xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/Common/CodeGenDAGPatterns.cpp (revision caaeab697bf98bf96e2fa8cb4a1e22240511fbcc)
1  //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements the CodeGenDAGPatterns class, which is used to read and
10  // represent the patterns present in a .td file for instructions.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "CodeGenDAGPatterns.h"
15  #include "CodeGenInstruction.h"
16  #include "CodeGenRegisters.h"
17  #include "llvm/ADT/DenseSet.h"
18  #include "llvm/ADT/MapVector.h"
19  #include "llvm/ADT/STLExtras.h"
20  #include "llvm/ADT/SmallSet.h"
21  #include "llvm/ADT/SmallString.h"
22  #include "llvm/ADT/StringExtras.h"
23  #include "llvm/ADT/StringMap.h"
24  #include "llvm/ADT/Twine.h"
25  #include "llvm/Support/Debug.h"
26  #include "llvm/Support/ErrorHandling.h"
27  #include "llvm/Support/TypeSize.h"
28  #include "llvm/TableGen/Error.h"
29  #include "llvm/TableGen/Record.h"
30  #include <algorithm>
31  #include <cstdio>
32  #include <iterator>
33  #include <set>
34  using namespace llvm;
35  
36  #define DEBUG_TYPE "dag-patterns"
37  
38  static inline bool isIntegerOrPtr(MVT VT) {
39    return VT.isInteger() || VT == MVT::iPTR;
40  }
41  static inline bool isFloatingPoint(MVT VT) { return VT.isFloatingPoint(); }
42  static inline bool isVector(MVT VT) { return VT.isVector(); }
43  static inline bool isScalar(MVT VT) { return !VT.isVector(); }
44  
45  template <typename Predicate>
46  static bool berase_if(MachineValueTypeSet &S, Predicate P) {
47    bool Erased = false;
48    // It is ok to iterate over MachineValueTypeSet and remove elements from it
49    // at the same time.
50    for (MVT T : S) {
51      if (!P(T))
52        continue;
53      Erased = true;
54      S.erase(T);
55    }
56    return Erased;
57  }
58  
59  void MachineValueTypeSet::writeToStream(raw_ostream &OS) const {
60    SmallVector<MVT, 4> Types(begin(), end());
61    array_pod_sort(Types.begin(), Types.end());
62  
63    OS << '[';
64    ListSeparator LS(" ");
65    for (const MVT &T : Types)
66      OS << LS << ValueTypeByHwMode::getMVTName(T);
67    OS << ']';
68  }
69  
70  // --- TypeSetByHwMode
71  
72  // This is a parameterized type-set class. For each mode there is a list
73  // of types that are currently possible for a given tree node. Type
74  // inference will apply to each mode separately.
75  
76  TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
77    // Take the address space from the first type in the list.
78    if (!VTList.empty())
79      AddrSpace = VTList[0].PtrAddrSpace;
80  
81    for (const ValueTypeByHwMode &VVT : VTList)
82      insert(VVT);
83  }
84  
85  bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
86    for (const auto &I : *this) {
87      if (I.second.size() > 1)
88        return false;
89      if (!AllowEmpty && I.second.empty())
90        return false;
91    }
92    return true;
93  }
94  
95  ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
96    assert(isValueTypeByHwMode(true) &&
97           "The type set has multiple types for at least one HW mode");
98    ValueTypeByHwMode VVT;
99    VVT.PtrAddrSpace = AddrSpace;
100  
101    for (const auto &I : *this) {
102      MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
103      VVT.getOrCreateTypeForMode(I.first, T);
104    }
105    return VVT;
106  }
107  
108  bool TypeSetByHwMode::isPossible() const {
109    for (const auto &I : *this)
110      if (!I.second.empty())
111        return true;
112    return false;
113  }
114  
115  bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
116    bool Changed = false;
117    bool ContainsDefault = false;
118    MVT DT = MVT::Other;
119  
120    for (const auto &P : VVT) {
121      unsigned M = P.first;
122      // Make sure there exists a set for each specific mode from VVT.
123      Changed |= getOrCreate(M).insert(P.second).second;
124      // Cache VVT's default mode.
125      if (DefaultMode == M) {
126        ContainsDefault = true;
127        DT = P.second;
128      }
129    }
130  
131    // If VVT has a default mode, add the corresponding type to all
132    // modes in "this" that do not exist in VVT.
133    if (ContainsDefault)
134      for (auto &I : *this)
135        if (!VVT.hasMode(I.first))
136          Changed |= I.second.insert(DT).second;
137  
138    return Changed;
139  }
140  
141  // Constrain the type set to be the intersection with VTS.
142  bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
143    bool Changed = false;
144    if (hasDefault()) {
145      for (const auto &I : VTS) {
146        unsigned M = I.first;
147        if (M == DefaultMode || hasMode(M))
148          continue;
149        Map.insert({M, Map.at(DefaultMode)});
150        Changed = true;
151      }
152    }
153  
154    for (auto &I : *this) {
155      unsigned M = I.first;
156      SetType &S = I.second;
157      if (VTS.hasMode(M) || VTS.hasDefault()) {
158        Changed |= intersect(I.second, VTS.get(M));
159      } else if (!S.empty()) {
160        S.clear();
161        Changed = true;
162      }
163    }
164    return Changed;
165  }
166  
167  template <typename Predicate> bool TypeSetByHwMode::constrain(Predicate P) {
168    bool Changed = false;
169    for (auto &I : *this)
170      Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
171    return Changed;
172  }
173  
174  template <typename Predicate>
175  bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
176    assert(empty());
177    for (const auto &I : VTS) {
178      SetType &S = getOrCreate(I.first);
179      for (auto J : I.second)
180        if (P(J))
181          S.insert(J);
182    }
183    return !empty();
184  }
185  
186  void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
187    SmallVector<unsigned, 4> Modes;
188    Modes.reserve(Map.size());
189  
190    for (const auto &I : *this)
191      Modes.push_back(I.first);
192    if (Modes.empty()) {
193      OS << "{}";
194      return;
195    }
196    array_pod_sort(Modes.begin(), Modes.end());
197  
198    OS << '{';
199    for (unsigned M : Modes) {
200      OS << ' ' << getModeName(M) << ':';
201      get(M).writeToStream(OS);
202    }
203    OS << " }";
204  }
205  
206  bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
207    // The isSimple call is much quicker than hasDefault - check this first.
208    bool IsSimple = isSimple();
209    bool VTSIsSimple = VTS.isSimple();
210    if (IsSimple && VTSIsSimple)
211      return getSimple() == VTS.getSimple();
212  
213    // Speedup: We have a default if the set is simple.
214    bool HaveDefault = IsSimple || hasDefault();
215    bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
216    if (HaveDefault != VTSHaveDefault)
217      return false;
218  
219    SmallSet<unsigned, 4> Modes;
220    for (auto &I : *this)
221      Modes.insert(I.first);
222    for (const auto &I : VTS)
223      Modes.insert(I.first);
224  
225    if (HaveDefault) {
226      // Both sets have default mode.
227      for (unsigned M : Modes) {
228        if (get(M) != VTS.get(M))
229          return false;
230      }
231    } else {
232      // Neither set has default mode.
233      for (unsigned M : Modes) {
234        // If there is no default mode, an empty set is equivalent to not having
235        // the corresponding mode.
236        bool NoModeThis = !hasMode(M) || get(M).empty();
237        bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
238        if (NoModeThis != NoModeVTS)
239          return false;
240        if (!NoModeThis)
241          if (get(M) != VTS.get(M))
242            return false;
243      }
244    }
245  
246    return true;
247  }
248  
249  namespace llvm {
250  raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) {
251    T.writeToStream(OS);
252    return OS;
253  }
254  raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
255    T.writeToStream(OS);
256    return OS;
257  }
258  } // namespace llvm
259  
260  LLVM_DUMP_METHOD
261  void TypeSetByHwMode::dump() const { dbgs() << *this << '\n'; }
262  
263  bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
264    auto IntersectP = [&](std::optional<MVT> WildVT, function_ref<bool(MVT)> P) {
265      // Complement of In within this partition.
266      auto CompIn = [&](MVT T) -> bool { return !In.count(T) && P(T); };
267  
268      if (!WildVT)
269        return berase_if(Out, CompIn);
270  
271      bool OutW = Out.count(*WildVT), InW = In.count(*WildVT);
272      if (OutW == InW)
273        return berase_if(Out, CompIn);
274  
275      // Compute the intersection of scalars separately to account for only one
276      // set containing WildVT.
277      // The intersection of WildVT with a set of corresponding types that does
278      // not include WildVT will result in the most specific type:
279      // - WildVT is more specific than any set with two elements or more
280      // - WildVT is less specific than any single type.
281      // For example, for iPTR and scalar integer types
282      // { iPTR } * { i32 }     -> { i32 }
283      // { iPTR } * { i32 i64 } -> { iPTR }
284      // and
285      // { iPTR i32 } * { i32 }          -> { i32 }
286      // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
287      // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
288  
289      // Looking at just this partition, let In' = elements only in In,
290      // Out' = elements only in Out, and IO = elements common to both. Normally
291      // IO would be returned as the result of the intersection, but we need to
292      // account for WildVT being a "wildcard" of sorts. Since elements in IO are
293      // those that match both sets exactly, they will all belong to the output.
294      // If any of the "leftovers" (i.e. In' or Out') contain WildVT, it means
295      // that the other set doesn't have it, but it could have (1) a more
296      // specific type, or (2) a set of types that is less specific. The
297      // "leftovers" from the other set is what we want to examine more closely.
298  
299      auto Leftovers = [&](const SetType &A, const SetType &B) {
300        SetType Diff = A;
301        berase_if(Diff, [&](MVT T) { return B.count(T) || !P(T); });
302        return Diff;
303      };
304  
305      if (InW) {
306        SetType OutLeftovers = Leftovers(Out, In);
307        if (OutLeftovers.size() < 2) {
308          // WildVT not added to Out. Keep the possible single leftover.
309          return false;
310        }
311        // WildVT replaces the leftovers.
312        berase_if(Out, CompIn);
313        Out.insert(*WildVT);
314        return true;
315      }
316  
317      // OutW == true
318      SetType InLeftovers = Leftovers(In, Out);
319      unsigned SizeOut = Out.size();
320      berase_if(Out, CompIn); // This will remove at least the WildVT.
321      if (InLeftovers.size() < 2) {
322        // WildVT deleted from Out. Add back the possible single leftover.
323        Out.insert(InLeftovers);
324        return true;
325      }
326  
327      // Keep the WildVT in Out.
328      Out.insert(*WildVT);
329      // If WildVT was the only element initially removed from Out, then Out
330      // has not changed.
331      return SizeOut != Out.size();
332    };
333  
334    // Note: must be non-overlapping
335    using WildPartT = std::pair<MVT, std::function<bool(MVT)>>;
336    static const WildPartT WildParts[] = {
337        {MVT::iPTR, [](MVT T) { return T.isScalarInteger() || T == MVT::iPTR; }},
338    };
339  
340    bool Changed = false;
341    for (const auto &I : WildParts)
342      Changed |= IntersectP(I.first, I.second);
343  
344    Changed |= IntersectP(std::nullopt, [&](MVT T) {
345      return !any_of(WildParts, [=](const WildPartT &I) { return I.second(T); });
346    });
347  
348    return Changed;
349  }
350  
351  bool TypeSetByHwMode::validate() const {
352    if (empty())
353      return true;
354    bool AllEmpty = true;
355    for (const auto &I : *this)
356      AllEmpty &= I.second.empty();
357    return !AllEmpty;
358  }
359  
360  // --- TypeInfer
361  
362  bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
363                                  const TypeSetByHwMode &In) const {
364    ValidateOnExit _1(Out, *this);
365    In.validate();
366    if (In.empty() || Out == In || TP.hasError())
367      return false;
368    if (Out.empty()) {
369      Out = In;
370      return true;
371    }
372  
373    bool Changed = Out.constrain(In);
374    if (Changed && Out.empty())
375      TP.error("Type contradiction");
376  
377    return Changed;
378  }
379  
380  bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
381    ValidateOnExit _1(Out, *this);
382    if (TP.hasError())
383      return false;
384    assert(!Out.empty() && "cannot pick from an empty set");
385  
386    bool Changed = false;
387    for (auto &I : Out) {
388      TypeSetByHwMode::SetType &S = I.second;
389      if (S.size() <= 1)
390        continue;
391      MVT T = *S.begin(); // Pick the first element.
392      S.clear();
393      S.insert(T);
394      Changed = true;
395    }
396    return Changed;
397  }
398  
399  bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
400    ValidateOnExit _1(Out, *this);
401    if (TP.hasError())
402      return false;
403    if (!Out.empty())
404      return Out.constrain(isIntegerOrPtr);
405  
406    return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
407  }
408  
409  bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
410    ValidateOnExit _1(Out, *this);
411    if (TP.hasError())
412      return false;
413    if (!Out.empty())
414      return Out.constrain(isFloatingPoint);
415  
416    return Out.assign_if(getLegalTypes(), isFloatingPoint);
417  }
418  
419  bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
420    ValidateOnExit _1(Out, *this);
421    if (TP.hasError())
422      return false;
423    if (!Out.empty())
424      return Out.constrain(isScalar);
425  
426    return Out.assign_if(getLegalTypes(), isScalar);
427  }
428  
429  bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
430    ValidateOnExit _1(Out, *this);
431    if (TP.hasError())
432      return false;
433    if (!Out.empty())
434      return Out.constrain(isVector);
435  
436    return Out.assign_if(getLegalTypes(), isVector);
437  }
438  
439  bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
440    ValidateOnExit _1(Out, *this);
441    if (TP.hasError() || !Out.empty())
442      return false;
443  
444    Out = getLegalTypes();
445    return true;
446  }
447  
448  template <typename Iter, typename Pred, typename Less>
449  static Iter min_if(Iter B, Iter E, Pred P, Less L) {
450    if (B == E)
451      return E;
452    Iter Min = E;
453    for (Iter I = B; I != E; ++I) {
454      if (!P(*I))
455        continue;
456      if (Min == E || L(*I, *Min))
457        Min = I;
458    }
459    return Min;
460  }
461  
462  template <typename Iter, typename Pred, typename Less>
463  static Iter max_if(Iter B, Iter E, Pred P, Less L) {
464    if (B == E)
465      return E;
466    Iter Max = E;
467    for (Iter I = B; I != E; ++I) {
468      if (!P(*I))
469        continue;
470      if (Max == E || L(*Max, *I))
471        Max = I;
472    }
473    return Max;
474  }
475  
476  /// Make sure that for each type in Small, there exists a larger type in Big.
477  bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
478                                     bool SmallIsVT) {
479    ValidateOnExit _1(Small, *this), _2(Big, *this);
480    if (TP.hasError())
481      return false;
482    bool Changed = false;
483  
484    assert((!SmallIsVT || !Small.empty()) &&
485           "Small should not be empty for SDTCisVTSmallerThanOp");
486  
487    if (Small.empty())
488      Changed |= EnforceAny(Small);
489    if (Big.empty())
490      Changed |= EnforceAny(Big);
491  
492    assert(Small.hasDefault() && Big.hasDefault());
493  
494    SmallVector<unsigned, 4> Modes;
495    union_modes(Small, Big, Modes);
496  
497    // 1. Only allow integer or floating point types and make sure that
498    //    both sides are both integer or both floating point.
499    // 2. Make sure that either both sides have vector types, or neither
500    //    of them does.
501    for (unsigned M : Modes) {
502      TypeSetByHwMode::SetType &S = Small.get(M);
503      TypeSetByHwMode::SetType &B = Big.get(M);
504  
505      assert((!SmallIsVT || !S.empty()) && "Expected non-empty type");
506  
507      if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) {
508        auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
509        Changed |= berase_if(S, NotInt);
510        Changed |= berase_if(B, NotInt);
511      } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
512        auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
513        Changed |= berase_if(S, NotFP);
514        Changed |= berase_if(B, NotFP);
515      } else if (SmallIsVT && B.empty()) {
516        // B is empty and since S is a specific VT, it will never be empty. Don't
517        // report this as a change, just clear S and continue. This prevents an
518        // infinite loop.
519        S.clear();
520      } else if (S.empty() || B.empty()) {
521        Changed = !S.empty() || !B.empty();
522        S.clear();
523        B.clear();
524      } else {
525        TP.error("Incompatible types");
526        return Changed;
527      }
528  
529      if (none_of(S, isVector) || none_of(B, isVector)) {
530        Changed |= berase_if(S, isVector);
531        Changed |= berase_if(B, isVector);
532      }
533    }
534  
535    auto LT = [](MVT A, MVT B) -> bool {
536      // Always treat non-scalable MVTs as smaller than scalable MVTs for the
537      // purposes of ordering.
538      auto ASize = std::tuple(A.isScalableVector(), A.getScalarSizeInBits(),
539                              A.getSizeInBits().getKnownMinValue());
540      auto BSize = std::tuple(B.isScalableVector(), B.getScalarSizeInBits(),
541                              B.getSizeInBits().getKnownMinValue());
542      return ASize < BSize;
543    };
544    auto SameKindLE = [](MVT A, MVT B) -> bool {
545      // This function is used when removing elements: when a vector is compared
546      // to a non-vector or a scalable vector to any non-scalable MVT, it should
547      // return false (to avoid removal).
548      if (std::tuple(A.isVector(), A.isScalableVector()) !=
549          std::tuple(B.isVector(), B.isScalableVector()))
550        return false;
551  
552      return std::tuple(A.getScalarSizeInBits(),
553                        A.getSizeInBits().getKnownMinValue()) <=
554             std::tuple(B.getScalarSizeInBits(),
555                        B.getSizeInBits().getKnownMinValue());
556    };
557  
558    for (unsigned M : Modes) {
559      TypeSetByHwMode::SetType &S = Small.get(M);
560      TypeSetByHwMode::SetType &B = Big.get(M);
561      // MinS = min scalar in Small, remove all scalars from Big that are
562      // smaller-or-equal than MinS.
563      auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
564      if (MinS != S.end())
565        Changed |=
566            berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinS));
567  
568      // MaxS = max scalar in Big, remove all scalars from Small that are
569      // larger than MaxS.
570      auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
571      if (MaxS != B.end())
572        Changed |=
573            berase_if(S, std::bind(SameKindLE, *MaxS, std::placeholders::_1));
574  
575      // MinV = min vector in Small, remove all vectors from Big that are
576      // smaller-or-equal than MinV.
577      auto MinV = min_if(S.begin(), S.end(), isVector, LT);
578      if (MinV != S.end())
579        Changed |=
580            berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinV));
581  
582      // MaxV = max vector in Big, remove all vectors from Small that are
583      // larger than MaxV.
584      auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
585      if (MaxV != B.end())
586        Changed |=
587            berase_if(S, std::bind(SameKindLE, *MaxV, std::placeholders::_1));
588    }
589  
590    return Changed;
591  }
592  
593  /// 1. Ensure that for each type T in Vec, T is a vector type, and that
594  ///    for each type U in Elem, U is a scalar type.
595  /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
596  ///    type T in Vec, such that U is the element type of T.
597  bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
598                                         TypeSetByHwMode &Elem) {
599    ValidateOnExit _1(Vec, *this), _2(Elem, *this);
600    if (TP.hasError())
601      return false;
602    bool Changed = false;
603  
604    if (Vec.empty())
605      Changed |= EnforceVector(Vec);
606    if (Elem.empty())
607      Changed |= EnforceScalar(Elem);
608  
609    SmallVector<unsigned, 4> Modes;
610    union_modes(Vec, Elem, Modes);
611    for (unsigned M : Modes) {
612      TypeSetByHwMode::SetType &V = Vec.get(M);
613      TypeSetByHwMode::SetType &E = Elem.get(M);
614  
615      Changed |= berase_if(V, isScalar); // Scalar = !vector
616      Changed |= berase_if(E, isVector); // Vector = !scalar
617      assert(!V.empty() && !E.empty());
618  
619      MachineValueTypeSet VT, ST;
620      // Collect element types from the "vector" set.
621      for (MVT T : V)
622        VT.insert(T.getVectorElementType());
623      // Collect scalar types from the "element" set.
624      for (MVT T : E)
625        ST.insert(T);
626  
627      // Remove from V all (vector) types whose element type is not in S.
628      Changed |= berase_if(V, [&ST](MVT T) -> bool {
629        return !ST.count(T.getVectorElementType());
630      });
631      // Remove from E all (scalar) types, for which there is no corresponding
632      // type in V.
633      Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
634    }
635  
636    return Changed;
637  }
638  
639  bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
640                                         const ValueTypeByHwMode &VVT) {
641    TypeSetByHwMode Tmp(VVT);
642    ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
643    return EnforceVectorEltTypeIs(Vec, Tmp);
644  }
645  
646  /// Ensure that for each type T in Sub, T is a vector type, and there
647  /// exists a type U in Vec such that U is a vector type with the same
648  /// element type as T and at least as many elements as T.
649  bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
650                                               TypeSetByHwMode &Sub) {
651    ValidateOnExit _1(Vec, *this), _2(Sub, *this);
652    if (TP.hasError())
653      return false;
654  
655    /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
656    auto IsSubVec = [](MVT B, MVT P) -> bool {
657      if (!B.isVector() || !P.isVector())
658        return false;
659      // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
660      // but until there are obvious use-cases for this, keep the
661      // types separate.
662      if (B.isScalableVector() != P.isScalableVector())
663        return false;
664      if (B.getVectorElementType() != P.getVectorElementType())
665        return false;
666      return B.getVectorMinNumElements() < P.getVectorMinNumElements();
667    };
668  
669    /// Return true if S has no element (vector type) that T is a sub-vector of,
670    /// i.e. has the same element type as T and more elements.
671    auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
672      for (auto I : S)
673        if (IsSubVec(T, I))
674          return false;
675      return true;
676    };
677  
678    /// Return true if S has no element (vector type) that T is a super-vector
679    /// of, i.e. has the same element type as T and fewer elements.
680    auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
681      for (auto I : S)
682        if (IsSubVec(I, T))
683          return false;
684      return true;
685    };
686  
687    bool Changed = false;
688  
689    if (Vec.empty())
690      Changed |= EnforceVector(Vec);
691    if (Sub.empty())
692      Changed |= EnforceVector(Sub);
693  
694    SmallVector<unsigned, 4> Modes;
695    union_modes(Vec, Sub, Modes);
696    for (unsigned M : Modes) {
697      TypeSetByHwMode::SetType &S = Sub.get(M);
698      TypeSetByHwMode::SetType &V = Vec.get(M);
699  
700      Changed |= berase_if(S, isScalar);
701  
702      // Erase all types from S that are not sub-vectors of a type in V.
703      Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
704  
705      // Erase all types from V that are not super-vectors of a type in S.
706      Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
707    }
708  
709    return Changed;
710  }
711  
712  /// 1. Ensure that V has a scalar type iff W has a scalar type.
713  /// 2. Ensure that for each vector type T in V, there exists a vector
714  ///    type U in W, such that T and U have the same number of elements.
715  /// 3. Ensure that for each vector type U in W, there exists a vector
716  ///    type T in V, such that T and U have the same number of elements
717  ///    (reverse of 2).
718  bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
719    ValidateOnExit _1(V, *this), _2(W, *this);
720    if (TP.hasError())
721      return false;
722  
723    bool Changed = false;
724    if (V.empty())
725      Changed |= EnforceAny(V);
726    if (W.empty())
727      Changed |= EnforceAny(W);
728  
729    // An actual vector type cannot have 0 elements, so we can treat scalars
730    // as zero-length vectors. This way both vectors and scalars can be
731    // processed identically.
732    auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
733                       MVT T) -> bool {
734      return !Lengths.count(T.isVector() ? T.getVectorElementCount()
735                                         : ElementCount());
736    };
737  
738    SmallVector<unsigned, 4> Modes;
739    union_modes(V, W, Modes);
740    for (unsigned M : Modes) {
741      TypeSetByHwMode::SetType &VS = V.get(M);
742      TypeSetByHwMode::SetType &WS = W.get(M);
743  
744      SmallDenseSet<ElementCount> VN, WN;
745      for (MVT T : VS)
746        VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
747      for (MVT T : WS)
748        WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
749  
750      Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
751      Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
752    }
753    return Changed;
754  }
755  
756  namespace {
757  struct TypeSizeComparator {
758    bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
759      return std::tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
760             std::tuple(RHS.isScalable(), RHS.getKnownMinValue());
761    }
762  };
763  } // end anonymous namespace
764  
765  /// 1. Ensure that for each type T in A, there exists a type U in B,
766  ///    such that T and U have equal size in bits.
767  /// 2. Ensure that for each type U in B, there exists a type T in A
768  ///    such that T and U have equal size in bits (reverse of 1).
769  bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
770    ValidateOnExit _1(A, *this), _2(B, *this);
771    if (TP.hasError())
772      return false;
773    bool Changed = false;
774    if (A.empty())
775      Changed |= EnforceAny(A);
776    if (B.empty())
777      Changed |= EnforceAny(B);
778  
779    typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
780  
781    auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
782      return !Sizes.count(T.getSizeInBits());
783    };
784  
785    SmallVector<unsigned, 4> Modes;
786    union_modes(A, B, Modes);
787    for (unsigned M : Modes) {
788      TypeSetByHwMode::SetType &AS = A.get(M);
789      TypeSetByHwMode::SetType &BS = B.get(M);
790      TypeSizeSet AN, BN;
791  
792      for (MVT T : AS)
793        AN.insert(T.getSizeInBits());
794      for (MVT T : BS)
795        BN.insert(T.getSizeInBits());
796  
797      Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
798      Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
799    }
800  
801    return Changed;
802  }
803  
804  void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) const {
805    ValidateOnExit _1(VTS, *this);
806    const TypeSetByHwMode &Legal = getLegalTypes();
807    assert(Legal.isSimple() && "Default-mode only expected");
808    const TypeSetByHwMode::SetType &LegalTypes = Legal.getSimple();
809  
810    for (auto &I : VTS)
811      expandOverloads(I.second, LegalTypes);
812  }
813  
814  void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
815                                  const TypeSetByHwMode::SetType &Legal) const {
816    if (Out.count(MVT::iPTRAny)) {
817      Out.erase(MVT::iPTRAny);
818      Out.insert(MVT::iPTR);
819    } else if (Out.count(MVT::iAny)) {
820      Out.erase(MVT::iAny);
821      for (MVT T : MVT::integer_valuetypes())
822        if (Legal.count(T))
823          Out.insert(T);
824      for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
825        if (Legal.count(T))
826          Out.insert(T);
827      for (MVT T : MVT::integer_scalable_vector_valuetypes())
828        if (Legal.count(T))
829          Out.insert(T);
830    } else if (Out.count(MVT::fAny)) {
831      Out.erase(MVT::fAny);
832      for (MVT T : MVT::fp_valuetypes())
833        if (Legal.count(T))
834          Out.insert(T);
835      for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
836        if (Legal.count(T))
837          Out.insert(T);
838      for (MVT T : MVT::fp_scalable_vector_valuetypes())
839        if (Legal.count(T))
840          Out.insert(T);
841    } else if (Out.count(MVT::vAny)) {
842      Out.erase(MVT::vAny);
843      for (MVT T : MVT::vector_valuetypes())
844        if (Legal.count(T))
845          Out.insert(T);
846    } else if (Out.count(MVT::Any)) {
847      Out.erase(MVT::Any);
848      for (MVT T : MVT::all_valuetypes())
849        if (Legal.count(T))
850          Out.insert(T);
851    }
852  }
853  
854  const TypeSetByHwMode &TypeInfer::getLegalTypes() const {
855    if (!LegalTypesCached) {
856      TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
857      // Stuff all types from all modes into the default mode.
858      const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
859      for (const auto &I : LTS)
860        LegalTypes.insert(I.second);
861      LegalTypesCached = true;
862    }
863    assert(LegalCache.isSimple() && "Default-mode only expected");
864    return LegalCache;
865  }
866  
867  TypeInfer::ValidateOnExit::~ValidateOnExit() {
868    if (Infer.Validate && !VTS.validate()) {
869  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
870      errs() << "Type set is empty for each HW mode:\n"
871                "possible type contradiction in the pattern below "
872                "(use -print-records with llvm-tblgen to see all "
873                "expanded records).\n";
874      Infer.TP.dump();
875      errs() << "Generated from record:\n";
876      Infer.TP.getRecord()->dump();
877  #endif
878      PrintFatalError(Infer.TP.getRecord()->getLoc(),
879                      "Type set is empty for each HW mode in '" +
880                          Infer.TP.getRecord()->getName() + "'");
881    }
882  }
883  
884  //===----------------------------------------------------------------------===//
885  // ScopedName Implementation
886  //===----------------------------------------------------------------------===//
887  
888  bool ScopedName::operator==(const ScopedName &o) const {
889    return Scope == o.Scope && Identifier == o.Identifier;
890  }
891  
892  bool ScopedName::operator!=(const ScopedName &o) const { return !(*this == o); }
893  
894  //===----------------------------------------------------------------------===//
895  // TreePredicateFn Implementation
896  //===----------------------------------------------------------------------===//
897  
898  /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
899  TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
900    assert(
901        (!hasPredCode() || !hasImmCode()) &&
902        ".td file corrupt: can't have a node predicate *and* an imm predicate");
903  }
904  
905  bool TreePredicateFn::hasPredCode() const {
906    return isLoad() || isStore() || isAtomic() || hasNoUse() || hasOneUse() ||
907           !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
908  }
909  
910  std::string TreePredicateFn::getPredCode() const {
911    std::string Code;
912  
913    if (!isLoad() && !isStore() && !isAtomic()) {
914      Record *MemoryVT = getMemoryVT();
915  
916      if (MemoryVT)
917        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
918                        "MemoryVT requires IsLoad or IsStore");
919    }
920  
921    if (!isLoad() && !isStore()) {
922      if (isUnindexed())
923        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
924                        "IsUnindexed requires IsLoad or IsStore");
925  
926      Record *ScalarMemoryVT = getScalarMemoryVT();
927  
928      if (ScalarMemoryVT)
929        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
930                        "ScalarMemoryVT requires IsLoad or IsStore");
931    }
932  
933    if (isLoad() + isStore() + isAtomic() > 1)
934      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935                      "IsLoad, IsStore, and IsAtomic are mutually exclusive");
936  
937    if (isLoad()) {
938      if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
939          !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
940          getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
941          getMinAlignment() < 1)
942        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
943                        "IsLoad cannot be used by itself");
944    } else {
945      if (isNonExtLoad())
946        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
947                        "IsNonExtLoad requires IsLoad");
948      if (isAnyExtLoad())
949        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
950                        "IsAnyExtLoad requires IsLoad");
951  
952      if (!isAtomic()) {
953        if (isSignExtLoad())
954          PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
955                          "IsSignExtLoad requires IsLoad or IsAtomic");
956        if (isZeroExtLoad())
957          PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
958                          "IsZeroExtLoad requires IsLoad or IsAtomic");
959      }
960    }
961  
962    if (isStore()) {
963      if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
964          getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
965          getAddressSpaces() == nullptr && getMinAlignment() < 1)
966        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
967                        "IsStore cannot be used by itself");
968    } else {
969      if (isNonTruncStore())
970        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
971                        "IsNonTruncStore requires IsStore");
972      if (isTruncStore())
973        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
974                        "IsTruncStore requires IsStore");
975    }
976  
977    if (isAtomic()) {
978      if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
979          getAddressSpaces() == nullptr &&
980          // FIXME: Should atomic loads be IsLoad, IsAtomic, or both?
981          !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() &&
982          !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() &&
983          !isAtomicOrderingSequentiallyConsistent() &&
984          !isAtomicOrderingAcquireOrStronger() &&
985          !isAtomicOrderingReleaseOrStronger() &&
986          !isAtomicOrderingWeakerThanAcquire() &&
987          !isAtomicOrderingWeakerThanRelease())
988        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
989                        "IsAtomic cannot be used by itself");
990    } else {
991      if (isAtomicOrderingMonotonic())
992        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993                        "IsAtomicOrderingMonotonic requires IsAtomic");
994      if (isAtomicOrderingAcquire())
995        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
996                        "IsAtomicOrderingAcquire requires IsAtomic");
997      if (isAtomicOrderingRelease())
998        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
999                        "IsAtomicOrderingRelease requires IsAtomic");
1000      if (isAtomicOrderingAcquireRelease())
1001        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1002                        "IsAtomicOrderingAcquireRelease requires IsAtomic");
1003      if (isAtomicOrderingSequentiallyConsistent())
1004        PrintFatalError(
1005            getOrigPatFragRecord()->getRecord()->getLoc(),
1006            "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
1007      if (isAtomicOrderingAcquireOrStronger())
1008        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1009                        "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
1010      if (isAtomicOrderingReleaseOrStronger())
1011        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1012                        "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
1013      if (isAtomicOrderingWeakerThanAcquire())
1014        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1015                        "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
1016    }
1017  
1018    if (isLoad() || isStore() || isAtomic()) {
1019      if (ListInit *AddressSpaces = getAddressSpaces()) {
1020        Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1021                " if (";
1022  
1023        ListSeparator LS(" && ");
1024        for (Init *Val : AddressSpaces->getValues()) {
1025          Code += LS;
1026  
1027          IntInit *IntVal = dyn_cast<IntInit>(Val);
1028          if (!IntVal) {
1029            PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1030                            "AddressSpaces element must be integer");
1031          }
1032  
1033          Code += "AddrSpace != " + utostr(IntVal->getValue());
1034        }
1035  
1036        Code += ")\nreturn false;\n";
1037      }
1038  
1039      int64_t MinAlign = getMinAlignment();
1040      if (MinAlign > 0) {
1041        Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1042        Code += utostr(MinAlign);
1043        Code += "))\nreturn false;\n";
1044      }
1045  
1046      Record *MemoryVT = getMemoryVT();
1047  
1048      if (MemoryVT)
1049        Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1050                 MemoryVT->getName() + ") return false;\n")
1051                    .str();
1052    }
1053  
1054    if (isAtomic() && isAtomicOrderingMonotonic())
1055      Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1056              "AtomicOrdering::Monotonic) return false;\n";
1057    if (isAtomic() && isAtomicOrderingAcquire())
1058      Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1059              "AtomicOrdering::Acquire) return false;\n";
1060    if (isAtomic() && isAtomicOrderingRelease())
1061      Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1062              "AtomicOrdering::Release) return false;\n";
1063    if (isAtomic() && isAtomicOrderingAcquireRelease())
1064      Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1065              "AtomicOrdering::AcquireRelease) return false;\n";
1066    if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1067      Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1068              "AtomicOrdering::SequentiallyConsistent) return false;\n";
1069  
1070    if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1071      Code +=
1072          "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1073          "return false;\n";
1074    if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1075      Code +=
1076          "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1077          "return false;\n";
1078  
1079    if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1080      Code +=
1081          "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1082          "return false;\n";
1083    if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1084      Code +=
1085          "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1086          "return false;\n";
1087  
1088    // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed.
1089    if (isAtomic() && (isZeroExtLoad() || isSignExtLoad()))
1090      Code += "return false;\n";
1091  
1092    if (isLoad() || isStore()) {
1093      StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1094  
1095      if (isUnindexed())
1096        Code += ("if (cast<" + SDNodeName +
1097                 ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1098                 "return false;\n")
1099                    .str();
1100  
1101      if (isLoad()) {
1102        if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1103             isZeroExtLoad()) > 1)
1104          PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1105                          "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1106                          "IsZeroExtLoad are mutually exclusive");
1107        if (isNonExtLoad())
1108          Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1109                  "ISD::NON_EXTLOAD) return false;\n";
1110        if (isAnyExtLoad())
1111          Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1112                  "return false;\n";
1113        if (isSignExtLoad())
1114          Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1115                  "return false;\n";
1116        if (isZeroExtLoad())
1117          Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1118                  "return false;\n";
1119      } else {
1120        if ((isNonTruncStore() + isTruncStore()) > 1)
1121          PrintFatalError(
1122              getOrigPatFragRecord()->getRecord()->getLoc(),
1123              "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1124        if (isNonTruncStore())
1125          Code +=
1126              " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1127        if (isTruncStore())
1128          Code +=
1129              " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1130      }
1131  
1132      Record *ScalarMemoryVT = getScalarMemoryVT();
1133  
1134      if (ScalarMemoryVT)
1135        Code += ("if (cast<" + SDNodeName +
1136                 ">(N)->getMemoryVT().getScalarType() != MVT::" +
1137                 ScalarMemoryVT->getName() + ") return false;\n")
1138                    .str();
1139    }
1140  
1141    if (hasNoUse())
1142      Code += "if (!SDValue(N, 0).use_empty()) return false;\n";
1143    if (hasOneUse())
1144      Code += "if (!SDValue(N, 0).hasOneUse()) return false;\n";
1145  
1146    std::string PredicateCode =
1147        std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1148  
1149    Code += PredicateCode;
1150  
1151    if (PredicateCode.empty() && !Code.empty())
1152      Code += "return true;\n";
1153  
1154    return Code;
1155  }
1156  
1157  bool TreePredicateFn::hasImmCode() const {
1158    return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1159  }
1160  
1161  std::string TreePredicateFn::getImmCode() const {
1162    return std::string(
1163        PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1164  }
1165  
1166  bool TreePredicateFn::immCodeUsesAPInt() const {
1167    return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1168  }
1169  
1170  bool TreePredicateFn::immCodeUsesAPFloat() const {
1171    bool Unset;
1172    // The return value will be false when IsAPFloat is unset.
1173    return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1174                                                                     Unset);
1175  }
1176  
1177  bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1178                                                     bool Value) const {
1179    bool Unset;
1180    bool Result =
1181        getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1182    if (Unset)
1183      return false;
1184    return Result == Value;
1185  }
1186  bool TreePredicateFn::usesOperands() const {
1187    return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1188  }
1189  bool TreePredicateFn::hasNoUse() const {
1190    return isPredefinedPredicateEqualTo("HasNoUse", true);
1191  }
1192  bool TreePredicateFn::hasOneUse() const {
1193    return isPredefinedPredicateEqualTo("HasOneUse", true);
1194  }
1195  bool TreePredicateFn::isLoad() const {
1196    return isPredefinedPredicateEqualTo("IsLoad", true);
1197  }
1198  bool TreePredicateFn::isStore() const {
1199    return isPredefinedPredicateEqualTo("IsStore", true);
1200  }
1201  bool TreePredicateFn::isAtomic() const {
1202    return isPredefinedPredicateEqualTo("IsAtomic", true);
1203  }
1204  bool TreePredicateFn::isUnindexed() const {
1205    return isPredefinedPredicateEqualTo("IsUnindexed", true);
1206  }
1207  bool TreePredicateFn::isNonExtLoad() const {
1208    return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1209  }
1210  bool TreePredicateFn::isAnyExtLoad() const {
1211    return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1212  }
1213  bool TreePredicateFn::isSignExtLoad() const {
1214    return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1215  }
1216  bool TreePredicateFn::isZeroExtLoad() const {
1217    return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1218  }
1219  bool TreePredicateFn::isNonTruncStore() const {
1220    return isPredefinedPredicateEqualTo("IsTruncStore", false);
1221  }
1222  bool TreePredicateFn::isTruncStore() const {
1223    return isPredefinedPredicateEqualTo("IsTruncStore", true);
1224  }
1225  bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1226    return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1227  }
1228  bool TreePredicateFn::isAtomicOrderingAcquire() const {
1229    return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1230  }
1231  bool TreePredicateFn::isAtomicOrderingRelease() const {
1232    return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1233  }
1234  bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1235    return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1236  }
1237  bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1238    return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1239                                        true);
1240  }
1241  bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1242    return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger",
1243                                        true);
1244  }
1245  bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1246    return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger",
1247                                        false);
1248  }
1249  bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1250    return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger",
1251                                        true);
1252  }
1253  bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1254    return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger",
1255                                        false);
1256  }
1257  Record *TreePredicateFn::getMemoryVT() const {
1258    Record *R = getOrigPatFragRecord()->getRecord();
1259    if (R->isValueUnset("MemoryVT"))
1260      return nullptr;
1261    return R->getValueAsDef("MemoryVT");
1262  }
1263  
1264  ListInit *TreePredicateFn::getAddressSpaces() const {
1265    Record *R = getOrigPatFragRecord()->getRecord();
1266    if (R->isValueUnset("AddressSpaces"))
1267      return nullptr;
1268    return R->getValueAsListInit("AddressSpaces");
1269  }
1270  
1271  int64_t TreePredicateFn::getMinAlignment() const {
1272    Record *R = getOrigPatFragRecord()->getRecord();
1273    if (R->isValueUnset("MinAlignment"))
1274      return 0;
1275    return R->getValueAsInt("MinAlignment");
1276  }
1277  
1278  Record *TreePredicateFn::getScalarMemoryVT() const {
1279    Record *R = getOrigPatFragRecord()->getRecord();
1280    if (R->isValueUnset("ScalarMemoryVT"))
1281      return nullptr;
1282    return R->getValueAsDef("ScalarMemoryVT");
1283  }
1284  bool TreePredicateFn::hasGISelPredicateCode() const {
1285    return !PatFragRec->getRecord()
1286                ->getValueAsString("GISelPredicateCode")
1287                .empty();
1288  }
1289  std::string TreePredicateFn::getGISelPredicateCode() const {
1290    return std::string(
1291        PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1292  }
1293  
1294  StringRef TreePredicateFn::getImmType() const {
1295    if (immCodeUsesAPInt())
1296      return "const APInt &";
1297    if (immCodeUsesAPFloat())
1298      return "const APFloat &";
1299    return "int64_t";
1300  }
1301  
1302  StringRef TreePredicateFn::getImmTypeIdentifier() const {
1303    if (immCodeUsesAPInt())
1304      return "APInt";
1305    if (immCodeUsesAPFloat())
1306      return "APFloat";
1307    return "I64";
1308  }
1309  
1310  /// isAlwaysTrue - Return true if this is a noop predicate.
1311  bool TreePredicateFn::isAlwaysTrue() const {
1312    return !hasPredCode() && !hasImmCode();
1313  }
1314  
1315  /// Return the name to use in the generated code to reference this, this is
1316  /// "Predicate_foo" if from a pattern fragment "foo".
1317  std::string TreePredicateFn::getFnName() const {
1318    return "Predicate_" + PatFragRec->getRecord()->getName().str();
1319  }
1320  
1321  /// getCodeToRunOnSDNode - Return the code for the function body that
1322  /// evaluates this predicate.  The argument is expected to be in "Node",
1323  /// not N.  This handles casting and conversion to a concrete node type as
1324  /// appropriate.
1325  std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1326    // Handle immediate predicates first.
1327    std::string ImmCode = getImmCode();
1328    if (!ImmCode.empty()) {
1329      if (isLoad())
1330        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1331                        "IsLoad cannot be used with ImmLeaf or its subclasses");
1332      if (isStore())
1333        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1334                        "IsStore cannot be used with ImmLeaf or its subclasses");
1335      if (isUnindexed())
1336        PrintFatalError(
1337            getOrigPatFragRecord()->getRecord()->getLoc(),
1338            "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1339      if (isNonExtLoad())
1340        PrintFatalError(
1341            getOrigPatFragRecord()->getRecord()->getLoc(),
1342            "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1343      if (isAnyExtLoad())
1344        PrintFatalError(
1345            getOrigPatFragRecord()->getRecord()->getLoc(),
1346            "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1347      if (isSignExtLoad())
1348        PrintFatalError(
1349            getOrigPatFragRecord()->getRecord()->getLoc(),
1350            "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1351      if (isZeroExtLoad())
1352        PrintFatalError(
1353            getOrigPatFragRecord()->getRecord()->getLoc(),
1354            "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1355      if (isNonTruncStore())
1356        PrintFatalError(
1357            getOrigPatFragRecord()->getRecord()->getLoc(),
1358            "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1359      if (isTruncStore())
1360        PrintFatalError(
1361            getOrigPatFragRecord()->getRecord()->getLoc(),
1362            "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1363      if (getMemoryVT())
1364        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1365                        "MemoryVT cannot be used with ImmLeaf or its subclasses");
1366      if (getScalarMemoryVT())
1367        PrintFatalError(
1368            getOrigPatFragRecord()->getRecord()->getLoc(),
1369            "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1370  
1371      std::string Result = ("    " + getImmType() + " Imm = ").str();
1372      if (immCodeUsesAPFloat())
1373        Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1374      else if (immCodeUsesAPInt())
1375        Result += "Node->getAsAPIntVal();\n";
1376      else
1377        Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1378      return Result + ImmCode;
1379    }
1380  
1381    // Handle arbitrary node predicates.
1382    assert(hasPredCode() && "Don't have any predicate code!");
1383  
1384    // If this is using PatFrags, there are multiple trees to search. They should
1385    // all have the same class.  FIXME: Is there a way to find a common
1386    // superclass?
1387    StringRef ClassName;
1388    for (const auto &Tree : PatFragRec->getTrees()) {
1389      StringRef TreeClassName;
1390      if (Tree->isLeaf())
1391        TreeClassName = "SDNode";
1392      else {
1393        Record *Op = Tree->getOperator();
1394        const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1395        TreeClassName = Info.getSDClassName();
1396      }
1397  
1398      if (ClassName.empty())
1399        ClassName = TreeClassName;
1400      else if (ClassName != TreeClassName) {
1401        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1402                        "PatFrags trees do not have consistent class");
1403      }
1404    }
1405  
1406    std::string Result;
1407    if (ClassName == "SDNode")
1408      Result = "    SDNode *N = Node;\n";
1409    else
1410      Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1411  
1412    return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1413  }
1414  
1415  //===----------------------------------------------------------------------===//
1416  // PatternToMatch implementation
1417  //
1418  
1419  static bool isImmAllOnesAllZerosMatch(const TreePatternNode &P) {
1420    if (!P.isLeaf())
1421      return false;
1422    DefInit *DI = dyn_cast<DefInit>(P.getLeafValue());
1423    if (!DI)
1424      return false;
1425  
1426    Record *R = DI->getDef();
1427    return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1428  }
1429  
1430  /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1431  /// patterns before small ones.  This is used to determine the size of a
1432  /// pattern.
1433  static unsigned getPatternSize(const TreePatternNode &P,
1434                                 const CodeGenDAGPatterns &CGP) {
1435    unsigned Size = 3; // The node itself.
1436    // If the root node is a ConstantSDNode, increases its size.
1437    // e.g. (set R32:$dst, 0).
1438    if (P.isLeaf() && isa<IntInit>(P.getLeafValue()))
1439      Size += 2;
1440  
1441    if (const ComplexPattern *AM = P.getComplexPatternInfo(CGP)) {
1442      Size += AM->getComplexity();
1443      // We don't want to count any children twice, so return early.
1444      return Size;
1445    }
1446  
1447    // If this node has some predicate function that must match, it adds to the
1448    // complexity of this node.
1449    if (!P.getPredicateCalls().empty())
1450      ++Size;
1451  
1452    // Count children in the count if they are also nodes.
1453    for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i) {
1454      const TreePatternNode &Child = P.getChild(i);
1455      if (!Child.isLeaf() && Child.getNumTypes()) {
1456        const TypeSetByHwMode &T0 = Child.getExtType(0);
1457        // At this point, all variable type sets should be simple, i.e. only
1458        // have a default mode.
1459        if (T0.getMachineValueType() != MVT::Other) {
1460          Size += getPatternSize(Child, CGP);
1461          continue;
1462        }
1463      }
1464      if (Child.isLeaf()) {
1465        if (isa<IntInit>(Child.getLeafValue()))
1466          Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1467        else if (Child.getComplexPatternInfo(CGP))
1468          Size += getPatternSize(Child, CGP);
1469        else if (isImmAllOnesAllZerosMatch(Child))
1470          Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1471        else if (!Child.getPredicateCalls().empty())
1472          ++Size;
1473      }
1474    }
1475  
1476    return Size;
1477  }
1478  
1479  /// Compute the complexity metric for the input pattern.  This roughly
1480  /// corresponds to the number of nodes that are covered.
1481  int PatternToMatch::getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1482    return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1483  }
1484  
1485  void PatternToMatch::getPredicateRecords(
1486      SmallVectorImpl<Record *> &PredicateRecs) const {
1487    for (Init *I : Predicates->getValues()) {
1488      if (DefInit *Pred = dyn_cast<DefInit>(I)) {
1489        Record *Def = Pred->getDef();
1490        if (!Def->isSubClassOf("Predicate")) {
1491  #ifndef NDEBUG
1492          Def->dump();
1493  #endif
1494          llvm_unreachable("Unknown predicate type!");
1495        }
1496        PredicateRecs.push_back(Def);
1497      }
1498    }
1499    // Sort so that different orders get canonicalized to the same string.
1500    llvm::sort(PredicateRecs, LessRecord());
1501    // Remove duplicate predicates.
1502    PredicateRecs.erase(llvm::unique(PredicateRecs), PredicateRecs.end());
1503  }
1504  
1505  /// getPredicateCheck - Return a single string containing all of this
1506  /// pattern's predicates concatenated with "&&" operators.
1507  ///
1508  std::string PatternToMatch::getPredicateCheck() const {
1509    SmallVector<Record *, 4> PredicateRecs;
1510    getPredicateRecords(PredicateRecs);
1511  
1512    SmallString<128> PredicateCheck;
1513    raw_svector_ostream OS(PredicateCheck);
1514    ListSeparator LS(" && ");
1515    for (Record *Pred : PredicateRecs) {
1516      StringRef CondString = Pred->getValueAsString("CondString");
1517      if (CondString.empty())
1518        continue;
1519      OS << LS << '(' << CondString << ')';
1520    }
1521  
1522    if (!HwModeFeatures.empty())
1523      OS << LS << HwModeFeatures;
1524  
1525    return std::string(PredicateCheck);
1526  }
1527  
1528  //===----------------------------------------------------------------------===//
1529  // SDTypeConstraint implementation
1530  //
1531  
1532  SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1533    OperandNo = R->getValueAsInt("OperandNum");
1534  
1535    if (R->isSubClassOf("SDTCisVT")) {
1536      ConstraintType = SDTCisVT;
1537      VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1538      for (const auto &P : VVT)
1539        if (P.second == MVT::isVoid)
1540          PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1541    } else if (R->isSubClassOf("SDTCisPtrTy")) {
1542      ConstraintType = SDTCisPtrTy;
1543    } else if (R->isSubClassOf("SDTCisInt")) {
1544      ConstraintType = SDTCisInt;
1545    } else if (R->isSubClassOf("SDTCisFP")) {
1546      ConstraintType = SDTCisFP;
1547    } else if (R->isSubClassOf("SDTCisVec")) {
1548      ConstraintType = SDTCisVec;
1549    } else if (R->isSubClassOf("SDTCisSameAs")) {
1550      ConstraintType = SDTCisSameAs;
1551      x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1552    } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1553      ConstraintType = SDTCisVTSmallerThanOp;
1554      x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1555          R->getValueAsInt("OtherOperandNum");
1556    } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1557      ConstraintType = SDTCisOpSmallerThanOp;
1558      x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1559          R->getValueAsInt("BigOperandNum");
1560    } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1561      ConstraintType = SDTCisEltOfVec;
1562      x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1563    } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1564      ConstraintType = SDTCisSubVecOfVec;
1565      x.SDTCisSubVecOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1566    } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1567      ConstraintType = SDTCVecEltisVT;
1568      VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1569      for (const auto &P : VVT) {
1570        MVT T = P.second;
1571        if (T.isVector())
1572          PrintFatalError(R->getLoc(),
1573                          "Cannot use vector type as SDTCVecEltisVT");
1574        if (!T.isInteger() && !T.isFloatingPoint())
1575          PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1576                                       "as SDTCVecEltisVT");
1577      }
1578    } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1579      ConstraintType = SDTCisSameNumEltsAs;
1580      x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1581          R->getValueAsInt("OtherOperandNum");
1582    } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1583      ConstraintType = SDTCisSameSizeAs;
1584      x.SDTCisSameSizeAs_Info.OtherOperandNum =
1585          R->getValueAsInt("OtherOperandNum");
1586    } else {
1587      PrintFatalError(R->getLoc(),
1588                      "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1589    }
1590  }
1591  
1592  /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1593  /// N, and the result number in ResNo.
1594  static TreePatternNode &getOperandNum(unsigned OpNo, TreePatternNode &N,
1595                                        const SDNodeInfo &NodeInfo,
1596                                        unsigned &ResNo) {
1597    unsigned NumResults = NodeInfo.getNumResults();
1598    if (OpNo < NumResults) {
1599      ResNo = OpNo;
1600      return N;
1601    }
1602  
1603    OpNo -= NumResults;
1604  
1605    if (OpNo >= N.getNumChildren()) {
1606      std::string S;
1607      raw_string_ostream OS(S);
1608      OS << "Invalid operand number in type constraint " << (OpNo + NumResults)
1609         << " ";
1610      N.print(OS);
1611      PrintFatalError(S);
1612    }
1613  
1614    return N.getChild(OpNo);
1615  }
1616  
1617  /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1618  /// constraint to the nodes operands.  This returns true if it makes a
1619  /// change, false otherwise.  If a type contradiction is found, flag an error.
1620  bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode &N,
1621                                             const SDNodeInfo &NodeInfo,
1622                                             TreePattern &TP) const {
1623    if (TP.hasError())
1624      return false;
1625  
1626    unsigned ResNo = 0; // The result number being referenced.
1627    TreePatternNode &NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1628    TypeInfer &TI = TP.getInfer();
1629  
1630    switch (ConstraintType) {
1631    case SDTCisVT:
1632      // Operand must be a particular type.
1633      return NodeToApply.UpdateNodeType(ResNo, VVT, TP);
1634    case SDTCisPtrTy:
1635      // Operand must be same as target pointer type.
1636      return NodeToApply.UpdateNodeType(ResNo, MVT::iPTR, TP);
1637    case SDTCisInt:
1638      // Require it to be one of the legal integer VTs.
1639      return TI.EnforceInteger(NodeToApply.getExtType(ResNo));
1640    case SDTCisFP:
1641      // Require it to be one of the legal fp VTs.
1642      return TI.EnforceFloatingPoint(NodeToApply.getExtType(ResNo));
1643    case SDTCisVec:
1644      // Require it to be one of the legal vector VTs.
1645      return TI.EnforceVector(NodeToApply.getExtType(ResNo));
1646    case SDTCisSameAs: {
1647      unsigned OResNo = 0;
1648      TreePatternNode &OtherNode =
1649          getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1650      return (int)NodeToApply.UpdateNodeType(ResNo, OtherNode.getExtType(OResNo),
1651                                             TP) |
1652             (int)OtherNode.UpdateNodeType(OResNo, NodeToApply.getExtType(ResNo),
1653                                           TP);
1654    }
1655    case SDTCisVTSmallerThanOp: {
1656      // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1657      // have an integer type that is smaller than the VT.
1658      if (!NodeToApply.isLeaf() || !isa<DefInit>(NodeToApply.getLeafValue()) ||
1659          !cast<DefInit>(NodeToApply.getLeafValue())
1660               ->getDef()
1661               ->isSubClassOf("ValueType")) {
1662        TP.error(N.getOperator()->getName() + " expects a VT operand!");
1663        return false;
1664      }
1665      DefInit *DI = cast<DefInit>(NodeToApply.getLeafValue());
1666      const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1667      auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1668      TypeSetByHwMode TypeListTmp(VVT);
1669  
1670      unsigned OResNo = 0;
1671      TreePatternNode &OtherNode = getOperandNum(
1672          x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, OResNo);
1673  
1674      return TI.EnforceSmallerThan(TypeListTmp, OtherNode.getExtType(OResNo),
1675                                   /*SmallIsVT*/ true);
1676    }
1677    case SDTCisOpSmallerThanOp: {
1678      unsigned BResNo = 0;
1679      TreePatternNode &BigOperand = getOperandNum(
1680          x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, BResNo);
1681      return TI.EnforceSmallerThan(NodeToApply.getExtType(ResNo),
1682                                   BigOperand.getExtType(BResNo));
1683    }
1684    case SDTCisEltOfVec: {
1685      unsigned VResNo = 0;
1686      TreePatternNode &VecOperand = getOperandNum(
1687          x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo);
1688      // Filter vector types out of VecOperand that don't have the right element
1689      // type.
1690      return TI.EnforceVectorEltTypeIs(VecOperand.getExtType(VResNo),
1691                                       NodeToApply.getExtType(ResNo));
1692    }
1693    case SDTCisSubVecOfVec: {
1694      unsigned VResNo = 0;
1695      TreePatternNode &BigVecOperand = getOperandNum(
1696          x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo);
1697  
1698      // Filter vector types out of BigVecOperand that don't have the
1699      // right subvector type.
1700      return TI.EnforceVectorSubVectorTypeIs(BigVecOperand.getExtType(VResNo),
1701                                             NodeToApply.getExtType(ResNo));
1702    }
1703    case SDTCVecEltisVT: {
1704      return TI.EnforceVectorEltTypeIs(NodeToApply.getExtType(ResNo), VVT);
1705    }
1706    case SDTCisSameNumEltsAs: {
1707      unsigned OResNo = 0;
1708      TreePatternNode &OtherNode = getOperandNum(
1709          x.SDTCisSameNumEltsAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1710      return TI.EnforceSameNumElts(OtherNode.getExtType(OResNo),
1711                                   NodeToApply.getExtType(ResNo));
1712    }
1713    case SDTCisSameSizeAs: {
1714      unsigned OResNo = 0;
1715      TreePatternNode &OtherNode = getOperandNum(
1716          x.SDTCisSameSizeAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1717      return TI.EnforceSameSize(OtherNode.getExtType(OResNo),
1718                                NodeToApply.getExtType(ResNo));
1719    }
1720    }
1721    llvm_unreachable("Invalid ConstraintType!");
1722  }
1723  
1724  // Update the node type to match an instruction operand or result as specified
1725  // in the ins or outs lists on the instruction definition. Return true if the
1726  // type was actually changed.
1727  bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand,
1728                                               TreePattern &TP) {
1729    // The 'unknown' operand indicates that types should be inferred from the
1730    // context.
1731    if (Operand->isSubClassOf("unknown_class"))
1732      return false;
1733  
1734    // The Operand class specifies a type directly.
1735    if (Operand->isSubClassOf("Operand")) {
1736      Record *R = Operand->getValueAsDef("Type");
1737      const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1738      return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1739    }
1740  
1741    // PointerLikeRegClass has a type that is determined at runtime.
1742    if (Operand->isSubClassOf("PointerLikeRegClass"))
1743      return UpdateNodeType(ResNo, MVT::iPTR, TP);
1744  
1745    // Both RegisterClass and RegisterOperand operands derive their types from a
1746    // register class def.
1747    Record *RC = nullptr;
1748    if (Operand->isSubClassOf("RegisterClass"))
1749      RC = Operand;
1750    else if (Operand->isSubClassOf("RegisterOperand"))
1751      RC = Operand->getValueAsDef("RegClass");
1752  
1753    assert(RC && "Unknown operand type");
1754    CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1755    return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1756  }
1757  
1758  bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1759    for (unsigned i = 0, e = Types.size(); i != e; ++i)
1760      if (!TP.getInfer().isConcrete(Types[i], true))
1761        return true;
1762    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1763      if (getChild(i).ContainsUnresolvedType(TP))
1764        return true;
1765    return false;
1766  }
1767  
1768  bool TreePatternNode::hasProperTypeByHwMode() const {
1769    for (const TypeSetByHwMode &S : Types)
1770      if (!S.isSimple())
1771        return true;
1772    for (const TreePatternNodePtr &C : Children)
1773      if (C->hasProperTypeByHwMode())
1774        return true;
1775    return false;
1776  }
1777  
1778  bool TreePatternNode::hasPossibleType() const {
1779    for (const TypeSetByHwMode &S : Types)
1780      if (!S.isPossible())
1781        return false;
1782    for (const TreePatternNodePtr &C : Children)
1783      if (!C->hasPossibleType())
1784        return false;
1785    return true;
1786  }
1787  
1788  bool TreePatternNode::setDefaultMode(unsigned Mode) {
1789    for (TypeSetByHwMode &S : Types) {
1790      S.makeSimple(Mode);
1791      // Check if the selected mode had a type conflict.
1792      if (S.get(DefaultMode).empty())
1793        return false;
1794    }
1795    for (const TreePatternNodePtr &C : Children)
1796      if (!C->setDefaultMode(Mode))
1797        return false;
1798    return true;
1799  }
1800  
1801  //===----------------------------------------------------------------------===//
1802  // SDNodeInfo implementation
1803  //
1804  SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1805    EnumName = R->getValueAsString("Opcode");
1806    SDClassName = R->getValueAsString("SDClass");
1807    Record *TypeProfile = R->getValueAsDef("TypeProfile");
1808    NumResults = TypeProfile->getValueAsInt("NumResults");
1809    NumOperands = TypeProfile->getValueAsInt("NumOperands");
1810  
1811    // Parse the properties.
1812    Properties = parseSDPatternOperatorProperties(R);
1813  
1814    // Parse the type constraints.
1815    std::vector<Record *> ConstraintList =
1816        TypeProfile->getValueAsListOfDefs("Constraints");
1817    for (Record *R : ConstraintList)
1818      TypeConstraints.emplace_back(R, CGH);
1819  }
1820  
1821  /// getKnownType - If the type constraints on this node imply a fixed type
1822  /// (e.g. all stores return void, etc), then return it as an
1823  /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1824  MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1825    unsigned NumResults = getNumResults();
1826    assert(NumResults <= 1 &&
1827           "We only work with nodes with zero or one result so far!");
1828    assert(ResNo == 0 && "Only handles single result nodes so far");
1829  
1830    for (const SDTypeConstraint &Constraint : TypeConstraints) {
1831      // Make sure that this applies to the correct node result.
1832      if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1833        continue;
1834  
1835      switch (Constraint.ConstraintType) {
1836      default:
1837        break;
1838      case SDTypeConstraint::SDTCisVT:
1839        if (Constraint.VVT.isSimple())
1840          return Constraint.VVT.getSimple().SimpleTy;
1841        break;
1842      case SDTypeConstraint::SDTCisPtrTy:
1843        return MVT::iPTR;
1844      }
1845    }
1846    return MVT::Other;
1847  }
1848  
1849  //===----------------------------------------------------------------------===//
1850  // TreePatternNode implementation
1851  //
1852  
1853  static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1854    if (Operator->getName() == "set" || Operator->getName() == "implicit")
1855      return 0; // All return nothing.
1856  
1857    if (Operator->isSubClassOf("Intrinsic"))
1858      return CDP.getIntrinsic(Operator).IS.RetTys.size();
1859  
1860    if (Operator->isSubClassOf("SDNode"))
1861      return CDP.getSDNodeInfo(Operator).getNumResults();
1862  
1863    if (Operator->isSubClassOf("PatFrags")) {
1864      // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1865      // the forward reference case where one pattern fragment references another
1866      // before it is processed.
1867      if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1868        // The number of results of a fragment with alternative records is the
1869        // maximum number of results across all alternatives.
1870        unsigned NumResults = 0;
1871        for (const auto &T : PFRec->getTrees())
1872          NumResults = std::max(NumResults, T->getNumTypes());
1873        return NumResults;
1874      }
1875  
1876      ListInit *LI = Operator->getValueAsListInit("Fragments");
1877      assert(LI && "Invalid Fragment");
1878      unsigned NumResults = 0;
1879      for (Init *I : LI->getValues()) {
1880        Record *Op = nullptr;
1881        if (DagInit *Dag = dyn_cast<DagInit>(I))
1882          if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1883            Op = DI->getDef();
1884        assert(Op && "Invalid Fragment");
1885        NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1886      }
1887      return NumResults;
1888    }
1889  
1890    if (Operator->isSubClassOf("Instruction")) {
1891      CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1892  
1893      unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1894  
1895      // Subtract any defaulted outputs.
1896      for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1897        Record *OperandNode = InstInfo.Operands[i].Rec;
1898  
1899        if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1900            !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1901          --NumDefsToAdd;
1902      }
1903  
1904      // Add on one implicit def if it has a resolvable type.
1905      if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=
1906          MVT::Other)
1907        ++NumDefsToAdd;
1908      return NumDefsToAdd;
1909    }
1910  
1911    if (Operator->isSubClassOf("SDNodeXForm"))
1912      return 1; // FIXME: Generalize SDNodeXForm
1913  
1914    if (Operator->isSubClassOf("ValueType"))
1915      return 1; // A type-cast of one result.
1916  
1917    if (Operator->isSubClassOf("ComplexPattern"))
1918      return 1;
1919  
1920    errs() << *Operator;
1921    PrintFatalError("Unhandled node in GetNumNodeResults");
1922  }
1923  
1924  void TreePatternNode::print(raw_ostream &OS) const {
1925    if (isLeaf())
1926      OS << *getLeafValue();
1927    else
1928      OS << '(' << getOperator()->getName();
1929  
1930    for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1931      OS << ':';
1932      getExtType(i).writeToStream(OS);
1933    }
1934  
1935    if (!isLeaf()) {
1936      if (getNumChildren() != 0) {
1937        OS << " ";
1938        ListSeparator LS;
1939        for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1940          OS << LS;
1941          getChild(i).print(OS);
1942        }
1943      }
1944      OS << ")";
1945    }
1946  
1947    for (const TreePredicateCall &Pred : PredicateCalls) {
1948      OS << "<<P:";
1949      if (Pred.Scope)
1950        OS << Pred.Scope << ":";
1951      OS << Pred.Fn.getFnName() << ">>";
1952    }
1953    if (TransformFn)
1954      OS << "<<X:" << TransformFn->getName() << ">>";
1955    if (!getName().empty())
1956      OS << ":$" << getName();
1957  
1958    for (const ScopedName &Name : NamesAsPredicateArg)
1959      OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1960  }
1961  void TreePatternNode::dump() const { print(errs()); }
1962  
1963  /// isIsomorphicTo - Return true if this node is recursively
1964  /// isomorphic to the specified node.  For this comparison, the node's
1965  /// entire state is considered. The assigned name is ignored, since
1966  /// nodes with differing names are considered isomorphic. However, if
1967  /// the assigned name is present in the dependent variable set, then
1968  /// the assigned name is considered significant and the node is
1969  /// isomorphic if the names match.
1970  bool TreePatternNode::isIsomorphicTo(const TreePatternNode &N,
1971                                       const MultipleUseVarSet &DepVars) const {
1972    if (&N == this)
1973      return true;
1974    if (N.isLeaf() != isLeaf())
1975      return false;
1976  
1977    // Check operator of non-leaves early since it can be cheaper than checking
1978    // types.
1979    if (!isLeaf())
1980      if (N.getOperator() != getOperator() ||
1981          N.getNumChildren() != getNumChildren())
1982        return false;
1983  
1984    if (getExtTypes() != N.getExtTypes() ||
1985        getPredicateCalls() != N.getPredicateCalls() ||
1986        getTransformFn() != N.getTransformFn())
1987      return false;
1988  
1989    if (isLeaf()) {
1990      if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1991        if (DefInit *NDI = dyn_cast<DefInit>(N.getLeafValue())) {
1992          return ((DI->getDef() == NDI->getDef()) &&
1993                  (!DepVars.contains(getName()) || getName() == N.getName()));
1994        }
1995      }
1996      return getLeafValue() == N.getLeafValue();
1997    }
1998  
1999    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2000      if (!getChild(i).isIsomorphicTo(N.getChild(i), DepVars))
2001        return false;
2002    return true;
2003  }
2004  
2005  /// clone - Make a copy of this tree and all of its children.
2006  ///
2007  TreePatternNodePtr TreePatternNode::clone() const {
2008    TreePatternNodePtr New;
2009    if (isLeaf()) {
2010      New = makeIntrusiveRefCnt<TreePatternNode>(getLeafValue(), getNumTypes());
2011    } else {
2012      std::vector<TreePatternNodePtr> CChildren;
2013      CChildren.reserve(Children.size());
2014      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2015        CChildren.push_back(getChild(i).clone());
2016      New = makeIntrusiveRefCnt<TreePatternNode>(
2017          getOperator(), std::move(CChildren), getNumTypes());
2018    }
2019    New->setName(getName());
2020    New->setNamesAsPredicateArg(getNamesAsPredicateArg());
2021    New->Types = Types;
2022    New->setPredicateCalls(getPredicateCalls());
2023    New->setGISelFlagsRecord(getGISelFlagsRecord());
2024    New->setTransformFn(getTransformFn());
2025    return New;
2026  }
2027  
2028  /// RemoveAllTypes - Recursively strip all the types of this tree.
2029  void TreePatternNode::RemoveAllTypes() {
2030    // Reset to unknown type.
2031    std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
2032    if (isLeaf())
2033      return;
2034    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2035      getChild(i).RemoveAllTypes();
2036  }
2037  
2038  /// SubstituteFormalArguments - Replace the formal arguments in this tree
2039  /// with actual values specified by ArgMap.
2040  void TreePatternNode::SubstituteFormalArguments(
2041      std::map<std::string, TreePatternNodePtr> &ArgMap) {
2042    if (isLeaf())
2043      return;
2044  
2045    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2046      TreePatternNode &Child = getChild(i);
2047      if (Child.isLeaf()) {
2048        Init *Val = Child.getLeafValue();
2049        // Note that, when substituting into an output pattern, Val might be an
2050        // UnsetInit.
2051        if (isa<UnsetInit>(Val) ||
2052            (isa<DefInit>(Val) &&
2053             cast<DefInit>(Val)->getDef()->getName() == "node")) {
2054          // We found a use of a formal argument, replace it with its value.
2055          TreePatternNodePtr NewChild = ArgMap[Child.getName()];
2056          assert(NewChild && "Couldn't find formal argument!");
2057          assert((Child.getPredicateCalls().empty() ||
2058                  NewChild->getPredicateCalls() == Child.getPredicateCalls()) &&
2059                 "Non-empty child predicate clobbered!");
2060          setChild(i, std::move(NewChild));
2061        }
2062      } else {
2063        getChild(i).SubstituteFormalArguments(ArgMap);
2064      }
2065    }
2066  }
2067  
2068  /// InlinePatternFragments - If this pattern refers to any pattern
2069  /// fragments, return the set of inlined versions (this can be more than
2070  /// one if a PatFrags record has multiple alternatives).
2071  void TreePatternNode::InlinePatternFragments(
2072      TreePattern &TP, std::vector<TreePatternNodePtr> &OutAlternatives) {
2073  
2074    if (TP.hasError())
2075      return;
2076  
2077    if (isLeaf()) {
2078      OutAlternatives.push_back(this); // nothing to do.
2079      return;
2080    }
2081  
2082    Record *Op = getOperator();
2083  
2084    if (!Op->isSubClassOf("PatFrags")) {
2085      if (getNumChildren() == 0) {
2086        OutAlternatives.push_back(this);
2087        return;
2088      }
2089  
2090      // Recursively inline children nodes.
2091      std::vector<std::vector<TreePatternNodePtr>> ChildAlternatives(
2092          getNumChildren());
2093      for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2094        TreePatternNodePtr Child = getChildShared(i);
2095        Child->InlinePatternFragments(TP, ChildAlternatives[i]);
2096        // If there are no alternatives for any child, there are no
2097        // alternatives for this expression as whole.
2098        if (ChildAlternatives[i].empty())
2099          return;
2100  
2101        assert((Child->getPredicateCalls().empty() ||
2102                llvm::all_of(ChildAlternatives[i],
2103                             [&](const TreePatternNodePtr &NewChild) {
2104                               return NewChild->getPredicateCalls() ==
2105                                      Child->getPredicateCalls();
2106                             })) &&
2107               "Non-empty child predicate clobbered!");
2108      }
2109  
2110      // The end result is an all-pairs construction of the resultant pattern.
2111      std::vector<unsigned> Idxs(ChildAlternatives.size());
2112      bool NotDone;
2113      do {
2114        // Create the variant and add it to the output list.
2115        std::vector<TreePatternNodePtr> NewChildren;
2116        NewChildren.reserve(ChildAlternatives.size());
2117        for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2118          NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2119        TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
2120            getOperator(), std::move(NewChildren), getNumTypes());
2121  
2122        // Copy over properties.
2123        R->setName(getName());
2124        R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2125        R->setPredicateCalls(getPredicateCalls());
2126        R->setGISelFlagsRecord(getGISelFlagsRecord());
2127        R->setTransformFn(getTransformFn());
2128        for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2129          R->setType(i, getExtType(i));
2130        for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2131          R->setResultIndex(i, getResultIndex(i));
2132  
2133        // Register alternative.
2134        OutAlternatives.push_back(R);
2135  
2136        // Increment indices to the next permutation by incrementing the
2137        // indices from last index backward, e.g., generate the sequence
2138        // [0, 0], [0, 1], [1, 0], [1, 1].
2139        int IdxsIdx;
2140        for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2141          if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2142            Idxs[IdxsIdx] = 0;
2143          else
2144            break;
2145        }
2146        NotDone = (IdxsIdx >= 0);
2147      } while (NotDone);
2148  
2149      return;
2150    }
2151  
2152    // Otherwise, we found a reference to a fragment.  First, look up its
2153    // TreePattern record.
2154    TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2155  
2156    // Verify that we are passing the right number of operands.
2157    if (Frag->getNumArgs() != getNumChildren()) {
2158      TP.error("'" + Op->getName() + "' fragment requires " +
2159               Twine(Frag->getNumArgs()) + " operands!");
2160      return;
2161    }
2162  
2163    TreePredicateFn PredFn(Frag);
2164    unsigned Scope = 0;
2165    if (TreePredicateFn(Frag).usesOperands())
2166      Scope = TP.getDAGPatterns().allocateScope();
2167  
2168    // Compute the map of formal to actual arguments.
2169    std::map<std::string, TreePatternNodePtr> ArgMap;
2170    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2171      TreePatternNodePtr Child = getChildShared(i);
2172      if (Scope != 0) {
2173        Child = Child->clone();
2174        Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2175      }
2176      ArgMap[Frag->getArgName(i)] = Child;
2177    }
2178  
2179    // Loop over all fragment alternatives.
2180    for (const auto &Alternative : Frag->getTrees()) {
2181      TreePatternNodePtr FragTree = Alternative->clone();
2182  
2183      if (!PredFn.isAlwaysTrue())
2184        FragTree->addPredicateCall(PredFn, Scope);
2185  
2186      // Resolve formal arguments to their actual value.
2187      if (Frag->getNumArgs())
2188        FragTree->SubstituteFormalArguments(ArgMap);
2189  
2190      // Transfer types.  Note that the resolved alternative may have fewer
2191      // (but not more) results than the PatFrags node.
2192      FragTree->setName(getName());
2193      for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2194        FragTree->UpdateNodeType(i, getExtType(i), TP);
2195  
2196      if (Op->isSubClassOf("GISelFlags"))
2197        FragTree->setGISelFlagsRecord(Op);
2198  
2199      // Transfer in the old predicates.
2200      for (const TreePredicateCall &Pred : getPredicateCalls())
2201        FragTree->addPredicateCall(Pred);
2202  
2203      // The fragment we inlined could have recursive inlining that is needed. See
2204      // if there are any pattern fragments in it and inline them as needed.
2205      FragTree->InlinePatternFragments(TP, OutAlternatives);
2206    }
2207  }
2208  
2209  /// getImplicitType - Check to see if the specified record has an implicit
2210  /// type which should be applied to it.  This will infer the type of register
2211  /// references from the register file information, for example.
2212  ///
2213  /// When Unnamed is set, return the type of a DAG operand with no name, such as
2214  /// the F8RC register class argument in:
2215  ///
2216  ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2217  ///
2218  /// When Unnamed is false, return the type of a named DAG operand such as the
2219  /// GPR:$src operand above.
2220  ///
2221  static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2222                                         bool NotRegisters, bool Unnamed,
2223                                         TreePattern &TP) {
2224    CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2225  
2226    // Check to see if this is a register operand.
2227    if (R->isSubClassOf("RegisterOperand")) {
2228      assert(ResNo == 0 && "Regoperand ref only has one result!");
2229      if (NotRegisters)
2230        return TypeSetByHwMode(); // Unknown.
2231      Record *RegClass = R->getValueAsDef("RegClass");
2232      const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2233      return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2234    }
2235  
2236    // Check to see if this is a register or a register class.
2237    if (R->isSubClassOf("RegisterClass")) {
2238      assert(ResNo == 0 && "Regclass ref only has one result!");
2239      // An unnamed register class represents itself as an i32 immediate, for
2240      // example on a COPY_TO_REGCLASS instruction.
2241      if (Unnamed)
2242        return TypeSetByHwMode(MVT::i32);
2243  
2244      // In a named operand, the register class provides the possible set of
2245      // types.
2246      if (NotRegisters)
2247        return TypeSetByHwMode(); // Unknown.
2248      const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2249      return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2250    }
2251  
2252    if (R->isSubClassOf("PatFrags")) {
2253      assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2254      // Pattern fragment types will be resolved when they are inlined.
2255      return TypeSetByHwMode(); // Unknown.
2256    }
2257  
2258    if (R->isSubClassOf("Register")) {
2259      assert(ResNo == 0 && "Registers only produce one result!");
2260      if (NotRegisters)
2261        return TypeSetByHwMode(); // Unknown.
2262      const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2263      return TypeSetByHwMode(T.getRegisterVTs(R));
2264    }
2265  
2266    if (R->isSubClassOf("SubRegIndex")) {
2267      assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2268      return TypeSetByHwMode(MVT::i32);
2269    }
2270  
2271    if (R->isSubClassOf("ValueType")) {
2272      assert(ResNo == 0 && "This node only has one result!");
2273      // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2274      //
2275      //   (sext_inreg GPR:$src, i16)
2276      //                         ~~~
2277      if (Unnamed)
2278        return TypeSetByHwMode(MVT::Other);
2279      // With a name, the ValueType simply provides the type of the named
2280      // variable.
2281      //
2282      //   (sext_inreg i32:$src, i16)
2283      //               ~~~~~~~~
2284      if (NotRegisters)
2285        return TypeSetByHwMode(); // Unknown.
2286      const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2287      return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2288    }
2289  
2290    if (R->isSubClassOf("CondCode")) {
2291      assert(ResNo == 0 && "This node only has one result!");
2292      // Using a CondCodeSDNode.
2293      return TypeSetByHwMode(MVT::Other);
2294    }
2295  
2296    if (R->isSubClassOf("ComplexPattern")) {
2297      assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2298      if (NotRegisters)
2299        return TypeSetByHwMode(); // Unknown.
2300      Record *T = CDP.getComplexPattern(R).getValueType();
2301      const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2302      return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2303    }
2304    if (R->isSubClassOf("PointerLikeRegClass")) {
2305      assert(ResNo == 0 && "Regclass can only have one result!");
2306      TypeSetByHwMode VTS(MVT::iPTR);
2307      TP.getInfer().expandOverloads(VTS);
2308      return VTS;
2309    }
2310  
2311    if (R->getName() == "node" || R->getName() == "srcvalue" ||
2312        R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2313        R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2314      // Placeholder.
2315      return TypeSetByHwMode(); // Unknown.
2316    }
2317  
2318    if (R->isSubClassOf("Operand")) {
2319      const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2320      Record *T = R->getValueAsDef("Type");
2321      return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2322    }
2323  
2324    TP.error("Unknown node flavor used in pattern: " + R->getName());
2325    return TypeSetByHwMode(MVT::Other);
2326  }
2327  
2328  /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2329  /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2330  const CodeGenIntrinsic *
2331  TreePatternNode::getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2332    if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2333        getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2334        getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2335      return nullptr;
2336  
2337    unsigned IID = cast<IntInit>(getChild(0).getLeafValue())->getValue();
2338    return &CDP.getIntrinsicInfo(IID);
2339  }
2340  
2341  /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2342  /// return the ComplexPattern information, otherwise return null.
2343  const ComplexPattern *
2344  TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2345    Record *Rec;
2346    if (isLeaf()) {
2347      DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2348      if (!DI)
2349        return nullptr;
2350      Rec = DI->getDef();
2351    } else
2352      Rec = getOperator();
2353  
2354    if (!Rec->isSubClassOf("ComplexPattern"))
2355      return nullptr;
2356    return &CGP.getComplexPattern(Rec);
2357  }
2358  
2359  unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2360    // A ComplexPattern specifically declares how many results it fills in.
2361    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2362      return CP->getNumOperands();
2363  
2364    // If MIOperandInfo is specified, that gives the count.
2365    if (isLeaf()) {
2366      DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2367      if (DI && DI->getDef()->isSubClassOf("Operand")) {
2368        DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2369        if (MIOps->getNumArgs())
2370          return MIOps->getNumArgs();
2371      }
2372    }
2373  
2374    // Otherwise there is just one result.
2375    return 1;
2376  }
2377  
2378  /// NodeHasProperty - Return true if this node has the specified property.
2379  bool TreePatternNode::NodeHasProperty(SDNP Property,
2380                                        const CodeGenDAGPatterns &CGP) const {
2381    if (isLeaf()) {
2382      if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2383        return CP->hasProperty(Property);
2384  
2385      return false;
2386    }
2387  
2388    if (Property != SDNPHasChain) {
2389      // The chain proprety is already present on the different intrinsic node
2390      // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2391      // on the intrinsic. Anything else is specific to the individual intrinsic.
2392      if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2393        return Int->hasProperty(Property);
2394    }
2395  
2396    if (!getOperator()->isSubClassOf("SDPatternOperator"))
2397      return false;
2398  
2399    return CGP.getSDNodeInfo(getOperator()).hasProperty(Property);
2400  }
2401  
2402  /// TreeHasProperty - Return true if any node in this tree has the specified
2403  /// property.
2404  bool TreePatternNode::TreeHasProperty(SDNP Property,
2405                                        const CodeGenDAGPatterns &CGP) const {
2406    if (NodeHasProperty(Property, CGP))
2407      return true;
2408    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2409      if (getChild(i).TreeHasProperty(Property, CGP))
2410        return true;
2411    return false;
2412  }
2413  
2414  /// isCommutativeIntrinsic - Return true if the node corresponds to a
2415  /// commutative intrinsic.
2416  bool TreePatternNode::isCommutativeIntrinsic(
2417      const CodeGenDAGPatterns &CDP) const {
2418    if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2419      return Int->isCommutative;
2420    return false;
2421  }
2422  
2423  static bool isOperandClass(const TreePatternNode &N, StringRef Class) {
2424    if (!N.isLeaf())
2425      return N.getOperator()->isSubClassOf(Class);
2426  
2427    DefInit *DI = dyn_cast<DefInit>(N.getLeafValue());
2428    if (DI && DI->getDef()->isSubClassOf(Class))
2429      return true;
2430  
2431    return false;
2432  }
2433  
2434  static void emitTooManyOperandsError(TreePattern &TP, StringRef InstName,
2435                                       unsigned Expected, unsigned Actual) {
2436    TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2437             " operands but expected only " + Twine(Expected) + "!");
2438  }
2439  
2440  static void emitTooFewOperandsError(TreePattern &TP, StringRef InstName,
2441                                      unsigned Actual) {
2442    TP.error("Instruction '" + InstName + "' expects more than the provided " +
2443             Twine(Actual) + " operands!");
2444  }
2445  
2446  /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2447  /// this node and its children in the tree.  This returns true if it makes a
2448  /// change, false otherwise.  If a type contradiction is found, flag an error.
2449  bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2450    if (TP.hasError())
2451      return false;
2452  
2453    CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2454    if (isLeaf()) {
2455      if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2456        // If it's a regclass or something else known, include the type.
2457        bool MadeChange = false;
2458        for (unsigned i = 0, e = Types.size(); i != e; ++i)
2459          MadeChange |= UpdateNodeType(
2460              i, getImplicitType(DI->getDef(), i, NotRegisters, !hasName(), TP),
2461              TP);
2462        return MadeChange;
2463      }
2464  
2465      if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2466        assert(Types.size() == 1 && "Invalid IntInit");
2467  
2468        // Int inits are always integers. :)
2469        bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2470  
2471        if (!TP.getInfer().isConcrete(Types[0], false))
2472          return MadeChange;
2473  
2474        ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2475        for (auto &P : VVT) {
2476          MVT::SimpleValueType VT = P.second.SimpleTy;
2477          if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2478            continue;
2479          unsigned Size = MVT(VT).getFixedSizeInBits();
2480          // Make sure that the value is representable for this type.
2481          if (Size >= 32)
2482            continue;
2483          // Check that the value doesn't use more bits than we have. It must
2484          // either be a sign- or zero-extended equivalent of the original.
2485          int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2486          if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2487              SignBitAndAbove == 1)
2488            continue;
2489  
2490          TP.error("Integer value '" + Twine(II->getValue()) +
2491                   "' is out of range for type '" + getEnumName(VT) + "'!");
2492          break;
2493        }
2494        return MadeChange;
2495      }
2496  
2497      return false;
2498    }
2499  
2500    if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2501      bool MadeChange = false;
2502  
2503      // Apply the result type to the node.
2504      unsigned NumRetVTs = Int->IS.RetTys.size();
2505      unsigned NumParamVTs = Int->IS.ParamTys.size();
2506  
2507      for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2508        MadeChange |= UpdateNodeType(
2509            i, getValueType(Int->IS.RetTys[i]->getValueAsDef("VT")), TP);
2510  
2511      if (getNumChildren() != NumParamVTs + 1) {
2512        TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2513                 " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2514        return false;
2515      }
2516  
2517      // Apply type info to the intrinsic ID.
2518      MadeChange |= getChild(0).UpdateNodeType(0, MVT::iPTR, TP);
2519  
2520      for (unsigned i = 0, e = getNumChildren() - 1; i != e; ++i) {
2521        MadeChange |= getChild(i + 1).ApplyTypeConstraints(TP, NotRegisters);
2522  
2523        MVT::SimpleValueType OpVT =
2524            getValueType(Int->IS.ParamTys[i]->getValueAsDef("VT"));
2525        assert(getChild(i + 1).getNumTypes() == 1 && "Unhandled case");
2526        MadeChange |= getChild(i + 1).UpdateNodeType(0, OpVT, TP);
2527      }
2528      return MadeChange;
2529    }
2530  
2531    if (getOperator()->isSubClassOf("SDNode")) {
2532      const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2533  
2534      // Check that the number of operands is sane.  Negative operands -> varargs.
2535      if (NI.getNumOperands() >= 0 &&
2536          getNumChildren() != (unsigned)NI.getNumOperands()) {
2537        TP.error(getOperator()->getName() + " node requires exactly " +
2538                 Twine(NI.getNumOperands()) + " operands!");
2539        return false;
2540      }
2541  
2542      bool MadeChange = false;
2543      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2544        MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2545      MadeChange |= NI.ApplyTypeConstraints(*this, TP);
2546      return MadeChange;
2547    }
2548  
2549    if (getOperator()->isSubClassOf("Instruction")) {
2550      const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2551      CodeGenInstruction &InstInfo =
2552          CDP.getTargetInfo().getInstruction(getOperator());
2553  
2554      bool MadeChange = false;
2555  
2556      // Apply the result types to the node, these come from the things in the
2557      // (outs) list of the instruction.
2558      unsigned NumResultsToAdd =
2559          std::min(InstInfo.Operands.NumDefs, Inst.getNumResults());
2560      for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2561        MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2562  
2563      // If the instruction has implicit defs, we apply the first one as a result.
2564      // FIXME: This sucks, it should apply all implicit defs.
2565      if (!InstInfo.ImplicitDefs.empty()) {
2566        unsigned ResNo = NumResultsToAdd;
2567  
2568        // FIXME: Generalize to multiple possible types and multiple possible
2569        // ImplicitDefs.
2570        MVT::SimpleValueType VT =
2571            InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2572  
2573        if (VT != MVT::Other)
2574          MadeChange |= UpdateNodeType(ResNo, VT, TP);
2575      }
2576  
2577      // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2578      // be the same.
2579      if (getOperator()->getName() == "INSERT_SUBREG") {
2580        assert(getChild(0).getNumTypes() == 1 && "FIXME: Unhandled");
2581        MadeChange |= UpdateNodeType(0, getChild(0).getExtType(0), TP);
2582        MadeChange |= getChild(0).UpdateNodeType(0, getExtType(0), TP);
2583      } else if (getOperator()->getName() == "REG_SEQUENCE") {
2584        // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2585        // variadic.
2586  
2587        unsigned NChild = getNumChildren();
2588        if (NChild < 3) {
2589          TP.error("REG_SEQUENCE requires at least 3 operands!");
2590          return false;
2591        }
2592  
2593        if (NChild % 2 == 0) {
2594          TP.error("REG_SEQUENCE requires an odd number of operands!");
2595          return false;
2596        }
2597  
2598        if (!isOperandClass(getChild(0), "RegisterClass")) {
2599          TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2600          return false;
2601        }
2602  
2603        for (unsigned I = 1; I < NChild; I += 2) {
2604          TreePatternNode &SubIdxChild = getChild(I + 1);
2605          if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2606            TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2607                     Twine(I + 1) + "!");
2608            return false;
2609          }
2610        }
2611      }
2612  
2613      unsigned NumResults = Inst.getNumResults();
2614      unsigned NumFixedOperands = InstInfo.Operands.size();
2615  
2616      // If one or more operands with a default value appear at the end of the
2617      // formal operand list for an instruction, we allow them to be overridden
2618      // by optional operands provided in the pattern.
2619      //
2620      // But if an operand B without a default appears at any point after an
2621      // operand A with a default, then we don't allow A to be overridden,
2622      // because there would be no way to specify whether the next operand in
2623      // the pattern was intended to override A or skip it.
2624      unsigned NonOverridableOperands = NumFixedOperands;
2625      while (NonOverridableOperands > NumResults &&
2626             CDP.operandHasDefault(
2627                 InstInfo.Operands[NonOverridableOperands - 1].Rec))
2628        --NonOverridableOperands;
2629  
2630      unsigned ChildNo = 0;
2631      assert(NumResults <= NumFixedOperands);
2632      for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2633        Record *OperandNode = InstInfo.Operands[i].Rec;
2634  
2635        // If the operand has a default value, do we use it? We must use the
2636        // default if we've run out of children of the pattern DAG to consume,
2637        // or if the operand is followed by a non-defaulted one.
2638        if (CDP.operandHasDefault(OperandNode) &&
2639            (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2640          continue;
2641  
2642        // If we have run out of child nodes and there _isn't_ a default
2643        // value we can use for the next operand, give an error.
2644        if (ChildNo >= getNumChildren()) {
2645          emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2646          return false;
2647        }
2648  
2649        TreePatternNode *Child = &getChild(ChildNo++);
2650        unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2651  
2652        // If the operand has sub-operands, they may be provided by distinct
2653        // child patterns, so attempt to match each sub-operand separately.
2654        if (OperandNode->isSubClassOf("Operand")) {
2655          DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2656          if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2657            // But don't do that if the whole operand is being provided by
2658            // a single ComplexPattern-related Operand.
2659  
2660            if (Child->getNumMIResults(CDP) < NumArgs) {
2661              // Match first sub-operand against the child we already have.
2662              Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2663              MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2664  
2665              // And the remaining sub-operands against subsequent children.
2666              for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2667                if (ChildNo >= getNumChildren()) {
2668                  emitTooFewOperandsError(TP, getOperator()->getName(),
2669                                          getNumChildren());
2670                  return false;
2671                }
2672                Child = &getChild(ChildNo++);
2673  
2674                SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2675                MadeChange |=
2676                    Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2677              }
2678              continue;
2679            }
2680          }
2681        }
2682  
2683        // If we didn't match by pieces above, attempt to match the whole
2684        // operand now.
2685        MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2686      }
2687  
2688      if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2689        emitTooManyOperandsError(TP, getOperator()->getName(), ChildNo,
2690                                 getNumChildren());
2691        return false;
2692      }
2693  
2694      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2695        MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2696      return MadeChange;
2697    }
2698  
2699    if (getOperator()->isSubClassOf("ComplexPattern")) {
2700      bool MadeChange = false;
2701  
2702      if (!NotRegisters) {
2703        assert(Types.size() == 1 && "ComplexPatterns only produce one result!");
2704        Record *T = CDP.getComplexPattern(getOperator()).getValueType();
2705        const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2706        const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH);
2707        // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then
2708        // exclusively use those as non-leaf nodes with explicit type casts, so
2709        // for backwards compatibility we do no inference in that case. This is
2710        // not supported when the ComplexPattern is used as a leaf value,
2711        // however; this inconsistency should be resolved, either by adding this
2712        // case there or by altering the backends to not do this (e.g. using Any
2713        // instead may work).
2714        if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped)
2715          MadeChange |= UpdateNodeType(0, VVT, TP);
2716      }
2717  
2718      for (unsigned i = 0; i < getNumChildren(); ++i)
2719        MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2720  
2721      return MadeChange;
2722    }
2723  
2724    assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2725  
2726    // Node transforms always take one operand.
2727    if (getNumChildren() != 1) {
2728      TP.error("Node transform '" + getOperator()->getName() +
2729               "' requires one operand!");
2730      return false;
2731    }
2732  
2733    bool MadeChange = getChild(0).ApplyTypeConstraints(TP, NotRegisters);
2734    return MadeChange;
2735  }
2736  
2737  /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2738  /// RHS of a commutative operation, not the on LHS.
2739  static bool OnlyOnRHSOfCommutative(TreePatternNode &N) {
2740    if (!N.isLeaf() && N.getOperator()->getName() == "imm")
2741      return true;
2742    if (N.isLeaf() && isa<IntInit>(N.getLeafValue()))
2743      return true;
2744    if (isImmAllOnesAllZerosMatch(N))
2745      return true;
2746    return false;
2747  }
2748  
2749  /// canPatternMatch - If it is impossible for this pattern to match on this
2750  /// target, fill in Reason and return false.  Otherwise, return true.  This is
2751  /// used as a sanity check for .td files (to prevent people from writing stuff
2752  /// that can never possibly work), and to prevent the pattern permuter from
2753  /// generating stuff that is useless.
2754  bool TreePatternNode::canPatternMatch(std::string &Reason,
2755                                        const CodeGenDAGPatterns &CDP) {
2756    if (isLeaf())
2757      return true;
2758  
2759    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2760      if (!getChild(i).canPatternMatch(Reason, CDP))
2761        return false;
2762  
2763    // If this is an intrinsic, handle cases that would make it not match.  For
2764    // example, if an operand is required to be an immediate.
2765    if (getOperator()->isSubClassOf("Intrinsic")) {
2766      // TODO:
2767      return true;
2768    }
2769  
2770    if (getOperator()->isSubClassOf("ComplexPattern"))
2771      return true;
2772  
2773    // If this node is a commutative operator, check that the LHS isn't an
2774    // immediate.
2775    const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2776    bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2777    if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2778      // Scan all of the operands of the node and make sure that only the last one
2779      // is a constant node, unless the RHS also is.
2780      if (!OnlyOnRHSOfCommutative(getChild(getNumChildren() - 1))) {
2781        unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2782        for (unsigned i = Skip, e = getNumChildren() - 1; i != e; ++i)
2783          if (OnlyOnRHSOfCommutative(getChild(i))) {
2784            Reason =
2785                "Immediate value must be on the RHS of commutative operators!";
2786            return false;
2787          }
2788      }
2789    }
2790  
2791    return true;
2792  }
2793  
2794  //===----------------------------------------------------------------------===//
2795  // TreePattern implementation
2796  //
2797  
2798  TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2799                           CodeGenDAGPatterns &cdp)
2800      : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2801        Infer(*this) {
2802    for (Init *I : RawPat->getValues())
2803      Trees.push_back(ParseTreePattern(I, ""));
2804  }
2805  
2806  TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2807                           CodeGenDAGPatterns &cdp)
2808      : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2809        Infer(*this) {
2810    Trees.push_back(ParseTreePattern(Pat, ""));
2811  }
2812  
2813  TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2814                           CodeGenDAGPatterns &cdp)
2815      : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2816        Infer(*this) {
2817    Trees.push_back(Pat);
2818  }
2819  
2820  void TreePattern::error(const Twine &Msg) {
2821    if (HasError)
2822      return;
2823    dump();
2824    PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2825    HasError = true;
2826  }
2827  
2828  void TreePattern::ComputeNamedNodes() {
2829    for (TreePatternNodePtr &Tree : Trees)
2830      ComputeNamedNodes(*Tree);
2831  }
2832  
2833  void TreePattern::ComputeNamedNodes(TreePatternNode &N) {
2834    if (!N.getName().empty())
2835      NamedNodes[N.getName()].push_back(&N);
2836  
2837    for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
2838      ComputeNamedNodes(N.getChild(i));
2839  }
2840  
2841  TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2842                                                   StringRef OpName) {
2843    RecordKeeper &RK = TheInit->getRecordKeeper();
2844    if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2845      Record *R = DI->getDef();
2846  
2847      // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2848      // TreePatternNode of its own.  For example:
2849      ///   (foo GPR, imm) -> (foo GPR, (imm))
2850      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2851        return ParseTreePattern(
2852            DagInit::get(DI, nullptr,
2853                         std::vector<std::pair<Init *, StringInit *>>()),
2854            OpName);
2855  
2856      // Input argument?
2857      TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(DI, 1);
2858      if (R->getName() == "node" && !OpName.empty()) {
2859        if (OpName.empty())
2860          error("'node' argument requires a name to match with operand list");
2861        Args.push_back(std::string(OpName));
2862      }
2863  
2864      Res->setName(OpName);
2865      return Res;
2866    }
2867  
2868    // ?:$name or just $name.
2869    if (isa<UnsetInit>(TheInit)) {
2870      if (OpName.empty())
2871        error("'?' argument requires a name to match with operand list");
2872      TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2873      Args.push_back(std::string(OpName));
2874      Res->setName(OpName);
2875      return Res;
2876    }
2877  
2878    if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2879      if (!OpName.empty())
2880        error("Constant int or bit argument should not have a name!");
2881      if (isa<BitInit>(TheInit))
2882        TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK));
2883      return makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2884    }
2885  
2886    if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2887      // Turn this into an IntInit.
2888      Init *II = BI->convertInitializerTo(IntRecTy::get(RK));
2889      if (!II || !isa<IntInit>(II))
2890        error("Bits value must be constants!");
2891      return II ? ParseTreePattern(II, OpName) : nullptr;
2892    }
2893  
2894    DagInit *Dag = dyn_cast<DagInit>(TheInit);
2895    if (!Dag) {
2896      TheInit->print(errs());
2897      error("Pattern has unexpected init kind!");
2898      return nullptr;
2899    }
2900    DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2901    if (!OpDef) {
2902      error("Pattern has unexpected operator type!");
2903      return nullptr;
2904    }
2905    Record *Operator = OpDef->getDef();
2906  
2907    if (Operator->isSubClassOf("ValueType")) {
2908      // If the operator is a ValueType, then this must be "type cast" of a leaf
2909      // node.
2910      if (Dag->getNumArgs() != 1)
2911        error("Type cast only takes one operand!");
2912  
2913      TreePatternNodePtr New =
2914          ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2915  
2916      // Apply the type cast.
2917      if (New->getNumTypes() != 1)
2918        error("Type cast can only have one type!");
2919      const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2920      New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2921  
2922      if (!OpName.empty())
2923        error("ValueType cast should not have a name!");
2924      return New;
2925    }
2926  
2927    // Verify that this is something that makes sense for an operator.
2928    if (!Operator->isSubClassOf("PatFrags") &&
2929        !Operator->isSubClassOf("SDNode") &&
2930        !Operator->isSubClassOf("Instruction") &&
2931        !Operator->isSubClassOf("SDNodeXForm") &&
2932        !Operator->isSubClassOf("Intrinsic") &&
2933        !Operator->isSubClassOf("ComplexPattern") &&
2934        Operator->getName() != "set" && Operator->getName() != "implicit")
2935      error("Unrecognized node '" + Operator->getName() + "'!");
2936  
2937    //  Check to see if this is something that is illegal in an input pattern.
2938    if (isInputPattern) {
2939      if (Operator->isSubClassOf("Instruction") ||
2940          Operator->isSubClassOf("SDNodeXForm"))
2941        error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2942    } else {
2943      if (Operator->isSubClassOf("Intrinsic"))
2944        error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2945  
2946      if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" &&
2947          Operator->getName() != "timm" && Operator->getName() != "fpimm" &&
2948          Operator->getName() != "tglobaltlsaddr" &&
2949          Operator->getName() != "tconstpool" &&
2950          Operator->getName() != "tjumptable" &&
2951          Operator->getName() != "tframeindex" &&
2952          Operator->getName() != "texternalsym" &&
2953          Operator->getName() != "tblockaddress" &&
2954          Operator->getName() != "tglobaladdr" && Operator->getName() != "bb" &&
2955          Operator->getName() != "vt" && Operator->getName() != "mcsym")
2956        error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2957    }
2958  
2959    std::vector<TreePatternNodePtr> Children;
2960  
2961    // Parse all the operands.
2962    for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2963      Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2964  
2965    // Get the actual number of results before Operator is converted to an
2966    // intrinsic node (which is hard-coded to have either zero or one result).
2967    unsigned NumResults = GetNumNodeResults(Operator, CDP);
2968  
2969    // If the operator is an intrinsic, then this is just syntactic sugar for
2970    // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2971    // convert the intrinsic name to a number.
2972    if (Operator->isSubClassOf("Intrinsic")) {
2973      const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2974      unsigned IID = getDAGPatterns().getIntrinsicID(Operator) + 1;
2975  
2976      // If this intrinsic returns void, it must have side-effects and thus a
2977      // chain.
2978      if (Int.IS.RetTys.empty())
2979        Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2980      else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects)
2981        // Has side-effects, requires chain.
2982        Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2983      else // Otherwise, no chain.
2984        Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2985  
2986      Children.insert(Children.begin(), makeIntrusiveRefCnt<TreePatternNode>(
2987                                            IntInit::get(RK, IID), 1));
2988    }
2989  
2990    if (Operator->isSubClassOf("ComplexPattern")) {
2991      for (unsigned i = 0; i < Children.size(); ++i) {
2992        TreePatternNodePtr Child = Children[i];
2993  
2994        if (Child->getName().empty())
2995          error("All arguments to a ComplexPattern must be named");
2996  
2997        // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2998        // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2999        // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
3000        auto OperandId = std::pair(Operator, i);
3001        auto PrevOp = ComplexPatternOperands.find(Child->getName());
3002        if (PrevOp != ComplexPatternOperands.end()) {
3003          if (PrevOp->getValue() != OperandId)
3004            error("All ComplexPattern operands must appear consistently: "
3005                  "in the same order in just one ComplexPattern instance.");
3006        } else
3007          ComplexPatternOperands[Child->getName()] = OperandId;
3008      }
3009    }
3010  
3011    TreePatternNodePtr Result = makeIntrusiveRefCnt<TreePatternNode>(
3012        Operator, std::move(Children), NumResults);
3013    Result->setName(OpName);
3014  
3015    if (Dag->getName()) {
3016      assert(Result->getName().empty());
3017      Result->setName(Dag->getNameStr());
3018    }
3019    return Result;
3020  }
3021  
3022  /// SimplifyTree - See if we can simplify this tree to eliminate something that
3023  /// will never match in favor of something obvious that will.  This is here
3024  /// strictly as a convenience to target authors because it allows them to write
3025  /// more type generic things and have useless type casts fold away.
3026  ///
3027  /// This returns true if any change is made.
3028  static bool SimplifyTree(TreePatternNodePtr &N) {
3029    if (N->isLeaf())
3030      return false;
3031  
3032    // If we have a bitconvert with a resolved type and if the source and
3033    // destination types are the same, then the bitconvert is useless, remove it.
3034    //
3035    // We make an exception if the types are completely empty. This can come up
3036    // when the pattern being simplified is in the Fragments list of a PatFrags,
3037    // so that the operand is just an untyped "node". In that situation we leave
3038    // bitconverts unsimplified, and simplify them later once the fragment is
3039    // expanded into its true context.
3040    if (N->getOperator()->getName() == "bitconvert" &&
3041        N->getExtType(0).isValueTypeByHwMode(false) &&
3042        !N->getExtType(0).empty() &&
3043        N->getExtType(0) == N->getChild(0).getExtType(0) &&
3044        N->getName().empty()) {
3045      if (!N->getPredicateCalls().empty()) {
3046        std::string Str;
3047        raw_string_ostream OS(Str);
3048        OS << *N
3049           << "\n trivial bitconvert node should not have predicate calls\n";
3050        PrintFatalError(Str);
3051        return false;
3052      }
3053      N = N->getChildShared(0);
3054      SimplifyTree(N);
3055      return true;
3056    }
3057  
3058    // Walk all children.
3059    bool MadeChange = false;
3060    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3061      MadeChange |= SimplifyTree(N->getChildSharedPtr(i));
3062  
3063    return MadeChange;
3064  }
3065  
3066  /// InferAllTypes - Infer/propagate as many types throughout the expression
3067  /// patterns as possible.  Return true if all types are inferred, false
3068  /// otherwise.  Flags an error if a type contradiction is found.
3069  bool TreePattern::InferAllTypes(
3070      const StringMap<SmallVector<TreePatternNode *, 1>> *InNamedTypes) {
3071    if (NamedNodes.empty())
3072      ComputeNamedNodes();
3073  
3074    bool MadeChange = true;
3075    while (MadeChange) {
3076      MadeChange = false;
3077      for (TreePatternNodePtr &Tree : Trees) {
3078        MadeChange |= Tree->ApplyTypeConstraints(*this, false);
3079        MadeChange |= SimplifyTree(Tree);
3080      }
3081  
3082      // If there are constraints on our named nodes, apply them.
3083      for (auto &Entry : NamedNodes) {
3084        SmallVectorImpl<TreePatternNode *> &Nodes = Entry.second;
3085  
3086        // If we have input named node types, propagate their types to the named
3087        // values here.
3088        if (InNamedTypes) {
3089          if (!InNamedTypes->count(Entry.getKey())) {
3090            error("Node '" + std::string(Entry.getKey()) +
3091                  "' in output pattern but not input pattern");
3092            return true;
3093          }
3094  
3095          const SmallVectorImpl<TreePatternNode *> &InNodes =
3096              InNamedTypes->find(Entry.getKey())->second;
3097  
3098          // The input types should be fully resolved by now.
3099          for (TreePatternNode *Node : Nodes) {
3100            // If this node is a register class, and it is the root of the pattern
3101            // then we're mapping something onto an input register.  We allow
3102            // changing the type of the input register in this case.  This allows
3103            // us to match things like:
3104            //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3105            if (Node == Trees[0].get() && Node->isLeaf()) {
3106              DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3107              if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3108                         DI->getDef()->isSubClassOf("RegisterOperand")))
3109                continue;
3110            }
3111  
3112            assert(Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 &&
3113                   "FIXME: cannot name multiple result nodes yet");
3114            MadeChange |=
3115                Node->UpdateNodeType(0, InNodes[0]->getExtType(0), *this);
3116          }
3117        }
3118  
3119        // If there are multiple nodes with the same name, they must all have the
3120        // same type.
3121        if (Entry.second.size() > 1) {
3122          for (unsigned i = 0, e = Nodes.size() - 1; i != e; ++i) {
3123            TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i + 1];
3124            assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3125                   "FIXME: cannot name multiple result nodes yet");
3126  
3127            MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3128            MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3129          }
3130        }
3131      }
3132    }
3133  
3134    bool HasUnresolvedTypes = false;
3135    for (const TreePatternNodePtr &Tree : Trees)
3136      HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3137    return !HasUnresolvedTypes;
3138  }
3139  
3140  void TreePattern::print(raw_ostream &OS) const {
3141    OS << getRecord()->getName();
3142    if (!Args.empty()) {
3143      OS << "(";
3144      ListSeparator LS;
3145      for (const std::string &Arg : Args)
3146        OS << LS << Arg;
3147      OS << ")";
3148    }
3149    OS << ": ";
3150  
3151    if (Trees.size() > 1)
3152      OS << "[\n";
3153    for (const TreePatternNodePtr &Tree : Trees) {
3154      OS << "\t";
3155      Tree->print(OS);
3156      OS << "\n";
3157    }
3158  
3159    if (Trees.size() > 1)
3160      OS << "]\n";
3161  }
3162  
3163  void TreePattern::dump() const { print(errs()); }
3164  
3165  //===----------------------------------------------------------------------===//
3166  // CodeGenDAGPatterns implementation
3167  //
3168  
3169  CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3170                                         PatternRewriterFn PatternRewriter)
3171      : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3172        PatternRewriter(PatternRewriter) {
3173  
3174    Intrinsics = CodeGenIntrinsicTable(Records);
3175    ParseNodeInfo();
3176    ParseNodeTransforms();
3177    ParseComplexPatterns();
3178    ParsePatternFragments();
3179    ParseDefaultOperands();
3180    ParseInstructions();
3181    ParsePatternFragments(/*OutFrags*/ true);
3182    ParsePatterns();
3183  
3184    // Generate variants.  For example, commutative patterns can match
3185    // multiple ways.  Add them to PatternsToMatch as well.
3186    GenerateVariants();
3187  
3188    // Break patterns with parameterized types into a series of patterns,
3189    // where each one has a fixed type and is predicated on the conditions
3190    // of the associated HW mode.
3191    ExpandHwModeBasedTypes();
3192  
3193    // Infer instruction flags.  For example, we can detect loads,
3194    // stores, and side effects in many cases by examining an
3195    // instruction's pattern.
3196    InferInstructionFlags();
3197  
3198    // Verify that instruction flags match the patterns.
3199    VerifyInstructionFlags();
3200  }
3201  
3202  Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3203    Record *N = Records.getDef(Name);
3204    if (!N || !N->isSubClassOf("SDNode"))
3205      PrintFatalError("Error getting SDNode '" + Name + "'!");
3206  
3207    return N;
3208  }
3209  
3210  // Parse all of the SDNode definitions for the target, populating SDNodes.
3211  void CodeGenDAGPatterns::ParseNodeInfo() {
3212    std::vector<Record *> Nodes = Records.getAllDerivedDefinitions("SDNode");
3213    const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3214  
3215    while (!Nodes.empty()) {
3216      Record *R = Nodes.back();
3217      SDNodes.insert(std::pair(R, SDNodeInfo(R, CGH)));
3218      Nodes.pop_back();
3219    }
3220  
3221    // Get the builtin intrinsic nodes.
3222    intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
3223    intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
3224    intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3225  }
3226  
3227  /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3228  /// map, and emit them to the file as functions.
3229  void CodeGenDAGPatterns::ParseNodeTransforms() {
3230    std::vector<Record *> Xforms =
3231        Records.getAllDerivedDefinitions("SDNodeXForm");
3232    while (!Xforms.empty()) {
3233      Record *XFormNode = Xforms.back();
3234      Record *SDNode = XFormNode->getValueAsDef("Opcode");
3235      StringRef Code = XFormNode->getValueAsString("XFormFunction");
3236      SDNodeXForms.insert(
3237          std::pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
3238  
3239      Xforms.pop_back();
3240    }
3241  }
3242  
3243  void CodeGenDAGPatterns::ParseComplexPatterns() {
3244    std::vector<Record *> AMs =
3245        Records.getAllDerivedDefinitions("ComplexPattern");
3246    while (!AMs.empty()) {
3247      ComplexPatterns.insert(std::pair(AMs.back(), AMs.back()));
3248      AMs.pop_back();
3249    }
3250  }
3251  
3252  /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3253  /// file, building up the PatternFragments map.  After we've collected them all,
3254  /// inline fragments together as necessary, so that there are no references left
3255  /// inside a pattern fragment to a pattern fragment.
3256  ///
3257  void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3258    std::vector<Record *> Fragments =
3259        Records.getAllDerivedDefinitions("PatFrags");
3260  
3261    // First step, parse all of the fragments.
3262    for (Record *Frag : Fragments) {
3263      if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3264        continue;
3265  
3266      ListInit *LI = Frag->getValueAsListInit("Fragments");
3267      TreePattern *P = (PatternFragments[Frag] = std::make_unique<TreePattern>(
3268                            Frag, LI, !Frag->isSubClassOf("OutPatFrag"), *this))
3269                           .get();
3270  
3271      // Validate the argument list, converting it to set, to discard duplicates.
3272      std::vector<std::string> &Args = P->getArgList();
3273      // Copy the args so we can take StringRefs to them.
3274      auto ArgsCopy = Args;
3275      SmallDenseSet<StringRef, 4> OperandsSet;
3276      OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3277  
3278      if (OperandsSet.count(""))
3279        P->error("Cannot have unnamed 'node' values in pattern fragment!");
3280  
3281      // Parse the operands list.
3282      DagInit *OpsList = Frag->getValueAsDag("Operands");
3283      DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3284      // Special cases: ops == outs == ins. Different names are used to
3285      // improve readability.
3286      if (!OpsOp || (OpsOp->getDef()->getName() != "ops" &&
3287                     OpsOp->getDef()->getName() != "outs" &&
3288                     OpsOp->getDef()->getName() != "ins"))
3289        P->error("Operands list should start with '(ops ... '!");
3290  
3291      // Copy over the arguments.
3292      Args.clear();
3293      for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3294        if (!isa<DefInit>(OpsList->getArg(j)) ||
3295            cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3296          P->error("Operands list should all be 'node' values.");
3297        if (!OpsList->getArgName(j))
3298          P->error("Operands list should have names for each operand!");
3299        StringRef ArgNameStr = OpsList->getArgNameStr(j);
3300        if (!OperandsSet.count(ArgNameStr))
3301          P->error("'" + ArgNameStr +
3302                   "' does not occur in pattern or was multiply specified!");
3303        OperandsSet.erase(ArgNameStr);
3304        Args.push_back(std::string(ArgNameStr));
3305      }
3306  
3307      if (!OperandsSet.empty())
3308        P->error("Operands list does not contain an entry for operand '" +
3309                 *OperandsSet.begin() + "'!");
3310  
3311      // If there is a node transformation corresponding to this, keep track of
3312      // it.
3313      Record *Transform = Frag->getValueAsDef("OperandTransform");
3314      if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3315        for (const auto &T : P->getTrees())
3316          T->setTransformFn(Transform);
3317    }
3318  
3319    // Now that we've parsed all of the tree fragments, do a closure on them so
3320    // that there are not references to PatFrags left inside of them.
3321    for (Record *Frag : Fragments) {
3322      if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3323        continue;
3324  
3325      TreePattern &ThePat = *PatternFragments[Frag];
3326      ThePat.InlinePatternFragments();
3327  
3328      // Infer as many types as possible.  Don't worry about it if we don't infer
3329      // all of them, some may depend on the inputs of the pattern.  Also, don't
3330      // validate type sets; validation may cause spurious failures e.g. if a
3331      // fragment needs floating-point types but the current target does not have
3332      // any (this is only an error if that fragment is ever used!).
3333      {
3334        TypeInfer::SuppressValidation SV(ThePat.getInfer());
3335        ThePat.InferAllTypes();
3336        ThePat.resetError();
3337      }
3338  
3339      // If debugging, print out the pattern fragment result.
3340      LLVM_DEBUG(ThePat.dump());
3341    }
3342  }
3343  
3344  void CodeGenDAGPatterns::ParseDefaultOperands() {
3345    std::vector<Record *> DefaultOps;
3346    DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3347  
3348    // Find some SDNode.
3349    assert(!SDNodes.empty() && "No SDNodes parsed?");
3350    Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3351  
3352    for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3353      DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3354  
3355      // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3356      // SomeSDnode so that we can parse this.
3357      std::vector<std::pair<Init *, StringInit *>> Ops;
3358      for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3359        Ops.push_back(
3360            std::pair(DefaultInfo->getArg(op), DefaultInfo->getArgName(op)));
3361      DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3362  
3363      // Create a TreePattern to parse this.
3364      TreePattern P(DefaultOps[i], DI, false, *this);
3365      assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3366  
3367      // Copy the operands over into a DAGDefaultOperand.
3368      DAGDefaultOperand DefaultOpInfo;
3369  
3370      const TreePatternNodePtr &T = P.getTree(0);
3371      for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3372        TreePatternNodePtr TPN = T->getChildShared(op);
3373        while (TPN->ApplyTypeConstraints(P, false))
3374          /* Resolve all types */;
3375  
3376        if (TPN->ContainsUnresolvedType(P)) {
3377          PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3378                          DefaultOps[i]->getName() +
3379                          "' doesn't have a concrete type!");
3380        }
3381        DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3382      }
3383  
3384      // Insert it into the DefaultOperands map so we can find it later.
3385      DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3386    }
3387  }
3388  
3389  /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3390  /// instruction input.  Return true if this is a real use.
3391  static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3392                        std::map<std::string, TreePatternNodePtr> &InstInputs) {
3393    // No name -> not interesting.
3394    if (Pat->getName().empty()) {
3395      if (Pat->isLeaf()) {
3396        DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3397        if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3398                   DI->getDef()->isSubClassOf("RegisterOperand")))
3399          I.error("Input " + DI->getDef()->getName() + " must be named!");
3400      }
3401      return false;
3402    }
3403  
3404    Record *Rec;
3405    if (Pat->isLeaf()) {
3406      DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3407      if (!DI)
3408        I.error("Input $" + Pat->getName() + " must be an identifier!");
3409      Rec = DI->getDef();
3410    } else {
3411      Rec = Pat->getOperator();
3412    }
3413  
3414    // SRCVALUE nodes are ignored.
3415    if (Rec->getName() == "srcvalue")
3416      return false;
3417  
3418    TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3419    if (!Slot) {
3420      Slot = Pat;
3421      return true;
3422    }
3423    Record *SlotRec;
3424    if (Slot->isLeaf()) {
3425      SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3426    } else {
3427      assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3428      SlotRec = Slot->getOperator();
3429    }
3430  
3431    // Ensure that the inputs agree if we've already seen this input.
3432    if (Rec != SlotRec)
3433      I.error("All $" + Pat->getName() + " inputs must agree with each other");
3434    // Ensure that the types can agree as well.
3435    Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3436    Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3437    if (Slot->getExtTypes() != Pat->getExtTypes())
3438      I.error("All $" + Pat->getName() + " inputs must agree with each other");
3439    return true;
3440  }
3441  
3442  /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3443  /// part of "I", the instruction), computing the set of inputs and outputs of
3444  /// the pattern.  Report errors if we see anything naughty.
3445  void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3446      TreePattern &I, TreePatternNodePtr Pat,
3447      std::map<std::string, TreePatternNodePtr> &InstInputs,
3448      MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3449          &InstResults,
3450      std::vector<Record *> &InstImpResults) {
3451  
3452    // The instruction pattern still has unresolved fragments.  For *named*
3453    // nodes we must resolve those here.  This may not result in multiple
3454    // alternatives.
3455    if (!Pat->getName().empty()) {
3456      TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3457      SrcPattern.InlinePatternFragments();
3458      SrcPattern.InferAllTypes();
3459      Pat = SrcPattern.getOnlyTree();
3460    }
3461  
3462    if (Pat->isLeaf()) {
3463      bool isUse = HandleUse(I, Pat, InstInputs);
3464      if (!isUse && Pat->getTransformFn())
3465        I.error("Cannot specify a transform function for a non-input value!");
3466      return;
3467    }
3468  
3469    if (Pat->getOperator()->getName() == "implicit") {
3470      for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3471        TreePatternNode &Dest = Pat->getChild(i);
3472        if (!Dest.isLeaf())
3473          I.error("implicitly defined value should be a register!");
3474  
3475        DefInit *Val = dyn_cast<DefInit>(Dest.getLeafValue());
3476        if (!Val || !Val->getDef()->isSubClassOf("Register"))
3477          I.error("implicitly defined value should be a register!");
3478        if (Val)
3479          InstImpResults.push_back(Val->getDef());
3480      }
3481      return;
3482    }
3483  
3484    if (Pat->getOperator()->getName() != "set") {
3485      // If this is not a set, verify that the children nodes are not void typed,
3486      // and recurse.
3487      for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3488        if (Pat->getChild(i).getNumTypes() == 0)
3489          I.error("Cannot have void nodes inside of patterns!");
3490        FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3491                                    InstResults, InstImpResults);
3492      }
3493  
3494      // If this is a non-leaf node with no children, treat it basically as if
3495      // it were a leaf.  This handles nodes like (imm).
3496      bool isUse = HandleUse(I, Pat, InstInputs);
3497  
3498      if (!isUse && Pat->getTransformFn())
3499        I.error("Cannot specify a transform function for a non-input value!");
3500      return;
3501    }
3502  
3503    // Otherwise, this is a set, validate and collect instruction results.
3504    if (Pat->getNumChildren() == 0)
3505      I.error("set requires operands!");
3506  
3507    if (Pat->getTransformFn())
3508      I.error("Cannot specify a transform function on a set node!");
3509  
3510    // Check the set destinations.
3511    unsigned NumDests = Pat->getNumChildren() - 1;
3512    for (unsigned i = 0; i != NumDests; ++i) {
3513      TreePatternNodePtr Dest = Pat->getChildShared(i);
3514      // For set destinations we also must resolve fragments here.
3515      TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3516      DestPattern.InlinePatternFragments();
3517      DestPattern.InferAllTypes();
3518      Dest = DestPattern.getOnlyTree();
3519  
3520      if (!Dest->isLeaf())
3521        I.error("set destination should be a register!");
3522  
3523      DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3524      if (!Val) {
3525        I.error("set destination should be a register!");
3526        continue;
3527      }
3528  
3529      if (Val->getDef()->isSubClassOf("RegisterClass") ||
3530          Val->getDef()->isSubClassOf("ValueType") ||
3531          Val->getDef()->isSubClassOf("RegisterOperand") ||
3532          Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3533        if (Dest->getName().empty())
3534          I.error("set destination must have a name!");
3535        if (InstResults.count(Dest->getName()))
3536          I.error("cannot set '" + Dest->getName() + "' multiple times");
3537        InstResults[Dest->getName()] = Dest;
3538      } else if (Val->getDef()->isSubClassOf("Register")) {
3539        InstImpResults.push_back(Val->getDef());
3540      } else {
3541        I.error("set destination should be a register!");
3542      }
3543    }
3544  
3545    // Verify and collect info from the computation.
3546    FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3547                                InstResults, InstImpResults);
3548  }
3549  
3550  //===----------------------------------------------------------------------===//
3551  // Instruction Analysis
3552  //===----------------------------------------------------------------------===//
3553  
3554  class InstAnalyzer {
3555    const CodeGenDAGPatterns &CDP;
3556  
3557  public:
3558    bool hasSideEffects;
3559    bool mayStore;
3560    bool mayLoad;
3561    bool isBitcast;
3562    bool isVariadic;
3563    bool hasChain;
3564  
3565    InstAnalyzer(const CodeGenDAGPatterns &cdp)
3566        : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3567          isBitcast(false), isVariadic(false), hasChain(false) {}
3568  
3569    void Analyze(const PatternToMatch &Pat) {
3570      const TreePatternNode &N = Pat.getSrcPattern();
3571      AnalyzeNode(N);
3572      // These properties are detected only on the root node.
3573      isBitcast = IsNodeBitcast(N);
3574    }
3575  
3576  private:
3577    bool IsNodeBitcast(const TreePatternNode &N) const {
3578      if (hasSideEffects || mayLoad || mayStore || isVariadic)
3579        return false;
3580  
3581      if (N.isLeaf())
3582        return false;
3583      if (N.getNumChildren() != 1 || !N.getChild(0).isLeaf())
3584        return false;
3585  
3586      if (N.getOperator()->isSubClassOf("ComplexPattern"))
3587        return false;
3588  
3589      const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N.getOperator());
3590      if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3591        return false;
3592      return OpInfo.getEnumName() == "ISD::BITCAST";
3593    }
3594  
3595  public:
3596    void AnalyzeNode(const TreePatternNode &N) {
3597      if (N.isLeaf()) {
3598        if (DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) {
3599          Record *LeafRec = DI->getDef();
3600          // Handle ComplexPattern leaves.
3601          if (LeafRec->isSubClassOf("ComplexPattern")) {
3602            const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3603            if (CP.hasProperty(SDNPMayStore))
3604              mayStore = true;
3605            if (CP.hasProperty(SDNPMayLoad))
3606              mayLoad = true;
3607            if (CP.hasProperty(SDNPSideEffect))
3608              hasSideEffects = true;
3609          }
3610        }
3611        return;
3612      }
3613  
3614      // Analyze children.
3615      for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
3616        AnalyzeNode(N.getChild(i));
3617  
3618      // Notice properties of the node.
3619      if (N.NodeHasProperty(SDNPMayStore, CDP))
3620        mayStore = true;
3621      if (N.NodeHasProperty(SDNPMayLoad, CDP))
3622        mayLoad = true;
3623      if (N.NodeHasProperty(SDNPSideEffect, CDP))
3624        hasSideEffects = true;
3625      if (N.NodeHasProperty(SDNPVariadic, CDP))
3626        isVariadic = true;
3627      if (N.NodeHasProperty(SDNPHasChain, CDP))
3628        hasChain = true;
3629  
3630      if (const CodeGenIntrinsic *IntInfo = N.getIntrinsicInfo(CDP)) {
3631        ModRefInfo MR = IntInfo->ME.getModRef();
3632        // If this is an intrinsic, analyze it.
3633        if (isRefSet(MR))
3634          mayLoad = true; // These may load memory.
3635  
3636        if (isModSet(MR))
3637          mayStore = true; // Intrinsics that can write to memory are 'mayStore'.
3638  
3639        // Consider intrinsics that don't specify any restrictions on memory
3640        // effects as having a side-effect.
3641        if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects)
3642          hasSideEffects = true;
3643      }
3644    }
3645  };
3646  
3647  static bool InferFromPattern(CodeGenInstruction &InstInfo,
3648                               const InstAnalyzer &PatInfo, Record *PatDef) {
3649    bool Error = false;
3650  
3651    // Remember where InstInfo got its flags.
3652    if (InstInfo.hasUndefFlags())
3653      InstInfo.InferredFrom = PatDef;
3654  
3655    // Check explicitly set flags for consistency.
3656    if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3657        !InstInfo.hasSideEffects_Unset) {
3658      // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3659      // the pattern has no side effects. That could be useful for div/rem
3660      // instructions that may trap.
3661      if (!InstInfo.hasSideEffects) {
3662        Error = true;
3663        PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3664                                         Twine(InstInfo.hasSideEffects));
3665      }
3666    }
3667  
3668    if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3669      Error = true;
3670      PrintError(PatDef->getLoc(),
3671                 "Pattern doesn't match mayStore = " + Twine(InstInfo.mayStore));
3672    }
3673  
3674    if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3675      // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3676      // Some targets translate immediates to loads.
3677      if (!InstInfo.mayLoad) {
3678        Error = true;
3679        PrintError(PatDef->getLoc(),
3680                   "Pattern doesn't match mayLoad = " + Twine(InstInfo.mayLoad));
3681      }
3682    }
3683  
3684    // Transfer inferred flags.
3685    InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3686    InstInfo.mayStore |= PatInfo.mayStore;
3687    InstInfo.mayLoad |= PatInfo.mayLoad;
3688  
3689    // These flags are silently added without any verification.
3690    // FIXME: To match historical behavior of TableGen, for now add those flags
3691    // only when we're inferring from the primary instruction pattern.
3692    if (PatDef->isSubClassOf("Instruction")) {
3693      InstInfo.isBitcast |= PatInfo.isBitcast;
3694      InstInfo.hasChain |= PatInfo.hasChain;
3695      InstInfo.hasChain_Inferred = true;
3696    }
3697  
3698    // Don't infer isVariadic. This flag means something different on SDNodes and
3699    // instructions. For example, a CALL SDNode is variadic because it has the
3700    // call arguments as operands, but a CALL instruction is not variadic - it
3701    // has argument registers as implicit, not explicit uses.
3702  
3703    return Error;
3704  }
3705  
3706  /// hasNullFragReference - Return true if the DAG has any reference to the
3707  /// null_frag operator.
3708  static bool hasNullFragReference(DagInit *DI) {
3709    DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3710    if (!OpDef)
3711      return false;
3712    Record *Operator = OpDef->getDef();
3713  
3714    // If this is the null fragment, return true.
3715    if (Operator->getName() == "null_frag")
3716      return true;
3717    // If any of the arguments reference the null fragment, return true.
3718    for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3719      if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3720        if (Arg->getDef()->getName() == "null_frag")
3721          return true;
3722      DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3723      if (Arg && hasNullFragReference(Arg))
3724        return true;
3725    }
3726  
3727    return false;
3728  }
3729  
3730  /// hasNullFragReference - Return true if any DAG in the list references
3731  /// the null_frag operator.
3732  static bool hasNullFragReference(ListInit *LI) {
3733    for (Init *I : LI->getValues()) {
3734      DagInit *DI = dyn_cast<DagInit>(I);
3735      assert(DI && "non-dag in an instruction Pattern list?!");
3736      if (hasNullFragReference(DI))
3737        return true;
3738    }
3739    return false;
3740  }
3741  
3742  /// Get all the instructions in a tree.
3743  static void getInstructionsInTree(TreePatternNode &Tree,
3744                                    SmallVectorImpl<Record *> &Instrs) {
3745    if (Tree.isLeaf())
3746      return;
3747    if (Tree.getOperator()->isSubClassOf("Instruction"))
3748      Instrs.push_back(Tree.getOperator());
3749    for (unsigned i = 0, e = Tree.getNumChildren(); i != e; ++i)
3750      getInstructionsInTree(Tree.getChild(i), Instrs);
3751  }
3752  
3753  /// Check the class of a pattern leaf node against the instruction operand it
3754  /// represents.
3755  static bool checkOperandClass(CGIOperandList::OperandInfo &OI, Record *Leaf) {
3756    if (OI.Rec == Leaf)
3757      return true;
3758  
3759    // Allow direct value types to be used in instruction set patterns.
3760    // The type will be checked later.
3761    if (Leaf->isSubClassOf("ValueType"))
3762      return true;
3763  
3764    // Patterns can also be ComplexPattern instances.
3765    if (Leaf->isSubClassOf("ComplexPattern"))
3766      return true;
3767  
3768    return false;
3769  }
3770  
3771  void CodeGenDAGPatterns::parseInstructionPattern(CodeGenInstruction &CGI,
3772                                                   ListInit *Pat,
3773                                                   DAGInstMap &DAGInsts) {
3774  
3775    assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3776  
3777    // Parse the instruction.
3778    TreePattern I(CGI.TheDef, Pat, true, *this);
3779  
3780    // InstInputs - Keep track of all of the inputs of the instruction, along
3781    // with the record they are declared as.
3782    std::map<std::string, TreePatternNodePtr> InstInputs;
3783  
3784    // InstResults - Keep track of all the virtual registers that are 'set'
3785    // in the instruction, including what reg class they are.
3786    MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3787        InstResults;
3788  
3789    std::vector<Record *> InstImpResults;
3790  
3791    // Verify that the top-level forms in the instruction are of void type, and
3792    // fill in the InstResults map.
3793    SmallString<32> TypesString;
3794    for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3795      TypesString.clear();
3796      TreePatternNodePtr Pat = I.getTree(j);
3797      if (Pat->getNumTypes() != 0) {
3798        raw_svector_ostream OS(TypesString);
3799        ListSeparator LS;
3800        for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3801          OS << LS;
3802          Pat->getExtType(k).writeToStream(OS);
3803        }
3804        I.error("Top-level forms in instruction pattern should have"
3805                " void types, has types " +
3806                OS.str());
3807      }
3808  
3809      // Find inputs and outputs, and verify the structure of the uses/defs.
3810      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3811                                  InstImpResults);
3812    }
3813  
3814    // Now that we have inputs and outputs of the pattern, inspect the operands
3815    // list for the instruction.  This determines the order that operands are
3816    // added to the machine instruction the node corresponds to.
3817    unsigned NumResults = InstResults.size();
3818  
3819    // Parse the operands list from the (ops) list, validating it.
3820    assert(I.getArgList().empty() && "Args list should still be empty here!");
3821  
3822    // Check that all of the results occur first in the list.
3823    std::vector<Record *> Results;
3824    std::vector<unsigned> ResultIndices;
3825    SmallVector<TreePatternNodePtr, 2> ResNodes;
3826    for (unsigned i = 0; i != NumResults; ++i) {
3827      if (i == CGI.Operands.size()) {
3828        const std::string &OpName =
3829            llvm::find_if(
3830                InstResults,
3831                [](const std::pair<std::string, TreePatternNodePtr> &P) {
3832                  return P.second;
3833                })
3834                ->first;
3835  
3836        I.error("'" + OpName + "' set but does not appear in operand list!");
3837      }
3838  
3839      const std::string &OpName = CGI.Operands[i].Name;
3840  
3841      // Check that it exists in InstResults.
3842      auto InstResultIter = InstResults.find(OpName);
3843      if (InstResultIter == InstResults.end() || !InstResultIter->second)
3844        I.error("Operand $" + OpName + " does not exist in operand list!");
3845  
3846      TreePatternNodePtr RNode = InstResultIter->second;
3847      Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3848      ResNodes.push_back(std::move(RNode));
3849      if (!R)
3850        I.error("Operand $" + OpName +
3851                " should be a set destination: all "
3852                "outputs must occur before inputs in operand list!");
3853  
3854      if (!checkOperandClass(CGI.Operands[i], R))
3855        I.error("Operand $" + OpName + " class mismatch!");
3856  
3857      // Remember the return type.
3858      Results.push_back(CGI.Operands[i].Rec);
3859  
3860      // Remember the result index.
3861      ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3862  
3863      // Okay, this one checks out.
3864      InstResultIter->second = nullptr;
3865    }
3866  
3867    // Loop over the inputs next.
3868    std::vector<TreePatternNodePtr> ResultNodeOperands;
3869    std::vector<Record *> Operands;
3870    for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3871      CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3872      const std::string &OpName = Op.Name;
3873      if (OpName.empty()) {
3874        I.error("Operand #" + Twine(i) + " in operands list has no name!");
3875        continue;
3876      }
3877  
3878      if (!InstInputs.count(OpName)) {
3879        // If this is an operand with a DefaultOps set filled in, we can ignore
3880        // this.  When we codegen it, we will do so as always executed.
3881        if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3882          // Does it have a non-empty DefaultOps field?  If so, ignore this
3883          // operand.
3884          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3885            continue;
3886        }
3887        I.error("Operand $" + OpName +
3888                " does not appear in the instruction pattern");
3889        continue;
3890      }
3891      TreePatternNodePtr InVal = InstInputs[OpName];
3892      InstInputs.erase(OpName); // It occurred, remove from map.
3893  
3894      if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3895        Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef();
3896        if (!checkOperandClass(Op, InRec)) {
3897          I.error("Operand $" + OpName +
3898                  "'s register class disagrees"
3899                  " between the operand and pattern");
3900          continue;
3901        }
3902      }
3903      Operands.push_back(Op.Rec);
3904  
3905      // Construct the result for the dest-pattern operand list.
3906      TreePatternNodePtr OpNode = InVal->clone();
3907  
3908      // No predicate is useful on the result.
3909      OpNode->clearPredicateCalls();
3910  
3911      // Promote the xform function to be an explicit node if set.
3912      if (Record *Xform = OpNode->getTransformFn()) {
3913        OpNode->setTransformFn(nullptr);
3914        std::vector<TreePatternNodePtr> Children;
3915        Children.push_back(OpNode);
3916        OpNode = makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
3917                                                      OpNode->getNumTypes());
3918      }
3919  
3920      ResultNodeOperands.push_back(std::move(OpNode));
3921    }
3922  
3923    if (!InstInputs.empty())
3924      I.error("Input operand $" + InstInputs.begin()->first +
3925              " occurs in pattern but not in operands list!");
3926  
3927    TreePatternNodePtr ResultPattern = makeIntrusiveRefCnt<TreePatternNode>(
3928        I.getRecord(), std::move(ResultNodeOperands),
3929        GetNumNodeResults(I.getRecord(), *this));
3930    // Copy fully inferred output node types to instruction result pattern.
3931    for (unsigned i = 0; i != NumResults; ++i) {
3932      assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3933      ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3934      ResultPattern->setResultIndex(i, ResultIndices[i]);
3935    }
3936  
3937    // FIXME: Assume only the first tree is the pattern. The others are clobber
3938    // nodes.
3939    TreePatternNodePtr Pattern = I.getTree(0);
3940    TreePatternNodePtr SrcPattern;
3941    if (Pattern->getOperator()->getName() == "set") {
3942      SrcPattern = Pattern->getChild(Pattern->getNumChildren() - 1).clone();
3943    } else {
3944      // Not a set (store or something?)
3945      SrcPattern = Pattern;
3946    }
3947  
3948    // Create and insert the instruction.
3949    // FIXME: InstImpResults should not be part of DAGInstruction.
3950    Record *R = I.getRecord();
3951    DAGInsts.try_emplace(R, std::move(Results), std::move(Operands),
3952                         std::move(InstImpResults), SrcPattern, ResultPattern);
3953  
3954    LLVM_DEBUG(I.dump());
3955  }
3956  
3957  /// ParseInstructions - Parse all of the instructions, inlining and resolving
3958  /// any fragments involved.  This populates the Instructions list with fully
3959  /// resolved instructions.
3960  void CodeGenDAGPatterns::ParseInstructions() {
3961    std::vector<Record *> Instrs =
3962        Records.getAllDerivedDefinitions("Instruction");
3963  
3964    for (Record *Instr : Instrs) {
3965      ListInit *LI = nullptr;
3966  
3967      if (isa<ListInit>(Instr->getValueInit("Pattern")))
3968        LI = Instr->getValueAsListInit("Pattern");
3969  
3970      // If there is no pattern, only collect minimal information about the
3971      // instruction for its operand list.  We have to assume that there is one
3972      // result, as we have no detailed info. A pattern which references the
3973      // null_frag operator is as-if no pattern were specified. Normally this
3974      // is from a multiclass expansion w/ a SDPatternOperator passed in as
3975      // null_frag.
3976      if (!LI || LI->empty() || hasNullFragReference(LI)) {
3977        std::vector<Record *> Results;
3978        std::vector<Record *> Operands;
3979  
3980        CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3981  
3982        if (InstInfo.Operands.size() != 0) {
3983          for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3984            Results.push_back(InstInfo.Operands[j].Rec);
3985  
3986          // The rest are inputs.
3987          for (unsigned j = InstInfo.Operands.NumDefs,
3988                        e = InstInfo.Operands.size();
3989               j < e; ++j)
3990            Operands.push_back(InstInfo.Operands[j].Rec);
3991        }
3992  
3993        // Create and insert the instruction.
3994        Instructions.try_emplace(Instr, std::move(Results), std::move(Operands),
3995                                 std::vector<Record *>());
3996        continue; // no pattern.
3997      }
3998  
3999      CodeGenInstruction &CGI = Target.getInstruction(Instr);
4000      parseInstructionPattern(CGI, LI, Instructions);
4001    }
4002  
4003    // If we can, convert the instructions to be patterns that are matched!
4004    for (auto &Entry : Instructions) {
4005      Record *Instr = Entry.first;
4006      DAGInstruction &TheInst = Entry.second;
4007      TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
4008      TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
4009  
4010      if (SrcPattern && ResultPattern) {
4011        TreePattern Pattern(Instr, SrcPattern, true, *this);
4012        TreePattern Result(Instr, ResultPattern, false, *this);
4013        ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
4014      }
4015    }
4016  }
4017  
4018  typedef std::pair<TreePatternNode *, unsigned> NameRecord;
4019  
4020  static void FindNames(TreePatternNode &P,
4021                        std::map<std::string, NameRecord> &Names,
4022                        TreePattern *PatternTop) {
4023    if (!P.getName().empty()) {
4024      NameRecord &Rec = Names[P.getName()];
4025      // If this is the first instance of the name, remember the node.
4026      if (Rec.second++ == 0)
4027        Rec.first = &P;
4028      else if (Rec.first->getExtTypes() != P.getExtTypes())
4029        PatternTop->error("repetition of value: $" + P.getName() +
4030                          " where different uses have different types!");
4031    }
4032  
4033    if (!P.isLeaf()) {
4034      for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i)
4035        FindNames(P.getChild(i), Names, PatternTop);
4036    }
4037  }
4038  
4039  void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
4040                                             PatternToMatch &&PTM) {
4041    // Do some sanity checking on the pattern we're about to match.
4042    std::string Reason;
4043    if (!PTM.getSrcPattern().canPatternMatch(Reason, *this)) {
4044      PrintWarning(Pattern->getRecord()->getLoc(),
4045                   Twine("Pattern can never match: ") + Reason);
4046      return;
4047    }
4048  
4049    // If the source pattern's root is a complex pattern, that complex pattern
4050    // must specify the nodes it can potentially match.
4051    if (const ComplexPattern *CP =
4052            PTM.getSrcPattern().getComplexPatternInfo(*this))
4053      if (CP->getRootNodes().empty())
4054        Pattern->error("ComplexPattern at root must specify list of opcodes it"
4055                       " could match");
4056  
4057    // Find all of the named values in the input and output, ensure they have the
4058    // same type.
4059    std::map<std::string, NameRecord> SrcNames, DstNames;
4060    FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
4061    FindNames(PTM.getDstPattern(), DstNames, Pattern);
4062  
4063    // Scan all of the named values in the destination pattern, rejecting them if
4064    // they don't exist in the input pattern.
4065    for (const auto &Entry : DstNames) {
4066      if (SrcNames[Entry.first].first == nullptr)
4067        Pattern->error("Pattern has input without matching name in output: $" +
4068                       Entry.first);
4069    }
4070  
4071    // Scan all of the named values in the source pattern, rejecting them if the
4072    // name isn't used in the dest, and isn't used to tie two values together.
4073    for (const auto &Entry : SrcNames)
4074      if (DstNames[Entry.first].first == nullptr &&
4075          SrcNames[Entry.first].second == 1)
4076        Pattern->error("Pattern has dead named input: $" + Entry.first);
4077  
4078    PatternsToMatch.push_back(std::move(PTM));
4079  }
4080  
4081  void CodeGenDAGPatterns::InferInstructionFlags() {
4082    ArrayRef<const CodeGenInstruction *> Instructions =
4083        Target.getInstructionsByEnumValue();
4084  
4085    unsigned Errors = 0;
4086  
4087    // Try to infer flags from all patterns in PatternToMatch.  These include
4088    // both the primary instruction patterns (which always come first) and
4089    // patterns defined outside the instruction.
4090    for (const PatternToMatch &PTM : ptms()) {
4091      // We can only infer from single-instruction patterns, otherwise we won't
4092      // know which instruction should get the flags.
4093      SmallVector<Record *, 8> PatInstrs;
4094      getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
4095      if (PatInstrs.size() != 1)
4096        continue;
4097  
4098      // Get the single instruction.
4099      CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
4100  
4101      // Only infer properties from the first pattern. We'll verify the others.
4102      if (InstInfo.InferredFrom)
4103        continue;
4104  
4105      InstAnalyzer PatInfo(*this);
4106      PatInfo.Analyze(PTM);
4107      Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4108    }
4109  
4110    if (Errors)
4111      PrintFatalError("pattern conflicts");
4112  
4113    // If requested by the target, guess any undefined properties.
4114    if (Target.guessInstructionProperties()) {
4115      for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4116        CodeGenInstruction *InstInfo =
4117            const_cast<CodeGenInstruction *>(Instructions[i]);
4118        if (InstInfo->InferredFrom)
4119          continue;
4120        // The mayLoad and mayStore flags default to false.
4121        // Conservatively assume hasSideEffects if it wasn't explicit.
4122        if (InstInfo->hasSideEffects_Unset)
4123          InstInfo->hasSideEffects = true;
4124      }
4125      return;
4126    }
4127  
4128    // Complain about any flags that are still undefined.
4129    for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4130      CodeGenInstruction *InstInfo =
4131          const_cast<CodeGenInstruction *>(Instructions[i]);
4132      if (InstInfo->InferredFrom)
4133        continue;
4134      if (InstInfo->hasSideEffects_Unset)
4135        PrintError(InstInfo->TheDef->getLoc(),
4136                   "Can't infer hasSideEffects from patterns");
4137      if (InstInfo->mayStore_Unset)
4138        PrintError(InstInfo->TheDef->getLoc(),
4139                   "Can't infer mayStore from patterns");
4140      if (InstInfo->mayLoad_Unset)
4141        PrintError(InstInfo->TheDef->getLoc(),
4142                   "Can't infer mayLoad from patterns");
4143    }
4144  }
4145  
4146  /// Verify instruction flags against pattern node properties.
4147  void CodeGenDAGPatterns::VerifyInstructionFlags() {
4148    unsigned Errors = 0;
4149    for (const PatternToMatch &PTM : ptms()) {
4150      SmallVector<Record *, 8> Instrs;
4151      getInstructionsInTree(PTM.getDstPattern(), Instrs);
4152      if (Instrs.empty())
4153        continue;
4154  
4155      // Count the number of instructions with each flag set.
4156      unsigned NumSideEffects = 0;
4157      unsigned NumStores = 0;
4158      unsigned NumLoads = 0;
4159      for (const Record *Instr : Instrs) {
4160        const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4161        NumSideEffects += InstInfo.hasSideEffects;
4162        NumStores += InstInfo.mayStore;
4163        NumLoads += InstInfo.mayLoad;
4164      }
4165  
4166      // Analyze the source pattern.
4167      InstAnalyzer PatInfo(*this);
4168      PatInfo.Analyze(PTM);
4169  
4170      // Collect error messages.
4171      SmallVector<std::string, 4> Msgs;
4172  
4173      // Check for missing flags in the output.
4174      // Permit extra flags for now at least.
4175      if (PatInfo.hasSideEffects && !NumSideEffects)
4176        Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4177  
4178      // Don't verify store flags on instructions with side effects. At least for
4179      // intrinsics, side effects implies mayStore.
4180      if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4181        Msgs.push_back("pattern may store, but mayStore isn't set");
4182  
4183      // Similarly, mayStore implies mayLoad on intrinsics.
4184      if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4185        Msgs.push_back("pattern may load, but mayLoad isn't set");
4186  
4187      // Print error messages.
4188      if (Msgs.empty())
4189        continue;
4190      ++Errors;
4191  
4192      for (const std::string &Msg : Msgs)
4193        PrintError(
4194            PTM.getSrcRecord()->getLoc(),
4195            Twine(Msg) + " on the " +
4196                (Instrs.size() == 1 ? "instruction" : "output instructions"));
4197      // Provide the location of the relevant instruction definitions.
4198      for (const Record *Instr : Instrs) {
4199        if (Instr != PTM.getSrcRecord())
4200          PrintError(Instr->getLoc(), "defined here");
4201        const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4202        if (InstInfo.InferredFrom && InstInfo.InferredFrom != InstInfo.TheDef &&
4203            InstInfo.InferredFrom != PTM.getSrcRecord())
4204          PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4205      }
4206    }
4207    if (Errors)
4208      PrintFatalError("Errors in DAG patterns");
4209  }
4210  
4211  /// Given a pattern result with an unresolved type, see if we can find one
4212  /// instruction with an unresolved result type.  Force this result type to an
4213  /// arbitrary element if it's possible types to converge results.
4214  static bool ForceArbitraryInstResultType(TreePatternNode &N, TreePattern &TP) {
4215    if (N.isLeaf())
4216      return false;
4217  
4218    // Analyze children.
4219    for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
4220      if (ForceArbitraryInstResultType(N.getChild(i), TP))
4221        return true;
4222  
4223    if (!N.getOperator()->isSubClassOf("Instruction"))
4224      return false;
4225  
4226    // If this type is already concrete or completely unknown we can't do
4227    // anything.
4228    TypeInfer &TI = TP.getInfer();
4229    for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i) {
4230      if (N.getExtType(i).empty() || TI.isConcrete(N.getExtType(i), false))
4231        continue;
4232  
4233      // Otherwise, force its type to an arbitrary choice.
4234      if (TI.forceArbitrary(N.getExtType(i)))
4235        return true;
4236    }
4237  
4238    return false;
4239  }
4240  
4241  // Promote xform function to be an explicit node wherever set.
4242  static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4243    if (Record *Xform = N->getTransformFn()) {
4244      N->setTransformFn(nullptr);
4245      std::vector<TreePatternNodePtr> Children;
4246      Children.push_back(PromoteXForms(N));
4247      return makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
4248                                                  N->getNumTypes());
4249    }
4250  
4251    if (!N->isLeaf())
4252      for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4253        TreePatternNodePtr Child = N->getChildShared(i);
4254        N->setChild(i, PromoteXForms(Child));
4255      }
4256    return N;
4257  }
4258  
4259  void CodeGenDAGPatterns::ParseOnePattern(
4260      Record *TheDef, TreePattern &Pattern, TreePattern &Result,
4261      const std::vector<Record *> &InstImpResults, bool ShouldIgnore) {
4262  
4263    // Inline pattern fragments and expand multiple alternatives.
4264    Pattern.InlinePatternFragments();
4265    Result.InlinePatternFragments();
4266  
4267    if (Result.getNumTrees() != 1)
4268      Result.error("Cannot use multi-alternative fragments in result pattern!");
4269  
4270    // Infer types.
4271    bool IterateInference;
4272    bool InferredAllPatternTypes, InferredAllResultTypes;
4273    do {
4274      // Infer as many types as possible.  If we cannot infer all of them, we
4275      // can never do anything with this pattern: report it to the user.
4276      InferredAllPatternTypes =
4277          Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4278  
4279      // Infer as many types as possible.  If we cannot infer all of them, we
4280      // can never do anything with this pattern: report it to the user.
4281      InferredAllResultTypes = Result.InferAllTypes(&Pattern.getNamedNodesMap());
4282  
4283      IterateInference = false;
4284  
4285      // Apply the type of the result to the source pattern.  This helps us
4286      // resolve cases where the input type is known to be a pointer type (which
4287      // is considered resolved), but the result knows it needs to be 32- or
4288      // 64-bits.  Infer the other way for good measure.
4289      for (const auto &T : Pattern.getTrees())
4290        for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4291                                          T->getNumTypes());
4292             i != e; ++i) {
4293          IterateInference |=
4294              T->UpdateNodeType(i, Result.getOnlyTree()->getExtType(i), Result);
4295          IterateInference |=
4296              Result.getOnlyTree()->UpdateNodeType(i, T->getExtType(i), Result);
4297        }
4298  
4299      // If our iteration has converged and the input pattern's types are fully
4300      // resolved but the result pattern is not fully resolved, we may have a
4301      // situation where we have two instructions in the result pattern and
4302      // the instructions require a common register class, but don't care about
4303      // what actual MVT is used.  This is actually a bug in our modelling:
4304      // output patterns should have register classes, not MVTs.
4305      //
4306      // In any case, to handle this, we just go through and disambiguate some
4307      // arbitrary types to the result pattern's nodes.
4308      if (!IterateInference && InferredAllPatternTypes && !InferredAllResultTypes)
4309        IterateInference =
4310            ForceArbitraryInstResultType(*Result.getTree(0), Result);
4311    } while (IterateInference);
4312  
4313    // Verify that we inferred enough types that we can do something with the
4314    // pattern and result.  If these fire the user has to add type casts.
4315    if (!InferredAllPatternTypes)
4316      Pattern.error("Could not infer all types in pattern!");
4317    if (!InferredAllResultTypes) {
4318      Pattern.dump();
4319      Result.error("Could not infer all types in pattern result!");
4320    }
4321  
4322    // Promote xform function to be an explicit node wherever set.
4323    TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4324  
4325    TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4326    Temp.InferAllTypes();
4327  
4328    ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4329    int Complexity = TheDef->getValueAsInt("AddedComplexity");
4330  
4331    if (PatternRewriter)
4332      PatternRewriter(&Pattern);
4333  
4334    // A pattern may end up with an "impossible" type, i.e. a situation
4335    // where all types have been eliminated for some node in this pattern.
4336    // This could occur for intrinsics that only make sense for a specific
4337    // value type, and use a specific register class. If, for some mode,
4338    // that register class does not accept that type, the type inference
4339    // will lead to a contradiction, which is not an error however, but
4340    // a sign that this pattern will simply never match.
4341    if (Temp.getOnlyTree()->hasPossibleType()) {
4342      for (const auto &T : Pattern.getTrees()) {
4343        if (T->hasPossibleType())
4344          AddPatternToMatch(&Pattern,
4345                            PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
4346                                           InstImpResults, Complexity,
4347                                           TheDef->getID(), ShouldIgnore));
4348      }
4349    } else {
4350      // Show a message about a dropped pattern with some info to make it
4351      // easier to identify it in the .td files.
4352      LLVM_DEBUG({
4353        dbgs() << "Dropping: ";
4354        Pattern.dump();
4355        Temp.getOnlyTree()->dump();
4356        dbgs() << "\n";
4357      });
4358    }
4359  }
4360  
4361  void CodeGenDAGPatterns::ParsePatterns() {
4362    std::vector<Record *> Patterns = Records.getAllDerivedDefinitions("Pattern");
4363  
4364    for (Record *CurPattern : Patterns) {
4365      DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4366  
4367      // If the pattern references the null_frag, there's nothing to do.
4368      if (hasNullFragReference(Tree))
4369        continue;
4370  
4371      TreePattern Pattern(CurPattern, Tree, true, *this);
4372  
4373      ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4374      if (LI->empty())
4375        continue; // no pattern.
4376  
4377      // Parse the instruction.
4378      TreePattern Result(CurPattern, LI, false, *this);
4379  
4380      if (Result.getNumTrees() != 1)
4381        Result.error("Cannot handle instructions producing instructions "
4382                     "with temporaries yet!");
4383  
4384      // Validate that the input pattern is correct.
4385      std::map<std::string, TreePatternNodePtr> InstInputs;
4386      MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4387          InstResults;
4388      std::vector<Record *> InstImpResults;
4389      for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4390        FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4391                                    InstResults, InstImpResults);
4392  
4393      ParseOnePattern(CurPattern, Pattern, Result, InstImpResults,
4394                      CurPattern->getValueAsBit("GISelShouldIgnore"));
4395    }
4396  }
4397  
4398  static void collectModes(std::set<unsigned> &Modes, const TreePatternNode &N) {
4399    for (const TypeSetByHwMode &VTS : N.getExtTypes())
4400      for (const auto &I : VTS)
4401        Modes.insert(I.first);
4402  
4403    for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
4404      collectModes(Modes, N.getChild(i));
4405  }
4406  
4407  void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4408    const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4409    if (CGH.getNumModeIds() == 1)
4410      return;
4411  
4412    std::vector<PatternToMatch> Copy;
4413    PatternsToMatch.swap(Copy);
4414  
4415    auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
4416                                StringRef Check) {
4417      TreePatternNodePtr NewSrc = P.getSrcPattern().clone();
4418      TreePatternNodePtr NewDst = P.getDstPattern().clone();
4419      if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4420        return;
4421      }
4422  
4423      PatternsToMatch.emplace_back(
4424          P.getSrcRecord(), P.getPredicates(), std::move(NewSrc),
4425          std::move(NewDst), P.getDstRegs(), P.getAddedComplexity(),
4426          Record::getNewUID(Records), P.getGISelShouldIgnore(), Check);
4427    };
4428  
4429    for (PatternToMatch &P : Copy) {
4430      const TreePatternNode *SrcP = nullptr, *DstP = nullptr;
4431      if (P.getSrcPattern().hasProperTypeByHwMode())
4432        SrcP = &P.getSrcPattern();
4433      if (P.getDstPattern().hasProperTypeByHwMode())
4434        DstP = &P.getDstPattern();
4435      if (!SrcP && !DstP) {
4436        PatternsToMatch.push_back(P);
4437        continue;
4438      }
4439  
4440      std::set<unsigned> Modes;
4441      if (SrcP)
4442        collectModes(Modes, *SrcP);
4443      if (DstP)
4444        collectModes(Modes, *DstP);
4445  
4446      // The predicate for the default mode needs to be constructed for each
4447      // pattern separately.
4448      // Since not all modes must be present in each pattern, if a mode m is
4449      // absent, then there is no point in constructing a check for m. If such
4450      // a check was created, it would be equivalent to checking the default
4451      // mode, except not all modes' predicates would be a part of the checking
4452      // code. The subsequently generated check for the default mode would then
4453      // have the exact same patterns, but a different predicate code. To avoid
4454      // duplicated patterns with different predicate checks, construct the
4455      // default check as a negation of all predicates that are actually present
4456      // in the source/destination patterns.
4457      SmallString<128> DefaultCheck;
4458  
4459      for (unsigned M : Modes) {
4460        if (M == DefaultMode)
4461          continue;
4462  
4463        // Fill the map entry for this mode.
4464        const HwMode &HM = CGH.getMode(M);
4465        AppendPattern(P, M, HM.Predicates);
4466  
4467        // Add negations of the HM's predicates to the default predicate.
4468        if (!DefaultCheck.empty())
4469          DefaultCheck += " && ";
4470        DefaultCheck += "!(";
4471        DefaultCheck += HM.Predicates;
4472        DefaultCheck += ")";
4473      }
4474  
4475      bool HasDefault = Modes.count(DefaultMode);
4476      if (HasDefault)
4477        AppendPattern(P, DefaultMode, DefaultCheck);
4478    }
4479  }
4480  
4481  /// Dependent variable map for CodeGenDAGPattern variant generation
4482  typedef StringMap<int> DepVarMap;
4483  
4484  static void FindDepVarsOf(TreePatternNode &N, DepVarMap &DepMap) {
4485    if (N.isLeaf()) {
4486      if (N.hasName() && isa<DefInit>(N.getLeafValue()))
4487        DepMap[N.getName()]++;
4488    } else {
4489      for (size_t i = 0, e = N.getNumChildren(); i != e; ++i)
4490        FindDepVarsOf(N.getChild(i), DepMap);
4491    }
4492  }
4493  
4494  /// Find dependent variables within child patterns
4495  static void FindDepVars(TreePatternNode &N, MultipleUseVarSet &DepVars) {
4496    DepVarMap depcounts;
4497    FindDepVarsOf(N, depcounts);
4498    for (const auto &Pair : depcounts) {
4499      if (Pair.getValue() > 1)
4500        DepVars.insert(Pair.getKey());
4501    }
4502  }
4503  
4504  #ifndef NDEBUG
4505  /// Dump the dependent variable set:
4506  static void DumpDepVars(MultipleUseVarSet &DepVars) {
4507    if (DepVars.empty()) {
4508      LLVM_DEBUG(errs() << "<empty set>");
4509    } else {
4510      LLVM_DEBUG(errs() << "[ ");
4511      for (const auto &DepVar : DepVars) {
4512        LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4513      }
4514      LLVM_DEBUG(errs() << "]");
4515    }
4516  }
4517  #endif
4518  
4519  /// CombineChildVariants - Given a bunch of permutations of each child of the
4520  /// 'operator' node, put them together in all possible ways.
4521  static void CombineChildVariants(
4522      TreePatternNodePtr Orig,
4523      const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4524      std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4525      const MultipleUseVarSet &DepVars) {
4526    // Make sure that each operand has at least one variant to choose from.
4527    for (const auto &Variants : ChildVariants)
4528      if (Variants.empty())
4529        return;
4530  
4531    // The end result is an all-pairs construction of the resultant pattern.
4532    std::vector<unsigned> Idxs(ChildVariants.size());
4533    bool NotDone;
4534    do {
4535  #ifndef NDEBUG
4536      LLVM_DEBUG(if (!Idxs.empty()) {
4537        errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4538        for (unsigned Idx : Idxs) {
4539          errs() << Idx << " ";
4540        }
4541        errs() << "]\n";
4542      });
4543  #endif
4544      // Create the variant and add it to the output list.
4545      std::vector<TreePatternNodePtr> NewChildren;
4546      NewChildren.reserve(ChildVariants.size());
4547      for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4548        NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4549      TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
4550          Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4551  
4552      // Copy over properties.
4553      R->setName(Orig->getName());
4554      R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4555      R->setPredicateCalls(Orig->getPredicateCalls());
4556      R->setGISelFlagsRecord(Orig->getGISelFlagsRecord());
4557      R->setTransformFn(Orig->getTransformFn());
4558      for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4559        R->setType(i, Orig->getExtType(i));
4560  
4561      // If this pattern cannot match, do not include it as a variant.
4562      std::string ErrString;
4563      // Scan to see if this pattern has already been emitted.  We can get
4564      // duplication due to things like commuting:
4565      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4566      // which are the same pattern.  Ignore the dups.
4567      if (R->canPatternMatch(ErrString, CDP) &&
4568          none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4569            return R->isIsomorphicTo(*Variant, DepVars);
4570          }))
4571        OutVariants.push_back(R);
4572  
4573      // Increment indices to the next permutation by incrementing the
4574      // indices from last index backward, e.g., generate the sequence
4575      // [0, 0], [0, 1], [1, 0], [1, 1].
4576      int IdxsIdx;
4577      for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4578        if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4579          Idxs[IdxsIdx] = 0;
4580        else
4581          break;
4582      }
4583      NotDone = (IdxsIdx >= 0);
4584    } while (NotDone);
4585  }
4586  
4587  /// CombineChildVariants - A helper function for binary operators.
4588  ///
4589  static void CombineChildVariants(TreePatternNodePtr Orig,
4590                                   const std::vector<TreePatternNodePtr> &LHS,
4591                                   const std::vector<TreePatternNodePtr> &RHS,
4592                                   std::vector<TreePatternNodePtr> &OutVariants,
4593                                   CodeGenDAGPatterns &CDP,
4594                                   const MultipleUseVarSet &DepVars) {
4595    std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4596    ChildVariants.push_back(LHS);
4597    ChildVariants.push_back(RHS);
4598    CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4599  }
4600  
4601  static void
4602  GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4603                                    std::vector<TreePatternNodePtr> &Children) {
4604    assert(N->getNumChildren() == 2 &&
4605           "Associative but doesn't have 2 children!");
4606    Record *Operator = N->getOperator();
4607  
4608    // Only permit raw nodes.
4609    if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4610        N->getTransformFn()) {
4611      Children.push_back(N);
4612      return;
4613    }
4614  
4615    if (N->getChild(0).isLeaf() || N->getChild(0).getOperator() != Operator)
4616      Children.push_back(N->getChildShared(0));
4617    else
4618      GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4619  
4620    if (N->getChild(1).isLeaf() || N->getChild(1).getOperator() != Operator)
4621      Children.push_back(N->getChildShared(1));
4622    else
4623      GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4624  }
4625  
4626  /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4627  /// the (potentially recursive) pattern by using algebraic laws.
4628  ///
4629  static void GenerateVariantsOf(TreePatternNodePtr N,
4630                                 std::vector<TreePatternNodePtr> &OutVariants,
4631                                 CodeGenDAGPatterns &CDP,
4632                                 const MultipleUseVarSet &DepVars) {
4633    // We cannot permute leaves or ComplexPattern uses.
4634    if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4635      OutVariants.push_back(N);
4636      return;
4637    }
4638  
4639    // Look up interesting info about the node.
4640    const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4641  
4642    // If this node is associative, re-associate.
4643    if (NodeInfo.hasProperty(SDNPAssociative)) {
4644      // Re-associate by pulling together all of the linked operators
4645      std::vector<TreePatternNodePtr> MaximalChildren;
4646      GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4647  
4648      // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4649      // permutations.
4650      if (MaximalChildren.size() == 3) {
4651        // Find the variants of all of our maximal children.
4652        std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4653        GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4654        GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4655        GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4656  
4657        // There are only two ways we can permute the tree:
4658        //   (A op B) op C    and    A op (B op C)
4659        // Within these forms, we can also permute A/B/C.
4660  
4661        // Generate legal pair permutations of A/B/C.
4662        std::vector<TreePatternNodePtr> ABVariants;
4663        std::vector<TreePatternNodePtr> BAVariants;
4664        std::vector<TreePatternNodePtr> ACVariants;
4665        std::vector<TreePatternNodePtr> CAVariants;
4666        std::vector<TreePatternNodePtr> BCVariants;
4667        std::vector<TreePatternNodePtr> CBVariants;
4668        CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4669        CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4670        CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4671        CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4672        CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4673        CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4674  
4675        // Combine those into the result: (x op x) op x
4676        CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4677        CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4678        CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4679        CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4680        CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4681        CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4682  
4683        // Combine those into the result: x op (x op x)
4684        CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4685        CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4686        CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4687        CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4688        CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4689        CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4690        return;
4691      }
4692    }
4693  
4694    // Compute permutations of all children.
4695    std::vector<std::vector<TreePatternNodePtr>> ChildVariants(
4696        N->getNumChildren());
4697    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4698      GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4699  
4700    // Build all permutations based on how the children were formed.
4701    CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4702  
4703    // If this node is commutative, consider the commuted order.
4704    bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4705    if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4706      unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
4707      assert(N->getNumChildren() >= (2 + Skip) &&
4708             "Commutative but doesn't have 2 children!");
4709      // Don't allow commuting children which are actually register references.
4710      bool NoRegisters = true;
4711      unsigned i = 0 + Skip;
4712      unsigned e = 2 + Skip;
4713      for (; i != e; ++i) {
4714        TreePatternNode &Child = N->getChild(i);
4715        if (Child.isLeaf())
4716          if (DefInit *DI = dyn_cast<DefInit>(Child.getLeafValue())) {
4717            Record *RR = DI->getDef();
4718            if (RR->isSubClassOf("Register"))
4719              NoRegisters = false;
4720          }
4721      }
4722      // Consider the commuted order.
4723      if (NoRegisters) {
4724        // Swap the first two operands after the intrinsic id, if present.
4725        unsigned i = isCommIntrinsic ? 1 : 0;
4726        std::swap(ChildVariants[i], ChildVariants[i + 1]);
4727        CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4728      }
4729    }
4730  }
4731  
4732  // GenerateVariants - Generate variants.  For example, commutative patterns can
4733  // match multiple ways.  Add them to PatternsToMatch as well.
4734  void CodeGenDAGPatterns::GenerateVariants() {
4735    LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4736  
4737    // Loop over all of the patterns we've collected, checking to see if we can
4738    // generate variants of the instruction, through the exploitation of
4739    // identities.  This permits the target to provide aggressive matching without
4740    // the .td file having to contain tons of variants of instructions.
4741    //
4742    // Note that this loop adds new patterns to the PatternsToMatch list, but we
4743    // intentionally do not reconsider these.  Any variants of added patterns have
4744    // already been added.
4745    //
4746    for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4747      MultipleUseVarSet DepVars;
4748      std::vector<TreePatternNodePtr> Variants;
4749      FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4750      LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4751      LLVM_DEBUG(DumpDepVars(DepVars));
4752      LLVM_DEBUG(errs() << "\n");
4753      GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4754                         *this, DepVars);
4755  
4756      assert(PatternsToMatch[i].getHwModeFeatures().empty() &&
4757             "HwModes should not have been expanded yet!");
4758  
4759      assert(!Variants.empty() && "Must create at least original variant!");
4760      if (Variants.size() == 1) // No additional variants for this pattern.
4761        continue;
4762  
4763      LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4764                 PatternsToMatch[i].getSrcPattern().dump(); errs() << "\n");
4765  
4766      for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4767        TreePatternNodePtr Variant = Variants[v];
4768  
4769        LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4770                   errs() << "\n");
4771  
4772        // Scan to see if an instruction or explicit pattern already matches this.
4773        bool AlreadyExists = false;
4774        for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4775          // Skip if the top level predicates do not match.
4776          if ((i != p) && (PatternsToMatch[i].getPredicates() !=
4777                           PatternsToMatch[p].getPredicates()))
4778            continue;
4779          // Check to see if this variant already exists.
4780          if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4781                                      DepVars)) {
4782            LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4783            AlreadyExists = true;
4784            break;
4785          }
4786        }
4787        // If we already have it, ignore the variant.
4788        if (AlreadyExists)
4789          continue;
4790  
4791        // Otherwise, add it to the list of patterns we have.
4792        PatternsToMatch.emplace_back(
4793            PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4794            Variant, PatternsToMatch[i].getDstPatternShared(),
4795            PatternsToMatch[i].getDstRegs(),
4796            PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(Records),
4797            PatternsToMatch[i].getGISelShouldIgnore(),
4798            PatternsToMatch[i].getHwModeFeatures());
4799      }
4800  
4801      LLVM_DEBUG(errs() << "\n");
4802    }
4803  }
4804