1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits a target specifier matcher for converting parsed 10 // assembly operands in the MCInst structures. It also emits a matcher for 11 // custom operand parsing. 12 // 13 // Converting assembly operands into MCInst structures 14 // --------------------------------------------------- 15 // 16 // The input to the target specific matcher is a list of literal tokens and 17 // operands. The target specific parser should generally eliminate any syntax 18 // which is not relevant for matching; for example, comma tokens should have 19 // already been consumed and eliminated by the parser. Most instructions will 20 // end up with a single literal token (the instruction name) and some number of 21 // operands. 22 // 23 // Some example inputs, for X86: 24 // 'addl' (immediate ...) (register ...) 25 // 'add' (immediate ...) (memory ...) 26 // 'call' '*' %epc 27 // 28 // The assembly matcher is responsible for converting this input into a precise 29 // machine instruction (i.e., an instruction with a well defined encoding). This 30 // mapping has several properties which complicate matching: 31 // 32 // - It may be ambiguous; many architectures can legally encode particular 33 // variants of an instruction in different ways (for example, using a smaller 34 // encoding for small immediates). Such ambiguities should never be 35 // arbitrarily resolved by the assembler, the assembler is always responsible 36 // for choosing the "best" available instruction. 37 // 38 // - It may depend on the subtarget or the assembler context. Instructions 39 // which are invalid for the current mode, but otherwise unambiguous (e.g., 40 // an SSE instruction in a file being assembled for i486) should be accepted 41 // and rejected by the assembler front end. However, if the proper encoding 42 // for an instruction is dependent on the assembler context then the matcher 43 // is responsible for selecting the correct machine instruction for the 44 // current mode. 45 // 46 // The core matching algorithm attempts to exploit the regularity in most 47 // instruction sets to quickly determine the set of possibly matching 48 // instructions, and the simplify the generated code. Additionally, this helps 49 // to ensure that the ambiguities are intentionally resolved by the user. 50 // 51 // The matching is divided into two distinct phases: 52 // 53 // 1. Classification: Each operand is mapped to the unique set which (a) 54 // contains it, and (b) is the largest such subset for which a single 55 // instruction could match all members. 56 // 57 // For register classes, we can generate these subgroups automatically. For 58 // arbitrary operands, we expect the user to define the classes and their 59 // relations to one another (for example, 8-bit signed immediates as a 60 // subset of 32-bit immediates). 61 // 62 // By partitioning the operands in this way, we guarantee that for any 63 // tuple of classes, any single instruction must match either all or none 64 // of the sets of operands which could classify to that tuple. 65 // 66 // In addition, the subset relation amongst classes induces a partial order 67 // on such tuples, which we use to resolve ambiguities. 68 // 69 // 2. The input can now be treated as a tuple of classes (static tokens are 70 // simple singleton sets). Each such tuple should generally map to a single 71 // instruction (we currently ignore cases where this isn't true, whee!!!), 72 // which we can emit a simple matcher for. 73 // 74 // Custom Operand Parsing 75 // ---------------------- 76 // 77 // Some targets need a custom way to parse operands, some specific instructions 78 // can contain arguments that can represent processor flags and other kinds of 79 // identifiers that need to be mapped to specific values in the final encoded 80 // instructions. The target specific custom operand parsing works in the 81 // following way: 82 // 83 // 1. A operand match table is built, each entry contains a mnemonic, an 84 // operand class, a mask for all operand positions for that same 85 // class/mnemonic and target features to be checked while trying to match. 86 // 87 // 2. The operand matcher will try every possible entry with the same 88 // mnemonic and will check if the target feature for this mnemonic also 89 // matches. After that, if the operand to be matched has its index 90 // present in the mask, a successful match occurs. Otherwise, fallback 91 // to the regular operand parsing. 92 // 93 // 3. For a match success, each operand class that has a 'ParserMethod' 94 // becomes part of a switch from where the custom method is called. 95 // 96 //===----------------------------------------------------------------------===// 97 98 #include "CodeGenInstruction.h" 99 #include "CodeGenTarget.h" 100 #include "SubtargetFeatureInfo.h" 101 #include "Types.h" 102 #include "llvm/ADT/CachedHashString.h" 103 #include "llvm/ADT/PointerUnion.h" 104 #include "llvm/ADT/STLExtras.h" 105 #include "llvm/ADT/SmallPtrSet.h" 106 #include "llvm/ADT/SmallVector.h" 107 #include "llvm/ADT/StringExtras.h" 108 #include "llvm/Config/llvm-config.h" 109 #include "llvm/Support/CommandLine.h" 110 #include "llvm/Support/Debug.h" 111 #include "llvm/Support/ErrorHandling.h" 112 #include "llvm/TableGen/Error.h" 113 #include "llvm/TableGen/Record.h" 114 #include "llvm/TableGen/StringMatcher.h" 115 #include "llvm/TableGen/StringToOffsetTable.h" 116 #include "llvm/TableGen/TableGenBackend.h" 117 #include <cassert> 118 #include <cctype> 119 #include <forward_list> 120 #include <map> 121 #include <set> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "asm-matcher-emitter" 126 127 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher"); 128 129 static cl::opt<std::string> 130 MatchPrefix("match-prefix", cl::init(""), 131 cl::desc("Only match instructions with the given prefix"), 132 cl::cat(AsmMatcherEmitterCat)); 133 134 namespace { 135 class AsmMatcherInfo; 136 137 // Register sets are used as keys in some second-order sets TableGen creates 138 // when generating its data structures. This means that the order of two 139 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and 140 // can even affect compiler output (at least seen in diagnostics produced when 141 // all matches fail). So we use a type that sorts them consistently. 142 typedef std::set<Record*, LessRecordByID> RegisterSet; 143 144 class AsmMatcherEmitter { 145 RecordKeeper &Records; 146 public: 147 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} 148 149 void run(raw_ostream &o); 150 }; 151 152 /// ClassInfo - Helper class for storing the information about a particular 153 /// class of operands which can be matched. 154 struct ClassInfo { 155 enum ClassInfoKind { 156 /// Invalid kind, for use as a sentinel value. 157 Invalid = 0, 158 159 /// The class for a particular token. 160 Token, 161 162 /// The (first) register class, subsequent register classes are 163 /// RegisterClass0+1, and so on. 164 RegisterClass0, 165 166 /// The (first) user defined class, subsequent user defined classes are 167 /// UserClass0+1, and so on. 168 UserClass0 = 1<<16 169 }; 170 171 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + 172 /// N) for the Nth user defined class. 173 unsigned Kind; 174 175 /// SuperClasses - The super classes of this class. Note that for simplicities 176 /// sake user operands only record their immediate super class, while register 177 /// operands include all superclasses. 178 std::vector<ClassInfo*> SuperClasses; 179 180 /// Name - The full class name, suitable for use in an enum. 181 std::string Name; 182 183 /// ClassName - The unadorned generic name for this class (e.g., Token). 184 std::string ClassName; 185 186 /// ValueName - The name of the value this class represents; for a token this 187 /// is the literal token string, for an operand it is the TableGen class (or 188 /// empty if this is a derived class). 189 std::string ValueName; 190 191 /// PredicateMethod - The name of the operand method to test whether the 192 /// operand matches this class; this is not valid for Token or register kinds. 193 std::string PredicateMethod; 194 195 /// RenderMethod - The name of the operand method to add this operand to an 196 /// MCInst; this is not valid for Token or register kinds. 197 std::string RenderMethod; 198 199 /// ParserMethod - The name of the operand method to do a target specific 200 /// parsing on the operand. 201 std::string ParserMethod; 202 203 /// For register classes: the records for all the registers in this class. 204 RegisterSet Registers; 205 206 /// For custom match classes: the diagnostic kind for when the predicate fails. 207 std::string DiagnosticType; 208 209 /// For custom match classes: the diagnostic string for when the predicate fails. 210 std::string DiagnosticString; 211 212 /// Is this operand optional and not always required. 213 bool IsOptional; 214 215 /// DefaultMethod - The name of the method that returns the default operand 216 /// for optional operand 217 std::string DefaultMethod; 218 219 public: 220 /// isRegisterClass() - Check if this is a register class. 221 bool isRegisterClass() const { 222 return Kind >= RegisterClass0 && Kind < UserClass0; 223 } 224 225 /// isUserClass() - Check if this is a user defined class. 226 bool isUserClass() const { 227 return Kind >= UserClass0; 228 } 229 230 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes 231 /// are related if they are in the same class hierarchy. 232 bool isRelatedTo(const ClassInfo &RHS) const { 233 // Tokens are only related to tokens. 234 if (Kind == Token || RHS.Kind == Token) 235 return Kind == Token && RHS.Kind == Token; 236 237 // Registers classes are only related to registers classes, and only if 238 // their intersection is non-empty. 239 if (isRegisterClass() || RHS.isRegisterClass()) { 240 if (!isRegisterClass() || !RHS.isRegisterClass()) 241 return false; 242 243 RegisterSet Tmp; 244 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); 245 std::set_intersection(Registers.begin(), Registers.end(), 246 RHS.Registers.begin(), RHS.Registers.end(), 247 II, LessRecordByID()); 248 249 return !Tmp.empty(); 250 } 251 252 // Otherwise we have two users operands; they are related if they are in the 253 // same class hierarchy. 254 // 255 // FIXME: This is an oversimplification, they should only be related if they 256 // intersect, however we don't have that information. 257 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); 258 const ClassInfo *Root = this; 259 while (!Root->SuperClasses.empty()) 260 Root = Root->SuperClasses.front(); 261 262 const ClassInfo *RHSRoot = &RHS; 263 while (!RHSRoot->SuperClasses.empty()) 264 RHSRoot = RHSRoot->SuperClasses.front(); 265 266 return Root == RHSRoot; 267 } 268 269 /// isSubsetOf - Test whether this class is a subset of \p RHS. 270 bool isSubsetOf(const ClassInfo &RHS) const { 271 // This is a subset of RHS if it is the same class... 272 if (this == &RHS) 273 return true; 274 275 // ... or if any of its super classes are a subset of RHS. 276 SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(), 277 SuperClasses.end()); 278 SmallPtrSet<const ClassInfo *, 16> Visited; 279 while (!Worklist.empty()) { 280 auto *CI = Worklist.pop_back_val(); 281 if (CI == &RHS) 282 return true; 283 for (auto *Super : CI->SuperClasses) 284 if (Visited.insert(Super).second) 285 Worklist.push_back(Super); 286 } 287 288 return false; 289 } 290 291 int getTreeDepth() const { 292 int Depth = 0; 293 const ClassInfo *Root = this; 294 while (!Root->SuperClasses.empty()) { 295 Depth++; 296 Root = Root->SuperClasses.front(); 297 } 298 return Depth; 299 } 300 301 const ClassInfo *findRoot() const { 302 const ClassInfo *Root = this; 303 while (!Root->SuperClasses.empty()) 304 Root = Root->SuperClasses.front(); 305 return Root; 306 } 307 308 /// Compare two classes. This does not produce a total ordering, but does 309 /// guarantee that subclasses are sorted before their parents, and that the 310 /// ordering is transitive. 311 bool operator<(const ClassInfo &RHS) const { 312 if (this == &RHS) 313 return false; 314 315 // First, enforce the ordering between the three different types of class. 316 // Tokens sort before registers, which sort before user classes. 317 if (Kind == Token) { 318 if (RHS.Kind != Token) 319 return true; 320 assert(RHS.Kind == Token); 321 } else if (isRegisterClass()) { 322 if (RHS.Kind == Token) 323 return false; 324 else if (RHS.isUserClass()) 325 return true; 326 assert(RHS.isRegisterClass()); 327 } else if (isUserClass()) { 328 if (!RHS.isUserClass()) 329 return false; 330 assert(RHS.isUserClass()); 331 } else { 332 llvm_unreachable("Unknown ClassInfoKind"); 333 } 334 335 if (Kind == Token || isUserClass()) { 336 // Related tokens and user classes get sorted by depth in the inheritence 337 // tree (so that subclasses are before their parents). 338 if (isRelatedTo(RHS)) { 339 if (getTreeDepth() > RHS.getTreeDepth()) 340 return true; 341 if (getTreeDepth() < RHS.getTreeDepth()) 342 return false; 343 } else { 344 // Unrelated tokens and user classes are ordered by the name of their 345 // root nodes, so that there is a consistent ordering between 346 // unconnected trees. 347 return findRoot()->ValueName < RHS.findRoot()->ValueName; 348 } 349 } else if (isRegisterClass()) { 350 // For register sets, sort by number of registers. This guarantees that 351 // a set will always sort before all of it's strict supersets. 352 if (Registers.size() != RHS.Registers.size()) 353 return Registers.size() < RHS.Registers.size(); 354 } else { 355 llvm_unreachable("Unknown ClassInfoKind"); 356 } 357 358 // FIXME: We should be able to just return false here, as we only need a 359 // partial order (we use stable sorts, so this is deterministic) and the 360 // name of a class shouldn't be significant. However, some of the backends 361 // accidentally rely on this behaviour, so it will have to stay like this 362 // until they are fixed. 363 return ValueName < RHS.ValueName; 364 } 365 }; 366 367 class AsmVariantInfo { 368 public: 369 StringRef RegisterPrefix; 370 StringRef TokenizingCharacters; 371 StringRef SeparatorCharacters; 372 StringRef BreakCharacters; 373 StringRef Name; 374 int AsmVariantNo; 375 }; 376 377 /// MatchableInfo - Helper class for storing the necessary information for an 378 /// instruction or alias which is capable of being matched. 379 struct MatchableInfo { 380 struct AsmOperand { 381 /// Token - This is the token that the operand came from. 382 StringRef Token; 383 384 /// The unique class instance this operand should match. 385 ClassInfo *Class; 386 387 /// The operand name this is, if anything. 388 StringRef SrcOpName; 389 390 /// The operand name this is, before renaming for tied operands. 391 StringRef OrigSrcOpName; 392 393 /// The suboperand index within SrcOpName, or -1 for the entire operand. 394 int SubOpIdx; 395 396 /// Whether the token is "isolated", i.e., it is preceded and followed 397 /// by separators. 398 bool IsIsolatedToken; 399 400 /// Register record if this token is singleton register. 401 Record *SingletonReg; 402 403 explicit AsmOperand(bool IsIsolatedToken, StringRef T) 404 : Token(T), Class(nullptr), SubOpIdx(-1), 405 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} 406 }; 407 408 /// ResOperand - This represents a single operand in the result instruction 409 /// generated by the match. In cases (like addressing modes) where a single 410 /// assembler operand expands to multiple MCOperands, this represents the 411 /// single assembler operand, not the MCOperand. 412 struct ResOperand { 413 enum { 414 /// RenderAsmOperand - This represents an operand result that is 415 /// generated by calling the render method on the assembly operand. The 416 /// corresponding AsmOperand is specified by AsmOperandNum. 417 RenderAsmOperand, 418 419 /// TiedOperand - This represents a result operand that is a duplicate of 420 /// a previous result operand. 421 TiedOperand, 422 423 /// ImmOperand - This represents an immediate value that is dumped into 424 /// the operand. 425 ImmOperand, 426 427 /// RegOperand - This represents a fixed register that is dumped in. 428 RegOperand 429 } Kind; 430 431 /// Tuple containing the index of the (earlier) result operand that should 432 /// be copied from, as well as the indices of the corresponding (parsed) 433 /// operands in the asm string. 434 struct TiedOperandsTuple { 435 unsigned ResOpnd; 436 unsigned SrcOpnd1Idx; 437 unsigned SrcOpnd2Idx; 438 }; 439 440 union { 441 /// This is the operand # in the AsmOperands list that this should be 442 /// copied from. 443 unsigned AsmOperandNum; 444 445 /// Description of tied operands. 446 TiedOperandsTuple TiedOperands; 447 448 /// ImmVal - This is the immediate value added to the instruction. 449 int64_t ImmVal; 450 451 /// Register - This is the register record. 452 Record *Register; 453 }; 454 455 /// MINumOperands - The number of MCInst operands populated by this 456 /// operand. 457 unsigned MINumOperands; 458 459 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { 460 ResOperand X; 461 X.Kind = RenderAsmOperand; 462 X.AsmOperandNum = AsmOpNum; 463 X.MINumOperands = NumOperands; 464 return X; 465 } 466 467 static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1, 468 unsigned SrcOperand2) { 469 ResOperand X; 470 X.Kind = TiedOperand; 471 X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 }; 472 X.MINumOperands = 1; 473 return X; 474 } 475 476 static ResOperand getImmOp(int64_t Val) { 477 ResOperand X; 478 X.Kind = ImmOperand; 479 X.ImmVal = Val; 480 X.MINumOperands = 1; 481 return X; 482 } 483 484 static ResOperand getRegOp(Record *Reg) { 485 ResOperand X; 486 X.Kind = RegOperand; 487 X.Register = Reg; 488 X.MINumOperands = 1; 489 return X; 490 } 491 }; 492 493 /// AsmVariantID - Target's assembly syntax variant no. 494 int AsmVariantID; 495 496 /// AsmString - The assembly string for this instruction (with variants 497 /// removed), e.g. "movsx $src, $dst". 498 std::string AsmString; 499 500 /// TheDef - This is the definition of the instruction or InstAlias that this 501 /// matchable came from. 502 Record *const TheDef; 503 504 /// DefRec - This is the definition that it came from. 505 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; 506 507 const CodeGenInstruction *getResultInst() const { 508 if (DefRec.is<const CodeGenInstruction*>()) 509 return DefRec.get<const CodeGenInstruction*>(); 510 return DefRec.get<const CodeGenInstAlias*>()->ResultInst; 511 } 512 513 /// ResOperands - This is the operand list that should be built for the result 514 /// MCInst. 515 SmallVector<ResOperand, 8> ResOperands; 516 517 /// Mnemonic - This is the first token of the matched instruction, its 518 /// mnemonic. 519 StringRef Mnemonic; 520 521 /// AsmOperands - The textual operands that this instruction matches, 522 /// annotated with a class and where in the OperandList they were defined. 523 /// This directly corresponds to the tokenized AsmString after the mnemonic is 524 /// removed. 525 SmallVector<AsmOperand, 8> AsmOperands; 526 527 /// Predicates - The required subtarget features to match this instruction. 528 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; 529 530 /// ConversionFnKind - The enum value which is passed to the generated 531 /// convertToMCInst to convert parsed operands into an MCInst for this 532 /// function. 533 std::string ConversionFnKind; 534 535 /// If this instruction is deprecated in some form. 536 bool HasDeprecation; 537 538 /// If this is an alias, this is use to determine whether or not to using 539 /// the conversion function defined by the instruction's AsmMatchConverter 540 /// or to use the function generated by the alias. 541 bool UseInstAsmMatchConverter; 542 543 MatchableInfo(const CodeGenInstruction &CGI) 544 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), 545 UseInstAsmMatchConverter(true) { 546 } 547 548 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) 549 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), 550 DefRec(Alias.release()), 551 UseInstAsmMatchConverter( 552 TheDef->getValueAsBit("UseInstAsmMatchConverter")) { 553 } 554 555 // Could remove this and the dtor if PointerUnion supported unique_ptr 556 // elements with a dynamic failure/assertion (like the one below) in the case 557 // where it was copied while being in an owning state. 558 MatchableInfo(const MatchableInfo &RHS) 559 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), 560 TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), 561 Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), 562 RequiredFeatures(RHS.RequiredFeatures), 563 ConversionFnKind(RHS.ConversionFnKind), 564 HasDeprecation(RHS.HasDeprecation), 565 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { 566 assert(!DefRec.is<const CodeGenInstAlias *>()); 567 } 568 569 ~MatchableInfo() { 570 delete DefRec.dyn_cast<const CodeGenInstAlias*>(); 571 } 572 573 // Two-operand aliases clone from the main matchable, but mark the second 574 // operand as a tied operand of the first for purposes of the assembler. 575 void formTwoOperandAlias(StringRef Constraint); 576 577 void initialize(const AsmMatcherInfo &Info, 578 SmallPtrSetImpl<Record*> &SingletonRegisters, 579 AsmVariantInfo const &Variant, 580 bool HasMnemonicFirst); 581 582 /// validate - Return true if this matchable is a valid thing to match against 583 /// and perform a bunch of validity checking. 584 bool validate(StringRef CommentDelimiter, bool IsAlias) const; 585 586 /// findAsmOperand - Find the AsmOperand with the specified name and 587 /// suboperand index. 588 int findAsmOperand(StringRef N, int SubOpIdx) const { 589 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { 590 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; 591 }); 592 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 593 } 594 595 /// findAsmOperandNamed - Find the first AsmOperand with the specified name. 596 /// This does not check the suboperand index. 597 int findAsmOperandNamed(StringRef N, int LastIdx = -1) const { 598 auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(), 599 [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); 600 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 601 } 602 603 int findAsmOperandOriginallyNamed(StringRef N) const { 604 auto I = 605 find_if(AsmOperands, 606 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; }); 607 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 608 } 609 610 void buildInstructionResultOperands(); 611 void buildAliasResultOperands(bool AliasConstraintsAreChecked); 612 613 /// operator< - Compare two matchables. 614 bool operator<(const MatchableInfo &RHS) const { 615 // The primary comparator is the instruction mnemonic. 616 if (int Cmp = Mnemonic.compare_insensitive(RHS.Mnemonic)) 617 return Cmp == -1; 618 619 if (AsmOperands.size() != RHS.AsmOperands.size()) 620 return AsmOperands.size() < RHS.AsmOperands.size(); 621 622 // Compare lexicographically by operand. The matcher validates that other 623 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). 624 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 625 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 626 return true; 627 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 628 return false; 629 } 630 631 // Give matches that require more features higher precedence. This is useful 632 // because we cannot define AssemblerPredicates with the negation of 633 // processor features. For example, ARM v6 "nop" may be either a HINT or 634 // MOV. With v6, we want to match HINT. The assembler has no way to 635 // predicate MOV under "NoV6", but HINT will always match first because it 636 // requires V6 while MOV does not. 637 if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) 638 return RequiredFeatures.size() > RHS.RequiredFeatures.size(); 639 640 // For X86 AVX/AVX512 instructions, we prefer vex encoding because the 641 // vex encoding size is smaller. Since X86InstrSSE.td is included ahead 642 // of X86InstrAVX512.td, the AVX instruction ID is less than AVX512 ID. 643 // We use the ID to sort AVX instruction before AVX512 instruction in 644 // matching table. 645 if (TheDef->isSubClassOf("Instruction") && 646 TheDef->getValueAsBit("HasPositionOrder")) 647 return TheDef->getID() < RHS.TheDef->getID(); 648 649 return false; 650 } 651 652 /// couldMatchAmbiguouslyWith - Check whether this matchable could 653 /// ambiguously match the same set of operands as \p RHS (without being a 654 /// strictly superior match). 655 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { 656 // The primary comparator is the instruction mnemonic. 657 if (Mnemonic != RHS.Mnemonic) 658 return false; 659 660 // Different variants can't conflict. 661 if (AsmVariantID != RHS.AsmVariantID) 662 return false; 663 664 // The number of operands is unambiguous. 665 if (AsmOperands.size() != RHS.AsmOperands.size()) 666 return false; 667 668 // Otherwise, make sure the ordering of the two instructions is unambiguous 669 // by checking that either (a) a token or operand kind discriminates them, 670 // or (b) the ordering among equivalent kinds is consistent. 671 672 // Tokens and operand kinds are unambiguous (assuming a correct target 673 // specific parser). 674 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) 675 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || 676 AsmOperands[i].Class->Kind == ClassInfo::Token) 677 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || 678 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 679 return false; 680 681 // Otherwise, this operand could commute if all operands are equivalent, or 682 // there is a pair of operands that compare less than and a pair that 683 // compare greater than. 684 bool HasLT = false, HasGT = false; 685 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 686 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 687 HasLT = true; 688 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 689 HasGT = true; 690 } 691 692 return HasLT == HasGT; 693 } 694 695 void dump() const; 696 697 private: 698 void tokenizeAsmString(AsmMatcherInfo const &Info, 699 AsmVariantInfo const &Variant); 700 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); 701 }; 702 703 struct OperandMatchEntry { 704 unsigned OperandMask; 705 const MatchableInfo* MI; 706 ClassInfo *CI; 707 708 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, 709 unsigned opMask) { 710 OperandMatchEntry X; 711 X.OperandMask = opMask; 712 X.CI = ci; 713 X.MI = mi; 714 return X; 715 } 716 }; 717 718 class AsmMatcherInfo { 719 public: 720 /// Tracked Records 721 RecordKeeper &Records; 722 723 /// The tablegen AsmParser record. 724 Record *AsmParser; 725 726 /// Target - The target information. 727 CodeGenTarget &Target; 728 729 /// The classes which are needed for matching. 730 std::forward_list<ClassInfo> Classes; 731 732 /// The information on the matchables to match. 733 std::vector<std::unique_ptr<MatchableInfo>> Matchables; 734 735 /// Info for custom matching operands by user defined methods. 736 std::vector<OperandMatchEntry> OperandMatchInfo; 737 738 /// Map of Register records to their class information. 739 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; 740 RegisterClassesTy RegisterClasses; 741 742 /// Map of Predicate records to their subtarget information. 743 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 744 745 /// Map of AsmOperandClass records to their class information. 746 std::map<Record*, ClassInfo*> AsmOperandClasses; 747 748 /// Map of RegisterClass records to their class information. 749 std::map<Record*, ClassInfo*> RegisterClassClasses; 750 751 private: 752 /// Map of token to class information which has already been constructed. 753 std::map<std::string, ClassInfo*> TokenClasses; 754 755 private: 756 /// getTokenClass - Lookup or create the class for the given token. 757 ClassInfo *getTokenClass(StringRef Token); 758 759 /// getOperandClass - Lookup or create the class for the given operand. 760 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, 761 int SubOpIdx); 762 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); 763 764 /// buildRegisterClasses - Build the ClassInfo* instances for register 765 /// classes. 766 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); 767 768 /// buildOperandClasses - Build the ClassInfo* instances for user defined 769 /// operand classes. 770 void buildOperandClasses(); 771 772 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, 773 unsigned AsmOpIdx); 774 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, 775 MatchableInfo::AsmOperand &Op); 776 777 public: 778 AsmMatcherInfo(Record *AsmParser, 779 CodeGenTarget &Target, 780 RecordKeeper &Records); 781 782 /// Construct the various tables used during matching. 783 void buildInfo(); 784 785 /// buildOperandMatchInfo - Build the necessary information to handle user 786 /// defined operand parsing methods. 787 void buildOperandMatchInfo(); 788 789 /// getSubtargetFeature - Lookup or create the subtarget feature info for the 790 /// given operand. 791 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { 792 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); 793 const auto &I = SubtargetFeatures.find(Def); 794 return I == SubtargetFeatures.end() ? nullptr : &I->second; 795 } 796 797 RecordKeeper &getRecords() const { 798 return Records; 799 } 800 801 bool hasOptionalOperands() const { 802 return any_of(Classes, 803 [](const ClassInfo &Class) { return Class.IsOptional; }); 804 } 805 }; 806 807 } // end anonymous namespace 808 809 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 810 LLVM_DUMP_METHOD void MatchableInfo::dump() const { 811 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; 812 813 errs() << " variant: " << AsmVariantID << "\n"; 814 815 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 816 const AsmOperand &Op = AsmOperands[i]; 817 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; 818 errs() << '\"' << Op.Token << "\"\n"; 819 } 820 } 821 #endif 822 823 static std::pair<StringRef, StringRef> 824 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { 825 // Split via the '='. 826 std::pair<StringRef, StringRef> Ops = S.split('='); 827 if (Ops.second == "") 828 PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); 829 // Trim whitespace and the leading '$' on the operand names. 830 size_t start = Ops.first.find_first_of('$'); 831 if (start == std::string::npos) 832 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 833 Ops.first = Ops.first.slice(start + 1, std::string::npos); 834 size_t end = Ops.first.find_last_of(" \t"); 835 Ops.first = Ops.first.slice(0, end); 836 // Now the second operand. 837 start = Ops.second.find_first_of('$'); 838 if (start == std::string::npos) 839 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 840 Ops.second = Ops.second.slice(start + 1, std::string::npos); 841 end = Ops.second.find_last_of(" \t"); 842 Ops.first = Ops.first.slice(0, end); 843 return Ops; 844 } 845 846 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { 847 // Figure out which operands are aliased and mark them as tied. 848 std::pair<StringRef, StringRef> Ops = 849 parseTwoOperandConstraint(Constraint, TheDef->getLoc()); 850 851 // Find the AsmOperands that refer to the operands we're aliasing. 852 int SrcAsmOperand = findAsmOperandNamed(Ops.first); 853 int DstAsmOperand = findAsmOperandNamed(Ops.second); 854 if (SrcAsmOperand == -1) 855 PrintFatalError(TheDef->getLoc(), 856 "unknown source two-operand alias operand '" + Ops.first + 857 "'."); 858 if (DstAsmOperand == -1) 859 PrintFatalError(TheDef->getLoc(), 860 "unknown destination two-operand alias operand '" + 861 Ops.second + "'."); 862 863 // Find the ResOperand that refers to the operand we're aliasing away 864 // and update it to refer to the combined operand instead. 865 for (ResOperand &Op : ResOperands) { 866 if (Op.Kind == ResOperand::RenderAsmOperand && 867 Op.AsmOperandNum == (unsigned)SrcAsmOperand) { 868 Op.AsmOperandNum = DstAsmOperand; 869 break; 870 } 871 } 872 // Remove the AsmOperand for the alias operand. 873 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); 874 // Adjust the ResOperand references to any AsmOperands that followed 875 // the one we just deleted. 876 for (ResOperand &Op : ResOperands) { 877 switch(Op.Kind) { 878 default: 879 // Nothing to do for operands that don't reference AsmOperands. 880 break; 881 case ResOperand::RenderAsmOperand: 882 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) 883 --Op.AsmOperandNum; 884 break; 885 } 886 } 887 } 888 889 /// extractSingletonRegisterForAsmOperand - Extract singleton register, 890 /// if present, from specified token. 891 static void 892 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, 893 const AsmMatcherInfo &Info, 894 StringRef RegisterPrefix) { 895 StringRef Tok = Op.Token; 896 897 // If this token is not an isolated token, i.e., it isn't separated from 898 // other tokens (e.g. with whitespace), don't interpret it as a register name. 899 if (!Op.IsIsolatedToken) 900 return; 901 902 if (RegisterPrefix.empty()) { 903 std::string LoweredTok = Tok.lower(); 904 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) 905 Op.SingletonReg = Reg->TheDef; 906 return; 907 } 908 909 if (!Tok.startswith(RegisterPrefix)) 910 return; 911 912 StringRef RegName = Tok.substr(RegisterPrefix.size()); 913 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) 914 Op.SingletonReg = Reg->TheDef; 915 916 // If there is no register prefix (i.e. "%" in "%eax"), then this may 917 // be some random non-register token, just ignore it. 918 } 919 920 void MatchableInfo::initialize(const AsmMatcherInfo &Info, 921 SmallPtrSetImpl<Record*> &SingletonRegisters, 922 AsmVariantInfo const &Variant, 923 bool HasMnemonicFirst) { 924 AsmVariantID = Variant.AsmVariantNo; 925 AsmString = 926 CodeGenInstruction::FlattenAsmStringVariants(AsmString, 927 Variant.AsmVariantNo); 928 929 tokenizeAsmString(Info, Variant); 930 931 // The first token of the instruction is the mnemonic, which must be a 932 // simple string, not a $foo variable or a singleton register. 933 if (AsmOperands.empty()) 934 PrintFatalError(TheDef->getLoc(), 935 "Instruction '" + TheDef->getName() + "' has no tokens"); 936 937 assert(!AsmOperands[0].Token.empty()); 938 if (HasMnemonicFirst) { 939 Mnemonic = AsmOperands[0].Token; 940 if (Mnemonic[0] == '$') 941 PrintFatalError(TheDef->getLoc(), 942 "Invalid instruction mnemonic '" + Mnemonic + "'!"); 943 944 // Remove the first operand, it is tracked in the mnemonic field. 945 AsmOperands.erase(AsmOperands.begin()); 946 } else if (AsmOperands[0].Token[0] != '$') 947 Mnemonic = AsmOperands[0].Token; 948 949 // Compute the require features. 950 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) 951 if (const SubtargetFeatureInfo *Feature = 952 Info.getSubtargetFeature(Predicate)) 953 RequiredFeatures.push_back(Feature); 954 955 // Collect singleton registers, if used. 956 for (MatchableInfo::AsmOperand &Op : AsmOperands) { 957 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); 958 if (Record *Reg = Op.SingletonReg) 959 SingletonRegisters.insert(Reg); 960 } 961 962 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); 963 if (!DepMask) 964 DepMask = TheDef->getValue("ComplexDeprecationPredicate"); 965 966 HasDeprecation = 967 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; 968 } 969 970 /// Append an AsmOperand for the given substring of AsmString. 971 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { 972 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); 973 } 974 975 /// tokenizeAsmString - Tokenize a simplified assembly string. 976 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, 977 AsmVariantInfo const &Variant) { 978 StringRef String = AsmString; 979 size_t Prev = 0; 980 bool InTok = false; 981 bool IsIsolatedToken = true; 982 for (size_t i = 0, e = String.size(); i != e; ++i) { 983 char Char = String[i]; 984 if (Variant.BreakCharacters.find(Char) != std::string::npos) { 985 if (InTok) { 986 addAsmOperand(String.slice(Prev, i), false); 987 Prev = i; 988 IsIsolatedToken = false; 989 } 990 InTok = true; 991 continue; 992 } 993 if (Variant.TokenizingCharacters.find(Char) != std::string::npos) { 994 if (InTok) { 995 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 996 InTok = false; 997 IsIsolatedToken = false; 998 } 999 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 1000 Prev = i + 1; 1001 IsIsolatedToken = true; 1002 continue; 1003 } 1004 if (Variant.SeparatorCharacters.find(Char) != std::string::npos) { 1005 if (InTok) { 1006 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1007 InTok = false; 1008 } 1009 Prev = i + 1; 1010 IsIsolatedToken = true; 1011 continue; 1012 } 1013 1014 switch (Char) { 1015 case '\\': 1016 if (InTok) { 1017 addAsmOperand(String.slice(Prev, i), false); 1018 InTok = false; 1019 IsIsolatedToken = false; 1020 } 1021 ++i; 1022 assert(i != String.size() && "Invalid quoted character"); 1023 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 1024 Prev = i + 1; 1025 IsIsolatedToken = false; 1026 break; 1027 1028 case '$': { 1029 if (InTok) { 1030 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1031 InTok = false; 1032 IsIsolatedToken = false; 1033 } 1034 1035 // If this isn't "${", start new identifier looking like "$xxx" 1036 if (i + 1 == String.size() || String[i + 1] != '{') { 1037 Prev = i; 1038 break; 1039 } 1040 1041 size_t EndPos = String.find('}', i); 1042 assert(EndPos != StringRef::npos && 1043 "Missing brace in operand reference!"); 1044 addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken); 1045 Prev = EndPos + 1; 1046 i = EndPos; 1047 IsIsolatedToken = false; 1048 break; 1049 } 1050 1051 default: 1052 InTok = true; 1053 break; 1054 } 1055 } 1056 if (InTok && Prev != String.size()) 1057 addAsmOperand(String.substr(Prev), IsIsolatedToken); 1058 } 1059 1060 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const { 1061 // Reject matchables with no .s string. 1062 if (AsmString.empty()) 1063 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); 1064 1065 // Reject any matchables with a newline in them, they should be marked 1066 // isCodeGenOnly if they are pseudo instructions. 1067 if (AsmString.find('\n') != std::string::npos) 1068 PrintFatalError(TheDef->getLoc(), 1069 "multiline instruction is not valid for the asmparser, " 1070 "mark it isCodeGenOnly"); 1071 1072 // Remove comments from the asm string. We know that the asmstring only 1073 // has one line. 1074 if (!CommentDelimiter.empty() && 1075 StringRef(AsmString).contains(CommentDelimiter)) 1076 PrintFatalError(TheDef->getLoc(), 1077 "asmstring for instruction has comment character in it, " 1078 "mark it isCodeGenOnly"); 1079 1080 // Reject matchables with operand modifiers, these aren't something we can 1081 // handle, the target should be refactored to use operands instead of 1082 // modifiers. 1083 // 1084 // Also, check for instructions which reference the operand multiple times, 1085 // if they don't define a custom AsmMatcher: this implies a constraint that 1086 // the built-in matching code would not honor. 1087 std::set<std::string> OperandNames; 1088 for (const AsmOperand &Op : AsmOperands) { 1089 StringRef Tok = Op.Token; 1090 if (Tok[0] == '$' && Tok.contains(':')) 1091 PrintFatalError(TheDef->getLoc(), 1092 "matchable with operand modifier '" + Tok + 1093 "' not supported by asm matcher. Mark isCodeGenOnly!"); 1094 // Verify that any operand is only mentioned once. 1095 // We reject aliases and ignore instructions for now. 1096 if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() && 1097 Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) { 1098 LLVM_DEBUG({ 1099 errs() << "warning: '" << TheDef->getName() << "': " 1100 << "ignoring instruction with tied operand '" 1101 << Tok << "'\n"; 1102 }); 1103 return false; 1104 } 1105 } 1106 1107 return true; 1108 } 1109 1110 static std::string getEnumNameForToken(StringRef Str) { 1111 std::string Res; 1112 1113 for (char C : Str) { 1114 switch (C) { 1115 case '*': Res += "_STAR_"; break; 1116 case '%': Res += "_PCT_"; break; 1117 case ':': Res += "_COLON_"; break; 1118 case '!': Res += "_EXCLAIM_"; break; 1119 case '.': Res += "_DOT_"; break; 1120 case '<': Res += "_LT_"; break; 1121 case '>': Res += "_GT_"; break; 1122 case '-': Res += "_MINUS_"; break; 1123 case '#': Res += "_HASH_"; break; 1124 default: 1125 if (isAlnum(C)) 1126 Res += C; 1127 else 1128 Res += "_" + utostr((unsigned)C) + "_"; 1129 } 1130 } 1131 1132 return Res; 1133 } 1134 1135 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { 1136 ClassInfo *&Entry = TokenClasses[std::string(Token)]; 1137 1138 if (!Entry) { 1139 Classes.emplace_front(); 1140 Entry = &Classes.front(); 1141 Entry->Kind = ClassInfo::Token; 1142 Entry->ClassName = "Token"; 1143 Entry->Name = "MCK_" + getEnumNameForToken(Token); 1144 Entry->ValueName = std::string(Token); 1145 Entry->PredicateMethod = "<invalid>"; 1146 Entry->RenderMethod = "<invalid>"; 1147 Entry->ParserMethod = ""; 1148 Entry->DiagnosticType = ""; 1149 Entry->IsOptional = false; 1150 Entry->DefaultMethod = "<invalid>"; 1151 } 1152 1153 return Entry; 1154 } 1155 1156 ClassInfo * 1157 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, 1158 int SubOpIdx) { 1159 Record *Rec = OI.Rec; 1160 if (SubOpIdx != -1) 1161 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); 1162 return getOperandClass(Rec, SubOpIdx); 1163 } 1164 1165 ClassInfo * 1166 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { 1167 if (Rec->isSubClassOf("RegisterOperand")) { 1168 // RegisterOperand may have an associated ParserMatchClass. If it does, 1169 // use it, else just fall back to the underlying register class. 1170 const RecordVal *R = Rec->getValue("ParserMatchClass"); 1171 if (!R || !R->getValue()) 1172 PrintFatalError(Rec->getLoc(), 1173 "Record `" + Rec->getName() + 1174 "' does not have a ParserMatchClass!\n"); 1175 1176 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { 1177 Record *MatchClass = DI->getDef(); 1178 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1179 return CI; 1180 } 1181 1182 // No custom match class. Just use the register class. 1183 Record *ClassRec = Rec->getValueAsDef("RegClass"); 1184 if (!ClassRec) 1185 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + 1186 "' has no associated register class!\n"); 1187 if (ClassInfo *CI = RegisterClassClasses[ClassRec]) 1188 return CI; 1189 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1190 } 1191 1192 if (Rec->isSubClassOf("RegisterClass")) { 1193 if (ClassInfo *CI = RegisterClassClasses[Rec]) 1194 return CI; 1195 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1196 } 1197 1198 if (!Rec->isSubClassOf("Operand")) 1199 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + 1200 "' does not derive from class Operand!\n"); 1201 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1202 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1203 return CI; 1204 1205 PrintFatalError(Rec->getLoc(), "operand has no match class!"); 1206 } 1207 1208 struct LessRegisterSet { 1209 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { 1210 // std::set<T> defines its own compariso "operator<", but it 1211 // performs a lexicographical comparison by T's innate comparison 1212 // for some reason. We don't want non-deterministic pointer 1213 // comparisons so use this instead. 1214 return std::lexicographical_compare(LHS.begin(), LHS.end(), 1215 RHS.begin(), RHS.end(), 1216 LessRecordByID()); 1217 } 1218 }; 1219 1220 void AsmMatcherInfo:: 1221 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { 1222 const auto &Registers = Target.getRegBank().getRegisters(); 1223 auto &RegClassList = Target.getRegBank().getRegClasses(); 1224 1225 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; 1226 1227 // The register sets used for matching. 1228 RegisterSetSet RegisterSets; 1229 1230 // Gather the defined sets. 1231 for (const CodeGenRegisterClass &RC : RegClassList) 1232 RegisterSets.insert( 1233 RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); 1234 1235 // Add any required singleton sets. 1236 for (Record *Rec : SingletonRegisters) { 1237 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); 1238 } 1239 1240 // Introduce derived sets where necessary (when a register does not determine 1241 // a unique register set class), and build the mapping of registers to the set 1242 // they should classify to. 1243 std::map<Record*, RegisterSet> RegisterMap; 1244 for (const CodeGenRegister &CGR : Registers) { 1245 // Compute the intersection of all sets containing this register. 1246 RegisterSet ContainingSet; 1247 1248 for (const RegisterSet &RS : RegisterSets) { 1249 if (!RS.count(CGR.TheDef)) 1250 continue; 1251 1252 if (ContainingSet.empty()) { 1253 ContainingSet = RS; 1254 continue; 1255 } 1256 1257 RegisterSet Tmp; 1258 std::swap(Tmp, ContainingSet); 1259 std::insert_iterator<RegisterSet> II(ContainingSet, 1260 ContainingSet.begin()); 1261 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, 1262 LessRecordByID()); 1263 } 1264 1265 if (!ContainingSet.empty()) { 1266 RegisterSets.insert(ContainingSet); 1267 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); 1268 } 1269 } 1270 1271 // Construct the register classes. 1272 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; 1273 unsigned Index = 0; 1274 for (const RegisterSet &RS : RegisterSets) { 1275 Classes.emplace_front(); 1276 ClassInfo *CI = &Classes.front(); 1277 CI->Kind = ClassInfo::RegisterClass0 + Index; 1278 CI->ClassName = "Reg" + utostr(Index); 1279 CI->Name = "MCK_Reg" + utostr(Index); 1280 CI->ValueName = ""; 1281 CI->PredicateMethod = ""; // unused 1282 CI->RenderMethod = "addRegOperands"; 1283 CI->Registers = RS; 1284 // FIXME: diagnostic type. 1285 CI->DiagnosticType = ""; 1286 CI->IsOptional = false; 1287 CI->DefaultMethod = ""; // unused 1288 RegisterSetClasses.insert(std::make_pair(RS, CI)); 1289 ++Index; 1290 } 1291 1292 // Find the superclasses; we could compute only the subgroup lattice edges, 1293 // but there isn't really a point. 1294 for (const RegisterSet &RS : RegisterSets) { 1295 ClassInfo *CI = RegisterSetClasses[RS]; 1296 for (const RegisterSet &RS2 : RegisterSets) 1297 if (RS != RS2 && 1298 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), 1299 LessRecordByID())) 1300 CI->SuperClasses.push_back(RegisterSetClasses[RS2]); 1301 } 1302 1303 // Name the register classes which correspond to a user defined RegisterClass. 1304 for (const CodeGenRegisterClass &RC : RegClassList) { 1305 // Def will be NULL for non-user defined register classes. 1306 Record *Def = RC.getDef(); 1307 if (!Def) 1308 continue; 1309 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), 1310 RC.getOrder().end())]; 1311 if (CI->ValueName.empty()) { 1312 CI->ClassName = RC.getName(); 1313 CI->Name = "MCK_" + RC.getName(); 1314 CI->ValueName = RC.getName(); 1315 } else 1316 CI->ValueName = CI->ValueName + "," + RC.getName(); 1317 1318 Init *DiagnosticType = Def->getValueInit("DiagnosticType"); 1319 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1320 CI->DiagnosticType = std::string(SI->getValue()); 1321 1322 Init *DiagnosticString = Def->getValueInit("DiagnosticString"); 1323 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1324 CI->DiagnosticString = std::string(SI->getValue()); 1325 1326 // If we have a diagnostic string but the diagnostic type is not specified 1327 // explicitly, create an anonymous diagnostic type. 1328 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1329 CI->DiagnosticType = RC.getName(); 1330 1331 RegisterClassClasses.insert(std::make_pair(Def, CI)); 1332 } 1333 1334 // Populate the map for individual registers. 1335 for (auto &It : RegisterMap) 1336 RegisterClasses[It.first] = RegisterSetClasses[It.second]; 1337 1338 // Name the register classes which correspond to singleton registers. 1339 for (Record *Rec : SingletonRegisters) { 1340 ClassInfo *CI = RegisterClasses[Rec]; 1341 assert(CI && "Missing singleton register class info!"); 1342 1343 if (CI->ValueName.empty()) { 1344 CI->ClassName = std::string(Rec->getName()); 1345 CI->Name = "MCK_" + Rec->getName().str(); 1346 CI->ValueName = std::string(Rec->getName()); 1347 } else 1348 CI->ValueName = CI->ValueName + "," + Rec->getName().str(); 1349 } 1350 } 1351 1352 void AsmMatcherInfo::buildOperandClasses() { 1353 std::vector<Record*> AsmOperands = 1354 Records.getAllDerivedDefinitions("AsmOperandClass"); 1355 1356 // Pre-populate AsmOperandClasses map. 1357 for (Record *Rec : AsmOperands) { 1358 Classes.emplace_front(); 1359 AsmOperandClasses[Rec] = &Classes.front(); 1360 } 1361 1362 unsigned Index = 0; 1363 for (Record *Rec : AsmOperands) { 1364 ClassInfo *CI = AsmOperandClasses[Rec]; 1365 CI->Kind = ClassInfo::UserClass0 + Index; 1366 1367 ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); 1368 for (Init *I : Supers->getValues()) { 1369 DefInit *DI = dyn_cast<DefInit>(I); 1370 if (!DI) { 1371 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1372 continue; 1373 } 1374 1375 ClassInfo *SC = AsmOperandClasses[DI->getDef()]; 1376 if (!SC) 1377 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1378 else 1379 CI->SuperClasses.push_back(SC); 1380 } 1381 CI->ClassName = std::string(Rec->getValueAsString("Name")); 1382 CI->Name = "MCK_" + CI->ClassName; 1383 CI->ValueName = std::string(Rec->getName()); 1384 1385 // Get or construct the predicate method name. 1386 Init *PMName = Rec->getValueInit("PredicateMethod"); 1387 if (StringInit *SI = dyn_cast<StringInit>(PMName)) { 1388 CI->PredicateMethod = std::string(SI->getValue()); 1389 } else { 1390 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); 1391 CI->PredicateMethod = "is" + CI->ClassName; 1392 } 1393 1394 // Get or construct the render method name. 1395 Init *RMName = Rec->getValueInit("RenderMethod"); 1396 if (StringInit *SI = dyn_cast<StringInit>(RMName)) { 1397 CI->RenderMethod = std::string(SI->getValue()); 1398 } else { 1399 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); 1400 CI->RenderMethod = "add" + CI->ClassName + "Operands"; 1401 } 1402 1403 // Get the parse method name or leave it as empty. 1404 Init *PRMName = Rec->getValueInit("ParserMethod"); 1405 if (StringInit *SI = dyn_cast<StringInit>(PRMName)) 1406 CI->ParserMethod = std::string(SI->getValue()); 1407 1408 // Get the diagnostic type and string or leave them as empty. 1409 Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); 1410 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1411 CI->DiagnosticType = std::string(SI->getValue()); 1412 Init *DiagnosticString = Rec->getValueInit("DiagnosticString"); 1413 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1414 CI->DiagnosticString = std::string(SI->getValue()); 1415 // If we have a DiagnosticString, we need a DiagnosticType for use within 1416 // the matcher. 1417 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1418 CI->DiagnosticType = CI->ClassName; 1419 1420 Init *IsOptional = Rec->getValueInit("IsOptional"); 1421 if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) 1422 CI->IsOptional = BI->getValue(); 1423 1424 // Get or construct the default method name. 1425 Init *DMName = Rec->getValueInit("DefaultMethod"); 1426 if (StringInit *SI = dyn_cast<StringInit>(DMName)) { 1427 CI->DefaultMethod = std::string(SI->getValue()); 1428 } else { 1429 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); 1430 CI->DefaultMethod = "default" + CI->ClassName + "Operands"; 1431 } 1432 1433 ++Index; 1434 } 1435 } 1436 1437 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, 1438 CodeGenTarget &target, 1439 RecordKeeper &records) 1440 : Records(records), AsmParser(asmParser), Target(target) { 1441 } 1442 1443 /// buildOperandMatchInfo - Build the necessary information to handle user 1444 /// defined operand parsing methods. 1445 void AsmMatcherInfo::buildOperandMatchInfo() { 1446 1447 /// Map containing a mask with all operands indices that can be found for 1448 /// that class inside a instruction. 1449 typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy; 1450 OpClassMaskTy OpClassMask; 1451 1452 for (const auto &MI : Matchables) { 1453 OpClassMask.clear(); 1454 1455 // Keep track of all operands of this instructions which belong to the 1456 // same class. 1457 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 1458 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 1459 if (Op.Class->ParserMethod.empty()) 1460 continue; 1461 unsigned &OperandMask = OpClassMask[Op.Class]; 1462 OperandMask |= (1 << i); 1463 } 1464 1465 // Generate operand match info for each mnemonic/operand class pair. 1466 for (const auto &OCM : OpClassMask) { 1467 unsigned OpMask = OCM.second; 1468 ClassInfo *CI = OCM.first; 1469 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, 1470 OpMask)); 1471 } 1472 } 1473 } 1474 1475 void AsmMatcherInfo::buildInfo() { 1476 // Build information about all of the AssemblerPredicates. 1477 const std::vector<std::pair<Record *, SubtargetFeatureInfo>> 1478 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records); 1479 SubtargetFeatures.insert(SubtargetFeaturePairs.begin(), 1480 SubtargetFeaturePairs.end()); 1481 #ifndef NDEBUG 1482 for (const auto &Pair : SubtargetFeatures) 1483 LLVM_DEBUG(Pair.second.dump()); 1484 #endif // NDEBUG 1485 1486 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 1487 bool ReportMultipleNearMisses = 1488 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 1489 1490 // Parse the instructions; we need to do this first so that we can gather the 1491 // singleton register classes. 1492 SmallPtrSet<Record*, 16> SingletonRegisters; 1493 unsigned VariantCount = Target.getAsmParserVariantCount(); 1494 for (unsigned VC = 0; VC != VariantCount; ++VC) { 1495 Record *AsmVariant = Target.getAsmParserVariant(VC); 1496 StringRef CommentDelimiter = 1497 AsmVariant->getValueAsString("CommentDelimiter"); 1498 AsmVariantInfo Variant; 1499 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); 1500 Variant.TokenizingCharacters = 1501 AsmVariant->getValueAsString("TokenizingCharacters"); 1502 Variant.SeparatorCharacters = 1503 AsmVariant->getValueAsString("SeparatorCharacters"); 1504 Variant.BreakCharacters = 1505 AsmVariant->getValueAsString("BreakCharacters"); 1506 Variant.Name = AsmVariant->getValueAsString("Name"); 1507 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 1508 1509 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { 1510 1511 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1512 // filter the set of instructions we consider. 1513 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) 1514 continue; 1515 1516 // Ignore "codegen only" instructions. 1517 if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) 1518 continue; 1519 1520 // Ignore instructions for different instructions 1521 StringRef V = CGI->TheDef->getValueAsString("AsmVariantName"); 1522 if (!V.empty() && V != Variant.Name) 1523 continue; 1524 1525 auto II = std::make_unique<MatchableInfo>(*CGI); 1526 1527 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1528 1529 // Ignore instructions which shouldn't be matched and diagnose invalid 1530 // instruction definitions with an error. 1531 if (!II->validate(CommentDelimiter, false)) 1532 continue; 1533 1534 Matchables.push_back(std::move(II)); 1535 } 1536 1537 // Parse all of the InstAlias definitions and stick them in the list of 1538 // matchables. 1539 std::vector<Record*> AllInstAliases = 1540 Records.getAllDerivedDefinitions("InstAlias"); 1541 for (Record *InstAlias : AllInstAliases) { 1542 auto Alias = std::make_unique<CodeGenInstAlias>(InstAlias, Target); 1543 1544 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1545 // filter the set of instruction aliases we consider, based on the target 1546 // instruction. 1547 if (!StringRef(Alias->ResultInst->TheDef->getName()) 1548 .startswith( MatchPrefix)) 1549 continue; 1550 1551 StringRef V = Alias->TheDef->getValueAsString("AsmVariantName"); 1552 if (!V.empty() && V != Variant.Name) 1553 continue; 1554 1555 auto II = std::make_unique<MatchableInfo>(std::move(Alias)); 1556 1557 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1558 1559 // Validate the alias definitions. 1560 II->validate(CommentDelimiter, true); 1561 1562 Matchables.push_back(std::move(II)); 1563 } 1564 } 1565 1566 // Build info for the register classes. 1567 buildRegisterClasses(SingletonRegisters); 1568 1569 // Build info for the user defined assembly operand classes. 1570 buildOperandClasses(); 1571 1572 // Build the information about matchables, now that we have fully formed 1573 // classes. 1574 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; 1575 for (auto &II : Matchables) { 1576 // Parse the tokens after the mnemonic. 1577 // Note: buildInstructionOperandReference may insert new AsmOperands, so 1578 // don't precompute the loop bound. 1579 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { 1580 MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; 1581 StringRef Token = Op.Token; 1582 1583 // Check for singleton registers. 1584 if (Record *RegRecord = Op.SingletonReg) { 1585 Op.Class = RegisterClasses[RegRecord]; 1586 assert(Op.Class && Op.Class->Registers.size() == 1 && 1587 "Unexpected class for singleton register"); 1588 continue; 1589 } 1590 1591 // Check for simple tokens. 1592 if (Token[0] != '$') { 1593 Op.Class = getTokenClass(Token); 1594 continue; 1595 } 1596 1597 if (Token.size() > 1 && isdigit(Token[1])) { 1598 Op.Class = getTokenClass(Token); 1599 continue; 1600 } 1601 1602 // Otherwise this is an operand reference. 1603 StringRef OperandName; 1604 if (Token[1] == '{') 1605 OperandName = Token.substr(2, Token.size() - 3); 1606 else 1607 OperandName = Token.substr(1); 1608 1609 if (II->DefRec.is<const CodeGenInstruction*>()) 1610 buildInstructionOperandReference(II.get(), OperandName, i); 1611 else 1612 buildAliasOperandReference(II.get(), OperandName, Op); 1613 } 1614 1615 if (II->DefRec.is<const CodeGenInstruction*>()) { 1616 II->buildInstructionResultOperands(); 1617 // If the instruction has a two-operand alias, build up the 1618 // matchable here. We'll add them in bulk at the end to avoid 1619 // confusing this loop. 1620 StringRef Constraint = 1621 II->TheDef->getValueAsString("TwoOperandAliasConstraint"); 1622 if (Constraint != "") { 1623 // Start by making a copy of the original matchable. 1624 auto AliasII = std::make_unique<MatchableInfo>(*II); 1625 1626 // Adjust it to be a two-operand alias. 1627 AliasII->formTwoOperandAlias(Constraint); 1628 1629 // Add the alias to the matchables list. 1630 NewMatchables.push_back(std::move(AliasII)); 1631 } 1632 } else 1633 // FIXME: The tied operands checking is not yet integrated with the 1634 // framework for reporting multiple near misses. To prevent invalid 1635 // formats from being matched with an alias if a tied-operands check 1636 // would otherwise have disallowed it, we just disallow such constructs 1637 // in TableGen completely. 1638 II->buildAliasResultOperands(!ReportMultipleNearMisses); 1639 } 1640 if (!NewMatchables.empty()) 1641 Matchables.insert(Matchables.end(), 1642 std::make_move_iterator(NewMatchables.begin()), 1643 std::make_move_iterator(NewMatchables.end())); 1644 1645 // Process token alias definitions and set up the associated superclass 1646 // information. 1647 std::vector<Record*> AllTokenAliases = 1648 Records.getAllDerivedDefinitions("TokenAlias"); 1649 for (Record *Rec : AllTokenAliases) { 1650 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); 1651 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); 1652 if (FromClass == ToClass) 1653 PrintFatalError(Rec->getLoc(), 1654 "error: Destination value identical to source value."); 1655 FromClass->SuperClasses.push_back(ToClass); 1656 } 1657 1658 // Reorder classes so that classes precede super classes. 1659 Classes.sort(); 1660 1661 #ifdef EXPENSIVE_CHECKS 1662 // Verify that the table is sorted and operator < works transitively. 1663 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { 1664 for (auto J = I; J != E; ++J) { 1665 assert(!(*J < *I)); 1666 assert(I == J || !J->isSubsetOf(*I)); 1667 } 1668 } 1669 #endif 1670 } 1671 1672 /// buildInstructionOperandReference - The specified operand is a reference to a 1673 /// named operand such as $src. Resolve the Class and OperandInfo pointers. 1674 void AsmMatcherInfo:: 1675 buildInstructionOperandReference(MatchableInfo *II, 1676 StringRef OperandName, 1677 unsigned AsmOpIdx) { 1678 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); 1679 const CGIOperandList &Operands = CGI.Operands; 1680 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; 1681 1682 // Map this token to an operand. 1683 unsigned Idx; 1684 if (!Operands.hasOperandNamed(OperandName, Idx)) 1685 PrintFatalError(II->TheDef->getLoc(), 1686 "error: unable to find operand: '" + OperandName + "'"); 1687 1688 // If the instruction operand has multiple suboperands, but the parser 1689 // match class for the asm operand is still the default "ImmAsmOperand", 1690 // then handle each suboperand separately. 1691 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { 1692 Record *Rec = Operands[Idx].Rec; 1693 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); 1694 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1695 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { 1696 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. 1697 StringRef Token = Op->Token; // save this in case Op gets moved 1698 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { 1699 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); 1700 NewAsmOp.SubOpIdx = SI; 1701 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); 1702 } 1703 // Replace Op with first suboperand. 1704 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved 1705 Op->SubOpIdx = 0; 1706 } 1707 } 1708 1709 // Set up the operand class. 1710 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); 1711 Op->OrigSrcOpName = OperandName; 1712 1713 // If the named operand is tied, canonicalize it to the untied operand. 1714 // For example, something like: 1715 // (outs GPR:$dst), (ins GPR:$src) 1716 // with an asmstring of 1717 // "inc $src" 1718 // we want to canonicalize to: 1719 // "inc $dst" 1720 // so that we know how to provide the $dst operand when filling in the result. 1721 int OITied = -1; 1722 if (Operands[Idx].MINumOperands == 1) 1723 OITied = Operands[Idx].getTiedRegister(); 1724 if (OITied != -1) { 1725 // The tied operand index is an MIOperand index, find the operand that 1726 // contains it. 1727 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); 1728 OperandName = Operands[Idx.first].Name; 1729 Op->SubOpIdx = Idx.second; 1730 } 1731 1732 Op->SrcOpName = OperandName; 1733 } 1734 1735 /// buildAliasOperandReference - When parsing an operand reference out of the 1736 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the 1737 /// operand reference is by looking it up in the result pattern definition. 1738 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, 1739 StringRef OperandName, 1740 MatchableInfo::AsmOperand &Op) { 1741 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); 1742 1743 // Set up the operand class. 1744 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) 1745 if (CGA.ResultOperands[i].isRecord() && 1746 CGA.ResultOperands[i].getName() == OperandName) { 1747 // It's safe to go with the first one we find, because CodeGenInstAlias 1748 // validates that all operands with the same name have the same record. 1749 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; 1750 // Use the match class from the Alias definition, not the 1751 // destination instruction, as we may have an immediate that's 1752 // being munged by the match class. 1753 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), 1754 Op.SubOpIdx); 1755 Op.SrcOpName = OperandName; 1756 Op.OrigSrcOpName = OperandName; 1757 return; 1758 } 1759 1760 PrintFatalError(II->TheDef->getLoc(), 1761 "error: unable to find operand: '" + OperandName + "'"); 1762 } 1763 1764 void MatchableInfo::buildInstructionResultOperands() { 1765 const CodeGenInstruction *ResultInst = getResultInst(); 1766 1767 // Loop over all operands of the result instruction, determining how to 1768 // populate them. 1769 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { 1770 // If this is a tied operand, just copy from the previously handled operand. 1771 int TiedOp = -1; 1772 if (OpInfo.MINumOperands == 1) 1773 TiedOp = OpInfo.getTiedRegister(); 1774 if (TiedOp != -1) { 1775 int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name); 1776 if (TiedSrcOperand != -1 && 1777 ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) 1778 ResOperands.push_back(ResOperand::getTiedOp( 1779 TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand)); 1780 else 1781 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0)); 1782 continue; 1783 } 1784 1785 int SrcOperand = findAsmOperandNamed(OpInfo.Name); 1786 if (OpInfo.Name.empty() || SrcOperand == -1) { 1787 // This may happen for operands that are tied to a suboperand of a 1788 // complex operand. Simply use a dummy value here; nobody should 1789 // use this operand slot. 1790 // FIXME: The long term goal is for the MCOperand list to not contain 1791 // tied operands at all. 1792 ResOperands.push_back(ResOperand::getImmOp(0)); 1793 continue; 1794 } 1795 1796 // Check if the one AsmOperand populates the entire operand. 1797 unsigned NumOperands = OpInfo.MINumOperands; 1798 if (AsmOperands[SrcOperand].SubOpIdx == -1) { 1799 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); 1800 continue; 1801 } 1802 1803 // Add a separate ResOperand for each suboperand. 1804 for (unsigned AI = 0; AI < NumOperands; ++AI) { 1805 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && 1806 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && 1807 "unexpected AsmOperands for suboperands"); 1808 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); 1809 } 1810 } 1811 } 1812 1813 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) { 1814 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); 1815 const CodeGenInstruction *ResultInst = getResultInst(); 1816 1817 // Map of: $reg -> #lastref 1818 // where $reg is the name of the operand in the asm string 1819 // where #lastref is the last processed index where $reg was referenced in 1820 // the asm string. 1821 SmallDenseMap<StringRef, int> OperandRefs; 1822 1823 // Loop over all operands of the result instruction, determining how to 1824 // populate them. 1825 unsigned AliasOpNo = 0; 1826 unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); 1827 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { 1828 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; 1829 1830 // If this is a tied operand, just copy from the previously handled operand. 1831 int TiedOp = -1; 1832 if (OpInfo->MINumOperands == 1) 1833 TiedOp = OpInfo->getTiedRegister(); 1834 if (TiedOp != -1) { 1835 unsigned SrcOp1 = 0; 1836 unsigned SrcOp2 = 0; 1837 1838 // If an operand has been specified twice in the asm string, 1839 // add the two source operand's indices to the TiedOp so that 1840 // at runtime the 'tied' constraint is checked. 1841 if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) { 1842 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1843 1844 // Find the next operand (similarly named operand) in the string. 1845 StringRef Name = AsmOperands[SrcOp1].SrcOpName; 1846 auto Insert = OperandRefs.try_emplace(Name, SrcOp1); 1847 SrcOp2 = findAsmOperandNamed(Name, Insert.first->second); 1848 1849 // Not updating the record in OperandRefs will cause TableGen 1850 // to fail with an error at the end of this function. 1851 if (AliasConstraintsAreChecked) 1852 Insert.first->second = SrcOp2; 1853 1854 // In case it only has one reference in the asm string, 1855 // it doesn't need to be checked for tied constraints. 1856 SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2; 1857 } 1858 1859 // If the alias operand is of a different operand class, we only want 1860 // to benefit from the tied-operands check and just match the operand 1861 // as a normal, but not copy the original (TiedOp) to the result 1862 // instruction. We do this by passing -1 as the tied operand to copy. 1863 if (ResultInst->Operands[i].Rec->getName() != 1864 ResultInst->Operands[TiedOp].Rec->getName()) { 1865 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1866 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1867 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1868 SrcOp2 = findAsmOperand(Name, SubIdx); 1869 ResOperands.push_back( 1870 ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2)); 1871 } else { 1872 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2)); 1873 continue; 1874 } 1875 } 1876 1877 // Handle all the suboperands for this operand. 1878 const std::string &OpName = OpInfo->Name; 1879 for ( ; AliasOpNo < LastOpNo && 1880 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { 1881 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1882 1883 // Find out what operand from the asmparser that this MCInst operand 1884 // comes from. 1885 switch (CGA.ResultOperands[AliasOpNo].Kind) { 1886 case CodeGenInstAlias::ResultOperand::K_Record: { 1887 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1888 int SrcOperand = findAsmOperand(Name, SubIdx); 1889 if (SrcOperand == -1) 1890 PrintFatalError(TheDef->getLoc(), "Instruction '" + 1891 TheDef->getName() + "' has operand '" + OpName + 1892 "' that doesn't appear in asm string!"); 1893 1894 // Add it to the operand references. If it is added a second time, the 1895 // record won't be updated and it will fail later on. 1896 OperandRefs.try_emplace(Name, SrcOperand); 1897 1898 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); 1899 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, 1900 NumOperands)); 1901 break; 1902 } 1903 case CodeGenInstAlias::ResultOperand::K_Imm: { 1904 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); 1905 ResOperands.push_back(ResOperand::getImmOp(ImmVal)); 1906 break; 1907 } 1908 case CodeGenInstAlias::ResultOperand::K_Reg: { 1909 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); 1910 ResOperands.push_back(ResOperand::getRegOp(Reg)); 1911 break; 1912 } 1913 } 1914 } 1915 } 1916 1917 // Check that operands are not repeated more times than is supported. 1918 for (auto &T : OperandRefs) { 1919 if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1) 1920 PrintFatalError(TheDef->getLoc(), 1921 "Operand '" + T.first + "' can never be matched"); 1922 } 1923 } 1924 1925 static unsigned 1926 getConverterOperandID(const std::string &Name, 1927 SmallSetVector<CachedHashString, 16> &Table, 1928 bool &IsNew) { 1929 IsNew = Table.insert(CachedHashString(Name)); 1930 1931 unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin(); 1932 1933 assert(ID < Table.size()); 1934 1935 return ID; 1936 } 1937 1938 static unsigned 1939 emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, 1940 std::vector<std::unique_ptr<MatchableInfo>> &Infos, 1941 bool HasMnemonicFirst, bool HasOptionalOperands, 1942 raw_ostream &OS) { 1943 SmallSetVector<CachedHashString, 16> OperandConversionKinds; 1944 SmallSetVector<CachedHashString, 16> InstructionConversionKinds; 1945 std::vector<std::vector<uint8_t> > ConversionTable; 1946 size_t MaxRowLength = 2; // minimum is custom converter plus terminator. 1947 1948 // TargetOperandClass - This is the target's operand class, like X86Operand. 1949 std::string TargetOperandClass = Target.getName().str() + "Operand"; 1950 1951 // Write the convert function to a separate stream, so we can drop it after 1952 // the enum. We'll build up the conversion handlers for the individual 1953 // operand types opportunistically as we encounter them. 1954 std::string ConvertFnBody; 1955 raw_string_ostream CvtOS(ConvertFnBody); 1956 // Start the unified conversion function. 1957 if (HasOptionalOperands) { 1958 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1959 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1960 << "unsigned Opcode,\n" 1961 << " const OperandVector &Operands,\n" 1962 << " const SmallBitVector &OptionalOperandsMask) {\n"; 1963 } else { 1964 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1965 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1966 << "unsigned Opcode,\n" 1967 << " const OperandVector &Operands) {\n"; 1968 } 1969 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 1970 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 1971 if (HasOptionalOperands) { 1972 size_t MaxNumOperands = 0; 1973 for (const auto &MI : Infos) { 1974 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 1975 } 1976 CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1) 1977 << "] = { 0 };\n"; 1978 CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands) 1979 << ");\n"; 1980 CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands) 1981 << "; ++i) {\n"; 1982 CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n"; 1983 CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n"; 1984 CvtOS << " }\n"; 1985 } 1986 CvtOS << " unsigned OpIdx;\n"; 1987 CvtOS << " Inst.setOpcode(Opcode);\n"; 1988 CvtOS << " for (const uint8_t *p = Converter; *p; p += 2) {\n"; 1989 if (HasOptionalOperands) { 1990 CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n"; 1991 } else { 1992 CvtOS << " OpIdx = *(p + 1);\n"; 1993 } 1994 CvtOS << " switch (*p) {\n"; 1995 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n"; 1996 CvtOS << " case CVT_Reg:\n"; 1997 CvtOS << " static_cast<" << TargetOperandClass 1998 << " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; 1999 CvtOS << " break;\n"; 2000 CvtOS << " case CVT_Tied: {\n"; 2001 CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 2002 CvtOS << " std::begin(TiedAsmOperandTable)) &&\n"; 2003 CvtOS << " \"Tied operand not found\");\n"; 2004 CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n"; 2005 CvtOS << " if (TiedResOpnd != (uint8_t)-1)\n"; 2006 CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n"; 2007 CvtOS << " break;\n"; 2008 CvtOS << " }\n"; 2009 2010 std::string OperandFnBody; 2011 raw_string_ostream OpOS(OperandFnBody); 2012 // Start the operand number lookup function. 2013 OpOS << "void " << Target.getName() << ClassName << "::\n" 2014 << "convertToMapAndConstraints(unsigned Kind,\n"; 2015 OpOS.indent(27); 2016 OpOS << "const OperandVector &Operands) {\n" 2017 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" 2018 << " unsigned NumMCOperands = 0;\n" 2019 << " const uint8_t *Converter = ConversionTable[Kind];\n" 2020 << " for (const uint8_t *p = Converter; *p; p += 2) {\n" 2021 << " switch (*p) {\n" 2022 << " default: llvm_unreachable(\"invalid conversion entry!\");\n" 2023 << " case CVT_Reg:\n" 2024 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2025 << " Operands[*(p + 1)]->setConstraint(\"r\");\n" 2026 << " ++NumMCOperands;\n" 2027 << " break;\n" 2028 << " case CVT_Tied:\n" 2029 << " ++NumMCOperands;\n" 2030 << " break;\n"; 2031 2032 // Pre-populate the operand conversion kinds with the standard always 2033 // available entries. 2034 OperandConversionKinds.insert(CachedHashString("CVT_Done")); 2035 OperandConversionKinds.insert(CachedHashString("CVT_Reg")); 2036 OperandConversionKinds.insert(CachedHashString("CVT_Tied")); 2037 enum { CVT_Done, CVT_Reg, CVT_Tied }; 2038 2039 // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label. 2040 std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string> 2041 TiedOperandsEnumMap; 2042 2043 for (auto &II : Infos) { 2044 // Check if we have a custom match function. 2045 StringRef AsmMatchConverter = 2046 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); 2047 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { 2048 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str(); 2049 II->ConversionFnKind = Signature; 2050 2051 // Check if we have already generated this signature. 2052 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2053 continue; 2054 2055 // Remember this converter for the kind enum. 2056 unsigned KindID = OperandConversionKinds.size(); 2057 OperandConversionKinds.insert( 2058 CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter))); 2059 2060 // Add the converter row for this instruction. 2061 ConversionTable.emplace_back(); 2062 ConversionTable.back().push_back(KindID); 2063 ConversionTable.back().push_back(CVT_Done); 2064 2065 // Add the handler to the conversion driver function. 2066 CvtOS << " case CVT_" 2067 << getEnumNameForToken(AsmMatchConverter) << ":\n" 2068 << " " << AsmMatchConverter << "(Inst, Operands);\n" 2069 << " break;\n"; 2070 2071 // FIXME: Handle the operand number lookup for custom match functions. 2072 continue; 2073 } 2074 2075 // Build the conversion function signature. 2076 std::string Signature = "Convert"; 2077 2078 std::vector<uint8_t> ConversionRow; 2079 2080 // Compute the convert enum and the case body. 2081 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); 2082 2083 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { 2084 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; 2085 2086 // Generate code to populate each result operand. 2087 switch (OpInfo.Kind) { 2088 case MatchableInfo::ResOperand::RenderAsmOperand: { 2089 // This comes from something we parsed. 2090 const MatchableInfo::AsmOperand &Op = 2091 II->AsmOperands[OpInfo.AsmOperandNum]; 2092 2093 // Registers are always converted the same, don't duplicate the 2094 // conversion function based on them. 2095 Signature += "__"; 2096 std::string Class; 2097 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; 2098 Signature += Class; 2099 Signature += utostr(OpInfo.MINumOperands); 2100 Signature += "_" + itostr(OpInfo.AsmOperandNum); 2101 2102 // Add the conversion kind, if necessary, and get the associated ID 2103 // the index of its entry in the vector). 2104 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : 2105 Op.Class->RenderMethod); 2106 if (Op.Class->IsOptional) { 2107 // For optional operands we must also care about DefaultMethod 2108 assert(HasOptionalOperands); 2109 Name += "_" + Op.Class->DefaultMethod; 2110 } 2111 Name = getEnumNameForToken(Name); 2112 2113 bool IsNewConverter = false; 2114 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2115 IsNewConverter); 2116 2117 // Add the operand entry to the instruction kind conversion row. 2118 ConversionRow.push_back(ID); 2119 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); 2120 2121 if (!IsNewConverter) 2122 break; 2123 2124 // This is a new operand kind. Add a handler for it to the 2125 // converter driver. 2126 CvtOS << " case " << Name << ":\n"; 2127 if (Op.Class->IsOptional) { 2128 // If optional operand is not present in actual instruction then we 2129 // should call its DefaultMethod before RenderMethod 2130 assert(HasOptionalOperands); 2131 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n" 2132 << " " << Op.Class->DefaultMethod << "()" 2133 << "->" << Op.Class->RenderMethod << "(Inst, " 2134 << OpInfo.MINumOperands << ");\n" 2135 << " } else {\n" 2136 << " static_cast<" << TargetOperandClass 2137 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod 2138 << "(Inst, " << OpInfo.MINumOperands << ");\n" 2139 << " }\n"; 2140 } else { 2141 CvtOS << " static_cast<" << TargetOperandClass 2142 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod 2143 << "(Inst, " << OpInfo.MINumOperands << ");\n"; 2144 } 2145 CvtOS << " break;\n"; 2146 2147 // Add a handler for the operand number lookup. 2148 OpOS << " case " << Name << ":\n" 2149 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; 2150 2151 if (Op.Class->isRegisterClass()) 2152 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; 2153 else 2154 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; 2155 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" 2156 << " break;\n"; 2157 break; 2158 } 2159 case MatchableInfo::ResOperand::TiedOperand: { 2160 // If this operand is tied to a previous one, just copy the MCInst 2161 // operand from the earlier one.We can only tie single MCOperand values. 2162 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); 2163 uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd; 2164 uint8_t SrcOp1 = 2165 OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst; 2166 uint8_t SrcOp2 = 2167 OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst; 2168 assert((i > TiedOp || TiedOp == (uint8_t)-1) && 2169 "Tied operand precedes its target!"); 2170 auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' + 2171 utostr(SrcOp1) + '_' + utostr(SrcOp2); 2172 Signature += "__" + TiedTupleName; 2173 ConversionRow.push_back(CVT_Tied); 2174 ConversionRow.push_back(TiedOp); 2175 ConversionRow.push_back(SrcOp1); 2176 ConversionRow.push_back(SrcOp2); 2177 2178 // Also create an 'enum' for this combination of tied operands. 2179 auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2); 2180 TiedOperandsEnumMap.emplace(Key, TiedTupleName); 2181 break; 2182 } 2183 case MatchableInfo::ResOperand::ImmOperand: { 2184 int64_t Val = OpInfo.ImmVal; 2185 std::string Ty = "imm_" + itostr(Val); 2186 Ty = getEnumNameForToken(Ty); 2187 Signature += "__" + Ty; 2188 2189 std::string Name = "CVT_" + Ty; 2190 bool IsNewConverter = false; 2191 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2192 IsNewConverter); 2193 // Add the operand entry to the instruction kind conversion row. 2194 ConversionRow.push_back(ID); 2195 ConversionRow.push_back(0); 2196 2197 if (!IsNewConverter) 2198 break; 2199 2200 CvtOS << " case " << Name << ":\n" 2201 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" 2202 << " break;\n"; 2203 2204 OpOS << " case " << Name << ":\n" 2205 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2206 << " Operands[*(p + 1)]->setConstraint(\"\");\n" 2207 << " ++NumMCOperands;\n" 2208 << " break;\n"; 2209 break; 2210 } 2211 case MatchableInfo::ResOperand::RegOperand: { 2212 std::string Reg, Name; 2213 if (!OpInfo.Register) { 2214 Name = "reg0"; 2215 Reg = "0"; 2216 } else { 2217 Reg = getQualifiedName(OpInfo.Register); 2218 Name = "reg" + OpInfo.Register->getName().str(); 2219 } 2220 Signature += "__" + Name; 2221 Name = "CVT_" + Name; 2222 bool IsNewConverter = false; 2223 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2224 IsNewConverter); 2225 // Add the operand entry to the instruction kind conversion row. 2226 ConversionRow.push_back(ID); 2227 ConversionRow.push_back(0); 2228 2229 if (!IsNewConverter) 2230 break; 2231 CvtOS << " case " << Name << ":\n" 2232 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" 2233 << " break;\n"; 2234 2235 OpOS << " case " << Name << ":\n" 2236 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2237 << " Operands[*(p + 1)]->setConstraint(\"m\");\n" 2238 << " ++NumMCOperands;\n" 2239 << " break;\n"; 2240 } 2241 } 2242 } 2243 2244 // If there were no operands, add to the signature to that effect 2245 if (Signature == "Convert") 2246 Signature += "_NoOperands"; 2247 2248 II->ConversionFnKind = Signature; 2249 2250 // Save the signature. If we already have it, don't add a new row 2251 // to the table. 2252 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2253 continue; 2254 2255 // Add the row to the table. 2256 ConversionTable.push_back(std::move(ConversionRow)); 2257 } 2258 2259 // Finish up the converter driver function. 2260 CvtOS << " }\n }\n}\n\n"; 2261 2262 // Finish up the operand number lookup function. 2263 OpOS << " }\n }\n}\n\n"; 2264 2265 // Output a static table for tied operands. 2266 if (TiedOperandsEnumMap.size()) { 2267 // The number of tied operand combinations will be small in practice, 2268 // but just add the assert to be sure. 2269 assert(TiedOperandsEnumMap.size() <= 254 && 2270 "Too many tied-operand combinations to reference with " 2271 "an 8bit offset from the conversion table, where index " 2272 "'255' is reserved as operand not to be copied."); 2273 2274 OS << "enum {\n"; 2275 for (auto &KV : TiedOperandsEnumMap) { 2276 OS << " " << KV.second << ",\n"; 2277 } 2278 OS << "};\n\n"; 2279 2280 OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n"; 2281 for (auto &KV : TiedOperandsEnumMap) { 2282 OS << " /* " << KV.second << " */ { " 2283 << utostr(std::get<0>(KV.first)) << ", " 2284 << utostr(std::get<1>(KV.first)) << ", " 2285 << utostr(std::get<2>(KV.first)) << " },\n"; 2286 } 2287 OS << "};\n\n"; 2288 } else 2289 OS << "static const uint8_t TiedAsmOperandTable[][3] = " 2290 "{ /* empty */ {0, 0, 0} };\n\n"; 2291 2292 OS << "namespace {\n"; 2293 2294 // Output the operand conversion kind enum. 2295 OS << "enum OperatorConversionKind {\n"; 2296 for (const auto &Converter : OperandConversionKinds) 2297 OS << " " << Converter << ",\n"; 2298 OS << " CVT_NUM_CONVERTERS\n"; 2299 OS << "};\n\n"; 2300 2301 // Output the instruction conversion kind enum. 2302 OS << "enum InstructionConversionKind {\n"; 2303 for (const auto &Signature : InstructionConversionKinds) 2304 OS << " " << Signature << ",\n"; 2305 OS << " CVT_NUM_SIGNATURES\n"; 2306 OS << "};\n\n"; 2307 2308 OS << "} // end anonymous namespace\n\n"; 2309 2310 // Output the conversion table. 2311 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" 2312 << MaxRowLength << "] = {\n"; 2313 2314 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { 2315 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); 2316 OS << " // " << InstructionConversionKinds[Row] << "\n"; 2317 OS << " { "; 2318 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) { 2319 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "; 2320 if (OperandConversionKinds[ConversionTable[Row][i]] != 2321 CachedHashString("CVT_Tied")) { 2322 OS << (unsigned)(ConversionTable[Row][i + 1]) << ", "; 2323 continue; 2324 } 2325 2326 // For a tied operand, emit a reference to the TiedAsmOperandTable 2327 // that contains the operand to copy, and the parsed operands to 2328 // check for their tied constraints. 2329 auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1], 2330 (uint8_t)ConversionTable[Row][i + 2], 2331 (uint8_t)ConversionTable[Row][i + 3]); 2332 auto TiedOpndEnum = TiedOperandsEnumMap.find(Key); 2333 assert(TiedOpndEnum != TiedOperandsEnumMap.end() && 2334 "No record for tied operand pair"); 2335 OS << TiedOpndEnum->second << ", "; 2336 i += 2; 2337 } 2338 OS << "CVT_Done },\n"; 2339 } 2340 2341 OS << "};\n\n"; 2342 2343 // Spit out the conversion driver function. 2344 OS << CvtOS.str(); 2345 2346 // Spit out the operand number lookup function. 2347 OS << OpOS.str(); 2348 2349 return ConversionTable.size(); 2350 } 2351 2352 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. 2353 static void emitMatchClassEnumeration(CodeGenTarget &Target, 2354 std::forward_list<ClassInfo> &Infos, 2355 raw_ostream &OS) { 2356 OS << "namespace {\n\n"; 2357 2358 OS << "/// MatchClassKind - The kinds of classes which participate in\n" 2359 << "/// instruction matching.\n"; 2360 OS << "enum MatchClassKind {\n"; 2361 OS << " InvalidMatchClass = 0,\n"; 2362 OS << " OptionalMatchClass = 1,\n"; 2363 ClassInfo::ClassInfoKind LastKind = ClassInfo::Token; 2364 StringRef LastName = "OptionalMatchClass"; 2365 for (const auto &CI : Infos) { 2366 if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) { 2367 OS << " MCK_LAST_TOKEN = " << LastName << ",\n"; 2368 } else if (LastKind < ClassInfo::UserClass0 && 2369 CI.Kind >= ClassInfo::UserClass0) { 2370 OS << " MCK_LAST_REGISTER = " << LastName << ",\n"; 2371 } 2372 LastKind = (ClassInfo::ClassInfoKind)CI.Kind; 2373 LastName = CI.Name; 2374 2375 OS << " " << CI.Name << ", // "; 2376 if (CI.Kind == ClassInfo::Token) { 2377 OS << "'" << CI.ValueName << "'\n"; 2378 } else if (CI.isRegisterClass()) { 2379 if (!CI.ValueName.empty()) 2380 OS << "register class '" << CI.ValueName << "'\n"; 2381 else 2382 OS << "derived register class\n"; 2383 } else { 2384 OS << "user defined class '" << CI.ValueName << "'\n"; 2385 } 2386 } 2387 OS << " NumMatchClassKinds\n"; 2388 OS << "};\n\n"; 2389 2390 OS << "} // end anonymous namespace\n\n"; 2391 } 2392 2393 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be 2394 /// used when an assembly operand does not match the expected operand class. 2395 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) { 2396 // If the target does not use DiagnosticString for any operands, don't emit 2397 // an unused function. 2398 if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) { 2399 return CI.DiagnosticString.empty(); 2400 })) 2401 return; 2402 2403 OS << "static const char *getMatchKindDiag(" << Info.Target.getName() 2404 << "AsmParser::" << Info.Target.getName() 2405 << "MatchResultTy MatchResult) {\n"; 2406 OS << " switch (MatchResult) {\n"; 2407 2408 for (const auto &CI: Info.Classes) { 2409 if (!CI.DiagnosticString.empty()) { 2410 assert(!CI.DiagnosticType.empty() && 2411 "DiagnosticString set without DiagnosticType"); 2412 OS << " case " << Info.Target.getName() 2413 << "AsmParser::Match_" << CI.DiagnosticType << ":\n"; 2414 OS << " return \"" << CI.DiagnosticString << "\";\n"; 2415 } 2416 } 2417 2418 OS << " default:\n"; 2419 OS << " return nullptr;\n"; 2420 2421 OS << " }\n"; 2422 OS << "}\n\n"; 2423 } 2424 2425 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) { 2426 OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind " 2427 "RegisterClass) {\n"; 2428 if (none_of(Info.Classes, [](const ClassInfo &CI) { 2429 return CI.isRegisterClass() && !CI.DiagnosticType.empty(); 2430 })) { 2431 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2432 } else { 2433 OS << " switch (RegisterClass) {\n"; 2434 for (const auto &CI: Info.Classes) { 2435 if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) { 2436 OS << " case " << CI.Name << ":\n"; 2437 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2438 << CI.DiagnosticType << ";\n"; 2439 } 2440 } 2441 2442 OS << " default:\n"; 2443 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2444 2445 OS << " }\n"; 2446 } 2447 OS << "}\n\n"; 2448 } 2449 2450 /// emitValidateOperandClass - Emit the function to validate an operand class. 2451 static void emitValidateOperandClass(AsmMatcherInfo &Info, 2452 raw_ostream &OS) { 2453 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " 2454 << "MatchClassKind Kind) {\n"; 2455 OS << " " << Info.Target.getName() << "Operand &Operand = (" 2456 << Info.Target.getName() << "Operand &)GOp;\n"; 2457 2458 // The InvalidMatchClass is not to match any operand. 2459 OS << " if (Kind == InvalidMatchClass)\n"; 2460 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2461 2462 // Check for Token operands first. 2463 // FIXME: Use a more specific diagnostic type. 2464 OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n"; 2465 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" 2466 << " MCTargetAsmParser::Match_Success :\n" 2467 << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2468 2469 // Check the user classes. We don't care what order since we're only 2470 // actually matching against one of them. 2471 OS << " switch (Kind) {\n" 2472 " default: break;\n"; 2473 for (const auto &CI : Info.Classes) { 2474 if (!CI.isUserClass()) 2475 continue; 2476 2477 OS << " // '" << CI.ClassName << "' class\n"; 2478 OS << " case " << CI.Name << ": {\n"; 2479 OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod 2480 << "());\n"; 2481 OS << " if (DP.isMatch())\n"; 2482 OS << " return MCTargetAsmParser::Match_Success;\n"; 2483 if (!CI.DiagnosticType.empty()) { 2484 OS << " if (DP.isNearMatch())\n"; 2485 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2486 << CI.DiagnosticType << ";\n"; 2487 OS << " break;\n"; 2488 } 2489 else 2490 OS << " break;\n"; 2491 OS << " }\n"; 2492 } 2493 OS << " } // end switch (Kind)\n\n"; 2494 2495 // Check for register operands, including sub-classes. 2496 OS << " if (Operand.isReg()) {\n"; 2497 OS << " MatchClassKind OpKind;\n"; 2498 OS << " switch (Operand.getReg()) {\n"; 2499 OS << " default: OpKind = InvalidMatchClass; break;\n"; 2500 for (const auto &RC : Info.RegisterClasses) 2501 OS << " case " << RC.first->getValueAsString("Namespace") << "::" 2502 << RC.first->getName() << ": OpKind = " << RC.second->Name 2503 << "; break;\n"; 2504 OS << " }\n"; 2505 OS << " return isSubclass(OpKind, Kind) ? " 2506 << "(unsigned)MCTargetAsmParser::Match_Success :\n " 2507 << " getDiagKindFromRegisterClass(Kind);\n }\n\n"; 2508 2509 // Expected operand is a register, but actual is not. 2510 OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n"; 2511 OS << " return getDiagKindFromRegisterClass(Kind);\n\n"; 2512 2513 // Generic fallthrough match failure case for operands that don't have 2514 // specialized diagnostic types. 2515 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2516 OS << "}\n\n"; 2517 } 2518 2519 /// emitIsSubclass - Emit the subclass predicate function. 2520 static void emitIsSubclass(CodeGenTarget &Target, 2521 std::forward_list<ClassInfo> &Infos, 2522 raw_ostream &OS) { 2523 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; 2524 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; 2525 OS << " if (A == B)\n"; 2526 OS << " return true;\n\n"; 2527 2528 bool EmittedSwitch = false; 2529 for (const auto &A : Infos) { 2530 std::vector<StringRef> SuperClasses; 2531 if (A.IsOptional) 2532 SuperClasses.push_back("OptionalMatchClass"); 2533 for (const auto &B : Infos) { 2534 if (&A != &B && A.isSubsetOf(B)) 2535 SuperClasses.push_back(B.Name); 2536 } 2537 2538 if (SuperClasses.empty()) 2539 continue; 2540 2541 // If this is the first SuperClass, emit the switch header. 2542 if (!EmittedSwitch) { 2543 OS << " switch (A) {\n"; 2544 OS << " default:\n"; 2545 OS << " return false;\n"; 2546 EmittedSwitch = true; 2547 } 2548 2549 OS << "\n case " << A.Name << ":\n"; 2550 2551 if (SuperClasses.size() == 1) { 2552 OS << " return B == " << SuperClasses.back() << ";\n"; 2553 continue; 2554 } 2555 2556 if (!SuperClasses.empty()) { 2557 OS << " switch (B) {\n"; 2558 OS << " default: return false;\n"; 2559 for (StringRef SC : SuperClasses) 2560 OS << " case " << SC << ": return true;\n"; 2561 OS << " }\n"; 2562 } else { 2563 // No case statement to emit 2564 OS << " return false;\n"; 2565 } 2566 } 2567 2568 // If there were case statements emitted into the string stream write the 2569 // default. 2570 if (EmittedSwitch) 2571 OS << " }\n"; 2572 else 2573 OS << " return false;\n"; 2574 2575 OS << "}\n\n"; 2576 } 2577 2578 /// emitMatchTokenString - Emit the function to match a token string to the 2579 /// appropriate match class value. 2580 static void emitMatchTokenString(CodeGenTarget &Target, 2581 std::forward_list<ClassInfo> &Infos, 2582 raw_ostream &OS) { 2583 // Construct the match list. 2584 std::vector<StringMatcher::StringPair> Matches; 2585 for (const auto &CI : Infos) { 2586 if (CI.Kind == ClassInfo::Token) 2587 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); 2588 } 2589 2590 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; 2591 2592 StringMatcher("Name", Matches, OS).Emit(); 2593 2594 OS << " return InvalidMatchClass;\n"; 2595 OS << "}\n\n"; 2596 } 2597 2598 /// emitMatchRegisterName - Emit the function to match a string to the target 2599 /// specific register enum. 2600 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, 2601 raw_ostream &OS) { 2602 // Construct the match list. 2603 std::vector<StringMatcher::StringPair> Matches; 2604 const auto &Regs = Target.getRegBank().getRegisters(); 2605 for (const CodeGenRegister &Reg : Regs) { 2606 if (Reg.TheDef->getValueAsString("AsmName").empty()) 2607 continue; 2608 2609 Matches.emplace_back(std::string(Reg.TheDef->getValueAsString("AsmName")), 2610 "return " + utostr(Reg.EnumValue) + ";"); 2611 } 2612 2613 OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; 2614 2615 bool IgnoreDuplicates = 2616 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2617 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2618 2619 OS << " return 0;\n"; 2620 OS << "}\n\n"; 2621 } 2622 2623 /// Emit the function to match a string to the target 2624 /// specific register enum. 2625 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, 2626 raw_ostream &OS) { 2627 // Construct the match list. 2628 std::vector<StringMatcher::StringPair> Matches; 2629 const auto &Regs = Target.getRegBank().getRegisters(); 2630 for (const CodeGenRegister &Reg : Regs) { 2631 2632 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); 2633 2634 for (auto AltName : AltNames) { 2635 AltName = StringRef(AltName).trim(); 2636 2637 // don't handle empty alternative names 2638 if (AltName.empty()) 2639 continue; 2640 2641 Matches.emplace_back(std::string(AltName), 2642 "return " + utostr(Reg.EnumValue) + ";"); 2643 } 2644 } 2645 2646 OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n"; 2647 2648 bool IgnoreDuplicates = 2649 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2650 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2651 2652 OS << " return 0;\n"; 2653 OS << "}\n\n"; 2654 } 2655 2656 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. 2657 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { 2658 // Get the set of diagnostic types from all of the operand classes. 2659 std::set<StringRef> Types; 2660 for (const auto &OpClassEntry : Info.AsmOperandClasses) { 2661 if (!OpClassEntry.second->DiagnosticType.empty()) 2662 Types.insert(OpClassEntry.second->DiagnosticType); 2663 } 2664 for (const auto &OpClassEntry : Info.RegisterClassClasses) { 2665 if (!OpClassEntry.second->DiagnosticType.empty()) 2666 Types.insert(OpClassEntry.second->DiagnosticType); 2667 } 2668 2669 if (Types.empty()) return; 2670 2671 // Now emit the enum entries. 2672 for (StringRef Type : Types) 2673 OS << " Match_" << Type << ",\n"; 2674 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; 2675 } 2676 2677 /// emitGetSubtargetFeatureName - Emit the helper function to get the 2678 /// user-level name for a subtarget feature. 2679 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { 2680 OS << "// User-level names for subtarget features that participate in\n" 2681 << "// instruction matching.\n" 2682 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; 2683 if (!Info.SubtargetFeatures.empty()) { 2684 OS << " switch(Val) {\n"; 2685 for (const auto &SF : Info.SubtargetFeatures) { 2686 const SubtargetFeatureInfo &SFI = SF.second; 2687 // FIXME: Totally just a placeholder name to get the algorithm working. 2688 OS << " case " << SFI.getEnumBitName() << ": return \"" 2689 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; 2690 } 2691 OS << " default: return \"(unknown)\";\n"; 2692 OS << " }\n"; 2693 } else { 2694 // Nothing to emit, so skip the switch 2695 OS << " return \"(unknown)\";\n"; 2696 } 2697 OS << "}\n\n"; 2698 } 2699 2700 static std::string GetAliasRequiredFeatures(Record *R, 2701 const AsmMatcherInfo &Info) { 2702 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); 2703 std::string Result; 2704 2705 if (ReqFeatures.empty()) 2706 return Result; 2707 2708 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { 2709 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); 2710 2711 if (!F) 2712 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + 2713 "' is not marked as an AssemblerPredicate!"); 2714 2715 if (i) 2716 Result += " && "; 2717 2718 Result += "Features.test(" + F->getEnumBitName() + ')'; 2719 } 2720 2721 return Result; 2722 } 2723 2724 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, 2725 std::vector<Record*> &Aliases, 2726 unsigned Indent = 0, 2727 StringRef AsmParserVariantName = StringRef()){ 2728 // Keep track of all the aliases from a mnemonic. Use an std::map so that the 2729 // iteration order of the map is stable. 2730 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; 2731 2732 for (Record *R : Aliases) { 2733 // FIXME: Allow AssemblerVariantName to be a comma separated list. 2734 StringRef AsmVariantName = R->getValueAsString("AsmVariantName"); 2735 if (AsmVariantName != AsmParserVariantName) 2736 continue; 2737 AliasesFromMnemonic[R->getValueAsString("FromMnemonic").lower()] 2738 .push_back(R); 2739 } 2740 if (AliasesFromMnemonic.empty()) 2741 return; 2742 2743 // Process each alias a "from" mnemonic at a time, building the code executed 2744 // by the string remapper. 2745 std::vector<StringMatcher::StringPair> Cases; 2746 for (const auto &AliasEntry : AliasesFromMnemonic) { 2747 const std::vector<Record*> &ToVec = AliasEntry.second; 2748 2749 // Loop through each alias and emit code that handles each case. If there 2750 // are two instructions without predicates, emit an error. If there is one, 2751 // emit it last. 2752 std::string MatchCode; 2753 int AliasWithNoPredicate = -1; 2754 2755 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { 2756 Record *R = ToVec[i]; 2757 std::string FeatureMask = GetAliasRequiredFeatures(R, Info); 2758 2759 // If this unconditionally matches, remember it for later and diagnose 2760 // duplicates. 2761 if (FeatureMask.empty()) { 2762 if (AliasWithNoPredicate != -1 && 2763 R->getValueAsString("ToMnemonic") != 2764 ToVec[AliasWithNoPredicate]->getValueAsString("ToMnemonic")) { 2765 // We can't have two different aliases from the same mnemonic with no 2766 // predicate. 2767 PrintError( 2768 ToVec[AliasWithNoPredicate]->getLoc(), 2769 "two different MnemonicAliases with the same 'from' mnemonic!"); 2770 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); 2771 } 2772 2773 AliasWithNoPredicate = i; 2774 continue; 2775 } 2776 if (R->getValueAsString("ToMnemonic") == AliasEntry.first) 2777 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); 2778 2779 if (!MatchCode.empty()) 2780 MatchCode += "else "; 2781 MatchCode += "if (" + FeatureMask + ")\n"; 2782 MatchCode += " Mnemonic = \""; 2783 MatchCode += R->getValueAsString("ToMnemonic").lower(); 2784 MatchCode += "\";\n"; 2785 } 2786 2787 if (AliasWithNoPredicate != -1) { 2788 Record *R = ToVec[AliasWithNoPredicate]; 2789 if (!MatchCode.empty()) 2790 MatchCode += "else\n "; 2791 MatchCode += "Mnemonic = \""; 2792 MatchCode += R->getValueAsString("ToMnemonic").lower(); 2793 MatchCode += "\";\n"; 2794 } 2795 2796 MatchCode += "return;"; 2797 2798 Cases.push_back(std::make_pair(AliasEntry.first, MatchCode)); 2799 } 2800 StringMatcher("Mnemonic", Cases, OS).Emit(Indent); 2801 } 2802 2803 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, 2804 /// emit a function for them and return true, otherwise return false. 2805 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, 2806 CodeGenTarget &Target) { 2807 // Ignore aliases when match-prefix is set. 2808 if (!MatchPrefix.empty()) 2809 return false; 2810 2811 std::vector<Record*> Aliases = 2812 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); 2813 if (Aliases.empty()) return false; 2814 2815 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " 2816 "const FeatureBitset &Features, unsigned VariantID) {\n"; 2817 OS << " switch (VariantID) {\n"; 2818 unsigned VariantCount = Target.getAsmParserVariantCount(); 2819 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2820 Record *AsmVariant = Target.getAsmParserVariant(VC); 2821 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); 2822 StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name"); 2823 OS << " case " << AsmParserVariantNo << ":\n"; 2824 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, 2825 AsmParserVariantName); 2826 OS << " break;\n"; 2827 } 2828 OS << " }\n"; 2829 2830 // Emit aliases that apply to all variants. 2831 emitMnemonicAliasVariant(OS, Info, Aliases); 2832 2833 OS << "}\n\n"; 2834 2835 return true; 2836 } 2837 2838 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, 2839 const AsmMatcherInfo &Info, StringRef ClassName, 2840 StringToOffsetTable &StringTable, 2841 unsigned MaxMnemonicIndex, 2842 unsigned MaxFeaturesIndex, 2843 bool HasMnemonicFirst) { 2844 unsigned MaxMask = 0; 2845 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2846 MaxMask |= OMI.OperandMask; 2847 } 2848 2849 // Emit the static custom operand parsing table; 2850 OS << "namespace {\n"; 2851 OS << " struct OperandMatchEntry {\n"; 2852 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 2853 << " Mnemonic;\n"; 2854 OS << " " << getMinimalTypeForRange(MaxMask) 2855 << " OperandMask;\n"; 2856 OS << " " << getMinimalTypeForRange(std::distance( 2857 Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; 2858 OS << " " << getMinimalTypeForRange(MaxFeaturesIndex) 2859 << " RequiredFeaturesIdx;\n\n"; 2860 OS << " StringRef getMnemonic() const {\n"; 2861 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 2862 OS << " MnemonicTable[Mnemonic]);\n"; 2863 OS << " }\n"; 2864 OS << " };\n\n"; 2865 2866 OS << " // Predicate for searching for an opcode.\n"; 2867 OS << " struct LessOpcodeOperand {\n"; 2868 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; 2869 OS << " return LHS.getMnemonic() < RHS;\n"; 2870 OS << " }\n"; 2871 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; 2872 OS << " return LHS < RHS.getMnemonic();\n"; 2873 OS << " }\n"; 2874 OS << " bool operator()(const OperandMatchEntry &LHS,"; 2875 OS << " const OperandMatchEntry &RHS) {\n"; 2876 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 2877 OS << " }\n"; 2878 OS << " };\n"; 2879 2880 OS << "} // end anonymous namespace\n\n"; 2881 2882 OS << "static const OperandMatchEntry OperandMatchTable[" 2883 << Info.OperandMatchInfo.size() << "] = {\n"; 2884 2885 OS << " /* Operand List Mnemonic, Mask, Operand Class, Features */\n"; 2886 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2887 const MatchableInfo &II = *OMI.MI; 2888 2889 OS << " { "; 2890 2891 // Store a pascal-style length byte in the mnemonic. 2892 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower(); 2893 OS << StringTable.GetOrAddStringOffset(LenMnemonic, false) 2894 << " /* " << II.Mnemonic << " */, "; 2895 2896 OS << OMI.OperandMask; 2897 OS << " /* "; 2898 ListSeparator LS; 2899 for (int i = 0, e = 31; i !=e; ++i) 2900 if (OMI.OperandMask & (1 << i)) 2901 OS << LS << i; 2902 OS << " */, "; 2903 2904 OS << OMI.CI->Name; 2905 2906 // Write the required features mask. 2907 OS << ", AMFBS"; 2908 if (II.RequiredFeatures.empty()) 2909 OS << "_None"; 2910 else 2911 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) 2912 OS << '_' << II.RequiredFeatures[i]->TheDef->getName(); 2913 2914 OS << " },\n"; 2915 } 2916 OS << "};\n\n"; 2917 2918 // Emit the operand class switch to call the correct custom parser for 2919 // the found operand class. 2920 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2921 << "tryCustomParseOperand(OperandVector" 2922 << " &Operands,\n unsigned MCK) {\n\n" 2923 << " switch(MCK) {\n"; 2924 2925 for (const auto &CI : Info.Classes) { 2926 if (CI.ParserMethod.empty()) 2927 continue; 2928 OS << " case " << CI.Name << ":\n" 2929 << " return " << CI.ParserMethod << "(Operands);\n"; 2930 } 2931 2932 OS << " default:\n"; 2933 OS << " return MatchOperand_NoMatch;\n"; 2934 OS << " }\n"; 2935 OS << " return MatchOperand_NoMatch;\n"; 2936 OS << "}\n\n"; 2937 2938 // Emit the static custom operand parser. This code is very similar with 2939 // the other matcher. Also use MatchResultTy here just in case we go for 2940 // a better error handling. 2941 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2942 << "MatchOperandParserImpl(OperandVector" 2943 << " &Operands,\n StringRef Mnemonic,\n" 2944 << " bool ParseForAllFeatures) {\n"; 2945 2946 // Emit code to get the available features. 2947 OS << " // Get the current feature set.\n"; 2948 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; 2949 2950 OS << " // Get the next operand index.\n"; 2951 OS << " unsigned NextOpNum = Operands.size()" 2952 << (HasMnemonicFirst ? " - 1" : "") << ";\n"; 2953 2954 // Emit code to search the table. 2955 OS << " // Search the table.\n"; 2956 if (HasMnemonicFirst) { 2957 OS << " auto MnemonicRange =\n"; 2958 OS << " std::equal_range(std::begin(OperandMatchTable), " 2959 "std::end(OperandMatchTable),\n"; 2960 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2961 } else { 2962 OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable)," 2963 " std::end(OperandMatchTable));\n"; 2964 OS << " if (!Mnemonic.empty())\n"; 2965 OS << " MnemonicRange =\n"; 2966 OS << " std::equal_range(std::begin(OperandMatchTable), " 2967 "std::end(OperandMatchTable),\n"; 2968 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2969 } 2970 2971 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 2972 OS << " return MatchOperand_NoMatch;\n\n"; 2973 2974 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" 2975 << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; 2976 2977 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 2978 OS << " assert(Mnemonic == it->getMnemonic());\n\n"; 2979 2980 // Emit check that the required features are available. 2981 OS << " // check if the available features match\n"; 2982 OS << " const FeatureBitset &RequiredFeatures = " 2983 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 2984 OS << " if (!ParseForAllFeatures && (AvailableFeatures & " 2985 "RequiredFeatures) != RequiredFeatures)\n"; 2986 OS << " continue;\n\n"; 2987 2988 // Emit check to ensure the operand number matches. 2989 OS << " // check if the operand in question has a custom parser.\n"; 2990 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; 2991 OS << " continue;\n\n"; 2992 2993 // Emit call to the custom parser method 2994 OS << " // call custom parse method to handle the operand\n"; 2995 OS << " OperandMatchResultTy Result = "; 2996 OS << "tryCustomParseOperand(Operands, it->Class);\n"; 2997 OS << " if (Result != MatchOperand_NoMatch)\n"; 2998 OS << " return Result;\n"; 2999 OS << " }\n\n"; 3000 3001 OS << " // Okay, we had no match.\n"; 3002 OS << " return MatchOperand_NoMatch;\n"; 3003 OS << "}\n\n"; 3004 } 3005 3006 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target, 3007 AsmMatcherInfo &Info, 3008 raw_ostream &OS) { 3009 std::string AsmParserName = 3010 std::string(Info.AsmParser->getValueAsString("AsmParserClassName")); 3011 OS << "static bool "; 3012 OS << "checkAsmTiedOperandConstraints(const " << Target.getName() 3013 << AsmParserName << "&AsmParser,\n"; 3014 OS << " unsigned Kind,\n"; 3015 OS << " const OperandVector &Operands,\n"; 3016 OS << " uint64_t &ErrorInfo) {\n"; 3017 OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 3018 OS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 3019 OS << " for (const uint8_t *p = Converter; *p; p += 2) {\n"; 3020 OS << " switch (*p) {\n"; 3021 OS << " case CVT_Tied: {\n"; 3022 OS << " unsigned OpIdx = *(p + 1);\n"; 3023 OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 3024 OS << " std::begin(TiedAsmOperandTable)) &&\n"; 3025 OS << " \"Tied operand not found\");\n"; 3026 OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n"; 3027 OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n"; 3028 OS << " if (OpndNum1 != OpndNum2) {\n"; 3029 OS << " auto &SrcOp1 = Operands[OpndNum1];\n"; 3030 OS << " auto &SrcOp2 = Operands[OpndNum2];\n"; 3031 OS << " if (SrcOp1->isReg() && SrcOp2->isReg()) {\n"; 3032 OS << " if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n"; 3033 OS << " ErrorInfo = OpndNum2;\n"; 3034 OS << " return false;\n"; 3035 OS << " }\n"; 3036 OS << " }\n"; 3037 OS << " }\n"; 3038 OS << " break;\n"; 3039 OS << " }\n"; 3040 OS << " default:\n"; 3041 OS << " break;\n"; 3042 OS << " }\n"; 3043 OS << " }\n"; 3044 OS << " return true;\n"; 3045 OS << "}\n\n"; 3046 } 3047 3048 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target, 3049 unsigned VariantCount) { 3050 OS << "static std::string " << Target.getName() 3051 << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS," 3052 << " unsigned VariantID) {\n"; 3053 if (!VariantCount) 3054 OS << " return \"\";"; 3055 else { 3056 OS << " const unsigned MaxEditDist = 2;\n"; 3057 OS << " std::vector<StringRef> Candidates;\n"; 3058 OS << " StringRef Prev = \"\";\n\n"; 3059 3060 OS << " // Find the appropriate table for this asm variant.\n"; 3061 OS << " const MatchEntry *Start, *End;\n"; 3062 OS << " switch (VariantID) {\n"; 3063 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3064 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3065 Record *AsmVariant = Target.getAsmParserVariant(VC); 3066 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3067 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3068 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3069 } 3070 OS << " }\n\n"; 3071 OS << " for (auto I = Start; I < End; I++) {\n"; 3072 OS << " // Ignore unsupported instructions.\n"; 3073 OS << " const FeatureBitset &RequiredFeatures = " 3074 "FeatureBitsets[I->RequiredFeaturesIdx];\n"; 3075 OS << " if ((FBS & RequiredFeatures) != RequiredFeatures)\n"; 3076 OS << " continue;\n"; 3077 OS << "\n"; 3078 OS << " StringRef T = I->getMnemonic();\n"; 3079 OS << " // Avoid recomputing the edit distance for the same string.\n"; 3080 OS << " if (T.equals(Prev))\n"; 3081 OS << " continue;\n"; 3082 OS << "\n"; 3083 OS << " Prev = T;\n"; 3084 OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n"; 3085 OS << " if (Dist <= MaxEditDist)\n"; 3086 OS << " Candidates.push_back(T);\n"; 3087 OS << " }\n"; 3088 OS << "\n"; 3089 OS << " if (Candidates.empty())\n"; 3090 OS << " return \"\";\n"; 3091 OS << "\n"; 3092 OS << " std::string Res = \", did you mean: \";\n"; 3093 OS << " unsigned i = 0;\n"; 3094 OS << " for (; i < Candidates.size() - 1; i++)\n"; 3095 OS << " Res += Candidates[i].str() + \", \";\n"; 3096 OS << " return Res + Candidates[i].str() + \"?\";\n"; 3097 } 3098 OS << "}\n"; 3099 OS << "\n"; 3100 } 3101 3102 static void emitMnemonicChecker(raw_ostream &OS, 3103 CodeGenTarget &Target, 3104 unsigned VariantCount, 3105 bool HasMnemonicFirst, 3106 bool HasMnemonicAliases) { 3107 OS << "static bool " << Target.getName() 3108 << "CheckMnemonic(StringRef Mnemonic,\n"; 3109 OS << " " 3110 << "const FeatureBitset &AvailableFeatures,\n"; 3111 OS << " " 3112 << "unsigned VariantID) {\n"; 3113 3114 if (!VariantCount) { 3115 OS << " return false;\n"; 3116 } else { 3117 if (HasMnemonicAliases) { 3118 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3119 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);"; 3120 OS << "\n\n"; 3121 } 3122 OS << " // Find the appropriate table for this asm variant.\n"; 3123 OS << " const MatchEntry *Start, *End;\n"; 3124 OS << " switch (VariantID) {\n"; 3125 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3126 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3127 Record *AsmVariant = Target.getAsmParserVariant(VC); 3128 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3129 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3130 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3131 } 3132 OS << " }\n\n"; 3133 3134 OS << " // Search the table.\n"; 3135 if (HasMnemonicFirst) { 3136 OS << " auto MnemonicRange = " 3137 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3138 } else { 3139 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3140 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3141 OS << " if (!Mnemonic.empty())\n"; 3142 OS << " MnemonicRange = " 3143 << "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3144 } 3145 3146 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3147 OS << " return false;\n\n"; 3148 3149 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3150 << "*ie = MnemonicRange.second;\n"; 3151 OS << " it != ie; ++it) {\n"; 3152 OS << " const FeatureBitset &RequiredFeatures =\n"; 3153 OS << " FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3154 OS << " if ((AvailableFeatures & RequiredFeatures) == "; 3155 OS << "RequiredFeatures)\n"; 3156 OS << " return true;\n"; 3157 OS << " }\n"; 3158 OS << " return false;\n"; 3159 } 3160 OS << "}\n"; 3161 OS << "\n"; 3162 } 3163 3164 // Emit a function mapping match classes to strings, for debugging. 3165 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos, 3166 raw_ostream &OS) { 3167 OS << "#ifndef NDEBUG\n"; 3168 OS << "const char *getMatchClassName(MatchClassKind Kind) {\n"; 3169 OS << " switch (Kind) {\n"; 3170 3171 OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n"; 3172 OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n"; 3173 for (const auto &CI : Infos) { 3174 OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n"; 3175 } 3176 OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n"; 3177 3178 OS << " }\n"; 3179 OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n"; 3180 OS << "}\n\n"; 3181 OS << "#endif // NDEBUG\n"; 3182 } 3183 3184 static std::string 3185 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 3186 std::string Name = "AMFBS"; 3187 for (const auto &Feature : FeatureBitset) 3188 Name += ("_" + Feature->getName()).str(); 3189 return Name; 3190 } 3191 3192 void AsmMatcherEmitter::run(raw_ostream &OS) { 3193 CodeGenTarget Target(Records); 3194 Record *AsmParser = Target.getAsmParser(); 3195 StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName"); 3196 3197 // Compute the information on the instructions to match. 3198 AsmMatcherInfo Info(AsmParser, Target, Records); 3199 Info.buildInfo(); 3200 3201 // Sort the instruction table using the partial order on classes. We use 3202 // stable_sort to ensure that ambiguous instructions are still 3203 // deterministically ordered. 3204 llvm::stable_sort( 3205 Info.Matchables, 3206 [](const std::unique_ptr<MatchableInfo> &a, 3207 const std::unique_ptr<MatchableInfo> &b) { return *a < *b; }); 3208 3209 #ifdef EXPENSIVE_CHECKS 3210 // Verify that the table is sorted and operator < works transitively. 3211 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3212 ++I) { 3213 for (auto J = I; J != E; ++J) { 3214 assert(!(**J < **I)); 3215 } 3216 } 3217 #endif 3218 3219 DEBUG_WITH_TYPE("instruction_info", { 3220 for (const auto &MI : Info.Matchables) 3221 MI->dump(); 3222 }); 3223 3224 // Check for ambiguous matchables. 3225 DEBUG_WITH_TYPE("ambiguous_instrs", { 3226 unsigned NumAmbiguous = 0; 3227 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3228 ++I) { 3229 for (auto J = std::next(I); J != E; ++J) { 3230 const MatchableInfo &A = **I; 3231 const MatchableInfo &B = **J; 3232 3233 if (A.couldMatchAmbiguouslyWith(B)) { 3234 errs() << "warning: ambiguous matchables:\n"; 3235 A.dump(); 3236 errs() << "\nis incomparable with:\n"; 3237 B.dump(); 3238 errs() << "\n\n"; 3239 ++NumAmbiguous; 3240 } 3241 } 3242 } 3243 if (NumAmbiguous) 3244 errs() << "warning: " << NumAmbiguous 3245 << " ambiguous matchables!\n"; 3246 }); 3247 3248 // Compute the information on the custom operand parsing. 3249 Info.buildOperandMatchInfo(); 3250 3251 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 3252 bool HasOptionalOperands = Info.hasOptionalOperands(); 3253 bool ReportMultipleNearMisses = 3254 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 3255 3256 // Write the output. 3257 3258 // Information for the class declaration. 3259 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; 3260 OS << "#undef GET_ASSEMBLER_HEADER\n"; 3261 OS << " // This should be included into the middle of the declaration of\n"; 3262 OS << " // your subclasses implementation of MCTargetAsmParser.\n"; 3263 OS << " FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) const;\n"; 3264 if (HasOptionalOperands) { 3265 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3266 << "unsigned Opcode,\n" 3267 << " const OperandVector &Operands,\n" 3268 << " const SmallBitVector &OptionalOperandsMask);\n"; 3269 } else { 3270 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3271 << "unsigned Opcode,\n" 3272 << " const OperandVector &Operands);\n"; 3273 } 3274 OS << " void convertToMapAndConstraints(unsigned Kind,\n "; 3275 OS << " const OperandVector &Operands) override;\n"; 3276 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3277 << " MCInst &Inst,\n"; 3278 if (ReportMultipleNearMisses) 3279 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3280 else 3281 OS << " uint64_t &ErrorInfo,\n" 3282 << " FeatureBitset &MissingFeatures,\n"; 3283 OS << " bool matchingInlineAsm,\n" 3284 << " unsigned VariantID = 0);\n"; 3285 if (!ReportMultipleNearMisses) 3286 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3287 << " MCInst &Inst,\n" 3288 << " uint64_t &ErrorInfo,\n" 3289 << " bool matchingInlineAsm,\n" 3290 << " unsigned VariantID = 0) {\n" 3291 << " FeatureBitset MissingFeatures;\n" 3292 << " return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n" 3293 << " matchingInlineAsm, VariantID);\n" 3294 << " }\n\n"; 3295 3296 3297 if (!Info.OperandMatchInfo.empty()) { 3298 OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; 3299 OS << " OperandVector &Operands,\n"; 3300 OS << " StringRef Mnemonic,\n"; 3301 OS << " bool ParseForAllFeatures = false);\n"; 3302 3303 OS << " OperandMatchResultTy tryCustomParseOperand(\n"; 3304 OS << " OperandVector &Operands,\n"; 3305 OS << " unsigned MCK);\n\n"; 3306 } 3307 3308 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; 3309 3310 // Emit the operand match diagnostic enum names. 3311 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; 3312 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3313 emitOperandDiagnosticTypes(Info, OS); 3314 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3315 3316 OS << "\n#ifdef GET_REGISTER_MATCHER\n"; 3317 OS << "#undef GET_REGISTER_MATCHER\n\n"; 3318 3319 // Emit the subtarget feature enumeration. 3320 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration( 3321 Info.SubtargetFeatures, OS); 3322 3323 // Emit the function to match a register name to number. 3324 // This should be omitted for Mips target 3325 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) 3326 emitMatchRegisterName(Target, AsmParser, OS); 3327 3328 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) 3329 emitMatchRegisterAltName(Target, AsmParser, OS); 3330 3331 OS << "#endif // GET_REGISTER_MATCHER\n\n"; 3332 3333 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; 3334 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; 3335 3336 // Generate the helper function to get the names for subtarget features. 3337 emitGetSubtargetFeatureName(Info, OS); 3338 3339 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; 3340 3341 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; 3342 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; 3343 3344 // Generate the function that remaps for mnemonic aliases. 3345 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); 3346 3347 // Generate the convertToMCInst function to convert operands into an MCInst. 3348 // Also, generate the convertToMapAndConstraints function for MS-style inline 3349 // assembly. The latter doesn't actually generate a MCInst. 3350 unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables, 3351 HasMnemonicFirst, 3352 HasOptionalOperands, OS); 3353 3354 // Emit the enumeration for classes which participate in matching. 3355 emitMatchClassEnumeration(Target, Info.Classes, OS); 3356 3357 // Emit a function to get the user-visible string to describe an operand 3358 // match failure in diagnostics. 3359 emitOperandMatchErrorDiagStrings(Info, OS); 3360 3361 // Emit a function to map register classes to operand match failure codes. 3362 emitRegisterMatchErrorFunc(Info, OS); 3363 3364 // Emit the routine to match token strings to their match class. 3365 emitMatchTokenString(Target, Info.Classes, OS); 3366 3367 // Emit the subclass predicate routine. 3368 emitIsSubclass(Target, Info.Classes, OS); 3369 3370 // Emit the routine to validate an operand against a match class. 3371 emitValidateOperandClass(Info, OS); 3372 3373 emitMatchClassKindNames(Info.Classes, OS); 3374 3375 // Emit the available features compute function. 3376 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( 3377 Info.Target.getName(), ClassName, "ComputeAvailableFeatures", 3378 Info.SubtargetFeatures, OS); 3379 3380 if (!ReportMultipleNearMisses) 3381 emitAsmTiedOperandConstraints(Target, Info, OS); 3382 3383 StringToOffsetTable StringTable; 3384 3385 size_t MaxNumOperands = 0; 3386 unsigned MaxMnemonicIndex = 0; 3387 bool HasDeprecation = false; 3388 for (const auto &MI : Info.Matchables) { 3389 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 3390 HasDeprecation |= MI->HasDeprecation; 3391 3392 // Store a pascal-style length byte in the mnemonic. 3393 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower(); 3394 MaxMnemonicIndex = std::max(MaxMnemonicIndex, 3395 StringTable.GetOrAddStringOffset(LenMnemonic, false)); 3396 } 3397 3398 OS << "static const char MnemonicTable[] =\n"; 3399 StringTable.EmitString(OS); 3400 OS << ";\n\n"; 3401 3402 std::vector<std::vector<Record *>> FeatureBitsets; 3403 for (const auto &MI : Info.Matchables) { 3404 if (MI->RequiredFeatures.empty()) 3405 continue; 3406 FeatureBitsets.emplace_back(); 3407 for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I) 3408 FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef); 3409 } 3410 3411 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 3412 const std::vector<Record *> &B) { 3413 if (A.size() < B.size()) 3414 return true; 3415 if (A.size() > B.size()) 3416 return false; 3417 for (auto Pair : zip(A, B)) { 3418 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 3419 return true; 3420 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 3421 return false; 3422 } 3423 return false; 3424 }); 3425 FeatureBitsets.erase( 3426 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 3427 FeatureBitsets.end()); 3428 OS << "// Feature bitsets.\n" 3429 << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n" 3430 << " AMFBS_None,\n"; 3431 for (const auto &FeatureBitset : FeatureBitsets) { 3432 if (FeatureBitset.empty()) 3433 continue; 3434 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 3435 } 3436 OS << "};\n\n" 3437 << "static constexpr FeatureBitset FeatureBitsets[] = {\n" 3438 << " {}, // AMFBS_None\n"; 3439 for (const auto &FeatureBitset : FeatureBitsets) { 3440 if (FeatureBitset.empty()) 3441 continue; 3442 OS << " {"; 3443 for (const auto &Feature : FeatureBitset) { 3444 const auto &I = Info.SubtargetFeatures.find(Feature); 3445 assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?"); 3446 OS << I->second.getEnumBitName() << ", "; 3447 } 3448 OS << "},\n"; 3449 } 3450 OS << "};\n\n"; 3451 3452 // Emit the static match table; unused classes get initialized to 0 which is 3453 // guaranteed to be InvalidMatchClass. 3454 // 3455 // FIXME: We can reduce the size of this table very easily. First, we change 3456 // it so that store the kinds in separate bit-fields for each index, which 3457 // only needs to be the max width used for classes at that index (we also need 3458 // to reject based on this during classification). If we then make sure to 3459 // order the match kinds appropriately (putting mnemonics last), then we 3460 // should only end up using a few bits for each class, especially the ones 3461 // following the mnemonic. 3462 OS << "namespace {\n"; 3463 OS << " struct MatchEntry {\n"; 3464 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 3465 << " Mnemonic;\n"; 3466 OS << " uint16_t Opcode;\n"; 3467 OS << " " << getMinimalTypeForRange(NumConverters) 3468 << " ConvertFn;\n"; 3469 OS << " " << getMinimalTypeForRange(FeatureBitsets.size()) 3470 << " RequiredFeaturesIdx;\n"; 3471 OS << " " << getMinimalTypeForRange( 3472 std::distance(Info.Classes.begin(), Info.Classes.end())) 3473 << " Classes[" << MaxNumOperands << "];\n"; 3474 OS << " StringRef getMnemonic() const {\n"; 3475 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 3476 OS << " MnemonicTable[Mnemonic]);\n"; 3477 OS << " }\n"; 3478 OS << " };\n\n"; 3479 3480 OS << " // Predicate for searching for an opcode.\n"; 3481 OS << " struct LessOpcode {\n"; 3482 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; 3483 OS << " return LHS.getMnemonic() < RHS;\n"; 3484 OS << " }\n"; 3485 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; 3486 OS << " return LHS < RHS.getMnemonic();\n"; 3487 OS << " }\n"; 3488 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; 3489 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 3490 OS << " }\n"; 3491 OS << " };\n"; 3492 3493 OS << "} // end anonymous namespace\n\n"; 3494 3495 unsigned VariantCount = Target.getAsmParserVariantCount(); 3496 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3497 Record *AsmVariant = Target.getAsmParserVariant(VC); 3498 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3499 3500 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; 3501 3502 for (const auto &MI : Info.Matchables) { 3503 if (MI->AsmVariantID != AsmVariantNo) 3504 continue; 3505 3506 // Store a pascal-style length byte in the mnemonic. 3507 std::string LenMnemonic = 3508 char(MI->Mnemonic.size()) + MI->Mnemonic.lower(); 3509 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 3510 << " /* " << MI->Mnemonic << " */, " 3511 << Target.getInstNamespace() << "::" 3512 << MI->getResultInst()->TheDef->getName() << ", " 3513 << MI->ConversionFnKind << ", "; 3514 3515 // Write the required features mask. 3516 OS << "AMFBS"; 3517 if (MI->RequiredFeatures.empty()) 3518 OS << "_None"; 3519 else 3520 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) 3521 OS << '_' << MI->RequiredFeatures[i]->TheDef->getName(); 3522 3523 OS << ", { "; 3524 ListSeparator LS; 3525 for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands) 3526 OS << LS << Op.Class->Name; 3527 OS << " }, },\n"; 3528 } 3529 3530 OS << "};\n\n"; 3531 } 3532 3533 OS << "#include \"llvm/Support/Debug.h\"\n"; 3534 OS << "#include \"llvm/Support/Format.h\"\n\n"; 3535 3536 // Finally, build the match function. 3537 OS << "unsigned " << Target.getName() << ClassName << "::\n" 3538 << "MatchInstructionImpl(const OperandVector &Operands,\n"; 3539 OS << " MCInst &Inst,\n"; 3540 if (ReportMultipleNearMisses) 3541 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3542 else 3543 OS << " uint64_t &ErrorInfo,\n" 3544 << " FeatureBitset &MissingFeatures,\n"; 3545 OS << " bool matchingInlineAsm, unsigned VariantID) {\n"; 3546 3547 if (!ReportMultipleNearMisses) { 3548 OS << " // Eliminate obvious mismatches.\n"; 3549 OS << " if (Operands.size() > " 3550 << (MaxNumOperands + HasMnemonicFirst) << ") {\n"; 3551 OS << " ErrorInfo = " 3552 << (MaxNumOperands + HasMnemonicFirst) << ";\n"; 3553 OS << " return Match_InvalidOperand;\n"; 3554 OS << " }\n\n"; 3555 } 3556 3557 // Emit code to get the available features. 3558 OS << " // Get the current feature set.\n"; 3559 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; 3560 3561 OS << " // Get the instruction mnemonic, which is the first token.\n"; 3562 if (HasMnemonicFirst) { 3563 OS << " StringRef Mnemonic = ((" << Target.getName() 3564 << "Operand &)*Operands[0]).getToken();\n\n"; 3565 } else { 3566 OS << " StringRef Mnemonic;\n"; 3567 OS << " if (Operands[0]->isToken())\n"; 3568 OS << " Mnemonic = ((" << Target.getName() 3569 << "Operand &)*Operands[0]).getToken();\n\n"; 3570 } 3571 3572 if (HasMnemonicAliases) { 3573 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3574 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; 3575 } 3576 3577 // Emit code to compute the class list for this operand vector. 3578 if (!ReportMultipleNearMisses) { 3579 OS << " // Some state to try to produce better error messages.\n"; 3580 OS << " bool HadMatchOtherThanFeatures = false;\n"; 3581 OS << " bool HadMatchOtherThanPredicate = false;\n"; 3582 OS << " unsigned RetCode = Match_InvalidOperand;\n"; 3583 OS << " MissingFeatures.set();\n"; 3584 OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; 3585 OS << " // wrong for all instances of the instruction.\n"; 3586 OS << " ErrorInfo = ~0ULL;\n"; 3587 } 3588 3589 if (HasOptionalOperands) { 3590 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; 3591 } 3592 3593 // Emit code to search the table. 3594 OS << " // Find the appropriate table for this asm variant.\n"; 3595 OS << " const MatchEntry *Start, *End;\n"; 3596 OS << " switch (VariantID) {\n"; 3597 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3598 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3599 Record *AsmVariant = Target.getAsmParserVariant(VC); 3600 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3601 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3602 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3603 } 3604 OS << " }\n"; 3605 3606 OS << " // Search the table.\n"; 3607 if (HasMnemonicFirst) { 3608 OS << " auto MnemonicRange = " 3609 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3610 } else { 3611 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3612 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3613 OS << " if (!Mnemonic.empty())\n"; 3614 OS << " MnemonicRange = " 3615 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3616 } 3617 3618 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n" 3619 << " std::distance(MnemonicRange.first, MnemonicRange.second) <<\n" 3620 << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n"; 3621 3622 OS << " // Return a more specific error code if no mnemonics match.\n"; 3623 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3624 OS << " return Match_MnemonicFail;\n\n"; 3625 3626 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3627 << "*ie = MnemonicRange.second;\n"; 3628 OS << " it != ie; ++it) {\n"; 3629 OS << " const FeatureBitset &RequiredFeatures = " 3630 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3631 OS << " bool HasRequiredFeatures =\n"; 3632 OS << " (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n"; 3633 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n"; 3634 OS << " << MII.getName(it->Opcode) << \"\\n\");\n"; 3635 3636 if (ReportMultipleNearMisses) { 3637 OS << " // Some state to record ways in which this instruction did not match.\n"; 3638 OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n"; 3639 OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n"; 3640 OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n"; 3641 OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n"; 3642 OS << " bool MultipleInvalidOperands = false;\n"; 3643 } 3644 3645 if (HasMnemonicFirst) { 3646 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 3647 OS << " assert(Mnemonic == it->getMnemonic());\n"; 3648 } 3649 3650 // Emit check that the subclasses match. 3651 if (!ReportMultipleNearMisses) 3652 OS << " bool OperandsValid = true;\n"; 3653 if (HasOptionalOperands) { 3654 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; 3655 } 3656 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") 3657 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") 3658 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; 3659 OS << " auto Formal = " 3660 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; 3661 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3662 OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n"; 3663 OS << " << \" against actual operand at index \" << ActualIdx);\n"; 3664 OS << " if (ActualIdx < Operands.size())\n"; 3665 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n"; 3666 OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n"; 3667 OS << " else\n"; 3668 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n"; 3669 OS << " if (ActualIdx >= Operands.size()) {\n"; 3670 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n"; 3671 if (ReportMultipleNearMisses) { 3672 OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || " 3673 "isSubclass(Formal, OptionalMatchClass);\n"; 3674 OS << " if (!ThisOperandValid) {\n"; 3675 OS << " if (!OperandNearMiss) {\n"; 3676 OS << " // Record info about match failure for later use.\n"; 3677 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n"; 3678 OS << " OperandNearMiss =\n"; 3679 OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n"; 3680 OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n"; 3681 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3682 OS << " DEBUG_WITH_TYPE(\n"; 3683 OS << " \"asm-matcher\",\n"; 3684 OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n"; 3685 OS << " MultipleInvalidOperands = true;\n"; 3686 OS << " break;\n"; 3687 OS << " }\n"; 3688 OS << " } else {\n"; 3689 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n"; 3690 OS << " break;\n"; 3691 OS << " }\n"; 3692 OS << " continue;\n"; 3693 } else { 3694 OS << " OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n"; 3695 OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n"; 3696 if (HasOptionalOperands) { 3697 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands 3698 << ");\n"; 3699 } 3700 OS << " break;\n"; 3701 } 3702 OS << " }\n"; 3703 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; 3704 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n"; 3705 OS << " if (Diag == Match_Success) {\n"; 3706 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3707 OS << " dbgs() << \"match success using generic matcher\\n\");\n"; 3708 OS << " ++ActualIdx;\n"; 3709 OS << " continue;\n"; 3710 OS << " }\n"; 3711 OS << " // If the generic handler indicates an invalid operand\n"; 3712 OS << " // failure, check for a special case.\n"; 3713 OS << " if (Diag != Match_Success) {\n"; 3714 OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n"; 3715 OS << " if (TargetDiag == Match_Success) {\n"; 3716 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3717 OS << " dbgs() << \"match success using target matcher\\n\");\n"; 3718 OS << " ++ActualIdx;\n"; 3719 OS << " continue;\n"; 3720 OS << " }\n"; 3721 OS << " // If the target matcher returned a specific error code use\n"; 3722 OS << " // that, else use the one from the generic matcher.\n"; 3723 OS << " if (TargetDiag != Match_InvalidOperand && " 3724 "HasRequiredFeatures)\n"; 3725 OS << " Diag = TargetDiag;\n"; 3726 OS << " }\n"; 3727 OS << " // If current formal operand wasn't matched and it is optional\n" 3728 << " // then try to match next formal operand\n"; 3729 OS << " if (Diag == Match_InvalidOperand " 3730 << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; 3731 if (HasOptionalOperands) { 3732 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3733 } 3734 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n"; 3735 OS << " continue;\n"; 3736 OS << " }\n"; 3737 3738 if (ReportMultipleNearMisses) { 3739 OS << " if (!OperandNearMiss) {\n"; 3740 OS << " // If this is the first invalid operand we have seen, record some\n"; 3741 OS << " // information about it.\n"; 3742 OS << " DEBUG_WITH_TYPE(\n"; 3743 OS << " \"asm-matcher\",\n"; 3744 OS << " dbgs()\n"; 3745 OS << " << \"operand match failed, recording near-miss with diag code \"\n"; 3746 OS << " << Diag << \"\\n\");\n"; 3747 OS << " OperandNearMiss =\n"; 3748 OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n"; 3749 OS << " ++ActualIdx;\n"; 3750 OS << " } else {\n"; 3751 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3752 OS << " DEBUG_WITH_TYPE(\n"; 3753 OS << " \"asm-matcher\",\n"; 3754 OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n"; 3755 OS << " MultipleInvalidOperands = true;\n"; 3756 OS << " break;\n"; 3757 OS << " }\n"; 3758 OS << " }\n\n"; 3759 } else { 3760 OS << " // If this operand is broken for all of the instances of this\n"; 3761 OS << " // mnemonic, keep track of it so we can report loc info.\n"; 3762 OS << " // If we already had a match that only failed due to a\n"; 3763 OS << " // target predicate, that diagnostic is preferred.\n"; 3764 OS << " if (!HadMatchOtherThanPredicate &&\n"; 3765 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n"; 3766 OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag " 3767 "!= Match_InvalidOperand))\n"; 3768 OS << " RetCode = Diag;\n"; 3769 OS << " ErrorInfo = ActualIdx;\n"; 3770 OS << " }\n"; 3771 OS << " // Otherwise, just reject this instance of the mnemonic.\n"; 3772 OS << " OperandsValid = false;\n"; 3773 OS << " break;\n"; 3774 OS << " }\n\n"; 3775 } 3776 3777 if (ReportMultipleNearMisses) 3778 OS << " if (MultipleInvalidOperands) {\n"; 3779 else 3780 OS << " if (!OperandsValid) {\n"; 3781 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3782 OS << " \"operand mismatches, ignoring \"\n"; 3783 OS << " \"this opcode\\n\");\n"; 3784 OS << " continue;\n"; 3785 OS << " }\n"; 3786 3787 // Emit check that the required features are available. 3788 OS << " if (!HasRequiredFeatures) {\n"; 3789 if (!ReportMultipleNearMisses) 3790 OS << " HadMatchOtherThanFeatures = true;\n"; 3791 OS << " FeatureBitset NewMissingFeatures = RequiredFeatures & " 3792 "~AvailableFeatures;\n"; 3793 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n"; 3794 OS << " for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n"; 3795 OS << " if (NewMissingFeatures[I])\n"; 3796 OS << " dbgs() << ' ' << I;\n"; 3797 OS << " dbgs() << \"\\n\");\n"; 3798 if (ReportMultipleNearMisses) { 3799 OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n"; 3800 } else { 3801 OS << " if (NewMissingFeatures.count() <=\n" 3802 " MissingFeatures.count())\n"; 3803 OS << " MissingFeatures = NewMissingFeatures;\n"; 3804 OS << " continue;\n"; 3805 } 3806 OS << " }\n"; 3807 OS << "\n"; 3808 OS << " Inst.clear();\n\n"; 3809 OS << " Inst.setOpcode(it->Opcode);\n"; 3810 // Verify the instruction with the target-specific match predicate function. 3811 OS << " // We have a potential match but have not rendered the operands.\n" 3812 << " // Check the target predicate to handle any context sensitive\n" 3813 " // constraints.\n" 3814 << " // For example, Ties that are referenced multiple times must be\n" 3815 " // checked here to ensure the input is the same for each match\n" 3816 " // constraints. If we leave it any later the ties will have been\n" 3817 " // canonicalized\n" 3818 << " unsigned MatchResult;\n" 3819 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, " 3820 "Operands)) != Match_Success) {\n" 3821 << " Inst.clear();\n"; 3822 OS << " DEBUG_WITH_TYPE(\n"; 3823 OS << " \"asm-matcher\",\n"; 3824 OS << " dbgs() << \"Early target match predicate failed with diag code \"\n"; 3825 OS << " << MatchResult << \"\\n\");\n"; 3826 if (ReportMultipleNearMisses) { 3827 OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3828 } else { 3829 OS << " RetCode = MatchResult;\n" 3830 << " HadMatchOtherThanPredicate = true;\n" 3831 << " continue;\n"; 3832 } 3833 OS << " }\n\n"; 3834 3835 if (ReportMultipleNearMisses) { 3836 OS << " // If we did not successfully match the operands, then we can't convert to\n"; 3837 OS << " // an MCInst, so bail out on this instruction variant now.\n"; 3838 OS << " if (OperandNearMiss) {\n"; 3839 OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n"; 3840 OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n"; 3841 OS << " DEBUG_WITH_TYPE(\n"; 3842 OS << " \"asm-matcher\",\n"; 3843 OS << " dbgs()\n"; 3844 OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n"; 3845 OS << " NearMisses->push_back(OperandNearMiss);\n"; 3846 OS << " } else {\n"; 3847 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3848 OS << " \"types of mismatch, so not \"\n"; 3849 OS << " \"reporting near-miss\\n\");\n"; 3850 OS << " }\n"; 3851 OS << " continue;\n"; 3852 OS << " }\n\n"; 3853 } 3854 3855 OS << " if (matchingInlineAsm) {\n"; 3856 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; 3857 if (!ReportMultipleNearMisses) { 3858 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3859 "Operands, ErrorInfo))\n"; 3860 OS << " return Match_InvalidTiedOperand;\n"; 3861 OS << "\n"; 3862 } 3863 OS << " return Match_Success;\n"; 3864 OS << " }\n\n"; 3865 OS << " // We have selected a definite instruction, convert the parsed\n" 3866 << " // operands into the appropriate MCInst.\n"; 3867 if (HasOptionalOperands) { 3868 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" 3869 << " OptionalOperandsMask);\n"; 3870 } else { 3871 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; 3872 } 3873 OS << "\n"; 3874 3875 // Verify the instruction with the target-specific match predicate function. 3876 OS << " // We have a potential match. Check the target predicate to\n" 3877 << " // handle any context sensitive constraints.\n" 3878 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" 3879 << " Match_Success) {\n" 3880 << " DEBUG_WITH_TYPE(\"asm-matcher\",\n" 3881 << " dbgs() << \"Target match predicate failed with diag code \"\n" 3882 << " << MatchResult << \"\\n\");\n" 3883 << " Inst.clear();\n"; 3884 if (ReportMultipleNearMisses) { 3885 OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3886 } else { 3887 OS << " RetCode = MatchResult;\n" 3888 << " HadMatchOtherThanPredicate = true;\n" 3889 << " continue;\n"; 3890 } 3891 OS << " }\n\n"; 3892 3893 if (ReportMultipleNearMisses) { 3894 OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n"; 3895 OS << " (int)(bool)FeaturesNearMiss +\n"; 3896 OS << " (int)(bool)EarlyPredicateNearMiss +\n"; 3897 OS << " (int)(bool)LatePredicateNearMiss);\n"; 3898 OS << " if (NumNearMisses == 1) {\n"; 3899 OS << " // We had exactly one type of near-miss, so add that to the list.\n"; 3900 OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n"; 3901 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n"; 3902 OS << " \"mismatch, so reporting a \"\n"; 3903 OS << " \"near-miss\\n\");\n"; 3904 OS << " if (NearMisses && FeaturesNearMiss)\n"; 3905 OS << " NearMisses->push_back(FeaturesNearMiss);\n"; 3906 OS << " else if (NearMisses && EarlyPredicateNearMiss)\n"; 3907 OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n"; 3908 OS << " else if (NearMisses && LatePredicateNearMiss)\n"; 3909 OS << " NearMisses->push_back(LatePredicateNearMiss);\n"; 3910 OS << "\n"; 3911 OS << " continue;\n"; 3912 OS << " } else if (NumNearMisses > 1) {\n"; 3913 OS << " // This instruction missed in more than one way, so ignore it.\n"; 3914 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3915 OS << " \"types of mismatch, so not \"\n"; 3916 OS << " \"reporting near-miss\\n\");\n"; 3917 OS << " continue;\n"; 3918 OS << " }\n"; 3919 } 3920 3921 // Call the post-processing function, if used. 3922 StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); 3923 if (!InsnCleanupFn.empty()) 3924 OS << " " << InsnCleanupFn << "(Inst);\n"; 3925 3926 if (HasDeprecation) { 3927 OS << " std::string Info;\n"; 3928 OS << " if (!getParser().getTargetParser().getTargetOptions().MCNoDeprecatedWarn &&\n"; 3929 OS << " MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; 3930 OS << " SMLoc Loc = ((" << Target.getName() 3931 << "Operand &)*Operands[0]).getStartLoc();\n"; 3932 OS << " getParser().Warning(Loc, Info, None);\n"; 3933 OS << " }\n"; 3934 } 3935 3936 if (!ReportMultipleNearMisses) { 3937 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3938 "Operands, ErrorInfo))\n"; 3939 OS << " return Match_InvalidTiedOperand;\n"; 3940 OS << "\n"; 3941 } 3942 3943 OS << " DEBUG_WITH_TYPE(\n"; 3944 OS << " \"asm-matcher\",\n"; 3945 OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n"; 3946 OS << " return Match_Success;\n"; 3947 OS << " }\n\n"; 3948 3949 if (ReportMultipleNearMisses) { 3950 OS << " // No instruction variants matched exactly.\n"; 3951 OS << " return Match_NearMisses;\n"; 3952 } else { 3953 OS << " // Okay, we had no match. Try to return a useful error code.\n"; 3954 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; 3955 OS << " return RetCode;\n\n"; 3956 OS << " ErrorInfo = 0;\n"; 3957 OS << " return Match_MissingFeature;\n"; 3958 } 3959 OS << "}\n\n"; 3960 3961 if (!Info.OperandMatchInfo.empty()) 3962 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, 3963 MaxMnemonicIndex, FeatureBitsets.size(), 3964 HasMnemonicFirst); 3965 3966 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; 3967 3968 OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n"; 3969 OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n"; 3970 3971 emitMnemonicSpellChecker(OS, Target, VariantCount); 3972 3973 OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n"; 3974 3975 OS << "\n#ifdef GET_MNEMONIC_CHECKER\n"; 3976 OS << "#undef GET_MNEMONIC_CHECKER\n\n"; 3977 3978 emitMnemonicChecker(OS, Target, VariantCount, 3979 HasMnemonicFirst, HasMnemonicAliases); 3980 3981 OS << "#endif // GET_MNEMONIC_CHECKER\n\n"; 3982 } 3983 3984 namespace llvm { 3985 3986 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { 3987 emitSourceFileHeader("Assembly Matcher Source Fragment", OS); 3988 AsmMatcherEmitter(RK).run(OS); 3989 } 3990 3991 } // end namespace llvm 3992