1 //===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // CodeEmitterGen uses the descriptions of instructions and their fields to 10 // construct an automated code emitter: a function that, given a MachineInstr, 11 // returns the (currently, 32-bit unsigned) value of the instruction. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenInstruction.h" 16 #include "CodeGenTarget.h" 17 #include "SubtargetFeatureInfo.h" 18 #include "Types.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/Casting.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/TableGen/Record.h" 25 #include "llvm/TableGen/TableGenBackend.h" 26 #include <cassert> 27 #include <cstdint> 28 #include <map> 29 #include <set> 30 #include <string> 31 #include <utility> 32 #include <vector> 33 34 using namespace llvm; 35 36 namespace { 37 38 class CodeEmitterGen { 39 RecordKeeper &Records; 40 41 public: 42 CodeEmitterGen(RecordKeeper &R) : Records(R) {} 43 44 void run(raw_ostream &o); 45 46 private: 47 int getVariableBit(const std::string &VarName, BitsInit *BI, int bit); 48 std::string getInstructionCase(Record *R, CodeGenTarget &Target); 49 std::string getInstructionCaseForEncoding(Record *R, Record *EncodingDef, 50 CodeGenTarget &Target); 51 void AddCodeToMergeInOperand(Record *R, BitsInit *BI, 52 const std::string &VarName, 53 unsigned &NumberedOp, 54 std::set<unsigned> &NamedOpIndices, 55 std::string &Case, CodeGenTarget &Target); 56 57 void emitInstructionBaseValues( 58 raw_ostream &o, ArrayRef<const CodeGenInstruction *> NumberedInstructions, 59 CodeGenTarget &Target, int HwMode = -1); 60 unsigned BitWidth; 61 bool UseAPInt; 62 }; 63 64 // If the VarBitInit at position 'bit' matches the specified variable then 65 // return the variable bit position. Otherwise return -1. 66 int CodeEmitterGen::getVariableBit(const std::string &VarName, 67 BitsInit *BI, int bit) { 68 if (VarBitInit *VBI = dyn_cast<VarBitInit>(BI->getBit(bit))) { 69 if (VarInit *VI = dyn_cast<VarInit>(VBI->getBitVar())) 70 if (VI->getName() == VarName) 71 return VBI->getBitNum(); 72 } else if (VarInit *VI = dyn_cast<VarInit>(BI->getBit(bit))) { 73 if (VI->getName() == VarName) 74 return 0; 75 } 76 77 return -1; 78 } 79 80 void CodeEmitterGen:: 81 AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName, 82 unsigned &NumberedOp, 83 std::set<unsigned> &NamedOpIndices, 84 std::string &Case, CodeGenTarget &Target) { 85 CodeGenInstruction &CGI = Target.getInstruction(R); 86 87 // Determine if VarName actually contributes to the Inst encoding. 88 int bit = BI->getNumBits()-1; 89 90 // Scan for a bit that this contributed to. 91 for (; bit >= 0; ) { 92 if (getVariableBit(VarName, BI, bit) != -1) 93 break; 94 95 --bit; 96 } 97 98 // If we found no bits, ignore this value, otherwise emit the call to get the 99 // operand encoding. 100 if (bit < 0) return; 101 102 // If the operand matches by name, reference according to that 103 // operand number. Non-matching operands are assumed to be in 104 // order. 105 unsigned OpIdx; 106 if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) { 107 // Get the machine operand number for the indicated operand. 108 OpIdx = CGI.Operands[OpIdx].MIOperandNo; 109 assert(!CGI.Operands.isFlatOperandNotEmitted(OpIdx) && 110 "Explicitly used operand also marked as not emitted!"); 111 } else { 112 unsigned NumberOps = CGI.Operands.size(); 113 /// If this operand is not supposed to be emitted by the 114 /// generated emitter, skip it. 115 while (NumberedOp < NumberOps && 116 (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) || 117 (!NamedOpIndices.empty() && NamedOpIndices.count( 118 CGI.Operands.getSubOperandNumber(NumberedOp).first)))) { 119 ++NumberedOp; 120 121 if (NumberedOp >= CGI.Operands.back().MIOperandNo + 122 CGI.Operands.back().MINumOperands) { 123 errs() << "Too few operands in record " << R->getName() << 124 " (no match for variable " << VarName << "):\n"; 125 errs() << *R; 126 errs() << '\n'; 127 128 return; 129 } 130 } 131 132 OpIdx = NumberedOp++; 133 } 134 135 std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx); 136 std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodName; 137 138 if (UseAPInt) 139 Case += " op.clearAllBits();\n"; 140 141 // If the source operand has a custom encoder, use it. This will 142 // get the encoding for all of the suboperands. 143 if (!EncoderMethodName.empty()) { 144 // A custom encoder has all of the information for the 145 // sub-operands, if there are more than one, so only 146 // query the encoder once per source operand. 147 if (SO.second == 0) { 148 Case += " // op: " + VarName + "\n"; 149 if (UseAPInt) { 150 Case += " " + EncoderMethodName + "(MI, " + utostr(OpIdx); 151 Case += ", op"; 152 } else { 153 Case += " op = " + EncoderMethodName + "(MI, " + utostr(OpIdx); 154 } 155 Case += ", Fixups, STI);\n"; 156 } 157 } else { 158 Case += " // op: " + VarName + "\n"; 159 if (UseAPInt) { 160 Case += " getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")"; 161 Case += ", op, Fixups, STI"; 162 } else { 163 Case += " op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")"; 164 Case += ", Fixups, STI"; 165 } 166 Case += ");\n"; 167 } 168 169 // Precalculate the number of lits this variable contributes to in the 170 // operand. If there is a single lit (consecutive range of bits) we can use a 171 // destructive sequence on APInt that reduces memory allocations. 172 int numOperandLits = 0; 173 for (int tmpBit = bit; tmpBit >= 0;) { 174 int varBit = getVariableBit(VarName, BI, tmpBit); 175 176 // If this bit isn't from a variable, skip it. 177 if (varBit == -1) { 178 --tmpBit; 179 continue; 180 } 181 182 // Figure out the consecutive range of bits covered by this operand, in 183 // order to generate better encoding code. 184 int beginVarBit = varBit; 185 int N = 1; 186 for (--tmpBit; tmpBit >= 0;) { 187 varBit = getVariableBit(VarName, BI, tmpBit); 188 if (varBit == -1 || varBit != (beginVarBit - N)) 189 break; 190 ++N; 191 --tmpBit; 192 } 193 ++numOperandLits; 194 } 195 196 for (; bit >= 0; ) { 197 int varBit = getVariableBit(VarName, BI, bit); 198 199 // If this bit isn't from a variable, skip it. 200 if (varBit == -1) { 201 --bit; 202 continue; 203 } 204 205 // Figure out the consecutive range of bits covered by this operand, in 206 // order to generate better encoding code. 207 int beginInstBit = bit; 208 int beginVarBit = varBit; 209 int N = 1; 210 for (--bit; bit >= 0;) { 211 varBit = getVariableBit(VarName, BI, bit); 212 if (varBit == -1 || varBit != (beginVarBit - N)) break; 213 ++N; 214 --bit; 215 } 216 217 std::string maskStr; 218 int opShift; 219 220 unsigned loBit = beginVarBit - N + 1; 221 unsigned hiBit = loBit + N; 222 unsigned loInstBit = beginInstBit - N + 1; 223 if (UseAPInt) { 224 std::string extractStr; 225 if (N >= 64) { 226 extractStr = "op.extractBits(" + itostr(hiBit - loBit) + ", " + 227 itostr(loBit) + ")"; 228 Case += " Value.insertBits(" + extractStr + ", " + 229 itostr(loInstBit) + ");\n"; 230 } else { 231 extractStr = "op.extractBitsAsZExtValue(" + itostr(hiBit - loBit) + 232 ", " + itostr(loBit) + ")"; 233 Case += " Value.insertBits(" + extractStr + ", " + 234 itostr(loInstBit) + ", " + itostr(hiBit - loBit) + ");\n"; 235 } 236 } else { 237 uint64_t opMask = ~(uint64_t)0 >> (64 - N); 238 opShift = beginVarBit - N + 1; 239 opMask <<= opShift; 240 maskStr = "UINT64_C(" + utostr(opMask) + ")"; 241 opShift = beginInstBit - beginVarBit; 242 243 if (numOperandLits == 1) { 244 Case += " op &= " + maskStr + ";\n"; 245 if (opShift > 0) { 246 Case += " op <<= " + itostr(opShift) + ";\n"; 247 } else if (opShift < 0) { 248 Case += " op >>= " + itostr(-opShift) + ";\n"; 249 } 250 Case += " Value |= op;\n"; 251 } else { 252 if (opShift > 0) { 253 Case += " Value |= (op & " + maskStr + ") << " + 254 itostr(opShift) + ";\n"; 255 } else if (opShift < 0) { 256 Case += " Value |= (op & " + maskStr + ") >> " + 257 itostr(-opShift) + ";\n"; 258 } else { 259 Case += " Value |= (op & " + maskStr + ");\n"; 260 } 261 } 262 } 263 } 264 } 265 266 std::string CodeEmitterGen::getInstructionCase(Record *R, 267 CodeGenTarget &Target) { 268 std::string Case; 269 if (const RecordVal *RV = R->getValue("EncodingInfos")) { 270 if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) { 271 const CodeGenHwModes &HWM = Target.getHwModes(); 272 EncodingInfoByHwMode EBM(DI->getDef(), HWM); 273 Case += " switch (HwMode) {\n"; 274 Case += " default: llvm_unreachable(\"Unhandled HwMode\");\n"; 275 for (auto &KV : EBM) { 276 Case += " case " + itostr(KV.first) + ": {\n"; 277 Case += getInstructionCaseForEncoding(R, KV.second, Target); 278 Case += " break;\n"; 279 Case += " }\n"; 280 } 281 Case += " }\n"; 282 return Case; 283 } 284 } 285 return getInstructionCaseForEncoding(R, R, Target); 286 } 287 288 std::string CodeEmitterGen::getInstructionCaseForEncoding(Record *R, Record *EncodingDef, 289 CodeGenTarget &Target) { 290 std::string Case; 291 BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst"); 292 unsigned NumberedOp = 0; 293 std::set<unsigned> NamedOpIndices; 294 295 // Collect the set of operand indices that might correspond to named 296 // operand, and skip these when assigning operands based on position. 297 if (Target.getInstructionSet()-> 298 getValueAsBit("noNamedPositionallyEncodedOperands")) { 299 CodeGenInstruction &CGI = Target.getInstruction(R); 300 for (const RecordVal &RV : R->getValues()) { 301 unsigned OpIdx; 302 if (!CGI.Operands.hasOperandNamed(RV.getName(), OpIdx)) 303 continue; 304 305 NamedOpIndices.insert(OpIdx); 306 } 307 } 308 309 // Loop over all of the fields in the instruction, determining which are the 310 // operands to the instruction. 311 for (const RecordVal &RV : EncodingDef->getValues()) { 312 // Ignore fixed fields in the record, we're looking for values like: 313 // bits<5> RST = { ?, ?, ?, ?, ? }; 314 if (RV.isNonconcreteOK() || RV.getValue()->isComplete()) 315 continue; 316 317 AddCodeToMergeInOperand(R, BI, std::string(RV.getName()), NumberedOp, 318 NamedOpIndices, Case, Target); 319 } 320 321 StringRef PostEmitter = R->getValueAsString("PostEncoderMethod"); 322 if (!PostEmitter.empty()) { 323 Case += " Value = "; 324 Case += PostEmitter; 325 Case += "(MI, Value"; 326 Case += ", STI"; 327 Case += ");\n"; 328 } 329 330 return Case; 331 } 332 333 static std::string 334 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 335 std::string Name = "CEFBS"; 336 for (const auto &Feature : FeatureBitset) 337 Name += ("_" + Feature->getName()).str(); 338 return Name; 339 } 340 341 static void emitInstBits(raw_ostream &OS, const APInt &Bits) { 342 for (unsigned I = 0; I < Bits.getNumWords(); ++I) 343 OS << ((I > 0) ? ", " : "") << "UINT64_C(" << utostr(Bits.getRawData()[I]) 344 << ")"; 345 } 346 347 void CodeEmitterGen::emitInstructionBaseValues( 348 raw_ostream &o, ArrayRef<const CodeGenInstruction *> NumberedInstructions, 349 CodeGenTarget &Target, int HwMode) { 350 const CodeGenHwModes &HWM = Target.getHwModes(); 351 if (HwMode == -1) 352 o << " static const uint64_t InstBits[] = {\n"; 353 else 354 o << " static const uint64_t InstBits_" << HWM.getMode(HwMode).Name 355 << "[] = {\n"; 356 357 for (const CodeGenInstruction *CGI : NumberedInstructions) { 358 Record *R = CGI->TheDef; 359 360 if (R->getValueAsString("Namespace") == "TargetOpcode" || 361 R->getValueAsBit("isPseudo")) { 362 o << " "; emitInstBits(o, APInt(BitWidth, 0)); o << ",\n"; 363 continue; 364 } 365 366 Record *EncodingDef = R; 367 if (const RecordVal *RV = R->getValue("EncodingInfos")) { 368 if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) { 369 EncodingInfoByHwMode EBM(DI->getDef(), HWM); 370 if (EBM.hasMode(HwMode)) 371 EncodingDef = EBM.get(HwMode); 372 } 373 } 374 BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst"); 375 376 // Start by filling in fixed values. 377 APInt Value(BitWidth, 0); 378 for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) { 379 if (BitInit *B = dyn_cast<BitInit>(BI->getBit(e - i - 1))) 380 Value |= APInt(BitWidth, (uint64_t)B->getValue()) << (e - i - 1); 381 } 382 o << " "; 383 emitInstBits(o, Value); 384 o << "," << '\t' << "// " << R->getName() << "\n"; 385 } 386 o << " UINT64_C(0)\n };\n"; 387 } 388 389 void CodeEmitterGen::run(raw_ostream &o) { 390 CodeGenTarget Target(Records); 391 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 392 393 // For little-endian instruction bit encodings, reverse the bit order 394 Target.reverseBitsForLittleEndianEncoding(); 395 396 ArrayRef<const CodeGenInstruction*> NumberedInstructions = 397 Target.getInstructionsByEnumValue(); 398 399 const CodeGenHwModes &HWM = Target.getHwModes(); 400 // The set of HwModes used by instruction encodings. 401 std::set<unsigned> HwModes; 402 BitWidth = 0; 403 for (const CodeGenInstruction *CGI : NumberedInstructions) { 404 Record *R = CGI->TheDef; 405 if (R->getValueAsString("Namespace") == "TargetOpcode" || 406 R->getValueAsBit("isPseudo")) 407 continue; 408 409 if (const RecordVal *RV = R->getValue("EncodingInfos")) { 410 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) { 411 EncodingInfoByHwMode EBM(DI->getDef(), HWM); 412 for (auto &KV : EBM) { 413 BitsInit *BI = KV.second->getValueAsBitsInit("Inst"); 414 BitWidth = std::max(BitWidth, BI->getNumBits()); 415 HwModes.insert(KV.first); 416 } 417 continue; 418 } 419 } 420 BitsInit *BI = R->getValueAsBitsInit("Inst"); 421 BitWidth = std::max(BitWidth, BI->getNumBits()); 422 } 423 UseAPInt = BitWidth > 64; 424 425 // Emit function declaration 426 if (UseAPInt) { 427 o << "void " << Target.getName() 428 << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n" 429 << " SmallVectorImpl<MCFixup> &Fixups,\n" 430 << " APInt &Inst,\n" 431 << " APInt &Scratch,\n" 432 << " const MCSubtargetInfo &STI) const {\n"; 433 } else { 434 o << "uint64_t " << Target.getName(); 435 o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n" 436 << " SmallVectorImpl<MCFixup> &Fixups,\n" 437 << " const MCSubtargetInfo &STI) const {\n"; 438 } 439 440 // Emit instruction base values 441 if (HwModes.empty()) { 442 emitInstructionBaseValues(o, NumberedInstructions, Target, -1); 443 } else { 444 for (unsigned HwMode : HwModes) 445 emitInstructionBaseValues(o, NumberedInstructions, Target, (int)HwMode); 446 } 447 448 if (!HwModes.empty()) { 449 o << " const uint64_t *InstBits;\n"; 450 o << " unsigned HwMode = STI.getHwMode();\n"; 451 o << " switch (HwMode) {\n"; 452 o << " default: llvm_unreachable(\"Unknown hardware mode!\"); break;\n"; 453 for (unsigned I : HwModes) { 454 o << " case " << I << ": InstBits = InstBits_" << HWM.getMode(I).Name 455 << "; break;\n"; 456 } 457 o << " };\n"; 458 } 459 460 // Map to accumulate all the cases. 461 std::map<std::string, std::vector<std::string>> CaseMap; 462 463 // Construct all cases statement for each opcode 464 for (Record *R : Insts) { 465 if (R->getValueAsString("Namespace") == "TargetOpcode" || 466 R->getValueAsBit("isPseudo")) 467 continue; 468 std::string InstName = 469 (R->getValueAsString("Namespace") + "::" + R->getName()).str(); 470 std::string Case = getInstructionCase(R, Target); 471 472 CaseMap[Case].push_back(std::move(InstName)); 473 } 474 475 // Emit initial function code 476 if (UseAPInt) { 477 int NumWords = APInt::getNumWords(BitWidth); 478 int NumBytes = (BitWidth + 7) / 8; 479 o << " const unsigned opcode = MI.getOpcode();\n" 480 << " if (Inst.getBitWidth() != " << BitWidth << ")\n" 481 << " Inst = Inst.zext(" << BitWidth << ");\n" 482 << " if (Scratch.getBitWidth() != " << BitWidth << ")\n" 483 << " Scratch = Scratch.zext(" << BitWidth << ");\n" 484 << " LoadIntFromMemory(Inst, (const uint8_t *)&InstBits[opcode * " 485 << NumWords << "], " << NumBytes << ");\n" 486 << " APInt &Value = Inst;\n" 487 << " APInt &op = Scratch;\n" 488 << " switch (opcode) {\n"; 489 } else { 490 o << " const unsigned opcode = MI.getOpcode();\n" 491 << " uint64_t Value = InstBits[opcode];\n" 492 << " uint64_t op = 0;\n" 493 << " (void)op; // suppress warning\n" 494 << " switch (opcode) {\n"; 495 } 496 497 // Emit each case statement 498 std::map<std::string, std::vector<std::string>>::iterator IE, EE; 499 for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) { 500 const std::string &Case = IE->first; 501 std::vector<std::string> &InstList = IE->second; 502 503 for (int i = 0, N = InstList.size(); i < N; i++) { 504 if (i) o << "\n"; 505 o << " case " << InstList[i] << ":"; 506 } 507 o << " {\n"; 508 o << Case; 509 o << " break;\n" 510 << " }\n"; 511 } 512 513 // Default case: unhandled opcode 514 o << " default:\n" 515 << " std::string msg;\n" 516 << " raw_string_ostream Msg(msg);\n" 517 << " Msg << \"Not supported instr: \" << MI;\n" 518 << " report_fatal_error(Msg.str());\n" 519 << " }\n"; 520 if (UseAPInt) 521 o << " Inst = Value;\n"; 522 else 523 o << " return Value;\n"; 524 o << "}\n\n"; 525 526 const auto &All = SubtargetFeatureInfo::getAll(Records); 527 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 528 SubtargetFeatures.insert(All.begin(), All.end()); 529 530 o << "#ifdef ENABLE_INSTR_PREDICATE_VERIFIER\n" 531 << "#undef ENABLE_INSTR_PREDICATE_VERIFIER\n" 532 << "#include <sstream>\n\n"; 533 534 // Emit the subtarget feature enumeration. 535 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures, 536 o); 537 538 // Emit the name table for error messages. 539 o << "#ifndef NDEBUG\n"; 540 SubtargetFeatureInfo::emitNameTable(SubtargetFeatures, o); 541 o << "#endif // NDEBUG\n"; 542 543 // Emit the available features compute function. 544 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( 545 Target.getName(), "MCCodeEmitter", "computeAvailableFeatures", 546 SubtargetFeatures, o); 547 548 std::vector<std::vector<Record *>> FeatureBitsets; 549 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 550 FeatureBitsets.emplace_back(); 551 for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) { 552 const auto &I = SubtargetFeatures.find(Predicate); 553 if (I != SubtargetFeatures.end()) 554 FeatureBitsets.back().push_back(I->second.TheDef); 555 } 556 } 557 558 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 559 const std::vector<Record *> &B) { 560 if (A.size() < B.size()) 561 return true; 562 if (A.size() > B.size()) 563 return false; 564 for (auto Pair : zip(A, B)) { 565 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 566 return true; 567 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 568 return false; 569 } 570 return false; 571 }); 572 FeatureBitsets.erase( 573 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 574 FeatureBitsets.end()); 575 o << "#ifndef NDEBUG\n" 576 << "// Feature bitsets.\n" 577 << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n" 578 << " CEFBS_None,\n"; 579 for (const auto &FeatureBitset : FeatureBitsets) { 580 if (FeatureBitset.empty()) 581 continue; 582 o << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 583 } 584 o << "};\n\n" 585 << "static constexpr FeatureBitset FeatureBitsets[] = {\n" 586 << " {}, // CEFBS_None\n"; 587 for (const auto &FeatureBitset : FeatureBitsets) { 588 if (FeatureBitset.empty()) 589 continue; 590 o << " {"; 591 for (const auto &Feature : FeatureBitset) { 592 const auto &I = SubtargetFeatures.find(Feature); 593 assert(I != SubtargetFeatures.end() && "Didn't import predicate?"); 594 o << I->second.getEnumBitName() << ", "; 595 } 596 o << "},\n"; 597 } 598 o << "};\n" 599 << "#endif // NDEBUG\n\n"; 600 601 602 // Emit the predicate verifier. 603 o << "void " << Target.getName() 604 << "MCCodeEmitter::verifyInstructionPredicates(\n" 605 << " const MCInst &Inst, const FeatureBitset &AvailableFeatures) const {\n" 606 << "#ifndef NDEBUG\n" 607 << " static " << getMinimalTypeForRange(FeatureBitsets.size()) 608 << " RequiredFeaturesRefs[] = {\n"; 609 unsigned InstIdx = 0; 610 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 611 o << " CEFBS"; 612 unsigned NumPredicates = 0; 613 for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) { 614 const auto &I = SubtargetFeatures.find(Predicate); 615 if (I != SubtargetFeatures.end()) { 616 o << '_' << I->second.TheDef->getName(); 617 NumPredicates++; 618 } 619 } 620 if (!NumPredicates) 621 o << "_None"; 622 o << ", // " << Inst->TheDef->getName() << " = " << InstIdx << "\n"; 623 InstIdx++; 624 } 625 o << " };\n\n"; 626 o << " assert(Inst.getOpcode() < " << InstIdx << ");\n"; 627 o << " const FeatureBitset &RequiredFeatures = " 628 "FeatureBitsets[RequiredFeaturesRefs[Inst.getOpcode()]];\n"; 629 o << " FeatureBitset MissingFeatures =\n" 630 << " (AvailableFeatures & RequiredFeatures) ^\n" 631 << " RequiredFeatures;\n" 632 << " if (MissingFeatures.any()) {\n" 633 << " std::ostringstream Msg;\n" 634 << " Msg << \"Attempting to emit \" << " 635 "MCII.getName(Inst.getOpcode()).str()\n" 636 << " << \" instruction but the \";\n" 637 << " for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)\n" 638 << " if (MissingFeatures.test(i))\n" 639 << " Msg << SubtargetFeatureNames[i] << \" \";\n" 640 << " Msg << \"predicate(s) are not met\";\n" 641 << " report_fatal_error(Msg.str());\n" 642 << " }\n" 643 << "#else\n" 644 << " // Silence unused variable warning on targets that don't use MCII for " 645 "other purposes (e.g. BPF).\n" 646 << " (void)MCII;\n" 647 << "#endif // NDEBUG\n"; 648 o << "}\n"; 649 o << "#endif\n"; 650 } 651 652 } // end anonymous namespace 653 654 namespace llvm { 655 656 void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS) { 657 emitSourceFileHeader("Machine Code Emitter", OS); 658 CodeEmitterGen(RK).run(OS); 659 } 660 661 } // end namespace llvm 662