xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/CodeGenMapTable.cpp (revision 5956d97f4b3204318ceb6aa9c77bd0bc6ea87a41)
1 //===- CodeGenMapTable.cpp - Instruction Mapping Table Generator ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // CodeGenMapTable provides functionality for the TableGen to create
9 // relation mapping between instructions. Relation models are defined using
10 // InstrMapping as a base class. This file implements the functionality which
11 // parses these definitions and generates relation maps using the information
12 // specified there. These maps are emitted as tables in the XXXGenInstrInfo.inc
13 // file along with the functions to query them.
14 //
15 // A relationship model to relate non-predicate instructions with their
16 // predicated true/false forms can be defined as follows:
17 //
18 // def getPredOpcode : InstrMapping {
19 //  let FilterClass = "PredRel";
20 //  let RowFields = ["BaseOpcode"];
21 //  let ColFields = ["PredSense"];
22 //  let KeyCol = ["none"];
23 //  let ValueCols = [["true"], ["false"]]; }
24 //
25 // CodeGenMapTable parses this map and generates a table in XXXGenInstrInfo.inc
26 // file that contains the instructions modeling this relationship. This table
27 // is defined in the function
28 // "int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense)"
29 // that can be used to retrieve the predicated form of the instruction by
30 // passing its opcode value and the predicate sense (true/false) of the desired
31 // instruction as arguments.
32 //
33 // Short description of the algorithm:
34 //
35 // 1) Iterate through all the records that derive from "InstrMapping" class.
36 // 2) For each record, filter out instructions based on the FilterClass value.
37 // 3) Iterate through this set of instructions and insert them into
38 // RowInstrMap map based on their RowFields values. RowInstrMap is keyed by the
39 // vector of RowFields values and contains vectors of Records (instructions) as
40 // values. RowFields is a list of fields that are required to have the same
41 // values for all the instructions appearing in the same row of the relation
42 // table. All the instructions in a given row of the relation table have some
43 // sort of relationship with the key instruction defined by the corresponding
44 // relationship model.
45 //
46 // Ex: RowInstrMap(RowVal1, RowVal2, ...) -> [Instr1, Instr2, Instr3, ... ]
47 // Here Instr1, Instr2, Instr3 have same values (RowVal1, RowVal2) for
48 // RowFields. These groups of instructions are later matched against ValueCols
49 // to determine the column they belong to, if any.
50 //
51 // While building the RowInstrMap map, collect all the key instructions in
52 // KeyInstrVec. These are the instructions having the same values as KeyCol
53 // for all the fields listed in ColFields.
54 //
55 // For Example:
56 //
57 // Relate non-predicate instructions with their predicated true/false forms.
58 //
59 // def getPredOpcode : InstrMapping {
60 //  let FilterClass = "PredRel";
61 //  let RowFields = ["BaseOpcode"];
62 //  let ColFields = ["PredSense"];
63 //  let KeyCol = ["none"];
64 //  let ValueCols = [["true"], ["false"]]; }
65 //
66 // Here, only instructions that have "none" as PredSense will be selected as key
67 // instructions.
68 //
69 // 4) For each key instruction, get the group of instructions that share the
70 // same key-value as the key instruction from RowInstrMap. Iterate over the list
71 // of columns in ValueCols (it is defined as a list<list<string> >. Therefore,
72 // it can specify multi-column relationships). For each column, find the
73 // instruction from the group that matches all the values for the column.
74 // Multiple matches are not allowed.
75 //
76 //===----------------------------------------------------------------------===//
77 
78 #include "CodeGenTarget.h"
79 #include "llvm/Support/Format.h"
80 #include "llvm/TableGen/Error.h"
81 using namespace llvm;
82 typedef std::map<std::string, std::vector<Record*> > InstrRelMapTy;
83 
84 typedef std::map<std::vector<Init*>, std::vector<Record*> > RowInstrMapTy;
85 
86 namespace {
87 
88 //===----------------------------------------------------------------------===//
89 // This class is used to represent InstrMapping class defined in Target.td file.
90 class InstrMap {
91 private:
92   std::string Name;
93   std::string FilterClass;
94   ListInit *RowFields;
95   ListInit *ColFields;
96   ListInit *KeyCol;
97   std::vector<ListInit*> ValueCols;
98 
99 public:
100   InstrMap(Record* MapRec) {
101     Name = std::string(MapRec->getName());
102 
103     // FilterClass - It's used to reduce the search space only to the
104     // instructions that define the kind of relationship modeled by
105     // this InstrMapping object/record.
106     const RecordVal *Filter = MapRec->getValue("FilterClass");
107     FilterClass = Filter->getValue()->getAsUnquotedString();
108 
109     // List of fields/attributes that need to be same across all the
110     // instructions in a row of the relation table.
111     RowFields = MapRec->getValueAsListInit("RowFields");
112 
113     // List of fields/attributes that are constant across all the instruction
114     // in a column of the relation table. Ex: ColFields = 'predSense'
115     ColFields = MapRec->getValueAsListInit("ColFields");
116 
117     // Values for the fields/attributes listed in 'ColFields'.
118     // Ex: KeyCol = 'noPred' -- key instruction is non-predicated
119     KeyCol = MapRec->getValueAsListInit("KeyCol");
120 
121     // List of values for the fields/attributes listed in 'ColFields', one for
122     // each column in the relation table.
123     //
124     // Ex: ValueCols = [['true'],['false']] -- it results two columns in the
125     // table. First column requires all the instructions to have predSense
126     // set to 'true' and second column requires it to be 'false'.
127     ListInit *ColValList = MapRec->getValueAsListInit("ValueCols");
128 
129     // Each instruction map must specify at least one column for it to be valid.
130     if (ColValList->empty())
131       PrintFatalError(MapRec->getLoc(), "InstrMapping record `" +
132         MapRec->getName() + "' has empty " + "`ValueCols' field!");
133 
134     for (Init *I : ColValList->getValues()) {
135       auto *ColI = cast<ListInit>(I);
136 
137       // Make sure that all the sub-lists in 'ValueCols' have same number of
138       // elements as the fields in 'ColFields'.
139       if (ColI->size() != ColFields->size())
140         PrintFatalError(MapRec->getLoc(), "Record `" + MapRec->getName() +
141           "', field `ValueCols' entries don't match with " +
142           " the entries in 'ColFields'!");
143       ValueCols.push_back(ColI);
144     }
145   }
146 
147   const std::string &getName() const { return Name; }
148 
149   const std::string &getFilterClass() const { return FilterClass; }
150 
151   ListInit *getRowFields() const { return RowFields; }
152 
153   ListInit *getColFields() const { return ColFields; }
154 
155   ListInit *getKeyCol() const { return KeyCol; }
156 
157   const std::vector<ListInit*> &getValueCols() const {
158     return ValueCols;
159   }
160 };
161 } // end anonymous namespace
162 
163 
164 //===----------------------------------------------------------------------===//
165 // class MapTableEmitter : It builds the instruction relation maps using
166 // the information provided in InstrMapping records. It outputs these
167 // relationship maps as tables into XXXGenInstrInfo.inc file along with the
168 // functions to query them.
169 
170 namespace {
171 class MapTableEmitter {
172 private:
173 //  std::string TargetName;
174   const CodeGenTarget &Target;
175   // InstrMapDesc - InstrMapping record to be processed.
176   InstrMap InstrMapDesc;
177 
178   // InstrDefs - list of instructions filtered using FilterClass defined
179   // in InstrMapDesc.
180   std::vector<Record*> InstrDefs;
181 
182   // RowInstrMap - maps RowFields values to the instructions. It's keyed by the
183   // values of the row fields and contains vector of records as values.
184   RowInstrMapTy RowInstrMap;
185 
186   // KeyInstrVec - list of key instructions.
187   std::vector<Record*> KeyInstrVec;
188   DenseMap<Record*, std::vector<Record*> > MapTable;
189 
190 public:
191   MapTableEmitter(CodeGenTarget &Target, RecordKeeper &Records, Record *IMRec):
192                   Target(Target), InstrMapDesc(IMRec) {
193     const std::string &FilterClass = InstrMapDesc.getFilterClass();
194     InstrDefs = Records.getAllDerivedDefinitions(FilterClass);
195   }
196 
197   void buildRowInstrMap();
198 
199   // Returns true if an instruction is a key instruction, i.e., its ColFields
200   // have same values as KeyCol.
201   bool isKeyColInstr(Record* CurInstr);
202 
203   // Find column instruction corresponding to a key instruction based on the
204   // constraints for that column.
205   Record *getInstrForColumn(Record *KeyInstr, ListInit *CurValueCol);
206 
207   // Find column instructions for each key instruction based
208   // on ValueCols and store them into MapTable.
209   void buildMapTable();
210 
211   void emitBinSearch(raw_ostream &OS, unsigned TableSize);
212   void emitTablesWithFunc(raw_ostream &OS);
213   unsigned emitBinSearchTable(raw_ostream &OS);
214 
215   // Lookup functions to query binary search tables.
216   void emitMapFuncBody(raw_ostream &OS, unsigned TableSize);
217 
218 };
219 } // end anonymous namespace
220 
221 
222 //===----------------------------------------------------------------------===//
223 // Process all the instructions that model this relation (alreday present in
224 // InstrDefs) and insert them into RowInstrMap which is keyed by the values of
225 // the fields listed as RowFields. It stores vectors of records as values.
226 // All the related instructions have the same values for the RowFields thus are
227 // part of the same key-value pair.
228 //===----------------------------------------------------------------------===//
229 
230 void MapTableEmitter::buildRowInstrMap() {
231   for (Record *CurInstr : InstrDefs) {
232     std::vector<Init*> KeyValue;
233     ListInit *RowFields = InstrMapDesc.getRowFields();
234     for (Init *RowField : RowFields->getValues()) {
235       RecordVal *RecVal = CurInstr->getValue(RowField);
236       if (RecVal == nullptr)
237         PrintFatalError(CurInstr->getLoc(), "No value " +
238                         RowField->getAsString() + " found in \"" +
239                         CurInstr->getName() + "\" instruction description.");
240       Init *CurInstrVal = RecVal->getValue();
241       KeyValue.push_back(CurInstrVal);
242     }
243 
244     // Collect key instructions into KeyInstrVec. Later, these instructions are
245     // processed to assign column position to the instructions sharing
246     // their KeyValue in RowInstrMap.
247     if (isKeyColInstr(CurInstr))
248       KeyInstrVec.push_back(CurInstr);
249 
250     RowInstrMap[KeyValue].push_back(CurInstr);
251   }
252 }
253 
254 //===----------------------------------------------------------------------===//
255 // Return true if an instruction is a KeyCol instruction.
256 //===----------------------------------------------------------------------===//
257 
258 bool MapTableEmitter::isKeyColInstr(Record* CurInstr) {
259   ListInit *ColFields = InstrMapDesc.getColFields();
260   ListInit *KeyCol = InstrMapDesc.getKeyCol();
261 
262   // Check if the instruction is a KeyCol instruction.
263   bool MatchFound = true;
264   for (unsigned j = 0, endCF = ColFields->size();
265       (j < endCF) && MatchFound; j++) {
266     RecordVal *ColFieldName = CurInstr->getValue(ColFields->getElement(j));
267     std::string CurInstrVal = ColFieldName->getValue()->getAsUnquotedString();
268     std::string KeyColValue = KeyCol->getElement(j)->getAsUnquotedString();
269     MatchFound = (CurInstrVal == KeyColValue);
270   }
271   return MatchFound;
272 }
273 
274 //===----------------------------------------------------------------------===//
275 // Build a map to link key instructions with the column instructions arranged
276 // according to their column positions.
277 //===----------------------------------------------------------------------===//
278 
279 void MapTableEmitter::buildMapTable() {
280   // Find column instructions for a given key based on the ColField
281   // constraints.
282   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
283   unsigned NumOfCols = ValueCols.size();
284   for (Record *CurKeyInstr : KeyInstrVec) {
285     std::vector<Record*> ColInstrVec(NumOfCols);
286 
287     // Find the column instruction based on the constraints for the column.
288     for (unsigned ColIdx = 0; ColIdx < NumOfCols; ColIdx++) {
289       ListInit *CurValueCol = ValueCols[ColIdx];
290       Record *ColInstr = getInstrForColumn(CurKeyInstr, CurValueCol);
291       ColInstrVec[ColIdx] = ColInstr;
292     }
293     MapTable[CurKeyInstr] = ColInstrVec;
294   }
295 }
296 
297 //===----------------------------------------------------------------------===//
298 // Find column instruction based on the constraints for that column.
299 //===----------------------------------------------------------------------===//
300 
301 Record *MapTableEmitter::getInstrForColumn(Record *KeyInstr,
302                                            ListInit *CurValueCol) {
303   ListInit *RowFields = InstrMapDesc.getRowFields();
304   std::vector<Init*> KeyValue;
305 
306   // Construct KeyValue using KeyInstr's values for RowFields.
307   for (Init *RowField : RowFields->getValues()) {
308     Init *KeyInstrVal = KeyInstr->getValue(RowField)->getValue();
309     KeyValue.push_back(KeyInstrVal);
310   }
311 
312   // Get all the instructions that share the same KeyValue as the KeyInstr
313   // in RowInstrMap. We search through these instructions to find a match
314   // for the current column, i.e., the instruction which has the same values
315   // as CurValueCol for all the fields in ColFields.
316   const std::vector<Record*> &RelatedInstrVec = RowInstrMap[KeyValue];
317 
318   ListInit *ColFields = InstrMapDesc.getColFields();
319   Record *MatchInstr = nullptr;
320 
321   for (llvm::Record *CurInstr : RelatedInstrVec) {
322     bool MatchFound = true;
323     for (unsigned j = 0, endCF = ColFields->size();
324          (j < endCF) && MatchFound; j++) {
325       Init *ColFieldJ = ColFields->getElement(j);
326       Init *CurInstrInit = CurInstr->getValue(ColFieldJ)->getValue();
327       std::string CurInstrVal = CurInstrInit->getAsUnquotedString();
328       Init *ColFieldJVallue = CurValueCol->getElement(j);
329       MatchFound = (CurInstrVal == ColFieldJVallue->getAsUnquotedString());
330     }
331 
332     if (MatchFound) {
333       if (MatchInstr) {
334         // Already had a match
335         // Error if multiple matches are found for a column.
336         std::string KeyValueStr;
337         for (Init *Value : KeyValue) {
338           if (!KeyValueStr.empty())
339             KeyValueStr += ", ";
340           KeyValueStr += Value->getAsString();
341         }
342 
343         PrintFatalError("Multiple matches found for `" + KeyInstr->getName() +
344                         "', for the relation `" + InstrMapDesc.getName() +
345                         "', row fields [" + KeyValueStr + "], column `" +
346                         CurValueCol->getAsString() + "'");
347       }
348       MatchInstr = CurInstr;
349     }
350   }
351   return MatchInstr;
352 }
353 
354 //===----------------------------------------------------------------------===//
355 // Emit one table per relation. Only instructions with a valid relation of a
356 // given type are included in the table sorted by their enum values (opcodes).
357 // Binary search is used for locating instructions in the table.
358 //===----------------------------------------------------------------------===//
359 
360 unsigned MapTableEmitter::emitBinSearchTable(raw_ostream &OS) {
361 
362   ArrayRef<const CodeGenInstruction*> NumberedInstructions =
363                                             Target.getInstructionsByEnumValue();
364   StringRef Namespace = Target.getInstNamespace();
365   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
366   unsigned NumCol = ValueCols.size();
367   unsigned TotalNumInstr = NumberedInstructions.size();
368   unsigned TableSize = 0;
369 
370   OS << "static const uint16_t "<<InstrMapDesc.getName();
371   // Number of columns in the table are NumCol+1 because key instructions are
372   // emitted as first column.
373   OS << "Table[]["<< NumCol+1 << "] = {\n";
374   for (unsigned i = 0; i < TotalNumInstr; i++) {
375     Record *CurInstr = NumberedInstructions[i]->TheDef;
376     std::vector<Record*> ColInstrs = MapTable[CurInstr];
377     std::string OutStr;
378     unsigned RelExists = 0;
379     if (!ColInstrs.empty()) {
380       for (unsigned j = 0; j < NumCol; j++) {
381         if (ColInstrs[j] != nullptr) {
382           RelExists = 1;
383           OutStr += ", ";
384           OutStr += Namespace;
385           OutStr += "::";
386           OutStr += ColInstrs[j]->getName();
387         } else { OutStr += ", (uint16_t)-1U";}
388       }
389 
390       if (RelExists) {
391         OS << "  { " << Namespace << "::" << CurInstr->getName();
392         OS << OutStr <<" },\n";
393         TableSize++;
394       }
395     }
396   }
397   if (!TableSize) {
398     OS << "  { " << Namespace << "::" << "INSTRUCTION_LIST_END, ";
399     OS << Namespace << "::" << "INSTRUCTION_LIST_END }";
400   }
401   OS << "}; // End of " << InstrMapDesc.getName() << "Table\n\n";
402   return TableSize;
403 }
404 
405 //===----------------------------------------------------------------------===//
406 // Emit binary search algorithm as part of the functions used to query
407 // relation tables.
408 //===----------------------------------------------------------------------===//
409 
410 void MapTableEmitter::emitBinSearch(raw_ostream &OS, unsigned TableSize) {
411   OS << "  unsigned mid;\n";
412   OS << "  unsigned start = 0;\n";
413   OS << "  unsigned end = " << TableSize << ";\n";
414   OS << "  while (start < end) {\n";
415   OS << "    mid = start + (end - start) / 2;\n";
416   OS << "    if (Opcode == " << InstrMapDesc.getName() << "Table[mid][0]) {\n";
417   OS << "      break;\n";
418   OS << "    }\n";
419   OS << "    if (Opcode < " << InstrMapDesc.getName() << "Table[mid][0])\n";
420   OS << "      end = mid;\n";
421   OS << "    else\n";
422   OS << "      start = mid + 1;\n";
423   OS << "  }\n";
424   OS << "  if (start == end)\n";
425   OS << "    return -1; // Instruction doesn't exist in this table.\n\n";
426 }
427 
428 //===----------------------------------------------------------------------===//
429 // Emit functions to query relation tables.
430 //===----------------------------------------------------------------------===//
431 
432 void MapTableEmitter::emitMapFuncBody(raw_ostream &OS,
433                                            unsigned TableSize) {
434 
435   ListInit *ColFields = InstrMapDesc.getColFields();
436   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
437 
438   // Emit binary search algorithm to locate instructions in the
439   // relation table. If found, return opcode value from the appropriate column
440   // of the table.
441   emitBinSearch(OS, TableSize);
442 
443   if (ValueCols.size() > 1) {
444     for (unsigned i = 0, e = ValueCols.size(); i < e; i++) {
445       ListInit *ColumnI = ValueCols[i];
446       OS << "  if (";
447       for (unsigned j = 0, ColSize = ColumnI->size(); j < ColSize; ++j) {
448         std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
449         OS << "in" << ColName;
450         OS << " == ";
451         OS << ColName << "_" << ColumnI->getElement(j)->getAsUnquotedString();
452         if (j < ColumnI->size() - 1)
453           OS << " && ";
454       }
455       OS << ")\n";
456       OS << "    return " << InstrMapDesc.getName();
457       OS << "Table[mid]["<<i+1<<"];\n";
458     }
459     OS << "  return -1;";
460   }
461   else
462     OS << "  return " << InstrMapDesc.getName() << "Table[mid][1];\n";
463 
464   OS <<"}\n\n";
465 }
466 
467 //===----------------------------------------------------------------------===//
468 // Emit relation tables and the functions to query them.
469 //===----------------------------------------------------------------------===//
470 
471 void MapTableEmitter::emitTablesWithFunc(raw_ostream &OS) {
472 
473   // Emit function name and the input parameters : mostly opcode value of the
474   // current instruction. However, if a table has multiple columns (more than 2
475   // since first column is used for the key instructions), then we also need
476   // to pass another input to indicate the column to be selected.
477 
478   ListInit *ColFields = InstrMapDesc.getColFields();
479   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
480   OS << "// "<< InstrMapDesc.getName() << "\nLLVM_READONLY\n";
481   OS << "int "<< InstrMapDesc.getName() << "(uint16_t Opcode";
482   if (ValueCols.size() > 1) {
483     for (Init *CF : ColFields->getValues()) {
484       std::string ColName = CF->getAsUnquotedString();
485       OS << ", enum " << ColName << " in" << ColName;
486     }
487   }
488   OS << ") {\n";
489 
490   // Emit map table.
491   unsigned TableSize = emitBinSearchTable(OS);
492 
493   // Emit rest of the function body.
494   emitMapFuncBody(OS, TableSize);
495 }
496 
497 //===----------------------------------------------------------------------===//
498 // Emit enums for the column fields across all the instruction maps.
499 //===----------------------------------------------------------------------===//
500 
501 static void emitEnums(raw_ostream &OS, RecordKeeper &Records) {
502 
503   std::vector<Record*> InstrMapVec;
504   InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");
505   std::map<std::string, std::vector<Init*> > ColFieldValueMap;
506 
507   // Iterate over all InstrMapping records and create a map between column
508   // fields and their possible values across all records.
509   for (Record *CurMap : InstrMapVec) {
510     ListInit *ColFields;
511     ColFields = CurMap->getValueAsListInit("ColFields");
512     ListInit *List = CurMap->getValueAsListInit("ValueCols");
513     std::vector<ListInit*> ValueCols;
514     unsigned ListSize = List->size();
515 
516     for (unsigned j = 0; j < ListSize; j++) {
517       auto *ListJ = cast<ListInit>(List->getElement(j));
518 
519       if (ListJ->size() != ColFields->size())
520         PrintFatalError("Record `" + CurMap->getName() + "', field "
521           "`ValueCols' entries don't match with the entries in 'ColFields' !");
522       ValueCols.push_back(ListJ);
523     }
524 
525     for (unsigned j = 0, endCF = ColFields->size(); j < endCF; j++) {
526       for (unsigned k = 0; k < ListSize; k++){
527         std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
528         ColFieldValueMap[ColName].push_back((ValueCols[k])->getElement(j));
529       }
530     }
531   }
532 
533   for (auto &Entry : ColFieldValueMap) {
534     std::vector<Init*> FieldValues = Entry.second;
535 
536     // Delete duplicate entries from ColFieldValueMap
537     for (unsigned i = 0; i < FieldValues.size() - 1; i++) {
538       Init *CurVal = FieldValues[i];
539       for (unsigned j = i+1; j < FieldValues.size(); j++) {
540         if (CurVal == FieldValues[j]) {
541           FieldValues.erase(FieldValues.begin()+j);
542           --j;
543         }
544       }
545     }
546 
547     // Emit enumerated values for the column fields.
548     OS << "enum " << Entry.first << " {\n";
549     for (unsigned i = 0, endFV = FieldValues.size(); i < endFV; i++) {
550       OS << "\t" << Entry.first << "_" << FieldValues[i]->getAsUnquotedString();
551       if (i != endFV - 1)
552         OS << ",\n";
553       else
554         OS << "\n};\n\n";
555     }
556   }
557 }
558 
559 namespace llvm {
560 //===----------------------------------------------------------------------===//
561 // Parse 'InstrMapping' records and use the information to form relationship
562 // between instructions. These relations are emitted as a tables along with the
563 // functions to query them.
564 //===----------------------------------------------------------------------===//
565 void EmitMapTable(RecordKeeper &Records, raw_ostream &OS) {
566   CodeGenTarget Target(Records);
567   StringRef NameSpace = Target.getInstNamespace();
568   std::vector<Record*> InstrMapVec;
569   InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");
570 
571   if (InstrMapVec.empty())
572     return;
573 
574   OS << "#ifdef GET_INSTRMAP_INFO\n";
575   OS << "#undef GET_INSTRMAP_INFO\n";
576   OS << "namespace llvm {\n\n";
577   OS << "namespace " << NameSpace << " {\n\n";
578 
579   // Emit coulumn field names and their values as enums.
580   emitEnums(OS, Records);
581 
582   // Iterate over all instruction mapping records and construct relationship
583   // maps based on the information specified there.
584   //
585   for (Record *CurMap : InstrMapVec) {
586     MapTableEmitter IMap(Target, Records, CurMap);
587 
588     // Build RowInstrMap to group instructions based on their values for
589     // RowFields. In the process, also collect key instructions into
590     // KeyInstrVec.
591     IMap.buildRowInstrMap();
592 
593     // Build MapTable to map key instructions with the corresponding column
594     // instructions.
595     IMap.buildMapTable();
596 
597     // Emit map tables and the functions to query them.
598     IMap.emitTablesWithFunc(OS);
599   }
600   OS << "} // end namespace " << NameSpace << "\n";
601   OS << "} // end namespace llvm\n";
602   OS << "#endif // GET_INSTRMAP_INFO\n\n";
603 }
604 
605 } // End llvm namespace
606