xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/CodeGenMapTable.cpp (revision a7623790fb345e6dc986dfd31df0ace115e6f2e4)
1 //===- CodeGenMapTable.cpp - Instruction Mapping Table Generator ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // CodeGenMapTable provides functionality for the TabelGen to create
9 // relation mapping between instructions. Relation models are defined using
10 // InstrMapping as a base class. This file implements the functionality which
11 // parses these definitions and generates relation maps using the information
12 // specified there. These maps are emitted as tables in the XXXGenInstrInfo.inc
13 // file along with the functions to query them.
14 //
15 // A relationship model to relate non-predicate instructions with their
16 // predicated true/false forms can be defined as follows:
17 //
18 // def getPredOpcode : InstrMapping {
19 //  let FilterClass = "PredRel";
20 //  let RowFields = ["BaseOpcode"];
21 //  let ColFields = ["PredSense"];
22 //  let KeyCol = ["none"];
23 //  let ValueCols = [["true"], ["false"]]; }
24 //
25 // CodeGenMapTable parses this map and generates a table in XXXGenInstrInfo.inc
26 // file that contains the instructions modeling this relationship. This table
27 // is defined in the function
28 // "int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense)"
29 // that can be used to retrieve the predicated form of the instruction by
30 // passing its opcode value and the predicate sense (true/false) of the desired
31 // instruction as arguments.
32 //
33 // Short description of the algorithm:
34 //
35 // 1) Iterate through all the records that derive from "InstrMapping" class.
36 // 2) For each record, filter out instructions based on the FilterClass value.
37 // 3) Iterate through this set of instructions and insert them into
38 // RowInstrMap map based on their RowFields values. RowInstrMap is keyed by the
39 // vector of RowFields values and contains vectors of Records (instructions) as
40 // values. RowFields is a list of fields that are required to have the same
41 // values for all the instructions appearing in the same row of the relation
42 // table. All the instructions in a given row of the relation table have some
43 // sort of relationship with the key instruction defined by the corresponding
44 // relationship model.
45 //
46 // Ex: RowInstrMap(RowVal1, RowVal2, ...) -> [Instr1, Instr2, Instr3, ... ]
47 // Here Instr1, Instr2, Instr3 have same values (RowVal1, RowVal2) for
48 // RowFields. These groups of instructions are later matched against ValueCols
49 // to determine the column they belong to, if any.
50 //
51 // While building the RowInstrMap map, collect all the key instructions in
52 // KeyInstrVec. These are the instructions having the same values as KeyCol
53 // for all the fields listed in ColFields.
54 //
55 // For Example:
56 //
57 // Relate non-predicate instructions with their predicated true/false forms.
58 //
59 // def getPredOpcode : InstrMapping {
60 //  let FilterClass = "PredRel";
61 //  let RowFields = ["BaseOpcode"];
62 //  let ColFields = ["PredSense"];
63 //  let KeyCol = ["none"];
64 //  let ValueCols = [["true"], ["false"]]; }
65 //
66 // Here, only instructions that have "none" as PredSense will be selected as key
67 // instructions.
68 //
69 // 4) For each key instruction, get the group of instructions that share the
70 // same key-value as the key instruction from RowInstrMap. Iterate over the list
71 // of columns in ValueCols (it is defined as a list<list<string> >. Therefore,
72 // it can specify multi-column relationships). For each column, find the
73 // instruction from the group that matches all the values for the column.
74 // Multiple matches are not allowed.
75 //
76 //===----------------------------------------------------------------------===//
77 
78 #include "CodeGenTarget.h"
79 #include "llvm/Support/Format.h"
80 #include "llvm/TableGen/Error.h"
81 using namespace llvm;
82 typedef std::map<std::string, std::vector<Record*> > InstrRelMapTy;
83 
84 typedef std::map<std::vector<Init*>, std::vector<Record*> > RowInstrMapTy;
85 
86 namespace {
87 
88 //===----------------------------------------------------------------------===//
89 // This class is used to represent InstrMapping class defined in Target.td file.
90 class InstrMap {
91 private:
92   std::string Name;
93   std::string FilterClass;
94   ListInit *RowFields;
95   ListInit *ColFields;
96   ListInit *KeyCol;
97   std::vector<ListInit*> ValueCols;
98 
99 public:
100   InstrMap(Record* MapRec) {
101     Name = std::string(MapRec->getName());
102 
103     // FilterClass - It's used to reduce the search space only to the
104     // instructions that define the kind of relationship modeled by
105     // this InstrMapping object/record.
106     const RecordVal *Filter = MapRec->getValue("FilterClass");
107     FilterClass = Filter->getValue()->getAsUnquotedString();
108 
109     // List of fields/attributes that need to be same across all the
110     // instructions in a row of the relation table.
111     RowFields = MapRec->getValueAsListInit("RowFields");
112 
113     // List of fields/attributes that are constant across all the instruction
114     // in a column of the relation table. Ex: ColFields = 'predSense'
115     ColFields = MapRec->getValueAsListInit("ColFields");
116 
117     // Values for the fields/attributes listed in 'ColFields'.
118     // Ex: KeyCol = 'noPred' -- key instruction is non-predicated
119     KeyCol = MapRec->getValueAsListInit("KeyCol");
120 
121     // List of values for the fields/attributes listed in 'ColFields', one for
122     // each column in the relation table.
123     //
124     // Ex: ValueCols = [['true'],['false']] -- it results two columns in the
125     // table. First column requires all the instructions to have predSense
126     // set to 'true' and second column requires it to be 'false'.
127     ListInit *ColValList = MapRec->getValueAsListInit("ValueCols");
128 
129     // Each instruction map must specify at least one column for it to be valid.
130     if (ColValList->empty())
131       PrintFatalError(MapRec->getLoc(), "InstrMapping record `" +
132         MapRec->getName() + "' has empty " + "`ValueCols' field!");
133 
134     for (Init *I : ColValList->getValues()) {
135       auto *ColI = cast<ListInit>(I);
136 
137       // Make sure that all the sub-lists in 'ValueCols' have same number of
138       // elements as the fields in 'ColFields'.
139       if (ColI->size() != ColFields->size())
140         PrintFatalError(MapRec->getLoc(), "Record `" + MapRec->getName() +
141           "', field `ValueCols' entries don't match with " +
142           " the entries in 'ColFields'!");
143       ValueCols.push_back(ColI);
144     }
145   }
146 
147   std::string getName() const {
148     return Name;
149   }
150 
151   std::string getFilterClass() {
152     return FilterClass;
153   }
154 
155   ListInit *getRowFields() const {
156     return RowFields;
157   }
158 
159   ListInit *getColFields() const {
160     return ColFields;
161   }
162 
163   ListInit *getKeyCol() const {
164     return KeyCol;
165   }
166 
167   const std::vector<ListInit*> &getValueCols() const {
168     return ValueCols;
169   }
170 };
171 } // end anonymous namespace
172 
173 
174 //===----------------------------------------------------------------------===//
175 // class MapTableEmitter : It builds the instruction relation maps using
176 // the information provided in InstrMapping records. It outputs these
177 // relationship maps as tables into XXXGenInstrInfo.inc file along with the
178 // functions to query them.
179 
180 namespace {
181 class MapTableEmitter {
182 private:
183 //  std::string TargetName;
184   const CodeGenTarget &Target;
185   // InstrMapDesc - InstrMapping record to be processed.
186   InstrMap InstrMapDesc;
187 
188   // InstrDefs - list of instructions filtered using FilterClass defined
189   // in InstrMapDesc.
190   std::vector<Record*> InstrDefs;
191 
192   // RowInstrMap - maps RowFields values to the instructions. It's keyed by the
193   // values of the row fields and contains vector of records as values.
194   RowInstrMapTy RowInstrMap;
195 
196   // KeyInstrVec - list of key instructions.
197   std::vector<Record*> KeyInstrVec;
198   DenseMap<Record*, std::vector<Record*> > MapTable;
199 
200 public:
201   MapTableEmitter(CodeGenTarget &Target, RecordKeeper &Records, Record *IMRec):
202                   Target(Target), InstrMapDesc(IMRec) {
203     const std::string FilterClass = InstrMapDesc.getFilterClass();
204     InstrDefs = Records.getAllDerivedDefinitions(FilterClass);
205   }
206 
207   void buildRowInstrMap();
208 
209   // Returns true if an instruction is a key instruction, i.e., its ColFields
210   // have same values as KeyCol.
211   bool isKeyColInstr(Record* CurInstr);
212 
213   // Find column instruction corresponding to a key instruction based on the
214   // constraints for that column.
215   Record *getInstrForColumn(Record *KeyInstr, ListInit *CurValueCol);
216 
217   // Find column instructions for each key instruction based
218   // on ValueCols and store them into MapTable.
219   void buildMapTable();
220 
221   void emitBinSearch(raw_ostream &OS, unsigned TableSize);
222   void emitTablesWithFunc(raw_ostream &OS);
223   unsigned emitBinSearchTable(raw_ostream &OS);
224 
225   // Lookup functions to query binary search tables.
226   void emitMapFuncBody(raw_ostream &OS, unsigned TableSize);
227 
228 };
229 } // end anonymous namespace
230 
231 
232 //===----------------------------------------------------------------------===//
233 // Process all the instructions that model this relation (alreday present in
234 // InstrDefs) and insert them into RowInstrMap which is keyed by the values of
235 // the fields listed as RowFields. It stores vectors of records as values.
236 // All the related instructions have the same values for the RowFields thus are
237 // part of the same key-value pair.
238 //===----------------------------------------------------------------------===//
239 
240 void MapTableEmitter::buildRowInstrMap() {
241   for (Record *CurInstr : InstrDefs) {
242     std::vector<Init*> KeyValue;
243     ListInit *RowFields = InstrMapDesc.getRowFields();
244     for (Init *RowField : RowFields->getValues()) {
245       RecordVal *RecVal = CurInstr->getValue(RowField);
246       if (RecVal == nullptr)
247         PrintFatalError(CurInstr->getLoc(), "No value " +
248                         RowField->getAsString() + " found in \"" +
249                         CurInstr->getName() + "\" instruction description.");
250       Init *CurInstrVal = RecVal->getValue();
251       KeyValue.push_back(CurInstrVal);
252     }
253 
254     // Collect key instructions into KeyInstrVec. Later, these instructions are
255     // processed to assign column position to the instructions sharing
256     // their KeyValue in RowInstrMap.
257     if (isKeyColInstr(CurInstr))
258       KeyInstrVec.push_back(CurInstr);
259 
260     RowInstrMap[KeyValue].push_back(CurInstr);
261   }
262 }
263 
264 //===----------------------------------------------------------------------===//
265 // Return true if an instruction is a KeyCol instruction.
266 //===----------------------------------------------------------------------===//
267 
268 bool MapTableEmitter::isKeyColInstr(Record* CurInstr) {
269   ListInit *ColFields = InstrMapDesc.getColFields();
270   ListInit *KeyCol = InstrMapDesc.getKeyCol();
271 
272   // Check if the instruction is a KeyCol instruction.
273   bool MatchFound = true;
274   for (unsigned j = 0, endCF = ColFields->size();
275       (j < endCF) && MatchFound; j++) {
276     RecordVal *ColFieldName = CurInstr->getValue(ColFields->getElement(j));
277     std::string CurInstrVal = ColFieldName->getValue()->getAsUnquotedString();
278     std::string KeyColValue = KeyCol->getElement(j)->getAsUnquotedString();
279     MatchFound = (CurInstrVal == KeyColValue);
280   }
281   return MatchFound;
282 }
283 
284 //===----------------------------------------------------------------------===//
285 // Build a map to link key instructions with the column instructions arranged
286 // according to their column positions.
287 //===----------------------------------------------------------------------===//
288 
289 void MapTableEmitter::buildMapTable() {
290   // Find column instructions for a given key based on the ColField
291   // constraints.
292   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
293   unsigned NumOfCols = ValueCols.size();
294   for (Record *CurKeyInstr : KeyInstrVec) {
295     std::vector<Record*> ColInstrVec(NumOfCols);
296 
297     // Find the column instruction based on the constraints for the column.
298     for (unsigned ColIdx = 0; ColIdx < NumOfCols; ColIdx++) {
299       ListInit *CurValueCol = ValueCols[ColIdx];
300       Record *ColInstr = getInstrForColumn(CurKeyInstr, CurValueCol);
301       ColInstrVec[ColIdx] = ColInstr;
302     }
303     MapTable[CurKeyInstr] = ColInstrVec;
304   }
305 }
306 
307 //===----------------------------------------------------------------------===//
308 // Find column instruction based on the constraints for that column.
309 //===----------------------------------------------------------------------===//
310 
311 Record *MapTableEmitter::getInstrForColumn(Record *KeyInstr,
312                                            ListInit *CurValueCol) {
313   ListInit *RowFields = InstrMapDesc.getRowFields();
314   std::vector<Init*> KeyValue;
315 
316   // Construct KeyValue using KeyInstr's values for RowFields.
317   for (Init *RowField : RowFields->getValues()) {
318     Init *KeyInstrVal = KeyInstr->getValue(RowField)->getValue();
319     KeyValue.push_back(KeyInstrVal);
320   }
321 
322   // Get all the instructions that share the same KeyValue as the KeyInstr
323   // in RowInstrMap. We search through these instructions to find a match
324   // for the current column, i.e., the instruction which has the same values
325   // as CurValueCol for all the fields in ColFields.
326   const std::vector<Record*> &RelatedInstrVec = RowInstrMap[KeyValue];
327 
328   ListInit *ColFields = InstrMapDesc.getColFields();
329   Record *MatchInstr = nullptr;
330 
331   for (unsigned i = 0, e = RelatedInstrVec.size(); i < e; i++) {
332     bool MatchFound = true;
333     Record *CurInstr = RelatedInstrVec[i];
334     for (unsigned j = 0, endCF = ColFields->size();
335         (j < endCF) && MatchFound; j++) {
336       Init *ColFieldJ = ColFields->getElement(j);
337       Init *CurInstrInit = CurInstr->getValue(ColFieldJ)->getValue();
338       std::string CurInstrVal = CurInstrInit->getAsUnquotedString();
339       Init *ColFieldJVallue = CurValueCol->getElement(j);
340       MatchFound = (CurInstrVal == ColFieldJVallue->getAsUnquotedString());
341     }
342 
343     if (MatchFound) {
344       if (MatchInstr) {
345         // Already had a match
346         // Error if multiple matches are found for a column.
347         std::string KeyValueStr;
348         for (Init *Value : KeyValue) {
349           if (!KeyValueStr.empty())
350             KeyValueStr += ", ";
351           KeyValueStr += Value->getAsString();
352         }
353 
354         PrintFatalError("Multiple matches found for `" + KeyInstr->getName() +
355               "', for the relation `" + InstrMapDesc.getName() + "', row fields [" +
356               KeyValueStr + "], column `" + CurValueCol->getAsString() + "'");
357       }
358       MatchInstr = CurInstr;
359     }
360   }
361   return MatchInstr;
362 }
363 
364 //===----------------------------------------------------------------------===//
365 // Emit one table per relation. Only instructions with a valid relation of a
366 // given type are included in the table sorted by their enum values (opcodes).
367 // Binary search is used for locating instructions in the table.
368 //===----------------------------------------------------------------------===//
369 
370 unsigned MapTableEmitter::emitBinSearchTable(raw_ostream &OS) {
371 
372   ArrayRef<const CodeGenInstruction*> NumberedInstructions =
373                                             Target.getInstructionsByEnumValue();
374   StringRef Namespace = Target.getInstNamespace();
375   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
376   unsigned NumCol = ValueCols.size();
377   unsigned TotalNumInstr = NumberedInstructions.size();
378   unsigned TableSize = 0;
379 
380   OS << "static const uint16_t "<<InstrMapDesc.getName();
381   // Number of columns in the table are NumCol+1 because key instructions are
382   // emitted as first column.
383   OS << "Table[]["<< NumCol+1 << "] = {\n";
384   for (unsigned i = 0; i < TotalNumInstr; i++) {
385     Record *CurInstr = NumberedInstructions[i]->TheDef;
386     std::vector<Record*> ColInstrs = MapTable[CurInstr];
387     std::string OutStr("");
388     unsigned RelExists = 0;
389     if (!ColInstrs.empty()) {
390       for (unsigned j = 0; j < NumCol; j++) {
391         if (ColInstrs[j] != nullptr) {
392           RelExists = 1;
393           OutStr += ", ";
394           OutStr += Namespace;
395           OutStr += "::";
396           OutStr += ColInstrs[j]->getName();
397         } else { OutStr += ", (uint16_t)-1U";}
398       }
399 
400       if (RelExists) {
401         OS << "  { " << Namespace << "::" << CurInstr->getName();
402         OS << OutStr <<" },\n";
403         TableSize++;
404       }
405     }
406   }
407   if (!TableSize) {
408     OS << "  { " << Namespace << "::" << "INSTRUCTION_LIST_END, ";
409     OS << Namespace << "::" << "INSTRUCTION_LIST_END }";
410   }
411   OS << "}; // End of " << InstrMapDesc.getName() << "Table\n\n";
412   return TableSize;
413 }
414 
415 //===----------------------------------------------------------------------===//
416 // Emit binary search algorithm as part of the functions used to query
417 // relation tables.
418 //===----------------------------------------------------------------------===//
419 
420 void MapTableEmitter::emitBinSearch(raw_ostream &OS, unsigned TableSize) {
421   OS << "  unsigned mid;\n";
422   OS << "  unsigned start = 0;\n";
423   OS << "  unsigned end = " << TableSize << ";\n";
424   OS << "  while (start < end) {\n";
425   OS << "    mid = start + (end - start)/2;\n";
426   OS << "    if (Opcode == " << InstrMapDesc.getName() << "Table[mid][0]) {\n";
427   OS << "      break;\n";
428   OS << "    }\n";
429   OS << "    if (Opcode < " << InstrMapDesc.getName() << "Table[mid][0])\n";
430   OS << "      end = mid;\n";
431   OS << "    else\n";
432   OS << "      start = mid + 1;\n";
433   OS << "  }\n";
434   OS << "  if (start == end)\n";
435   OS << "    return -1; // Instruction doesn't exist in this table.\n\n";
436 }
437 
438 //===----------------------------------------------------------------------===//
439 // Emit functions to query relation tables.
440 //===----------------------------------------------------------------------===//
441 
442 void MapTableEmitter::emitMapFuncBody(raw_ostream &OS,
443                                            unsigned TableSize) {
444 
445   ListInit *ColFields = InstrMapDesc.getColFields();
446   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
447 
448   // Emit binary search algorithm to locate instructions in the
449   // relation table. If found, return opcode value from the appropriate column
450   // of the table.
451   emitBinSearch(OS, TableSize);
452 
453   if (ValueCols.size() > 1) {
454     for (unsigned i = 0, e = ValueCols.size(); i < e; i++) {
455       ListInit *ColumnI = ValueCols[i];
456       for (unsigned j = 0, ColSize = ColumnI->size(); j < ColSize; ++j) {
457         std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
458         OS << "  if (in" << ColName;
459         OS << " == ";
460         OS << ColName << "_" << ColumnI->getElement(j)->getAsUnquotedString();
461         if (j < ColumnI->size() - 1) OS << " && ";
462         else OS << ")\n";
463       }
464       OS << "    return " << InstrMapDesc.getName();
465       OS << "Table[mid]["<<i+1<<"];\n";
466     }
467     OS << "  return -1;";
468   }
469   else
470     OS << "  return " << InstrMapDesc.getName() << "Table[mid][1];\n";
471 
472   OS <<"}\n\n";
473 }
474 
475 //===----------------------------------------------------------------------===//
476 // Emit relation tables and the functions to query them.
477 //===----------------------------------------------------------------------===//
478 
479 void MapTableEmitter::emitTablesWithFunc(raw_ostream &OS) {
480 
481   // Emit function name and the input parameters : mostly opcode value of the
482   // current instruction. However, if a table has multiple columns (more than 2
483   // since first column is used for the key instructions), then we also need
484   // to pass another input to indicate the column to be selected.
485 
486   ListInit *ColFields = InstrMapDesc.getColFields();
487   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
488   OS << "// "<< InstrMapDesc.getName() << "\nLLVM_READONLY\n";
489   OS << "int "<< InstrMapDesc.getName() << "(uint16_t Opcode";
490   if (ValueCols.size() > 1) {
491     for (Init *CF : ColFields->getValues()) {
492       std::string ColName = CF->getAsUnquotedString();
493       OS << ", enum " << ColName << " in" << ColName << ") {\n";
494     }
495   } else { OS << ") {\n"; }
496 
497   // Emit map table.
498   unsigned TableSize = emitBinSearchTable(OS);
499 
500   // Emit rest of the function body.
501   emitMapFuncBody(OS, TableSize);
502 }
503 
504 //===----------------------------------------------------------------------===//
505 // Emit enums for the column fields across all the instruction maps.
506 //===----------------------------------------------------------------------===//
507 
508 static void emitEnums(raw_ostream &OS, RecordKeeper &Records) {
509 
510   std::vector<Record*> InstrMapVec;
511   InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");
512   std::map<std::string, std::vector<Init*> > ColFieldValueMap;
513 
514   // Iterate over all InstrMapping records and create a map between column
515   // fields and their possible values across all records.
516   for (Record *CurMap : InstrMapVec) {
517     ListInit *ColFields;
518     ColFields = CurMap->getValueAsListInit("ColFields");
519     ListInit *List = CurMap->getValueAsListInit("ValueCols");
520     std::vector<ListInit*> ValueCols;
521     unsigned ListSize = List->size();
522 
523     for (unsigned j = 0; j < ListSize; j++) {
524       auto *ListJ = cast<ListInit>(List->getElement(j));
525 
526       if (ListJ->size() != ColFields->size())
527         PrintFatalError("Record `" + CurMap->getName() + "', field "
528           "`ValueCols' entries don't match with the entries in 'ColFields' !");
529       ValueCols.push_back(ListJ);
530     }
531 
532     for (unsigned j = 0, endCF = ColFields->size(); j < endCF; j++) {
533       for (unsigned k = 0; k < ListSize; k++){
534         std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
535         ColFieldValueMap[ColName].push_back((ValueCols[k])->getElement(j));
536       }
537     }
538   }
539 
540   for (auto &Entry : ColFieldValueMap) {
541     std::vector<Init*> FieldValues = Entry.second;
542 
543     // Delete duplicate entries from ColFieldValueMap
544     for (unsigned i = 0; i < FieldValues.size() - 1; i++) {
545       Init *CurVal = FieldValues[i];
546       for (unsigned j = i+1; j < FieldValues.size(); j++) {
547         if (CurVal == FieldValues[j]) {
548           FieldValues.erase(FieldValues.begin()+j);
549           --j;
550         }
551       }
552     }
553 
554     // Emit enumerated values for the column fields.
555     OS << "enum " << Entry.first << " {\n";
556     for (unsigned i = 0, endFV = FieldValues.size(); i < endFV; i++) {
557       OS << "\t" << Entry.first << "_" << FieldValues[i]->getAsUnquotedString();
558       if (i != endFV - 1)
559         OS << ",\n";
560       else
561         OS << "\n};\n\n";
562     }
563   }
564 }
565 
566 namespace llvm {
567 //===----------------------------------------------------------------------===//
568 // Parse 'InstrMapping' records and use the information to form relationship
569 // between instructions. These relations are emitted as a tables along with the
570 // functions to query them.
571 //===----------------------------------------------------------------------===//
572 void EmitMapTable(RecordKeeper &Records, raw_ostream &OS) {
573   CodeGenTarget Target(Records);
574   StringRef NameSpace = Target.getInstNamespace();
575   std::vector<Record*> InstrMapVec;
576   InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");
577 
578   if (InstrMapVec.empty())
579     return;
580 
581   OS << "#ifdef GET_INSTRMAP_INFO\n";
582   OS << "#undef GET_INSTRMAP_INFO\n";
583   OS << "namespace llvm {\n\n";
584   OS << "namespace " << NameSpace << " {\n\n";
585 
586   // Emit coulumn field names and their values as enums.
587   emitEnums(OS, Records);
588 
589   // Iterate over all instruction mapping records and construct relationship
590   // maps based on the information specified there.
591   //
592   for (Record *CurMap : InstrMapVec) {
593     MapTableEmitter IMap(Target, Records, CurMap);
594 
595     // Build RowInstrMap to group instructions based on their values for
596     // RowFields. In the process, also collect key instructions into
597     // KeyInstrVec.
598     IMap.buildRowInstrMap();
599 
600     // Build MapTable to map key instructions with the corresponding column
601     // instructions.
602     IMap.buildMapTable();
603 
604     // Emit map tables and the functions to query them.
605     IMap.emitTablesWithFunc(OS);
606   }
607   OS << "} // end namespace " << NameSpace << "\n";
608   OS << "} // end namespace llvm\n";
609   OS << "#endif // GET_INSTRMAP_INFO\n\n";
610 }
611 
612 } // End llvm namespace
613