189 unsigned AddrSpace = std::numeric_limits<unsigned>::max(); 190 191 TypeSetByHwMode() = default; 192 TypeSetByHwMode(const TypeSetByHwMode &VTS) = default; 193 TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default; 194 TypeSetByHwMode(MVT::SimpleValueType VT) 195 : TypeSetByHwMode(ValueTypeByHwMode(VT)) {} 196 TypeSetByHwMode(ValueTypeByHwMode VT) 197 : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {} 198 TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList); 199 200 SetType &getOrCreate(unsigned Mode) { return Map[Mode]; } 201 202 bool isValueTypeByHwMode(bool AllowEmpty) const; 203 ValueTypeByHwMode getValueTypeByHwMode() const; 204 205 LLVM_ATTRIBUTE_ALWAYS_INLINE 206 bool isMachineValueType() const { 207 return isSimple() && getSimple().size() == 1; 208 } 209 210 LLVM_ATTRIBUTE_ALWAYS_INLINE 211 MVT getMachineValueType() const { 212 assert(isMachineValueType()); 213 return *getSimple().begin(); 214 } 215 216 bool isPossible() const; 217 218 bool isPointer() const { return getValueTypeByHwMode().isPointer(); } 219 220 unsigned getPtrAddrSpace() const { 221 assert(isPointer()); 222 return getValueTypeByHwMode().PtrAddrSpace; 223 } 224 225 bool insert(const ValueTypeByHwMode &VVT); 226 bool constrain(const TypeSetByHwMode &VTS); 227 template <typename Predicate> bool constrain(Predicate P); 228 template <typename Predicate> 229 bool assign_if(const TypeSetByHwMode &VTS, Predicate P); 230 231 void writeToStream(raw_ostream &OS) const; 232 233 bool operator==(const TypeSetByHwMode &VTS) const; 234 bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); } 235 236 void dump() const; 237 bool validate() const; 238 239 private: 240 unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max(); 241 /// Intersect two sets. Return true if anything has changed. 242 bool intersect(SetType &Out, const SetType &In); 243 }; 244 245 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T); 246 247 struct TypeInfer { 248 TypeInfer(TreePattern &T) : TP(T) {} 249 250 bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const { 251 return VTS.isValueTypeByHwMode(AllowEmpty); 252 } 253 ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS, 254 bool AllowEmpty) const { 255 assert(VTS.isValueTypeByHwMode(AllowEmpty)); 256 return VTS.getValueTypeByHwMode(); 257 } 258 259 /// The protocol in the following functions (Merge*, force*, Enforce*, 260 /// expand*) is to return "true" if a change has been made, "false" 261 /// otherwise. 262 263 bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In) const; 264 bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) const { 265 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); 266 } 267 bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) const { 268 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); 269 } 270 271 /// Reduce the set \p Out to have at most one element for each mode. 272 bool forceArbitrary(TypeSetByHwMode &Out); 273 274 /// The following four functions ensure that upon return the set \p Out 275 /// will only contain types of the specified kind: integer, floating-point, 276 /// scalar, or vector. 277 /// If \p Out is empty, all legal types of the specified kind will be added 278 /// to it. Otherwise, all types that are not of the specified kind will be 279 /// removed from \p Out. 280 bool EnforceInteger(TypeSetByHwMode &Out); 281 bool EnforceFloatingPoint(TypeSetByHwMode &Out); 282 bool EnforceScalar(TypeSetByHwMode &Out); 283 bool EnforceVector(TypeSetByHwMode &Out); 284 285 /// If \p Out is empty, fill it with all legal types. Otherwise, leave it 286 /// unchanged. 287 bool EnforceAny(TypeSetByHwMode &Out); 288 /// Make sure that for each type in \p Small, there exists a larger type 289 /// in \p Big. \p SmallIsVT indicates that this is being called for 290 /// SDTCisVTSmallerThanOp. In that case the TypeSetByHwMode is re-created for 291 /// each call and needs special consideration in how we detect changes. 292 bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big, 293 bool SmallIsVT = false); 294 /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that 295 /// for each type U in \p Elem, U is a scalar type. 296 /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a 297 /// (vector) type T in \p Vec, such that U is the element type of T. 298 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem); 299 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 300 const ValueTypeByHwMode &VVT); 301 /// Ensure that for each type T in \p Sub, T is a vector type, and there 302 /// exists a type U in \p Vec such that U is a vector type with the same 303 /// element type as T and at least as many elements as T. 304 bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Sub); 305 /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type. 306 /// 2. Ensure that for each vector type T in \p V, there exists a vector 307 /// type U in \p W, such that T and U have the same number of elements. 308 /// 3. Ensure that for each vector type U in \p W, there exists a vector 309 /// type T in \p V, such that T and U have the same number of elements 310 /// (reverse of 2). 311 bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W); 312 /// 1. Ensure that for each type T in \p A, there exists a type U in \p B, 313 /// such that T and U have equal size in bits. 314 /// 2. Ensure that for each type U in \p B, there exists a type T in \p A 315 /// such that T and U have equal size in bits (reverse of 1). 316 bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B); 317 318 /// For each overloaded type (i.e. of form *Any), replace it with the 319 /// corresponding subset of legal, specific types. 320 void expandOverloads(TypeSetByHwMode &VTS) const; 321 void expandOverloads(TypeSetByHwMode::SetType &Out, 322 const TypeSetByHwMode::SetType &Legal) const; 323 324 struct ValidateOnExit { 325 ValidateOnExit(const TypeSetByHwMode &T, const TypeInfer &TI) 326 : Infer(TI), VTS(T) {} 327 ~ValidateOnExit(); 328 const TypeInfer &Infer; 329 const TypeSetByHwMode &VTS; 330 }; 331 332 struct SuppressValidation { 333 SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) { 334 Infer.Validate = false; 335 } 336 ~SuppressValidation() { Infer.Validate = SavedValidate; } 337 TypeInfer &Infer; 338 bool SavedValidate; 339 }; 340 341 TreePattern &TP; 342 bool Validate = true; // Indicate whether to validate types. 343 344 private: 345 const TypeSetByHwMode &getLegalTypes() const; 346 347 /// Cached legal types (in default mode). 348 mutable bool LegalTypesCached = false; 349 mutable TypeSetByHwMode LegalCache; 350 }; 351 352 /// Set type used to track multiply used variables in patterns 353 typedef StringSet<> MultipleUseVarSet; 354 355 /// SDTypeConstraint - This is a discriminated union of constraints, 356 /// corresponding to the SDTypeConstraint tablegen class in Target.td. 357 struct SDTypeConstraint { 358 SDTypeConstraint(Record *R, const CodeGenHwModes &CGH); 359 360 unsigned OperandNo; // The operand # this constraint applies to. 361 enum { 362 SDTCisVT, 363 SDTCisPtrTy, 364 SDTCisInt, 365 SDTCisFP, 366 SDTCisVec, 367 SDTCisSameAs, 368 SDTCisVTSmallerThanOp, 369 SDTCisOpSmallerThanOp, 370 SDTCisEltOfVec, 371 SDTCisSubVecOfVec, 372 SDTCVecEltisVT, 373 SDTCisSameNumEltsAs, 374 SDTCisSameSizeAs 375 } ConstraintType; 376 377 union { // The discriminated union. 378 struct { 379 unsigned OtherOperandNum; 380 } SDTCisSameAs_Info; 381 struct { 382 unsigned OtherOperandNum; 383 } SDTCisVTSmallerThanOp_Info; 384 struct { 385 unsigned BigOperandNum; 386 } SDTCisOpSmallerThanOp_Info; 387 struct { 388 unsigned OtherOperandNum; 389 } SDTCisEltOfVec_Info; 390 struct { 391 unsigned OtherOperandNum; 392 } SDTCisSubVecOfVec_Info; 393 struct { 394 unsigned OtherOperandNum; 395 } SDTCisSameNumEltsAs_Info; 396 struct { 397 unsigned OtherOperandNum; 398 } SDTCisSameSizeAs_Info; 399 } x; 400 401 // The VT for SDTCisVT and SDTCVecEltisVT. 402 // Must not be in the union because it has a non-trivial destructor. 403 ValueTypeByHwMode VVT; 404 405 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 406 /// constraint to the nodes operands. This returns true if it makes a 407 /// change, false otherwise. If a type contradiction is found, an error 408 /// is flagged. 409 bool ApplyTypeConstraint(TreePatternNode &N, const SDNodeInfo &NodeInfo, 410 TreePattern &TP) const; 411 }; 412 413 /// ScopedName - A name of a node associated with a "scope" that indicates 414 /// the context (e.g. instance of Pattern or PatFrag) in which the name was 415 /// used. This enables substitution of pattern fragments while keeping track 416 /// of what name(s) were originally given to various nodes in the tree. 417 class ScopedName { 418 unsigned Scope; 419 std::string Identifier; 420 421 public: 422 ScopedName(unsigned Scope, StringRef Identifier) 423 : Scope(Scope), Identifier(std::string(Identifier)) { 424 assert(Scope != 0 && 425 "Scope == 0 is used to indicate predicates without arguments"); 426 } 427 428 unsigned getScope() const { return Scope; } 429 const std::string &getIdentifier() const { return Identifier; } 430 431 bool operator==(const ScopedName &o) const; 432 bool operator!=(const ScopedName &o) const; 433 }; 434 435 /// SDNodeInfo - One of these records is created for each SDNode instance in 436 /// the target .td file. This represents the various dag nodes we will be 437 /// processing. 438 class SDNodeInfo { 439 Record *Def; 440 StringRef EnumName; 441 StringRef SDClassName; 442 unsigned Properties; 443 unsigned NumResults; 444 int NumOperands; 445 std::vector<SDTypeConstraint> TypeConstraints; 446 447 public: 448 // Parse the specified record. 449 SDNodeInfo(Record *R, const CodeGenHwModes &CGH); 450 451 unsigned getNumResults() const { return NumResults; } 452 453 /// getNumOperands - This is the number of operands required or -1 if 454 /// variadic. 455 int getNumOperands() const { return NumOperands; } 456 Record *getRecord() const { return Def; } 457 StringRef getEnumName() const { return EnumName; } 458 StringRef getSDClassName() const { return SDClassName; } 459 460 const std::vector<SDTypeConstraint> &getTypeConstraints() const { 461 return TypeConstraints; 462 } 463 464 /// getKnownType - If the type constraints on this node imply a fixed type 465 /// (e.g. all stores return void, etc), then return it as an 466 /// MVT::SimpleValueType. Otherwise, return MVT::Other. 467 MVT::SimpleValueType getKnownType(unsigned ResNo) const; 468 469 /// hasProperty - Return true if this node has the specified property. 470 /// 471 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } 472 473 /// ApplyTypeConstraints - Given a node in a pattern, apply the type 474 /// constraints for this node to the operands of the node. This returns 475 /// true if it makes a change, false otherwise. If a type contradiction is 476 /// found, an error is flagged. 477 bool ApplyTypeConstraints(TreePatternNode &N, TreePattern &TP) const; 478 }; 479 480 /// TreePredicateFn - This is an abstraction that represents the predicates on 481 /// a PatFrag node. This is a simple one-word wrapper around a pointer to 482 /// provide nice accessors. 483 class TreePredicateFn { 484 /// PatFragRec - This is the TreePattern for the PatFrag that we 485 /// originally came from. 486 TreePattern *PatFragRec; 487 488 public: 489 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 490 TreePredicateFn(TreePattern *N); 491 492 TreePattern *getOrigPatFragRecord() const { return PatFragRec; } 493 494 /// isAlwaysTrue - Return true if this is a noop predicate. 495 bool isAlwaysTrue() const; 496 497 bool isImmediatePattern() const { return hasImmCode(); } 498 499 /// getImmediatePredicateCode - Return the code that evaluates this pattern if 500 /// this is an immediate predicate. It is an error to call this on a 501 /// non-immediate pattern. 502 std::string getImmediatePredicateCode() const { 503 std::string Result = getImmCode(); 504 assert(!Result.empty() && "Isn't an immediate pattern!"); 505 return Result; 506 } 507 508 bool operator==(const TreePredicateFn &RHS) const { 509 return PatFragRec == RHS.PatFragRec; 510 } 511 512 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } 513 514 /// Return the name to use in the generated code to reference this, this is 515 /// "Predicate_foo" if from a pattern fragment "foo". 516 std::string getFnName() const; 517 518 /// getCodeToRunOnSDNode - Return the code for the function body that 519 /// evaluates this predicate. The argument is expected to be in "Node", 520 /// not N. This handles casting and conversion to a concrete node type as 521 /// appropriate. 522 std::string getCodeToRunOnSDNode() const; 523 524 /// Get the data type of the argument to getImmediatePredicateCode(). 525 StringRef getImmType() const; 526 527 /// Get a string that describes the type returned by getImmType() but is 528 /// usable as part of an identifier. 529 StringRef getImmTypeIdentifier() const; 530 531 // Predicate code uses the PatFrag's captured operands. 532 bool usesOperands() const; 533 534 // Check if the HasNoUse predicate is set. 535 bool hasNoUse() const; 536 // Check if the HasOneUse predicate is set. 537 bool hasOneUse() const; 538 539 // Is the desired predefined predicate for a load? 540 bool isLoad() const; 541 // Is the desired predefined predicate for a store? 542 bool isStore() const; 543 // Is the desired predefined predicate for an atomic? 544 bool isAtomic() const; 545 546 /// Is this predicate the predefined unindexed load predicate? 547 /// Is this predicate the predefined unindexed store predicate? 548 bool isUnindexed() const; 549 /// Is this predicate the predefined non-extending load predicate? 550 bool isNonExtLoad() const; 551 /// Is this predicate the predefined any-extend load predicate? 552 bool isAnyExtLoad() const; 553 /// Is this predicate the predefined sign-extend load predicate? 554 bool isSignExtLoad() const; 555 /// Is this predicate the predefined zero-extend load predicate? 556 bool isZeroExtLoad() const; 557 /// Is this predicate the predefined non-truncating store predicate? 558 bool isNonTruncStore() const; 559 /// Is this predicate the predefined truncating store predicate? 560 bool isTruncStore() const; 561 562 /// Is this predicate the predefined monotonic atomic predicate? 563 bool isAtomicOrderingMonotonic() const; 564 /// Is this predicate the predefined acquire atomic predicate? 565 bool isAtomicOrderingAcquire() const; 566 /// Is this predicate the predefined release atomic predicate? 567 bool isAtomicOrderingRelease() const; 568 /// Is this predicate the predefined acquire-release atomic predicate? 569 bool isAtomicOrderingAcquireRelease() const; 570 /// Is this predicate the predefined sequentially consistent atomic predicate? 571 bool isAtomicOrderingSequentiallyConsistent() const; 572 573 /// Is this predicate the predefined acquire-or-stronger atomic predicate? 574 bool isAtomicOrderingAcquireOrStronger() const; 575 /// Is this predicate the predefined weaker-than-acquire atomic predicate? 576 bool isAtomicOrderingWeakerThanAcquire() const; 577 578 /// Is this predicate the predefined release-or-stronger atomic predicate? 579 bool isAtomicOrderingReleaseOrStronger() const; 580 /// Is this predicate the predefined weaker-than-release atomic predicate? 581 bool isAtomicOrderingWeakerThanRelease() const; 582 583 /// If non-null, indicates that this predicate is a predefined memory VT 584 /// predicate for a load/store and returns the ValueType record for the memory 585 /// VT. 586 Record *getMemoryVT() const; 587 /// If non-null, indicates that this predicate is a predefined memory VT 588 /// predicate (checking only the scalar type) for load/store and returns the 589 /// ValueType record for the memory VT. 590 Record *getScalarMemoryVT() const; 591 592 ListInit *getAddressSpaces() const; 593 int64_t getMinAlignment() const; 594 595 // If true, indicates that GlobalISel-based C++ code was supplied. 596 bool hasGISelPredicateCode() const; 597 std::string getGISelPredicateCode() const; 598 599 private: 600 bool hasPredCode() const; 601 bool hasImmCode() const; 602 std::string getPredCode() const; 603 std::string getImmCode() const; 604 bool immCodeUsesAPInt() const; 605 bool immCodeUsesAPFloat() const; 606 607 bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const; 608 }; 609 610 struct TreePredicateCall { 611 TreePredicateFn Fn; 612 613 // Scope -- unique identifier for retrieving named arguments. 0 is used when 614 // the predicate does not use named arguments. 615 unsigned Scope; 616 617 TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope) 618 : Fn(Fn), Scope(Scope) {} 619 620 bool operator==(const TreePredicateCall &o) const { 621 return Fn == o.Fn && Scope == o.Scope; 622 } 623 bool operator!=(const TreePredicateCall &o) const { return !(*this == o); } 624 }; 625 626 class TreePatternNode : public RefCountedBase<TreePatternNode> { 627 /// The type of each node result. Before and during type inference, each 628 /// result may be a set of possible types. After (successful) type inference, 629 /// each is a single concrete type. 630 std::vector<TypeSetByHwMode> Types; 631 632 /// The index of each result in results of the pattern. 633 std::vector<unsigned> ResultPerm; 634 635 /// OperatorOrVal - The Record for the operator if this is an interior node 636 /// (not a leaf) or the init value (e.g. the "GPRC" record, or "7") for a 637 /// leaf. 638 PointerUnion<Record *, Init *> OperatorOrVal; 639 640 /// Name - The name given to this node with the :$foo notation. 641 /// 642 std::string Name; 643 644 std::vector<ScopedName> NamesAsPredicateArg; 645 646 /// PredicateCalls - The predicate functions to execute on this node to check 647 /// for a match. If this list is empty, no predicate is involved. 648 std::vector<TreePredicateCall> PredicateCalls; 649 650 /// TransformFn - The transformation function to execute on this node before 651 /// it can be substituted into the resulting instruction on a pattern match. 652 Record *TransformFn; 653 654 std::vector<TreePatternNodePtr> Children; 655 656 /// If this was instantiated from a PatFrag node, and the PatFrag was derived 657 /// from "GISelFlags": the original Record derived from GISelFlags. 658 const Record *GISelFlags = nullptr; 659 660 public: 661 TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch, 662 unsigned NumResults) 663 : OperatorOrVal(Op), TransformFn(nullptr), Children(std::move(Ch)) { 664 Types.resize(NumResults); 665 ResultPerm.resize(NumResults); 666 std::iota(ResultPerm.begin(), ResultPerm.end(), 0); 667 } 668 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor 669 : OperatorOrVal(val), TransformFn(nullptr) { 670 Types.resize(NumResults); 671 ResultPerm.resize(NumResults); 672 std::iota(ResultPerm.begin(), ResultPerm.end(), 0); 673 } 674 675 bool hasName() const { return !Name.empty(); } 676 const std::string &getName() const { return Name; } 677 void setName(StringRef N) { Name.assign(N.begin(), N.end()); } 678 679 const std::vector<ScopedName> &getNamesAsPredicateArg() const { 680 return NamesAsPredicateArg; 681 } 682 void setNamesAsPredicateArg(const std::vector<ScopedName> &Names) { 683 NamesAsPredicateArg = Names; 684 } 685 void addNameAsPredicateArg(const ScopedName &N) { 686 NamesAsPredicateArg.push_back(N); 687 } 688 689 bool isLeaf() const { return isa<Init *>(OperatorOrVal); } 690 691 // Type accessors. 692 unsigned getNumTypes() const { return Types.size(); } 693 ValueTypeByHwMode getType(unsigned ResNo) const { 694 return Types[ResNo].getValueTypeByHwMode(); 695 } 696 const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; } 697 const TypeSetByHwMode &getExtType(unsigned ResNo) const { 698 return Types[ResNo]; 699 } 700 TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; } 701 void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; } 702 MVT::SimpleValueType getSimpleType(unsigned ResNo) const { 703 return Types[ResNo].getMachineValueType().SimpleTy; 704 } 705 706 bool hasConcreteType(unsigned ResNo) const { 707 return Types[ResNo].isValueTypeByHwMode(false); 708 } 709 bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const { 710 return Types[ResNo].empty(); 711 } 712 713 unsigned getNumResults() const { return ResultPerm.size(); } 714 unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; } 715 void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; } 716 717 Init *getLeafValue() const { 718 assert(isLeaf()); 719 return cast<Init *>(OperatorOrVal); 720 } 721 Record *getOperator() const { 722 assert(!isLeaf()); 723 return cast<Record *>(OperatorOrVal); 724 } 725 726 unsigned getNumChildren() const { return Children.size(); } 727 const TreePatternNode &getChild(unsigned N) const { 728 return *Children[N].get(); 729 } 730 TreePatternNode &getChild(unsigned N) { return *Children[N].get(); } 731 const TreePatternNodePtr &getChildShared(unsigned N) const { 732 return Children[N]; 733 } 734 TreePatternNodePtr &getChildSharedPtr(unsigned N) { return Children[N]; } 735 void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; } 736 737 /// hasChild - Return true if N is any of our children. 738 bool hasChild(const TreePatternNode *N) const { 739 for (unsigned i = 0, e = Children.size(); i != e; ++i) 740 if (Children[i].get() == N) 741 return true; 742 return false; 743 } 744 745 bool hasProperTypeByHwMode() const; 746 bool hasPossibleType() const; 747 bool setDefaultMode(unsigned Mode); 748 749 bool hasAnyPredicate() const { return !PredicateCalls.empty(); } 750 751 const std::vector<TreePredicateCall> &getPredicateCalls() const { 752 return PredicateCalls; 753 } 754 void clearPredicateCalls() { PredicateCalls.clear(); } 755 void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) { 756 assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!"); 757 PredicateCalls = Calls; 758 } 759 void addPredicateCall(const TreePredicateCall &Call) { 760 assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!"); 761 assert(!is_contained(PredicateCalls, Call) && 762 "predicate applied recursively"); 763 PredicateCalls.push_back(Call); 764 } 765 void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) { 766 assert((Scope != 0) == Fn.usesOperands()); 767 addPredicateCall(TreePredicateCall(Fn, Scope)); 768 } 769 770 Record *getTransformFn() const { return TransformFn; } 771 void setTransformFn(Record *Fn) { TransformFn = Fn; } 772 773 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 774 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 775 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; 776 777 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 778 /// return the ComplexPattern information, otherwise return null. 779 const ComplexPattern * 780 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; 781 782 /// Returns the number of MachineInstr operands that would be produced by this 783 /// node if it mapped directly to an output Instruction's 784 /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it 785 /// for Operands; otherwise 1. 786 unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const; 787 788 /// NodeHasProperty - Return true if this node has the specified property. 789 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 790 791 /// TreeHasProperty - Return true if any node in this tree has the specified 792 /// property. 793 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 794 795 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is 796 /// marked isCommutative. 797 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; 798 799 void setGISelFlagsRecord(const Record *R) { GISelFlags = R; } 800 const Record *getGISelFlagsRecord() const { return GISelFlags; } 801 802 void print(raw_ostream &OS) const; 803 void dump() const; 804 805 public: // Higher level manipulation routines. 806 /// clone - Return a new copy of this tree. 807 /// 808 TreePatternNodePtr clone() const; 809 810 /// RemoveAllTypes - Recursively strip all the types of this tree. 811 void RemoveAllTypes(); 812 813 /// isIsomorphicTo - Return true if this node is recursively isomorphic to 814 /// the specified node. For this comparison, all of the state of the node 815 /// is considered, except for the assigned name. Nodes with differing names 816 /// that are otherwise identical are considered isomorphic. 817 bool isIsomorphicTo(const TreePatternNode &N, 818 const MultipleUseVarSet &DepVars) const; 819 820 /// SubstituteFormalArguments - Replace the formal arguments in this tree 821 /// with actual values specified by ArgMap. 822 void 823 SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap); 824 825 /// InlinePatternFragments - If \p T pattern refers to any pattern 826 /// fragments, return the set of inlined versions (this can be more than 827 /// one if a PatFrags record has multiple alternatives). 828 void InlinePatternFragments(TreePattern &TP, 829 std::vector<TreePatternNodePtr> &OutAlternatives); 830 831 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 832 /// this node and its children in the tree. This returns true if it makes a 833 /// change, false otherwise. If a type contradiction is found, flag an error. 834 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); 835 836 /// UpdateNodeType - Set the node type of N to VT if VT contains 837 /// information. If N already contains a conflicting type, then flag an 838 /// error. This returns true if any information was updated. 839 /// 840 bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy, 841 TreePattern &TP); 842 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, 843 TreePattern &TP); 844 bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy, TreePattern &TP); 845 846 // Update node type with types inferred from an instruction operand or result 847 // def from the ins/outs lists. 848 // Return true if the type changed. 849 bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP); 850 851 /// ContainsUnresolvedType - Return true if this tree contains any 852 /// unresolved types. 853 bool ContainsUnresolvedType(TreePattern &TP) const; 854 855 /// canPatternMatch - If it is impossible for this pattern to match on this 856 /// target, fill in Reason and return false. Otherwise, return true. 857 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); 858 }; 859 860 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { 861 TPN.print(OS); 862 return OS; 863 } 864 865 /// TreePattern - Represent a pattern, used for instructions, pattern 866 /// fragments, etc. 867 /// 868 class TreePattern { 869 /// Trees - The list of pattern trees which corresponds to this pattern. 870 /// Note that PatFrag's only have a single tree. 871 /// 872 std::vector<TreePatternNodePtr> Trees; 873 874 /// NamedNodes - This is all of the nodes that have names in the trees in this 875 /// pattern. 876 StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes; 877 878 /// TheRecord - The actual TableGen record corresponding to this pattern. 879 /// 880 Record *TheRecord; 881 882 /// Args - This is a list of all of the arguments to this pattern (for 883 /// PatFrag patterns), which are the 'node' markers in this pattern. 884 std::vector<std::string> Args; 885 886 /// CDP - the top-level object coordinating this madness. 887 /// 888 CodeGenDAGPatterns &CDP; 889 890 /// isInputPattern - True if this is an input pattern, something to match. 891 /// False if this is an output pattern, something to emit. 892 bool isInputPattern; 893 894 /// hasError - True if the currently processed nodes have unresolvable types 895 /// or other non-fatal errors 896 bool HasError; 897 898 /// It's important that the usage of operands in ComplexPatterns is 899 /// consistent: each named operand can be defined by at most one 900 /// ComplexPattern. This records the ComplexPattern instance and the operand 901 /// number for each operand encountered in a ComplexPattern to aid in that 902 /// check. 903 StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands; 904 905 TypeInfer Infer; 906 907 public: 908 /// TreePattern constructor - Parse the specified DagInits into the 909 /// current record. 910 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 911 CodeGenDAGPatterns &ise); 912 TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 913 CodeGenDAGPatterns &ise); 914 TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 915 CodeGenDAGPatterns &ise); 916 917 /// getTrees - Return the tree patterns which corresponds to this pattern. 918 /// 919 const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; } 920 unsigned getNumTrees() const { return Trees.size(); } 921 const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; } 922 void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; } 923 const TreePatternNodePtr &getOnlyTree() const { 924 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); 925 return Trees[0]; 926 } 927 928 const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() { 929 if (NamedNodes.empty()) 930 ComputeNamedNodes(); 931 return NamedNodes; 932 } 933 934 /// getRecord - Return the actual TableGen record corresponding to this 935 /// pattern. 936 /// 937 Record *getRecord() const { return TheRecord; } 938 939 unsigned getNumArgs() const { return Args.size(); } 940 const std::string &getArgName(unsigned i) const { 941 assert(i < Args.size() && "Argument reference out of range!"); 942 return Args[i]; 943 } 944 std::vector<std::string> &getArgList() { return Args; } 945 946 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } 947 948 /// InlinePatternFragments - If this pattern refers to any pattern 949 /// fragments, inline them into place, giving us a pattern without any 950 /// PatFrags references. This may increase the number of trees in the 951 /// pattern if a PatFrags has multiple alternatives. 952 void InlinePatternFragments() { 953 std::vector<TreePatternNodePtr> Copy; 954 Trees.swap(Copy); 955 for (const TreePatternNodePtr &C : Copy) 956 C->InlinePatternFragments(*this, Trees); 957 } 958 959 /// InferAllTypes - Infer/propagate as many types throughout the expression 960 /// patterns as possible. Return true if all types are inferred, false 961 /// otherwise. Bail out if a type contradiction is found. 962 bool InferAllTypes( 963 const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr); 964 965 /// error - If this is the first error in the current resolution step, 966 /// print it and set the error flag. Otherwise, continue silently. 967 void error(const Twine &Msg); 968 bool hasError() const { return HasError; } 969 void resetError() { HasError = false; } 970 971 TypeInfer &getInfer() { return Infer; } 972 973 void print(raw_ostream &OS) const; 974 void dump() const; 975 976 private: 977 TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName); 978 void ComputeNamedNodes(); 979 void ComputeNamedNodes(TreePatternNode &N); 980 }; 981 982 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 983 const TypeSetByHwMode &InTy, 984 TreePattern &TP) { 985 TypeSetByHwMode VTS(InTy); 986 TP.getInfer().expandOverloads(VTS); 987 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 988 } 989 990 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 991 MVT::SimpleValueType InTy, 992 TreePattern &TP) { 993 TypeSetByHwMode VTS(InTy); 994 TP.getInfer().expandOverloads(VTS); 995 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 996 } 997 998 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 999 ValueTypeByHwMode InTy, 1000 TreePattern &TP) { 1001 TypeSetByHwMode VTS(InTy); 1002 TP.getInfer().expandOverloads(VTS); 1003 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 1004 } 1005 1006 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps 1007 /// that has a set ExecuteAlways / DefaultOps field. 1008 struct DAGDefaultOperand { 1009 std::vector<TreePatternNodePtr> DefaultOps; 1010 }; 1011 1012 class DAGInstruction { 1013 std::vector<Record *> Results; 1014 std::vector<Record *> Operands; 1015 std::vector<Record *> ImpResults; 1016 TreePatternNodePtr SrcPattern; 1017 TreePatternNodePtr ResultPattern; 1018 1019 public: 1020 DAGInstruction(std::vector<Record *> &&results, 1021 std::vector<Record *> &&operands, 1022 std::vector<Record *> &&impresults, 1023 TreePatternNodePtr srcpattern = nullptr, 1024 TreePatternNodePtr resultpattern = nullptr) 1025 : Results(std::move(results)), Operands(std::move(operands)), 1026 ImpResults(std::move(impresults)), SrcPattern(srcpattern), 1027 ResultPattern(resultpattern) {} 1028 1029 unsigned getNumResults() const { return Results.size(); } 1030 unsigned getNumOperands() const { return Operands.size(); } 1031 unsigned getNumImpResults() const { return ImpResults.size(); } 1032 const std::vector<Record *> &getImpResults() const { return ImpResults; } 1033 1034 Record *getResult(unsigned RN) const { 1035 assert(RN < Results.size()); 1036 return Results[RN]; 1037 } 1038 1039 Record *getOperand(unsigned ON) const { 1040 assert(ON < Operands.size()); 1041 return Operands[ON]; 1042 } 1043 1044 Record *getImpResult(unsigned RN) const { 1045 assert(RN < ImpResults.size()); 1046 return ImpResults[RN]; 1047 } 1048 1049 TreePatternNodePtr getSrcPattern() const { return SrcPattern; } 1050 TreePatternNodePtr getResultPattern() const { return ResultPattern; } 1051 }; 1052 1053 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns 1054 /// processed to produce isel. 1055 class PatternToMatch { 1056 Record *SrcRecord; // Originating Record for the pattern. 1057 ListInit *Predicates; // Top level predicate conditions to match. 1058 TreePatternNodePtr SrcPattern; // Source pattern to match. 1059 TreePatternNodePtr DstPattern; // Resulting pattern. 1060 std::vector<Record *> Dstregs; // Physical register defs being matched. 1061 std::string HwModeFeatures; 1062 int AddedComplexity; // Add to matching pattern complexity. 1063 bool GISelShouldIgnore; // Should GlobalISel ignore importing this pattern. 1064 unsigned ID; // Unique ID for the record. 1065 1066 public: 1067 PatternToMatch(Record *srcrecord, ListInit *preds, TreePatternNodePtr src, 1068 TreePatternNodePtr dst, std::vector<Record *> dstregs, 1069 int complexity, unsigned uid, bool ignore, 1070 const Twine &hwmodefeatures = "") 1071 : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), 1072 DstPattern(dst), Dstregs(std::move(dstregs)), 1073 HwModeFeatures(hwmodefeatures.str()), AddedComplexity(complexity), 1074 GISelShouldIgnore(ignore), ID(uid) {} 1075 1076 Record *getSrcRecord() const { return SrcRecord; } 1077 ListInit *getPredicates() const { return Predicates; } 1078 TreePatternNode &getSrcPattern() const { return *SrcPattern; } 1079 TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; } 1080 TreePatternNode &getDstPattern() const { return *DstPattern; } 1081 TreePatternNodePtr getDstPatternShared() const { return DstPattern; } 1082 const std::vector<Record *> &getDstRegs() const { return Dstregs; } 1083 StringRef getHwModeFeatures() const { return HwModeFeatures; } 1084 int getAddedComplexity() const { return AddedComplexity; } 1085 bool getGISelShouldIgnore() const { return GISelShouldIgnore; } 1086 unsigned getID() const { return ID; } 1087 1088 std::string getPredicateCheck() const; 1089 void getPredicateRecords(SmallVectorImpl<Record *> &PredicateRecs) const; 1090 1091 /// Compute the complexity metric for the input pattern. This roughly 1092 /// corresponds to the number of nodes that are covered. 1093 int getPatternComplexity(const CodeGenDAGPatterns &CGP) const; 1094 }; 1095 1096 class CodeGenDAGPatterns { 1097 RecordKeeper &Records; 1098 CodeGenTarget Target; 1099 CodeGenIntrinsicTable Intrinsics; 1100 1101 std::map<Record *, SDNodeInfo, LessRecordByID> SDNodes; 1102 std::map<Record *, std::pair<Record *, std::string>, LessRecordByID> 1103 SDNodeXForms; 1104 std::map<Record *, ComplexPattern, LessRecordByID> ComplexPatterns; 1105 std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID> 1106 PatternFragments; 1107 std::map<Record *, DAGDefaultOperand, LessRecordByID> DefaultOperands; 1108 std::map<Record *, DAGInstruction, LessRecordByID> Instructions; 1109 1110 // Specific SDNode definitions: 1111 Record *intrinsic_void_sdnode; 1112 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; 1113 1114 /// PatternsToMatch - All of the things we are matching on the DAG. The first 1115 /// value is the pattern to match, the second pattern is the result to 1116 /// emit. 1117 std::vector<PatternToMatch> PatternsToMatch; 1118 1119 TypeSetByHwMode LegalVTS; 1120 1121 using PatternRewriterFn = std::function<void(TreePattern *)>; 1122 PatternRewriterFn PatternRewriter; 1123 1124 unsigned NumScopes = 0; 1125 1126 public: 1127 CodeGenDAGPatterns(RecordKeeper &R, 1128 PatternRewriterFn PatternRewriter = nullptr); 1129 1130 CodeGenTarget &getTargetInfo() { return Target; } 1131 const CodeGenTarget &getTargetInfo() const { return Target; } 1132 const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; } 1133 1134 Record *getSDNodeNamed(StringRef Name) const; 1135 1136 const SDNodeInfo &getSDNodeInfo(Record *R) const { 1137 auto F = SDNodes.find(R); 1138 assert(F != SDNodes.end() && "Unknown node!"); 1139 return F->second; 1140 } 1141 1142 // Node transformation lookups. 1143 typedef std::pair<Record *, std::string> NodeXForm; 1144 const NodeXForm &getSDNodeTransform(Record *R) const { 1145 auto F = SDNodeXForms.find(R); 1146 assert(F != SDNodeXForms.end() && "Invalid transform!"); 1147 return F->second; 1148 } 1149 1150 const ComplexPattern &getComplexPattern(Record *R) const { 1151 auto F = ComplexPatterns.find(R); 1152 assert(F != ComplexPatterns.end() && "Unknown addressing mode!"); 1153 return F->second; 1154 } 1155 1156 const CodeGenIntrinsic &getIntrinsic(Record *R) const { 1157 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 1158 if (Intrinsics[i].TheDef == R) 1159 return Intrinsics[i]; 1160 llvm_unreachable("Unknown intrinsic!"); 1161 } 1162 1163 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { 1164 if (IID - 1 < Intrinsics.size()) 1165 return Intrinsics[IID - 1]; 1166 llvm_unreachable("Bad intrinsic ID!"); 1167 } 1168 1169 unsigned getIntrinsicID(Record *R) const { 1170 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 1171 if (Intrinsics[i].TheDef == R) 1172 return i; 1173 llvm_unreachable("Unknown intrinsic!"); 1174 } 1175 1176 const DAGDefaultOperand &getDefaultOperand(Record *R) const { 1177 auto F = DefaultOperands.find(R); 1178 assert(F != DefaultOperands.end() && "Isn't an analyzed default operand!"); 1179 return F->second; 1180 } 1181 1182 // Pattern Fragment information. 1183 TreePattern *getPatternFragment(Record *R) const { 1184 auto F = PatternFragments.find(R); 1185 assert(F != PatternFragments.end() && "Invalid pattern fragment request!"); 1186 return F->second.get(); 1187 } 1188 TreePattern *getPatternFragmentIfRead(Record *R) const { 1189 auto F = PatternFragments.find(R); 1190 if (F == PatternFragments.end()) 1191 return nullptr; 1192 return F->second.get(); 1193 } 1194 1195 typedef std::map<Record *, std::unique_ptr<TreePattern>, 1196 LessRecordByID>::const_iterator pf_iterator; 1197 pf_iterator pf_begin() const { return PatternFragments.begin(); } 1198 pf_iterator pf_end() const { return PatternFragments.end(); } 1199 iterator_range<pf_iterator> ptfs() const { return PatternFragments; } 1200 1201 // Patterns to match information. 1202 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; 1203 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } 1204 ptm_iterator ptm_end() const { return PatternsToMatch.end(); } 1205 iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; } 1206 1207 /// Parse the Pattern for an instruction, and insert the result in DAGInsts. 1208 typedef std::map<Record *, DAGInstruction, LessRecordByID> DAGInstMap; 1209 void parseInstructionPattern(CodeGenInstruction &CGI, ListInit *Pattern, 1210 DAGInstMap &DAGInsts); 1211 1212 const DAGInstruction &getInstruction(Record *R) const { 1213 auto F = Instructions.find(R); 1214 assert(F != Instructions.end() && "Unknown instruction!"); 1215 return F->second; 1216 } 1217 1218 Record *get_intrinsic_void_sdnode() const { return intrinsic_void_sdnode; } 1219 Record *get_intrinsic_w_chain_sdnode() const { 1220 return intrinsic_w_chain_sdnode; 1221 } 1222 Record *get_intrinsic_wo_chain_sdnode() const { 1223 return intrinsic_wo_chain_sdnode; 1224 } 1225 1226 unsigned allocateScope() { return ++NumScopes; } 1227 1228 bool operandHasDefault(Record *Op) const { 1229 return Op->isSubClassOf("OperandWithDefaultOps") && 1230 !getDefaultOperand(Op).DefaultOps.empty(); 1231 } 1232 1233 private: 1234 void ParseNodeInfo(); 1235 void ParseNodeTransforms(); 1236 void ParseComplexPatterns(); 1237 void ParsePatternFragments(bool OutFrags = false); 1238 void ParseDefaultOperands(); 1239 void ParseInstructions(); 1240 void ParsePatterns(); 1241 void ExpandHwModeBasedTypes(); 1242 void InferInstructionFlags(); 1243 void GenerateVariants(); 1244 void VerifyInstructionFlags(); 1245 1246 void ParseOnePattern(Record *TheDef, TreePattern &Pattern, 1247 TreePattern &Result, 1248 const std::vector<Record *> &InstImpResults, 1249 bool ShouldIgnore = false); 1250 void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM); 1251 void FindPatternInputsAndOutputs( 1252 TreePattern &I, TreePatternNodePtr Pat, 1253 std::map<std::string, TreePatternNodePtr> &InstInputs, 1254 MapVector<std::string, TreePatternNodePtr, 1255 std::map<std::string, unsigned>> &InstResults, 1256 std::vector<Record *> &InstImpResults); 1257 }; 1258 1259 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode &N, 1260 TreePattern &TP) const { 1261 bool MadeChange = false; 1262 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) 1263 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); 1264 return MadeChange; 1265 } 1266 1267 } // end namespace llvm 1268 1269 #endif 1270